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Abstract

Feynman diagrams are essential tools used in the quantum field theory approach to con-
densed matter problems. It is typical to represent diagrammatic techniques in momentum
space assuming implicitly that we have an infinite domain at hand. However, in finite
nanoscale systems the momentum is not well-defined, so that the theory has to be reformu-
lated. We espouse the coordinate space description, with the formalism having to satisfy
geometric constraints of the physical domain. We show that the finite element method
(FEM) is well suited for the quantum field theoretic modeling of nanoscale systems. The
FEM uses a discretized physical domain that is faithful to the geometry at hand, and the
wavefunctions are solved using a discretized form of the action and its variation.
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1 Introduction

Quantum field theory provides a systematic approach to the perturbative inclusion of the
effects of interactions between fields. Its successes in quantum electrodynamics and quantum
chromodynamics are based on the use of Green’s functions (GF), or Feynman propagators,
to account for the inhomogeneous terms in equations of motion in the presence of interacting
quantum fields. The interaction terms lead to nonlinear coupling that in principle demands
a solution to all orders.

In general, terms from higher order perturbation theory have complicated expressions.
However, Feynman developed a convenient and intuitive diagrammatic representation of
those terms which can be easily and visually understood.1, 2 Feynman diagrams show the
different paths that particles can follow while transiting from one particular state to another
as the system evolves from the initial state to the final state. The collection of all possi-
ble paths gives the exact GF, which represents the transition amplitude from one state to
another. In typical treatments of quantum field theory and the development of Feynman di-
agrams,3–5 it is assumed that the physical system is over an infinite domain, so that particle
states can be represented as eigenstates of momentum. The equations of motion satisfied by
the quantized fields have inhomogeneous terms arising from the interaction between fields.
In momentum space the lowest order propagators are derivable in a very straightforward
manner. The higher order corrections to propagators are also expressible in momentum
space by using Feynman rules at the one-loop level3, 6, 7 to account for virtual excitations in
the intermediate states leading to self-energy corrections.

In view of the interest in modeling finite domains at the nanoscale it becomes necessary
to employ alternative descriptions to the momentum space approach. In particular, we con-
sider the real space description for the propagators and Feynman diagrams of higher order
perturbations. For this purpose, we employ the finite element method (FEM).8 The FEM
is a numerical method for simplifying the geometric constraints in physical problems. The
finite element approach uses a discretized physical domain that is faithful to the geometry at
hand. The wavefunctions are obtained using a discretized form of the action integral and its
variation. It enjoys the advantages of variational (stationary action) analysis for eigenvalues
and eigenfunctions in domains with arbitrary geometries where the method provides a sys-
tematic approach to improving the accuracy of the results. The real space representation of
the Feynman propagators and the higher order loop diagrams lends itself to this discretiza-
tion in nanoscale systems in a natural manner. It is applicable to higher-order perturbative
and nonlinear effects.

By discretizing the domain in order to solve for eigenfunctions and eigenvalues of the
excitations in the system. We can construct the lowest order discretized version of the
GF. By representing the Feynman diagrams in the framework of FEM, we substantially
simplify the issue of solving for eigenfunctions on complex domains. The FEM is very
effective in tackling boundary conditions of any type including mixed Dirichlet, Neumann
or Cauchy boundary conditions. Calculations can be performed on each element without
concerning ourselves about the entire physical domain. This “divide and conquer” approach
additionally simplifies the calculations because the behavior of any function in each element is
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approximated by specific polynomials chosen by us. The spatial integrals can be immediately
performed so that the GFs are expressible in terms of bilinear combinations of the nodal
values alone. The complete result can be obtained by summing up the contribution from each
element in the discretized domain while we ensure continuity conditions at the inter-element
level. The eigenfunctions and eigenvalues are subsequently used in the determination of
other quantities of interest, such as the lowest order propagator, the self-energy and vertex
corrections.

The freedom to consider any type of boundary condition has the advantage that we can
directly obtain wavefunctions that are consistent with derivative boundary conditions or
mixed boundary conditions as are needed in scattering theory and carrier transport.8

In Sec. 2 we begin by very briefly reviewing the standard theory of propagators and
one-loop diagrams for the infinite domain. In Sec. 4 this is followed by the development of
the same theory over a finite domain. A final overview is given in concluding remarks in
Sec. 5 .

2 Feynman diagrams for the infinite domain

a Lowest order propagators

We begin by reviewing very briefly the derivation of Feynman propagators for the infinite
domain. For the moment, we consider particle excitations above the ground state, |0〉,
which is the vacuum state in field theory.3, 6, 7 This is readily generalized to the case of the
many-body ground state, |Ψ0〉.9–11

The initial state at t = −∞ evolves with time to its final state at t =∞. This evolution
is generated by the time evolution operator U(∞,−∞) acting on the initial state. The single
particle GF defined in coordinate space takes the form

iGαβ(x, x
′) = 〈0|T [ψ̂Hα(x)ψ̂

†
Hβ(x

′)]|0〉

=
〈0|T [ψ̂Iα(x)ψ̂

†
Iβ(x

′)U(∞,−∞)]|0〉
〈0|U(∞,−∞)|0〉 . (1)

Here x = (x, t), and the operators ψ̂Hα(x) and ψ̂Iα(x
′) are the Heisenberg and Interaction

picture field operators, respectively. defined in the Heisenberg picture, with the first being
the annihilation operator and the second one is the creation operator. The second one is the
definition in interaction picture. With these definitions, the GF defined in Eq. (1) gives the
probability amplitude of creating a particle at x′ and annihilating it at x, in the physical
ground state. The time evolution operator U allows us to take matrix elements in the same
basis. The time-ordering of fields denoted by T is included in order to make the expression
compatible with the causal nature of this evolution. It is useful to recognize that only the
terms representing connected Feynman diagrams from the numerator will survive since the
denominator cancels the terms corresponding to the disconnected diagrams. With these
simplifications we write

iGαβ(x, x
′)=〈0|T [ψ̂Iα(x)ψ̂

†
Iβ(x

′)U(∞,−∞)]|0〉
conn.

. (2)
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Since the evolution operator can be expressed as

Û(t, t′) = T{exp [−i~−1

∫ t′

t

dt1ĤI(t1)]}, (3)

the GF takes the form

iG(x, x′) =
∑

n

(

1

i~

)n
1

n!

∫ ∞

−∞

dt1 · · ·
∫ ∞

−∞

dtn

×〈0|T [ĤI(t1) · · · ĤI(tn)ψ̂(x)ψ̂
†(x′)]|0〉conn.. (4)

From now on, the system is assumed to be spin independent so that the spin indices will
be suppressed. Also, since we shall continue working in the interaction picture, the subscript
“I” is suppressed. The field operators in the interaction picture are related to field operators
in the Schrödinger picture by

{

ψ̂(x)

ψ̂†(x)

}

=

{

eiĤ0t/~ψ̂(x) e−iĤ0t/~

eiĤ0t/~ψ̂†(x)e−iĤ0t/~

}

. (5)

Here, ψ̂(x) and ψ̂†(x) are the field operators in the Schrödinger picture, and are related to
the lowering and raising operators by

ψ̂(x) =
∑

a

ψa(x)ca,

ψ̂†(x) =
∑

b

ψb(x)c
†
b, (6)

where a, b are sets of quantum numbers. Combining Eq. (5) and Eq. (6), one has the free
electron propagator

iG(0)(x, x′) =
∑

n

{

θ(t− t′)e−iωn(t−t′)

×〈0|ψ̂(x)|n〉〈n|ψ̂†(x′)|0〉 (7)

−θ(t′−t)eiωn(t′−t)

×〈0|ψ̂†(x′)|n〉〈n|ψ̂(x)|0〉
}

.

For the moment, in order to be brief, we can focus on the retarded GF since the advanced
GF and the Feynman GF can be derived from it. Fourier transforming the first term in
Eq. (7) to frequency space, the retarded GF is given by

iGR,0(x,x′, ω)=
∑

n

〈0|ψ̂(x)|n〉〈n|ψ̂†(x′)|0〉
ω− ωn + iη

. (8)
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Figure 1: The first order phonon emission diagram is shown for an infinite system. The
incoming electron has momentum and spin (p, s), while the outgoing electron has (p′, s′). The
emitted phonon has wavevector and frequency of (q, ωq).The coupling is γ = e. The phonon
field has a derivative coupling with the electrons, and the Fröhlich interaction parameters
are included in the field ζ(q, ωq) for convenience.

Before considering the perturbative expansion of the exact GF in detail, it is useful to
investigate the infinite space with translational symmetry, where the GF depends on the
spatial displacement x− x′. Now Eq. (8) can be rewritten as

iGR,0(x− x′ ω)=
∑

n

〈0|ψ̂(0)|n〉〈n|ψ̂†(0)|0〉eikn·(x−x′)

ω−ωn+iη
,

where En = ~ωn has been used. Fourier transforming this equation into (k, ω) space we
obtain

iGR,0(k, ω)=
∑

n

V
〈0|ψ̂(0)|n〉〈n|ψ̂†(0)|0〉

ω−ωn+iη
δk,kn

. (9)

The significance of the Kronecker-delta is that for each state n, there is a corresponding
wavevector k; therefore, each state can be represented by k. Inserting the wavevector k into
the expression, one obtains

iGR,0(k, ω) = V
〈0|ψ̂(0)|k〉〈k|ψ̂†(0)|0〉

ω − ωk + iη
. (10)

3 Phonon emission and self-energy

a Phonon emission

Consider the Frölich coupling of electrons with lattice vibrations in polar materials. The
electron-phonon coupling is given by

HI = γ

∫

d3x ψ̂†(x)ψ̂(x) ζ̂(x). (11)
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Here the gradient of the atomic displacement field W(r, t) is represented by ζ(x).

The transition amplitude for e(ki) → e(kf ) + ζ(qi) is given by the lowest order pertur-
bation term

Sfi =
−i
~
〈kf ,q|γ

∫

d3r dtHI |ki〉

=
−iγ
~

2πδ(ωki−ωkf−ωq) Λ

∫

d3rei(ki−q−kf )·r

=
−iγ
~

Λ(2π)4δ(ωki−ωq−ωkf )δ(ki−q−kf). (12)

The transition rate per unit time per unit interaction volume can now be calculated in the
usual manner by integrating |Sfi|2 over available phase space for the particles in the final
state. We have

Rfi =
1

2

∑

spins

|Sfi|2
V T

=
2γ2Λ2

~2
(2π)4δ(4)(ki−q−kf)Gfi. (13)

Here Gfi is the overlap function for the initial and final electron states. The resulting
linewidth is given by

Γemission = V 2

∫

d3q

(2π)3

∫

d3kf
(2π)3

Rfi,

corresponding to 1 incoming particle in volume V .

b The self-energy diagram

For the second order contribution shown in Fig. 2, we write %%

iG(2)(x, x′) =
−1
2~2

∫

d4x1d
4x2

×〈0|T
[

ψ̂(x)ψ̂†(x′) :ĤI(x2) ::ĤI(x1) :

]

|0〉. (14)

Expressed in terms of single-particle Green’s functions we have

iG(2)(x, x′) =
−γ2
2~2

∫

d4x1d
4x2

×〈0|T
[

(

ψ̂(x)ψ̂†(x2)
)(

ψ̂(x2)ψ̂
†(x1)

)

×
(

ψ̂(x1)ψ̂
†(x′)

)(

ζ̂(x2)ζ̂(x1)
)

]

|0〉,

=
−γ2
2~2

∫

d4x1d
4x2G

(0)(x−x2)G(0)(x2−x1)

×D̃(0)(x2−x1)G(0)(x1−x′). (15)
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Figure 2: The second order self-energy diagram G(2)(x,x′, ω) of the electron-phonon inter-
action is shown for an infinite system.

For illustrative purposes, we have retained only the one loop electron-LO phonon self-energy
diagram while dropping the “tadpole” diagram that also appears in the second order.

The GF can be Fourier expanded in frequency space as

iG(x, x′) = i

∫

dω

2π
e−iω(t−t′)G(x− x′, ω). (16)

Using this relation, Eq. (14) can be recast as

iG(2)(x, x′) =
−γ2
2~2

∫

d4x1d
4x2

∫

dω dω1dω2dω
′

× 1

(2π)4
e−iω(t−t2)e−iω2(t2−t1)e−iω1(t2−t1)

×e−iω′(t1−t′)G(0)(x−x2, ω)G
(0)(x2−x1, ω1)

×D̃(0)(x2−x1, ω2)G
(0)(x1−x′, ω′), (17)

Integrating over time variables we have

iG(2)(x, x′) =
−γ2
2~2

∫

d4x1d
4x2

∫

dωdω1
e−iωt+iω′t′

4π2

×G(0)(x−x2, ω)G
(0)(x2−x1, ω1)D̃

(0)(x2−x1, ω2)

×G(0)(x1−x′, ω′)δ(ω1+ω2−ω)δ(ω′−ω1−ω2). (18)

The last factors in the equation are the δ-functions associated with energy conservation at
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each vertex. Collecting terms, Eq. (18) can be rewritten as

iG(2)(x, x′) =

∫

dω

2π
e−iω(t−t′)

[

−γ2
2~2

∫

d3x1d
3x2

×
∫

dω1

2π
G(0)(x−x2, ω)G

(0)(x2−x1, ω1)

×D̃(0)(x2−x1, ω − ω1)G
(0)(x1−x′, ω)

]

. (19)

The factor in square brackets in the above is identified as G(x−x′, ω) to the second order in
perturbation theory. The Fourier transformation of iG(x−x′, ω) is given by

iG(x−x′, ω) =
i

(2π)3

∫

d3k eik·(x−x
′)G(k, ω). (20)

With this relation, we have

iG(2)(x−x′, ω) =
−γ2
2~2

∫

d3x1d
3x2

∫

dω1

2π

× 1

(2π)12

∫

d3k d3k1d
3k2d

3k′eik·(x−x2) (21)

×eik·(x−x2)eik1·(x2−x1)eik2·(x2−x1)eik
′·(x1−x′)

×G(0)(k, ω)G(0)(k1, ω1)D̃
(0)(k2, ω2)G

(0)(k′, ω),

with ω2 = ω − ω1. Integrating over the coordinates x1, x2, we obtain

iG(x−x′, ω) =
−γ2
2~2

1

(2π)13

∫

dω1

∫

d3k d3k1d
3k2d

3k′

×eik·x−ik′·x′

G(0)(k, ω)G(0)(k1, ω1)D̃
(0)(k2, ω2)

×G(0)(k′, ω)δ(3)(k1+k2−k)δ(3)(k′−k2−k1)

=
1

(2π)3

∫

d3k eik·(x−x′)G(0)(k)

[ −γ2
2~2(2π)4

∫

d4k1

×G(0)(k1)D̃
(0)(k − k1)

]

G(0)(k). (22)

Here, k = (k, ω), and the delta functions in the intermediate step represent momentum
conservation at each vertex. One can also recognize in the square brackets the self-energy

iΣ(2)(k) =
−γ2
2~2

1

(2π)4

∫

d4k1G
(0)(k1)D̃

(0)(k−k1). (23)

In polar materials, ζ(x′) is the phonon field for the electron-phonon coupling. Following
the procedure for evaluating a general phonon propagator in momentum space as displayed
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in Appendix c , one obtains

iD̃(0)(k, ω) =
2π~ωℓ

ik2

(

1

ǫ∞
− 1

ǫ0

)

×
[

1

ω−ωℓ+iη
− 1

ω+ωℓ−iη

]

. (24)

Using the (many-body) electron propagator introduced in Appendix e the self-energy term
can be written as

Σ(2)(k, ω) =
iγ2

2(2π)3~

(

1

ǫ∞
− 1

ǫ0

)
∫

d4k1
ωℓ

|k− k1|2

×
[

1

ω − ω1 − ωℓ + iη
− 1

ω − ω1 + ωℓ − iη

]

×
[

θ(k1−kF )

ω1 − ω(k1) + iη
− θ(kF−k1)

ω1 − ω(k1)− iη

]

. (25)

The integration in ω can be performed by contour integration to obtain

Σ(2)(k, ω) =
−γ2
2~

(

1

ǫ∞
− 1

ǫ0

)
∫

d3k1
(2π)3

ωℓ

|k− k1|2

×
[

θ(k1−kF )

ω − ω(k1)− ωℓ + iη

− θ(kF−k1)

ω − ω(k1) + ωℓ − iη

]

. (26)

The imaginary part of Σ(2) is given by

ImΣ(2)(k, ω) =
γ2

2~

(

1

ǫ∞
− 1

ǫ0

)
∫

d3k1
2(2π)2

ωℓ

|k−k1|2

×
[

θ(k1 − kF )δ(ω − ω(k1)−ωℓ)

+θ(kF−k1)δ(ω−ω(k1)+ωℓ)

]

. (27)

Let k1 = ykF , the retarded contribution (from the first δ-function) can be rewritten as

ImΣ(2)(k, ω) = C

∫

k2Fy
2dydΩ

(k/kF )
2+y2−2ky cos θ/kF

×θ(y−1)δ
(

ω−~y2k2F
2m

−ωℓ

)

= C

∫

2m~
−1y2dydΩ

(k/kF )
2 + y2−2ky cos θ/kF

×θ(y−1)δ(2m(ω−ωℓ)

~k2F
−y2), (28)
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where we let

C =
γ2

2~

(

1

ǫ∞
− 1

ǫ0

)

kFωℓ

2(2π)2
. (29)

Let us substitute x = cos θ, v = y/kF ; then Eq.(27) can be rewritten as

ImΣ(2)(k, ω) =
4πmC

~

∫

y2dydx

v2 + y2 − 2vyx
θ(y−1)

×δ(2m(ω−ωℓ)

~k2F
−y2). (30)

Since δ(x2 − a2) = [δ(x− a) + δ(x+ a)]/(2a), we have

ImΣ(2)(k, ω) =
2πmC

~ω̃

∫

y2dydx

v2 + y2 − 2vyx
θ(y−1)

×[δ(ω̃−y) + δ(ω̃+y)]. (31)

Here, ω̃ = 2m(ω−ωℓ)/(~k
2
F ). Performing the y integration first, one obtains

ImΣ(2)(k, ω) =
2πmC

~ω̃

∫ 1

−1

dx

[

ω̃2θ(ω̃ − 1)

v2 + ω̃2 − 2vω̃x

+
ω̃2θ(−ω̃ − 1)

v2 + ω̃2 + 2vω̃x

]

(32)

By elementary integration we get

ImΣ(2)(k, ω) =
2πmC

~

[

θ(ω̃ − 1)

2v

(

ln
|v2 + ω̃2 + 2vω̃|
|v2 + ω̃2 − 2vω̃|

)

−θ(−ω̃ − 1)

2v

(

ln
|v2 + ω̃2 − 2vω̃|
|v2 + ω̃2 + 2vω̃|

)

]

=
2πmC

~
sgn(ω̃)

θ(|ω̃|−1)
2v

(

ln
|v2+ω̃2+2v|ω̃||
|v2+ω̃2−2v|ω̃||

)

. (33)

4 Feynman rules for the finite domain

a Finite element analysis for eigenstates

We first describe the FEM for the evaluation of eigenstates in a given nanoscale system.

In FEM, the physical domain is discretized into subregions called finite elements; within
these elements the wavefunction is expressed in terms of the values of the function ψinode at
special points xinode, called nodes in each element, multiplied by interpolation polynomials.
The polynomials are chosen such that they can capture the behavior of the wavefunction
over individual elements. In other words, in each element iel we write

ψ(iel)(x) =
∑

i

ψ
(iel)
i N

(iel)
i (x). (34)

9



Here, Ni, i = 1, ...n represent the n interpolation polynomials used in each finite element,
and the set {ψi} can include function values (Lagrange elements) as well as derivatives
of the interpolated function ψ′

inode (Hermite elements). In order to obtain high accuracy
we represent the wavefunctions in terms of Hermite interpolation polynomials having C(2)-
continuity.8 The wavefunction defined in this manner is valid only within the element iel
and is zero outside. The full wavefunction is made up by putting together the wavefunctions
at the nodes and ensuring continuity across element boundaries. A sum over all the elements
can be expressed in terms of a global index α that together identifies the element and the
nodal polynomial.

ψ(r) =
∑

iel

∑

i

ψiel
i N

(iel)
i (r) ≡

∑

α

ψαNα(r). (35)

The actual values of the coefficients ψα of the interpolation polynomials is determined as
follows. We have the action integral that generates the Schrödinger equation on using the
principle of stationary action

A =

∫

dt

∫

ψ†(r)

(←−∇ ~
2

2m

−→∇ + (V (r)−E)
)

ψ(r),

with the vector arrows indicating the direction in which the gradient operators act. The
discretized form for a time-independent problem is written as

A/T =

∫−
−
−

d3r

(

ψ†
αNα(r)

)(←−∇ ~
2

2m

−→∇ + V (r)− E
)(

ψβNβ(r)

)

. (36)

The horizontal lines through the integral sign are used to indicate that this is an integral
discretized over the finite elements.

The integration over space can be performed since the interpolation polynomials have a
form chosen by us to work with the discretization. The functional variation with ψ†(r) is
replaced by parameter variation with respect to ψ†

α. The resulting discretized Schrd̈inger
equation is a generalized eigenvalue matrix equation

(

Kαβ +Vαβ

)

ψα = EBαβψα. (37)

Figure 3: The notation for the lowest order propagator in a finite domain is shown. Here G

is the matrix operator for the propagator in the space of finite element global interpolation
polynomials.

10



Figure 4: The first order phonon emission diagram is shown for a finite domain.

The matrices K and V are the ‘kinetic’ and potential energy terms, while B is the overlap
matrix generated by the basis functions being not orthonormal.

Equation (37) is solved using standard methods for the eigenenergies and the correspond-

ing nodal value array, of eigenfunctions, (En, ψ
(n)
α ). The full eigenfunctions are obtained by

using the same interpolation polynomials used in the dicretization to reconstruct the wave-
function of the physical domain as in Eq. (35).

b The phonon emission process in a finite domain

The incoming electron has quantum numbers (a, s) while the outgoing electron has (b, s′).
The emitted phonon has the quantum numbers (c, ωc).The coupling is γ = e. The phonon
field has a derivative coupling with the electrons, and its field is given by ζ . The Fröhlich
interaction parameters are included in the factor Λ. The spatial integration using a finite
element interpolated representation for all the fields is represented by Γαβδ. The coefficient
vector arrays in the discretized representation of the wavefunction are in the factors ψ†

α, ψβ ,
and ζδ. For a particular incoming electron state labeled by (a, ωa, s) going into an outgoing
electron with quantum numbers (b, ωb, s

′) and an LO-phonon with quantum numbers (c, ωc)
we have the matrix element for the transition given by

〈ψb; ζc|Sfi|ψa〉 =
−i
~

{

γ

∫

d3rNα(r)Nβ(r)Nγ(r)

}

×
(

ψ†(a)
α ψ

(b)
β ζ (c)γ

)

(2π)δ(ωa−ωb−ωc)

=
−i
~
Γαβγ ·

(

ψ†(a)
α ψ

(b)
β ζ (c)γ

)

(2π)δ(ωa−ωb−ωc). (38)

Here, we have specified all the quantum numbers of the incoming and outgoing states. To
obtain the lifetime of a given discrete eigenstate, we have to sum over the available phase
space (quantum numbers) for the discrete final states that contribute to the process in a
manner consistent with energy conservation.

11



Figure 5: The second order propagator G
(2)
αβ(x,x

′, ω) in a finite domain is shown in terms of
the electron-phonon bubble diagram.

c Discretization of the lowest order propagators G(0) and G(2)

The lowest order propagators, G(0) and G(2), for electrons are obtained within the finite
element framework as described below.

We use Eqs. (6,35) in Eq. (8) to obtain

iGR(0)(z, z′, ω) =
∑

n

〈Nα(z)|
(

ψn
αψ

†n
β

)

|Nβ(z)〉

ω − ωn + iη
,

= 〈Nα(z)|GR(0)
αβ |Nβ(z)〉. (39)

Observe that the interpolation polynomials are independent of n and the sum over the
eigenstates can be cast purely in terms of the nodal parameters representing the eigenfunc-
tions. Here the eigenstates are labeled by n, and α, β are the indices from the finite element
discretization. The operator G acts in the space of the nodal vectors, while the spatial
dependence comes through the array of interpolation polynomials (shape functions) Nα(z)
used in the discretization of the wavefunction. The numerator contains the direct product
of two arrays

F(n) = ψn
α ⊗ ψ†n

β (40)

giving a matrix representing the corresponding field operator product in the usual propaga-
tor. Just as in the usual propagator we have a sum over intermediate states, here we have a
sum over n in Eq.(39) and each intermediate state n gives rise to a matrix F(n) divided by
the frequency denominator in the Green’s function.

In practice, this sum over intermediate states can be truncated to go over only a few
quantum numbers assuming the energy denominators lead to a desired error tolerance in the
converging sum.

The notation for the discretized propagator G(0) is shown in the lowest order in Fig. 3.
In the second order of perturbation we begin with Eq. (17). Employing the finite element
form of the propagator Eq. (19), the integral over intermediate coordinates x1, x2 can be
performed since the spatial dependence is again given by the interpolation polynomials. The
integrals can be calculated on each element and then assembled over the global domain. The

12



eigenstates are labeled by lowercase letters a, b, c, ... Let us define the vertex factor at z2 in
G(2) by Vbcd,

Vbcd = γ

∫

d3z2 ψ
†(b)(z2)ψ

(c)(z2) ζ
(d)(z2)

=

{

γ

∫

d3z2Nβ(z2)Nγ(z2)Nδ(z2)

}(

ψ
†(b)
β ψ(c)

γ ζ
(d)
δ

)

. (41)

The integral over the coordinate z2 is independent of eigenvalue indices, and we write

Γβγδ = γ

∫

dz2Nβ(z2)Nγ(z2)Nδ(z2). (42)

The vertex Vbcd is then reduced to

Vbcd = Γβγδ ·
(

ψ
†(b)
β ψ(c)

γ ζ
(d)
δ

)

. (43)

Similarly, the second vertex at z1 in the one-loop diagram of Fig. 2 is given by

V†
pqs = γ

∫

d3z1 ψ
†(p)(z1)ψ

(q)(z1) ζ
†(s)(z1)

=

{

γ

∫

dz1Nλ(z1)Nµ(z1)Nν(z1)

}(

ψ
†(p)
λ ψ(q)

µ ζ†(s)ν

)

= Γ
†
λµν ·

(

ψ
†(p)
λ ψ(q)

µ ζ†(s)ν

)

. (44)

With the above results we obtain the propagator G(2) in terms of the nodal values and
interpolation functions at zero temperature

iG (2)(z, z′, ω) =
−1
2~2

∫

dω1

2π
〈Nα(z)|

{

×
∑

a

(

ψ
(a)
α ψ

†(a)
β θ(ωa−ωF )

ω−ωa+iη
−
ψ

(a)
α ψ

†(a)
β θ(ωF−ωa)

ω−ωa−iη

)

×Γβγµ
∑

b

ψ(b)
γ ψ

†(b)
δ

(

θ(ωb−ωF )

ω1−ωb+iη
− θ(ωF−ωb)

ω1−ωb−iη

)

×
∑

d

(

ζ
(d)
µ ζ

†(d)
ν

ω−ω1−ωd+iη
+

ζ
(d)
µ ζ

†(d)
ν

ω−ω1+ωd−iη

)

Γ†δσν

×
∑

c

(

ψ
(c)
σ ψ

†(c)
ρ θ(ωc−ωF )

ω−ωc+iη

−ψ
(c)
σ ψ

†(c)
ρ θ(ωc−ωF )

ω−ωc−iη

)}

|Nρ(z
′)〉. (45)
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The second order discretized propagator is shown in Fig. 5. This leads to

iG (2)(z, z′, ω) = 〈Nα(z)|
[

×
∑

a

(

ψ
(a)
α ψ

†(a)
β θ(ωa−ωF )

ω−ωa+iη
−
ψ

(a)
α ψ

†(a)
β θ(ωF−ωa)

ω−ωa−iη

)

×
{

Γβγµ

(−1
2~2

∑

bd

ψ(b)
γ ψ

†(b)
δ ζ (d)µ ζ†(d)ν Ibd

)

Γ†δνσ

}

×
∑

c

(

ψ
(c)
σ ψ

†(c)
ρ θ(ωc−ωF )

ω−ωc+iη
−ψ

(c)
σ ψ

†(c)
ρ θ(ωF−ωc)

ω−ωc−iη

)

]

|Nρ(z
′)〉, (46)

where Ibd is the two-pole integral

Ibd =

∫

dω1

2π

[

−1
(ω1−ωb+iη)(ω1−(ω−ωd)−iη)

+
−1

(ω1−ωb−iη)(ω1−(ω+ωd)+iη)

]

= i

[

1

(ω − ωb − ωd) + iη
− 1

(ω − ωb + ωd)− iη

]

. (47)

The step functions in Eq.(45) represent Fermi functions for particle creation above the Fermi
level and hole creation below ωF . The electron self-energy is identified easily, and we have

Σβσ = Γβγµ

(

i

2~2

∑

bd

ψ(b)
γ ψ

†(b)
δ ζ (d)µ ζ†(d)ν Ibd

)

Γ†δνσ (48)

Then, the real part of the self energy is given by

ReΣβσ = Γβγµ

[

−1
2~2

∑

bd

ψ(b)
γ ψ

†(b)
δ ζ (d)µ ζ†(d)ν

×
(

1

ω − ωb − ωd
− 1

ω − ωb + ωd

)

]

Γ†δνσ, (49)

and the imaginary part is given by

ImΣβσ = Γβγµ

{

π

2~2

∑

bd

ψ(b)
γ ψ

†(b)
δ ζ (d)µ ζ†(d)ν

× [δ(ω − ωb − ωd) + δ(ω − ωb + ωd)]

}

Γ†δνσ. (50)

The further developments of the above calculations will require explicit values for the
wavefunction arrays.
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5 Concluding remarks

.
We have developed the formalism in this article that allows us to use configuration space

methods for quantum field theory calculations. A follow-up article will treat applications of
quantum mechanics in realistic nanoscale structures.

We list below our finite element version of Feynman rules that are modified

for finite domain quantum field theory and for quantum many-body systems:

1. Draw all the topologically distinct connected diagram. The total amplitude corre-
sponds to the sum of all the diagrams.

2. For each incoming or outgoing Fermi line, include a factor corresponding to interpola-
tion polynomial Nα(xi).

3. Assign a direction to each line to show the time flow, which determines the order of
interpolation polynomials.

4. Each Fermion line corresponds to a factor

G
(0)
αβ(ω) =

∑

a

ψ
(a)
α ψ

†(a)
β

ω − ωa + iǫ
. (51)

5. Each phonon line corresponds to a factor

D̃(0)
µν (ωl0) =

∑

d

ζ
(d)
µ ζ

†(d)
ν

ωl0 − ωd + iǫ
. (52)

6. Denote each electron phonon vertex by a triangle. Each vertex corresponds to a factor

Γβγδ = γ

∫

d3xj Nβ(xj)Nγ(xj)Nδ(xj), (53)

where γ represents the coupling coefficient e. Also, conserve energy at each triangle;
affix a factor (i/~)n where n is order of perturbation.

7. Integrate over internal energies.

We should mention that there are other equivalent methods to investigate quantum cor-
rections, such as the functional methods espoused by Schwinger,12–15 and the path-integral
methods that are used in gauge field theory. We have confined ourselves to the Feynman
diagram approach which allows a straightforward extension to finite domain field theory in
real space through the use of Green’s functions or Feynman propagators, in domains that
have complex geometries, using FEM.

This extension developed by us goes beyond the usual treatment of layered nanoscale
semiconductor structures or quantum dots in that we can investigate quantum phenomena
in arbitrarily shaped 2D and 3D nanoscale systems. The FEM allows us to treat arbitrary
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boundary conditions such as Dirichlet, Neumann, and mixed or Cauchy boundary condi-
tions.8

The importance of LO-phonon and electron interactions are well appreciated. The elec-
tron self-energy due to LO-phonons,16 and the consequent band-gap renormalization in wide-
gap materials such as diamond is well documented.17–21 In diamond, the estimated bandgap
renormalization is ∼ 600meV, which is enormous. When we go from the infinite domain to
finite systems, the boundary conditions alter the phonon spectrum22 as well as the electronic
states. The effective coupling constants are also altered. Thus, small structures of diamond
can be expected to have different bandgap renormalization because the Fröhlich coupling be-
tween the L0-phonons with electrons will be altered by the presence of boundaries. Through
the use of “cutting rules” of Landau and Cutkosky23, 24 we can connect the self-energy dia-
gram calculation with the life-time calculation for the electron in phonon emission. In finite
domains, we expect this carrier life-time estimate also to be altered and it can be readily
calculated using the methods developed here.

We note that the “long-wavelength” phonon coupling to electrons is given by the usual
Frölich coupling developed in the Appendices. The phonon coupling parameter actually
varies with the momentum transferred to the phonon, and we have shown25, 26 that the
coupling depends on the location of q in the Brillouin zone of the crystalline solid.

A Polar materials and phonons

The concept of the polaron was introduced by Landau33, 34 to describe an electron moving in
a dielectric crystal. The crystal lattice is deformed due to the moving electron, thus creating
a cloud of lattice vibrations around it known as the phonon cloud. This deformation of the
lattice alters the mobility of the electrons thereby changing the effective mass. The polaron
is a quasiparticle defined to be the electron coupled with its surrounding phonons in a polar
material.35

For simplicity, the physical domain is assumed to be extended over the quantization
volume V in this section, but the considerations presented here are readily adapted to the
finite domain.36, 37 The electric polarization field

displacement W = u
√

M/V , where M is the reduced mass of the dipole in each unit
cell and u = (u+ − u−) i s the atomic displacement that induces the polarization. We have
the coupled equations38–41

Ẅ = −ω2
0W + b12E,

P = b21W + b22E. (54)

We can separate out the transverse and longitudinal parts of the ionic displacement to write
W = WT+Wℓ The transverse motion of ions does not produce a depolarization field. Hence

ẄT = −ω2
TWT ,

so that
ω0 = ωT .
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The Maxwell displacement D = E + 4πP = ǫ(ω)E allows us to relate P to the electric
field. Furthermore, at high (optical) frequencies the ions cannot follow the electric field and
hence

P(ω > ωopt) = b22E =
ǫ∞ − 1

4π
E (55)

Hence
4πb22 = ǫ∞ − 1. (56)

With a time dependence of exp(−iωt) for all fields we have

Ẅℓ = −ω2
ℓWℓ. (57)

From Eqs. (54,56) we arrive at

P =

[

b22 +
b21b12

(ω2
T − ω2)

]

E =
ǫ(∞)− 1

4π
E, (58)

leading to

ǫ(ω) = (1 + 4πb22) +
4πb21b12
(ω2

T − ω2)

= ǫ∞ +
ǫ0 − ǫ∞
ω2
T − ω2

ω2
T . (59)

This is the lattice dielectric function.40, 41

If no electrons are present we would have

∇ ·D = 0 = ∇ · (E+ 4πP). (60)

Substituting for P using Eq. (54) we have

∇ · E = −4π∇ ·P
= −4π(b21∇ ·Wℓ + b22∇ · E).

Rearranging terms we obtain

∇ · E = − 1

ǫ∞
4πb21∇ ·Wℓ. (61)

Since the electric field E and the ion displacement Wℓ are longitudinal, we conclude from
the above that

E = −4πb21
ǫ∞

Wℓ. (62)

Combining Eqs. (54), (55), and (62) we have

Ẅℓ = −ω2
TWℓ −

4πb21b12
1 + 4πb22

Wℓ

= −
(

ω2
T +

(ǫ0 − ǫ∞)ω2
T

ǫ∞

)

Wℓ (63)
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leading to the Lyddane-Sachs-Teller43 relation

ω2
ℓ = ω2

T

ǫ0
ǫ∞
. (64)

In the presence of free electronic charges in the lattice the Maxwell displacement field
satisfies the equation

∇ ·D = ∇ · (E+ 4πP) = 4πρe. (65)

Eliminating P using Eq. (54) we have

∇ ·E = −4πb21
ǫ∞
∇ ·W +

4πb21
ǫ∞

ρe (66)

The equation of motion for W now takes the form

∇ · Ẅℓ = −ω2
T∇ ·Wℓ −

4πb21b12
1 + 4πb22

∇ ·Wℓ + b12∇·E

= −ω2
ℓ∇ ·Wℓ +

4πb12
ǫ∞
∇ · Evac, (67)

by identifying ∇ ·Evac = 4πρe. From energy considerations and reciprocity we have

b12 = b21 = ωT

√

(ǫ0 − ǫ∞)/4π

and ωT = ωℓ

√

ǫ∞/ǫ0, we can express the last term in Eq. (67) as arising from an interaction
energy between the phonon field and the external charges.38 We have

Hint=−
ωℓ√
4π

√

(

1

ǫ∞
− 1

ǫ0

)
∫

d3rWℓ.Evac. (68)

We note here that the Fröhlich coupling is treated as a constant defined in the long
wavelength limit, or at the Γ-point in the Brillouin zone in the crystalline solid. This is a
severe approximation. We have shown25, 26 that the coupling parameter in fact depends on the
momentum transfer q to the phonon. We have used density functional theory to demonstrate
that the coupling parameter depends strongly on q as it varies over the Brillouin zone.

a Quantization of the phonon field

The longitudinal optic phonon field Wℓ(r) couples to the electron. We begin from the
Lagrangian density

L =
1

2
Ẇ2

ℓ −
1

2
ω2
ℓW

2
ℓ (69)

The canonical momentum is then given by ∂L/∂Ẇℓ = Ẇℓ. The equal time commutation
relation satisfied by the vector displacement field is

[Wi(r), Ẇj(r
′)]t=t′ = i~δ(3)(r− r′)δij . (70)
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The longitudinal lattice displacement field Wℓ is assumed to be of the form44

Wℓ(r, t) =
ℵ√
V

∑

k

k

|k|

(

eik·r−iωtaℓ(k) + e−ik·r+iωta†ℓ(k)

)

, (71)

where ℵ is the yet to be determined normalization factor. This normalization can be cal-
culated using the commutation relation Eq. (70), which is a nonlinear relation in that the
left side is bilinear in the field operators while the right side is not. Using the commutation
relation between the creation and annihilation operators, [a, a†] = 1, we have

[

Wi(r, t), Ẇj(r
′, t)
]

=
∑

kk′

ℵ1ℵ2
V

kik
′
j

|k||k′|

×
[(

eik·r−iωta(k) + e−ik·r+iωta†(k)

)

,

iω′

(

−eik′·r′−iω′ta(k′)+e−ik′·r′+iω′ta†(k′)

)]

=
∑

k

ℵ1ℵ2
V

k2

k2

(

2iωke
ik·(r−r′)

)

(72)

=
∑

k

ℵ2
V

(

2iωke
ik·(r−r′)

)

≡ i~δ(3)(r− r′).

Here, despite being labelled differently, ℵ1 and ℵ2 are the same normalization factor and
therefore can be rewritten as ℵ in the final step. Comparing with Eq. (70), one obtains
ℵ =

√

~/(2ωk), so that the quantized field is given by

Wℓ(r, t) =
∑

k

√

~

2ωkV

k

|k|

(

eik·raℓ(k) + eik·ra†ℓ(k)

)

, (73)

where (k · r) = k · r− ωt.

b The interaction Hamiltonian revisited

The interaction Hamiltonian, Eq. (68), can be cast in terms of quantized fields. Writing the
electric field Evac in terms of the gradient of the potential arising from the charge density
we have

Evac(r) = −∇r

∫

d3r′
e ψ†

e(r
′)ψe(r

′)d3x′

|r− r′| . (74)

The density of electrons is given by ψ†
eψe. The electron field ψe is not specified further here,

but will be expressed differently depending on the application. Using the vector identity
∇ · (Aφ) = φ∇ ·A+A · ∇φ, the above expression can be rewritten as

HI =
−e ωℓ√

4π

(

1

ǫ∞
− 1

ǫ0

)1/2∫

d3r′ψ†
e(r

′)ψe(r
′)

∫

d3r
∇r ·Wℓ

|r− r′| . (75)
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Here, the surface term arising from Gauss’s theorem is dropped since the energy is con-
served. For the infinite domain the factor 1/|r− r′| can be Fourier expanded and the spatial
integration with respect to r can be performed. This leads to

∫

d3r
∇r ·Wℓ

|r− r′| =
∑

q

1

(2π)3

∫

d3k

∫

d3r
4πi|q|2
k2|q|

×
√

~

2ωqV
eik·(r−r′)

(

aqe
iq·r−iωt−a†qe−iq·r+iωt

)

=
∑

q

4πi

|q|

√

~

2ωqV

(

aqe
iq·r′−iωt−a†qe−iq·r′+iωt

)

.

Substituting the above equation into Eq. (75), we arrive at

HI = e

∫

d3r′ψ†
e(r

′)ψe(r
′)

×
[

− i
∑

q

√

2π~ωℓ(q)

i|q|
√
V

(

1

ǫ∞
− 1

ǫ0

)1/2(

aqe
−iq·r′ − a†qeiq·r

′

)]

(76)

≡ γ

∫

d3r′ψ†
e(r

′)ψe(r
′)ζ(r′).

Here, the term in the square bracket is denoted by ζ(r′), and the coupling constant by γ = e.
The field

ζ(r) = −i
∑

q

√

2π~ωℓ

V |q|2
(

1

ǫ∞
− 1

ǫ0

)1/2(

aqe
iq.r−iωt − a†qe−iq.r+iωt

)

=
∑

q

(

Λ aqe
iq.r−iωt+Λ∗a†qe

−iq.r+iωt

)

(77)

is the effective field that represents the LO-phonon field in its coupling with the electron
density. Here we have simplified the expression for ζ(r) by defining

Λ = −i
√

2π~ωℓ

V |q|2
(

1

ǫ∞
− 1

ǫ0

)1/2

. (78)

The stimulated emission of plasmon-polaritons using the above formalism is given in
Ref.45 and Ref.46 in very narrow bandgap n-doped materials, such as Hg1−xCdxTe and
Pb1−xSnxTe.

c LO-phonon propagators

The longitudinal phonon propagator defined in the interaction picture takes the form44

iD
(0)
ij (x, x′) = 〈0|T

(

Ŵℓ,i(x)Ŵℓ,j(x
′)

)

|0〉. (79)
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Fourier expanding the fields we have

iD
(0)
ij (x− x′)= i

(2π)4

∫

d4k e−ip·(x−x′)D
(0)
ij (k). (80)

The propagator in frequency space can be written as

iD
(0)
ij (k, ω) = iV

[

〈0|Ŵl,i(0)|n,k〉〈n,k|Ŵl,j(0)|0〉
ω−ωn,k + iη

−〈0|Ŵl,i(0)|n,−k〉〈n,−k|Ŵl,j(0)|0〉
ω + ωn,−k − iη

]

. (81)

Using Eq. (73), each matrix element can be calculated as in the following

〈0|Ŵl,i(0)|n,k〉 =
√

~

2ωkV

ki
|k| .

Then the propagator can be written as10, 44

iD
(0)
ij (k, ω) =

i~

2ωk

(

1

ω−ωn,k+iη
− 1

ω+ωn,k−iη

)

kikj
k2

=
i~

ω2 − ω2
l (k) + iη

kikj
k2

. (82)

The LO-phonon frequency is usually treated as being dispersionless; this is the typical ap-
proximation. The phonon propagator in intermediate states (bubble diagrams) can be sim-
plified considerably by using the expression for ζ(r) given in Eq. (77). We can define

iD̃(0)(r − r′) = 〈0|T
(

ζ(r)ζ(r′)

)

|0〉. (83)

In momentum space we obtain

iD̃(0)(q, ω) =

(

4π~ω2
ℓ

|q|2
)(

1

ǫ∞
− 1

ǫ0

)

1

(ω2−ω2
ℓ+iη)

. (84)

d LO-phonon propagators in finite domains

With a finite element representation for the phonon wavefunction ζ(r) we have

ζ(r, t) =
∑

p

(

Λ apNα(r)ζ
(p)
α e−iωpt + Λ∗a†pNα(r)ζ

†(p)
α e+iωpt

)

. (85)

Here the index p refers to the phonon modes in the finite domain and the label α refers to
the expansion of the wavefunction in terms of interpolatnarraylynomials Nα.
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The phonon propagator in a finite system can be expressed in terms of the finite element
representation of the wavefunctions using Eq. (85) . We have

iD̃(0)(r, t; r′, t′) = 〈0|T
(

ζ(r, t), ζ†(r′, t′)

)

|0〉,

= θ(t− t′)〈0|
(

ζ(r, t), ζ†(r′, t′)

)

|0〉

+θ(t′ − t)〈0|
(

ζ†(r′, t′), ζ(r, t)

)

|0〉. (86)

We evaluate the matrix elements in the above equation and do a Fourier expansion in fre-
quency to obtain

iD̃(0)(r, r′, ω) =
∑

n

ζ (n)α Nα(r)ζ
†(n)
β Nβ(r

′)|Λ|2

×
∫ ∞

0

d(t− t′)ei(ω−ωn+iη)(t−t′)

+
∑

n

ζ (n)α Nα(r)ζ
†(n)
β Nβ(r

′)|Λ|2

×
∫ 0

−∞

d(t− t′)ei(ω+ωn−iη)(t−t′). (87)

After some simplification we obtain

iD̃(0)(r, r′, ω) = 〈Nα(r)|
(

∑

n

|Λ|2ζ (n)α ζ
†(n)
β

2ωn

ω2 − ω2
n + iη

)

|Nβ(r
′)〉. (88)

Again, we can cast this relation in operator form by writing

D̃
(0)
αβ(ω) =

∑

n

ζ (n)α ζ
†(n)
β

2ωn

ω2 − ω2
n + iη

. (89)

We then have

iD̃(0)(r, r′, ω) = 〈Nα(r)|D̃(0)αβ(ω)|Nβ(r
′)〉. (90)

e Fermion propagators

The free fermion field operator in Schrödinger’s picture takes the form

ψ̂(x) =
∑

kλ

ψkλ(x)ckλ. (91)

The k, λ refer to wavevector and spin quantum numbers. The single free fermion GF is
given by

iG
(0)
αβ(x, x

′) = 〈0|T [ψ̂α(x)ψ̂
†
β(x

′)]|0〉. (92)
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The subscripts α, β refer to spin quantum numbers. The coordinate x denotes (x, t). If
the ground state is a many-electron state we denote this by replacing |0〉 by |Ω〉. Since
the particles can only be created to fill unoccupied states, above the Fermi sea, the free
propagator is given by9–11

iG
(0)
αβ(x, x

′) = δαβ
∑

k

eik·(x−x′)e−iωk(t−t′) (93)

×[θ(t− t′)〈Ω|ψ̂(0)|k〉〈k|ψ̂†(0)|Ω〉 (94)

−θ(t− t′)〈Ω|ψ̂†(0)|k〉〈k|ψ̂(0)|Ω〉] (95)

= δαβV
−1
∑

k

eik·(x−x′)e−iωk(t−t′) (96)

×[θ(t− t′)θ(k − kF )− θ(t− t′)θ(kF − k)]. (97)

In the infinite domain, the summation over k becomes an integration, and V −1 is replaced
by (2π)−3. Similar to the phonon propagator, the free fermion propagator in momentum
space is given by9–11

iG
(0)
αβ(k, ω)=δαβ

(

θ(k−kF )
ω−ω(k) + iη

− θ(kF−k)
ω−ω(k)−iη

)

. (98)

In finite domains the spatial part of the wavefunctions have to be determined based on
the geometry. In the finite element method, the wavefunction with quantum number n can
be expressed as ψn(r) = ψ

(n)
α Nα(r). The wavefunctions expressed in terms of interpolation

functions can be used in the Feynman propagators so that

iG(0)(x,x′, ω) =
∑

a

[

Nλ(x)θ(na−nF )

(

ψλ
aψ

†µ
a

ω − ωa + iη

)

Nµ(x
′)

−θ(nF−na)Nλ(x)

(

ψλ
aψ

†µ
a

ω−ωa−iη

)

Nµ(x
′)

]

. (99)

Here the index a refers to the eigenstates that are summed over in representing the Green’s
function, the indices λ, µ are the nodal array of wavefunction values at the finite element
nodes, and the interpolation polynomials are denoted with the same indices. The inclusion
of many-body considerations is done through the use of Fermi distribution functions (step-
functions at zero temperature). Each term in the sum over a represents a global matrix
representation of the contribution of the corresponding eigenmode. The first term corre-
sponds to the excitations above the Fermi level (electrons above the Fermi sea) so that
na > nF and the second term with nF > na is for excitations below the Fermi level defined
by the occupied states and corresponds to the contribution of holes to the Green’s function.
We can cast the sum in an operator form by writing

iG(0)(x,x′, ω) = 〈Nλ(x)|G(0)
λµ(ω)|Nµ(x

′)〉. (100)

The Fermion distribution functions are incorporated into the operator for convenience. We
are thus able to carry over all the concepts associated with the infinite domain into the
nanoscale finite domain arena.
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