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Abstract

This work will have two parts. The first will be related to various types
of graph connectivity, and will consist of some exposition on the work of
Andreas Holtkamp on local variants of vertex connectivity and edge con-
nectivity in graphs. The second part will consist of an introduction to the
field of physics known as percolation theory, which has to do with infinite
connected components in certain types of graphs, which has numerous
physical applications, especially in the field of statistical mechanics.
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1 Introduction

The first part of this work will contain some exposition on many theorems on
various types graph connectivity. We follow the thesis of Holtkamp [1].

1.1 Basic terminology and notation

In the first part of this work, we shall give an overview of some of the terminology
of graph connectivity. As an illustrative example for these concepts, we will
make use of the Petersen Graph, pictured below:

Figure 1: The Petersen graph.

We begin by establishing some notation. Let G be a graph with n vertices.
For an unordered pair of vertices u, v of G, recall that e = uv is the edge
connecting u and v. We first define the vertex and edge sets of G:

Definition 1.1.1. The vertex set V (G) of a graph G is the collection of all
vertices of G.

Definition 1.1.2. The edge set E(G) of a graph G is the collection of all edges
of G.

We may also define notions of open and closed neighborhoods for a vertex v
of a graph.

Definition 1.1.3. For a vertex v ∈ V (G), the open neighborhood NG(v) is
the set of all vertices adjacent to v. The closed neighborhood is defined to be
NG(v) ∪ {v}.

For X,Y ⊆ V (G), we define (X,Y ) = {xy ∈ E(G) : x ∈ X, y ∈ Y } and
[X,Y ] = |(X,Y )|. Simiarly, the neighborhood of a collection of vertices N [X] =⋃
v∈X

N [v].
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Next, we introduce the notion of an induced subgraph.

Definition 1.1.4. For a graph G and a set X of vertices of G, the induced
subgraph G[X] is the graph composed of the vertices in X along with those
edges whose endpoints are both in X.

For a set of vertices X of G, the notation G − X will denote the graph
induced by V (G) −X, and G − S denotes a subgraph in which a collection of
edges S ⊂ E(G) is removed from G.

Figure 2: The subgraph induced by the vertices v0, · · · , v4 of the Petersen
Graph.

For a graph G and vertex v, we will denote by n(G) = |V (G)|, m(G) =
|E(G)|, d(v) = |N(v)| the order of G, size of G, and degree of v respectively.
The minimum and maximum degrees of a graph G, denoted by δ(G) and ∆(G)
respectively, are defined as min {d(v) : v ∈ G} and max {d(v) : v ∈ G} respec-
tively. Going back to our example of the Petersen graph, we see that each vertex
has d(v) = 3, so δ = ∆ = 3, n = 10 and m = 15.

Now, we recall the notions of a cycle and a path in a graph G:

Definition 1.1.5. Let {v1, · · · , vp} ⊂ V (G) with {v1v2, · · · , vpv1} ⊂ E(G).
Then we say that Cp = v1v2 · · · vp forms a cycle of length p provided that p ≥ 3.

Our induced subgraph above is an example of a 5-cycle.

Definition 1.1.6. Let u,w be two vertices of G. Then we say that P =
u0u1 · · ·um is a path of length m ≥ 1 from u to w if u0 = u, um = w and
ui 6= uj for all i, j ∈ {1, 2, · · · ,m}. The length of the shortest path between two
vertices u,w is called the distance between them.
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In the Petersen graph, for instance, there is a path between v0 and v3:
{v0v5, v5v8, v8v3}.

Finally, we review some notation for a few special types of graphs that will
be of significance in this work:

Definition 1.1.7. A complete graph Kn is a graph with n vertices and all
possible edges.

Figure 3: The complete graph on 4 vertices, K4.

Definition 1.1.8. A clique is an induced complete subgraph of a graph G. The
clique number ω(G) is the maximum order over all cliques of G.

In our Petersen graph example, the clique number ω is 2.

Definition 1.1.9. A graph G is said to be p-partite (or p-colorable) if its vertx
set V (G) may be partitioned into p independent sets, where an independent set
of vertices is one whose induced subgraph contains no edges. If G is q-colorable
but not q−1-colorable for some q, we say that q = χ(G) is the chromatic number
of G.

The Petersen graph, for instance, has clique number 2, and is 3-partite, so
it has chromatic number χ = 3.

Definition 1.1.10. A triangle-free graph is one that has no C3 as a subgraph.

Definition 1.1.11. A diamond is the graph obtained by removing a single edge
from K4. A p-diamond is a graph consisting of p + 2 vertices, with a pair of
connected vertices that have p common neighbors and no other edges.
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Figure 4: A 3-diamond.

1.2 Types of Connectivity

In this section, we will give an overview of the various types of connectivity
commonly used in graph theory.

Definition 1.2.1. A graph G is said to be connected if, given any two vertices
u, v of G, there exists a path between u and v.

Definition 1.2.2. A component is a maximal connected induced subgraph of
a graph G.

Definition 1.2.3. A vertex v of a graph G is said to be a cut-vertex if its
removal divides G into at least two components. If a graph has no cut-vertices,
it is said to be 2-connected.

Definition 1.2.4. A subset X ⊂ V (G) of a connected graph G is said to
be a separating set if G − S consists of at least two components. A minimal
separating set is one that is minimal with respect to inclusion, and a minimum
separating set is one of minimal cardinality.
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Example

Figure 5: A connected graph. Deleting the vertex v3 separates G into two
components, so that v3 is a cut-vertex of G and forms a separating set.

1.2.1 Vertex-connectivity in graphs

Definition 1.2.5. The connectivity number κ(G) of a graph G is the smallest
number of vertices whose deletion disconnects the graph.

It is also possible to define a local notion of connectivity, as follows:

Definition 1.2.6. The local connectivity κ(u, v) between two vertices u, v of a
graphG is defined to be the maximum number of internally disjoint u−v paths in
G. It is a consequence of Menger’s theorem[17] that κ(G) = min {κ(u, v) : u, v ∈ V (G)}.

In addition, the maximum number of internally disjoint u−v paths is equal to
the minimum cardinality of the separating set S separating u and v in the event
that uv /∈ E(G). For uv ∈ E(G) there exists a vertex subset S separating u and
v in G − uv with S = κG−uv(u, v) = κG(u, v) − 1. We also have κ(G) ≤ δ(G)
and κ(u, v) ≤ min {d(u), d(v)}.

Definition 1.2.7. A graph is said to be maximally connected when κ(G) = δ(G)
and κ(u, v) ≤ min {d(u), d(v)}. A graph is said to be maximally local connected
when κ(u, v) = min {d(u), d(v)}.
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1.2.2 Edge-Connectivity in graphs

In order to talk about edge-connectivity, we first introduce the definition of an
edge-cut in a graph G:

Definition 1.2.8. An edge-cut is a subset S ⊆ E(G) such that G − S is dis-
connected.

Definition 1.2.9. The edge connectivity λ(G) is the smallest number of edges
whose deletion disconnects the graph.

Now, we define the local edge-connectivity number:

Definition 1.2.10. The local edge-connectivity number λ(u, v) between two
vertices u, v of G is the maximum number of edge-disjoint u, v paths in G.

Menger’s theorem once again tells us that:

λ(G) = min {λG(u, v) : u, v ∈ V (G)}

It is also known that κ(G) ≤ λ(G) ≤ δ(G), which is known as Whit-
ney’s inequality. Similarly to vertex connectivity, we have λ(G) ≤ δ(G) and
λG(u, v) ≤ min {d(u), d(v)}.

Definition 1.2.11. A graph G is said to be maximally edge-connected when
λ(G) = δ(G) and maximally local edge connected when λ(u, v) = min {d(u), d(v)}
for all pairs of vertices u, v in G.

1.2.3 Restricted edge-connectivity

The definitions in this section are due to Fabrega and Fiol [18]

Definition 1.2.12. An edge-cut S is said to be k-restricted if every component
ofG−S has at least k vertices. The k-restricted edge-connectivity number λk(G)
is then defined to be the minimum cardinality over all k-restricted edge-cuts of
G.

Definition 1.2.13. A graph is said to be k-restricted edge-connected if λk(G)
exists.

Definition 1.2.14. A k-restricted edge cut (X,X) is said to be a minimum
k-restricted edge-cut if [X,X] = λk(G).

Note that for a minimum k-restricted edge cut (X,X), the graph G−(X,X)
has exactly two connected components. For such a cut, the set X is called a
fragment of G. Let:

rk(G) = min {|X| : X is a k fragment of G}

Definition 1.2.15. A k-fragment for which |X| = rk(G) is said to be a k-atom
of G.
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Definition 1.2.16. The minimum k-edge-degree ξk(G) is defined to be:

ξk(G) = min
{

[X,X] : |X| = k and G[X] is connected.
}

A k restricted edge-connected graph G for which λk(G) ≤ ξk(G) is said to
be optimally-k-restricted edge-connected (or λk-optimal). A graph for which
every minimum k-restricted edge-cut isolates a connected subgraph of order k
is said to be super -λk.

1.2.4 Local restricted edge-connectivity

Definition 1.2.17. A graph is said to be local k-restricted edge-connected if for
each pair of vertices x, y of G, there exists an edge-cut such S such that each
component of G has order at least k, and x and y are in different components
of G− S.

The size of such a cut is denoted by λk(x, y), which is referred to as the local
k-restricted edge-connectivity number of x and y.

The quantity

ξk(x, y) = min
{

[X,X] : |X| = k , G[X] is connected , | {x, y} ∩X| = 1
}

denotes the number of edges between a connected subgraph of order k that
contains one of x, y, and the remaining graph. Analogous to λk-optimality, we
define the notion of local k-restricted edge-connectivity as follows:

Definition 1.2.18. A graph is said to be local k-restricted edge-connected if
λk(x, y) = ξk(x, y) for all pairs of vertices x, y in G.

In the coming sections, we will see how these definitions are applied to graphs
of various types.
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2 Vertex Connectivity

In this section, we present some illustrative examples from the work of Andreas
Holtkamp on vertex connectivity - specifically, results on graphs with bounded
clique number, p-diamond-free graphs, and K2,p-free graphs. Theorems will be
listed, followed by their corresponding examples.

Before we present any theorems, note the following observation due to Holtkamp
[1]:

Observation 2.0.1. Every maximally local connected graph is maximally con-
nected.

To see this, recall that for a maximally local connected graph G, κ(u, v) =
min {d(u), d(v)} for all pairs of vertices u, v of G. This implies that:

κ(G) = min
u,v∈V (G)

{κ(u, v)} = min
u,v∈V (G)

{d(u), d(v)} = δ(G)

2.1 Results on maximum local connectivity in graphs with
boundned clique number

We begin with a few theorems on sufficient conditions for p-partite graphs to
be maximally (local) connected, due to Topp and Volkmann[2]:

Theorem 2.1.1. Let p ≥ 2 be an integer. If G is a p-partite graph such that

n(G) ≤ δ(G)

(
2p− 1

2p− 3

)
then κ(G) = δ(G).

Furthermore, as a consequence of our observation above, we can extend this
result to the following theorem[5] on maximum local connectivity:

Theorem 2.1.2. Let p ≥ 2 be an integer, and let G be a p-partite graph satis-
fying

n(G) ≤ δ(G)

(
2p− 1

2p− 3

)
then G is maximally local cnnected.

It is clear from the picture of the cube graph, below, that κ(G) = δ(G), as 3
vertices must be deleted in order to disconnect the cubic graph. To see that the
cubic graph is maximally local connected, note that for any pair u, v of vertices,
there are 3 internally disjoint u− v paths in G.
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Figure 6: The cube graph. Here we have a 2-partite graph with δ = 3, so the
conditions of the inequality are satisfied.

Now, we also have the following theorems [4][6] on graphs with a bounded
clique number, as an application of Turan’s theorem[3] to the previous theorems:

Theorem 2.1.3. Let p ≥ 2 be an integer, and let G be a connected graph with
clique number ω(G) ≤ p. If n(G) satisfies

n(G) ≤ δ(G)

(
2p− 1

2p− 3

)
then κ(G) = δ(G).

Theorem 2.1.4. Let p ≥ 2 be an integer, and let G be a graph with clique
number ω(G) ≤ p. If n(G) satisfies

n(G) ≤ δ(G)

(
2p− 1

2p− 3

)
then G is maximally local conneced.

An example of this is the octahedral graph. To see that the octahedral graph
is in fact maximally (local) connected, note that it has δ = 4. It is easy to see
from the picture that at least 4 vertices must be deleted from the graph to
disconnect it. For any two vertices u, v, we can find at most four paths (which
happen to be of length two) in G that are internally disjoint, so we see that
κ(u, v) = min

u,v
{d(u), d(v)}.
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Figure 7: The octahedral graph. Here we have a graph with δ = 4 and ω ≤ 3
so the conditions of the inequality are satisfied.

2.2 Maximum local connectivity in diamond-free and p-
diamond-free graphs

Note that bipartite graphs are diamond-free. We begin with the following result
due to Volkmann [7]:

Theorem 2.2.1. Let G be a connected diamond-free graph of order n and min-
imum degree δ ≥ 3. If n ≤ 3δ, then κ(G) = δ(G).

This bound is not tight, and can be improved, as we see in the following
theorems due to Holtkamp and Volkmann [8]:

Theorem 2.2.2. Let G be a connected diamond-free graph with minimum degree
δ(G) ≥ 3. If n(G) ≤ 3δ(G)− 1, then G is maximally local connected.

Theorem 2.2.3. Let G be a connected diamond-free graph with minimum degree
δ(G) ≥ 3. If n(G) ≤ 3δ(G) and dG(x) /∈ {δ(G) + 1, δ(G) + 2} for each vertex
x ∈ V (G), then G is maximally local connected.

To see that this graph is maximally connected, note that since it is a complete
bipartite graph on 6 vertices, at least 3 vertices must be removed in order to
disconnect it. Furthermore, since each vertex has degree 3, we need only observe
that for any pair of vertices κ(u, v), there are 3 vertex-disjoint paths from one
vertex to another, which is clear from the picture.
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Figure 8: A 2-diamond free graph with δ = 3, so it satisfies the given inequality.

Now, we have the following results on p-diamond free graphs, due to Holtkamp
and Volkmann [8]:

Theorem 2.2.4. Let p ≥ 2 be an integer, and let G be a connected p-diamond
free graph. In addition, let u, v, be two vertices of G, and let r = min {dG(u), dG(v)}−
δ(G). Then,

1. If uv /∈ E(G), and n(G) ≤ 3δ(G) + r− 2p+ 2, then κG(u, v) = δ(G) + r.
2. If uv ∈ E(G) and n(G) ≤ 3δ(G) + r − 2p+ 1, then κG(u, v) = δ(G) + r

Theorem 2.2.5. Let p ≥ 3 be an integer, and let G be a connected, p-diamond
free graph. If n(G) ≤ 3δ(G)− 2p+ 2, then G is maximally local connected.

Theorem 2.2.6. Let Let p ≥ 3 be an integer, and let G be a connected, p-
diamond free graph. If n(G) ≤ 3δ(G)− 2p+ 2, then G is maximally connected.

Because of the symmetry of this graph, we can see easily that at least 4
vertices must be deleted from the graph for it to be deleted. Furthermore, if we
choose two vertices u, v in G, and note that every pair of vertices is at distance
one or two from another, we can see that there are 4 paths that are internally
disjoint from u to v, and each vertex has degree 4, so G is maximally local
edge-connected.
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Figure 9: A 3-diamond free graph that satisfies with δ = 4. so satisfies the given
inequality.

2.3 Maximum local connectivity in K2,p-free graphs

Note that a K2,p-free graph is also p-diamond free, so the following two results
are easy corollaries of the previous result on p-diamond free graphs, due to
Holtkamp and Volkmann [9]:

Corollary 2.3.1. Let p ≥ 3, and let G be a connected K2,p-free graph. If
n(G) ≤ 3δ(G)− 2p+ 2 then G is maximally locally connected.

Corollary 2.3.2. Let p ≥ 3, and let G be a connected K2,p-free graph. If
n(G) ≤ 3δ(G)− 2p+ 2 then G is maximally connected.

Now, we move on to some results on K2,p-free graphs in the special case of
p = 4. The results are due to Holtkamp and Volkmann [8]

Theorem 2.3.1. Let G be a connected K2,4-free graph with mimumum degree
δ(G) ≥ 3. If n(G) ≤ 3δ(G)− 5, then G is maximally local connected.

Corollary 2.3.3. Let G be a connected K2,4-free graph with mimumum degree
δ(G) ≥ 3. If n(G) ≤ 3δ(G)− 5, then G is maximally connected.

It’s easy to see that the graph satisfies the given inequality and that the
deletion of at least 4 vertices is required to disconnect the graphs. It can be
seen that G is maximally local connected by similar reasoning to the example
of the p-diamond free graph.
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Figure 10: A K2,4-free graph on 7 vertices with minimum degree δ = 4.

3 Edge Connectivity

3.1 Maximum (local) edge connectivity in diamond-free
graphs

Similar to the case of local vertex connectivity, we may make the following
observation due to Holtkamp [1]:

Observation 3.1.1. Every maximally local edge-connected graph is maximally
edge-connected.

To see this, note that for a maximally local edge-connected graph, we have
λ(u, v) = min

u,v∈V (G)
{d(u), d(v)}. Thus, we have:

λ(G) = min
u,v∈V (G)

= λ(u, v) = min
u,v∈V (G)

{d(u), d(v)} = δ(G)

We have several results on local edge-connectivity in diamond-free graphs:
A theorem due to Holtkamp[10], and several corollaries due to Holtkamp[10],
Volkmann [11], and and Fricke, Oellerman, and Swart [12], respectively:

Theorem 3.1.1. Let G be a diamond-free graph with δ(G) ≥ 3. If n(G) ≤
4δ(G)− 1, then G is maximally local edge-connected.

Corollary 3.1.1. Let G be a diamond-free graph with δ(G) ≥ 3. If n(G) ≤
4δ(G)− 1, then G is maximally edge-connected.

Corollary 3.1.2. Let G be a bipartite graph with δ(G) ≥ 3. If n(G) ≤ 4δ(G)−1,
then G is maximally local edge-connected.
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Corollary 3.1.3. Let G be a bipartite graph with δ(G) ≥ 3. If n(G) ≤ 4δ(G)−1,
then G is maximally edge-connected.

For the purposes of comparison, let us consider again the 2-diamond free
graph we already used:

Figure 11: A 3-diamond free graph that also has δ = 4, so satisfies the given
inequality.

We can easily see from the picture that the deletion of at least 4 vertices
is necessary in order to disconnect the graph. By a similar argument to the
vertex-connectivity case, we can see that for any two vertices u, v, there are at
least 4 edge-disjoint paths between any two vertices u, v.
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3.2 Restricted edge-connectivity

We have the following results categorizing 2-restricted edge-connected graphs,
due to Esfahanian and Hakimi [19]:

Theorem 3.2.1. Every connected graph of order n ≥ 4 except a star K1,n−1 is
2-restricted edge-connected and satisfies λ(G) ≤ λ2(G) ≤ ξ(G)

We also have the following result due to Yuan and Liu [13], that gives a
sufficient condition for a graph to be λ2-optimal:

Theorem 3.2.2. Let G be a connected triangle-free graph of order n ≥ 4. If

d(u) + d(v) ≥ 2bn+ 2

4
c + 1 for each pair of vertices u, v at distance 2, then G

is λ2-optimal.

Figure 12: A λ2-optimal graph.

3.3 λ3-optimality in triangle-free graphs

Bonsma, Ueffing, and Volkmann [15] discovered the following characterization
of graphs that are not 3-restricted edge-connected:
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Theorem 3.3.1. A connected graph G is 3-restricted edge-connected iff n ≥ 6
and it is not isomorphic to the net N or any graph in the family F depicted in
the Figure below:

Figure 13: The net N .

Figure 14: The family F that is not local 3-restricted edge-connected. Note
that the black dots are connecting the vertices v2 and v3.

Holtkamp, Meierling, and Montejao [14] found the following result on triangle-
free graphs with sufficiently high degree:

Theorem 3.3.2. Let G be a connected triangle-free graph of order n ≥ 6. If

d(u) + d(v) ≥ 2bn
4
c + 3 for each pair u, v of non-adjacent vertices, then G is

λ3-optimal.
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Figure 15: A 3-restricted edge-connected graph that is not triangle-free.

3.4 Local k-restricted edge-connectivity

In this section, I will present a few results on local k-restricted edge-connectivity.
The results are all due to Holtkamp and Meierling [20]

We begin with a series of observations due to Holtkamp [1]:

Observation 3.4.1. Every local k-restricted edge-connected graph is k-restricted
edge connected.

Observation 3.4.2. Every local k + 1-restricted edge-connected graph is k-
restricted edge connected, and satisfies λk(G) ≤ λk+1(G).

Observation 3.4.3. Every local λk-optimal graph with λk(G) ≤ ζk(G) is λk-
optimal.

One of the main results used for showing the local k-restricted edge-connectivity
of a graph is the following:

Lemma 3.4.1. A connected graph G is local k-restricted edge-connected iff for
every pair of vertices x, y of G, there exist disjoint sets {x, x1, · · · , xk−1} and
{y, y1, · · · , yk−1} such that the induced subgraphs G[X] and G[Y ] are connected.

Theorem 3.4.1. Let G be a connected graph of order at least 2k. If G has
a cut-vertex that isolates a component of order at most k, then G is not local
k-restricted edge connected.

See figure 17 for an example of this graph.
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Figure 16: A local 2-restricted edge-connected graph that satisfies the conditions
of the above Lemma.

We also have the following characterization of local k-restricted edge-connected
graphs:

Theorem 3.4.2. Let G be a connected graph of order n ≥ 2k and let x and y
be two vertices of G.

If κ(x, y) ≥ 2 and no cut vertex w that leaves x and y in a common compo-
nent of order at most 2k − 2 (if w 6= x, y) or leaves x and y in a component of
order at most k− 1 (if w = x or w = y), respectively, there exists a k-restricted
edge-cut separating x and y.

If κ(x, y) = 1 and there exists a cut-vertex that leaves one of x and y in a
component of order s with k ≤ s ≤ n− k, then there exists a k-restricted edge-
cut separating x and y.

Corollary 3.4.1. Let G be a connected graph of order at least 2k. If G has
no cut-vertex that isolates a component of order at most 2k− 2, then G is local
k-restricted edge-connected.

The following corollary is useful in determing whether a graph of sufficiently
large order is local 2-restricted edge-connected:

Corollary 3.4.2. A connected graph of order at least 4 is not local 2-restricted
edge connected iff it contains a vertex of degree 1 or it contains two adjacent
vertices of degree 2 that have a common neighbor.
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Figure 17: An example of a graph that is not local 2-restricted edge-connected.
v1 is the cut-vertex described in the theorem, as it isolates a component of order
1 ≤ 2 when removed.

Note that all of the above examples that were local 2-restricted edge-connected
necessarily satisfy these criteria.

Corollary 3.4.3. Every graph of minimum degree at least 3 is local 2-restricted
edge-connected.

This prevents the existence of any prohibited structures described in the
previous corollary in the graph.

Now, we have a similar result on the types of graphs which cannot be local
3-restricted edge-connected:

Theorem 3.4.3. A conected graph of order at least 6 is not local 3-restricted
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Figure 18: An example of a 2-connected graph. Based on a previous result,
it is obviously local 2-restricted edge-connected. However, it’s easy to see that
it meets the criteria of the above theorem, as there is no one cut-vertex that
isolates a component of order at most 2.

edge-connected iff it satisfies at least one of the following four conditions:

It contains a cut-vertex v that isolates a component of order at most 3
It contains a cut-vertex v that isolates a component of order 4 such that at least
two of its vertices are not adjacent to v.
It contains a cut-vertex v that isolates a paw such that one of its vertices of
degree 2 is not adjacent to v.
It contains a cut-vertex that isolates a path of order 4.

A simple corollary of this is:

Corollary 3.4.4. Every graph with at least 6 vertices and minimum degree at
least 4 is local 3-restricted edge-connected.

This again prevents any of the above prohibited structures from being present
in the graph.

For k ≥ 4, graphs that are locally k-restricted edge-connected have not been
entirely characterized. However, we have the following result:

Theorem 3.4.4. Every connected graph G of order at least 2k and minimum
degree k + 1 is local k-restricted edge-connected.
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Figure 19: Forbidden structures in local 2-restricted edge-connected graphs.
The vertex colored differently from the rest of the graph represents the remain-
der of an arbitrary graph that the structure is connected to.

Figure 20: Forbidden structures in local 3-restricted edge-connected graphs.
The vertex colored differently from the rest of the graph represents the remain-
der of an arbitrary graph that the structure is connected to.

4 Percolation

4.1 Introduction

Percolation theory is an area of physics that has a great deal to do with graph
theory.

We are concerned with the following problem: Suppose we have a very large
lattice L, with a large number of sites. Each site may be occupied with prob-
ability p, or unoccupied (with probability 1 − p). What can we say about the
clusters in the lattice, or, groups of neighboring occupied sites?

This is one type of percolation, known as site percolation. There is another
type of percolation, known as bond percolation, in which we imagine every site
to be occupied, and consider bonds between sites. Each bond may be open, with
probability p, or closed, with probability 1−p. We can think of this like a graph
with the vertices being the sites and open bonds being the edges connecting
the vertices. We are then interested in describing clusters, which are in this
case defined to be collections of sites connected by bonds, or, in graph-theoretic
terms, connected components of the lattice.

We will be concerned only with site percolation in this work. We will discuss
the two best-known and simplest exactly solved models in percolation theory
- the Bethe lattice and the one-dimensional lattice. The key features of the
theory appear in these simplified models and generalize to more complex models
that are not exactly solvable (and typically require computer simulation). Our
discussion will follow that of Stauffer and Aharony [21].
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Figure 21: A visualization of site percolation, from [22]

Figure 22: A visualization of bond percolation, from [22]

For each model, there are a few quantities that we are interested in deter-
mining:

The percolation threshold pc is the value of the site occupation probability p
for which an infinite cluster appears in an infinite lattice,

The cluster number ns, or the number of s-clusters per lattice site,

The average cluster size S.

The the correlation function g(r), which gives the probability that a site at
a distance r from an occupied site belongs to the same cluster as that occupied
site.

The correlation length ξ.
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The network strength P .

4.2 Percolation in the linear lattice

The percolation problem can be solved exactly in d = 1 dimensions. Although
simple, many important features of the one-dimensional percolation model gen-
eralize to higher dimensions.

Consider an infinitely long linear ”lattice” in one dimension, with several
sites placed at fixed distances from one another. Each site may be occupied
with probability p.

In order for two clusters to be separated from one another, the sites adja-
cent to the far-left and far-right ends of the cluster must be empty. Suppose
we want to find the number of clusters of size s on a lattice of length L, where
we will eventually take L → ∞. To find out, consider solving the problem of
determining whether a given occupied site is the left end of an s-cluster. The
probability of s arbitrary sites on the lattice being occupied is ps. There are
two unoccupied sites neighboring each end of the cluster, which are empty with
probability (1 − p)2. Thus the probability of a given occupied site being the
left end of an s-cluster is ps(1− p)2. Now, on a linear lattice of length L, there
are L sites, so that the number of s-clusters on a lattice of length L is then
L(1− p)2ps. As L goes to infinity, it is preferable to talk about the number of
s-clusters per lattice site obtained by dividing the number of clusters of size s
by the length L. Clearly the number of s-clusters per lattice site is ps(1− p)2.

Then, the probability of an arbitrary given site being part of an s-cluster
(not necessarily the left end, as in the derivation above) is just sns.

In order to determine the percolation threshold, consider what happens when
p = 1. All sites are occupied, and the entire chain forms one cluster. For p < 1,
there will exist unoccupied sites, and for a chain of length L, there will be on
average (1 − p)L such sites. For fixed p, this quantity goes to infinity as L
goes to infinity, so that there will always be at least one unoccupied site on the
lattice, so that there will never be a cluster connecting both ends of the chain.
Thus we see that there is no percolating cluster for p < 1, so that pc = 1, so
that the region p > pc is not observable on this lattice.

Now, suppose we choose a random point on the lattice that we know is part
of finite a cluster. We want to determine the average size of such a cluster. We
know that the probability of a given occupied site being part of an s-cluster is
sns, and the probability of a random occupied site being part of a cluster of

any size is
∑
s

sns. Then, ws = sns/
∑
s

sns is the probability that a cluster

to which an arbitrary site belongs contains exactly s sites. The average cluster
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size S is then given by:

S =
∑
s

sws

This is equivalent to: ∑
s

nss
2∑

s

sns

To evaluate this sum, recall that the probability that an occupied site belongs
to a cluster of size s is sns, as mentioned above. Then, the probability of a site
belonging to a cluster of any size is simply the probability that it is occupied,

so that p =
∑
s

sns. To calculate the numerator, we write:

(1− p)2
∑
s

s2ps = (1− p)2
(
p
d

dp

)2∑
s

ps

from which we see that

S =
1 + p

1− p
Recall that the correlation function g(r) gives the probability that a site at a

distance r from an occupied site belongs to the same cluster as that occupied site.
In general, for a pair of sites at distance r to be members of the same cluster,
all r sites in between them must be occupied, from which we see g(r) = pr for
all p and r. For p < 1 the correlation function goes to zero as r goes to infinity,
indeed we can write:

g(r) = exp

(
−r
ξ

)
where ξ is the correlation length, and is defined as follows:

ξ = − 1

ln(p)
=

1

pc − p

The last equality only holds for p close to pc = 1.

We see that since the length of a cluster with s sites is s − 1, the average
cluster size S is roughly proportional to the correlation length ξ.

In general, though certain quantities diverge at the percolation threshold,
their divergence behavior can be described by power laws, which remains gen-
erally true even in higher dimensions where models are not exactly solvable.
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4.3 Percolation in the Bethe Lattice

The other simple exactly solvable percolation model is the Bethe Lattice.
In the Bethe lattice, one begins at a central site from which z bonds emanate.

Each bond connects to z other sites which also have z other bonds emanating:
one connecting to the previous site, and z − 1 others connecting to other sites.

Figure 23: A visualization of the Bethe lattice, with z = 3.

To calculate the percolation threshold pc of the Bethe lattice, we begin at
the origin and attempt to find an infinite path of occupied sites starting from
that origin. Traversing such a path, we see that at each new site there are z− 1
bonds emanating in directions other than the one we came. Each one leads to a
new neighbor, which is occupied with probability p, from which it follows that
there are on average (z−1)p new neighbors to choose from to continue the path.
If (z − 1)p < 1, the average number of paths leading to infinity decreases by
this factor at each new site visited along the path. Even if z is very large and
all the sites adjacent to the occupied origin are also occupied, the probability of
finding a continuous path of occupied neighbors goes to zero exponentially with

path length provided that p ≤ 1

z − 1
. As a result, we obtain:

pc =
1

z − 1

For p larger than the percolation threshold, note that there is still not always
a path from the origin going to infinity. For instance, all the neighbors of the
origin could be empty.

Definition 4.3.1. The percolation probability P is the probability that an ar-
bitrarily selected site belongs to an infinite cluster.

This quantity is clearly zero for p < pc, so we are interested only in the
region p > pc. P is sometimes referred to as the strength of the network, and p
as the concentration. We want to determine the value of P .
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Now, let Q be the probability that an arbitrary site is not connected to
infinity through one fixed branch originating at that site. From now on, we
will take z = 3 for simplicity. For a given neighbor of our starting site, the
probability that the two sub-branches beginning at that neighbor do not go to
infinity is Q2. Thus pQ2 is the probability that a given neighbor is occupied but
none of its sub-branches lead to infinity. The probability that this neighbor is not
occupied is 1−p, so that Q = (1−p)+pQ2. This quadratic has solutions Q = 1

and Q =
1− p
p

. Now, the probability P − p that the origin is occupied but is

connected to infinity by none of its three branches is pQ3, so that P = p(1−Q3).
This gives zero for Q = 1 and

P

p
= 1−

(
1− p
p

)3

The first solution Q = 1 corresponds to p > pc and the second Q =
1− p
p

corresponds to p < pc.

We may also calculate the mean cluster size S, which in the case of the Bethe
lattice is the average number of sites of the cluster to which the origin belonds.
Let T be the average cluster size for one branch, that is, the average number of
sites to which the origin is connected and belongs to one branch. Sub-branches
T have the same cluster size as the origin itself. If a neighbor to the origin is
empty (probability 1 − p), the cluster size for this branch is zero. If not, the
sub branch contributes its own mass and the mass T of its two sub-branches
emanating, so that we obtain:

T = (1− p)0 + p(1 + 2T )

Which has solution T =
p

1− 2p
for p < pc = 1/2. The total cluster size is zero

if the origin is empty, and 1 + 3T if occupied. Therefore, the mean size S is
given by:

S = 1 + 3T =
1 + p

1− 2p

This is the mean cluster size below the percolation threshold pc. Near

pc = 1/2 = p, we see that S is proportional to
1

1− pc
. If there is no infi-

nite network below pc, it is possible that there does exist a very weak one, i.e.
P is very small, above pc. For instance, at p = 1/2, we see that P = 0, and
when p approaches pc from above, P is proportional to p− pc.

Both of these are further examples of critical phenomena, where quantities
go to zero or infinity following power laws. This is one way in which the perco-
lation problem is similar to a phase transition.
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Now, let us calculate ns, the average number per site of clusters containing s
sites. The size s is, similar to the one-dimensional case, related to the perimeter
t, which is the number of empty neighbors of occupied cluster sites. An isolated
site has 3 empty neighbors, and an isolated pair of occupied sites have 4 empty
neighbors. In the case of a general z, an isolated site has z unoccupied neighbors,
and an isolated pair has 2z−2 unoccupied neighbors. Each additional site added
to this pair gives a further z− 2 unoccupied neighbors, so that t = (z− 2)s+ 2.
For large s, the perimeter t is proportional to s, and the ratio t/s is:

t

s
=

1− pc
pc

As t/s = z − 2 and we know that pc =
1

z − 1
.

From the our equation derived earlier for the cluster number, we see that:

gsp
s(1− p)2+(z−2)s

Let us again set z = 3. Instead of calculating the cluster number ns, instead

consider the ration
ns(p)

ns(pc)
. Substituting, we see that this is equal to:[

(1− p)
(1− pc)

]2
[1− a(p− pc)2]

This quantity is proportional to exp(−cs), where a = 4

c = − ln
(
1− a(p− pc)2

)
We see that c is proportional to (p− pc)2.
Now, we want to find the behavior of the cluster number near the critical

point pc. Recall from our calculation in one dimension that S is proportional

to
∑
s

s2ns because the denominator remains finite near pc. Let us assume that

the decay of ns(pc) is proportional to s−τ To calculate the value of this sum
for the Bethe lattice, we assume that p is only slightly smaller than pc, and use
the trick of converting a sum to an integral to see that S is proportional to the
integral: ∫

s2−τ exp(−cs)ds

Which we see is proportional to cτ−3 after changing variables. Then, from
the definition of c, we see that the quantity S is in fact proportional to (p −
pc)

2τ−6. Since we have already shown that S is proportional to
1

p− pc
, it follows

that 2τ − 6 = −1 from which we see that τ = 5/2. This exponent is sometimes
referred to as the Fisher exponent. Thus, we see that ns is proportional to
s−

5
2 exp(−cs) and c is proportional to (p− pc)2, where the first proportionality

holds for p and large s, and the second only for p near the threshold pc.
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4.4 Application - Magnetism

In our treatment of the one-dimensional lattice, we wrote that there was some-
what of an analogy between the percolation problem and phase transitions. We
will explore this in more detail in this section. In particular, we will show how
identifying some quantities from theories of ferromagnetism such as the sponta-
neous magnetization, susceptibility, etc. with quantities from percolation theory
like the percolation threshold, mean cluster size, and cluster strength, can gen-
erate a new percolation model equivalent to a statistical-mechanical one.

Recall that in statistical physics, the probability of a system being in an
energy state Ei is given by pi, where:

exp (Ei)∑
j

exp

(
Ej
kT

)
and the expected value of a quantity A that takes the value Ai in energy

state i is then
∑
i

Aipi.

One well known model of magnetism from statistical physics is the Ising
Model. In this model, we have a collection of magnetic dipoles with energy
levels E1 = −H, E2 = H. The magnetic dipole is assumed to be able to point
only up or down, i.e. parallel or antiparallel to the magnetic field H, and this
dipole associated with an atom will be referred to as the spin.

In ferromagnetic materials, neighboring spins have an ”exchange” interaction
with energy −J if the spins are parallel, and J if the spins are antiparallel. Thus,
the total energy for the Ising model is:

E = −J
∑
ik

SiSk −H
∑
i

Si

Where the Si are spins that may take the values ±1.

In a ferromagnet, recall that the Curie point is the temperature below which
spontaneous magnetization m0 occurrs in zero external field, and the suscepti-

bility χ is the zero-field derivative
dm

dH
. Near the critical point, we know that:

Cv ∝|T − Tc|−α

m0 ∝(T − Tc)−β

χ ∝|T − Tc|−γ

ξ ∝|T − Tc|−ν

Here the correlation length ξ is the range over which one spin nontrivially
affects the orientation of other spins. In the two-dimensional theory, it is known
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that the values of the critical exponents are α = 0, β = 1/8, γ = 7/4, ν = 1.

To form an analogy with percolation models, identify the spontaneous mag-
netization with cluster strength, susceptibility with mean cluster size, and tem-
peratures T > Tc with concentrations p < pc.

Now, imagine that only some fraction p of lattice sites are occupied by sp-
ings, and the remaining fraction 1 − p remains unoccupied. As in percolation,
the spins are distributed randomly. This is known as the site-diluted quenched
Ising model.

Suppose that we are at very low temperatures, so that H ∝ T and kT � J .
Spins within a single percolation cluster will be parallel to each other in equilib-

rium. The probability to flip spins in a cluster involves powers of exp

(
−2J

kT

)
,

since an energy of 2J is required to break a bond between two spins. In addition,
different clusters have different spins and do not influence one another, so that
each finite cluster with s can be thought of as a ’super-spin’ with total energy
±sH. Therefore, the probability for a spin to point parallel to H is:

exp

(
−sH
kT

)
exp

(
−sH
kT

)
+ exp

(
sH

kT

)
and the probability for a spin to point in the opposite direction is:

exp

(
sH

kT

)
exp

(
−sH
kT

)
+ exp

(
sH

kT

)
The difference between these two probabilities multiplied by the cluster size

s is then the magnetization per cluster:

mcluster = s tanh

(
sH

kT

)
Then, if an infinite cluster is present, its contribution to the total magnetiza-

tion is ±P , depending on the orientation of the cluster. The total magnetization
per lattice site is then:

m = ±P +
∑
s

sns tanh

(
sH

kT

)
As H goes to zero, only the infinite cluster remains, so that m0 = ±P .

At small values of H, a Taylor expansion of tanh tells us that the zero-field
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derivative
dm

dH
, which gives the susceptibility, is proportional to the mean cluster

size S:

χ =
∑
s

s2ns
kT

∝ S

Now, if at low temperatures, we want the spin concentration p to approach
the percolation threshold pc, we must have m0 ∝ (p− pc)β , and χ ∝ |p− pc|γ .
Note that these are not the undiluted Ising exponents, but percolation exponents
like were discussed in earlier sections. Thus we have a correspondence between
a percolation model and an Ising model, where the spontaneous magnetization
is exactly the infinite cluster size, the susceptibility is exactly the mean cluster
size, and the percolation threshold is exactly the transition for ferromagnetism.
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