CS-GXS-0802

Grid Portal Development

submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Sciences

by

Joshua Nedelka
Date: 4/22/2008

Matthew Reiter
Date: 4/22/2008

Professor Gabor Sarkdzy, Major Advisor

Professor Stanley Selkow, Major Advisor

Abstract

The project consists of the analysis, design and implementation of a user account creation system
and a notification system for the P-GRADE Grid Portal. The user account creation system
expedites the process of accessing a portal by automating many administrative tasks. The
notification system provides a useful feature to users of the Portal by alerting them in real time of

the status of their workflows. Both systems serve to enhance a user’s experience with the Portal.

Acknowledgements

We would like to thank MTA SZTAKI and WPI for putting together this program and allowing
us this experience in Budapest. At SZTAKI, we would like to thank everyone from the
Laboratory of Parallel and Distributed Systems (LPDS), especially Prof. Dr. Péter Kacsuk, the
head of the lab and Miklds Kozlovszky for his excellent management of the project. In addition,
we would like to thank Gergely Sipos for his explanations of the GRID and Portal, Gabor
Hermann for his assistance with the user account creation system, Zoltdn Farkas and Andras
Schnautigel for their help during integration and development, Kéaroly Goschl and Atilla Marosi
for their assistance deploying and testing the account creation system, and Akos Balaské for his
help in the office. We would also like to thank Adam Kornafeld for making us feel welcome in
Budapest. At WPI, we would like to thank Jozsef Patvarczki for giving us a great preparation for
our project. Finally, of course, we would like to thank our advisors, Professors Gabor Sarkozy

and Stanley Selkow, for dedicating themselves to helping us complete our project successfully.

Table of Contents

N = I YL I ¥ PSR 1
ACKNOWLEDGEMENTS ...ttt sttt n e sne e i
TABLE OF FIGURES...... .ottt sttt nbeenbe e nneas Vil
TABLE OF TABLESot Vil
1 BACKGROUND......ciiiiie et b bttt et be e b e et e et e e b enes 1
1.1 HISTORY OF GRID COMPUTINGccctiiiiieiiiniesieenie et 1
111 BEOWUIT CHIUSEEIS ..ottt ettt 1
1.1.2 Origins of Grids and Grid COMPULING.........ccereririeieieriese s 1

1.2 APPLICATIONS OF GRID COMPUTING.......ccciiiiiieiiiie et 2
1.3 GRID TECHNOLOGIES.......cotiiiieise et 2
1.3.1 The GIoDUS TOOIKIT.....c..iieiiiieiiiciesisieee e 3
S 307 o | I 1 TP OSSP PRPRURORPRPPRPIR 3
G T T 03 To (o RS U U TU USRS PRPRIR 3
1.3.4 Parallel Programming ... 4

1.4 MTA SZTAKI AND LPDS ...ttt 5
141 MTA SZTAKI ...ttt enbeesaesseesbeeneeaseenseaneenreas 5
142 LPDS ... bbbttt b e e nre s 5

1.5 THE P-GRADE GRID PORTAL ...oiitiiiieiie sttt s 6
1.5.1 Using the P-GRADE POItalc.ccoviiiiiiiice st 7

2 PROJECT STATEMENT ...oooiiiiiie ettt 9
2.1 USER ACCOUNT CREATION SYSTEMooiiiiiiiiiie et 9
00 N R O ¢ =11) 1 (=114 PSP UP R PPPRO 9
2.1.2 Proposed IMpIementationccoieiiiiieniiie e 9

2.2 EMAIL NOTIFICATION OF WORKFLOW STATUS CHANGES.ccccovevvennee. 11
2.2.1 CUITENE SYSTEIM ..ttt st et e et e e sse e e be e bb e et e e saneebeeanneas 11
2.2.2 Proposed IMplementationcoiveieiieiieie et 12

3 METHODOLOGY ...ttt bbbt e e be e nne s 15
3.1 USER ACCOUNT CREATION SYSTEM ..ot 15
T 00 T [T =T 44T o PR UOSPRSRR 15
3.1.2 Implementation CoNSIAEratioNS..........ccceeveiierieiieieeie e 17
3121 MOSEIY ON WED SEIVELveiiieieiieee sttt ettt ne et st sbestesneenee e 17

3.1.2.2 Combination of Web Server and POrtal SEFVEISccooiiiiiiie it 19

3.1.2.3 ENLIrely 0N POITAl SEIVEIS... ...ttt et bbb be bt be e e 21

3.1.2.4 Comparison of IMpPIEMENTALIONSccoiiiiiiiiie e 23

3.1.3 TeChNOlOgieS USEU........cviiieiicie ettt sre e nne s 24
3.1.3.1 PHP: HYPEIteXt PreprOCESSOLciviiviiieeitinieitistesit sttt sttt sr et sn e 24

3.1.3.2 phpBB Confirmation SYSIEMccciiiiiiiiie ettt ettt ene e e e see e 25

3.2 EMAIL NOTIFICATION SYSTEM ...ceiiiiiieiie et 25
3.2.1 REQUITEMENTS. ...tiiiieiteeite ettt ettt s et e st e te et e st e s be e beeseesaeeneaneeaaeebeennenneas 25
3.2.2 Implementation CONSIAEIAtIONS.........coviieieiiie it 28
32,21 POIIING ettt bbbt bbb bbbt eee 28

3.2.2.2 BEVENEDIIVEN .ottt bttt bbbt et 29

4

5

6

3.2.3 Analysis Of IMpIementation..........ccooviiriiiiieee e 30
3.24 TechnOolOgies USEU........c.oiieiiiiieiieie ettt te et nne s 31
B0 R o1 L TSRS 31
3242 GEIUSPNEIE ...ttt bbbt bbbttt 32

3.3 COMMON TECHNOLOGIES USED.......ccccoiiiiiiiiie e 32
331 AV i 32
3311 ISP & SEIVIBLS. ...ttt bbb e bbbt b et e e bbb bt b ne e e 35
3.3.1.2 POrtalS & POFTIELS ... 36
3.3.1.3 NBEBEANS ...t bttt bbbt a bt kb e bt b e e nbe e nbe e ne e enes 37
3.3.2 DY | PP PP 38
3.3.3 XHTIML o e e e e e e e e st e e e s nntr e e e e asbeeeeeannes 39
TR T N - - 1o g o AR ORSRORPR 39
IMPLEMENTATION ..ottt et e et a e bn e 41
4.1 USER ACCOUNT CREATION SYSTEMooiiiiiiiiic e 41
4.1.1 Portal SErVEr INTEITACEoiiiiiiiieee e 42
4.1.1.1 ACCOUNE CrEALON SEIVIET ..ottt et 42
4.1.1.2 InfOrmation QUEINY SEIVIET.......cci ittt bbbt et e e nne s 43
4.1.1.3 ACCOUNE CPEATOT SEIVICE.viuieteiterietiitetet e sttt sttt sttt sttt r et b bbb bbb bbb et sb et 43
4.1.1.4 AUNENTICALION SEIVICEiuiiiitiiiieieiesi sttt bbbt 43
4.1.2 ACCOUNT REQUEST FOIM .. uiiiiiiii ittt naa e 44
4.1.3 Account Request Verification EMailcccoeiiiiiiiiiiiiiiiieeee s 45
4.1.4 AdMINIiStration CONSOIEcccoiiiiiiiieiee e 47
A.LAL LOGIN FOIM ottt ettt bbbt b et b e bbb bbb b e bt bbbt bbbt 47
4.1.4.2 Account Request VErifiCation FOIM ..ottt 47
4.1.4.3 User INfOrmation EXPOITEE........coi ittt sttt nne s 49
4144 SEttINGS IMANAGETuvieiiiite ittt ettt sttt ettt ettt et bt e b e s b e bt e beene e s b e ss e besbeebesbeebeeseeneanbenaens 50
4.1.45 Portal INformation EItOFccceiiiiiieiisese e 52
I T 1= ot U 4 | PSSO 53
4.2 EMAIL NOTIFICATION SYSTEMooiiiiiie e o7
4.2.1 POrtlet INtegrationcceiieiieiieieece ettt sra s 57
4.2.1.1 Modifications from WS-PGRADE POItal..........cccciiiiiiiiiiie it 58
A 111 o 44 o] PO SR STOSPRSRR 59
4.2.3 Backend INtEOratioN..........coceiieiiiiii i ene s 61
4.2.3.1 Retrieving and Handling Status Change EVENTScccveiiireiieneeseseese e 61
4.2.3.2 PErSIStENCE OF DALAccveiitiieeieiiiteete ettt et 63
4.2.3.3 NOHFICAION ULIHITIES.oiviieiiieeeeseee e 65
TESTING .ottt e et e e bb e e s kb e et e e e st e e snbeeennbee e 66
5.1 USER ACCOUNT CREATION SYSTEM ..ot 66
511 FUNCLIONAI TESTING ..c.viitiiiiiiieieiesie ettt 66
5.2 EMAIL NOTIFICATION SYSTEMoooiiiiiiiiiiie et 66
521 Performance TESTINGcccieriiiiiririeieie ettt 66
5211 ONEWOIKIIOW ...t 67
5212 20 WOTKFIOWSoviiiecistecs et 67
5.2.1.3 5O WOIKIIOWSoviiieciiieteicrsee et 68
5.2.2 FUNCtionality TESTINGccveieeiiieieiie it ae e nnes 69
5.2.2.1 Front ENG TESHINGeiuiiiiieieieieie sttt sttt e bbbt et et st e b et sbe st e e e aneennens 70
CONCLUSIONSttt et e e st e e s e e e nta e e nneaeannaeeannes 72
6.1 THE FINAL ACCOUNT CREATION SYSTEMccooiiiee e 72

\Y

6.2 THE FINAL EMAIL NOTIFICATION SYSTEM.....cccooiiiiiiiiiiiiec 72

T FUTURE WORK ...ttt sttt e e s e sseenteaneesteeteaneenneennas 73
7.1 ACCOUNT CREATION SYSTEM.....ccoiiiiiieiiee et 73
711 BUIK ACCOUNT CrEALON ..c.veiiieiiiciie sttt sttt sbe e b nresnee s 73
7.1.2 ACCOUNE REQUEST VIBWETeeiieeiieiieiieeiesiiesteesiesvte e ste et e staesaa e snnesaeanaesnaesnaenaennens 73
7.1.3 Testing of Portal INformation ..o 74
7.1.4 Improved Database SUPPOItccceoiiieiicie e 74

7.2 NOTIFICATION SYSTEMooiiiiiiiiiie ettt 74
7.2.1 AdItioNal PIUGINS ...eoviiiiciecece et sra e enaennes 74
T.2.1. 1 SMS MESSAGING .. veteiteeteeiietie it ete sttt sttt et e besbesae b e be bt e st e e e besheebesbeebeebeemeanbeseesbesbeebeebeeneaneennens 74

7212 PRONE CalIS....ooivoiiriiciriisiie ettt 75

2 2 Y/ (0] =31, (o a1 (o] o [oo SRRSO 75
7.2.21 Granularity of NOIfICATIONcoiiiiiiiiiiie e 75

7.2.2.2 TYPES OF MONMITOTING ...veviiieeiieieese sttt ettt et e st et e sbestesresteeneeneeneens 76

7.2.2.3 Parameter StudY WOTKFIOWS.ccociriiiiiiiiiiie e 76

8 REFERENCESottt ettt be b nneas 78
A. EMAIL NOTIFICATION SYSTEM PERFORMANCE GRAPHS ..o, 81
B. ACCOUNT CREATOR SYSTEM ADMINISTRATOR MANUALcccccovvvriiieeiiennnn, 85
B.1. INTRODUCTION. . ..ottt ettt b e nbeenn e 85
B.2. ACCOUNT CREATION WORKFLOW.......ccciiiiiiiieie et 85
B.3. INSTALLATION ...ttt ettt nne s 89
B.3.1. SEIVEr TOPOIOGYeeeitiiiiiieiieiieiet ettt 89

=R T o €T €T [] (=1 SR 90
B.3.3. Installing web server COMPONENTES.........ccooiiiiiiiininiceee e 91
B.3.3.1. CONfIQUIING APACRE ...ttt b et ans 92

B.3.3.2. Configuring the FIreWallcccooiiiiiiiccc et 92

B.3.4. Installing Portal Server COMPONENES........c.coiveiierieiieseee e 93

B.4. ADMINISTRATION CONSOLE......ccoiiiiiiiiesiet s 95
B.4.1. Exporting User Account INfOrmation............cccccvevviieiieieiie e 96
o 1= 1 [LRSS 97
B.4.3. Editing Portal INfOrmationccooiieiiiiiiireie s 99
B.4.4. Account Request VerifiCatioN...........cooceiieiieiiiie e 101

B.5. OTHER FEATURESooi ettt anes 106

= T I oo oo R ROUP TSRS 106

C. EMAIL NOTIFICATION SYSTEM HELP DOCUMENTATION......cccooeviiiiriieiene 107

Vi

Table of Figures

Figure 1.1 - P-GRADE Portal Workflow EditOrccccoveiiiieiiee e 7
Figure 1.2 - P-Grade Portal Certificate Manager..........ccocvveiiiiieiiere e se e ae s 8
Figure 1.3 - P-GRADE Portal Information SYStemccccceoieiiiii i 8
Figure 2.1 - Account creation WOIKFIOW...........ccooiiiioiiic e 11
Figure 2.2 - Monitoring workflow statuses in P-GRADE Portal............cccccoviiiiiiniieenieen, 12
Figure 2.3 - WS-PGRADE Notification POrtletccoooiiiiiiiiieee e 13
Figure 3.1 - Web server implementation data flow ..., 19
Figure 3.2 - Combination implementation data floW.............ccocooviiiiininn 21
Figure 3.3 - Portal server implementation data flIowccocviiiiiiiiiii e 22
Figure 3.4 - Confirmation COOE IMAJEScvviiiiieie et e e nae s 25
Figure 3.5 - POIING FIOW OF EVENTS.......ccviiiic e 28
Figure 3.6 - EVENE DIIVEN FIOWccuiiiiiiciece et 29
Figure 3.7 - The P-GRADE Portal Running Within GridSpherecccccoovvevieve v, 32
Figure 3.8 - JSP Model 2 ArchiteCture [26].......ccooueiieriiieiieiesie et 35
Figure 3.9 - Elements of a Portal Page [23]......ccoiiiiiiiiiie e 36
Figure 3.10 - The NetBeans IDE ..o e 38
Figure 4.1 - User account Creation COMPONENTS..........ooveiteriirieriireeieiesee e eeesee e 41
Figure 4.2 - Account creation system Server topologycccooerveieiieie e 42
Figure 4.3 - ACCOUNT FEQUEST TOMMN .. .ecuiiiie ettt e ae e nens 45
Figure 4.4 - Access request verification email..............cccoovoiiiiiiii e 46
Figure 4.5 - Administration console 10gin fOrm ..., 47
Figure 4.6 - Account request Verification fOrMcccooiiiiiinie e 48
Figure 4.7 - Account request VErifiCation SUCCESSccovvrierieneeiiisiesieeiesiee e seee e eeesiee e 49
Figure 4.8 - Account request verification faillure.............coooeiiiiii 49
Figure 4.9 - USEr aCCOUNT BXPOITETcuvitiriitiitisieeiieieeie ettt sttt sttt 50
Figure 4.10 - User acCount Creator SELLINGScueveeiveiieereerieeieseesesiesee e eaeseesreeseesneesreeseesneens 52
Figure 4.11 - Portal information €dItOrc.cciveiieiiiie e 53
Figure 4.12 - User account creator vulnerability analysiscccccveviiiiiiniieiie e 56
Figure 4.13 - Notify Portlet File ENry........cooi oo 58
Figure 4.14 - Notify Portlet Layout ENIYoooveiiiiieiecc e 58
Figure 4.15 - NOtify USEr PrefereNCeSccviiiiiiiieieiee ettt 59
Figure 4.16 - Workflow SubmMIsSSION FOIMooiiiiiiiieeee e e 60
Figure 4.17 - Event Driven Notification Implementation..............cccoooiiiiniiinininieccc e 61
Figure 4.18 - WOrkflow JOD Status File...........cooieiiiiiiieeee e 62
Figure A.1 - 1 Workflow with FUll NOtIfICatioN...........ccccovvieiieiece e 81
Figure A.2 - 1 Workflow with NO NOtITICAtIONcceeviiieececee e 82
Figure A.3 - 20 Workflows with Full NOtification.............cccoveiieii i, 82
Figure A.4 - 20 Workflows with NO NOtIfiCatioN............cceeieiieiiiii e 83

vii

Figure A.5 - 50 Workflows with Full Notification..............c.ccccceveee.
Figure A.6 - 50 Workflows with No Notification...............cc.cceevrenene.

Table of Tables

Table 3.1 - Comparison of account-creation system implementations

viii

1 Background
1.1 History of Grid Computing

1.1.1 Beowulf Clusters
Before discussing the beginnings of Grid computing, it is important to recognize another

important development in distributed computing. In 1993, Donald Becker and Thomas Sterling
conceptualized the idea of creating a cluster system from commaodity hardware and open source
software. This would allow the computational power to solve highly parallelizable problems
while offsetting some of the costs associated with a single more powerful machine[18]. The first
clusters built contained only a few machines connected with Ethernet and Fast Ethernet, but they
demonstrated that powerful computational units were indeed possible with cheap, commodity

hardware [6].

1.1.2 Origins of Grids and Grid Computing
Prior to true Grid computing, there was Metacomputing. Metacomputing involved

interconnecting supercomputers to achieve superior performance. One implementation of
Metacomputing was Information Wide Area Year (I-WAY). I-WAY was developed to connect
17 supercomputing centers together, and this was successfully demonstrated at Supercomputing

1995.

Following the success of I-WAY, lan Foster of Argonne Lab and Carl Kesselman of the
University of Chicago began the Globus Project. Similar to the aims of a Beowulf cluster, a Grid
would be a collection of computational resources that could be used to solve a variety of
problems[6]. This differed substantially from large computational resources of the past, which
could be tailored to perform one and only one task very well. The difference from the cluster,

however, is that a Grid can be geographically distributed and substantially more heterogeneous.

The origin of the term “Grid” comes from an analogy of the computational resources with a
power grid. The idea is that a user can connect to the Grid and receive as much computing
power as needed while ignoring such details as what hardware is being used. This is the same as
a person getting electricity from a wall socket — not caring how the electricity is generated or
where it is coming from, the only important thing is that it continues to flow[4]. Of course, the
analogy falls apart in practice since computing power cannot be drawn in the same way as
electricity from a socket; rather jobs must be sent out to the Grid to be processed.

1.2 Applications of Grid Computing

Current uses of grid computing are focused primarily on computation-heavy scientific research.
Such research includes weather prediction, high-energy physics, genetics research and financial
modeling[14]. The computing power available on individual computers, or even entire grids, is
often insufficient for these tasks. Distributed grids offer a shared computing environment usable
by anyone in its virtual organization in need of performing large computations that would
otherwise be infeasible due to time or memory constraints.

1.3 Grid Technologies

Grids are complex systems comprised of multiple technologies, often from different vendors. At
the lowest level are the individual computers and clusters that make up a grid. Grid middleware,
such as Globus, provides an interoperability layer that allows the elements of a grid to
communicate with each other. Running on top of the middleware are portals such as P-GRADE,
which hide the differences between various middleware solutions and allow multiple grids to be

treated in a uniform manner by both the users and the jobs running on the grids.

1.3.1 The Globus Toolkit
Globus is composed of three parts: the Globus Toolkit, a community of users, and the web-based

infrastructure that supports the community[8]. Of primary interest is the toolkit, as it comprises

the software component of Globus.

The Globus Toolkit is “a set of libraries and programs that address common problems that occur
when building distributed system services and applications”[8]. It is based on the Open Grid
Services Infrastructure (OGSI) and is intended to increase the ability to reuse and extend OSGI
technology for new grid applications[25]. The Globus Toolkit consists of a default set of service
implements for managing the low-level grid infrastructure, a security infrastructure, tools for
building new web services, client interfaces in the form of application programming interfaces

and command line tools, and extensive documentation[8].

1.3.2 glLite
gLite is an alternative grid middleware to Globus and was developed as part of the Enabling

Grids for E-Science (EGEE) project. gLite is a lightweight framework used to build grid
applications that allows them to take advantage of diverse computing and storage elements that
may be geographically distributed [9].
1.3.3 Condor
Condor is a system for distributed computing known as a batch execution system[17]. Condor
provides various services, including job management, scheduling policy, priority schemes, and
resource monitoring and management. Condor’s design philosophy revolves around flexibility
and is embodied by the following four statements [17]:

e “Let communities grow naturally.” People have a desire to work together, but they have

different needs. Condor permits cooperation, but does not require it; relations will grow

according to necessity.

e “Leave the owner in control, whatever the cost.” The owner of a given resource must
remain in full control of its policies and may withdraw the resource at any time. If too
much control is taken from the owner, people are less likely to join the system.

e “Plan without being picky.” If the community is of a sufficient size, there will always be
idle resources available. However, not all resources will work all the time or correctly. As
a result, the system should not depend on any given resource being available or
continuing to operate correctly. The system should be able to anticipate failures and react
accordingly to reassign work to other resources.

e “Lend and borrow.” Knowledge and expertise should be shared among the community.
Understanding previous research is the key to future progress; otherwise, the same

mistakes and discoveries may be repeated.

1.3.4 Parallel Programming

Parallel programming, also known as parallel computing, embodies the philosophy that most
difficult problems can be broken down into smaller independent tasks that can be executed in
parallel. These parallel tasks may be executed simultaneously on a vector processor, multiple
processors in a given computer, or even on multiple distributed computers. The main advantage
of parallel programming over sequential programming is that it supports much greater
scalability. As long as there are more parallel tasks than there are processing units, the rate at
which the overall calculation is accomplished can be increased simply by adding more

processing units[22].

1.4 MTA SZTAKI and LPDS

1.4.1 MTA SZTAKI
MTA SZTAKI, The Computer and Automation Research Institute of the Hungarian Academy of

Sciences, is an application-oriented research institution specializing in computer science and

engineering. Among their fields of research and development, as stated by their website, are:

o artificial intelligence methods

e expert- and knowledge-based systems in medicine and process supervisory systems
e robust control, simultaneous identification and in integrated vehicle control system
e computer-integrated manufacturing systems

e distributed information systems and management

e new technologies for local and wide area networks, www-based and multimedia tools

cluster and grid computing

SZTAKI has cooperation with most of the technical universities in Hungary as well as some

within the U.S.A [27].

1.4.2 LPDS
The LPDS, or Laboratory of Parallel and Distributed Systems, is a group within MTA SZTAKI

that focuses its research on cluster and grid technologies. Among its products are the P-GRADE
Grid Portal, gUSE, and the SZTAKI Desktop Grid. To date, LPDS has been an active
participant in many of the European Grid projects, including Enabling Grids for E-Science in
Europe (EGEE) and HunGrid. The LPDS also serves as the Central-European Regional Training

Center for EGEE [15].

1.5 The P-GRADE Grid Portal
The P-GRADE Grid Portal is a web portal based on GridSphere that allows users to access

multiple Grids, among other functionalities. A web portal, according to GridSphere, is a

gateway to a collection of services and Portlets [1].

P-GRADE Portal is intended to be a high-level access point for users who wish to submit

workflows to Grids without becoming bogged down in the technical details typically associated

with Grid computing. Not only does the P-GRADE Portal assist with the execution of

workflows, it also assists users in building parallel applications for execution on the Grid. Some

of the benefits and features of the P-GRADE Portal are [21]:

Helping to cope with the large variety of the various grid systems and concepts

Porting applications between Grid systems

Porting legacy applications to Grid systems

Allowing observation of application execution in the Grid

Tackling performance issues

Executing Grid applications over several Grids in a transparent way

Interoperability with Globus Toolkit 2, Globus Toolkit 4, LCG and gLite grid
middleware

Providing Grid authentication

Built-in graphical editor to design and define grid workflows and grid parameter studies
Integrated workflow manager

On-line workflow and job monitoring and visualization facilities

Multi-grid access mechanism

MPI execution in Globus and gL.ite grid environments

e Graphical Grid status checking
o Storage management

o Workflow import-export-archive service

1.5.1 Using the P-GRADE Portal
The main function of the P-GRADE Portal is to allow users to create and execute workflows and

jobs on the Grid. To that end, a comprehensive graphical Workflow Editor is included. The
editor is based on Sun’s Java Web Start technology. The editor provides capabilities for creating
and editing normal workflows and parameter studies. Users build workflows by adding jobs to
the editor and then connecting them according to their file dependencies. Dependencies are
represented by small boxes attached to jobs. Green boxes are inputs, while gray boxes are
outputs. For instance, in the example below the orange boxes represent jobs and it is clear that

the “Invert_A” and “Multip_B” jobs depend on “Copy_A”.

W'orkflow Editor - [sample_actuall4] Mode - Edit - |EI|5|
Workflow Edit Options Help

@h‘x % |on 100 I
25

—
1t

50 75 100 125 150

[»

Bl |
Copy_A Copy_B

SEQ SEQ

mvert_ A [T —=F 1 muttip_ B FH—=1[a_mu x F—=1 suntrB

SEQ SEQ SEQ SEQ

L]

[«] Il [1]

Figure 1.1 - P-GRADE Portal Workflow Editor

In addition, the portal provides a comprehensive certificate management service. After obtaining
a certificate from a valid Certificate Authority, a user can upload his or her certificate through
the portal and then obtain the proxy necessary to access a specific Grid. The portal will manage

the credentials when submitting workflows and jobs so that the user does not have to.

Certificate Manager

Certificate list

Issuer Set for Grids Time left [Actions]
C=HU,0=NIIF CA,0U=GRID,OU=ELTE IK,CN=Balasko seeqrid .))
Akos,E=akos0215@freemail hu,CN=proxy seegrid_GLITE_RROKER 0:0:0 Details I Set for Grid I Delete I

C=IT,0=GILDA,OU=Personal Certificate,L=\Worcester Polytechnic

Institute, CN=Jashua Nedelka E=inedelka®wpi.edu,Ch=proxy seegrid_LCG_2_BROKER 30:2:39 Details | Set for Grid | Delete |

Refresh |
Download |(D0w|0ad certificate from MyProxy server.) Upload |(Unlaad authentication data to MyProxy server.)

Credential Management |(Disp|ay infarmation, change MyProxy passphrase, remove a credential from MyProxy server.)

Message: [Press a button]

Figure 1.2 - P-Grade Portal Certificate Manager

The portal also provides an information system capable of viewing the statuses of all computing
and storage elements on any grid that it is connected to. Results can be filtered according to a
specific Virtual Organization or by Grid. The results reported break down each computing
element by how many of its processors are currently being utilized. Storage elements simply

show how much free space they have available.

Sites
Computing Element Storage Element
Site Name CPU Job Space
Total Free Usage Running \Waiting Load Total Available Usage
aegis01-phy-scl 765 1 I 100 788 2465 [7% 63808 TE £8.806 TB 0%
aeqgis0z-rcub 13 7 [| 46% & o 0% 175498 GB 165.201 GB 6%
aegis03-elefleda 3 3 0% o o 0% 9.191GB ENENC-T | 13%
aegisn4-kg 4z 37 [| 12% 5 o 0% &71.921GB 871811 GB 0%
aeqgis0s-etfhg 20 20 0% o 10 I 1005 40.329 GB 38.473 GB 5%
alberta-lcgz 140 27 Il - 113 35 [| 24% 11.257 TB 11.257 TB 0%
am-01-iap-nas-ra 2 2 0% o o 0% 1.014 MB 0B I 100
amde4.psnc.pl 96 5 I o 9 g [| 47% 4.675TB 4609TE | 1%
australia-atlas 3z & Il - 26 28 [| 52% 56.027 TB sos437e |l 10%
australia-unimelb-cg2 28 1 I o 27 1 | 4% 11.217 TB 65.947 B [o9

Figure 1.3 - P-GRADE Portal Information System

2 Project Statement
The project that we were given consisted of implementing two features into the P-GRADE

Portal: an automatic user account creation system and an email notification system. The two
features are common in their purpose to expedite the user’s experience with the portal.

2.1 User Account Creation System

In order for people to use an instance of the P-GRADE grid portal, they must first create a user
account. The process of creating a new account consists of three high-level tasks: a user requests
a user account on one or more portals, a message is sent to the administrators notifying him or
her of requests waiting for approval, and finally the administrator creates a user account on each
portal requested by the user.

2.1.1 Current System
Currently, the administrator must conduct most of the account creation process manually.

Potential users seeking an account fill out a form on a centralized web server. If the form is filled
out correctly, the form then sends an email to the administrator containing the account request
information. The administrator then verifies that the request is legitimate, and if so, enters the
information into a spreadsheet for later retrieval. For each portal that was requested, the
administrator copies the account information into the portal’s built-in account creation utility
accessible only to administrators. Finally, the administrator sends a pre-formatted email to the

user indicating that the account has been successfully created.

2.1.2 Proposed Implementation
The automated account creation system eases the burden on administrators of processing user

account requests. The system accomplishes this goal by automating the majority of the tasks
required to create a new user account while retaining an administrator’s ability to allow or deny

account requests.

The implementation can be broken down into four discrete components:

e extensions to the existing web form to save account requests pending administrator
approval,

e a dispatcher to forward account information to each portal requested by the user once an
account request is approved,

e aservice on each portal to handle account requests and provide error checking, and

e an administrative console to provide a means for an administrator to change settings that

affect the account creation process.

The flow of actions that occur when a user wants to create an account is shown in Figure 2.1.
If an action described in the figure does not specify what is performing it, it is the same as the

previous action.

10

User fills out account
request form on web
server

Each portal server
receives information
and stores in portal

database

Web server deletes
temporary user
information from
common database

Web server retrieves
user information from
form and stores
temporarily in common
database

For each portal
requested, web server

sends information to
portal

Generates confirmation
email and sends to user

Generates email with
user information and
confirm/deny links and
sends to administrator

Administrator clicks on
confirm link (the deny
link deletes user
information and
terminates)

Logs transaction details

Figure 2.1 - Account creation workflow

2.2 Email Notification of Workflow Status Changes
The email notification system for workflow status changes is intended to alert users who are not

constantly monitoring their workflows that the workflows are indeed being run by the Grid. It

can detect and notify any status, from “submitted” to “error” to “finished”.

2.2.1 Current System
In the current implementation of the P-GRADE Portal, there is no functionality for notification

of any kind. Users who are interested in determining the status of their workflows and jobs must

log into the portal.

11

Workflow list
Workflow Status Size Quota (100 Mb) [Output] [wiew] [Action]

sample_actuall init 373 KB 0.36% V] Details | submit | attach | _Delete |
sample_actual1n EE 2o 0.24% NfA Detais | _Rescue | _Abort | pppoch | _Delete |
sample_actualll submitted 185 KB 0.18% M Details | _Suspend | _abort | aypoqy, | _Delete |

Figure 2.2 - Monitoring workflow statuses in P-GRADE Portal

This is inconvenient and suboptimal for several reasons. First, while it is possible to know
approximately how long a workflow will take to complete, there can also be a very large
variance in completion time. A user who believes a workflow will take two hours might be
surprised to check the workflow at that time only to see that a few of the total jobs have been
run. Conversely, it might be seen that his workflow finished in much less time. In this case, a
new workflow could have been started utilizing the same resources as the one that had already

finished. This potentially wastes the computing time of the user.

Second, there is no way to tell if a workflow has failed due to an error unless its status is
constantly being checked. The same user who checks a workflow after two hours of execution
could find that the workflow had stopped running after only a few minutes due to an error in one
of its jobs. In this case, a large amount of computing time has been wasted because the user was

not made aware that there was a problem in a reasonable amount of time.

2.2.2 Proposed Implementation
The proposed solution and implementation to this problem is based on a system that has been

developed in cooperation with SZTAKI colleagues for the successor to the P-GRADE Portal,
WS-PGRADE. The system provides a flexible infrastructure for notifying users of status

changes to their workflows. The current implementation only provides utilities for sending

12

emails to users, but this could easily be extended to include SMS messages or any other

convenient notification.

Motifications =10

Email Settings:

Enahbled: |Yes 'I

Email Address: {ifr 2587 @gmail. com

Email Subject: |subject2

Workflow Change Settings:

Enahbled: |Yes 'I

Message: Time: #now# .
User: #user# key list:
Portal: #portal# ﬁnuwi
Workflow: #workflowg #u;a’al#
01d 3tatus: #oldgtatusé e
New Htatus: #newstatus# #aldstatus#
Petails: #rewstatus#
#detailsg #details#

Figure 2.3 - WS-PGRADE Notification Portlet

While the notification system is already robust, it was obviously designed for a system that is
vastly different from P-GRADE. The difficulty then is adapting the system to function in an
environment that is not necessarily ideally suited to support it. The differences become apparent
simply from the names of the two systems: the “WS” in WS-PGRADE stands for Web Services.
While the original P-GRADE portal is a monolithic system — that is, its individual components
cannot stand alone because of how tightly coupled they are — the new WS-PGRADE is more
flexible when it comes to integrating new features. It is much easier to capture the events that

are necessary to issue workflow status change notifications.

Without access to the services provided by WS-PGRADE, it becomes necessary to leverage
other utilities that the P-GRADE Portal provides. There are several locations that the

notification system must be attached to in order to accurately report status changes. By

13

integrating the system into these key places, the P-GRADE notification system can completely
represent all of the possible workflow statuses and also allow users to select the level of
notifications that they would like to receive: on any status change, only on workflow

completion, or never.

14

3 Methodology

3.1 User Account Creation System

Implementing the user-account creation system required several steps. The first step was to
gather requirements for the system. Based on the requirements, three possible implementations
were conceived. Several simple prototypes of these implementations were developed to assess
their feasibility. The implementations were then presented to colleagues at SZTAKI in order for
them to discuss the merits of each proposed implementation and decide which would best suit
their needs. Based on their feedback, a single implementation was selected for further

development.

3.1.1 Requirements
The automated account creation system went through several stages of requirement gathering

and prototypes before the design was solidified in its final form. The initial requirement was to
reduce the workload of the administrator by performing automatically as many steps of the

process as possible. Additional requirements added later are as follows.

e The administrator must retain full control over who is allowed accounts.
o0 This is accomplished by providing a mechanism by which the administrator can
approve or deny accounts before they are created.
e Unauthorized users should not be able to create accounts without administrator approval,
nor should they be able to break into the system to wreak havoc.
0 The security of the account creation system is an important requirement; an
insecure system cannot be put into production, as it would place the grid portals in

danger of being compromised by an attacker.

15

o0 Encryption of sensitive data, storing only hashed or encrypted passwords in
databases, and requiring both administrators and servers to authenticate with other
servers can minimize the chance of secret information falling into the wrong
hands.

e A user should not be able to initiate a modification to a portal server’s database without
prior administrator approval.

0 Account requests are stored in the web server’s database until approved or denied
by an administrator. If approved, they are then sent to the portal servers for further
processing.

e A user should not be able to spam the administrator by sending large numbers of account
requests.

0 Requiring the user to enter a confirmation code displayed in an image before
submitting the account creation form prevents bots from quickly sending requests.
Although no amount of noise in an image can make it readable by a human but
not by a computer, the amount of time required for a computer to process the
image is significant enough to prevent spamming.

e The administrator should be able to retrieve information on all registered users in order to
send mass emails, etc.

0 A web page allows the administrator to download user information, including
email addresses, from one or more portals.

e The account creation system should be able to adapt to various portal configurations.

16

0 An administration console allows the administrator to configure information
about the portals on which accounts can be created and change other settings

related to the account creation system.

3.1.2 Implementation Considerations
Based on the original requirements provided by SZTAKI, multiple possible implementations of

the account creation system emerged. The differences between the various implementations
revolved mainly around which tasks are performed by the web server and which are performed

by the portal servers.

3.1.2.1 Mostly on Web Server
In the first implementation, most of the work of creating a user account is done on the web server

and only a small amount is done on each portal server. On the web server are an account request
form, an automatic account creator, and a setting manager. On each portal server is an account
creator service. Attached to each portal server and the web server are databases for persisting
account data and settings. A diagram of the components and the flow of data between them is

shown in Figure 3.1. The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out the account request form
on the web server.

2. The web server retrieves the request information from the form and verifies it with the
account creator for each portal listed in the request.

3. The web server stores the request information in the common database for later retrieval.

4. The web server sends an email to the administrator with links to accept or deny the
account request.

5. The administrator clicks on one of the links in the email.

17

0 The *accept’ link causes the automatic account creator to accept the request as it
IS.

0 The ‘accept with default roles and groups’ link causes the automatic account
creator to accept the request, but with the requested roles and groups reset to their
default values.

o The “deny’ link causes the automatic account creator to delete the account request
and send the user an email indicating that the account request has been denied.

6. If the administrator accepts the account request, the automatic account creator deletes the
request information from the common database and logs the user name, email address,
and grid names so that they will be available for future reference.

7. The request information is dispatched to the account creator of each portal listed in the
request.

8. The account creator on each portal saves the account information in the portal database.

9. The automatic account creator sends an email to the user indicating that the account

request has been accepted.

Separately, the administrator interacts with the setting manager via the administration console.

The setting manager then saves the updated settings in the common database.

18

Web server Portal
database

Account
reguest
form

Account

creator
Automatic

account
creator

= Common
Setting database
manager

Figure 3.1 - Web server implementation data flow

3.1.2.2 Combination of Web Server and Portal Servers
In the second implementation, only the account request form is on the web server and the rest of

the components are on each portal server. Instead of having the account creation components
split over the web server and the portal servers, there is a single automatic account creator for
each portal server. A diagram of the components and the flow of data between them is shown in

Figure 3.2. The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out the account request form
on the web server.

2. The web server retrieves the request information from the form and sends it to the
automatic account creator for each portal listed in the request.

3. The portal servers store the request information in the portal databases for later retrieval.

4. Each portal server sends an email to the administrator with links to accept or deny the

account request.

19

5. The administrator clicks on one of the links in each email. Since the account creation
process for each portal is independent at this point, the administrator may choose to
accept the request for some portals by deny it for others.

6. If the administrator accepts the account request for a given portal, the automatic account
creator deletes the temporary account request information from the portal database and
creates a new account on the portal using the information.

7. The automatic account creator saves the user name, password, and grid name to the
common database for future reference. If the information was already added to the
database by a different portal, the grid name list in the database is updated to reflect the
additional grid.

8. The automatic account creator sends an email to the user indicating that the account

request has been accepted.

The setting manager for this implementation is similar to that of the previous implementation,
except that there is a separate setting manager and administration console for each portal server.

The settings for each portal are kept synchronized by virtue of residing in the same database.

20

Web server

Account
request

form
Portal

database

Portal server

Automatic
account
creator

Common
database

Setting
manager

Figure 3.2 - Combination implementation data flow

3.1.2.3 Entirely on Portal Servers
In the third implementation, the entire account creation process is replicated across each portal

server. The only common component is the database where user names and email addresses are
stored. Shown in Figure 3.3 is a diagram of the components and the flow of data between them.

The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out an account request form
for each portal desired. The rest of the process is the replicated for each portal.

2. The portal server retrieves the request information from the form and stores it in the
portal database for later retrieval.

3. The portal server sends an email to the administrator with links to accept or deny the
account request.

4. The administrator clicks on one of the links in the email.

21

5. If the administrator accepts the account request, the automatic account creator deletes the
temporary account request information from the portal database and creates a new
account on the portal using the information.

6. The automatic account creator saves the user name, password, and grid name to the
common database for future reference. If the information was already added to the
database by a different portal, the grid name list in the database is updated to reflect the
additional grid.

7. The automatic account creator sends an email to the user indicating that the account

request has been accepted.

The setting manager for this implementation is different from previous implementations in that
the settings are stored in the portal database instead of the common database. As a result, the
settings must be updated individually for each portal. The purpose of this design is that the

individual portals are kept as independent of each other as possible.

Portal server

Account
request
form
Portal
database
Automatic
account
creator

Common
Setting database
manager

Figure 3.3 - Portal server implementation data flow

22

3.1.2.4 Comparison of Implementations
Each of the possible implementations of the account creation system has benefits and drawbacks.

Table 3.1 shows a comparison of the three implementations described earlier.

Implementation

Benefits

Drawbacks

Mostly on web
server

e The administrator only receives a
single email per account request.

e A user may be able to request
accounts on multiple portals with
a single request.

e The portal servers are protected
from flooding attacks because
they do not become involved in
the account creation process until
the administrator has approved a
given account request.

e Since most of the functionality is in the
web server, the account creator cannot
take advantage of the existing portal
environment.

e Communications between the web
server and the portal server add
complexity to the system.

Combination e Uses existing code on the web | « Communications between the web
server for handling account| server and the portal server add
requests while also taking | complexity to the system.
advantage of the portal |e Each account request generates
environment. multiple emails to the administrator.

e A user may be able to request | e The portal servers are more vulnerable
accounts on multiple portals with | to flooding attacks because requests
a single request. are stored on them before being sent to

the administrator for verification.

Entirely on e Takes advantage of the existing | e A user must submit a separate account

portal servers

portal environment and account
creation code already written for
the portal.

e Each portal is kept as
independent as possible so that
they may be upgraded separately.

request for each portal, generating a
separate email to the administrator for
each request.

e Since each request may contain
different information, the portals must
be able to reconcile conflicts when
updating the common database.

e The portal servers are more vulnerable
to flooding attacks because requests
are stored on them before being sent to
the administrator for verification.

Table 3.1 - Comparison of account-creation system implementations

23

After all of the benefits and drawbacks were taken into consideration, the first implementation, in
which most of the account creation process is done on the web server, was chosen. The benefits
of a single email to the administrator per account request and protection of the portal servers
against flooding attacks outweigh the drawbacks of additional complexity and the inability to

reuse significant amounts of code.

3.1.3 Technologies Used
Implementing the account creation system required the use of multiple technologies. The web

server uses PHP: Hypertext Preprocessor (PHP) to generate Extensible Hypertext Markup
Language (XHTML) and sends it to the user’s web browser to be displayed. The web server also
employs a confirmation system written by the phpBB Group in order to reduce spamming of
account requests. The portal server, written in Java, uses servlets to process requests for
information and account creation from the web server. Technologies specific to the account
creation system are listed below; those common to both the account creation system and the

email notification system are described in Section 3.3.

3.1.3.1 PHP: Hypertext Preprocessor
PHP is a server-side scripting language used to transform documents requested by a web server.

Any text-based document type may contain PHP tags. When a user requests a document of a
type configured to use PHP, any PHP tags inside the document are executed and their output is
merged with the rest of the document. Like most server-side scripting languages, PHP empowers
websites to support a wide range of features such as session support, customized pages and

database connectivity.

24

3.1.3.2 phpBB Confirmation System
The confirmation system used in phpBB uses non-solid characters, random colors and character

rotation, and customizable foreground and background noise to increase the difficulty of
automated character recognition. This system is advantageous compared to others because it is
free (released under the General Public License (GPL)) and because it was written in PHP and
thus did not need to be ported to a different language in order to be integrated into the account
request website. Examples of the images generated by the confirmation system, both with and

without foreground noise, are shown in Figure 3.4.

Figure 3.4 - Confirmation code images

3.2 Email Notification System

3.2.1 Requirements
As with any engineering project, the first step was to gather and understand all requirements to

make sure that a functionally complete and useful system was designed. A number of people in
the LPDS were able to provide input regarding the functionality that was necessary for a
successful implementation. Requirements will be categorized as either “implementation” or
“integration”, so requirements that are specific to the integration and not development of the

notification system will be marked as such. The requirements are:

25

e Create a flexible set of notification utilities (implementation)
o0 This requires creating portal-independent functionality to handle notification events
once they have been sent from the system. This includes starting any plugins that will
actually generate the notifications and handling the logic to determine if a notification

should actually be sent.

There should be a way to add notification plugins (implementation)
o Through a simple interface, the system provides the flexibility necessary to add

additional plugins (i.e. SMS naotifications).

There should be a way for the user to globally disable notifications (integration)
o0 This must be an overriding property for all the other plugins. It provides an easy way
for users to turn notifications on and off, as they need them. Most importantly, the

system must persist and use this value.

There should be a way for the user to disable a single plugin (implementation)
o This switch will be the second in the enable/disable hierarchy (after the global one).
It should allow users to turn off a single notify plugin (Email, SMS, etc.) based on

their current needs.

There should be a way for the user to specify the contact information necessary for each
plugin (implementation/integration)
o Since each plugin notifies in a unique way, each plugin must have its own set of
properties to allow it to function. For example, an Email plugin needs an address,
while an SMS plugin needs a valid mobile phone number.

e There should be a way for the user to format the notification to be received (implementation)

26

o0 Each plugin should be able to send its own uniquely formatted message based on the
destination of the notification and the user’s needs. The system should provide
various pieces of information (statuses, time stamp, etc.) that the user can include in
the messages, if they choose.

There should be a way for the user to specify when to be notified for a given workflow
(integration)

o This final switch is third in the enable/disable hierarchy (after plugin and global). It
should allow a user to turn off notifications for a specific workflow when it is being
submitted. However, it should also allow the user to specify the granularity with
which they would like to be notified (i.e. on completion of a workflow, on any status
change, etc.)

The system should accurately reflect the calculated status shown in the portal (integration)

o0 For this to be possible, the system needs to receive notifications of status changes in
real time which means it must plug into the portal at several key points. It is also
necessary to detect some statuses that are not immediately apparent.

The system should handle rescue/restart of a workflow correctly (integration)

0 Whatever data files the system creates must be updated when a user intervenes and
changes the normal running pattern of a workflow. The system must reinitialize this
data to prevent incorrect statuses from being sent.

The system should log all actions taken (integration)
o For administrative and debugging reasons, all actions taken by the system should be

written either to a specific or global log file.

27

3.2.2 Implementation Considerations
After investigating the innards of the portal and discussing them with members of the LPDS, two

different solutions seemed possible: status change detection by either polling or detection

through events.

3.2.2.1 Polling
At its core, polling involves occasionally checking a piece of data to see if it has changed, and

then taking the appropriate action when it has. Typically, this is implemented by starting a
separate thread to monitor the data in question. The thread will track the last status it reads,
check for new statuses, and then sleep. For status change notifications, the system can be shown

with the following diagram.

Workflow started

Workflow Status: Polling
Monitor Thread

Status Change Detected!

Status=Run Status = Init

Statis = Init Notification Send Email
System

Figure 3.5 - Polling Flow of Events

In this case, when a job status changes, this can be reflected in a change in the entire workflow
status. The monitor thread polls for this, and if it detects a change then it initializes the

notification system that handles actually notifying the user.

28

3.2.2.2 Event Driven
An event driven system is slightly less complicated because it does not need to first determine if

it should act; rather it knows that simply by being invoked the system is telling it that in fact a
change has occurred that it needs to respond to. The event driven system would have to receive
either job or workflow statuses from another location in the system, and it could then store and

process them in similar ways to the polling system. The event driven system is reflected below.

Worldflow started

wldf common.sh

Workflow

Quota Servlet

System

[Notification 3.Send Email

1. Update Statuses
2. Find Workflow Status

Figure 3.6 - Event Driven Flow

This diagram reflects some of the more implementation specific portions of the system, but the
principles remain the same. Instead of reading that a job status has changed, this system actually
receives an event indicating that it has happened. This event is handled and eventually initializes
the notification system like in the polling example. The notification system stores the status

changes it has read in a different way than polling, and then sends an email.

29

3.2.3 Analysis of Implementation
Each system presents its own set of advantages and disadvantages. The polling system seems to

integrate more readily into the existing P-GRADE Portal while remaining loosely coupled. It
leverages the current utilities built into the portal (like getting workflow statuses) and just adds
another level on top of them. Moreover, since it runs completely separately from the workflow,
it is less likely to interfere with current code. However, polling does have some serious
drawbacks. First, it is very expensive in terms of resource usage compared to the event driven
system. Starting a separate thread for each workflow has the potential to put a very large burden
on the server, and it is something that would have to be tested extensively. The LPDS thought it
possible that hundreds of workflows might be executing at any one given time. Additionally, the
polling system also has a tradeoff with the accuracy of its reporting. Because it is not polling
constantly (it polls at random intervals to avoid monopolizing the processor), it can never be as
accurate as the event driven system. It will never be off by more than a few seconds, but this
could be important. Another major disadvantage appears when considering the premature
termination of a workflow. The thread must be initialized every time a workflow is submitted
and unfortunately, because of recovery from an error state, there are many places that submission
can happen within the code. This means that the monitor thread will be tightly coupled with the

workflow submission process.

The event driven system manages to avoid many of the problems plaguing the polling system. It
eliminates the excess overhead by only running when an event is actually fired. This also allows
it to report with a greater degree of accuracy and eliminates the problem with rescuing and
restarting workflows. Since the notification system would only run when invoked, the event
driven system must make sure that all data it calculates is stored in a more permanent way than

as a variable in a class. If a workflow enters into a “rescue” status the data remains even when

30

the workflow is restarted. In practice it is slightly more complicated, though certainly not as
much so as restarting a workflow when polling. The problems with the event driven system are
mostly related to coupling. In order to receive the events it needs to accurately compute statuses,
the system needs to be invoked from several completely different locations in the portal.
Additionally, since it will be using statuses that it receives and stores, there is going to be some

code overlap with existing utilities for calculating workflow statuses.

While there are certainly tradeoffs with each system, the advantages of the event driven system
seem to win out against the polling system. The main concern is that some of the problems with
the polling system could bring the server to a crawl. A problem this serious cannot be offset by
saying the system is more loosely coupled. After discussing the potential solutions and analysis
with the rest of the lab team, the consensus was that an event driven system would work quite

well for implementing the feature.

3.2.4 Technologies Used
What follows is a brief overview of the technologies that were used exclusively by the

notification system. First, an introduction of the technology will be given followed by its uses in

the system.

3.24.1 Tomcat
Apache Tomcat is an application server and servlet container. It is

used to host and serve JavaServer Pages (JSP). Tomcat is an open
source project distributed under the Apache Software License. /
Initially developed as a reference servlet implementation by Sun Microsystems, Tomcat was

eventually donated to the Apache Software Foundation for further development [5].

31

Tomcat is used as the application server to host a number of web applications on the portal
server. The two main applications hosted are GridSphere (the actual portal) and the Grid portal

itself.

3.24.2 GridSphere) .
GridSphere is a portlet container based .. pOWG red by ngdSphere

on the JSR 168 portlet API standard. It allows for the easy integration of new portlets into the

system, thereby extending its functionality [1].

On the portal server, GridSphere is used to expose all of the functionality of the portal to the
user. Using a vast array of portlets, functionality that would otherwise only be available over the
command line is delivered via a web interface. GridSphere also provides some of the portlets

itself, including the user authentication portlet.

P—W-dm{' W orkflow “ Certificates “ Settings " Information System “ File Management “ Help]
A

? Profile Manager =0

— Profile settings

Last Login Time: Thursday, April 3, 2008 10:05:21 AM CEST

User Mame: jnedelka EMail: [jfn12587@amail.com Locale: E-ﬁ English 'I
Full Mame: |J05h MNedelka Timezone: Euere;‘BeIgrade :l
Qrganization: |W|:|rn:ester Polytechni Europe/Berlin

Europe/Bratislava

Roles: LISER Europe/Brussels i
Europe/Bucharest
Save |

Figure 3.7 - The P-GRADE Portal Running Within GridSphere

3.3 Common Technologies Used

3.3.1 Java

32

Java is a high-level, object oriented programming language developed by

Sun Microsystems [2]. Originally developed as a language for use on Sun’s (

*7 multimedia controller, Java soon found itself more at home with internet <)
B

applications. In stark contrast to the completely static and non-interactive - e
-—__-—/

content that existed on the Internet at the time, Java provided the ability to

Java

Java continues to be a popular development platform, enabling developers to [16]:

add user controllable animations [7]. Currently in its sixth major version,

o Write software on one platform and run it on practically any other platform

o Create programs to run within a web browser and web services

o Develop server-side applications for online forums, stores, polls, HTML forms
processing, etc.

o Combine Java technology-based applications or services to create highly customized
applications or services

« Write powerful and efficient applications for mobile phones, remote processors, low-cost

consumer products, etc.

Java has proved to be so useful because of the goals the developers had when creating it:

e Simple, Object Oriented and Familiar
0 When dealing only with the core functionality of Java, it is in fact a relatively
simple language that can be understood by someone with limited programming
experience. This in conjunction with its object-oriented design makes it a

powerful tool for beginners. In addition, the developers of the language decided

33

to base it around C++ syntax, while abandoning some of the complications that
C++ carried. This made it more accessible to already experienced programmers.
e Robust and Secure
0 With extensive error checking and built-in memory management, Java avoids
many of the problems typically found in C and C++. Errors in Java code are more
frequently logic based, rather than a result of unexpected memory allocation
behavior. In addition, the Java Virtual Machine (JVM) protects code from
malicious attacks.
e Architecture Neutral and Portable
0 Java code is not directly compiled; rather it is first compiled into an intermediate
bytecode. This bytecode can be executed on any machine for which there exists a
JVM - the architecture specific implementation that allows Java to be executed.
e High Performance
o While not as fast as compiled code, Java makes up for this by allowing its
interpreter to run without needing to run-time check the environment. In addition,
when speed is absolutely an issue, Java can interface with native compiled code.
e Interpreted, Threaded and Dynamic
o0 As with any modern language, Java is multi-threaded, allowing it to run multiple
applications simultaneously. Its dynamic nature comes from its class linking
(since the language itself is statically typed). Java can dynamically link in any
library, allowing for greater flexibility when delivering distributed and networked

applications.

The core portal is built entirely in Java, including many other Java technologies (see below) [28].

34

3.3.1.1 JSP & Servlets
JavaServer Pages (JSP) technology allows easy integration of dynamic and static web content.

Much like Java, JSP is platform independent and can be deployed using a number of servers
including Apache Web Server or Internet Information Services with third party servlet containers
and WebSphere, GlassFish, Tomcat and others. JSP is designed so that the presentation layer is
separated from the content generation, enabling someone without extensive knowledge of Java to
easily change presentation without affecting the content. JSP allows for embedded Java using
scriptles and provides its own expression language: the JavaServer Pages Standard Tag Library

(ISTL) [13].

JSP is an extension of Java Servlet Technology. In many cases, JSP is directly compiled into a
servlet for execution on the server. However, the more powerful combination of JSP and
servlets comes from the so-called Model 2 architecture. While Model 1 architecture uses the JSP
page to handle both request and response, Model 2 separates this and moves all logic into a
servlet that handles the request. The job of the JSP page then becomes simply to render the

content; all logic and processing is removed [26].

Application Server

Figure 3.8 - JSP Model 2 Architecture [26]

35

3.3.1.2 Portals & Portlets
At their core, portlets are “web components -like Servlets- specifically designed to be aggregated

in the context of a composite (portal) page” [10]. Put more simply, a portlet is an application
designed to produce a fragment of the markup necessary to render a page. It is only responsible
for the rendering of its own small view, and the portal page handles joining the various portals

together to form a single web page.

———Diecoratons and cowtrols

Bl =Title= A0 il [E] H*T|
_|—Purtlet fragment
_-—l-"
<Portlet content™ | L Portlet window
=Title> M [E [H B =Title> Al m [E| H . Pomal page
[
<Portlet confent™ <Portlet content™
[/ =Tite= A [E[EH |

<Portlet content™

Figure 3.9 - Elements of a Portal Page [23]

The portal however, is responsible for more than simply content and portlet aggregation. The
portal also serves to control the look and feel of the view presented to the user — the menus,
styles, etc. In terms of functionality, the portal also typically provides a set of common services
that can be applied to all portlets. Examples include a common login, where a user can login to
the portal and then access all of its portlets, and personalization, where a user can change style

settings and even which portlets they want displayed on their page.

36

Since the P-GRADE Portal is just that — a portal — it follows that all user interface development
comes in the form of portlets. A number of portlets are necessary for the features being

implemented. Primarily these portlets will be used for editing settings.

3.3.1.3 NetBeans % N IB
The NetBeans Integrated Development Environment (IDE) is a \/\/ e Eans

free, open-source tool for working with a variety of languages and technologies, including Java,

C/C++, Ruby, etc. [20]. Originally developed by Sun Microsystems, the IDE was made open-

source in 2000 to further its development and bring in more community support [29].

For the purposes of this project, NetBeans provides the best support for the features that are
needed. It is integrated tightly with Java Enterprise Edition (J2EE) and allows the entire P-
GRADE Portal to be hosted locally, if necessary [11]. It also provides all of the features
expected in a modern IDE, including auto-completion, automated building and support for

multiple technologies (in our case, JSP, Java, and HTML, just to name a few).

37

W szupergrid - NetBeans IDE 6.0.1 =1 S

File Edit ‘iew Mavigate Source Refackor Buld Run Profile Versioning Tools ‘Window Help

EEFEIE Y Nk X o

& || Projects 00X | va]@ email_MatifyPluginimpl jayva X]@ ntify java X]@ NotifyPortist java % |] notifyjava x| &) A==l &
i
@@ P-GRADE Portal =l B - |EI 2 | <E | @ Wz _= 3
E @SamplaBuildOFEmail ||§Ld & ‘Q%SD|§>%D|==|UD|== ??n
T _ package hu.sztaki. lpds.pgportal.portlets.notify: - o
5) szupergrid @
o {03 web Pages
= [£] import hu.sztaki.lpds. ortal.services.notify.Notify;
= EB EE-INF 14 r pop ¥ ¥
& Confi tion Fil import hu.sztaki.lpds.pgportal.services.notify.NotifyBean;
onfiguration Files
EE s gR import hu.sstaki.lpds.pgportal.services. notify.NotifylUtils: -
erver Resources
3 -39 Source Packages import java.io.I0Exception;
B FRp— import Jjava.lang.reflect.®;
= [=default package>
e — import Jjavax.mail.internet. Internetiddress:;
[hu.sztaki.Ipds. pgportal base K X
EEI h rakiInd ol import Jjavax.portlet.¥;
U, szkakl, Ipds . poportal,bin
— Pos-PaR . - import org.gridlsb.gridsphere.portlet.impl.3portlecProperties;
£ hu.sztaki.lpds. poportal portlets, compiler
EE] hu.szkaki.|pds. pgportal. partlets. credential =)
EE hu.sztakilpds. paportal. portlets, data
EE| hu.szkaki. |pds. pgportal portlets. file
EE| hu. szkaki.|pds. pgportal partlets.is.lcg2
EE] hu.sztaki. Ipds. pgportal. portlets. is. mdsz
FE hu.sztakilpds. pgportal portlets. nokify
EE| hu. szkaki.|pds. pgportal . portlets. porade
EE] hu.sztaki.|pds. pgportal partlets. pgrade. tes—
EE hu.sztakilpds.paportal portlets, quota L
EEl hu.sztaki.lpds. pgportal partlets.template
‘E‘E‘ pas.pap P D. public class Nut.ifyl':'uktlet extends GenericPortlet {
[hu.sztaki.|pds. pgportal, services compiler
EE| hu.sztakilpds. pgportal.services .compiler ir
lE'EI pes-pap P K private String notify wain jsp = "/ispSnotifvinotify. jap’:
£ hu.sztaki|pds. pgportal, services credential - -
EE| hu.szkaki.|pds. pgportal services data Whlic HotifyPortlet (] {
— ic Hoti: ortle
o hu.sztaki.lpds. poportal services . data, impl ? I}J ¥
EE hu.sztakilpds. paportal. services ftp
FE hu.sztakilpds. pgpartal services.init
EE| hu.szkaki.|pds. pgportal services.is
EE] hu.szkaki.|pds. pgportal . services s leg2
EE hu.sztakilpds. tal. s lcgz.ld B
lE'EI 1 s2tar Ipds. papartal. services fs cg=oa @il nuhlic wnid aracegsAntiomiietinnRemmest rerIeat. AntinnResnnnses resn
- hu.szkaki.|pds. pgportal services.is.lcgz.res o | 3
4| - | v 2hzz |||

EHTTP Monitar Usages QSearch Resuls [Oubput

Figure 3.10 - The NetBeans IDE

3.3.2 XML

Extensible Markup Language (XML), developed in the late 1990s, is <xml / >

a specification for writing custom markup languages. XML is used primarily to store and transfer
structured data. Ready access to standardized XML libraries on most platforms allows XML to
be used to transfer data between many platforms, thus significantly increasing the potential for

interoperability[3].

For this project, XML is used to transfer data between the portal servers and the web server,

particularly for the exportation of user information.

38

3.3.3 XHTML

. . F XHTML
Extensible Hypertext Markup Language (XHTML) is a document model based -~ 1.0
on Hypertext Markup Language (HTML) that is conformant to XML standards. As such, all
valid XHTML documents are also valid XML documents and thus can be parsed using standard

XML libraries.

XHTML and HTML documents are rendered by web browsers and are used by the majority of
websites to display textual and graphical content. HTML may be sent unmodified by a web
server or generated on the fly by server-side scripts. Although originally designed with static
content in mind, HTML has been extended to support dynamic content via JavaScript and other

client-side scripting languages.

For this project, the user interfaces for both the account creation system and the notification
system are entirely written in XHTML. The account creation system uses PHP running on a web
server to generate XHTML, while the notification system uses JSP running on an application

Server.

3.3.4 JavaScript

JavaScript is a scripting language typically used by web browsers to enable client-side scripting
within HTML pages. Written by Brendan Eich[30], JavaScript was first released as part of the
Netscape web browser in December 1995. JavaScript, although named after Java, is a
fundamentally different language. JavaScript has dynamic typing, weakly typed variables, and
prototype-based classes. Functions are first-class, which means that they may be manipulated
like normal objects and can be called dynamically. These features make JavaScript more

accessible to non-programmers than typical programming languages[12].

39

For this project, JavaScript is used to display a form when submitting a workflow and to provide
dynamic checking of fields in the account request form before they are sent to the web server.

Additionally, JavaScript is used in the administrator manual to give users the ability to expand or

collapse individual sections of the manual.

40

4 Implementation

4.1 User Account Creation System
The account creation system consists of several components on multiple servers. Shown in

Figure 4.1 are the most significant components that make up the account creation system,
connected by data flow. The blue components reside on the web server and are implemented
using PHP scripts, and the green components are part of the portal server and are implemented as

Java servlets and services. The arrows indicate the direction data flows between the various

components.
Response
. Ac;:tufr;trm 5] Setting
au generator manager
Account Verification Setin
information request email € | reader/w?iter
query servlet reader/writer generator
Account Account Account
creator = creator request
service servlet dispatcher

Figure 4.1 - User account creation components

The account creation system will work with a wide variety of server topologies. Described in
Figure 4.2 is one possible topology; other configurations will work as well. In the topology
shown, each server is in a separate physical location. There is a single web server hosting a
common account creation website connected to one or more servers running P-GRADE portal.
The web server and portal servers each have their own database, which can be on either the same
computer or a separate computer. For additional security, each web server is located behind a

firewall and only the specific ports needed are left open.

41

Site 0

Wb server

el se-ver '
catahbase
Sitel
Firewsall
Portal serverl #———» ~leiE
// . ratabas= 1
/ \\\ Firewall
Site 2
User Admin
Portal server2 | » Jorta
databas= 2
"'--—.__--"/

Firesall —_—

Figure 4.2 - Account creation system server topology

4.1.1 Portal Server Interface
The portal server is implemented as two web applications, GridSphere and Szupergrid, running

on a Java application server such as Apache Tomcat. So that the web server could interface with
the portal server to submit account requests and retrieve information, several portlets were
created along with services that implement account creation and authentication. The servlets and

services are described in the following sections.

4.1.1.1 Account creator servlet
The account creator servlet processes requests from the web server to create new user accounts

and to verify account request information. The servlet uses the authentication service to check

42

that the web server has the correct permissions and then calls methods exposed by the account

creator service to do the actual work of creating or verifying a user account.

4.1.1.2 Information query servlet
The information query servlet processes requests from the web server to retrieve information

pertaining to user accounts. After checking permissions with the authentication service, the
servlet retrieves the appropriate information and outputs it in an XML format that can be read by

the web server. The following information may be requested:

e All of the roles and groups that a user may request to join as part of an account request.
e The user name, full name, email address, and organization of each user with an account

on the portal.

4.1.1.3 Account creator service
The account creator service provides methods for creating new user accounts, verifying user

account information, and verifying that users have the appropriate permissions to create user
accounts. The service integrates with built-in user management services to create users on the

portal and retrieve information about existing users.

4.1.1.4 Authentication service
The authentication service provides a password-based authentication mechanism for verifying

that a web server connecting to a servlet on the portal server has the appropriate permissions.
Beforehand, the portal administrator must create a user account with a specific role on the portal.
When the web server attempts to connect to a servlet, it posts the user name and password for the
account that the portal administrator had created. The servlet then invokes the authentication

service, which ensures that the password is correct and that the user has the correct role. If

43

authentication fails, an error message is sent back to the web server indicating the authentication

failure.

4.1.2 Account Request Form

The account request form, shown in Figure 4.3, provides a means for a user to submit an account
request for approval by an administrator. The user fills out his or her name, desired user name,
password, email address, and other contact information. Additionally, the user selects which grid
(or grids) he or she wishes to use and optionally may request membership in roles or groups
defined on the grid portals. Roles and groups give users special permissions or access to

restricted parts of the portals.

To prevent users from spamming the administrator with account requests, an image confirmation
system is employed. A user must be able to match a code displayed in an image before the
account request may be processed by the web server. Since a high-quality image confirmation
system is difficult to design and implement, an existing system written for the phpBB forum[24]

software was chosen.

44

F-ERADE |

FP-ERFRDE

Vg +portal

P-GRADE Grid Portal access request form

= How to get access

Full name: |& Physicst
User name: |n:|
Password: |ennnemen
Confirm password: [assasnss
Address: |Ficwrhere
Phane number: |I-?345
Institute: |Phypsics Instiute
E-mail address: |rlrﬂﬂlﬂ?-lw-l
Grid to use: I Blamed
™ compchem
I© Gilda
T HunGrid
¥ SEE-GRID
I© voce
Scientific case and Bhysics resaarch. i

planned usage :

-

Roles (optional): W Optional Role Used for account creation testing

Groups (optional): [T Optignal Growp Used for account creation testing

To prevent automated access requests, you are required to enter a confirmation code. The code is
displayed in the image you should see below. If you are visually impaired or cannot otherwise read this
code please contact portalreq@ipds. sztaki.hu,

Confirmation co

Enter the code exactly as it appears. All letters are case insensitive, and there is no 2ero,

Figure 4.3 - Account request form

4.1.3 Account Request Verification Email
The account-request verification system allows the administrator to retain full control over who
is allowed to create an account. When a user submits an account request, an email containing the

details of the request is sent to the administrator. In the email, shown in Figure 4.4, there is a link

45

to the account request dispatcher, which provides accept/deny options to the administrator, sends
the account request to each portal listed in the request, and then notifies the administrator if there
were any errors. If one or more portals returned error messages, the administrator is provided an

option to resubmit the account request to each of the portals that were in error.

P-GRADE Portal Access Request Verification

P-GRADE Grid Portal Team [portalreq@lpds.sztaki.hu]
Tue 4/15/2008 2:24 PM
mreiter @127.0.0.1

;5;5 P-GRADE |
' +portal

P-GRADE Portal Access Request Verification

Full name: A Physicist

User name: sci

Address: Nowhere

Phone number: 12345

Institute: Physics Institute
E-mail address: mreiter@127.0.0.1
Roles: Optional Role

Groups:

Grids: SEE-GRID

Scientific case and planned usage:
Physics research

Date: 2008-04-15
Time: 14:23:35

Accept | Deny | Accept with default roles and groups

£ Copyright 2o004-2008, MTA-SZTAKI LPDS, Hungary. All rights reserved

Figure 4.4 - Access request verification email

46

4.1.4 Administration Console

The administration console provides a common login for administrative tasks pertaining to the
account creation system. The components that make up the administration console are described
in the following sections.

4.1.4.1 Login Form

The login form, shown in Figure 4.5, provides a mechanism for the administrator to authenticate
with the administration console. If the administrator attempts to navigate to a restricted page, he
or she is presented with the login form. After logging in, the administrator is taken directly to the
page that was originally requested. Once the administrator has logged in, he or she remains

logged in for the duration of the session or until explicitly logging out using the login form.

) P-ERADE |
' vportal

Log In

Flease enter you

User name: |
Password: |

Log In

Figure 4.5 - Administration console login form

4.1.4.2 Account Request Verification Form
The account request verification form, shown in Figure 4.7, is activated when the administrator

clicks on the link in the verification email sent when a user submits an account request. A form is
displayed which allows the administrator to choose whether to accept or deny an account
request. A field is provided which allows the administrator to send additional comments to the

47

user who requested the account. The administrator has four options for how to handle an account
request: accept the request, deny the request, accept the request but with the roles and groups
reset to their default values, or ignore the request. The third option is provided in case a user
requests roles that he or she should not have, but the administrator feels that the request is
otherwise valid. A request should be ignored if the administrator does not wish to send any
notification to the user or if the email address provided by the user is invalid. Once the
administrator submits the form, the server forwards the account request to each portal listed in
the request and displays any error messages that were returned. If the account request succeeds
on all portals, a success message, shown in Figure 4.7, is displayed. However, if the account
request fails on one or more portals, the administrator is presented with an option to resend the

account requests to each portal that returned an error message, as shown in Figure 4.8

Account Request Verification

Welcome, admin!

Account request information:
Full name: Joe Shmoe

User name: Joe

Password: password

Address: Nowhere

Phone number: 12345

Institute: College of Testing
E-mail address: mrefter@127.0.0.1
Roles: Optional Role

Groups: Optional Group

Portals: SEE-GRID

Scientific case and planned usage:
Grid will not be used.

Accept the request? ' Accept
[Ceny
iC Accept with default roles and groups

T Ignore (no email will be sent to the user)

Message to user (optional): [Membership in “Optional Group” is restricted to members of STTAKL -

Figure 4.6 - Account request verification form

48

Account Request Verification

(=

The account request has

een successfully processed

Figure 4.7 - Account request verification success

Account Request Verification
Failed to create an account on SEE-GRID
The account request was not successfully processe

Account request information:

Eull namea: jnes Shmae

Figure 4.8 - Account request verification failure

4.1.4.3 User Information Exporter
The user information exporter, shown in Figure 4.9, allows the administrator to download user

information (user name, full name, organization, email address, portals) for all of the users on
each grid managed by the account creation system. The format chosen was a comma-separated-
value (CSV) file. The CSV file format was chosen because it is compatible with most
spreadsheet software and requires significantly less work to implement than other formats such

as Excel spreadsheets.

The main purpose of the exporter is to allow the administrator to send mass emails to all of the
users on the grids. As such, it was important that each email address only be listed once. To
accomplish this, the user information is stored in an associative array keyed by a lower-case
version of the email address. If another user has the same email address (excluding case) as a
user already listed in the array, the user information is merged using the following rule: for each

field (user name, full name, organization), the first non-empty value encountered is used. For

49

example, if there are two users { “JDoe”, “John Doe”, “”, “jdoe@sztaki.hu”, “SEE-GRID” } and
{ “JDoe2”, “John Doe II”, “SZTAKI”, “jdoe@sztaki.hu”, “HunGrid” }, the result of merging

them would be { “JDoe”, “John Doe”, “SZTAKI”, “jdoe@sztaki.hu”, “SEE-GRID, HunGrid” }.

User Account Exporter

Welcome, admin!

This tool will export user account information from each portal as a comma-separated-value file.
The resulting file can then be imported into spreadsheet software such as Microsoft Excel.

Spont |

File Download ==

Do you want to open or save this file?

(=, j Mame: Users.csv
a’ Type: Microsoft Office Excel Comma Separated Values ...

From: localhost

Com) Con) Come]

|-' While files from the Intemet can be useful, some files can potentialy
am your computer. if you do not trust the source, do not open or
h uter. f do not trust th do not
save this file. What's the risk?

Figure 4.9 - User account exporter

4.1.4.4 Settings Manager
The settings manager provides an interface for changing settings that affect the operation of the

account creation system. The following settings are available:

e Require confirmation: If set to true, the user must enter a confirmation code when
requesting an account.

e Use GD confirmation: If set to true, the GD version of the confirmation image is used.
This version is better than the non-GD version, but requires that the GD2 extension be
enabled.

e GD confirmation foreground noise: If set to true, foreground noise is used to make the

GD-based confirmation harder.

50

GD confirmation X grid: The average number if pixels between horizontal grid lines in
the GD-based confirmation.

GD confirmation Y grid: The average number if pixels between vertical grid lines in the
GD-based confirmation.

Session lifetime: The lifetime of a session, in hours. This only applies to the account
request page.

Servlet authentication key: The key used to encrypt the servlet user name and password;
should be a unique (preferably random) string that is difficult to guess.

Admin user name: The administrator's user name.

Admin password: The administrator's password. This value cannot be retrieved, as it is
stored in a hashed form in the database.

Admin email address: The administrator's email address.

o1

Settings

Welcome, admin!

I Require confirmation

¥ use GD confirmation

» Change settings

[GD confirmation foreground noise

GD confirmation X grid: |

GD confirmation Y grid: |=
Session lifetime: |12
Servlet authentication key: |secret key
Admin user name: |admin

The current administrator password must be set in order to change the user name or password.
Leaving the 'admin password' and 'confirm admin password' fields blank will preserve the current
password.

Current admin password: |

Admin password: |

Confirm admin password: |

Admin email address: |zdmin@myportzl.org

T R

Figure 4.10 - User account creator settings

4.1.45 Portal Information Editor
The portal information editor, shown in Figure 4.11, is used to add or remove portals from the

account creation system or edit information about an individual portal. The following fields are

available for each portal:

o Portal ID: The name that is used internally by the account creation system when referring
to a given portal.

o Portal name: The name is displayed to users.

e Portal URL: The URL that points to the portal's root directory (for example,
https://portal .organization.com/szupergrid).

e Servlet user name: The user name of a portal user that has been given the
ACCOUNT_CREATOR role.

o Servlet password: The password corresponding to the servlet user name.

52

e Account creator user name: The user name of a portal user that has been given the
SERVLET_CLIENT role.

e Account creator password: The password corresponding to the account creator user name.

Portal Information Editor

Welcome, admin!

Portals:

r My Portal (myportal)

Portal ID: |myportal

Portal name: |My Portal

Portal URL: |hittps:fmyportal.org/=szupergrid

Servlet user name: |servistiser

Servlet password: Jthe serviet password

Account creator user name: |AmnuntCreamrUser

Account creator password: Ithe account crestor password
Add New Portzl | Delete Selected Portals |

Submit Changes I Resst |

Figure 4.11 - Portal information editor

4.1.5 Security

Prevention of unauthorized user account creation is a key requirement of the account creation
system. To prevent an attacker from masquerading as the web server and communicating directly
with a portal, each portal requires the web server to authenticate with a “servlet” user name and
password. These credentials are stored in an encrypted form on the web server’s database. To
construct the encryption key, a password stored in the database (and modifiable by the
administrator) is concatenated with a “salt’ string and then sent through a one-way hash. The salt,
whose purpose is to increase the difficulty of password-guessing attacks[19], is a random string

stored as a constant in the account request system’s source code. In order for an attacker to

53

decrypt the servlet credentials, an attacker will need access to the salt and the administrator’s
user name and password. As the salt should be different for each instance of the account request
system, an attacker would need to gain access to both the web server and its database in order to
obtain the user name and password used to communicate with the portals. Creating an account on
a portal requires an additional *“account creator” user name and password. As with the servlet
credentials, the account creator credentials are stored in the web server’s database. However, the
account creator credentials are encrypted using the administrator’s user name and password as
the key. The result of this is that only the administrator is capable of retrieving the information

required to connect to a portal and create a user account.

There are many ways an attacker can gain access to a system, deny others access to the system,
or cause problems. Shown in Figure 4.12 is an analysis of the damage that could be caused by
intercepting various transmissions between computers. An additional attack vector is SQL
injection. SQL injection is accomplished by entering information into a form in such a way that
it will cause arbitrary SQL statements to execute on the database. For example, a form could ask

for a user name and then insert it into table using the following PHP code:
mysql_query(“INSERT INTO user_table (nhame) VALUES (7 . name . “’)”);

If an attacker typed “Joe ‘; DELETE FROM user_table;” then all of the users would be deleted.
The attacker was able to inject an SQL statement by using the string terminator (an apostrophe)
to escape out of the user name string and then a semicolon to terminate the current command. At

this point, the rest of the text can be any SQL command an attacker chooses.

The account creator uses two methods to prevent SQL injection attacks. Built-into the MySQL
library for PHP is a limit that an SQL query may contain only a single SQL command. If

multiple commands are issued simultaneously, only the first is actually transmitted to the

54

MySQL server for execution. As a result, the particular form of SQL injection described above
would not work, as the “DELETE FROM user_table;” statement will never be executed. The
second method used to prevent attacks is to escape all strings before inserting them into an SQL
query. Apostrophes and other potentially problematic characters are replaced by escape
sequences so that they are recognized by MySQL as part of a string instead of being given a

special meaning.

55

SHA1-hashed web server admin password
via database connection: If compromised, Web server
an attacker is unlikely to succeed in /v database
determining the password.

A

o

AES-encrypted servlet, account /,,eré”é?or
passwords via database connection: If
compromised, an attagﬁnnot do
anything useful without also knowing the
web server admin-username and password. oAl T 1] MD5-hashed Portal

\ 4

/ passwords via database 1
__» database

”””””” connection: If

~+15 compromised, an

If compromised, an . .
attacker is unlikely
attacker can log onto portal

. to succeed in Portal
Web server | | server as non-admin users - >
- » Portal server 2 determining the database 2
or create additional non-
password.

admin users.

'\

Web-server admin password via SSL: If
Password via SSL: If | | compromised;-an attacker can view/change
compramised, an settings on the web server or create non-
attacker can later log admin users on the portal —
onto portal servers as the Session id via SSL and stored in a cookie: | _
user and possibly create If compromised, an attacker will need to Admin
malicious workflows. alter the session information on the server
! or have the same external IP address as the \

administrator in order to hijack the session.
If the session is hijacked, an attacker can
User ; view/change settings on the web server or
create non-admin users on the portal for
the duration of the session.

Figure 4.12 - User account creator vulnerability analysis

56

4.2 Email Notification System
The base for the email notification system is a module developed with colleagues at SZTAKI

that is currently in use in WS-PGRADE portal and serves the same purpose. That base consisted

of several Java packages and a single portlet. The packages were:

e hu.sztaki.lpds.pgportal.services.notify — The main package including facilities for setting
and retrieving the user’s notify settings as well as a set of utilities associated with
notifications. Lastly, it contains the thread that actually performs the notifications.

e hu.sztaki.lpds.pgportal.services.notify.EventHandlers — Contains the classes that responds
to a status change event and determine if a notification is necessary.

e hu.sztaki.lpds.pgportal.services.notify.Plugins — Contains the interface that a notification
plugin must implement in order to be used in the system, as well as a concrete example

(email).

The portlet itself is a JSP and Java file pair. The JSP page is responsible for displaying to the
user all the preferences that they currently have set and allow them to make any necessary
changes. The Java file is the logic behind the JSP page that handles updating and displaying of

preferences.

4.2.1 Portlet Integration
Before any logic could be inserted into the notification system, it had to actually be added to the

portal. Because all portlets are based on the JSR-168 specification, it is a straightforward
process to add them. After inserting the class and JSP files into their appropriate places in the
server, the file “portlet.xml” had to be modified to include an entry for the notification portlet.
The file simply defines the portlets to be used in the system. The entry for the notification

portlet is:

57

<portlet>
<description xml:lang=""en">Notify</description>
<portlet-name>notify</portlet-name>
<display-name xml:lang="en">Notify Portlet</display-name>
<portlet-
class>hu.sztaki.lpds.pgportal .portlets.notify.NotifyPortlet</portlet-class>
<expiration-cache>0</expiration-cache>
<supports>
<mime-type>text/html</mime-type>
</supports>
<supported-locale>en</supported-locale>
<portlet-info>
<title>Notifications</title>
<short-title>Notify</short-title>
<keywords>workflow</keywords>
</portlet-info>
</portlet>
Figure 4.13 - Notify Portlet File Entry

Next, the portlet had to be added to the menu structure of the portal so that it could actually be
accessed by a user. This was done by adding an entry to another file, “layout.xml”. This file

defines how the menu structure will appear on the portal. The entry for the notification portlet is:

<portlet-tab label="notify">
<title lang="en">Notify</title>
<table-layout>
<row-layout>
<column-layout>
<portlet-frame>

<portlet-class>szupergrid#notify</portlet-
class>

</portlet-frame>
</column-layout>
</row-layout>
</table-layout>
</portlet-tab>
Figure 4.14 - Notify Portlet Layout Entry

After all of these changes were made and the portal was restarted, the portlet was (following
some other modifications, described below) usable.
4.2.1.1 Modifications from WS-PGRADE Portal
Even though it was possible to plug the portlet into the P-GRADE Portal quite easily, some
modifications needed to be made before the full functionality of the portlet could be established.

First, several errors had to be addressed. The new portlet included several packages that were

58

not currently available in P-GRADE, so their respective JAR files had to be added to the
classpath. The JSP page also included a tag library that was unavailable in the P-GRADE Portal.
To fix this, all calls to the tag library were removed and replaced with the appropriate markup.
Second, the JSP page had extra functionality for defining a storage quota notification, although
this functionality was never implemented in WS-PGRADE. Therefore, the entire form was
dropped from the portlet in the P-GRADE Portal. With these changes made, the portlet was able
to read and write its settings as expected. The persistent storage of these settings was in a file

called .notify.xml. The file itself resides in each user’s directory. An example of this file is:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<notify>

<prop key="wfchg_mess" value=""Time: #now#
 User :
#user#
Portal: #portal#
Workflow: #workflow#
01d
Status: #oldstatus#8
New Status: #newstatus#8
Details:


 #detai ls#'' />
<prop key=""email_addr" value="josh.nedelka@gmail.com"/>
<prop key="wfchg_enab" value="1"/>
<prop key="email _enab" value="1"/>
<prop key=""email_subj" value="subject2"/>
</notify>
Figure 4.15 - Notify User Preferences

The only particularly interesting field is the “wfchg_mess”. It includes several keys (delimited
as “#keyname#”, though not to be confused with entries of the form “#number;” that are
effectively line breaks) that are replaced by their appropriate values when the notification

message is generated.

4.2.2 Submit Form
When choosing to submit a workflow, the user should be allowed to choose when they would

like to be notified of status changes. This is one of the requirements of the notification system,
and the submission form was designed to satisfy it. It is also functionality that is included in

WS-PGRADE, but since the mechanisms for submitting workflows are so different in the two

59

portals, it was necessary to rewrite the submission form rather than migrate it from WS-

PGRADE.

Submitting the workflow sample_actuall,

Optional choices:
Send email notification: FNever |

Kote: Choosing to be € On ANY status change
change may generate | On workflow end OMNLY

Subrnit | Cancel |

Figure 4.16 - Workflow Submission Form

The workflow submission form allows a user three options for notifications (shown above). It
also notes that notification on any status change will result in a large amount of emails
(proportional to the number of jobs and amount of parallelism). After the user submits their
choice, the selection is written to the file “.notify” in the workflow’s directory so that it can later

be accessed by the notification system.

One important consideration here is the handling of the “Submit All” button. The functionality
is exactly as described: it submits all the workflows currently in the user’s workflow manager.
However, since it is possible to specify a level of notification for each workflow, it was

necessary to choose one of two possibilities for the submit all:

1. When submit all is pressed, provide functionality that will allow the user to choose a
different level of notification for each workflow, or
2. When submit all is pressed, provide allow the user to choose one level of notification and

have it apply to all workflows being submitted

60

For the purposes of simplicity, programmatically and from a user’s perspective, the latter choice
was implemented.

4.2.3 Backend Integration

Compared to the front-end pieces, the backend was significantly more complex. The largest
difficulty was that the P-GRADE Portal was not designed in such a way to make notifications
easy, though WS-PGRADE was. As an initial overview, a more detailed view of the event

driven system that was implemented is shown below.

Job Status Change
1. Workflow N,
e [List of Job Statuses
3. JobMName !
4. Job Status (’
" ¢ Gatherpersistent data, Update
’ . -
wkf_common.sh {N otify Han dler? &= WDI‘]\EHI‘_‘I‘E:\- Notify
) sSetting

Quota JWS5S

Figure 4.17 - Event Driven Notification Implementation

4.2.3.1 Retrieving and Handling Status Change Events
Initially, there was only one point of capture for the status change events. The function

getStatus() inside of wkf_commons.sh is invoked each time that a job within a workflow changes
its status. The function then invokes a servlet that passes the event along to the notification
system. The status change event consists of four parts: username, workflow name, job name and

new job status. The username and workflow name are necessary so the correct location of the

61

notify preference files can be found (main notify preferences are stored in the user’s directory,
while workflow notify preferences are stored in the workflow’s directory). The job name is used
as the key when storing and retrieving the statuses. And of course, the new job status is the

reason that the event has been fired.

After the notification system has been invoked, it proceeds to look up the previous job statuses
that it had stored. These are stored in the file “.notify_jobstatuses™, located in the workflow’s

directory. An example of this file is:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<workflow>

<job jobname="Jobl” status="3" />

<job jobname="Job2” status="1" />

<job jobname="Job3” status="5" />

<job jobname="Job4” status="2" />
</workflow>

Figure 4.18 - Workflow Job Status File

The new job status is inserted into this list, by either adding a new entry or updating the
appropriate job. With all the current job statuses, it is now possible to determine a workflow
status. If all job statuses show finished, then the workflow itself is complete. If any one job
shows running, then the workflow is running. If any one job shows an error, then the workflow
is in error, though this does not mean that the workflow has stopped running. The workflow can

continue until it is no longer possible to execute any other jobs without resolving the error.

However, not all possible workflow statuses can be established simply by looking at job statuses.
Specifically, a rescue workflow status can never be determined, since it depends on two things:
the workflow being stopped and jobs being in an error state. The job statuses can determine the
error, but not the termination of the workflow. To get around this problem, the notification

system is called from another location as well. The script watchWorkflow.sh runs until a

62

workflow terminates (due to completion, error, etc.). When it detects the termination of a
workflow, it alerts the notification system but does not pass in any other information. The
notification system looks at the previously calculated workflow status, and if it determines that a

workflow is in error, then it notifies the user of the appropriate rescue status.

After having established the new workflow status, the system looks up the last previous status
that it had calculated. This is stored in the file “.notify_status” in the workflow’s directory. The
new status can be compared with the old, and then a series of checks occurs to see if a

notification should be sent. They are (in order from first to last):

1. Are the two statuses different?
2. Did a user choose to be notified of this status when they submitted the workflow?
3. Is the current plugin enabled to send notifications?

4. s the entire system enabled to send notifications?

If any of these questions is answered negatively, then no notification is sent and the process is
complete. If they are all answered affirmatively, then the notification is sent. The first and
second questions only apply once, before starting the specific notification plugins. The third and

fourth questions are handled individually by the respective plugins.

4.2.3.2 Persistence of Data
For the three files that the notify system uses for storing preferences and data, it is important to

recognize for how long these should be maintained, and when they should be deleted, if at all.
This is relevant only within the context of a workflow that terminates prematurely. Workflows
that finish successfully can safely have their notification files deleted with no ill effects. The

first file, “.notify”, which stores the user’s preference for notification should technically never

63

need to be cleared. Since the choice is only given to the user when they submit (and not when
they resume or rescue a workflow), the system assumes that this preference will persist until
completion or abortion and resubmission of the workflow. If the user does resubmit, they will
once again be given the option to choose a notification preference, which will overwrite the old

one.

The second file, “.notify_status”, which stores the workflows last recorded status, should also
only be cleared on workflow termination. However, unlike “.notify”, “.notify_status” needs to
be cleared. The reason for this can be illustrated with a simple example: if a status of “running”
is recorded and then the workflow is aborted and resubmitted, then when the notification system
goes to look up the last known status it will still see “running”. This is clearly inaccurate since
the workflow has just been started. Therefore, termination of a workflow must clear this file.
Since there are many ways that termination might occur and since some of them are difficult to
detect, it is easier to say that the “.notify_status” file should in fact be cleared only on workflow

submission. This guarantees that when a workflow is started, it has no last known status.

The final file, “.notify_jobstatuses”, which stores a list of all current job statuses, has slightly
different behavior than the previous too. When a workflow is first submitted, it is completely
cleared just like the other files. However, when a workflow is rescued from an error state, the
file has to be modified slightly. Any jobs not in the completed state when the workflow is
rescued have their statuses reset since they are going to be run again. Consider the case where
several jobs were in error when the workflow was rescued. If the statuses were not reset, then
when a job status change event was passed into the system, one of those jobs might no longer be
in error, but the rest certainly would. This would register the workflow with an “error” status,

when this is certainly not the case.

64

4.2.3.3 Notification Utilities
The last major portion of the implementation was designing a set of utilities to expedite the

process of performing the notifications. Since most of the persistent notification data is stored as
XML, many of the utilities are focused on setting or retrieving portions of a document.
Specifically, they perform some of the functions described above, including resetting all job
statuses, setting job statuses after a rescue, clearing persistent workflow statuses, setting
notification frequency and handling user preference updates. The utilities also provide some
helper functions for building the notification messages that can be sent out, including adding a

timestamp and a human-readable description of the current job statuses.

65

5 Testing

5.1 User Account Creation System
The user-account creation system is largely user-driven and involves communication between

multiple servers. As such, automated testing would be difficult to implement and thus all testing

was done manually.

5.1.1 Functional Testing
The initial stage of functional testing was accomplished by going through the steps of requesting

and then approving or denying a user account, and finally logging into the portal to verify that
the account was created successfully and that all of its attributes were correct. Additionally, the
administration console was tested by changing settings and then verifying that the database was

updated correctly and that the settings had the desired effect on the account creation process.

The purpose of the second stage of functional testing was to ensure that the account creation
system would work in a production environment as opposed to the sandbox-like environment in
which it was developed. The source code for the account creation system was sent out to the web
master and the portal administrator to be installed on the production web server and portal server.
Next, the person normally responsible for creating user accounts conducted manual tests of the
system to ensure that it worked correctly and exposed the desired functionality.

5.2 Email Notification System

The notification system test consisted of two main parts (performance and functionality), each of

which was broken up into more manageable and measureable pieces.

5.2.1 Performance Testing
The two types of performance testing that the system was put through were testing of the system

under various loads, and testing the system compared to a base implementation. 1, 20 and 50

workflows were run, first with the notification system sending emails after every workflow status

66

change. Next, the entire notification system was disabled (none of its code was run) and the
same number of workflows were executed again. To measure performance, the Linux
application “top” was used in batch mode, recording statistics for the java process on the system
at intervals of one second.

5.2.1.1 One Workflow

The processor and memory usage for the java process with and without the notification system
appear in Figure A.1 - 1 Workflow with Full Notification and Figure A.2 - 1 Workflow with No
Notification, respectively. It is clear that the memory usage is the same for both graphs (and
indeed, it changes little even up to the 50 workflows). However, there is certainly a discrepancy
where processor usage is concerned. It is important not to look at the absolute heights of the
processor spikes (justified in the section describing 20 workflows, below), but rather to look at
the changes in heights of the spikes across the lifetime of the workflow. When no notification is
enabled, processor usage typically falls between 5 and 10 percent. In general, the spikes towards
the end of the workflow are higher, though this is not always true. The “standard” spike in the
graph with notifications enabled is between 8 and 10 percent usage, though there are many more
spikes spaced throughout the graph that greatly exceed that. Ignoring the 100 percent spike, the
processor usage occasionally reaches between 20 and 50 percent. These are indicative that the
notification system is more CPU intensive, though as the next cases show, one workflow is not

necessarily characteristic of the performance graphs.

5.2.1.2 20 Workflows
The two graphs showing java process statistics with 20 workflows executing (Figure A.3 - 20

Workflows with Full Notification and Figure A.4) show something a bit more interesting than
the graphs of only one workflow. In this particular set of graphs, the typical absolute CPU usage

of the system with notification enabled is in fact less than that of the system without any

67

notification. The reason for this is that the readings were taken quite separately. Whereas most
of the graph pairs were taken back to back, leaving no time in between, the graphs of 20
workflows were separated by several days, so the condition that the server was in must have
changed substantially. This is the reason that it is unwise to simply compare the absolute height
of the various CPU spikes: they are too dependent on the state of the server. However, the

difference in heights within a single graph continues to be a strong indicator of performance.

With 20 workflows executing without notification, there is a very standard amount of CPU usage
being used that typically falls between 7 and 8 percent. There are several spikes as well, most of
which are focused during the submission phase of the workflows. It is clear that there is more
overhead with 20 workflows than with only the single one. However, when compared to the 20
workflows with notification, the system without notification is apparently more efficient. The
base for the system with notification is only around four percent, but it consistently reaches to
nearly ten percent. This is in stark contrast to the system without notifications, which only has

the sparsely placed large spikes that the system with notification shares.

5.2.1.3 50 Workflows
The two graphs showing java process statistics with 50 workflows executing (Figure A.5 and

Figure A.6) combine the features of the single and 20 workflows. Like the single workflow
graphs, the 50-workflow graph with notification has consistently more processor usage. And
like the 20 workflows graphs, the 50-workflow graph shows the same basic patterns of processor
spikes. As more workflows are added to the sample, the graphs showing with and without
notification begin to seem more and more similar. However, it is still apparent that the
frequency and size of the processor spikes relative to the baseline are more substantial with the

notification system, rather than without.

68

5.2.2 Functionality Testing
Since the portal is such a complex and user-driven piece of software, it proved difficult to

provide any automated testing facilities to verify functionality of the notification system.
Obviously, the notification system needs a workflow to be submitted and running before it can
even be called, so it was necessary to set this up manually. The two main types of workflows
were tested: normal and parameter study. Each piece of the system was tested thoroughly until
it was considered working (criteria for each individual piece are discussed below), at which point
another piece of the system was added to the tests, and everything was run again. Functionality

was verified by output logs and notifications received.

Each layer was tested under the following scenarios:

e Single normal workflow

e Multiple copies of the same normal workflow

e Multiple different normal workflows

e Single parameter study workflow

e Multiple copies of the same parameter study workflow
e Multiple different parameter study workflows

e Mix of normal and parameter study workflows

Each of these scenarios was run in several ways. First, they were allowed to go to completion.
Next, they were randomly terminated and rescued or aborted and resubmitted. Finally, errors
were introduced, fixed, and the workflows were restarted. All of the workflows used are the

samples that come with P-GRADE Portal.

69

First, a discussion on testing the main use case of the system: receiving notifications. The most
fundamental piece of the system that was tested was the ability to accurately capture the job and
workflow status change events. These occur in two places (watchWorkflow.sh and
wkf_commons.sh) and each triggers the same servlet. This was the logical first layer to test. In
order to verity the data, Tomcat’s log files were used to read from Java’s standard out. Once it

was established that each entry point was sending the appropriate data, the next layer was added.

This layer consisted of a Java Web Start file that was invoked by the servlet as well as the logic
to determine if a notification should be sent and update all statuses. This was a fairly involved
test, verifying that data files were being written and read correctly. The workflows were
suspended periodically so that the data files could be checked manually against what the log files
indicated they should contain. The notification logic itself wrote its decision to send a

notification, as well as the calculated status of the workflow, to the log file.

The final layer to be tested in the system was the actual emailing. The individual components
were the send thread and the email plugin. Initially, the email plugin was causing problems. All
other tests and logs indicated that an email was in fact being sent, despite the fact that none

appeared. Eventually, this issue was tracked to a classpath conflict, and was resolved.

5.2.2.1 Front End Testing
Two more parts of the whole system needed to be tested, both on the front end: the preferences

portlet and the workflow submission form. The preference portlet itself was straightforward to
test: it only needed to update and read statuses. A quick check of the preference file that it

wrote was enough to verify it, though bad input was tested as well.

70

The submission form had to be tested at two points: on the main workflow manager (single and
“Submit All”) and on an individual workflow’s details. Three data files had to be updated in
both cases: the .notify preference file for notification frequency, the .notify_status file for
tracking a last status, and the .notify_jobstatuses file for tracking job statuses. All had to be
wiped out on every submission. After establishing that this was the case, all functionality testing

was complete.

71

6 Conclusions

6.1 The Final Account Creation System
The account creation system achieves all of the initial requirements in addition to a multitude of

requirements added later. The account creation processes has been automated to the point that
once the initial configuration has been completed, the only thing an administrator must do when
a user submits an account request is to indicate whether the request should be accepted or denied
and optionally enter a comment to be sent along with the acceptance/denial notification to the

user.

The back-end portal components of the account creation system are already available for
download and will be included in a future release of the P-GRADE Portal. The front-end web
server components are distributed separately from the portal and may be downloaded from

SourceForge.net.

6.2 The Final Email Notification System

The notification system in its final form achieves all of the requirements initially set forth. It
provides a useful piece of functionality for end users of the P-GRADE Portal and provides portal
developers with a way to expand this functionality. The system will appear in a future release of

the P-GRADE Portal, which is freely available on SourceForge.net.

72

7 Future Work

7.1 Account Creation System
Given the short time frame of the project, implementing all of the desired features was not

possible. As a result, one of the original requested features, the bulk account creator, has been
left as a stub to be finished in later versions of the account creation system. Additionally, parts of
the system could be improved in future versions to reduce overall complexity and to improve

compatibility.

7.1.1 Bulk Account Creator
The bulk account creator, part of the administration console, provides a means for the

administrator to create a large number of user accounts simultaneously. For example, an
instructor may need to create thirty user accounts to use for a training exercise. With both the
current system and the automated account creation system, the creation of so many users would
take a considerable amount of time. The bulk account creator can cut down on that time by
generating user names, and possibly other fields, dynamically based on a template and a counter
that increments for each user created. The administrator would simply fill in the user information
once, specify how many users to create, and submit the form. At this point, all of the users are

created automatically.

7.1.2 Account Request Viewer

The account request viewer, which would be part of the administration console, would display a
list of pending account requests. Buttons would be provided to accept or deny request. There are
two ways to implement this: there could be individual buttons for each request in the list, or there
could be check boxes next to each request and a few buttons at the bottom (or top) of the page

that would accept or deny all of the selected account requests.

73

7.1.3 Testing of Portal Information
The portal information editor allows the administrator to enter the URL and credentials for

connecting to each portal. Currently, the administrator must attempt to create an account or
otherwise attempt to connect to a portal in order to verify that the information entered is correct.
The portal information editor could be extended with a feature that would allow the administrator
to click on a button and then the web server would attempt to contact each portal and then inform
the administrator of any failures. This way, the administrator would know immediately if any

information is incorrect.

7.1.4 Improved Database Support
Currently, the only type of database supported is MySQL. As future work, a developer could

modify the code so that it uses database-independent libraries and thus support other database
types such as Oracle or Microsoft SQL Server.

7.2 Notification System

The implemented notification system, while extremely useful to users, presents only a bare bones
set of features. While it would have been impossible to implement everything, what follows is a

list of features that would be well suited for release in future versions.

7.2.1 Additional Plugins
The first point of extension for the system concerns the actual plugin implementations. The

current system only allows emails to be sent, but there is a simple interface to implement in order

to develop new plugins.

7.2.1.1 SMS Messaging
SMS (text) messaging is likely the next logical means of notification following email. It is

useful for users of the portal who do not have constant access to email, but who do have a cell

phone. The difficulty in implementation is there are no free libraries that expose the necessary

74

functionality. A library would need to be licensed from an outside company or developed

internally, costing either time or money.

7.2.1.2 Phone Calls
Notifying users through direct phone calls, rather than via some kind of text-based format,

presents another attractive, yet problematic, option. It makes the application much more
accessible, both in terms of how it could be used (to a cell phone, landline, etc.) and who could
use it (blind users would no longer need assistance). However, actually calling a user to report a
status change presents a new set of problems. From a usability standpoint, it would get very
frustrating if the system was attempting to call someone every few seconds. There would have
to be more control over when a notification would be sent. This approach is also different from a
technical standpoint. Now, instead of simply sending text in some way, it would have to first be
converted to speech. There would also likely be options to allow the user to replay the
notifications, if they desired, so there would have to be interaction with a touch-tone phone as

well. Like the SMS option, calling users would certainly require external libraries.

7.2.2 More Monitoring
Now, only workflow statuses are being monitored, and even they are only being monitored in

very specific ways. Both of these limitations present interesting expansion options.

7.2.2.1 Granularity of Notification
The user is given two options for how they would like to be notified: on any workflow status

change and only on workflow completion. This could be extended to allow a user to choose
specific statuses that they would like to be notified of (there are currently nearly 10 statuses that

a workflow can be in).

75

There could also be options to allow certain events to automatically trigger a notification,
regardless of whether or not the workflow status has changed. For instance, completion of a

specific job could send a notification to the user if they so chooses.

7.2.2.2 Types of Monitoring
Initially, there was a form to let users set up a notification to alert them to the amount of storage

that they had remaining, whenever it changed. This feature was dropped from the current P-
GRADE Portal version of the notification system, but it would likely prove a useful feature to
add in the future. Continuing with that basic idea, there are many things that a user might like to
be notified of that the Portal currently tracks. Notifications could be tied into the Information
System to alert users when various elements change states. There could also be administrative
notifications sending statistics for the entire server. Realistically, any portion of the portal could
be given its own highly customizable set of notifications. While that would require a lot of work
designing the front end portlets and back end integration, at least some work could be reused.
The actual notification mechanisms could easily be modified to support notifying from multiple

different sources.

7.2.2.3 Parameter Study Workflows

In the current system, a parameter study workflow is treated just like a normal workflow. That
is, notifications are sent whenever a job triggers them. However, parameter studies are unique in
that they contain and monitor element workflows and only have a few special jobs that they can
run. What ends up happening is a parameter study will report no status changes (it is almost
always in the “Submitted” state™) until all of its element workflows have terminated. It would be
convenient to allow the user to receive notifications for these element workflows, if they choose,

so that the actual progress of the parameter study workflow could be monitored.

76

7

8 References

[1] About Gridsphere. Gridsphere Project. [Online] [Cited: March 31, 2008.]
http://www.gridsphere.org/gridsphere/gridsphere/guest/about/r/.

[2] About the Java Technology. Sun Microsystems. [Online] [Cited: April 3, 2008.]
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html.

[3] Anderson, Tim. Introducing XML. ITWriting. [Online] 2006. [Cited: April 21, 2008.]
http://www.itwriting.com/xmlintro.php.

[4] Antognini, Christian. Is Oracle Database Moving Towards Grid Computing? Trivadis.
[Online] [Cited: March 30, 2008.] http://www.trivadis.com/Images/grid_computing_en_tcm17-
11759.pdf.

[5] Apache Tomcat. Apache Tomcat. [Online] [Cited: April 2, 2008.] http://tomcat.apache.org/.

[6] Berlich, Ridiger. Grid Computing - Roots, Motivations and Implementation. EGEE.
[Online] July 6, 2004. [Cited: April 1, 2008.]
http://www.egee.nesc.ac.uk/trgmat/events/040920GridKa/talks/slides/whatlsGrid.pdf.

[7] Byous, Jon. Java Technology: The Early Years. Sun Microsystems. [Online] April 2003.
[Cited: April 3, 2008.] http://java.sun.com/features/1998/05/birthday.html.

[8] Foster, lan. Globus Toolkit Version 4: Software for Service-Oriented Systems. 2005.
http://books.google.com/books?hl=en&Ir=&id=YN720 _14JzkC&oi=fnd&pg=PA2&dg=Globus
+toolkit&ots=1QxQATOQAL&sig=ysH_kOP8q10_IspiOKFnnlIxeYgA#PPA2,ML1.

[9] gLite: Lightweight Middleware for Grid Computing. [Online] [Cited: April 21, 2008.]
http://glite.web.cern.ch/glite/.

[10] JSR 168: Portlet Specification. Java Community Process. [Online] October 27, 2003.
[Cited: April 4, 2008.] http://www.jcp.org/en/jsr/detail ?id=168.

[11] Java Platform, Enterprise Edition (Java EE) Support in NetBeans IDE. NetBeans. [Online]
[Cited: April 4, 2008.] http://j2ee.netbeans.org/.

[12] JavaScript. Wikipedia. [Online] [Cited: April 21, 2008.]
http://en.wikipedia.org/wiki/JavaScript.

[13] JavaServer Pages Overview. Sun Developer Network. [Online] [Cited: April 2, 2008.]
http://java.sun.com/products/jsp/overview.html.

78

[14] Joseph, Joshy and Fellenstein, Craig. Grid Computing. s.l.: IBM Press.
http://books.google.com/books?hl=en&Ir=&id=2e73K_jXdfcC&oi=fnd&pg=PR21&dqg=grid+co
mputing+uses&ots=fFQAmMQgz0f_2&sig=YoqsNaxLvVCNxZ0ToG0Opz8FfGNCs#PPA44,M1.

[15] Laboratory of Parallel and Distributed Systems . MTA SZTAKI LPDS. [Online] [Cited:
March 30, 2008.] http://www:.lpds.sztaki.hu/.

[16] Learn About Java Technology. Java.com. [Online] [Cited: April 1, 2008.]
http://www.java.com/en/about/.

[17] Livny, Miron, Tannenbaum, Todd and Thain, Douglas. Distributed computing in
practice: the Condor experience. s.I. : Wiley InterScience, 2005. 17, pp. 323-356.

[18] Merkey, Phil. Beowul History. Beowulf Project . [Online] 2007. [Cited: March 29, 2008.]
http://www.beowulf.org/overview/history.html.

[19] Morris, Robert and Thompson, Ken. Password Security: A Case History. Murray Hill :
Bell Laboratories, 1978.

[20] NetBeans IDE 6.0 Features. NetBeans. [Online] [Cited: April 4, 2008.]
http://www.netbeans.org/features/.

[21] P-GRADE Grid Portal. P-GRADE Grid Portal. [Online] [Cited: March 31, 2008.]
http://www.lpds.sztaki.hu/pgportal/?m=0&s=0.

[22] Parellel ~ computing. Wikipedia. [Online] [Cited: April 21, 2008.]
http://en.wikipedia.org/wiki/Parallel_computing.

[23] Patil, Sunil. What is a Portlet. OnJava. [Online] September 15, 2005. [Cited: April 4,
2008.] http://www.onjava.com/pub/a/onjava/2005/09/14/what-is-a-portlet.html.

[24] phpBB Group. phpBB web site. [Online] [Cited: March 20, 2008.] http://www.phpbb.com.

[25] Sandholm, Thomas and Gawor, Jarek. Globus Toolkit 3 Core — A Grid Service Container
Framework. 2003.
http://66.102.1.104/scholar?hl=en&Ir=&q=cache:vw2CSgO4DmuUJ:dwdemos.dfw.ibm.com/wst
k/common/wstkdoc/ogsa/docs/gt3_core.pdf+Globus+toolkit.

[26] Seshadri, Govind. Understanding JavaServer Pages Model 2 Architecture. JavaWorld.
[Online] December 29, 1999. [Cited: April 2, 2008.] http://www.javaworld.com/javaworld/jw-
12-1999/jw-12-ssj-jspmvc.html.

[27] The Institute. MTA SZTAKI. [Online] [Cited: April 1, 2008.] http://www.sztaki.hu/institute/.

[28] The Java Language Environemnt. Sun Developer Network. [Online] [Cited: April 2, 2008.]
http://java.sun.com/docs/white/langenv/Intro.doc2.html.

79

[29] Welcome to the NetBeans Community. NetBeans. [Online] [Cited: April 4, 2008.]
http://www.netbeans.org/about/index.html.

[30] Wilton-Jones, Mark. JavaScript history. How to Create. [Online] [Cited: April 21, 2008.]
http://www.howtocreate.co.uk/jshistory.html.

80

A. Email Notification System Performance Graphs

1 Workflow with Full Notification

istics:

Java Process Stat

100

F -
w
=
w L
w
o
= i
. =
[=]
poR 20
b5
v £
5 &
o

&=

—

—_—

—

—

—

—

=

J—

—

——

[=] o o [=] (=] (=] (=] o Q Q

F @ 7 @ o g b b a

Or5E
TakE
OLEE
ToEE
aIzE
TaTE
asne
Tone
EEATTS
587
9LLT
Tnee
azaz
55T
9L kT
Tokz
arEd
Taed
OLTE
Tors
aeng
TSET
as 8L
Tosr
OELT
Taa9T
OL5T
Tost
QFkT
TSET
OLeT
Tnet
QELT
Ta0T
O9Ln
oG
aza
T52
s
g
a9z5
5k
aLe
Tne
azz
T5T
oz

Figure A.1 - 1 Workflow with Full Notification

81

1 Workflow with No Notification

tics:

IS

Java Process Stat

Processor Uszge (3]

—zmary Uszge (3}

Figure A.2 - 1 Workflow with No Notification

JI

100

50

50

50

50

40

30

20

10

N (T T

TEEL
TEEL
Tnsr
Tast
TZLT
TE0L
Tkat
Tnat
Tast
LISt
TEEL
TEET
Tort
TOEL
TZEL
Tarr
TEIT
Tnzr
Tare
TZTL
TE0T
ThOT
Toot
Tan
T
Tes
Tka
TnE
ToL
TEL
Taa
TEa
Tog
To5
TS
8K
TkE
Tok
Tag
TEE
T8l
Tk
To
Tat
TET

Tk

Java Process Statistics: 20 Workflows with Full Notification

Processor Uszge [3#)

— emary Uszgz (3]

100

90

80

60

50

40

30

20

10

TEET
TSET
TEET
TRET
Tzt
TECT
Ot
TETT
TETT
TITT
Tent
[S=108
TeEnt
ThG
Ta6
TEL
oG
£
Tka
s
TEL
TaL
TEZd
Taa
Taq
TED
Tog
T£S
kS
TS
Tak
Tar
TEr
TRE

Figure A.3 - 20 Workflows with Full Notification

82

Java Process Statistics: 20 Workflows with No Notification

zzzor Uszze [3)

IMemaory Uszge (3]

=—Pro

£k
LGRE
TLBE
SELE
GLAE
ELOE
LELE
TkFE
S5EE
GOTE
EBLE
LG0E
TLnE
SIGT
LEST
EGLT
£09%
T84T
ShkE
GOkE
EZET
LECT
Tare
50908
GERT
EGET
LOET
TELT
SEAT
GEST
EOFT
LELET
THET
S07T
GLTT
£EOT
LkG
Tas
SEL
LED
£0a
L15
TER
SkE
65T
ELT
L8

100
20
50
50
50
40
0

Figure A.4 - 20 Workflows with No Notification

Java Process Statistics: 50 Workflows with Full Notification

SPTL
EGRD
Tran
LEa0
LEST
SBE0

100

-
g
A
[|
8
a2
Qo o
FM
—
=
1 |
(=] (=] (=] (=] (=] (=] (=] (=] (=] (=]
[=3] o - {*s] un “+ m (2] Enl

EECZD
TEng
kS
LEES
5295
ELRS
TIEs
LATS
L1085
FRE
ETLL
Task
aakL
L5Tk
S0TE
ESLE
TnsE
Llac
AGFE
SkEE
EGTE
Trne
LEED
LELT
5857
EERT
Tess
LI
LERT
SC8T
£L0T
LEat
ROET
LTIT
5901
TG

9L

L09

LGk

S0E

£5T

Figure A.5 - 50 Workflows with Full Notification

83

Java Process Statistics: 50 Workflows with No Notification

=zzsor Uszge [34)

—Pro

— IMemory Usage [3)

100

a0

80

&0

50

40

30

20

10

a9, 85
TSES
aras
T055
9rESs
TS5
L
Tong
L8k
ITAY
arak
oSk
QLEl
TSek
aITr
Tonk
a9 BE
TSLE
azae
TOSE
arEE
TSEE
97LE
Tone
a9 B
TSET
azag
Tnse
arEe
|-Tir
L
Tong
aLa8r
TSET
979t
TOsE
OLET
TSEr
97LT
Toor
ass
TS
a9
TS
ase
T
art

Figure A.6 - 50 Workflows with No Notification

84

B. Account Creator System Administrator Manual

P-GRADE Multi-Portal Account Creation System
Administrator Manual

B.1. Introduction

The purpose of this manual is to instruct administrators on how to install, configure, and maintain the

P-GRADE Multi-Portal Account Creation System.

The account creation system is intended to provide a solution to the problem of a single organization
administrating multiple grid portals. Instead of forcing an administrator to manually create user
accounts on each portal requested by a user, all of the work of creating an account is done
automatically. The administrator merely has to approve or deny requests and perform occasional

maintenance to keep the system running.

B.2. Account Creation Workflow

Located on the web server are an account request form, an automatic account creator, and a setting
manager. On each portal server is an account creator service. Attached to each portal server and the
web server are databases for persisting account data and settings. A diagram of the components and

the flow of data between them is shown in Figure 1. The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out the account request form on the
web server, as shown in Figure 2.

2. The web server retrieves the request information from the form and verifies it with the account
creator for each portal listed in the request.

3. The web server stores the request information in the common database for later retrieval.

4. The web server sends an email to the administrator with a link to accept or deny the account

request. Another email, shown in Figure 3, is sent to the user notifying him or her that the

85

account request was successful. A message is then displayed to the user indicating whether the
emails were sent out successfully, as shown in Figure 4.
5. The administrator clicks on one of the links in the email.
0 The ‘accept’ link causes the automatic account creator to accept the request as it is.
0 The ‘accept with default roles and groups’ link causes the automatic account creator to accept
the request, but with the requested roles and groups reset to their default values.
0 The ‘deny’ link causes the automatic account creator to delete the account request and send the
user an email indicating that the account request has been denied.

6. If the administrator accepts the account request, the automatic account creator deletes the
request information from the common database and logs the user name and email address so that
they will be available for future reference.

7. The request information is dispatched to the account creator of each portal listed in the request.

8. The account creator on each portal saves the account information in the portal database.

9. The automatic account creator sends an email to the user indicating that the account request has

been accepted.

Web server Portal

Account database

3
reguest
o —
Portal server
Ack{:unt
creator

ommon

Automatic
account
creator

Setting atabase
manager

Figure 1: Workflow diagram

86

= How to get access

P-ERADE |

I portal

P-GRADE Grid Portal access request form

Full namae:

User name:
Password:
Confirm password:
Address:

Phone number:
Institute:

E-mail address:

Grid to use:

Scientific case and
planned usage :

Roles (optional):

Groups {optional):

| & Proysicist

=

SEE-GRID
VOCE

i B e ln i
g
o

Physics resaanch. &

[w Optional Role Used for account creation testing

r Optonal Group Used for account creation testing

To prevent automated access reguests, you are reguired to enter a confirmation code. The code is
displayed in the image you should see below. If you are visually impaired or cannot otherwise read this
code please contact pertalreq@lpds.sxtaki.hu.

Confirmation code:

Enter the code exactly as it appears. All lattars are casa insensitiva, and there is no zero,

Figure 2: Account request form

87

P-GRADE Portal Access Request Notification
P-GRADE Grid Portal Team [portalreq@I|pds.sztaki.hu]

Tue 4/15/2008 2:24 PM
mreiter@127.0.0,1

V) P-eRADE|

@4y ¢

P-GRADE Portal Access Request Notification

|]l]|‘t;|

Dear A Physicist,
Your reguest (for access to SEE-GRID) has been successfully processed.

Qur portal administrator will send the required information
to yvour e-mail address (mreiter@127.0.0.1) very soon.

Yours sincerely,
MTA-SZTAKI P-GRADE Grid Portal Team
http:f fwww.lpds.sztaki.huf pgportal

Copyright 2o004-2008, MTA-SZTAKI LPDS, Hungary. All rights reserved

Figure 3: Account request notification

88

P-GRADE Grid Portal access request form

#» How to get access

Your request has been successfully sent!
The reguest notification has been sent to your e-mail address.

Thank you!

Figure 4: Account request successful

B.3. Installation

The following sections describe the steps required to install the account creation system.

B.3.1. Server Topology

The account creation system will work with a wide variety of server topologies. Described in Figure 5 is
one possible topology; you may modify it as you see fit. In the topology shown, each server is in a
separate physical location. There is a single web server with hosting a common account creation
website connected to one or more servers running P-GRADE portal. The web server and portal servers
each have their own database, which can be on either the same computer or a separate computer. For
additional security, each web server is located behind a firewall and only the specific ports needed are

left open.

89

el server
database

Firewaii

Usar Adnin \
—

L
Firewall

Figure 5: Server topology

B.3.2. Prerequisites

In order for the account creation system to work, the following software must be installed and

accessible by the web server:

e Web server software, such as Apache Web Server or Internet Information Services (11S)
e PHP version 5.0 or higher

e MySQL Server version 4.1.2 or higher

Additionally, PHP must be configured to use the following extensions:

e pecl_http (used to communicate with the portals)
e Mcrypt (used for encryption of data)

e MySQL (used to connect to a MySQL database)

90

SMTP (used to send email)

GD2 (optional; required only if the GD Version of the confirmation system is used)

If you are building PHP on Linux, the hash module needs to be enabled by adding the 'hash' USE

flag to the compilation command.

B.3.3. Installing web server components

The following steps must be performed on the web server to install the account creation system:

(0]

Download the archive containing the account creator files and extract them.

Copy the "website" folder to a location accessible by the web server, such as the document root
(htdocs on Apache and wwwroot on I11S).

To configure the database connection, modify includes/SAMPLE_config.inc.php and rename
it to config. inc.php. If the file already exists, this step is not necessary.

If there is already a shared index file, the following code should be copied into the footer area
directly below the copyright notice to enable custom footer text to be inserted by the account

request form. While not strictly necessary, it reduces the chance of legal problems.

<?php if (isset($subst) && isset($subst[" customFooter~])) echo

$subst[“customFooter"]; ?>

If you would like to use the index file that has been provided, rename SAMPLE_index.php to
index.php.

Similarly, you may either use your own home page or rename the provided
SAMPLE_home. inc.php to home. inc.php

Log into MySQL Server and load pgportal.dump into the same database you entered in
config.inc.php.

For example, you might type use pgportal; source pgportal._dump;

91

e You may also wish to modify includes/access_request _config.php to customize various

aspects of the account creation system.

B.3.3.1. Configuring Apache

If Apache is being used, SSL must be configured if you want the server to be able to accept HTTPS
requests. Using HTTPS for account creation and the administration console will increase the difficulty
for an attacker to intercept sensitive data. To enable the built-in SSL module, the following lines in

conf/httpd.conf should be uncommented:

e LoadModule ssl_module modules/mod_ssl.so

e Include conf/extra/httpd-ssl.conf

Additionally, you will need to acquire an X.509 certificate and private key for the server. The default

configuration requires that these be placed in the conf directory. Alternatively, the certificate and
private key may be located elsewhere if conf/extra/httpd-ssl.conf is modified to point to their

location.

Important: In order for the account creation system to take advantage of SSL, the ENABLE_SSL

option in includes/access_request_config.php must be set to true.

B.3.3.2. Configuring the Firewall

If the server is located behind a firewall, the firewall must be configured to allow incoming connections
on the following ports. Otherwise, users outside the firewall may have difficulty making account

requests or accessing the administration console.

e 80: used by HTTP

e 443: used by HTTPS

92

B.3.4. Installing Portal Server Components

If you do not already have a portal, installation instructions may be found at the P-GRADE Portal

website by selecting "Install the portal” on the menu.

The following steps must be performed on each portal server that will be used with the account

creation system:

e Create two new roles: SERVLET_CLIENT and ACCOUNT_CREATOR.
0 To create a role, log in as a super user (such as 'root"), navigate to the Administration tab, click
on "Roles" to get to the Role Manager portlet, and then click on "Create New Role". At this point
you should be asked to edit role information. Enter SERVLET_CLIENT or ACCOUNT_CREATOR for

the role name and whatever you want for the description. The description is not necessary, but

may be useful in case you forget the role's purpose.

RELEASE 2.6 Logout
Matthew Ro
' atthew Reiter
P-ERADE |
P-ERADE -

WI Workflow “ Certificates “ Settings " Information System “ File Management " Help]

?

Role Manager

Display All Roles

. e Delete
S

USER The standard user role
ADMIN Offers ability to add/delete users from a group
SUPER The portal administrator used for creating/deleting users, group, roles and
layouts
SERVLET _CLIENT Grants the ability to use portal serviets.
ACCOUNT_CREATOR Grants the ability create new user accounts. Delete |

Create New Role

93

Figure 6: Role manager

Create two new user accounts, one which is given only the SERVLET_CLIENT role and one which is
given only the ACCOUNT_CREATOR role. The web server will use these users to authenticate itself
with the portal. Although the user names and passwords for these roles may be the same across all
of the portals, for security reasons it is recommended that different user names and passwords be
used for each portal.

0 To create a user account, navigate to the User Account Manager portlet from the Administration
tab by clicking on "Users" near the top. From there, click on "Create a New User" and fill in the
information. You can choose whatever user name and password you like. Select either
SERVLET_CLIENT or ACCOUNT_CREATOR (but not both) as the user's role. Giving each role to a
different user minimizes the damage that can be done if an attacker discovers an account's user
name and password. Additionally, you may check the "disable account" checkbox to prevent the

account from logging into the portal.

94

| Portiets Users Groups Roles Layouts Messaging |

? User Account Manager =0
Edit User Information

I EAVE PASSWORD FIELD BLANK TO KEEP EXISTING PASSWORD IF
EDITING AN EXISTING USER

User Name: |AccuuntRequestSewer
Full Name: |Accnunt Reguest Semver
Email Address: |pgpurtal@sztaki_hu
Organization: |I"u'1Th SITAKI

Disable account? v
~ SelectRoles ~ Rolename
r USER

r ADMIN

r SUPER

I SERVLET_CLIENT

r ACCOUNT_CREATOR

Password: |

Confirm password: |

Save User | Cancell

Figure 7: User manager

B.4. Administration Console

The administration console serves as the portal for various administrative activities, including creating

new user accounts and editing grid information.

The default administrator user name is "admin™ and the default password is blank. It is recommended

that you change the user name and password using the setting editor the first time you log in.

95

P-ERADE|

P-ERADE -

\ portal

Log In

» Log in

Please enter your user name and passwaord.

User name: |

Password: |

Figure 8: Administration console login

B.4.1. Exporting User Account Information

The user information exporter provides a means for the administrator to download user information
for the purpose of sending mass emails, etc. Clicking the "export" button in the form will collate and
download the user information for all grids managed by the account creation system. The information

is provided as a comma-separated-value (CSV) file that is compatible with most spreadsheet software.

96

Welcome, admin!

#» Export user accounts

B.4.2. Settings

User Account Exporter

This tool will export user account information from each portal as a comma-separated-value file.
The resulting file can then be imported into spreadsheet software such as Microsoft Excel.

_Expart |
M

Do you want to open or save this file?

@ Mame: Users.csv
Type: Microsoft Office Excel Comma Separated Values ...
From: localhost

[Cpen]I Save I[Cancel]

- ‘While files from the Intemet can be useful, some files can potentially
harm your computer. f you do not trust the source, do not open or
save this file. What s the rigk?

Figure 9: User Information Exporter

The settings editor may be accessed by selecting "change settings” from the menu in the

administration console.

Settings affect the operation of the account creation website. The following settings are available:

Name Type Description
Require If set to true, the user must enter a confirmation code when
boolean
confirmation requesting an account.
Use GD If set to true, the GD version of the confirmation image is used.
boolean

confirmation

This version is better than the non-GD version, but requires that

97

the GD2 extension be enabled.

GD confirmation

foreground noise

boolean

If set to true, foreground noise is used to make the GD-based

confirmation harder.

GD confirmation X

The average number if pixels between horizontal grid lines in

integer
grid the GD-based confirmation.
GD confirmation Y The average number if pixels between vertical grid lines in the
integer
grid GD-based confirmation.
The lifetime of a session, in hours. This only applies to the
Session lifetime integer
account request page.
The key used to encrypt the servlet user name and password,;
Servlet
string |should be a unique (preferably random) string that is difficult to
authentication key
guess.
Admin user name string | The administrator's user name.
The administrator's password. This value cannot be retrieved, as
Admin password string
it is stored in a hashed form in the database.
Admin email address |string | The administrator's email address.

98

Settings

Welcome, admin!

¥ Require confirmation

¥ use GD confirmaticn

» Change settings

[T GD confirmation foreground noise

GD confirmation X grid: =

GD confirmation Y grid: =
Session lifetime: |z
Servlet authentication key: Iseu:ret key
Admin user name: |zdmin

The current administrator password must be set in order to change the user name or password.
Leaving the 'admin password' and 'confirm admin passward' fields blank will preserve the current
password.

Current admin password: |

Admin password: |

Confirm admin password: |

Admin email address: |zdmin@myportzl.org

Figure 10: Settings

B.4.3. Editing Portal Information

The portal information editor may be accessed by selecting "edit portal information” from the menu in

the administration console.

Portals can be added or removed using the buttons near the bottom of the form. To add a portal, click
on "Add New Portal”, which will add a group of fields where the portal information may be entered. To
remove one or more portals, select all of the portals you wish to delete by clicking on the check boxes
next to their names. Click on "Delete Selected Portals", review the portals listed in the dialog box, and
then press "Okay" to confirm or "Cancel" if there was a mistake. Once a portal is deleted, its
corresponding fields will be removed from the form. Keep in mind that no changes are made on the

server until the form is submitted.

99

Clicking on the "Reset” button will reset all fields to their original values; however, it will not undo

addition or removal of portals. If you wish to undo such changes, you may do so by refreshing the

page.

The following fields are available for each portal:

Portal ID

Portal name

Portal URL

Servlet user

name

Servlet

password

Account creator

user name

Account creator

password

The name that is used internally when referring to a given portal. Frequently

changing the portal ID is not recommended.

The name that is displayed to users.

The URL that points to the portal's root directory (for example,

https://portal .organization.com/szupergrid).

The wuser name of a portal user that has been given the

ACCOUNT_CREATOR role.

The password corresponding to the servlet user name.

The user name of a portal user that has been given the SERVLET _CLIENT

role.

The password corresponding to the account creator user name.

100

Portal Information Editor

Welcome, admin!

Portals:

[My Portal (myportal)

» Edit portal information

Portal ID: |mypartal

Portal name: |My Portal

Portal URL: |https://myportal.org/szupergrid
Servlet user name: |servistiser

Servlet password: |the serviet password

Account creator user name: Iﬁu:ﬂ.lnlCredDrLPser

Account creator password: |Ihe account crestor password
Add New Portal | Delete Selected Portals
Submit Changes Resat

Figure 11: Portal information editor

B.4.4. Account Request Verification

When a user submits an account request, an email, shown in Figure 12, is sent to the administrator
with the details of the request and a link to verify the account request. Clicking on the link sends the
administrator to a web page, shown in Figure 13, with options to approve or deny the account request
in addition to a text box where the administrator may enter additional comments to send to the user
who request the account. The administrator has four options for how to handle an account request:
accept the request, deny the request, accept the request but with the roles and groups reset to their
default values, or ignore the request. The third option is provided in case a user requests roles that he
or she should not have, but the administrator feels that the request is otherwise valid. A request
should be ignored if the administrator does not wish to send any notification to the user or if the email
address provided by the user is invalid. Once the administrator submits the form, the server forwards
the account request to each portal listed in the request and displays any error messages that were

returned. If the account request succeeds on all portals, a success message, shown in Figure 14, is

101

displayed. However, if the account request fails on one or more portals, the administrator is presented
with an option to resend the account requests to each portal that returned an error message, as
shown in Figure 15. The emails a user recieves when an account request is accepted or denied are

shown in Figure 16 and Figure 17, respectively.

P-GRADE Portal Access Request Verification

P-GRADE Grid Portal Team [portalreq@I|pds.sztaki.hu]
Sent: Mon 4/21/2008 10:47 AM
mreiter@127.0.0,1

D

P-GRADE Portal Access Request Verification

P-ERADE .
\ portal

Full name: Joe SAmose

User name: Joe

Password: password

Address: Nowhere

Phone number: 12345

Institute: College of Testing
E-mail address: mreiter@127.0.0.1
Roles: Optional Role

Groups: Cptional Group

Portals: SEE-GRID

Scientific case and planned usage:
Grid will mot be used.

2 Copyright 2004-2008, MTA-SZTAKI LPDS, Hungary. All rights reserved

102

Figure 12: Account request verification email

Account Request Verification

wWelcome, admin!

Account request information:
Full name: Joe Shmoe

User name: Joe

Password: password

Address: Nowhere

Phone number: 12345

Institute: College of Testing
E-mail address: mreiter®@127.0.0.1
Roles: Optional Role

Groups: Opticnal Group

Portals: SEE-GRID

Scientific case and planned usage:
Grid will not be used.

Accept the request? i Accept

L8 Deny
¥ accept with default roles and groups

[Ignore (no email will be sent to the user)

Message to user (optional): [Membership in “Optional Group” is restricted to members of STTAKL. »

Figure 13: Account request verification form

Account Request Verification

Account created on SEE-GRID.

The account request has been successfully processed.

Figure 14: Account request verification success

Account Request Verification

Failed to create an account on SEE-GRID!

The account request was not successfully processed.

Account request information:
Eull nams: ne Shenes

103

Figure 15: Account request verification failure

P-GRADE Portal Access Request Accepted

P-GRADE Grid Portal Team [portalreq@lpds.sztaki.hu]

sent: Mon 4,/21/2008 11:10 AM
mreiter@127.0.0,1

__-_.;f; P-ERADE|
\ portal

P-GRADE Portal Access Request Accepted

Dear Joe Shmoe,

Congratulations! Your request (for access to SEE-GRID) has been accepted.
Howewver, the administrator has denied your request for additional roles ar groups.

Membership in "Optional Group” is restricted to members of SZTAKI.
Yours sincerely,

MTA-SZTAKI P-GRADE Grid Portal Team
http:/ /www.lpds.sztaki.hu/ pgportal

£ Copyright 2o04-2008, MTA-SZTAKI LPDS, Hungary. All rights reserved

Figure 16: Account request accepted

104

P-GRADE Portal Access Request Denied
P-GRADE Grid Portal Team [portalreq@Ilpds.sztaki.hu]

Tue 4/15/2008 3:08 PM
mreiter@127.0.0,1

.__;:-

P-GRADE Portal Access Request Denied

P-ERADE | _
\portal

Dear Joe Shmoe,

Your request (for access to SEE-GRID) has been denied.

Yours sincerely,
MTA-SZTAKI P-GRADE Grid Partal Team
http:f fwww.lpds.sztaki.hu/pgportal

Copyright 2004-2008, MTA-SZTAKI LPDS, Hungary. All rights reserved

Figure 17: Account request denied

105

B.5. Other Features

B.5.1. Logging

A message is sent to the system log every time one of the following events occurs:

A user submits an account request
A user account is created
An administration login is attempted

There is an error connecting to a servlet

On Windows, the Application log is used instead of the system log. The application log may be viewed
by opening the Computer Management console and navigating to System Tools -> Event Viewer ->
Windows Logs -> Application. Log messages from the account creation system can be identified by
looking in the "Source" column for "PHP-" followed by the version of PHP installed. For versions of
Windows other than Windows Vista, a slightly different procedure may be required. An account

request event can be seen in Figure 18.

Level Date and Time Source EventID Task Category =
1 Information 4/21 /2008 10:47:01 AM PHP-52.5 i
Event 2, PHP-5.2.5 x
Details
@ Friendly View () EML View
+ System
EventData

P-GRADE Portal Account Creator
Account request submitted. Full name: Joe Shmoe, User name:
Joe, Email address: mreiter@127.0.0.1,

Figure 18: Account request event

106

C. Email Notification System Help Documentation

Introduction:

The user may instruct the system to send notification(s) about given state changes caused by the
submission of a workflow. Two kinds of changes are distinguished:
» The workflow reaches an end state (“finished” or “error”) from where it may not be moved without
manual user action.
» The state of the workflow has changed (for example from "submitted" to "running", or from

"running” to "finished", etc.)

At present, the only way of the notification is an e-mail message.

The tab Workflow/Notify for configuring these messages is structured the following way:

l.
E-mail Settings groups the base information needed to send an e-mail involving the recipient’s address,

the subject of the message and the overall permission to send any letter.

1.

Workflow Change Settings is the editable skeleton of the letter sent in the case of a change of state (see
above).

The user has a further filter possibility to disable /enable these letters by the selecting the proper value of

the checklist Enabled:

As a summary, the sending of a letter has five conditions controlled by the user:

1. The proper e-mail address is set
2. Sending an email is enabled

107

3. Sending for workflows is enabled
4. Upon submitting the workflow, the user does not choose “Never” when asked when they would
like to be notified

5. The event listened for has occurred

The content of the message is freely editable in the text area Message.

All keys will be evaluated at the time of the email being sent, and will be appropriately substituted into

the letter.

These keys and their meanings are:

o #nowi# Time stamp of event

o f#Huser# Owner of the workflow

e #portal# URL of the portal

o #workflow# Name of workflow

e #oldsatus# State prior the event

e #newsatus# State caused by the event

o #details# Detailed listing of job statuses

The settings must be saved by clicking the Save button

108

