
CS-GXS-0802

Grid Portal Development

submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Sciences

by

Joshua Nedelka
Date: 4/22/2008

Matthew Reiter
Date: 4/22/2008

Professor Gábor Sárközy, Major Advisor

Professor Stanley Selkow, Major Advisor

ii

Abstract

The project consists of the analysis, design and implementation of a user account creation system

and a notification system for the P-GRADE Grid Portal. The user account creation system

expedites the process of accessing a portal by automating many administrative tasks. The

notification system provides a useful feature to users of the Portal by alerting them in real time of

the status of their workflows. Both systems serve to enhance a user’s experience with the Portal.

[1][2][3][4][5][6][7][8][9][10][11] [12] [13] [14][15][16][17][18][19][20][21][22] [23]
[24][25][26][27][28][29]

iii

Acknowledgements

We would like to thank MTA SZTAKI and WPI for putting together this program and allowing

us this experience in Budapest. At SZTAKI, we would like to thank everyone from the

Laboratory of Parallel and Distributed Systems (LPDS), especially Prof. Dr. Péter Kacsuk, the

head of the lab and Miklós Kozlovszky for his excellent management of the project. In addition,

we would like to thank Gergely Sipos for his explanations of the GRID and Portal, Gábor

Hermann for his assistance with the user account creation system, Zoltán Farkas and András

Schnautigel for their help during integration and development, Károly Göschl and Atilla Marosi

for their assistance deploying and testing the account creation system, and Ákos Balaskó for his

help in the office. We would also like to thank Ádám Kornafeld for making us feel welcome in

Budapest. At WPI, we would like to thank József Patvarczki for giving us a great preparation for

our project. Finally, of course, we would like to thank our advisors, Professors Gábor Sárközy

and Stanley Selkow, for dedicating themselves to helping us complete our project successfully.

iv

Table of Contents
ABSTRACT .. II

ACKNOWLEDGEMENTS ... III

TABLE OF FIGURES .. VII

TABLE OF TABLES ... VIII

1 BACKGROUND .. 1

1.1 HISTORY OF GRID COMPUTING ... 1
1.1.1 Beowulf Clusters ... 1
1.1.2 Origins of Grids and Grid Computing .. 1

1.2 APPLICATIONS OF GRID COMPUTING .. 2
1.3 GRID TECHNOLOGIES ... 2

1.3.1 The Globus Toolkit .. 3
1.3.2 gLite .. 3
1.3.3 Condor .. 3
1.3.4 Parallel Programming .. 4

1.4 MTA SZTAKI AND LPDS ... 5
1.4.1 MTA SZTAKI ... 5
1.4.2 LPDS ... 5

1.5 THE P-GRADE GRID PORTAL .. 6
1.5.1 Using the P-GRADE Portal .. 7

2 PROJECT STATEMENT .. 9

2.1 USER ACCOUNT CREATION SYSTEM ... 9
2.1.1 Current System .. 9
2.1.2 Proposed Implementation ... 9

2.2 EMAIL NOTIFICATION OF WORKFLOW STATUS CHANGES 11
2.2.1 Current System .. 11
2.2.2 Proposed Implementation ... 12

3 METHODOLOGY .. 15

3.1 USER ACCOUNT CREATION SYSTEM ... 15
3.1.1 Requirements... 15
3.1.2 Implementation Considerations .. 17

3.1.2.1 Mostly on Web Server ... 17
3.1.2.2 Combination of Web Server and Portal Servers ... 19
3.1.2.3 Entirely on Portal Servers ... 21
3.1.2.4 Comparison of Implementations ... 23

3.1.3 Technologies Used .. 24
3.1.3.1 PHP: Hypertext Preprocessor .. 24
3.1.3.2 phpBB Confirmation System ... 25

3.2 EMAIL NOTIFICATION SYSTEM ... 25
3.2.1 Requirements... 25
3.2.2 Implementation Considerations .. 28

3.2.2.1 Polling ... 28
3.2.2.2 Event Driven ... 29

v

3.2.3 Analysis of Implementation ... 30
3.2.4 Technologies Used .. 31

3.2.4.1 Tomcat .. 31
3.2.4.2 GridSphere .. 32

3.3 COMMON TECHNOLOGIES USED ... 32
3.3.1 Java ... 32

3.3.1.1 JSP & Servlets ... 35
3.3.1.2 Portals & Portlets ... 36
3.3.1.3 NetBeans ... 37

3.3.2 XML... 38
3.3.3 XHTML ... 39
3.3.4 JavaScript ... 39

4 IMPLEMENTATION ... 41

4.1 USER ACCOUNT CREATION SYSTEM ... 41
4.1.1 Portal Server Interface ... 42

4.1.1.1 Account creator servlet ... 42
4.1.1.2 Information query servlet .. 43
4.1.1.3 Account creator service... 43
4.1.1.4 Authentication service ... 43

4.1.2 Account Request Form .. 44
4.1.3 Account Request Verification Email ... 45
4.1.4 Administration Console .. 47

4.1.4.1 Login Form ... 47
4.1.4.2 Account Request Verification Form .. 47
4.1.4.3 User Information Exporter .. 49
4.1.4.4 Settings Manager .. 50
4.1.4.5 Portal Information Editor ... 52

4.1.5 Security ... 53
4.2 EMAIL NOTIFICATION SYSTEM ... 57

4.2.1 Portlet Integration .. 57
4.2.1.1 Modifications from WS-PGRADE Portal .. 58

4.2.2 Submit Form.. 59
4.2.3 Backend Integration .. 61

4.2.3.1 Retrieving and Handling Status Change Events ... 61
4.2.3.2 Persistence of Data ... 63
4.2.3.3 Notification Utilities .. 65

5 TESTING ... 66

5.1 USER ACCOUNT CREATION SYSTEM ... 66
5.1.1 Functional Testing .. 66

5.2 EMAIL NOTIFICATION SYSTEM ... 66
5.2.1 Performance Testing ... 66

5.2.1.1 One Workflow ... 67
5.2.1.2 20 Workflows .. 67
5.2.1.3 50 Workflows .. 68

5.2.2 Functionality Testing .. 69
5.2.2.1 Front End Testing ... 70

6 CONCLUSIONS .. 72

6.1 THE FINAL ACCOUNT CREATION SYSTEM ... 72

vi

6.2 THE FINAL EMAIL NOTIFICATION SYSTEM .. 72
7 FUTURE WORK... 73

7.1 ACCOUNT CREATION SYSTEM... 73
7.1.1 Bulk Account Creator ... 73
7.1.2 Account Request Viewer ... 73
7.1.3 Testing of Portal Information ... 74
7.1.4 Improved Database Support ... 74

7.2 NOTIFICATION SYSTEM ... 74
7.2.1 Additional Plugins .. 74

7.2.1.1 SMS Messaging ... 74
7.2.1.2 Phone Calls ... 75

7.2.2 More Monitoring ... 75
7.2.2.1 Granularity of Notification ... 75
7.2.2.2 Types of Monitoring .. 76
7.2.2.3 Parameter Study Workflows .. 76

8 REFERENCES .. 78

A. EMAIL NOTIFICATION SYSTEM PERFORMANCE GRAPHS 81

B. ACCOUNT CREATOR SYSTEM ADMINISTRATOR MANUAL 85

B.1. INTRODUCTION .. 85
B.2. ACCOUNT CREATION WORKFLOW ... 85
B.3. INSTALLATION ... 89

B.3.1. Server Topology .. 89
B.3.2. Prerequisites ... 90
B.3.3. Installing web server components ... 91

B.3.3.1. Configuring Apache ... 92
B.3.3.2. Configuring the Firewall ... 92

B.3.4. Installing Portal Server Components.. 93
B.4. ADMINISTRATION CONSOLE .. 95

B.4.1. Exporting User Account Information.. 96
B.4.2. Settings .. 97
B.4.3. Editing Portal Information ... 99
B.4.4. Account Request Verification .. 101

B.5. OTHER FEATURES ... 106
B.5.1. Logging ... 106

C. EMAIL NOTIFICATION SYSTEM HELP DOCUMENTATION 107

vii

Table of Figures

Figure 1.1 - P-GRADE Portal Workflow Editor .. 7
Figure 1.2 - P-Grade Portal Certificate Manager .. 8
Figure 1.3 - P-GRADE Portal Information System .. 8
Figure 2.1 - Account creation workflow ... 11
Figure 2.2 - Monitoring workflow statuses in P-GRADE Portal.. 12
Figure 2.3 - WS-PGRADE Notification Portlet ... 13
Figure 3.1 - Web server implementation data flow .. 19
Figure 3.2 - Combination implementation data flow .. 21
Figure 3.3 - Portal server implementation data flow .. 22
Figure 3.4 - Confirmation code images .. 25
Figure 3.5 - Polling Flow of Events .. 28
Figure 3.6 - Event Driven Flow .. 29
Figure 3.7 - The P-GRADE Portal Running Within GridSphere ... 32
Figure 3.8 - JSP Model 2 Architecture [26] .. 35
Figure 3.9 - Elements of a Portal Page [23] .. 36
Figure 3.10 - The NetBeans IDE .. 38
Figure 4.1 - User account creation components .. 41
Figure 4.2 - Account creation system server topology ... 42
Figure 4.3 - Account request form .. 45
Figure 4.4 - Access request verification email .. 46
Figure 4.5 - Administration console login form ... 47
Figure 4.6 - Account request verification form .. 48
Figure 4.7 - Account request verification success .. 49
Figure 4.8 - Account request verification failure .. 49
Figure 4.9 - User account exporter .. 50
Figure 4.10 - User account creator settings .. 52
Figure 4.11 - Portal information editor ... 53
Figure 4.12 - User account creator vulnerability analysis .. 56
Figure 4.13 - Notify Portlet File Entry .. 58
Figure 4.14 - Notify Portlet Layout Entry .. 58
Figure 4.15 - Notify User Preferences .. 59
Figure 4.16 - Workflow Submission Form ... 60
Figure 4.17 - Event Driven Notification Implementation ... 61
Figure 4.18 - Workflow Job Status File .. 62
Figure A.1 - 1 Workflow with Full Notification ... 81
Figure A.2 - 1 Workflow with No Notification .. 82
Figure A.3 - 20 Workflows with Full Notification ... 82
Figure A.4 - 20 Workflows with No Notification ... 83

viii

Figure A.5 - 50 Workflows with Full Notification ... 83
Figure A.6 - 50 Workflows with No Notification ... 84

Table of Tables

Table 3.1 - Comparison of account-creation system implementations ... 23

1

1 Background

1.1 History of Grid Computing

1.1.1 Beowulf Clusters
Before discussing the beginnings of Grid computing, it is important to recognize another

important development in distributed computing. In 1993, Donald Becker and Thomas Sterling

conceptualized the idea of creating a cluster system from commodity hardware and open source

software. This would allow the computational power to solve highly parallelizable problems

while offsetting some of the costs associated with a single more powerful machine[18]. The first

clusters built contained only a few machines connected with Ethernet and Fast Ethernet, but they

demonstrated that powerful computational units were indeed possible with cheap, commodity

hardware [6].

1.1.2 Origins of Grids and Grid Computing
Prior to true Grid computing, there was Metacomputing. Metacomputing involved

interconnecting supercomputers to achieve superior performance. One implementation of

Metacomputing was Information Wide Area Year (I-WAY). I-WAY was developed to connect

17 supercomputing centers together, and this was successfully demonstrated at Supercomputing

1995.

Following the success of I-WAY, Ian Foster of Argonne Lab and Carl Kesselman of the

University of Chicago began the Globus Project. Similar to the aims of a Beowulf cluster, a Grid

would be a collection of computational resources that could be used to solve a variety of

problems[6]. This differed substantially from large computational resources of the past, which

could be tailored to perform one and only one task very well. The difference from the cluster,

however, is that a Grid can be geographically distributed and substantially more heterogeneous.

2

The origin of the term “Grid” comes from an analogy of the computational resources with a

power grid. The idea is that a user can connect to the Grid and receive as much computing

power as needed while ignoring such details as what hardware is being used. This is the same as

a person getting electricity from a wall socket – not caring how the electricity is generated or

where it is coming from, the only important thing is that it continues to flow[4]. Of course, the

analogy falls apart in practice since computing power cannot be drawn in the same way as

electricity from a socket; rather jobs must be sent out to the Grid to be processed.

1.2 Applications of Grid Computing
Current uses of grid computing are focused primarily on computation-heavy scientific research.

Such research includes weather prediction, high-energy physics, genetics research and financial

modeling[14]. The computing power available on individual computers, or even entire grids, is

often insufficient for these tasks. Distributed grids offer a shared computing environment usable

by anyone in its virtual organization in need of performing large computations that would

otherwise be infeasible due to time or memory constraints.

1.3 Grid Technologies
Grids are complex systems comprised of multiple technologies, often from different vendors. At

the lowest level are the individual computers and clusters that make up a grid. Grid middleware,

such as Globus, provides an interoperability layer that allows the elements of a grid to

communicate with each other. Running on top of the middleware are portals such as P-GRADE,

which hide the differences between various middleware solutions and allow multiple grids to be

treated in a uniform manner by both the users and the jobs running on the grids.

3

1.3.1 The Globus Toolkit
Globus is composed of three parts: the Globus Toolkit, a community of users, and the web-based

infrastructure that supports the community[8]. Of primary interest is the toolkit, as it comprises

the software component of Globus.

The Globus Toolkit is “a set of libraries and programs that address common problems that occur

when building distributed system services and applications”[8]. It is based on the Open Grid

Services Infrastructure (OGSI) and is intended to increase the ability to reuse and extend OSGI

technology for new grid applications[25]. The Globus Toolkit consists of a default set of service

implements for managing the low-level grid infrastructure, a security infrastructure, tools for

building new web services, client interfaces in the form of application programming interfaces

and command line tools, and extensive documentation[8].

1.3.2 gLite
gLite is an alternative grid middleware to Globus and was developed as part of the Enabling

Grids for E-Science (EGEE) project. gLite is a lightweight framework used to build grid

applications that allows them to take advantage of diverse computing and storage elements that

may be geographically distributed [9].

1.3.3 Condor
Condor is a system for distributed computing known as a batch execution system[17]. Condor

provides various services, including job management, scheduling policy, priority schemes, and

resource monitoring and management. Condor’s design philosophy revolves around flexibility

and is embodied by the following four statements [17]:

• “Let communities grow naturally.” People have a desire to work together, but they have

different needs. Condor permits cooperation, but does not require it; relations will grow

according to necessity.

4

• “Leave the owner in control, whatever the cost.” The owner of a given resource must

remain in full control of its policies and may withdraw the resource at any time. If too

much control is taken from the owner, people are less likely to join the system.

• “Plan without being picky.” If the community is of a sufficient size, there will always be

idle resources available. However, not all resources will work all the time or correctly. As

a result, the system should not depend on any given resource being available or

continuing to operate correctly. The system should be able to anticipate failures and react

accordingly to reassign work to other resources.

• “Lend and borrow.” Knowledge and expertise should be shared among the community.

Understanding previous research is the key to future progress; otherwise, the same

mistakes and discoveries may be repeated.

1.3.4 Parallel Programming

Parallel programming, also known as parallel computing, embodies the philosophy that most

difficult problems can be broken down into smaller independent tasks that can be executed in

parallel. These parallel tasks may be executed simultaneously on a vector processor, multiple

processors in a given computer, or even on multiple distributed computers. The main advantage

of parallel programming over sequential programming is that it supports much greater

scalability. As long as there are more parallel tasks than there are processing units, the rate at

which the overall calculation is accomplished can be increased simply by adding more

processing units[22].

5

1.4 MTA SZTAKI and LPDS

1.4.1 MTA SZTAKI
MTA SZTAKI, The Computer and Automation Research Institute of the Hungarian Academy of

Sciences, is an application-oriented research institution specializing in computer science and

engineering. Among their fields of research and development, as stated by their website, are:

• artificial intelligence methods

• expert- and knowledge-based systems in medicine and process supervisory systems

• robust control, simultaneous identification and in integrated vehicle control system

• computer-integrated manufacturing systems

• distributed information systems and management

• new technologies for local and wide area networks, www-based and multimedia tools

• cluster and grid computing

SZTAKI has cooperation with most of the technical universities in Hungary as well as some

within the U.S.A [27].

1.4.2 LPDS
The LPDS, or Laboratory of Parallel and Distributed Systems, is a group within MTA SZTAKI

that focuses its research on cluster and grid technologies. Among its products are the P-GRADE

Grid Portal, gUSE, and the SZTAKI Desktop Grid. To date, LPDS has been an active

participant in many of the European Grid projects, including Enabling Grids for E-Science in

Europe (EGEE) and HunGrid. The LPDS also serves as the Central-European Regional Training

Center for EGEE [15].

6

1.5 The PGRADE Grid Portal
The P-GRADE Grid Portal is a web portal based on GridSphere that allows users to access

multiple Grids, among other functionalities. A web portal, according to GridSphere, is a

gateway to a collection of services and Portlets [1].

 P-GRADE Portal is intended to be a high-level access point for users who wish to submit

workflows to Grids without becoming bogged down in the technical details typically associated

with Grid computing. Not only does the P-GRADE Portal assist with the execution of

workflows, it also assists users in building parallel applications for execution on the Grid. Some

of the benefits and features of the P-GRADE Portal are [21]:

• Helping to cope with the large variety of the various grid systems and concepts

• Porting applications between Grid systems

• Porting legacy applications to Grid systems

• Allowing observation of application execution in the Grid

• Tackling performance issues

• Executing Grid applications over several Grids in a transparent way

• Interoperability with Globus Toolkit 2, Globus Toolkit 4, LCG and gLite grid

middleware

• Providing Grid authentication

• Built-in graphical editor to design and define grid workflows and grid parameter studies

• Integrated workflow manager

• On-line workflow and job monitoring and visualization facilities

• Multi-grid access mechanism

• MPI execution in Globus and gLite grid environments

7

• Graphical Grid status checking

• Storage management

• Workflow import-export-archive service

1.5.1 Using the PGRADE Portal
The main function of the P-GRADE Portal is to allow users to create and execute workflows and

jobs on the Grid. To that end, a comprehensive graphical Workflow Editor is included. The

editor is based on Sun’s Java Web Start technology. The editor provides capabilities for creating

and editing normal workflows and parameter studies. Users build workflows by adding jobs to

the editor and then connecting them according to their file dependencies. Dependencies are

represented by small boxes attached to jobs. Green boxes are inputs, while gray boxes are

outputs. For instance, in the example below the orange boxes represent jobs and it is clear that

the “Invert_A” and “Multip_B” jobs depend on “Copy_A”.

Figure 1.1 - P-GRADE Portal Workflow Editor

8

In addition, the portal provides a comprehensive certificate management service. After obtaining

a certificate from a valid Certificate Authority, a user can upload his or her certificate through

the portal and then obtain the proxy necessary to access a specific Grid. The portal will manage

the credentials when submitting workflows and jobs so that the user does not have to.

Figure 1.2 - P-Grade Portal Certificate Manager

The portal also provides an information system capable of viewing the statuses of all computing

and storage elements on any grid that it is connected to. Results can be filtered according to a

specific Virtual Organization or by Grid. The results reported break down each computing

element by how many of its processors are currently being utilized. Storage elements simply

show how much free space they have available.

Figure 1.3 - P-GRADE Portal Information System

9

2 Project Statement
The project that we were given consisted of implementing two features into the P-GRADE

Portal: an automatic user account creation system and an email notification system. The two

features are common in their purpose to expedite the user’s experience with the portal.

2.1 User Account Creation System
In order for people to use an instance of the P-GRADE grid portal, they must first create a user

account. The process of creating a new account consists of three high-level tasks: a user requests

a user account on one or more portals, a message is sent to the administrators notifying him or

her of requests waiting for approval, and finally the administrator creates a user account on each

portal requested by the user.

2.1.1 Current System
Currently, the administrator must conduct most of the account creation process manually.

Potential users seeking an account fill out a form on a centralized web server. If the form is filled

out correctly, the form then sends an email to the administrator containing the account request

information. The administrator then verifies that the request is legitimate, and if so, enters the

information into a spreadsheet for later retrieval. For each portal that was requested, the

administrator copies the account information into the portal’s built-in account creation utility

accessible only to administrators. Finally, the administrator sends a pre-formatted email to the

user indicating that the account has been successfully created.

2.1.2 Proposed Implementation
The automated account creation system eases the burden on administrators of processing user

account requests. The system accomplishes this goal by automating the majority of the tasks

required to create a new user account while retaining an administrator’s ability to allow or deny

account requests.

10

The implementation can be broken down into four discrete components:

• extensions to the existing web form to save account requests pending administrator

approval,

• a dispatcher to forward account information to each portal requested by the user once an

account request is approved,

• a service on each portal to handle account requests and provide error checking, and

• an administrative console to provide a means for an administrator to change settings that

affect the account creation process.

The flow of actions that occur when a user wants to create an account is shown in Figure 2.1.

If an action described in the figure does not specify what is performing it, it is the same as the

previous action.

11

Figure 2.1 - Account creation workflow

2.2 Email Notification of Workflow Status Changes
The email notification system for workflow status changes is intended to alert users who are not

constantly monitoring their workflows that the workflows are indeed being run by the Grid. It

can detect and notify any status, from “submitted” to “error” to “finished”.

2.2.1 Current System
In the current implementation of the P-GRADE Portal, there is no functionality for notification

of any kind. Users who are interested in determining the status of their workflows and jobs must

log into the portal.

User fills out account
request form on web

server

Web server retrieves
user information from

form and stores
temporarily in common

database

Generates email with
user information and
confirm/deny links and
sends to administrator

Administrator clicks on
confirm link (the deny

link deletes user
information and
terminates)

For each portal
requested, web server
sends information to

portal

Each portal server
receives information
and stores in portal

database

Web server deletes
temporary user
information from
common database

Generates confirmation
email and sends to user Logs transaction details

12

Figure 2.2 - Monitoring workflow statuses in P-GRADE Portal

This is inconvenient and suboptimal for several reasons. First, while it is possible to know

approximately how long a workflow will take to complete, there can also be a very large

variance in completion time. A user who believes a workflow will take two hours might be

surprised to check the workflow at that time only to see that a few of the total jobs have been

run. Conversely, it might be seen that his workflow finished in much less time. In this case, a

new workflow could have been started utilizing the same resources as the one that had already

finished. This potentially wastes the computing time of the user.

Second, there is no way to tell if a workflow has failed due to an error unless its status is

constantly being checked. The same user who checks a workflow after two hours of execution

could find that the workflow had stopped running after only a few minutes due to an error in one

of its jobs. In this case, a large amount of computing time has been wasted because the user was

not made aware that there was a problem in a reasonable amount of time.

2.2.2 Proposed Implementation
The proposed solution and implementation to this problem is based on a system that has been

developed in cooperation with SZTAKI colleagues for the successor to the P-GRADE Portal,

WS-PGRADE. The system provides a flexible infrastructure for notifying users of status

changes to their workflows. The current implementation only provides utilities for sending

13

emails to users, but this could easily be extended to include SMS messages or any other

convenient notification.

Figure 2.3 - WS-PGRADE Notification Portlet

While the notification system is already robust, it was obviously designed for a system that is

vastly different from P-GRADE. The difficulty then is adapting the system to function in an

environment that is not necessarily ideally suited to support it. The differences become apparent

simply from the names of the two systems: the “WS” in WS-PGRADE stands for Web Services.

While the original P-GRADE portal is a monolithic system – that is, its individual components

cannot stand alone because of how tightly coupled they are – the new WS-PGRADE is more

flexible when it comes to integrating new features. It is much easier to capture the events that

are necessary to issue workflow status change notifications.

Without access to the services provided by WS-PGRADE, it becomes necessary to leverage

other utilities that the P-GRADE Portal provides. There are several locations that the

notification system must be attached to in order to accurately report status changes. By

14

integrating the system into these key places, the P-GRADE notification system can completely

represent all of the possible workflow statuses and also allow users to select the level of

notifications that they would like to receive: on any status change, only on workflow

completion, or never.

15

3 Methodology

3.1 User Account Creation System

Implementing the user-account creation system required several steps. The first step was to

gather requirements for the system. Based on the requirements, three possible implementations

were conceived. Several simple prototypes of these implementations were developed to assess

their feasibility. The implementations were then presented to colleagues at SZTAKI in order for

them to discuss the merits of each proposed implementation and decide which would best suit

their needs. Based on their feedback, a single implementation was selected for further

development.

3.1.1 Requirements
The automated account creation system went through several stages of requirement gathering

and prototypes before the design was solidified in its final form. The initial requirement was to

reduce the workload of the administrator by performing automatically as many steps of the

process as possible. Additional requirements added later are as follows.

• The administrator must retain full control over who is allowed accounts.

o This is accomplished by providing a mechanism by which the administrator can

approve or deny accounts before they are created.

• Unauthorized users should not be able to create accounts without administrator approval,

nor should they be able to break into the system to wreak havoc.

o The security of the account creation system is an important requirement; an

insecure system cannot be put into production, as it would place the grid portals in

danger of being compromised by an attacker.

16

o Encryption of sensitive data, storing only hashed or encrypted passwords in

databases, and requiring both administrators and servers to authenticate with other

servers can minimize the chance of secret information falling into the wrong

hands.

• A user should not be able to initiate a modification to a portal server’s database without

prior administrator approval.

o Account requests are stored in the web server’s database until approved or denied

by an administrator. If approved, they are then sent to the portal servers for further

processing.

• A user should not be able to spam the administrator by sending large numbers of account

requests.

o Requiring the user to enter a confirmation code displayed in an image before

submitting the account creation form prevents bots from quickly sending requests.

Although no amount of noise in an image can make it readable by a human but

not by a computer, the amount of time required for a computer to process the

image is significant enough to prevent spamming.

• The administrator should be able to retrieve information on all registered users in order to

send mass emails, etc.

o A web page allows the administrator to download user information, including

email addresses, from one or more portals.

• The account creation system should be able to adapt to various portal configurations.

17

o An administration console allows the administrator to configure information

about the portals on which accounts can be created and change other settings

related to the account creation system.

3.1.2 Implementation Considerations
Based on the original requirements provided by SZTAKI, multiple possible implementations of

the account creation system emerged. The differences between the various implementations

revolved mainly around which tasks are performed by the web server and which are performed

by the portal servers.

3.1.2.1 Mostly on Web Server
In the first implementation, most of the work of creating a user account is done on the web server

and only a small amount is done on each portal server. On the web server are an account request

form, an automatic account creator, and a setting manager. On each portal server is an account

creator service. Attached to each portal server and the web server are databases for persisting

account data and settings. A diagram of the components and the flow of data between them is

shown in Figure 3.1. The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out the account request form

on the web server.

2. The web server retrieves the request information from the form and verifies it with the

account creator for each portal listed in the request.

3. The web server stores the request information in the common database for later retrieval.

4. The web server sends an email to the administrator with links to accept or deny the

account request.

5. The administrator clicks on one of the links in the email.

18

o The ‘accept’ link causes the automatic account creator to accept the request as it

is.

o The ‘accept with default roles and groups’ link causes the automatic account

creator to accept the request, but with the requested roles and groups reset to their

default values.

o The ‘deny’ link causes the automatic account creator to delete the account request

and send the user an email indicating that the account request has been denied.

6. If the administrator accepts the account request, the automatic account creator deletes the

request information from the common database and logs the user name, email address,

and grid names so that they will be available for future reference.

7. The request information is dispatched to the account creator of each portal listed in the

request.

8. The account creator on each portal saves the account information in the portal database.

9. The automatic account creator sends an email to the user indicating that the account

request has been accepted.

Separately, the administrator interacts with the setting manager via the administration console.

The setting manager then saves the updated settings in the common database.

19

Figure 3.1 - Web server implementation data flow

3.1.2.2 Combination of Web Server and Portal Servers
In the second implementation, only the account request form is on the web server and the rest of

the components are on each portal server. Instead of having the account creation components

split over the web server and the portal servers, there is a single automatic account creator for

each portal server. A diagram of the components and the flow of data between them is shown in

Figure 3.2. The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out the account request form

on the web server.

2. The web server retrieves the request information from the form and sends it to the

automatic account creator for each portal listed in the request.

3. The portal servers store the request information in the portal databases for later retrieval.

4. Each portal server sends an email to the administrator with links to accept or deny the

account request.

20

5. The administrator clicks on one of the links in each email. Since the account creation

process for each portal is independent at this point, the administrator may choose to

accept the request for some portals by deny it for others.

6. If the administrator accepts the account request for a given portal, the automatic account

creator deletes the temporary account request information from the portal database and

creates a new account on the portal using the information.

7. The automatic account creator saves the user name, password, and grid name to the

common database for future reference. If the information was already added to the

database by a different portal, the grid name list in the database is updated to reflect the

additional grid.

8. The automatic account creator sends an email to the user indicating that the account

request has been accepted.

The setting manager for this implementation is similar to that of the previous implementation,

except that there is a separate setting manager and administration console for each portal server.

The settings for each portal are kept synchronized by virtue of residing in the same database.

21

Figure 3.2 - Combination implementation data flow

3.1.2.3 Entirely on Portal Servers
In the third implementation, the entire account creation process is replicated across each portal

server. The only common component is the database where user names and email addresses are

stored. Shown in Figure 3.3 is a diagram of the components and the flow of data between them.

The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out an account request form

for each portal desired. The rest of the process is the replicated for each portal.

2. The portal server retrieves the request information from the form and stores it in the

portal database for later retrieval.

3. The portal server sends an email to the administrator with links to accept or deny the

account request.

4. The administrator clicks on one of the links in the email.

22

5. If the administrator accepts the account request, the automatic account creator deletes the

temporary account request information from the portal database and creates a new

account on the portal using the information.

6. The automatic account creator saves the user name, password, and grid name to the

common database for future reference. If the information was already added to the

database by a different portal, the grid name list in the database is updated to reflect the

additional grid.

7. The automatic account creator sends an email to the user indicating that the account

request has been accepted.

The setting manager for this implementation is different from previous implementations in that

the settings are stored in the portal database instead of the common database. As a result, the

settings must be updated individually for each portal. The purpose of this design is that the

individual portals are kept as independent of each other as possible.

Figure 3.3 - Portal server implementation data flow

23

3.1.2.4 Comparison of Implementations
Each of the possible implementations of the account creation system has benefits and drawbacks.

Table 3.1 shows a comparison of the three implementations described earlier.

Implementation Benefits Drawbacks
Mostly on web
server

• The administrator only receives a
single email per account request.

• A user may be able to request
accounts on multiple portals with
a single request.

• The portal servers are protected
from flooding attacks because
they do not become involved in
the account creation process until
the administrator has approved a
given account request.

• Since most of the functionality is in the
web server, the account creator cannot
take advantage of the existing portal
environment.

• Communications between the web
server and the portal server add
complexity to the system.

Combination • Uses existing code on the web
server for handling account
requests while also taking
advantage of the portal
environment.

• A user may be able to request
accounts on multiple portals with
a single request.

• Communications between the web
server and the portal server add
complexity to the system.

• Each account request generates
multiple emails to the administrator.

• The portal servers are more vulnerable
to flooding attacks because requests
are stored on them before being sent to
the administrator for verification.

Entirely on
portal servers

• Takes advantage of the existing
portal environment and account
creation code already written for
the portal.

• Each portal is kept as
independent as possible so that
they may be upgraded separately.

• A user must submit a separate account
request for each portal, generating a
separate email to the administrator for
each request.

• Since each request may contain
different information, the portals must
be able to reconcile conflicts when
updating the common database.

• The portal servers are more vulnerable
to flooding attacks because requests
are stored on them before being sent to
the administrator for verification.

Table 3.1 - Comparison of account-creation system implementations

24

After all of the benefits and drawbacks were taken into consideration, the first implementation, in

which most of the account creation process is done on the web server, was chosen. The benefits

of a single email to the administrator per account request and protection of the portal servers

against flooding attacks outweigh the drawbacks of additional complexity and the inability to

reuse significant amounts of code.

3.1.3 Technologies Used
Implementing the account creation system required the use of multiple technologies. The web

server uses PHP: Hypertext Preprocessor (PHP) to generate Extensible Hypertext Markup

Language (XHTML) and sends it to the user’s web browser to be displayed. The web server also

employs a confirmation system written by the phpBB Group in order to reduce spamming of

account requests. The portal server, written in Java, uses servlets to process requests for

information and account creation from the web server. Technologies specific to the account

creation system are listed below; those common to both the account creation system and the

email notification system are described in Section 3.3.

3.1.3.1 PHP: Hypertext Preprocessor
PHP is a server-side scripting language used to transform documents requested by a web server.

Any text-based document type may contain PHP tags. When a user requests a document of a

type configured to use PHP, any PHP tags inside the document are executed and their output is

merged with the rest of the document. Like most server-side scripting languages, PHP empowers

websites to support a wide range of features such as session support, customized pages and

database connectivity.

25

3.1.3.2 phpBB Confirmation System
The confirmation system used in phpBB uses non-solid characters, random colors and character

rotation, and customizable foreground and background noise to increase the difficulty of

automated character recognition. This system is advantageous compared to others because it is

free (released under the General Public License (GPL)) and because it was written in PHP and

thus did not need to be ported to a different language in order to be integrated into the account

request website. Examples of the images generated by the confirmation system, both with and

without foreground noise, are shown in Figure 3.4.

Figure 3.4 - Confirmation code images

3.2 Email Notification System

3.2.1 Requirements
As with any engineering project, the first step was to gather and understand all requirements to

make sure that a functionally complete and useful system was designed. A number of people in

the LPDS were able to provide input regarding the functionality that was necessary for a

successful implementation. Requirements will be categorized as either “implementation” or

“integration”, so requirements that are specific to the integration and not development of the

notification system will be marked as such. The requirements are:

26

• Create a flexible set of notification utilities (implementation)

o This requires creating portal-independent functionality to handle notification events

once they have been sent from the system. This includes starting any plugins that will

actually generate the notifications and handling the logic to determine if a notification

should actually be sent.

• There should be a way to add notification plugins (implementation)

o Through a simple interface, the system provides the flexibility necessary to add

additional plugins (i.e. SMS notifications).

• There should be a way for the user to globally disable notifications (integration)

o This must be an overriding property for all the other plugins. It provides an easy way

for users to turn notifications on and off, as they need them. Most importantly, the

system must persist and use this value.

• There should be a way for the user to disable a single plugin (implementation)

o This switch will be the second in the enable/disable hierarchy (after the global one).

It should allow users to turn off a single notify plugin (Email, SMS, etc.) based on

their current needs.

• There should be a way for the user to specify the contact information necessary for each

plugin (implementation/integration)

o Since each plugin notifies in a unique way, each plugin must have its own set of

properties to allow it to function. For example, an Email plugin needs an address,

while an SMS plugin needs a valid mobile phone number.

• There should be a way for the user to format the notification to be received (implementation)

27

o Each plugin should be able to send its own uniquely formatted message based on the

destination of the notification and the user’s needs. The system should provide

various pieces of information (statuses, time stamp, etc.) that the user can include in

the messages, if they choose.

• There should be a way for the user to specify when to be notified for a given workflow

(integration)

o This final switch is third in the enable/disable hierarchy (after plugin and global). It

should allow a user to turn off notifications for a specific workflow when it is being

submitted. However, it should also allow the user to specify the granularity with

which they would like to be notified (i.e. on completion of a workflow, on any status

change, etc.)

• The system should accurately reflect the calculated status shown in the portal (integration)

o For this to be possible, the system needs to receive notifications of status changes in

real time which means it must plug into the portal at several key points. It is also

necessary to detect some statuses that are not immediately apparent.

• The system should handle rescue/restart of a workflow correctly (integration)

o Whatever data files the system creates must be updated when a user intervenes and

changes the normal running pattern of a workflow. The system must reinitialize this

data to prevent incorrect statuses from being sent.

• The system should log all actions taken (integration)

o For administrative and debugging reasons, all actions taken by the system should be

written either to a specific or global log file.

28

3.2.2 Implementation Considerations
After investigating the innards of the portal and discussing them with members of the LPDS, two

different solutions seemed possible: status change detection by either polling or detection

through events.

3.2.2.1 Polling
At its core, polling involves occasionally checking a piece of data to see if it has changed, and

then taking the appropriate action when it has. Typically, this is implemented by starting a

separate thread to monitor the data in question. The thread will track the last status it reads,

check for new statuses, and then sleep. For status change notifications, the system can be shown

with the following diagram.

Figure 3.5 - Polling Flow of Events

In this case, when a job status changes, this can be reflected in a change in the entire workflow

status. The monitor thread polls for this, and if it detects a change then it initializes the

notification system that handles actually notifying the user.

29

3.2.2.2 Event Driven
An event driven system is slightly less complicated because it does not need to first determine if

it should act; rather it knows that simply by being invoked the system is telling it that in fact a

change has occurred that it needs to respond to. The event driven system would have to receive

either job or workflow statuses from another location in the system, and it could then store and

process them in similar ways to the polling system. The event driven system is reflected below.

Figure 3.6 - Event Driven Flow

This diagram reflects some of the more implementation specific portions of the system, but the

principles remain the same. Instead of reading that a job status has changed, this system actually

receives an event indicating that it has happened. This event is handled and eventually initializes

the notification system like in the polling example. The notification system stores the status

changes it has read in a different way than polling, and then sends an email.

30

3.2.3 Analysis of Implementation
Each system presents its own set of advantages and disadvantages. The polling system seems to

integrate more readily into the existing P-GRADE Portal while remaining loosely coupled. It

leverages the current utilities built into the portal (like getting workflow statuses) and just adds

another level on top of them. Moreover, since it runs completely separately from the workflow,

it is less likely to interfere with current code. However, polling does have some serious

drawbacks. First, it is very expensive in terms of resource usage compared to the event driven

system. Starting a separate thread for each workflow has the potential to put a very large burden

on the server, and it is something that would have to be tested extensively. The LPDS thought it

possible that hundreds of workflows might be executing at any one given time. Additionally, the

polling system also has a tradeoff with the accuracy of its reporting. Because it is not polling

constantly (it polls at random intervals to avoid monopolizing the processor), it can never be as

accurate as the event driven system. It will never be off by more than a few seconds, but this

could be important. Another major disadvantage appears when considering the premature

termination of a workflow. The thread must be initialized every time a workflow is submitted

and unfortunately, because of recovery from an error state, there are many places that submission

can happen within the code. This means that the monitor thread will be tightly coupled with the

workflow submission process.

The event driven system manages to avoid many of the problems plaguing the polling system. It

eliminates the excess overhead by only running when an event is actually fired. This also allows

it to report with a greater degree of accuracy and eliminates the problem with rescuing and

restarting workflows. Since the notification system would only run when invoked, the event

driven system must make sure that all data it calculates is stored in a more permanent way than

as a variable in a class. If a workflow enters into a “rescue” status the data remains even when

31

the workflow is restarted. In practice it is slightly more complicated, though certainly not as

much so as restarting a workflow when polling. The problems with the event driven system are

mostly related to coupling. In order to receive the events it needs to accurately compute statuses,

the system needs to be invoked from several completely different locations in the portal.

Additionally, since it will be using statuses that it receives and stores, there is going to be some

code overlap with existing utilities for calculating workflow statuses.

While there are certainly tradeoffs with each system, the advantages of the event driven system

seem to win out against the polling system. The main concern is that some of the problems with

the polling system could bring the server to a crawl. A problem this serious cannot be offset by

saying the system is more loosely coupled. After discussing the potential solutions and analysis

with the rest of the lab team, the consensus was that an event driven system would work quite

well for implementing the feature.

3.2.4 Technologies Used
What follows is a brief overview of the technologies that were used exclusively by the

notification system. First, an introduction of the technology will be given followed by its uses in

the system.

3.2.4.1 Tomcat
Apache Tomcat is an application server and servlet container. It is

used to host and serve JavaServer Pages (JSP). Tomcat is an open

source project distributed under the Apache Software License.

Initially developed as a reference servlet implementation by Sun Microsystems, Tomcat was

eventually donated to the Apache Software Foundation for further development [5].

32

Tomcat is used as the application server to host a number of web applications on the portal

server. The two main applications hosted are GridSphere (the actual portal) and the Grid portal

itself.

3.2.4.2 GridSphere
GridSphere is a portlet container based

on the JSR 168 portlet API standard. It allows for the easy integration of new portlets into the

system, thereby extending its functionality [1].

On the portal server, GridSphere is used to expose all of the functionality of the portal to the

user. Using a vast array of portlets, functionality that would otherwise only be available over the

command line is delivered via a web interface. GridSphere also provides some of the portlets

itself, including the user authentication portlet.

Figure 3.7 - The P-GRADE Portal Running Within GridSphere

3.3 Common Technologies Used

3.3.1 Java

33

Java is a high-level, object oriented programming language developed by

Sun Microsystems [2]. Originally developed as a language for use on Sun’s

*7 multimedia controller, Java soon found itself more at home with internet

applications. In stark contrast to the completely static and non-interactive

content that existed on the Internet at the time, Java provided the ability to

add user controllable animations [7]. Currently in its sixth major version,

Java continues to be a popular development platform, enabling developers to [16]:

• Write software on one platform and run it on practically any other platform

• Create programs to run within a web browser and web services

• Develop server-side applications for online forums, stores, polls, HTML forms

processing, etc.

• Combine Java technology-based applications or services to create highly customized

applications or services

• Write powerful and efficient applications for mobile phones, remote processors, low-cost

consumer products, etc.

Java has proved to be so useful because of the goals the developers had when creating it:

• Simple, Object Oriented and Familiar

o When dealing only with the core functionality of Java, it is in fact a relatively

simple language that can be understood by someone with limited programming

experience. This in conjunction with its object-oriented design makes it a

powerful tool for beginners. In addition, the developers of the language decided

34

to base it around C++ syntax, while abandoning some of the complications that

C++ carried. This made it more accessible to already experienced programmers.

• Robust and Secure

o With extensive error checking and built-in memory management, Java avoids

many of the problems typically found in C and C++. Errors in Java code are more

frequently logic based, rather than a result of unexpected memory allocation

behavior. In addition, the Java Virtual Machine (JVM) protects code from

malicious attacks.

• Architecture Neutral and Portable

o Java code is not directly compiled; rather it is first compiled into an intermediate

bytecode. This bytecode can be executed on any machine for which there exists a

JVM – the architecture specific implementation that allows Java to be executed.

• High Performance

o While not as fast as compiled code, Java makes up for this by allowing its

interpreter to run without needing to run-time check the environment. In addition,

when speed is absolutely an issue, Java can interface with native compiled code.

• Interpreted, Threaded and Dynamic

o As with any modern language, Java is multi-threaded, allowing it to run multiple

applications simultaneously. Its dynamic nature comes from its class linking

(since the language itself is statically typed). Java can dynamically link in any

library, allowing for greater flexibility when delivering distributed and networked

applications.

The core portal is built entirely in Java, including many other Java technologies (see below) [28].

35

3.3.1.1 JSP & Servlets
JavaServer Pages (JSP) technology allows easy integration of dynamic and static web content.

Much like Java, JSP is platform independent and can be deployed using a number of servers

including Apache Web Server or Internet Information Services with third party servlet containers

and WebSphere, GlassFish, Tomcat and others. JSP is designed so that the presentation layer is

separated from the content generation, enabling someone without extensive knowledge of Java to

easily change presentation without affecting the content. JSP allows for embedded Java using

scriptles and provides its own expression language: the JavaServer Pages Standard Tag Library

(JSTL) [13].

JSP is an extension of Java Servlet Technology. In many cases, JSP is directly compiled into a

servlet for execution on the server. However, the more powerful combination of JSP and

servlets comes from the so-called Model 2 architecture. While Model 1 architecture uses the JSP

page to handle both request and response, Model 2 separates this and moves all logic into a

servlet that handles the request. The job of the JSP page then becomes simply to render the

content; all logic and processing is removed [26].

Figure 3.8 - JSP Model 2 Architecture [26]

36

3.3.1.2 Portals & Portlets
At their core, portlets are “web components -like Servlets- specifically designed to be aggregated

in the context of a composite (portal) page” [10]. Put more simply, a portlet is an application

designed to produce a fragment of the markup necessary to render a page. It is only responsible

for the rendering of its own small view, and the portal page handles joining the various portals

together to form a single web page.

Figure 3.9 - Elements of a Portal Page [23]

The portal however, is responsible for more than simply content and portlet aggregation. The

portal also serves to control the look and feel of the view presented to the user – the menus,

styles, etc. In terms of functionality, the portal also typically provides a set of common services

that can be applied to all portlets. Examples include a common login, where a user can login to

the portal and then access all of its portlets, and personalization, where a user can change style

settings and even which portlets they want displayed on their page.

37

Since the P-GRADE Portal is just that – a portal – it follows that all user interface development

comes in the form of portlets. A number of portlets are necessary for the features being

implemented. Primarily these portlets will be used for editing settings.

3.3.1.3 NetBeans
The NetBeans Integrated Development Environment (IDE) is a

free, open-source tool for working with a variety of languages and technologies, including Java,

C/C++, Ruby, etc. [20]. Originally developed by Sun Microsystems, the IDE was made open-

source in 2000 to further its development and bring in more community support [29].

For the purposes of this project, NetBeans provides the best support for the features that are

needed. It is integrated tightly with Java Enterprise Edition (J2EE) and allows the entire P-

GRADE Portal to be hosted locally, if necessary [11]. It also provides all of the features

expected in a modern IDE, including auto-completion, automated building and support for

multiple technologies (in our case, JSP, Java, and HTML, just to name a few).

38

Figure 3.10 - The NetBeans IDE

3.3.2 XML
Extensible Markup Language (XML), developed in the late 1990s, is

a specification for writing custom markup languages. XML is used primarily to store and transfer

structured data. Ready access to standardized XML libraries on most platforms allows XML to

be used to transfer data between many platforms, thus significantly increasing the potential for

interoperability[3].

For this project, XML is used to transfer data between the portal servers and the web server,

particularly for the exportation of user information.

39

3.3.3 XHTML

Extensible Hypertext Markup Language (XHTML) is a document model based

on Hypertext Markup Language (HTML) that is conformant to XML standards. As such, all

valid XHTML documents are also valid XML documents and thus can be parsed using standard

XML libraries.

XHTML and HTML documents are rendered by web browsers and are used by the majority of

websites to display textual and graphical content. HTML may be sent unmodified by a web

server or generated on the fly by server-side scripts. Although originally designed with static

content in mind, HTML has been extended to support dynamic content via JavaScript and other

client-side scripting languages.

For this project, the user interfaces for both the account creation system and the notification

system are entirely written in XHTML. The account creation system uses PHP running on a web

server to generate XHTML, while the notification system uses JSP running on an application

server.

3.3.4 JavaScript

JavaScript is a scripting language typically used by web browsers to enable client-side scripting

within HTML pages. Written by Brendan Eich[30], JavaScript was first released as part of the

Netscape web browser in December 1995. JavaScript, although named after Java, is a

fundamentally different language. JavaScript has dynamic typing, weakly typed variables, and

prototype-based classes. Functions are first-class, which means that they may be manipulated

like normal objects and can be called dynamically. These features make JavaScript more

accessible to non-programmers than typical programming languages[12].

40

For this project, JavaScript is used to display a form when submitting a workflow and to provide

dynamic checking of fields in the account request form before they are sent to the web server.

Additionally, JavaScript is used in the administrator manual to give users the ability to expand or

collapse individual sections of the manual.

4 Imp

4.1 Us
The acco

Figure 4

connecte

using PH

Java serv

compone

The acco

Figure 4

shown, e

common

The web

computer

firewall a

plementa

ser Accoun
ount creatio

4.1 are the

ed by data fl

HP scripts, an

vlets and se

ents.

ount creation

.2 is one po

each server

account cre

server and p

r or a separ

and only the

ation

nt Creation
on system co

most signifi

flow. The bl

nd the green

ervices. The

Fig

n system wi

ossible topo

is in a sepa

eation websi

portal server

ate compute

 specific por

n System
onsists of s

ficant compo

lue compone

components

arrows ind

gure 4.1 - User a

ill work with

ology; other

arate physic

ite connecte

rs each have

er. For addit

rts needed ar

41

several comp

onents that

ents reside o

s are part of

dicate the di

account creation

h a wide va

configurati

al location.

d to one or

 their own d

tional securi

re left open.

ponents on

make up th

on the web

f the portal se

irection data

n components

ariety of serv

ons will wo

There is a

more server

database, wh

ity, each we

multiple se

he account

server and

erver and are

a flows betw

ver topologi

ork as well.

single web

rs running P

ich can be o

eb server is

ervers. Show

creation sy

are impleme

e implement

ween the va

ies. Describ

In the topo

server host

P-GRADE p

on either the

located beh

wn in

stem,

ented

ted as

arious

ed in

ology

ing a

ortal.

same

hind a

4.1.1 P
The port

on a Java

the porta

created a

services a

4.1.1.1
The acco

and to ve

Portal Serve
al server is

a application

al server to

along with se

are describe

Account cr
ount creator

erify accoun

Figure

er Interface
implemented

n server such

submit acc

ervices that i

d in the follo

reator servl
servlet proc

nt request in

e 4.2 - Account

e
d as two we

h as Apache

count reques

implement a

owing sectio

let
cesses reques

nformation. T

42

creation system

eb applicatio

Tomcat. So

sts and retr

account crea

ons.

sts from the

The servlet

m server topolog

ons, GridSph

o that the we

rieve inform

ation and aut

e web server

uses the aut

gy

here and Szu

eb server cou

mation, sever

thentication.

r to create ne

thentication

upergrid, run

uld interface

ral portlets

The servlet

ew user acco

service to c

nning

e with

were

ts and

ounts

check

43

that the web server has the correct permissions and then calls methods exposed by the account

creator service to do the actual work of creating or verifying a user account.

4.1.1.2 Information query servlet
The information query servlet processes requests from the web server to retrieve information

pertaining to user accounts. After checking permissions with the authentication service, the

servlet retrieves the appropriate information and outputs it in an XML format that can be read by

the web server. The following information may be requested:

• All of the roles and groups that a user may request to join as part of an account request.

• The user name, full name, email address, and organization of each user with an account

on the portal.

4.1.1.3 Account creator service
The account creator service provides methods for creating new user accounts, verifying user

account information, and verifying that users have the appropriate permissions to create user

accounts. The service integrates with built-in user management services to create users on the

portal and retrieve information about existing users.

4.1.1.4 Authentication service
The authentication service provides a password-based authentication mechanism for verifying

that a web server connecting to a servlet on the portal server has the appropriate permissions.

Beforehand, the portal administrator must create a user account with a specific role on the portal.

When the web server attempts to connect to a servlet, it posts the user name and password for the

account that the portal administrator had created. The servlet then invokes the authentication

service, which ensures that the password is correct and that the user has the correct role. If

44

authentication fails, an error message is sent back to the web server indicating the authentication

failure.

4.1.2 Account Request Form

The account request form, shown in Figure 4.3, provides a means for a user to submit an account

request for approval by an administrator. The user fills out his or her name, desired user name,

password, email address, and other contact information. Additionally, the user selects which grid

(or grids) he or she wishes to use and optionally may request membership in roles or groups

defined on the grid portals. Roles and groups give users special permissions or access to

restricted parts of the portals.

To prevent users from spamming the administrator with account requests, an image confirmation

system is employed. A user must be able to match a code displayed in an image before the

account request may be processed by the web server. Since a high-quality image confirmation

system is difficult to design and implement, an existing system written for the phpBB forum[24]

software was chosen.

45

Figure 4.3 - Account request form

4.1.3 Account Request Verification Email

The account-request verification system allows the administrator to retain full control over who

is allowed to create an account. When a user submits an account request, an email containing the

details of the request is sent to the administrator. In the email, shown in Figure 4.4, there is a link

46

to the account request dispatcher, which provides accept/deny options to the administrator, sends

the account request to each portal listed in the request, and then notifies the administrator if there

were any errors. If one or more portals returned error messages, the administrator is provided an

option to resubmit the account request to each of the portals that were in error.

Figure 4.4 - Access request verification email

47

4.1.4 Administration Console

The administration console provides a common login for administrative tasks pertaining to the

account creation system. The components that make up the administration console are described

in the following sections.

4.1.4.1 Login Form
The login form, shown in Figure 4.5, provides a mechanism for the administrator to authenticate

with the administration console. If the administrator attempts to navigate to a restricted page, he

or she is presented with the login form. After logging in, the administrator is taken directly to the

page that was originally requested. Once the administrator has logged in, he or she remains

logged in for the duration of the session or until explicitly logging out using the login form.

Figure 4.5 - Administration console login form

4.1.4.2 Account Request Verification Form
The account request verification form, shown in Figure 4.7, is activated when the administrator

clicks on the link in the verification email sent when a user submits an account request. A form is

displayed which allows the administrator to choose whether to accept or deny an account

request. A field is provided which allows the administrator to send additional comments to the

48

user who requested the account. The administrator has four options for how to handle an account

request: accept the request, deny the request, accept the request but with the roles and groups

reset to their default values, or ignore the request. The third option is provided in case a user

requests roles that he or she should not have, but the administrator feels that the request is

otherwise valid. A request should be ignored if the administrator does not wish to send any

notification to the user or if the email address provided by the user is invalid. Once the

administrator submits the form, the server forwards the account request to each portal listed in

the request and displays any error messages that were returned. If the account request succeeds

on all portals, a success message, shown in Figure 4.7, is displayed. However, if the account

request fails on one or more portals, the administrator is presented with an option to resend the

account requests to each portal that returned an error message, as shown in Figure 4.8

Figure 4.6 - Account request verification form

49

Figure 4.7 - Account request verification success

Figure 4.8 - Account request verification failure

4.1.4.3 User Information Exporter
The user information exporter, shown in Figure 4.9, allows the administrator to download user

information (user name, full name, organization, email address, portals) for all of the users on

each grid managed by the account creation system. The format chosen was a comma-separated-

value (CSV) file. The CSV file format was chosen because it is compatible with most

spreadsheet software and requires significantly less work to implement than other formats such

as Excel spreadsheets.

The main purpose of the exporter is to allow the administrator to send mass emails to all of the

users on the grids. As such, it was important that each email address only be listed once. To

accomplish this, the user information is stored in an associative array keyed by a lower-case

version of the email address. If another user has the same email address (excluding case) as a

user already listed in the array, the user information is merged using the following rule: for each

field (user name, full name, organization), the first non-empty value encountered is used. For

50

example, if there are two users { “JDoe”, “John Doe”, “”, “jdoe@sztaki.hu”, “SEE-GRID” } and

{ “JDoe2”, “John Doe II”, “SZTAKI”, “jdoe@sztaki.hu”, “HunGrid” }, the result of merging

them would be { “JDoe”, “John Doe”, “SZTAKI”, “jdoe@sztaki.hu”, “SEE-GRID, HunGrid” }.

Figure 4.9 - User account exporter

4.1.4.4 Settings Manager
The settings manager provides an interface for changing settings that affect the operation of the

account creation system. The following settings are available:

• Require confirmation: If set to true, the user must enter a confirmation code when

requesting an account.

• Use GD confirmation: If set to true, the GD version of the confirmation image is used.

This version is better than the non-GD version, but requires that the GD2 extension be

enabled.

• GD confirmation foreground noise: If set to true, foreground noise is used to make the

GD-based confirmation harder.

51

• GD confirmation X grid: The average number if pixels between horizontal grid lines in

the GD-based confirmation.

• GD confirmation Y grid: The average number if pixels between vertical grid lines in the

GD-based confirmation.

• Session lifetime: The lifetime of a session, in hours. This only applies to the account

request page.

• Servlet authentication key: The key used to encrypt the servlet user name and password;

should be a unique (preferably random) string that is difficult to guess.

• Admin user name: The administrator's user name.

• Admin password: The administrator's password. This value cannot be retrieved, as it is

stored in a hashed form in the database.

• Admin email address: The administrator's email address.

52

Figure 4.10 - User account creator settings

4.1.4.5 Portal Information Editor
The portal information editor, shown in Figure 4.11, is used to add or remove portals from the

account creation system or edit information about an individual portal. The following fields are

available for each portal:

• Portal ID: The name that is used internally by the account creation system when referring

to a given portal.

• Portal name: The name is displayed to users.

• Portal URL: The URL that points to the portal's root directory (for example,

https://portal.organization.com/szupergrid).

• Servlet user name: The user name of a portal user that has been given the

ACCOUNT_CREATOR role.

• Servlet password: The password corresponding to the servlet user name.

53

• Account creator user name: The user name of a portal user that has been given the

SERVLET_CLIENT role.

• Account creator password: The password corresponding to the account creator user name.

Figure 4.11 - Portal information editor

4.1.5 Security

Prevention of unauthorized user account creation is a key requirement of the account creation

system. To prevent an attacker from masquerading as the web server and communicating directly

with a portal, each portal requires the web server to authenticate with a “servlet” user name and

password. These credentials are stored in an encrypted form on the web server’s database. To

construct the encryption key, a password stored in the database (and modifiable by the

administrator) is concatenated with a ‘salt’ string and then sent through a one-way hash. The salt,

whose purpose is to increase the difficulty of password-guessing attacks[19], is a random string

stored as a constant in the account request system’s source code. In order for an attacker to

54

decrypt the servlet credentials, an attacker will need access to the salt and the administrator’s

user name and password. As the salt should be different for each instance of the account request

system, an attacker would need to gain access to both the web server and its database in order to

obtain the user name and password used to communicate with the portals. Creating an account on

a portal requires an additional “account creator” user name and password. As with the servlet

credentials, the account creator credentials are stored in the web server’s database. However, the

account creator credentials are encrypted using the administrator’s user name and password as

the key. The result of this is that only the administrator is capable of retrieving the information

required to connect to a portal and create a user account.

There are many ways an attacker can gain access to a system, deny others access to the system,

or cause problems. Shown in Figure 4.12 is an analysis of the damage that could be caused by

intercepting various transmissions between computers. An additional attack vector is SQL

injection. SQL injection is accomplished by entering information into a form in such a way that

it will cause arbitrary SQL statements to execute on the database. For example, a form could ask

for a user name and then insert it into table using the following PHP code:

mysql_query(“INSERT INTO user_table (name) VALUES (‘” . name . “’)”);

If an attacker typed “Joe ‘; DELETE FROM user_table;” then all of the users would be deleted.

The attacker was able to inject an SQL statement by using the string terminator (an apostrophe)

to escape out of the user name string and then a semicolon to terminate the current command. At

this point, the rest of the text can be any SQL command an attacker chooses.

The account creator uses two methods to prevent SQL injection attacks. Built-into the MySQL

library for PHP is a limit that an SQL query may contain only a single SQL command. If

multiple commands are issued simultaneously, only the first is actually transmitted to the

55

MySQL server for execution. As a result, the particular form of SQL injection described above

would not work, as the “DELETE FROM user_table;” statement will never be executed. The

second method used to prevent attacks is to escape all strings before inserting them into an SQL

query. Apostrophes and other potentially problematic characters are replaced by escape

sequences so that they are recognized by MySQL as part of a string instead of being given a

special meaning.

56

Figure 4.12 - User account creator vulnerability analysis

Web server

Portal server 1

Portal server 2

Portal
database 1

Portal
database 2

User

Admin

Password via SSL: If
compromised, an
attacker can later log
onto portal servers as the
user and possibly create
malicious workflows.

Web server admin password via SSL: If
compromised, an attacker can view/change
settings on the web server or create non-
admin users on the portal

Session id via SSL and stored in a cookie:
If compromised, an attacker will need to
alter the session information on the server
or have the same external IP address as the
administrator in order to hijack the session.
If the session is hijacked, an attacker can
view/change settings on the web server or
create non-admin users on the portal for
the duration of the session.

MD5-hashed
passwords via
database
connection: If
compromised, an
attacker is unlikely
to succeed in
determining the
password.

User, account creator, and
servlet passwords via SSL:
If compromised, an
attacker can log onto portal
server as non-admin users
or create additional non-
admin users.

Web server
database

SHA1-hashed web server admin password
via database connection: If compromised,
an attacker is unlikely to succeed in
determining the password.

AES-encrypted servlet, account creator
passwords via database connection: If
compromised, an attacker cannot do
anything useful without also knowing the
web server admin username and password.

57

4.2 Email Notification System
The base for the email notification system is a module developed with colleagues at SZTAKI

that is currently in use in WS-PGRADE portal and serves the same purpose. That base consisted

of several Java packages and a single portlet. The packages were:

• hu.sztaki.lpds.pgportal.services.notify – The main package including facilities for setting

and retrieving the user’s notify settings as well as a set of utilities associated with

notifications. Lastly, it contains the thread that actually performs the notifications.

• hu.sztaki.lpds.pgportal.services.notify.EventHandlers – Contains the classes that responds

to a status change event and determine if a notification is necessary.

• hu.sztaki.lpds.pgportal.services.notify.Plugins – Contains the interface that a notification

plugin must implement in order to be used in the system, as well as a concrete example

(email).

The portlet itself is a JSP and Java file pair. The JSP page is responsible for displaying to the

user all the preferences that they currently have set and allow them to make any necessary

changes. The Java file is the logic behind the JSP page that handles updating and displaying of

preferences.

4.2.1 Portlet Integration
Before any logic could be inserted into the notification system, it had to actually be added to the

portal. Because all portlets are based on the JSR-168 specification, it is a straightforward

process to add them. After inserting the class and JSP files into their appropriate places in the

server, the file “portlet.xml” had to be modified to include an entry for the notification portlet.

The file simply defines the portlets to be used in the system. The entry for the notification

portlet is:

58

 <portlet>
 <description xml:lang="en">Notify</description>
 <portlet-name>notify</portlet-name>
 <display-name xml:lang="en">Notify Portlet</display-name>
 <portlet-
class>hu.sztaki.lpds.pgportal.portlets.notify.NotifyPortlet</portlet-class>
 <expiration-cache>0</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <supported-locale>en</supported-locale>
 <portlet-info>
 <title>Notifications</title>
 <short-title>Notify</short-title>
 <keywords>workflow</keywords>
 </portlet-info>
 </portlet>

Figure 4.13 - Notify Portlet File Entry

Next, the portlet had to be added to the menu structure of the portal so that it could actually be

accessed by a user. This was done by adding an entry to another file, “layout.xml”. This file

defines how the menu structure will appear on the portal. The entry for the notification portlet is:

 <portlet-tab label="notify">
 <title lang="en">Notify</title>
 <table-layout>
 <row-layout>
 <column-layout>
 <portlet-frame>
 <portlet-class>szupergrid#notify</portlet-
class>
 </portlet-frame>
 </column-layout>
 </row-layout>
 </table-layout>
 </portlet-tab>

Figure 4.14 - Notify Portlet Layout Entry

 After all of these changes were made and the portal was restarted, the portlet was (following

some other modifications, described below) usable.

4.2.1.1 Modifications from WSPGRADE Portal
Even though it was possible to plug the portlet into the P-GRADE Portal quite easily, some

modifications needed to be made before the full functionality of the portlet could be established.

First, several errors had to be addressed. The new portlet included several packages that were

59

not currently available in P-GRADE, so their respective JAR files had to be added to the

classpath. The JSP page also included a tag library that was unavailable in the P-GRADE Portal.

To fix this, all calls to the tag library were removed and replaced with the appropriate markup.

Second, the JSP page had extra functionality for defining a storage quota notification, although

this functionality was never implemented in WS-PGRADE. Therefore, the entire form was

dropped from the portlet in the P-GRADE Portal. With these changes made, the portlet was able

to read and write its settings as expected. The persistent storage of these settings was in a file

called .notify.xml. The file itself resides in each user’s directory. An example of this file is:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<notify>
 <prop key="wfchg_mess" value="Time: #now#
User:
#user#
Portal: #portal#
Workflow: #workflow#
Old
Status: #oldstatus#
New Status: #newstatus#
Details:

#details#"/>
 <prop key="email_addr" value="josh.nedelka@gmail.com"/>
 <prop key="wfchg_enab" value="1"/>
 <prop key="email_enab" value="1"/>
 <prop key="email_subj" value="subject2"/>
</notify>

Figure 4.15 - Notify User Preferences

The only particularly interesting field is the “wfchg_mess”. It includes several keys (delimited

as “#keyname#”, though not to be confused with entries of the form “#number;” that are

effectively line breaks) that are replaced by their appropriate values when the notification

message is generated.

4.2.2 Submit Form
When choosing to submit a workflow, the user should be allowed to choose when they would

like to be notified of status changes. This is one of the requirements of the notification system,

and the submission form was designed to satisfy it. It is also functionality that is included in

WS-PGRADE, but since the mechanisms for submitting workflows are so different in the two

60

portals, it was necessary to rewrite the submission form rather than migrate it from WS-

PGRADE.

Figure 4.16 - Workflow Submission Form

The workflow submission form allows a user three options for notifications (shown above). It

also notes that notification on any status change will result in a large amount of emails

(proportional to the number of jobs and amount of parallelism). After the user submits their

choice, the selection is written to the file “.notify” in the workflow’s directory so that it can later

be accessed by the notification system.

One important consideration here is the handling of the “Submit All” button. The functionality

is exactly as described: it submits all the workflows currently in the user’s workflow manager.

However, since it is possible to specify a level of notification for each workflow, it was

necessary to choose one of two possibilities for the submit all:

1. When submit all is pressed, provide functionality that will allow the user to choose a

different level of notification for each workflow, or

2. When submit all is pressed, provide allow the user to choose one level of notification and

have it apply to all workflows being submitted

61

For the purposes of simplicity, programmatically and from a user’s perspective, the latter choice

was implemented.

4.2.3 Backend Integration
Compared to the front-end pieces, the backend was significantly more complex. The largest

difficulty was that the P-GRADE Portal was not designed in such a way to make notifications

easy, though WS-PGRADE was. As an initial overview, a more detailed view of the event

driven system that was implemented is shown below.

Figure 4.17 - Event Driven Notification Implementation

4.2.3.1 Retrieving and Handling Status Change Events
Initially, there was only one point of capture for the status change events. The function

getStatus() inside of wkf_commons.sh is invoked each time that a job within a workflow changes

its status. The function then invokes a servlet that passes the event along to the notification

system. The status change event consists of four parts: username, workflow name, job name and

new job status. The username and workflow name are necessary so the correct location of the

62

notify preference files can be found (main notify preferences are stored in the user’s directory,

while workflow notify preferences are stored in the workflow’s directory). The job name is used

as the key when storing and retrieving the statuses. And of course, the new job status is the

reason that the event has been fired.

After the notification system has been invoked, it proceeds to look up the previous job statuses

that it had stored. These are stored in the file “.notify_jobstatuses”, located in the workflow’s

directory. An example of this file is:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<workflow>
 <job jobname=”Job1” status=”3” />
 <job jobname=”Job2” status=”1” />
 <job jobname=”Job3” status=”5” />
 <job jobname=”Job4” status=”2” />
</workflow>

Figure 4.18 - Workflow Job Status File

The new job status is inserted into this list, by either adding a new entry or updating the

appropriate job. With all the current job statuses, it is now possible to determine a workflow

status. If all job statuses show finished, then the workflow itself is complete. If any one job

shows running, then the workflow is running. If any one job shows an error, then the workflow

is in error, though this does not mean that the workflow has stopped running. The workflow can

continue until it is no longer possible to execute any other jobs without resolving the error.

However, not all possible workflow statuses can be established simply by looking at job statuses.

Specifically, a rescue workflow status can never be determined, since it depends on two things:

the workflow being stopped and jobs being in an error state. The job statuses can determine the

error, but not the termination of the workflow. To get around this problem, the notification

system is called from another location as well. The script watchWorkflow.sh runs until a

63

workflow terminates (due to completion, error, etc.). When it detects the termination of a

workflow, it alerts the notification system but does not pass in any other information. The

notification system looks at the previously calculated workflow status, and if it determines that a

workflow is in error, then it notifies the user of the appropriate rescue status.

After having established the new workflow status, the system looks up the last previous status

that it had calculated. This is stored in the file “.notify_status” in the workflow’s directory. The

new status can be compared with the old, and then a series of checks occurs to see if a

notification should be sent. They are (in order from first to last):

1. Are the two statuses different?

2. Did a user choose to be notified of this status when they submitted the workflow?

3. Is the current plugin enabled to send notifications?

4. Is the entire system enabled to send notifications?

If any of these questions is answered negatively, then no notification is sent and the process is

complete. If they are all answered affirmatively, then the notification is sent. The first and

second questions only apply once, before starting the specific notification plugins. The third and

fourth questions are handled individually by the respective plugins.

4.2.3.2 Persistence of Data
For the three files that the notify system uses for storing preferences and data, it is important to

recognize for how long these should be maintained, and when they should be deleted, if at all.

This is relevant only within the context of a workflow that terminates prematurely. Workflows

that finish successfully can safely have their notification files deleted with no ill effects. The

first file, “.notify”, which stores the user’s preference for notification should technically never

64

need to be cleared. Since the choice is only given to the user when they submit (and not when

they resume or rescue a workflow), the system assumes that this preference will persist until

completion or abortion and resubmission of the workflow. If the user does resubmit, they will

once again be given the option to choose a notification preference, which will overwrite the old

one.

The second file, “.notify_status”, which stores the workflows last recorded status, should also

only be cleared on workflow termination. However, unlike “.notify”, “.notify_status” needs to

be cleared. The reason for this can be illustrated with a simple example: if a status of “running”

is recorded and then the workflow is aborted and resubmitted, then when the notification system

goes to look up the last known status it will still see “running”. This is clearly inaccurate since

the workflow has just been started. Therefore, termination of a workflow must clear this file.

Since there are many ways that termination might occur and since some of them are difficult to

detect, it is easier to say that the “.notify_status” file should in fact be cleared only on workflow

submission. This guarantees that when a workflow is started, it has no last known status.

The final file, “.notify_jobstatuses”, which stores a list of all current job statuses, has slightly

different behavior than the previous too. When a workflow is first submitted, it is completely

cleared just like the other files. However, when a workflow is rescued from an error state, the

file has to be modified slightly. Any jobs not in the completed state when the workflow is

rescued have their statuses reset since they are going to be run again. Consider the case where

several jobs were in error when the workflow was rescued. If the statuses were not reset, then

when a job status change event was passed into the system, one of those jobs might no longer be

in error, but the rest certainly would. This would register the workflow with an “error” status,

when this is certainly not the case.

65

4.2.3.3 Notification Utilities
The last major portion of the implementation was designing a set of utilities to expedite the

process of performing the notifications. Since most of the persistent notification data is stored as

XML, many of the utilities are focused on setting or retrieving portions of a document.

Specifically, they perform some of the functions described above, including resetting all job

statuses, setting job statuses after a rescue, clearing persistent workflow statuses, setting

notification frequency and handling user preference updates. The utilities also provide some

helper functions for building the notification messages that can be sent out, including adding a

timestamp and a human-readable description of the current job statuses.

66

5 Testing

5.1 User Account Creation System
The user-account creation system is largely user-driven and involves communication between

multiple servers. As such, automated testing would be difficult to implement and thus all testing

was done manually.

5.1.1 Functional Testing
The initial stage of functional testing was accomplished by going through the steps of requesting

and then approving or denying a user account, and finally logging into the portal to verify that

the account was created successfully and that all of its attributes were correct. Additionally, the

administration console was tested by changing settings and then verifying that the database was

updated correctly and that the settings had the desired effect on the account creation process.

The purpose of the second stage of functional testing was to ensure that the account creation

system would work in a production environment as opposed to the sandbox-like environment in

which it was developed. The source code for the account creation system was sent out to the web

master and the portal administrator to be installed on the production web server and portal server.

Next, the person normally responsible for creating user accounts conducted manual tests of the

system to ensure that it worked correctly and exposed the desired functionality.

5.2 Email Notification System
The notification system test consisted of two main parts (performance and functionality), each of

which was broken up into more manageable and measureable pieces.

5.2.1 Performance Testing
The two types of performance testing that the system was put through were testing of the system

under various loads, and testing the system compared to a base implementation. 1, 20 and 50

workflows were run, first with the notification system sending emails after every workflow status

67

change. Next, the entire notification system was disabled (none of its code was run) and the

same number of workflows were executed again. To measure performance, the Linux

application “top” was used in batch mode, recording statistics for the java process on the system

at intervals of one second.

5.2.1.1 One Workflow
The processor and memory usage for the java process with and without the notification system

appear in Figure A.1 - 1 Workflow with Full Notification and Figure A.2 - 1 Workflow with No

Notification, respectively. It is clear that the memory usage is the same for both graphs (and

indeed, it changes little even up to the 50 workflows). However, there is certainly a discrepancy

where processor usage is concerned. It is important not to look at the absolute heights of the

processor spikes (justified in the section describing 20 workflows, below), but rather to look at

the changes in heights of the spikes across the lifetime of the workflow. When no notification is

enabled, processor usage typically falls between 5 and 10 percent. In general, the spikes towards

the end of the workflow are higher, though this is not always true. The “standard” spike in the

graph with notifications enabled is between 8 and 10 percent usage, though there are many more

spikes spaced throughout the graph that greatly exceed that. Ignoring the 100 percent spike, the

processor usage occasionally reaches between 20 and 50 percent. These are indicative that the

notification system is more CPU intensive, though as the next cases show, one workflow is not

necessarily characteristic of the performance graphs.

5.2.1.2 20 Workflows
The two graphs showing java process statistics with 20 workflows executing (Figure A.3 - 20

Workflows with Full Notification and Figure A.4) show something a bit more interesting than

the graphs of only one workflow. In this particular set of graphs, the typical absolute CPU usage

of the system with notification enabled is in fact less than that of the system without any

68

notification. The reason for this is that the readings were taken quite separately. Whereas most

of the graph pairs were taken back to back, leaving no time in between, the graphs of 20

workflows were separated by several days, so the condition that the server was in must have

changed substantially. This is the reason that it is unwise to simply compare the absolute height

of the various CPU spikes: they are too dependent on the state of the server. However, the

difference in heights within a single graph continues to be a strong indicator of performance.

With 20 workflows executing without notification, there is a very standard amount of CPU usage

being used that typically falls between 7 and 8 percent. There are several spikes as well, most of

which are focused during the submission phase of the workflows. It is clear that there is more

overhead with 20 workflows than with only the single one. However, when compared to the 20

workflows with notification, the system without notification is apparently more efficient. The

base for the system with notification is only around four percent, but it consistently reaches to

nearly ten percent. This is in stark contrast to the system without notifications, which only has

the sparsely placed large spikes that the system with notification shares.

5.2.1.3 50 Workflows
The two graphs showing java process statistics with 50 workflows executing (Figure A.5 and

Figure A.6) combine the features of the single and 20 workflows. Like the single workflow

graphs, the 50-workflow graph with notification has consistently more processor usage. And

like the 20 workflows graphs, the 50-workflow graph shows the same basic patterns of processor

spikes. As more workflows are added to the sample, the graphs showing with and without

notification begin to seem more and more similar. However, it is still apparent that the

frequency and size of the processor spikes relative to the baseline are more substantial with the

notification system, rather than without.

69

5.2.2 Functionality Testing
Since the portal is such a complex and user-driven piece of software, it proved difficult to

provide any automated testing facilities to verify functionality of the notification system.

Obviously, the notification system needs a workflow to be submitted and running before it can

even be called, so it was necessary to set this up manually. The two main types of workflows

were tested: normal and parameter study. Each piece of the system was tested thoroughly until

it was considered working (criteria for each individual piece are discussed below), at which point

another piece of the system was added to the tests, and everything was run again. Functionality

was verified by output logs and notifications received.

Each layer was tested under the following scenarios:

• Single normal workflow

• Multiple copies of the same normal workflow

• Multiple different normal workflows

• Single parameter study workflow

• Multiple copies of the same parameter study workflow

• Multiple different parameter study workflows

• Mix of normal and parameter study workflows

Each of these scenarios was run in several ways. First, they were allowed to go to completion.

Next, they were randomly terminated and rescued or aborted and resubmitted. Finally, errors

were introduced, fixed, and the workflows were restarted. All of the workflows used are the

samples that come with P-GRADE Portal.

70

First, a discussion on testing the main use case of the system: receiving notifications. The most

fundamental piece of the system that was tested was the ability to accurately capture the job and

workflow status change events. These occur in two places (watchWorkflow.sh and

wkf_commons.sh) and each triggers the same servlet. This was the logical first layer to test. In

order to verity the data, Tomcat’s log files were used to read from Java’s standard out. Once it

was established that each entry point was sending the appropriate data, the next layer was added.

This layer consisted of a Java Web Start file that was invoked by the servlet as well as the logic

to determine if a notification should be sent and update all statuses. This was a fairly involved

test, verifying that data files were being written and read correctly. The workflows were

suspended periodically so that the data files could be checked manually against what the log files

indicated they should contain. The notification logic itself wrote its decision to send a

notification, as well as the calculated status of the workflow, to the log file.

The final layer to be tested in the system was the actual emailing. The individual components

were the send thread and the email plugin. Initially, the email plugin was causing problems. All

other tests and logs indicated that an email was in fact being sent, despite the fact that none

appeared. Eventually, this issue was tracked to a classpath conflict, and was resolved.

5.2.2.1 Front End Testing
Two more parts of the whole system needed to be tested, both on the front end: the preferences

portlet and the workflow submission form. The preference portlet itself was straightforward to

test: it only needed to update and read statuses. A quick check of the preference file that it

wrote was enough to verify it, though bad input was tested as well.

71

The submission form had to be tested at two points: on the main workflow manager (single and

“Submit All”) and on an individual workflow’s details. Three data files had to be updated in

both cases: the .notify preference file for notification frequency, the .notify_status file for

tracking a last status, and the .notify_jobstatuses file for tracking job statuses. All had to be

wiped out on every submission. After establishing that this was the case, all functionality testing

was complete.

72

6 Conclusions

6.1 The Final Account Creation System
The account creation system achieves all of the initial requirements in addition to a multitude of

requirements added later. The account creation processes has been automated to the point that

once the initial configuration has been completed, the only thing an administrator must do when

a user submits an account request is to indicate whether the request should be accepted or denied

and optionally enter a comment to be sent along with the acceptance/denial notification to the

user.

The back-end portal components of the account creation system are already available for

download and will be included in a future release of the P-GRADE Portal. The front-end web

server components are distributed separately from the portal and may be downloaded from

SourceForge.net.

6.2 The Final Email Notification System

The notification system in its final form achieves all of the requirements initially set forth. It

provides a useful piece of functionality for end users of the P-GRADE Portal and provides portal

developers with a way to expand this functionality. The system will appear in a future release of

the P-GRADE Portal, which is freely available on SourceForge.net.

73

7 Future Work

7.1 Account Creation System
Given the short time frame of the project, implementing all of the desired features was not

possible. As a result, one of the original requested features, the bulk account creator, has been

left as a stub to be finished in later versions of the account creation system. Additionally, parts of

the system could be improved in future versions to reduce overall complexity and to improve

compatibility.

7.1.1 Bulk Account Creator
The bulk account creator, part of the administration console, provides a means for the

administrator to create a large number of user accounts simultaneously. For example, an

instructor may need to create thirty user accounts to use for a training exercise. With both the

current system and the automated account creation system, the creation of so many users would

take a considerable amount of time. The bulk account creator can cut down on that time by

generating user names, and possibly other fields, dynamically based on a template and a counter

that increments for each user created. The administrator would simply fill in the user information

once, specify how many users to create, and submit the form. At this point, all of the users are

created automatically.

7.1.2 Account Request Viewer

The account request viewer, which would be part of the administration console, would display a

list of pending account requests. Buttons would be provided to accept or deny request. There are

two ways to implement this: there could be individual buttons for each request in the list, or there

could be check boxes next to each request and a few buttons at the bottom (or top) of the page

that would accept or deny all of the selected account requests.

74

7.1.3 Testing of Portal Information
The portal information editor allows the administrator to enter the URL and credentials for

connecting to each portal. Currently, the administrator must attempt to create an account or

otherwise attempt to connect to a portal in order to verify that the information entered is correct.

The portal information editor could be extended with a feature that would allow the administrator

to click on a button and then the web server would attempt to contact each portal and then inform

the administrator of any failures. This way, the administrator would know immediately if any

information is incorrect.

7.1.4 Improved Database Support
Currently, the only type of database supported is MySQL. As future work, a developer could

modify the code so that it uses database-independent libraries and thus support other database

types such as Oracle or Microsoft SQL Server.

7.2 Notification System
The implemented notification system, while extremely useful to users, presents only a bare bones

set of features. While it would have been impossible to implement everything, what follows is a

list of features that would be well suited for release in future versions.

7.2.1 Additional Plugins
The first point of extension for the system concerns the actual plugin implementations. The

current system only allows emails to be sent, but there is a simple interface to implement in order

to develop new plugins.

7.2.1.1 SMS Messaging
SMS (text) messaging is likely the next logical means of notification following email. It is

useful for users of the portal who do not have constant access to email, but who do have a cell

phone. The difficulty in implementation is there are no free libraries that expose the necessary

75

functionality. A library would need to be licensed from an outside company or developed

internally, costing either time or money.

7.2.1.2 Phone Calls
Notifying users through direct phone calls, rather than via some kind of text-based format,

presents another attractive, yet problematic, option. It makes the application much more

accessible, both in terms of how it could be used (to a cell phone, landline, etc.) and who could

use it (blind users would no longer need assistance). However, actually calling a user to report a

status change presents a new set of problems. From a usability standpoint, it would get very

frustrating if the system was attempting to call someone every few seconds. There would have

to be more control over when a notification would be sent. This approach is also different from a

technical standpoint. Now, instead of simply sending text in some way, it would have to first be

converted to speech. There would also likely be options to allow the user to replay the

notifications, if they desired, so there would have to be interaction with a touch-tone phone as

well. Like the SMS option, calling users would certainly require external libraries.

7.2.2 More Monitoring
Now, only workflow statuses are being monitored, and even they are only being monitored in

very specific ways. Both of these limitations present interesting expansion options.

7.2.2.1 Granularity of Notification
The user is given two options for how they would like to be notified: on any workflow status

change and only on workflow completion. This could be extended to allow a user to choose

specific statuses that they would like to be notified of (there are currently nearly 10 statuses that

a workflow can be in).

76

There could also be options to allow certain events to automatically trigger a notification,

regardless of whether or not the workflow status has changed. For instance, completion of a

specific job could send a notification to the user if they so chooses.

7.2.2.2 Types of Monitoring
Initially, there was a form to let users set up a notification to alert them to the amount of storage

that they had remaining, whenever it changed. This feature was dropped from the current P-

GRADE Portal version of the notification system, but it would likely prove a useful feature to

add in the future. Continuing with that basic idea, there are many things that a user might like to

be notified of that the Portal currently tracks. Notifications could be tied into the Information

System to alert users when various elements change states. There could also be administrative

notifications sending statistics for the entire server. Realistically, any portion of the portal could

be given its own highly customizable set of notifications. While that would require a lot of work

designing the front end portlets and back end integration, at least some work could be reused.

The actual notification mechanisms could easily be modified to support notifying from multiple

different sources.

7.2.2.3 Parameter Study Workflows

In the current system, a parameter study workflow is treated just like a normal workflow. That

is, notifications are sent whenever a job triggers them. However, parameter studies are unique in

that they contain and monitor element workflows and only have a few special jobs that they can

run. What ends up happening is a parameter study will report no status changes (it is almost

always in the “Submitted” state”) until all of its element workflows have terminated. It would be

convenient to allow the user to receive notifications for these element workflows, if they choose,

so that the actual progress of the parameter study workflow could be monitored.

77

78

8 References

[1] About Gridsphere. Gridsphere Project. [Online] [Cited: March 31, 2008.]
http://www.gridsphere.org/gridsphere/gridsphere/guest/about/r/.

[2] About the Java Technology. Sun Microsystems. [Online] [Cited: April 3, 2008.]
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html.

[3] Anderson, Tim. Introducing XML. ITWriting. [Online] 2006. [Cited: April 21, 2008.]
http://www.itwriting.com/xmlintro.php.

[4] Antognini, Christian. Is Oracle Database Moving Towards Grid Computing? Trivadis.
[Online] [Cited: March 30, 2008.] http://www.trivadis.com/Images/grid_computing_en_tcm17-
11759.pdf.

[5] Apache Tomcat. Apache Tomcat. [Online] [Cited: April 2, 2008.] http://tomcat.apache.org/.

[6] Berlich, Rüdiger. Grid Computing - Roots, Motivations and Implementation. EGEE.
[Online] July 6, 2004. [Cited: April 1, 2008.]
http://www.egee.nesc.ac.uk/trgmat/events/040920GridKa/talks/slides/whatIsGrid.pdf.

[7] Byous, Jon. Java Technology: The Early Years. Sun Microsystems. [Online] April 2003.
[Cited: April 3, 2008.] http://java.sun.com/features/1998/05/birthday.html.

[8] Foster, Ian. Globus Toolkit Version 4: Software for Service-Oriented Systems. 2005.
http://books.google.com/books?hl=en&lr=&id=YN72O_14JzkC&oi=fnd&pg=PA2&dq=Globus
+toolkit&ots=1QxQAT0QAL&sig=ysH_kOP8q1O_Ispi0KFnnlxeYqA#PPA2,M1.

[9] gLite: Lightweight Middleware for Grid Computing. [Online] [Cited: April 21, 2008.]
http://glite.web.cern.ch/glite/.

[10] JSR 168: Portlet Specification. Java Community Process. [Online] October 27, 2003.
[Cited: April 4, 2008.] http://www.jcp.org/en/jsr/detail?id=168.

[11] Java Platform, Enterprise Edition (Java EE) Support in NetBeans IDE. NetBeans. [Online]
[Cited: April 4, 2008.] http://j2ee.netbeans.org/.

[12] JavaScript. Wikipedia. [Online] [Cited: April 21, 2008.]
http://en.wikipedia.org/wiki/JavaScript.

[13] JavaServer Pages Overview. Sun Developer Network. [Online] [Cited: April 2, 2008.]
http://java.sun.com/products/jsp/overview.html.

79

[14] Joseph, Joshy and Fellenstein, Craig. Grid Computing. s.l. : IBM Press.
http://books.google.com/books?hl=en&lr=&id=2e73K_jXdfcC&oi=fnd&pg=PR21&dq=grid+co
mputing+uses&ots=fQAmgz0f_2&sig=YoqsNaxLvCNxZ0ToG0pz8FfGNCs#PPA44,M1.

[15] Laboratory of Parallel and Distributed Systems . MTA SZTAKI LPDS. [Online] [Cited:
March 30, 2008.] http://www.lpds.sztaki.hu/.

[16] Learn About Java Technology. Java.com. [Online] [Cited: April 1, 2008.]
http://www.java.com/en/about/.

[17] Livny, Miron, Tannenbaum, Todd and Thain, Douglas. Distributed computing in
practice: the Condor experience. s.l. : Wiley InterScience, 2005. 17, pp. 323–356.

[18] Merkey, Phil. Beowul History. Beowulf Project . [Online] 2007. [Cited: March 29, 2008.]
http://www.beowulf.org/overview/history.html.

[19] Morris, Robert and Thompson, Ken. Password Security: A Case History. Murray Hill :
Bell Laboratories, 1978.

[20] NetBeans IDE 6.0 Features. NetBeans. [Online] [Cited: April 4, 2008.]
http://www.netbeans.org/features/.

[21] P-GRADE Grid Portal. P-GRADE Grid Portal. [Online] [Cited: March 31, 2008.]
http://www.lpds.sztaki.hu/pgportal/?m=0&s=0.

[22] Parellel computing. Wikipedia. [Online] [Cited: April 21, 2008.]
http://en.wikipedia.org/wiki/Parallel_computing.

[23] Patil, Sunil. What is a Portlet. OnJava. [Online] September 15, 2005. [Cited: April 4,
2008.] http://www.onjava.com/pub/a/onjava/2005/09/14/what-is-a-portlet.html.

[24] phpBB Group. phpBB web site. [Online] [Cited: March 20, 2008.] http://www.phpbb.com.

[25] Sandholm, Thomas and Gawor, Jarek. Globus Toolkit 3 Core – A Grid Service Container
Framework. 2003.
http://66.102.1.104/scholar?hl=en&lr=&q=cache:vw2CSgO4DmUJ:dwdemos.dfw.ibm.com/wst
k/common/wstkdoc/ogsa/docs/gt3_core.pdf+Globus+toolkit.

[26] Seshadri, Govind. Understanding JavaServer Pages Model 2 Architecture. JavaWorld.
[Online] December 29, 1999. [Cited: April 2, 2008.] http://www.javaworld.com/javaworld/jw-
12-1999/jw-12-ssj-jspmvc.html.

[27] The Institute. MTA SZTAKI. [Online] [Cited: April 1, 2008.] http://www.sztaki.hu/institute/.

[28] The Java Language Environemnt. Sun Developer Network. [Online] [Cited: April 2, 2008.]
http://java.sun.com/docs/white/langenv/Intro.doc2.html.

80

[29] Welcome to the NetBeans Community. NetBeans. [Online] [Cited: April 4, 2008.]
http://www.netbeans.org/about/index.html.

[30] Wilton-Jones, Mark. JavaScript history. How to Create. [Online] [Cited: April 21, 2008.]
http://www.howtocreate.co.uk/jshistory.html.

81

A. Email Notification System Performance Graphs

Figure A.1 - 1 Workflow with Full Notification

82

Figure A.2 - 1 Workflow with No Notification

Figure A.3 - 20 Workflows with Full Notification

83

Figure A.4 - 20 Workflows with No Notification

Figure A.5 - 50 Workflows with Full Notification

84

Figure A.6 - 50 Workflows with No Notification

85

B. Account Creator System Administrator Manual

P-GRADE Multi-Portal Account Creation System
Administrator Manual

B.1. Introduction

The purpose of this manual is to instruct administrators on how to install, configure, and maintain the

P-GRADE Multi-Portal Account Creation System.

The account creation system is intended to provide a solution to the problem of a single organization

administrating multiple grid portals. Instead of forcing an administrator to manually create user

accounts on each portal requested by a user, all of the work of creating an account is done

automatically. The administrator merely has to approve or deny requests and perform occasional

maintenance to keep the system running.

B.2. Account Creation Workflow

Located on the web server are an account request form, an automatic account creator, and a setting

manager. On each portal server is an account creator service. Attached to each portal server and the

web server are databases for persisting account data and settings. A diagram of the components and

the flow of data between them is shown in Figure 1. The sequence of events is as follows:

1. A user seeking an account on one or more grid portals fills out the account request form on the

web server, as shown in Figure 2.

2. The web server retrieves the request information from the form and verifies it with the account

creator for each portal listed in the request.

3. The web server stores the request information in the common database for later retrieval.

4. The web server sends an email to the administrator with a link to accept or deny the account

request. Another email, shown in Figure 3, is sent to the user notifying him or her that the

accou

email

5. The a

o The

o The

the

o The

use

6. If the

reque

they w

7. The re

8. The a

9. The a

been

unt request w

s were sent o

administrator

e ‘accept’ link

e ‘accept wit

e request, bu

e ‘deny’ link c

er an email in

e administra

est informatio

will be availa

equest inform

account creato

automatic acc

accepted.

was successfu

out successfu

 clicks on one

k causes the

h default rol

t with the req

causes the au

ndicating that

tor accepts

on from the c

ble for future

mation is disp

or on each po

count creator

ul. A messag

ully, as shown

e of the links

automatic ac

es and group

quested roles

utomatic acco

t the account

the account

common data

e reference.

patched to th

ortal saves th

r sends an em

Figure 1:

86

ge is then dis

n in Figure 4.

 in the email

ccount creato

ps’ link cause

s and groups

ount creator

t request has

t request, th

abase and log

e account cre

he account in

mail to the u

 Workflow dia

splayed to th

.

.

or to accept t

es the autom

 reset to thei

 to delete the

s been denied

he automatic

gs the user na

eator of each

nformation in

ser indicating

gram

he user indic

he request as

matic account

r default valu

e account req

d.

c account cr

ame and ema

 portal listed

 the portal da

g that the ac

ating whethe

s it is.

 creator to a

ues.

quest and sen

eator delete

ail address so

 in the reque

atabase.

count reques

er the

accept

nd the

s the

o that

est.

st has

87

Figure 2: Account request form

88

Figure 3: Account request notification

89

Figure 4: Account request successful

B.3. Installation

The following sections describe the steps required to install the account creation system.

B.3.1. Server Topology

The account creation system will work with a wide variety of server topologies. Described in Figure 5 is

one possible topology; you may modify it as you see fit. In the topology shown, each server is in a

separate physical location. There is a single web server with hosting a common account creation

website connected to one or more servers running P-GRADE portal. The web server and portal servers

each have their own database, which can be on either the same computer or a separate computer. For

additional security, each web server is located behind a firewall and only the specific ports needed are

left open.

B.3.2. P

In order

accessible

• Web se

• PHP ve

• MySQL

Additiona

• pecl_ht

• Mcrypt

• MySQL

Prerequisite

for the acco

e by the web

erver softwar

ersion 5.0 or

L Server versi

lly, PHP must

ttp (used to c

t (used for en

L (used to con

es

ount creation

 server:

re, such as Ap

higher

ion 4.1.2 or h

t be configur

communicate

ncryption of d

nnect to a My

Figure 5

n system to

pache Web S

higher

ed to use the

e with the por

data)

ySQL databas

90

5: Server topol

o work, the

erver or Inte

e following ex

rtals)

se)

logy

following sof

ernet Informa

xtensions:

ftware must

ation Services

 be installed

s (IIS)

d and

91

• SMTP (used to send email)

• GD2 (optional; required only if the GD version of the confirmation system is used)

• If you are building PHP on Linux, the hash module needs to be enabled by adding the 'hash' USE

flag to the compilation command.

B.3.3. Installing web server components

The following steps must be performed on the web server to install the account creation system:

• Download the archive containing the account creator files and extract them.

• Copy the "website" folder to a location accessible by the web server, such as the document root

(htdocs on Apache and wwwroot on IIS).

• To configure the database connection, modify includes/SAMPLE_config.inc.php and rename

it to config.inc.php. If the file already exists, this step is not necessary.

• If there is already a shared index file, the following code should be copied into the footer area

directly below the copyright notice to enable custom footer text to be inserted by the account

request form. While not strictly necessary, it reduces the chance of legal problems.

<?php if (isset($subst) && isset($subst['customFooter'])) echo

$subst['customFooter']; ?>

• If you would like to use the index file that has been provided, rename SAMPLE_index.php to

index.php.

• Similarly, you may either use your own home page or rename the provided

SAMPLE_home.inc.php to home.inc.php.

• Log into MySQL Server and load pgportal.dump into the same database you entered in

config.inc.php.

o For example, you might type use pgportal; source pgportal.dump;

92

• You may also wish to modify includes/access_request_config.php to customize various

aspects of the account creation system.

B.3.3.1. Configuring Apache

If Apache is being used, SSL must be configured if you want the server to be able to accept HTTPS

requests. Using HTTPS for account creation and the administration console will increase the difficulty

for an attacker to intercept sensitive data. To enable the built-in SSL module, the following lines in

conf/httpd.conf should be uncommented:

• LoadModule ssl_module modules/mod_ssl.so

• Include conf/extra/httpd-ssl.conf

Additionally, you will need to acquire an X.509 certificate and private key for the server. The default

configuration requires that these be placed in the conf directory. Alternatively, the certificate and

private key may be located elsewhere if conf/extra/httpd-ssl.conf is modified to point to their

location.

Important: In order for the account creation system to take advantage of SSL, the ENABLE_SSL

option in includes/access_request_config.php must be set to true.

B.3.3.2. Configuring the Firewall

If the server is located behind a firewall, the firewall must be configured to allow incoming connections

on the following ports. Otherwise, users outside the firewall may have difficulty making account

requests or accessing the administration console.

• 80: used by HTTP

• 443: used by HTTPS

93

B.3.4. Installing Portal Server Components

If you do not already have a portal, installation instructions may be found at the P-GRADE Portal

website by selecting "Install the portal" on the menu.

The following steps must be performed on each portal server that will be used with the account

creation system:

• Create two new roles: SERVLET_CLIENT and ACCOUNT_CREATOR.

o To create a role, log in as a super user (such as 'root'), navigate to the Administration tab, click

on "Roles" to get to the Role Manager portlet, and then click on "Create New Role". At this point

you should be asked to edit role information. Enter SERVLET_CLIENT or ACCOUNT_CREATOR for

the role name and whatever you want for the description. The description is not necessary, but

may be useful in case you forget the role's purpose.

94

Figure 6: Role manager

• Create two new user accounts, one which is given only the SERVLET_CLIENT role and one which is

given only the ACCOUNT_CREATOR role. The web server will use these users to authenticate itself

with the portal. Although the user names and passwords for these roles may be the same across all

of the portals, for security reasons it is recommended that different user names and passwords be

used for each portal.

o To create a user account, navigate to the User Account Manager portlet from the Administration

tab by clicking on "Users" near the top. From there, click on "Create a New User" and fill in the

information. You can choose whatever user name and password you like. Select either

SERVLET_CLIENT or ACCOUNT_CREATOR (but not both) as the user's role. Giving each role to a

different user minimizes the damage that can be done if an attacker discovers an account's user

name and password. Additionally, you may check the "disable account" checkbox to prevent the

account from logging into the portal.

95

Figure 7: User manager

B.4. Administration Console

The administration console serves as the portal for various administrative activities, including creating

new user accounts and editing grid information.

The default administrator user name is "admin" and the default password is blank. It is recommended

that you change the user name and password using the setting editor the first time you log in.

96

Figure 8: Administration console login

B.4.1. Exporting User Account Information

The user information exporter provides a means for the administrator to download user information

for the purpose of sending mass emails, etc. Clicking the "export" button in the form will collate and

download the user information for all grids managed by the account creation system. The information

is provided as a comma-separated-value (CSV) file that is compatible with most spreadsheet software.

97

Figure 9: User Information Exporter

B.4.2. Settings

The settings editor may be accessed by selecting "change settings" from the menu in the

administration console.

Settings affect the operation of the account creation website. The following settings are available:

Name Type Description

Require

confirmation
boolean

If set to true, the user must enter a confirmation code when

requesting an account.

Use GD

confirmation
boolean

If set to true, the GD version of the confirmation image is used.

This version is better than the non-GD version, but requires that

98

the GD2 extension be enabled.

GD confirmation

foreground noise
boolean

If set to true, foreground noise is used to make the GD-based

confirmation harder.

GD confirmation X

grid
integer

The average number if pixels between horizontal grid lines in

the GD-based confirmation.

GD confirmation Y

grid
integer

The average number if pixels between vertical grid lines in the

GD-based confirmation.

Session lifetime integer
The lifetime of a session, in hours. This only applies to the

account request page.

Servlet

authentication key
string

The key used to encrypt the servlet user name and password;

should be a unique (preferably random) string that is difficult to

guess.

Admin user name string The administrator's user name.

Admin password string
The administrator's password. This value cannot be retrieved, as

it is stored in a hashed form in the database.

Admin email address string The administrator's email address.

99

Figure 10: Settings

B.4.3. Editing Portal Information

The portal information editor may be accessed by selecting "edit portal information" from the menu in

the administration console.

Portals can be added or removed using the buttons near the bottom of the form. To add a portal, click

on "Add New Portal", which will add a group of fields where the portal information may be entered. To

remove one or more portals, select all of the portals you wish to delete by clicking on the check boxes

next to their names. Click on "Delete Selected Portals", review the portals listed in the dialog box, and

then press "Okay" to confirm or "Cancel" if there was a mistake. Once a portal is deleted, its

corresponding fields will be removed from the form. Keep in mind that no changes are made on the

server until the form is submitted.

100

Clicking on the "Reset" button will reset all fields to their original values; however, it will not undo

addition or removal of portals. If you wish to undo such changes, you may do so by refreshing the

page.

The following fields are available for each portal:

Portal ID
The name that is used internally when referring to a given portal. Frequently

changing the portal ID is not recommended.

Portal name The name that is displayed to users.

Portal URL
The URL that points to the portal's root directory (for example,

https://portal.organization.com/szupergrid).

Servlet user

name

The user name of a portal user that has been given the

ACCOUNT_CREATOR role.

Servlet

password
The password corresponding to the servlet user name.

Account creator

user name

The user name of a portal user that has been given the SERVLET_CLIENT

role.

Account creator

password
The password corresponding to the account creator user name.

101

Figure 11: Portal information editor

B.4.4. Account Request Verification

When a user submits an account request, an email, shown in Figure 12, is sent to the administrator

with the details of the request and a link to verify the account request. Clicking on the link sends the

administrator to a web page, shown in Figure 13, with options to approve or deny the account request

in addition to a text box where the administrator may enter additional comments to send to the user

who request the account. The administrator has four options for how to handle an account request:

accept the request, deny the request, accept the request but with the roles and groups reset to their

default values, or ignore the request. The third option is provided in case a user requests roles that he

or she should not have, but the administrator feels that the request is otherwise valid. A request

should be ignored if the administrator does not wish to send any notification to the user or if the email

address provided by the user is invalid. Once the administrator submits the form, the server forwards

the account request to each portal listed in the request and displays any error messages that were

returned. If the account request succeeds on all portals, a success message, shown in Figure 14, is

102

displayed. However, if the account request fails on one or more portals, the administrator is presented

with an option to resend the account requests to each portal that returned an error message, as

shown in Figure 15. The emails a user recieves when an account request is accepted or denied are

shown in Figure 16 and Figure 17, respectively.

103

Figure 12: Account request verification email

Figure 13: Account request verification form

Figure 14: Account request verification success

104

Figure 15: Account request verification failure

Figure 16: Account request accepted

105

Figure 17: Account request denied

106

B.5. Other Features

B.5.1. Logging

A message is sent to the system log every time one of the following events occurs:

• A user submits an account request

• A user account is created

• An administration login is attempted

• There is an error connecting to a servlet

On Windows, the Application log is used instead of the system log. The application log may be viewed

by opening the Computer Management console and navigating to System Tools -> Event Viewer ->

Windows Logs -> Application. Log messages from the account creation system can be identified by

looking in the "Source" column for "PHP-" followed by the version of PHP installed. For versions of

Windows other than Windows Vista, a slightly different procedure may be required. An account

request event can be seen in Figure 18.

Figure 18: Account request event

107

C. Email Notification System Help Documentation

Introduction:

The user may instruct the system to send notification(s) about given state changes caused by the

submission of a workflow. Two kinds of changes are distinguished:

• The workflow reaches an end state (“finished” or “error”) from where it may not be moved without

manual user action.

• The state of the workflow has changed (for example from "submitted" to "running", or from

"running" to "finished", etc.)

At present, the only way of the notification is an e-mail message.

The tab Workflow/Notify for configuring these messages is structured the following way:

I.

 E-mail Settings groups the base information needed to send an e-mail involving the recipient’s address,

the subject of the message and the overall permission to send any letter.

II.

Workflow Change Settings is the editable skeleton of the letter sent in the case of a change of state (see

above).

The user has a further filter possibility to disable /enable these letters by the selecting the proper value of

the checklist Enabled:

As a summary, the sending of a letter has five conditions controlled by the user:

1. The proper e-mail address is set

2. Sending an email is enabled

108

3. Sending for workflows is enabled

4. Upon submitting the workflow, the user does not choose “Never” when asked when they would

like to be notified

5. The event listened for has occurred

The content of the message is freely editable in the text area Message.

All keys will be evaluated at the time of the email being sent, and will be appropriately substituted into

the letter.

These keys and their meanings are:

• #now# Time stamp of event

• #user# Owner of the workflow

• #portal# URL of the portal

• #workflow# Name of workflow

• #oldsatus# State prior the event

• #newsatus# State caused by the event

• #details# Detailed listing of job statuses

III.

The settings must be saved by clicking the Save button

