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Abstract
Neural networks (NNs) have been widely adopted in practice to create predictive

models in applications such as healthcare, financial services, and policy-making.

As their use continues to grow, so does the risk of attacks against users’ data and

NNs. While traditionally, deep learning was constrained by computational power

and off-chip memory bandwidth, such attacks impose new priorities in connection

with security and privacy. Privacy-preserving deep learning addresses these issues

by leveraging cryptographic primitives, e.g., homomorphic encryption and secure

multiparty computation (MPC). MPC-based solutions offer a higher degree of flexi-

bility by allowing different parties to train an NN model on their private data without

revealing any information beyond the output. In this regard, combining MPC and

deep learning enables a variety of privacy-preserving online services. As an ex-

ample, to classify a picture, a customer can use an online deep learning service,

where the service provider and the user engage in an MPC protocol instead of just

uploading the picture. In doing so, the user obtains the classification result without

revealing the input, while the provider can keep its model secret.

Existing work in the area of MPC falls into two main classes: (1) MPC over

Boolean circuits and (2) MPC over arithmetic circuits. While the former class relies

on Yao’s garbled circuits and achieves constant communication complexity, secret-

sharing (SS)-based solutions have been adopted to evaluate arithmetic circuits with

a communication complexity linear in the multiplicative depth of the circuit. Nev-

ertheless, there are MPC frameworks enjoying the benefits of both classes by com-
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bining them. Further optimization can be performed, which is applied in the context

of private NN inference. Resource optimization is even more vital for applications

where NNs run on resource-constrained edge devices. It has been shown in the

literature that running MPC-based privacy-preserving NNs on FPGAs brings down

the protocol execution time and power consumption within the practical limit. In

line with such efforts, our work presents optimization techniques that utilize the full

capability of the underlying FPGA hardware.

More concretely, FPGAs’ parallel processing and pipelining capabilities allow for

faster computations essential in NN tasks. This is complemented by optimized

memory access, which minimizes latency and maximizes data throughput. More-

over, the flexibility to develop custom instruction sets tailored for NN operations

enhances protocol execution efficiency. Finally, the algorithm-hardware co-design

approach ensures that both the NN algorithms and FPGA architecture are optimally

aligned for performance, making FPGAs a powerful and efficient choice for the

secure implementation of neural network accelerators through multi-party compu-

tation.

Our results demonstrate that our approach uses significantly fewer hardware re-

sources, up to 62.5 times fewer logical resources, and 66 times less memory than

cutting-edge privacy-preserving NN interfaces. Furthermore, in scenarios where

execution time is critical, our approach proves to be 2.5 times faster than the aver-

age execution time of the privacy-preserving NN inferences while closely matching
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the performance of the fastest state-of-the-art approaches to privacy-preserving NN

inferences.
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Chapter 1

1 Introduction

Neural Networks (NNs) have become a helpful tool of the digital era because of

their utilization in machine learning, thus providing a powerful instrument for data

analysis and prediction in health, finance, and autonomous systems. Most of these

applications will involve sensitive and personal data; therefore, the need to ensure

privacy in using neural networks has increased significantly. Privacy-preserving

inference techniques generally work so that sensitive data are hidden during the

computation phase, and it does not allow any authorized access or data leakage.

Secure multi-party computation (MPC) techniques in neural network operations,

operating in general, would handle these privacy issues very well. In MPC, par-

ties compute functions over their inputs jointly while keeping the private inputs for

themselves. They are the basic building blocks underlying a host of more complex

protocols, of much appeal when data cannot be pooled because of privacy regula-

tions or business competition [1].

The rapid evolution of data-driven technologies has led the way in a transforma-

tive era across critical sectors such as healthcare, finance, and public safety. How-

ever, this progress increases vulnerability to data breaches and privacy violations, as

highlighted by recent incidents that have compromised personal data on a massive

scale [40]. Such vulnerabilities underscore the urgent need for advanced privacy-
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preserving techniques to keep up with the technological advancements and the ever-

growing sophistication of cyber threats [41].

Secure Multi-Party Computation (MPC), celebrated for its theoretical robustness

in privacy protection, confronts significant barriers in real-world implementation.

These barriers include computational inefficiency and difficulties adapting to diverse

operational environments that vary significantly in data volume, system architec-

ture, and security requirements [42]. The imperative drives this thesis to transition

MPC from a theoretical concept to a practically viable solution tailored to operate

within real-world applications’ complex and stringent constraints. Addressing these

challenges involves enhancing the computational efficiency of MPC protocols and

ensuring their flexibility to integrate seamlessly with existing infrastructures across

various industries [43].

This thesis further explores how privacy-preserving neural network inference can

be enhanced with increased computing capability and secure Field-Programmable

Gate Arrays (FPGAs) features. FPGAs are flexible and efficient platforms for de-

ploying MPC protocols, and the hardware should be reconfigurable to optimize the

performance of privacy-preserving computation [2]. Therefore, the research aims

to merge the gap between highly advanced cryptographic techniques and practi-

cal, real-life application needs by focusing on FPGA-based implementations. Opti-

mized methodologies shall be developed using the FPGA parallel processing capa-

bilities to speed up the MPC-based neural network inference with solid data privacy.

Multi-party computation (MPC) has become a core technology in secure and privacy-
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preserving data analysis. Conceived originally for situations where a state of mutual

distrust obtains between parties, MPC allows computations on privately held inputs

so as not to reveal them to the other engaging parties [3]. This aspect is of vast

importance, especially in neural network inference, particularly in cases where the

inputs deal with sensible information and, hence, parties must keep the details con-

fidential.

On a neural network basis, the application of MPC shall allow a couple of con-

cerned parties to make predictions jointly without disclosing, in turn, their respec-

tive secret or sensitive data. One example is in healthcare: hospitals will predict the

outcomes of patients together, but they will not share the data of any given patient,

hence falling even under strict privacy regulations, like HIPAA in the United States

[4].

Furthermore, MPC ensures that confidentiality is preserved and integrity enhance-

ment is provided. This is because no one party may change the computation pro-

cess or its outputs, and as such, the model necessarily remains correct. This double

benefit of ensuring confidentiality and integrity makes MPC a beautiful tool for im-

plementing privacy preservation in the neural network. Recent developments in this

area are moving toward reducing the computational overhead and improving the

efficiency of such protocols to make them practical for real-world applications [5].

This thesis will attempt to exploit MPC’s intrinsic efficiencies while avoiding tra-

ditional computational challenges by integrating MPC with neural network opera-

tions on FPGA platforms. In this direction, parallelism within the FPGA enhances
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the execution of MPC protocols and dramatically reduces time and other resources

for secure neural network inference.

Field Programmable Gate Arrays (FPGAs) are gaining importance because of their

essential role in the evolvement of secure computations, particularly where most

applications need high levels of privacy with data security. FPGAs have the ar-

chitectural benefits that uniquely assist in this task under their reconfigurability,

parallel-processing capability, and efficient hardware usage—factors that help to

execute MPC and, in doing so, complete its complex cryptographic protocols.

This hardware is reconfigurable and fine-tuned to precisely the computation re-

quirements of the privacy-preserving neural network inferences. This capability

becomes very important in rapidly evolving fields—like cryptography—where pro-

tocol changes can be used without new hardware, hence saving costs and times of

deployment [2]. The parallel processing offered by FPGAs provides the ability to

run multiple operations simultaneously, significantly increasing the overall compu-

tation time crucial in real-time applications [6].

Most notably, FPGAs increase the privacy aspect of neural network inference.

Most cryptographic algorithms can be directly implemented in hardware and pro-

vide more security from side-channel attacks than their software implementations.

Such security is paramount at the hardware level for applications running in sen-

sitive domains, such as healthcare and financial services, where data integrity and

confidentiality must be preserved at the topmost levels [7].
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This thesis investigates the use of FPGA technology to accelerate the execution

of MPC-based privacy-preserving neural network inferences. Therefore, The study

will use the computational power and flexibility of FPGAs to register a marked

improvement in both speed and resource efficiency of the said operations, making

them more viable for use in resource-constrained environments.

They realize that neural networks are privacy-preserving while efficient, requir-

ing much complexity. The significant challenges include computational complex-

ity, scalability, and achieving a trade-off between privacy and performance. Today,

neural networks are much more profound and broader, and in most cases, the com-

putational requirements to support the scaling of privacy-preservation techniques

are high.

First, computation tasks in neural networks under any privacy protocol, such as

MPC, will be substantially more complex than those with private protection. This

means that computing encrypted data is complex; it usually requires much more

processing power and often also entails vastly increased difficulty in practical re-

alization in real-time applications. [8]. These problems further aggravate should

one try to scale them to larger datasets or more complex neural network architec-

tures, which practically proves to be a challenging problem in developing efficient

solutions.

There are also some inherent trade-offs between privacy and computational effi-

ciency. For instance, higher levels of privacy imply the use of more heavyweight

cryptographic measures, which would detrimentally affect system performance.
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The balance is exceedingly delicate in resource-constrained environments, such as

edge computing devices in which available computational resources are limited, and

power availability further limits them [9].

Against this background, this work considers using FPGA technology to mitigate

computational loads while carrying out private neural network inferences. The FP-

GAs are very suitable for this, with their parallel processing strictly adhered to to

allow optimized cryptographic computations. This paper tries to illuminate the way

toward more feasible, efficient, and practical implementations of privacy-preserving

neural networks by building customized hardware solutions that cater to the needs

of secure and private neural network operation.

This will be a very efficient and practical private-preservation inference of neural

networks that utilize FPGA technology innovatively. This project focuses on prov-

ing that engineered FPGA solutions will bring potential strides toward reduced com-

putation and resource overheads associated with Multi-Party Computation (MPC)

protocols. It is on these that the research pursued in this paper is narrowed down

in its operation to meet the specific needs for the secure and private operations of

the neural network. In this manner, one must balance the privacy, speed, and usage

of computational resources to make the above-mentioned advanced technologies

feasible in real-world applications.

This study covers developing and evaluating an FPGA-based framework that op-

timizes MPC protocols for use in neural network inference tasks. It will include

developing hardware-efficient cryptographic primitives and designing platforms in
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the form of FPGAs to implement them and measure performance enhancements

over traditional computational techniques.

This thesis introduces groundbreaking FPGA-based techniques designed to signif-

icantly optimize MPC protocols tailored for neural network inference, represent-

ing a crucial advancement in applying privacy-preserving technologies. By har-

nessing the inherent capabilities of FPGAs for parallel processing and hardware

acceleration, this research directly addresses the critical performance bottlenecks

that have hampered previous implementations of MPC [44]. Moreover, it substan-

tially improves the scalability and security of neural network computations, mak-

ing these advanced cryptographic techniques more accessible and practical for a

broader range of applications [45].

The outcomes of this study are set to redefine the benchmarks for deploying cryp-

tographic techniques in everyday technological applications, propelling a paradigm

shift in how privacy is integrated into data-driven systems. By demonstrating the

enhanced performance and versatility of FPGA-optimized MPC protocols, this re-

search paves the way for their wider acceptance and implementation in sectors

where privacy is paramount and currently under-served by existing solutions [46].

Ultimately, this thesis contributes to a more secure and trustworthy digital infras-

tructure where privacy-preserving technologies are embedded into everyday tech-

nological interactions [47].

The thesis is organized, respecting a couple of significant sections, in a system-

atic way, unfolding an understanding of the subject in question. The first chapter
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discusses the introduction to the critical importance of privacy in neural network

inference and the roles of MPC and FPGA in the same regard. The next chapter,

Background, will review theoretical insights of existing technologies over MPC and

FPGA with details of the prior approaches towards privacy-preserving neural net-

work inference. The next chapter, Methodology, will describe the methodologies

that will be used to develop the FPGA-based MPC framework, and this descrip-

tion may be either cryptographic protocols, hardware configurations, or software

tools. This chapter details the implementation perspective and how the proposed

framework is practically executed over FPGA, including its setup, programming,

and optimization processes. The chapter discussing the Results involves a com-

parative analysis of the solution developed on FPGA with the existing methods to

evaluate the performance concerning speed, resource utilization, and privacy pro-

tection. Lastly, the Conclusion and Future Work chapter highlights key findings

and contributions and sets forward the limitations and areas that might be explored.

Designed to follow on from the insights and findings of the previous, each chapter

is crafted to weave a cohesive narrative that displays the feasibility not just of the

proposed solutions but also their potential impact on the field of privacy-preserving

computations.
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Thesis Contributions to The Field:

This thesis provides several critical contributions to secure multi-party computation

(MPC) and privacy-preserving neural network inference. Our work addresses the

computational inefficiencies and privacy concerns associated with deploying neural

networks, particularly in the sensitive contexts of healthcare and finance, where data

protection is paramount. The main contributions are as follows:

• Enhanced Computational Efficiency: We demonstrate significant advance-

ments in the speed and efficiency of MPC protocols by using field-programmable

gate arrays (FPGAs)

• Resource Optimization: By implementing MPC protocols on FPGAs, we

achieve substantial savings in hardware resources.

• Scalability: We propose a scalable approach to privacy-preserving neural net-

work inference. Our methodology accommodates the scaling requirements of

various neural network architectures, demonstrating that FPGAs can handle

more significant, more complex models without compromising efficiency or

privacy.

• Security and Privacy: We incorporate secure MPC protocols with FPGA tech-

nology to enhance the privacy and security of neural network inferences.

• Practical Real-world Application: Our research bridges the gap between the-

oretical cryptographic techniques and their practical application. The opti-
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mized FPGA-based MPC framework proposed is viable in a laboratory set-

ting and offers significant improvements for real-world implementations.

• Contribution to State-of-the-Art Comparison: We contribute to the body of

knowledge by providing a comparative analysis of our FPGA-based MPC

framework, MOTION2NX, with state-of-the-art framework, offering concrete

data points and insights into performance and security.
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Chapter 2

2 Background

2.1 Neural Networks

2.1.1 Overview

Neural networks are computational models of biological neural networks in an-

imals’ brains designed to identify patterns and make decisions based on learned

responses. Structurally, they contain layers of nodes or "neurons" connected by

weighted edges. As the data propagates through the network, the weights of all

these connections must be adjusted based on feedback from the output, steadily

refining its predictions or classifications with each iteration [10].

The fact is that such networks can be pervasive, embracing the full range of tasks

from primitive functions such as recognizing hand-written digits to making the kind

of complex decisions required in autonomous vehicle navigation. In health, from

imaging data to financial assignments that involve predicting stock market trends or

detecting fraudulent activities, the tasks are so much that the neural networks have

stretched their arms across various lines [10].

This is important, especially since sensitive data is increasingly entrusted to neural

networks today, most notably in the medical and financial fields. This training and
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inference data often include personal, sometimes even proprietary, information that

risks being exposed if proper precautions are not taken. They make it inevitable to

include privacy-preserving methods, ensuring that the safety of the data is included

while allowing for effective operation by the neural networks.

The private-preserving way in the applications of neural networks seeks to secure

the data by the principle of least privilege, ensuring that no more information has

been exposed than is necessary to accomplish the task. Differential privacy ensures

that a framework adds noise to the datasets used in training neural networks, hence

entirely leaking the properties of the population of individuals in databases [11].

In doing so, both these methods ensure that the risk of disclosing secret data is

mitigated. Secondly, neural networks remain in the domain of applications that

involve privacy.

2.1.2 Neural Network Models

The perceptron is the simplest form of a neural network, invented by Frank Rosen-

blatt in 1957. It is a single-layer binary classifier that uses a linear threshold gate to

process inputs, making decisions based on whether the sum of the weighted inputs

exceeds a certain threshold. However, perceptrons can only solve linearly separa-

ble problems due to their simplicity, limiting their application in complex scenarios

[54].

The next neural network model, one of the most commonly utilized because of
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its accuracy, is the Convolutional Neural Network (CNN). Developed primarily for

processing grid-like topology data such as images, CNNs use convolutional layers

that apply convolution operations to the input, capturing spatial hierarchies in data.

CNNs typically include convolutional layers, pooling layers, and fully connected

layers. They are highly effective in tasks such as image and video recognition,

image classification, and medical image analysis [55].

Unlike feedforward neural networks, Recurrent Neural Networks (RNNs) have

loops, allowing information to persist. This architecture makes them ideal for tasks

involving sequential data, such as speech recognition or language modeling. RNNs

can remember important information about the input they received, making them

precise in predicting what is coming next. However, they are often difficult to train

effectively due to problems like vanishing and exploding gradients [56].

To overcome the shortcomings of traditional RNNs, Long Short-Term Memory

(LSTM) was introduced with a more complex architecture that includes mecha-

nisms called gates to regulate the flow of information. These gates can learn which

data in a sequence is important to keep or throw away, making them highly effective

for complex tasks that require learning from long data sequences, such as language

translation, text generation, and even complex time-series prediction [56].

Lastly, Generative Adversarial Networks (GANs) were introduced by Ian Good-

fellow in 2014. They consist of two models: a generative model that captures the
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data distribution and a discriminative model that estimates the probability that a

sample came from the training data rather than the generative model. The train-

ing procedure for GANs is a min-max game where the generator tries to maximize

the probability of the discriminator making a mistake. This new framework has pro-

duced high-quality synthetic images, 3D models, and even enhanced low-resolution

videos [58].

Each model offers unique advantages and specializes in different tasks based on

their architecture and the specific problems they aim to solve. However, for a more

generalized approach that captures a broad spectrum of tasks from, simple binary

classification to more complex hierarchical pattern recognition without the need for

temporal dynamics, Multi-Layer Perceptrons (MLPs) stand out.

2.1.3 Multi Layered Perceptron

A Multi-Layer Perceptron (MLP) is a feedforward artificial neural network that

includes three or more layers: an input layer, several hidden layers, and an output

layer. Each layer consists of neurons that, except for the input nodes, use a nonlinear

activation function, enabling the MLP to capture complex relationships in data. The

architecture of an MLP is straightforward: the input layer receives data and passes

it on without computation; the hidden layers perform the bulk of processing through

weighted connections followed by nonlinear transformations; and the output layer

delivers the final prediction or classification result [50].
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The effectiveness of MLPs in processing nonlinear relationships is primarily due to

the use of activation functions such as sigmoid, tanh, and ReLU. These functions

introduce non-linearity to the network, allowing it to learn and model complex pat-

terns [10]. For instance, sigmoid functions provide outputs between 0 and 1, making

them ideal for binary classification tasks, while ReLU offers advantages in terms of

computational efficiency and convergence during training.

Training MLPs involves two phases: forward propagation, where inputs are passed

through the network to generate an output, and backpropagation, where the network

adjusts its weights based on the error between the predicted output and the actual

data. This error is calculated using a loss function, and the process of adjusting the

weights is facilitated by optimization algorithms like stochastic gradient descent

[51].

MLPs are widely applied in various domains, such as image recognition, which

classifies images based on learned features; speech recognition, which involves pro-

cessing and classifying audio signals; and financial forecasting, which predicts mar-

ket movements or credit risks. Despite their versatility, MLPs can suffer from issues

like the vanishing gradient problem, where gradients used during training diminish

as they are propagated back through the network, stalling learning. They are also

prone to overfitting, mainly when the network architecture is too complex relative

to the amount of training data [52].
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Recent advancements have addressed some of these challenges. Techniques like

dropout, which randomly deactivates neurons during training to prevent overfitting,

and optimizers such as Adam, which adjust the learning rate dynamically, have im-

proved MLP training outcomes. Batch normalization has also been introduced to

stabilize the learning process by normalizing layer inputs, thus accelerating conver-

gence [53].

2.2 Multi-Party Computation

Multi-party computation (MPC) represents a pivotal cryptographic technique de-

signed to enable multiple parties, each holding private data, to jointly compute a

function without revealing their inputs to each other. Originating from the founda-

tional works in the 1980s, MPC has evolved to address complex problems across

various domains requiring privacy preservation during computations. This capa-

bility is particularly vital in scenarios where data privacy regulations or compet-

itive business interests prevent the direct sharing of information. MPC protocols

ensure that no more information is shared than is necessary for the computation,

thus maintaining data confidentiality while allowing for the collective analysis or

decision-making that can benefit all parties involved [12].

Recent studies have emphasized the focus of multi-party computation with neural

networks to enable privacy-preserving data analysis and model training. For ex-

ample, Akari et al. (2017) demonstrated an efficient implementation of multi-party

computation with the sole focus on reducing communication overhead, which is
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often mentioned as the primary limitation in scaling multi-party computation pro-

tocols [15]. Furthermore, Mohassel and Zhang (2017) presented SecureML, which

allows two parties to train together in a logistic regression model under privacy

constraints [20].

2.2.1 SecureML

SecureML is a system designed primarily for privacy-preserving machine learning

that enables two parties to collaboratively train models using their private datasets

without revealing the data to each other. Presented by Mohassel and Zhang in 2017,

SecureML represents a significant advancement in the field of secure and private

machine learning [19].

SecureML uses a combination of cryptographic techniques, including secret shar-

ing and secure multi-party computation, to ensure the confidentiality and integrity

of data during the machine learning process. The system is optimized for two-party

computations, taking advantage of the properties of additive secret sharing along

with garbled circuits, a method first introduced in the context of secure function

evaluation[1].

One of the many core aspects of SecureML is its efficiency in handling linear and

non-linear functions, which are pivotal in machine learning algorithms. SecureML

uses secret sharing for linear operations that permit straightforward and efficient

computations. On the other hand, for non-linear computations found in activa-
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tion and optimization algorithms, SecureML employs garbled circuits and oblivious

transfers, improving the system’s efficiency while remaining private [19].

SecureML was one of the first systems to demonstrate that secure neural network

training could be achievable in practice. The system supports the training of logis-

tics regression and neural network models with a focus on efficiency that is practical

for real-world applications. The experiments conducted on SecureML showed that

it could perform training on datasets like MNIST and CIFAR with reasonable com-

putational overhead compared to non-secure training [19].

The introduction of SecureML brought a broad implication for industries where

data privacy is primordial. Nevertheless, collaboration is necessary to improve the

predictive models, such as healthcare, finance, and personalized advertising. For

example, in healthcare, institutions can collaborate on predictive models for patient

diagnosis without exposing sensitive patient data, complying with detailed data pro-

tection regulations like HIPAA in the United States.

Despite having various advantages, SecureML faces challenges primarily related

to scalability and computational efficiency when dealing with more complex mod-

els and larger datasets to process. Future research includes optimizing the crypto-

graphic protocols used, integrating with other privacy-preserving technologies such

as differential privacy, and extending the framework to support multi-party config-

urations beyond two parties.
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2.2.2 Yao’s Garbled Circuit

Two-party computation, the basis of secured computation according to the concept

introduced by Andrew Yao in 1986, is Yao’s Garbled Circuit. The idea enables

two parties—a garbler and an evaluator—to jointly compute a function without

necessarily having to reveal their respective inputs to each other. The garbler in

this protocol encrypts the Boolean circuit—i.e., "garbles" it—so that the efficacious

operations are effectively obfuscated. The evaluator then processes the garbled cir-

cuit with encrypted inputs and computes the output without gaining any knowledge

about the input of the garbler. This mechanism has given robust protection to pri-

vacy in computations, especially in sensitive negotiation or competitive interaction

scenarios, where revealing more information can compromise a participant’s strate-

gic advantages. Yao’s Garbled Circuits are mainly general purpose, applying to any

function that may be well modeled as a Boolean operation—encompassing many

logical and binary arithmetic processes that are bread-and-butter operations of dig-

ital computing systems [13].

2.2.3 Goldreich-Micali-Wigderson

Named after their creators (Oded Goldreich, Silvio Micali, and Avi Wigderson), the

GMW protocols have been extended to multi-party protocols that allow secure com-

putation between any number of parties. This can be a group of people interested

in conducting private computations. Introduced in 1987, these protocols proposed

adopting methods such as secret sharing and circuit evaluation to ensure that the
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inputs of all parties remained private throughout the entire computation. Unlike

Yao’s Garbled Circuits, which are designed for two-party interaction, GMW Proto-

cols are adaptable and adjust to multiple parties in a multi-party configuration. This

flexibility is precious in protocols like GMW, where collaborative computations are

conducted among multiple parties for applications that range from joint economic

forecasting and collaborative scientific research to corporate settings for collective

decision-making. These protocols have contributed significantly to cryptographic

research, providing essential tools in multi-party computations that enable security

and efficiency with various applications [14].

2.2.4 Oblivious Transfer

Oblivious transfer (OT) is another core protocol of multi-party computation and

garbled circuits, in which a sender transfers one of the various information choices

but remains oblivious to which data was chosen. The concept was first presented

by Michael O. Rabin in 1981. It has since transformed into various forms of its

original application, with 1-out-of-2 oblivious transfer and its generalization being

the most common. The concept is primordial for privacy-preserving as it allows the

execution of secure computations without revealing individual inputs.

In a 1-out-of-2 oblivious transfer, a commonly used variant of OT, the sender has

two messages, and the receiver wishes to obtain one of the messages without re-

vealing which one they are interested in to the sender. Generalizing to 1-out-of-n

OT allows for a selection among the ’n’ messages. The sender needs to be made
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aware of which message has been transferred. OT’s significance extends beyond

simple actions, as it can be integrated into more complex multi-party computation

protocols that may involve more than two parties or different computational tasks.

2.2.5 Gabrled EDA

Electronic Design Automation (EDA) tools are critical for modern integrated cir-

cuit (IC) design involving multiple parties, such as third-party IP vendors, design

houses, and foundries. These stakeholders often operate under mutual distrust, risk-

ing the confidentiality and integrity of their intellectual property (IP). Traditional

IP protection methods like logic locking and encryption have proven susceptible to

various attacks, leading to a need for a more secure approach [48].

Garbled EDA introduces a novel framework built on secure multi-party computa-

tion (MPC) principles, fundamentally shifting the traditional paradigms of EDA.

This framework aims to ensure the privacy of IPs, CAD tools, and process design

kits (PDKs) without compromising operational efficiency. Garbled EDA is designed

to function seamlessly with commercial EDA tools and operates under a zero-trust

environment, meaning that others inherently trust no party.

The core mechanism behind Garbled EDA is based on secure function evaluation

(SFE) and private function evaluation (PFE) protocols, which allow for the secure

and private computation of functions without revealing individual inputs [48]. This

approach ensures that even if parties are malicious, the design and function of IPs
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remain protected. The Garbled EDA framework utilizes open-source tools, allow-

ing easy integration and robust security for IPs in potentially hostile environments.

Garbled EDA has been evaluated to demonstrate minimal logical resource cost and

negligible memory overhead, making it a viable solution for real-world applica-

tions. This framework addresses the limitations of traditional EDA tools and sets

a new standard for protecting electronic designs in an increasingly interconnected

and security-sensitive industry.

2.2.6 Tiny Garble

TinyGarble represents a milestone in secure computation, particularly in garbled

circuits—a cryptographic technique that allows for the private evaluation of com-

putational functions on encrypted inputs. TinyGarble’s advancement stems from

its unique approach to constructing and evaluating these garbled circuits at un-

paralleled speeds. The primary innovations come from cryptographic advance-

ments—utilizing schemes that need only a single call to a fixed permutation, often

instantiated by fixed-key AES—for garbling gates. On a systems level, TinyGarble

benefits from more efficient representations of circuits, enhancing overall perfor-

mance.

The pursuit of efficiency in garbled circuits is a critical endeavor, with many re-

searchers aiming to optimize both the garbled circuits and the protocols in which

they are employed. The JustGarble system, implemented within TinyGarble, em-

bodies this pursuit. JustGarble is an assembly that can evaluate moderate-sized
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garbled circuits at a significantly low cost, far exceeding prior systems’ speeds.

The advancement encapsulated by TinyGarble can be understood through its archi-

tecture, which decouples garbling from the larger MPC context. This allows for

a focus on optimizing garbling and relegating other protocol tasks like oblivious

transfer and the compilation of programs into circuits as separate considerations.

Consequently, the resulting system—JustGarble—is a standalone tool optimized

for its specific function.

The impact of TinyGarble can be measured through its performance metrics. Just-

Garble’s architecture and methodology employ Simple Circuit Description (SCD)

to represent circuits and simplify constructing, garbling, and evaluating garbled cir-

cuits. The implementation focuses on utilizing fixed-key block ciphers and stream-

lined processing, ultimately leading to the remarkable efficiency gains that charac-

terize TinyGarble.

In essence, TinyGarble marks a significant leap forward in secure computation. Fo-

cusing on the granularity of garbled circuit construction and evaluation has achieved

unprecedented efficiency, making MPC protocols more practical for real-world ap-

plications. The utilization of fixed-key AES and system-level optimizations has set

a new benchmark for garbling speeds, paving the way for broader adoption and

more innovative applications of MPC protocols in the future.

29



2.2.7 Applications in Neural Network

This approach can be integrated into neural network applications to allow for pre-

dictive modeling collaboration between many entities, such as healthcare providers

or financial institutions, while not breaching the privacy of their respective datasets.

For example, hospitals can predict treatment outcomes without revealing compre-

hensive patient data to any single entity, thereby maintaining secrecy and comply-

ing with regulations like HIPAA. Similarly, banks could use neural networks in the

financial sector to collaboratively detect fraudulent activities without sharing sensi-

tive customer data. This application of MPC in neural networks has revolutionized

how organizations can leverage shared intelligence without releasing sensitive infor-

mation, showcasing the practical utility of cryptographic innovations in real world

data-intensive applications [9].

2.3 MOTION2NX

MOTION2NX offers an advanced framework for applying Neural Networks in a Se-

cure Multi-Party Computation (SMPC) context. This framework allows for privacy-

preserving training and inference of Neural Networks, enabling multiple entities

to utilize machine learning models collaboratively without exposing their sensitive

data. MOTION2NX integrates various MPC protocols, which can be selected based

on specific tasks’ performance and privacy requirements, making it highly adaptable

to diverse computational needs [15].

Designed for maximum ease of use and efficiency, MOTION2NX supports a seam-
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less transition from conventional neural network frameworks to a secure MPC en-

vironment. This transition is crucial for healthcare, finance, and public policy ap-

plications, where data privacy is of utmost importance. MOTION2NX ensures that

data remains encrypted throughout the computation process, providing tools and

protocols to mitigate risks such as data breaches and unauthorized access. This

framework is particularly beneficial in environments where privacy preservation is

paramount, making it an essential solution for secure and efficient computational

collaboration.

The other strength that MOTION2NX capitalizes on is its compatibility with the

ABY2.0 framework. It is more advanced since it pools different MPC technologies

into one, making it a more efficient protocol. One of the most outstanding character-

istics of ABY2.0 is its dynamic protocol selection at runtime, leading to improved

performance in the underlying MPC tasks. This requires integrating MOTION2NX

to effectively deal with the different layers and components of neural networks to

pick the best cryptographic protocol for each operation based on the required secu-

rities and complexities of computations [16].

Strategic integration like this optimizes performance and widens MOTION2NX’s

applicability to any varied industry with high-class security standards. This en-

sures that the system will be able to scale to handle larger-sized models of neural

networks, like those commonly applied in high-end machine learning applications,

such as image processing, natural language processing, and predictive analytics.
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In addition, MOTION2NX contains a full suite of tools, from development and test-

ing to the deployment of privacy-preserving neural network applications that assist

developers and researchers. These include tools and libraries for all standard op-

erations of neural networks, detailed documentation on integrating MPC into your

project, and simulators allowing developers to test the impact on privacy and effi-

ciency of different configurations before full-scale deployment.

This standard development practice and compatibility with existing machine learn-

ing libraries significantly reduce the barrier to entry for any organization looking to

adopt MPC for neural networks. This level of accessibility is of paramount impor-

tance to driving privacy-centric technology toward mass adoption within industries

otherwise constrained by concerns over data privacy.

2.3.1 Motioncore

Motioncore is MOTION2NX’s computational core, covering a variety of multi-

party computation protocols commonly used in neural network operations. As the

core processing unit, Motioncore is designed to efficiently manage and execute mul-

tiple cryptography-related tasks essential for secure and privacy-preserving neural

network inference. Its architecture is optimized for the significant computational

power and flexibility necessary to support various MPC protocols, making it a cru-

cial part of the MOTION2NX suite.

The architecture of Motioncore is specifically designed to harness the full potential
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of parallel processing, which is crucial for handling the computationally intensive

tasks associated with MPC. Its ability to perform operations in parallel dramatically

reduces the time required for data processing and computation, a critical factor for

real-time applications. This is particularly important when dealing with large-scale

neural networks or datasets, where performance requirements exceed those that tra-

ditional sequential processing can meet.

Moreover, Motioncore seamlessly integrates with MOTION2NX’s garbled circuits

and secret-sharing techniques. It adaptively chooses the most suitable cryptographic

method for each task based on specific needs. This adaptability improves overall

computational efficiency and enhances the security and privacy of the data being

processed, allowing the system to respond dynamically to changing security re-

quirements.

A standout feature of Motioncore is its ability to optimize the execution of com-

plex MPC protocols. This is achieved through advanced scheduling algorithms that

efficiently allocate computational resources according to the demands of different

parts of neural network operations. Additionally, the design includes specialized

hardware accelerators for everyday cryptographic operations such as encryption, de-

cryption, and random number generation, further enhancing the framework’s perfor-

mance. These accelerators are explicitly included to address common bottlenecks

in MPC, particularly the heavy computational load of encryption and the frequent

need for secure random number generation. By directly tackling these challenges,
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Motioncore ensures that MOTION2NX can deliver fast, efficient, and secure com-

putations, making it suitable for deployment in environments where speed and data

privacy are critical.

In the context of neural network inference, Motioncore enables the practical appli-

cation of MPC to complex predictive models without compromising performance.

This capability allows organizations to leverage state-of-the-art machine learning

techniques while ensuring that sensitive data, such as personal information or pro-

prietary business data, remains protected. For sectors like healthcare, finance, and

public services, where data privacy is not just a necessity but often a legal require-

ment, Motioncore provides a secure and responsible way to harness the power of

neural networks.

2.3.2 ONNX Support

ONNX (Open Neural Network Exchange) is a standard format that enables AI mod-

els to be interchanged and deployed within different software frameworks, facilitat-

ing easier transitions and compatibility in machine learning projects. Incorporating

ONNX support into the MOTION2NX framework significantly enhances its flexi-

bility and usability. It is a viable and attractive option for developers and organiza-

tions aiming to incorporate privacy-preserving machine learning operations.

The integration allows for the seamless importation of neural network models de-
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veloped through various machine learning frameworks. This critical interoperabil-

ity enables organizations to adopt MOTION2NX without modifying their existing

models to fit the framework. The support for ONNX leads to easier adoption, pro-

moting the use of MPC technology in industries where machine learning plays an

increasingly pivotal role, but privacy concerns are still burgeoning.

This feature is particularly advantageous in collaborative environments where dif-

ferent parties may bring diverse systems and tools for machine learning develop-

ment. With ONNX, multiple models can be converted into a standard format and

securely processed using the MPC capabilities of MOTION2NX. This not only

streamlines the workflow but also ensures that all collaborative efforts meet the

high standards of data privacy required by sensitive applications.

ONNX support within MOTION2NX enhances model portability. Models trained

and optimized in one environment can easily be transferred and deployed in another,

supporting everything from cloud-based training to edge-based inference. This flex-

ibility is crucial in deploying machine learning models in resource-constrained en-

vironments where direct model training may be impractical due to privacy concerns

or computational limitations.

ONNX support enables the MOTION2NX optimizer to analyze and optimize neural

network layers for privacy-preserving computations efficiently. This standardization

results in better usage of hardware resources, reduced computational overhead, and

35



faster execution times, all essential for achieving real-time analytics in privacy-

sensitive applications.

The utility of ONNX support in MOTION2NX extends across various sectors, such

as healthcare, finance, and public services, where collaborative computational tasks

often involve sensitive data. For example, hospitals can share models trained on

proprietary datasets without exposing the data. This enables broader research col-

laborations while complying with strict privacy regulations like HIPAA in the U.S.

or GDPR in Europe. This capability facilitates the secure and responsible utilization

of advanced machine learning techniques in environments where data privacy is a

critical concern.
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2.4 State of the Art Framework

2.4.1 HGWN2

HWGN2 is an advanced deep learning (DL) hardware accelerator that addresses

significant challenges in secure neural network computations. Its design is a tes-

tament to the evolving efforts to protect intellectual property (IP) in deep learning

models from potential piracy through side-channel attacks.

HWGN2 is an advanced deep learning (DL) hardware accelerator that addresses

significant challenges in secure neural network computations. Its design is a tes-

tament to the evolving efforts to protect intellectual property (IP) in deep learning

models from potential piracy through side-channel attacks.

One of HWGN2’s defining attributes is its ability to deliver real-time IP protection

while being sensitive to hardware resource constraints. This approach allows for a

delicate balance between hardware resource consumption and communication over-

head, which is particularly advantageous in scenarios where real-time applications

are executed on platforms with limited resources.

HWGN2’s development underscored the importance of protecting neural networks’

architecture and hyperparameters. It was built on the premise that secure and pri-

vate function evaluation could improve defenses against side-channel attacks while

safeguarding user privacy.

37



Comparing HWGN2 to other state-of-the-art systems like MOTION2NX, HWGN2

showcases its strength in privacy protection by ensuring the confidentiality of the

neural network’s architecture and parameters. This comprehensive protection is

critical, especially in environments where the neural network may process suscep-

tible data. When comparing HWGN2 to MOTION2NX, the focus is often on the

execution times, computational costs, and the effectiveness of IP protection mecha-

nisms in each framework. HWGN2’s efficient use of logical and memory resources

and side-channel resistance demonstrate its effectiveness. Such comparisons are

crucial in research and theses as they provide concrete data points and insights into

the performance and security of competing frameworks in real-world applications.
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Chapter 3

3 Methodology

3.1 MOTION2NX Framework Integration

Integrating the MOTION2NX framework into our project’s infrastructure is the ba-

sis for enabling secure multi-party computation tailored to neural network appli-

cations. The framework provides a robust environment for applying various MPC

protocols, allowing us to select the optimal computational strategies for security and

the computational complexity of the task at hand.

The critical component for our project and core or the framework is the gate_executor.cpp,

which handles the logic at the computational gates involved in MPC. The gate ex-

ecutor handles the logical operations that form the backbone of the MPC protocols

implemented within the MOTION2NX framework. The operations include AND,

OR, NOT, and XOR gates, fundamentals for constructing the cryptographical cir-

cuits needed in secure computations.

The gate_executor.cpp is designed to ensure that each logic gate functions under the

principles of secure computations. This means no information about the inputs can

be inferred from their output alone. This is achieved using cryptographic techniques

like garbling schemes for two-party computations and secret sharing for multi-party
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cases.

The gate_executor.cpp is optimized for speed and minimal resource usage to en-

hance the performance of the MOTION2NX framework, specifically when handling

large-scale neural network models. Some techniques that help with the optimization

include parallel processing of independent gates and pre-computation of repeated

cryptographic components. By optimizing these, we can reduce the computational

overhead and improve MPC protocols.

Figure 3.1 Code Snippet of gate_executor.cpp
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3.2 Neural Network Benchmark

3.2.1 BM1 Benchmark

The benchmark utilized to evaluate the MOTION2NX framework’s performance is

a neural network called BM1. The benchmark is used mainly because of its capabil-

ities to manage neural network computations effectively under privacy-preserving

conditions. This benchmark involves a simplified neural network layer representing

a model for a more complex architecture, making it the preferred neural network

for performance assessment. The neural network includes C++ libraries such as

<iostream>, <vector>, <cmath>, <random>, and <chrono> to facilitate the input

and output operations, data structuring, mathematical calculations, random number

generation, and precise time measurements. Furthermore, the neural network in-

cludes hardware-specific functions that are accessed through platform-specific like

<intrin.h> or <x86intrin.h> to utilize the ’rdtsc()’ intrinsic for high-resolution tim-

ing, which is very important for performance analysis.
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Figure 3.2 BM1 Code Snippet Showing the Hidden Layers and the Size of the

Input Layer

The BM1 benchmark uses the utility function ’rdtsc’, which captures the number of

CPU cycles since the processor was powered in, providing accurate measurements

of the execution times. The ’Layer’ class on the neural network code is structured

with attributes such as nodes, weights, and biases and includes methods for initial-

izing these attributes and conducting forward propagation. The weights are initial-

ized using a standard neural network strategy to optimize training and performance,

scaled by ’sqrt(2.0 / prevSize)’. The ’forward’ method is crucial as it processes the

weighted sum of inputs, adds the biases, and applies the ReLU function, simultane-

ously recreating a neural network’s activation.

The ’chrono::high_resolution_clock’ meticulously records the execution and tim-

ing of the BM1 neural network benchmark by measuring the time taken by the

’forward’ method to process inputs and compute its output. The setup standard-

izes the input data across different runs and ensures consistent and reliable results
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throughout the benchmarking process. After the forward pass is completed, the re-

sults are examined along with the computation time to assess the performance of

the MOTION2NX framework in handling neural networks within its environment.

The methodological approach to benchmarking BM1 helps validate the frame-

work’s effectiveness by providing insight into its operational capabilities and high-

lighting potential areas for improvement and optimization.

3.2.2 BM2 Benchmark

The BM2 benchmark expands the complexity and applicability of the foundation

concepts found in the BM1 benchmark. BM2 is designed to emulate a more com-

plete neural network, specifically a multi-layered perceptron typically found in

MNIST datasets. This benchmark not only measures the framework’s capacity to

handle more prominent and more complex neural network architectures but also

provides detailed insights into the performance of each layer, making it ideal for

identifying bottlenecks.

BM2 follows the same structure as BM1, using standard C++ libraries for basic op-

erations, data handling, and performance timing. This allows BM2 to fully leverage

the hardware’s computational power, which is important to achieving high accuracy

in performance analysis. Both BM1 and BM2 utilize the rdtsc function to access

the CPU time counter, providing precise time measurements for the neural network

layer execution.
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Similar to BM1, BM2 includes data members for nodes, weights, and biases, with

weights initialized using He at the start of training, especially for layers that employ

the ReLU activation function. This strategy helps avoid vanishing or gradient issues

in deeper networks. In BM2’s forward method, outputs are computed by sum-

ming the weighted inputs and biases, followed by ReLU activation, and processed

through several layers from the input layer through hidden layers to the output layer.

Unlike BM1, which demonstrates a single-layer network, BM2 sets up a typical

multi-layered perceptron architecture with multiple layers, including an input layer

designed to handle 784 inputs, followed by two hidden layers, and an output layer.

This structure the BM2 benchmark to simulate a real application scenario, pro-

viding valuable data on how the MOTION2NX framework can handle multi-layer

computation and its privacy-preserving potential.
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Figure 3.3 BM2 Code Snippet Showing the Hidden Layers and the Size of the

Input Layer

Each layer’s execution time within BM2 is meticulously measured using timers,

like BM1, which provides a detailed view of the computational effort required at

each network stage. These measurements help to highlight the performance ineffi-

ciencies and validate the effectiveness of the optimization objectives made for the

MOTION2NX framework. The final output and the time taken for the computation

offer a straightforward metric that can be compared against other privacy-preserving

neural networks.

3.2.3 BM3 Benchmark

The BM3 benchmark further increases the complexity and depth of the neural net-

work models within the MOTION2NX framework, extending the concepts started

on BM1 and BM2. BM3 behaves as a more intricate multi-layered perceptron

model, designed to handle even deeper network structures, making it a good bench-

mark for sophisticated data processing.
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Figure 3.4 BM3 Code Snippet Showing the Hidden Layers and the Size of the

Input Layer

BM3 follows the same structure as BM1 and BM2, using standard C++ libraries

for basic operations, supporting essential operations for input and output, data han-

dling, and performance timing. This allows BM3 to fully leverage the computa-

tional power of the hardware, which is essential to achieving high accuracy when it

comes to performance analysis. BM1, BM2 and BM3 utilize the rdtsc function to

access the CPU time counter, providing precise time measurements for the neural

network layer execution.
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Like BM1 and BM2, BM3 includes data members for nodes, weights, and biases.

Weights are initialized using He at the start of training, especially for layers em-

ploying the ReLU activation function. This strategy helps avoid vanishing or gra-

dient issues in deeper networks. In BM3’s forward method, outputs are computed

by summing the weighted inputs and biases, followed by ReLU activation, and

processed through several layers from the input layer through hidden layers to the

output layer.

BM3 expands on BM2 by adding a hidden layer, making it three hidden layers on

the neural network. This setup enables BM3 to capture more complex features from

the input data. The input remains the exact size of 784. With the added complex-

ity, it is a good test to measure the overfitting and increase overall computational

overhead. Performance measurement is critical as we continue to asses each layer’s

execution time recorded and to optimize the network’s efficiency.

3.3 Metron Code Converter Framework

The Metron Code Converter Framework, complemented by Yosys Open Synthesis

Suite, forms the base of the methodology for translating high-level neural network

code, written in C++ language, into hardware language suitable for FPGA deploy-

ment [17]. Metron handles the parsing and conversion of neural network models

into an intermediary form that closely aligns with hardware capabilities. The Yosys

Open Synthesis Suite further supports this process by taking the intermediate pro-
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duced by the framework and synthesizing them into Verilog code, a language known

mainly for its hardware description widely known for FPGA design. The synthesis

process is crucial because it optimizes the computational graph of a neural net-

work for an efficient FPGA implementation, ensuring performance, scalability, and

privacy-preserving models are maintained.

Figure 3.5 Metron Converter Framework on Ubuntu Terminal on Laboratory

Computer
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3.3.1 Code Conversion to Verilog

The conversion of ’gate_executor.cpp’ and each neural network benchmark (BM1,

BM2, BM3) into Verilog involved a detailed reconstruction of the existing C++

code to fit the synthesis constraints and performance targets for the FPGA imple-

mentation. The motioncore code ’gate_executor.cpp’, which handles the logical op-

erations within the MPC protocols, was translated to ensure that all cryptographic

functionalities are preserved in the Verilog translation. This is crucial for maintain-

ing the integrity and security features on the FPGA environment. Similarly, BM1,

BM2, and BM3 benchmarks were each converted into Verilog to be directly syn-

thesized on the FPGAs. The Metron framework was the medium for translating the

code by providing a structured pathway from high-level functional descriptions to

low-level hardware-oriented specifications.
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Figure 3.6 Example Code Converted to Verilog Using Metron on Ubuntu Terminal

on Laboratory Computer

3.4 Synthesize

The synthesis phase in the methodology is a critical component, where the Verilog

code is translated into an executable format on FPGA hardware using the Vivado

Design Suite. Vivado is essential for its synthesis capabilities, including logical op-

timization, timing analysis, and resource allocation for analyzing computing costs.

This ensures that the FPGA implementations are functional and optimized for speed

and resource efficiency. The process begins with the compilation of Verilog source

files to build an initial gate-level representation.
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Figure 3.7 Motioncore File Conversion Flow Chart

After compilation, Vivado performs logic optimization to reduce the circuit’s com-

plexity. This configuration works by combining gates, eliminating redundant logic,

and simplifying expressions, enhancing the FPGA’s efficiency. Furthermore, a de-

tailed timing analysis ensures that all operations are completed within the expected

clock cycle. Vivado also allocated the necessary resources for FPGA, such as logic

blocks, memory units, and I/O pins. Once the design is fully optimized for the Vi-

vado Design Suite, the IDE will generate a bitstream file containing the configured

settings and logic instructing the FPGA on executing the neural network tasks.

Figure 3.8 Benchmark File Conversion Flow Chart
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Finally, the bitstream is tested and verified to confirm its functional correctness,

monitor its performance benchmark, and comply with all the security protocols.

This ensures that the FPGA neural network is compatible with the multi-party com-

putation privacy-preserving MOTION2NX framework. The testing phase verified

that the implementation behaves as hypothesized and meets the operational require-

ments.
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Chapter 4

4 Experimental Results

The results obtained from implementing the methodology show that we evaluate

the performance, efficiency, and security by uploading neural network models on

FPGA hardware within the multi-party computation preserving protocols. The ex-

perimental setup includes a series of benchmarks that assess the performance of

neural networks directly on software and FPGA hardware. The benchmarks (BM1,

BM2, and BM3) increase in difficulty, respectively, to simulate varying levels of

computational demands. Furthermore, the ’gate_excutor.cpp’ component is ana-

lyzed to evaluate the performance handling of logical operations.

Two key metrics that assess the performance of neural networks on software and

FPGA hardware are the resource utilization of each benchmark and the execution

time. Additionally, privacy and security analysis form a core part of the results,

ensuring that the implementations meet computational expectations and adhere to

stringent security standards necessary for sensitive applications. Finally, the com-

parative analysis with the existing state-of-the-art methods provides a benchmark

to measure the improvements introduced in our methodology. It starts with a dis-

cussion of the challenges and limitations encountered during the experiments. This

highlights the potential improvements and future work of this project as well.
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4.1 Software Benchmark Results

Assessing the benchmark of the three neural networks tested within the software

environment, we can observe a significant jump in time execution between the most

straightforward neural network and the more complex models. BM1, a single-layer

designed neural network, showcased an efficient computation time of 5.9 x 10-2

milliseconds, as seen in Table 1. The rapid execution underscores the limited com-

putational overhead of a less complex architecture, where operations are minimal,

and fewer mathematical computations are handled on multi-party protocols.

Benchmark BM1 BM2 BM3

ExecutionTime (ms) 5.9 x 10-2 5.68 5.88

Table 1: Benchmark Execution Time Inside the MOTION2NX Framework

In Table 1, we can observe that BM2, a multi-layered perceptron model with two

hidden layers, has a sudden increase in execution time. The execution time for the

BM2 benchmark was 5.680 milliseconds. The sudden increase in execution time is

primarily due to the additional computations required for the forward propagation

throughout the multiple layers, each involving a matrix and the application for a

broader set of neurons.

Furthermore, we can see the increase in execution time continue with the BM3

benchmark, an even more complex network with three hidden layers. The BM3
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benchmark had an execution time of 5.880 milliseconds, a difference of 0.20

milliseconds compared to the BM2 benchmark. While the increase between BM2

and BM3 is less pronounced than the BM1 benchmark, but it still indicates a

growing computational cost.

4.2 FPGA Synthesis Results

The synthesis results of the neural networks benchmark on FPGA (Field Programmable

gate Arrays) provide the insights necessary to observe the enhancements achieved

through hardware acceleration. We mapped the BM1, BM2, and BM3 neural net-

work benchmark model onto the FPGA, presenting results of resource efficiency

and execution reduction.

4.2.1 Resource Utilization

Synthesizing neural networks on FPGA can demonstrate remarkable efficiency in

hardware resource utilization. First, the BM1 benchmark model, the simplest net-

work, required 760 Look-Up Tables (LUTs) and used no Flip-Flops (FF), meaning

it executes basic neural network tasks on FPGA with minimal resources.
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BM1 BM2 BM3

LUT FF LUT FF LUT FF

760 0 10446 81 12535 97

Table 2: Benchmark Resource Utilization Synthesis on FPGA

Furthermore, the BM2 and BM3 models, which present additional layers creating

greater computational complexity, demanded more LUTs and FFs. The BM2 mod-

els consumed 10,446 LUTs and 81 FFs, while BM3 required 12,535 LUTs and 97

FFs, respectively. The increase in resource utilization from BM1 to BM3 suggests

the non-linear characteristic of FPGAs. Even though the network complexity in-

creases, the computation consumption remains within the practical margins.

BM1 MIPS_Lite Overhead

LUT FF LUT FF LUT

760 0 31044 17426 39.85

Table 3: Resource Utilization of MIPS_Lite and BM1 Neural Network Benchmark

LUT overhead in the context of MPC emphasizes balancing resource utilization and

performance optimization. While MPC provides a high level of security, FPGAs of-

fer practical bottleneck solutions. This is mainly observed in BM2 and BM3, where

the FPGAs’ LUT overhead is a trade-off for their speed and parallelization benefits,

making them a viable option for efficient and secure neural network computations.
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BM2 BM3 MIPS_Lite LUT Overhead

LUT FF LUT FF LUT FF BM2 BM3

10446 81 12535 97 31044 17426 1.97 1.47

Table 4: Resource Utilization of MIPS_Lite, BM2, and BM3 Neural Network
Benchmark

4.2.2 Execution Time Reduction

The benchmark model, BM1, software execution within the MOTION2NX frame-

work was efficient, with a timing of 0.059 milliseconds. When implemented in the

FPGA hardware, the performance improved, with a fivefold reduction in time ac-

celeration on edge device compared to the software implementation and a 2.5 times

reduction in online time execution compared to the existing privacy-preserving neu-

ral network interferences.

Approach Software
(MOTION2NX)

(Protected))

Hardware Accelerator
(Unprotected)

Hardware Accelerator
(GarbledEDA +MOTION2NX)

(Protected)

Party Garbler Evaluator Garbler Evaluator Garbler Garbled MIPS Core

Execution Time
(ms)

12.62 5.9x 10-2 N/A 8.3 x 10-5 12.62 9.8 x 10-3

Table 5: Execution Time on the Software and Hardware Implementation
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4.3 Comparison with State-of-the-Art

4.3.1 Technical Specifications and Architecture

The MOTION2NX and HWGN2 frameworks offer a unique architectural approach

to implementing neural networks within FPGA-based systems. They explicitly cater

to multi-party computation environments with a strong emphasis on privacy and

security.

MOTION2NX is constructed to enhance the efficiency and scalability of neural

network computation on FPGA systems. It uses a modular design with parallel exe-

cution units and dedicated cryptographic modules, the base for complex operations

required for multiparty computation settings. The framework’s use of Configurable

Logic Blocks enhances adaptability, enabling the FPGAs to be tailored specifically

for neural networks. Its adaptability is crucial for handling computational loads ef-

ficiently, making the MOTION2NX framework suitable for applications requiring

high throughput and extensive data capabilities.

On the other hand, HWGN2 focuses on security, specifically the protection against

side-channel attacks, a trending threat in cryptographic systems. Its architecture in-

corporates advanced secure and private function evaluation techniques, such as Gar-

bled Circuits (GC) and Oblivious Transfer (OT) protocols. These protocols work

together to ensure the computations are performed without exposing sensitive data,

thus maintaining the confidentiality and integrity of the information inputted by the

parties and processed on the framework [18]. Furthermore, HWGN2 is designed to
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be resource-efficient, optimizing logical and memory hardware resources to reduce

the overhead typically referenced with secure computations.

Both frameworks aim to secure neural network computation within multi-party

computation environments. Their core strengths cater to different aspects of system

performance. MOTION2NX has the advantage of prioritizing the optimization of

computational efficiency and scalability, which is ideal for performance-heavy and

critical environments where processing speed is the most essential factor. HWGN2

prioritizes robust security measures to safeguard the data against external threats,

making it highly effective in scenarios where security and data privacy are priori-

tized at the cost of higher computational overhead.

The analysis of both frameworks highlights the complementary capabilities of MO-

TION2NX and HWGN2, underscoring the importance of choosing the appropriate

framework based on the application’s specific needs. Depending on the priority,

either maximizing performance or enhancing security is a priority. These consid-

erations are crucial for deploying neural network applications, where speed and

confidentiality are essential.

4.3.2 Performance and Efficiency Metrics

Comparing the MOTION2NX framework with existing state-of-the-art methodolo-

gies in terms of execution time and computational cost offers a peculiar view of the

efficiency and optimization of the frameworks. MOTION2NX is compared against

HWGN2, a comparable state-of-the-art system, highlighting their differences when
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handling secure neural network computations. The MOTION2NX framework out-

performs HWGN2 by a significant margin in execution time for protected hardware

acceleration. In Table 6, we can observe that MOTION2NX achieves an execution

time of 8.3 x 10-5 milliseconds, whereas the complete set of instructions under the

HWGN2 framework has an execution time of 0.68 seconds. The big difference in

time highlights the efficiency of MOTION2NX’s optimization for FPGA, specif-

ically designed to enhance privacy-preserving neural network inference by taking

advantage of the hardware acceleration and computation protocols.

MOTION2NX Hardware HWGN2 Complete Set of Instructions Complete
set vs MO-
TION2NX

Time(ms) LUT FF Time(s) LUT FF LUT Overhead

8.3 x 10-5 31044 17426 0.68 94701 52534 2.05

Table 6: Comparison between MOTION2NX and HWGN2 and its LUT Overhead

MOTION2NX demonstrates a more balanced approach compared to HWGN2. While

HWGN2 utilizes up to 94,701 LUTs, the MOTION2NX framework maintains a

lower value of 31,044 LUTs for similar tasks, showcasing the framework’s effi-

ciency. The efficiency reduces the LUT overhead resources and maximizes the

throughput of secure computations. This makes the MOTION2NX framework a

more practical and scalable implementation that can be implemented in data-sensitive

scenarios where computational efficiency is crucial, such as healthcare and finance.

60



In practicality, the MOTION2NX framework’s approach provides a blueprint for

resource-conscious design and sets a benchmark for scalability and practicality in

real-world applications. Its ability to deliver high-speed, secure computations with

lower resource overhead allows for its deployment in scenarios where performance

and data privacy are paramount.

4.4 Robustness and Security Analysis

4.4.1 Potential Attack Vectors

Security threats primarily arise in privacy-preserving neural networks implemented

on FPGAs using Multi-Party Computation (MPC). This field has three broad cate-

gories: side-channel attacks, fault injection attacks, and data leakage through com-

promise of cryptographic protocols. Side-channel attacks, such as power or timing

analyses, exploit physical or implementation-specific characteristics to extract sen-

sitive data. This threat applies to FPGA implementations where hardware-specific

attributes can inadvertently leak information [8].

Furthermore, fault injection attacks, including clock and voltage manipulation, risk

privacy-preserving neural networks by intentionally causing errors in the FPGA’s

operation, aiming to reveal underlying operations or data [22]. Finally, data leak-

age can occur if cryptographic protocols are improperly implemented or inherent

weaknesses in the cryptographic algorithms are exploited [23].
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4.4.2 System Robustness Against Attacks

The implemented framework integrates several defensive mechanisms to counter

these vulnerabilities. Countermeasures against side-channel attacks include em-

ploying differential power analysis (DPA) resistant cryptographic algorithms and

designing our FPGAs to maintain a constant power consumption irrespective of the

computational task [29]. The framework utilizes error detection and correction tech-

niques for fault injection attacks that identify and rectify faults induced by external

manipulations [27].

Moreover, the robustness of MPC protocols used in our system is ensured by adopt-

ing the latest advancements in secure multi-party computation techniques, which in-

clude zero-knowledge proofs to validate data integrity without revealing underlying

data [26].

4.4.3 Encryption Weaknesses

Despite the robust encryption standards employed, potential weaknesses remain.

For instance, the susceptibility of specific MPC protocols to collusion attacks among

participants could undermine the system’s integrity. To the edge off, the system

incorporates layered security protocols, employing symmetric and asymmetric en-

cryption techniques to safeguard against external breaches and insider threats [25].
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4.4.4 Compliance with Data Protection Regulations

Ensuring compliance with international data protection regulations such as GDPR

and HIPAA is crucial. Our system’s design adheres to data minimization and pur-

pose limitation principles. Using MPC, the system processes the data so that only

the necessary data is computed without revealing personal information to any com-

putation parties [24].

Additionally, end-to-end encryption for data in transit and at rest ensures that data

breaches do not expose sensitive personal information, following the security re-

quirements mandated by these regulations [28].

4.5 Challenges and Limitations

One of the main challenges faced in implementing neural network models in FPGA

was the complexity of translating the software algorithm into an RTL-based de-

sign for the Vivado Suite. The design process requires understanding the neural

network model structure and FPGA language programming. Extensive tuning and

customization were made to the models to achieve optimal performance on FPGA,

which can also be a resource and time-consuming.

The integration of MPC protocols with the FPGA posed additional challenges. We

carefully considered synchronization, data flow, and memory management when

optimizing an MPC with cryptographic properties compatible with the FPGA im-

plementation. Inefficiencies can lead to bottlenecks that negate the benefits of using

FPGA technology in the first place.
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While FPGA technology provides a considerable advantage in speed and paral-

lelism, the scalability of the implementations can be constrained by the physical

resources available on the board itself. With the increasing complexities of neu-

ral networks and the associated computational cost, the demand may be required

to increase respectively and exceed the computational capacity of a single FPGA.

This limitation necessitates using more FPGA units, which increases the cost and

complexity of the program.

4.6 Future Work and Potential Enhancements

The exploration and development of FPGA-based MPC frameworks have yielded

significant advancements in executing privacy-preserving neural network computa-

tions. However, there remains substantial potential for further enhancements that

could broaden the applicability and increase the efficiency of these systems. Below

are proposed areas for future work and potential enhancements.

One vital future enhancement for our FPGA-based MPC framework is the develop-

ment of a netlist parser. This tool would facilitate the handling of more complex de-

signs by enabling the automatic translation of higher-level circuit descriptions into

FPGA-implementable netlists. By streamlining this aspect of the design process,

we can handle more complex neural network architectures and other computational

models with greater ease, reducing the time and expertise required to move from

conceptual design to practical implementation.

Incorporating additional layers into the neural network designs is crucial to enhance
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the model capabilities of neural networks processed on our FPGA systems. Addi-

tional layers can improve the accuracy and functionality of the neural networks,

enabling them to handle more complex tasks and improve decision-making pro-

cesses. This enhancement would involve optimizing the existing FPGA resources

to accommodate the increased computational demands of more extensive neural

networks without compromising speed or efficiency.

Another significant enhancement involves improving the framework’s adaptability

to different input variations. This adaptability is essential for broadening the scope

of our system’s applications, particularly in fields like healthcare and autonomous

systems, where input data can vary significantly in format and complexity. By en-

hancing input variation adaptability, the system can become more robust and flexi-

ble, handling diverse data types and operational conditions more effectively.

Future work could also focus on developing enhanced toolchains and user interfaces

that make it easier for non-specialists to deploy and manage FPGA-based MPC

systems. Simplifying the user experience will lower the barrier to entry, allowing a

broader range of researchers and practitioners to utilize advanced MPC techniques

in their work.

Integrating FPGA-based MPC frameworks with cloud computing platforms could

also be explored. This integration would leverage the scalability of cloud resources

to handle larger datasets and more complex computations without the need for ex-

tensive local hardware, making privacy-preserving computations more accessible to

users and organizations not equipped with the necessary local infrastructure.
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These enhancements and areas of future work aim to expand our FPGA-based

MPC framework’s technical capabilities and strive to make these advanced privacy-

preserving technologies more accessible and effective across a broader range of

applications and industries. By continuing to innovate and refine these systems, we

can significantly advance the field of secure computational practices and open up

new possibilities for their application.
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Chapter 5

5 Conclusion

The thesis presented an innovative way to enhance privacy-preserving neural net-

work inference at the edge using FPGA technology. The primary objective was to

take advantage of the parallel processing capabilities and the flexibility of the FP-

GAs to address two of our significant challenges: computational efficiency and data

privacy in neural network applications.

The research demonstrated with its results that FPGAs can significantly increase re-

source efficiency and computational speed in the application of privacy-preserving

neural networks. In this case, the developed MOTION2NX framework utilized up

to 62.5 times fewer logical resources and 66 times less memory while achieving an

execution time that was 2.5 times faster than the average methods. These findings

prove that the advancements further support the practical deployment of advanced

neural network models in limited-resourced environments. They strengthen the sup-

port for security measures in more sensitive and specific areas such as healthcare

and finance.

Furthermore, a comparative analysis with the state-of-the-art HWGN2 system was

constructed to provide and highlight the performance of the MOTION2NX frame-

work. This research further highlights the complexity of translating complex soft-
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ware algorithms to hardware-efficient and scalability limitations imposed by the

resources provided by the FPGAs. These challenges also highlight the necessity to

innovate and optimize the technology for hardware-accelerated privacy-preserving

methods. Some future improvements can be incorporated into this thesis project.

Firstly, exploring the implementation of advanced cryptographic techniques like

homomorphic encryption can improve the security features when implemented on

FPGA without compromising computational speed. Secondly, investigating adap-

tive FPGA configurations that dynamically change the demand of the neural net-

works could optimize both power usage and processing time. This can cater to a

broader array of neural network architectures and, thus, their applications.

The thesis laid the foundational work that further enhances the execution of privacy-

preserving neural network inferences through field programmable array technology.

It demonstrated computational improvements and efficient resource management to

bolster the capabilities of edge computing devices and ensure that data remains

protected during critical tasks.
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Chapter 6
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