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Abstract

Let G be a dihedral group and let T be a collection of irreducible representations of G. In the simplest case,

a subset C of G is a Delsarte T -design if, for each representation ρ in T , the matrix
∑

g∈C ρ(g) has trace

zero. Every finite group gives rise to an association scheme called the conjugacy class scheme of the group.

This MQP explores Delsarte T -designs in the context of this association scheme.
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1 Introduction

Association schemes were first introduced by Bose and Shimamoto in 1952. In addition to use in the analysis

of incomplete block designs by statisticians, association schemes are used to study combinatorial objects

such as highly symmetric graphs, groups and codes [1, p. 343]. In the late 1960s, Philippe Delsarte studied

commutative association schemes as a means to connect coding theory and design theory. Association

schemes and Delsarte T -designs are well-studied in classical groups like the symmetric and general linear

groups (see [2]). However, these groups are quite abstract compared to the dihedral group—in a sense,

the dihedral group is the “simplest” non-abelian group we can consider, due to its concrete presentation as

the symmetries of an n-gon. Despite this fact, there are currently no results on Delsarte T -designs in the

dihedral group.

The remainder of the paper is organized as follows. In the latter half of this section we have a review of

and some elaboration on topics from undergraduate mathematics; we hope that this paper can be understood

by any student familiar with the standard undergraduate linear and abstract algebra sequences. Section 2

reviews the basic theory of commutative association schemes for any finite set, after which we shift our focus

to only the conjugacy class association scheme of a finite group for the remainder of the paper. In Section 3

we give a very brief introduction to representation and character theory, with the goal being to provide just

enough information to motivate later results and discussions. Section 4 introduces Delsarte theory, the main

focus of the project. This section is broad—we present the theory so that it is applicable for any finite group.

We also briefly introduce some topics in coding theory to show a natural duality between codes and designs.

Finally in Sections 5 and 6 we focus entirely on the dihedral groups. We first present the structure and

construct the conjugacy class association scheme for D2n, then describe the irreducible representations and

characters. Then in Section 6 we discuss the Delsarte theory of the dihedral groups, presenting a number of

theorems, conjectures, and open questions. Included in these theorems is a complete classification of designs

corresponding to the one-dimensional irreducible representations in addition to an interchangibility theorem

regarding designs in these same representations. We also characterize some designs that exist in any dihedral

group, and make a conjecture about the structure of designs afforded by dihedral subgroups.

As promised, we begin with topics from undergraduate algebra below.

Definition. [3, p. 41] A group action of a group G on a set X is a map from G×X to X (written as g · x,
for all g ∈ G and x ∈ X) satisfying the following properties:

1. g1 · (g2 · x) = (g1g2) · x, for all g1, g2 ∈ G, x ∈ X, and

2. 1 · x = x, for all x ∈ X.

Theorem 1.1. [3, p. 114] Let G be a group acting on the nonempty set X. The relation on X defined by

y ∼ x if and only if y = g · x for some g ∈ G

is an equivalence relation.

Proof. By axiom 2 of a group action we have y = 1 · y for all y ∈ X, so ∼ is reflexive. If y ∼ x then y = g · x
for some g ∈ G, meaning g−1 ·y = g−1 ·(g ·x), or x = g−1y. Thus x ∼ y so ∼ is symmetric. If we additionally
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have x ∼ z, then x = g′ · z for some g′ ∈ G so y = g · (g′ · z) = (gg′) · z. So ∼ is also transitive and therefore

is an equivalence relation on A.

In particular we consider the action of G on itself by conjugation, where

g · x = gxg−1 for all g ∈ G, x ∈ G.

We say that two elements x and y of G are conjugate in G if there is some g ∈ G such that y = gxg−1 [3, p.

123]. By Theorem 1.1, the orbits of this action partition G into equivalence classes called conjugacy classes.

We denote these conjugacy classes by C0, C1, · · · , Cd, so that d+ 1 gives the number of conjugacy classes.

Example. Let G be an abelian group and let a, b ∈ G. Then aba−1 = aa−1b = b, so all conjugacy classes

have only one element.

We remark that in every group G, every element b ∈ Z(G) lies in a conjugacy class of size one, since

gbg−1 = gg−1b = b. From here on, our convention is that C0 = {1G}. We finally have one useful lemma:

Lemma 1.2. Let Ci be a conjugacy class of a group G. Then the set C−1
i := {x−1 : x ∈ Ci} is also a

conjugacy class of G.

Proof. Let Ci be some conjugacy class of a group G. Then by definition we have that, for all g ∈ G,

g−1Cig = Ci. Taking inverses gives g−1C−1
i g = C−1

i , where C−1
i . So C−1

i is stable under conjugation and thus

also a conjugacy class.

We comment that it is not true in general that C−1
i = Ci.

Definition. [3, p. 169] For a group G and elements x, y ∈ G, let [x, y] = xyx−1y−1. This is known as

the commutator of x and y and, furthermore, the group G′ = ⟨[x, y] | x, y ∈ G⟩ is called the commutator

subgroup of G.

Clearly, the commutator subgroup of an abelian group is simply the identity element 1G. Let a ∈ G′ and

g ∈ G be given. Then [g, a] = gag−1a−1 ∈ G′. Since G′ is a subgroup we know (gag−1a−1)a ∈ G′, but

(gag−1a−1)a = gag−1. So we have shown that gG′g−1 ⊂ G′, meaning G′ is normal. With this we also define

the abelianization of G as the quotient group G/G′, called as such because the resulting group is abelian.

Theorem 1.3. [3, p. 169] For a normal subgroup H of G, G/H is abelian if and only if G′ is a subgroup

of H.

The above theorem tells us that G/G′ is the “largest” abelian quotient of G.

Definition. [3, p. 342] Let R be a commutative ring with identity. An R-algebra is a ring A together with

a ring homomorphism f : R→ A such that

1. f(1R) = 1A

2. f(r)x = xf(r) for all r ∈ R and x ∈ A
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When R is a field, an R-algebra can be viewed as a vector space equipped with a bilinear product. As an

example, the matrix algebra Mn(R) is the set of n× n matrices with entries in the ring R.

We now have a collection of short definitions and a few results from linear algebra taken from [4]. For a

matrix A, we denote the conjugate transpose of A by A†. A matrix A is normal if it satisfies A†A = AA†,

and a matrix U is unitary if U†U = UU† = I. A matrix P is idempotent if P 2 = P ; we say that two

idempotents E,F are orthogonal if EF = 0 and that an idempotent P is primitive if there does not exist

two orthogonal idempotents E,F such that P = E + F . Finally we present the following two theorems

without proof:

Theorem 1.4. A matrix A is normal if and only if it is unitarily diagonalizable; that is, there exists a

unitary matrix P and a diagonal matrix D such that A = PDP−1.

Theorem 1.5. Let {A1, A2, . . . , An} be a set of diagonalizable matrices such that AiAj = AjAi for all

1 ≤ i, j ≤ n. Then {A1, A2, . . . , An} are simultaneously diagonalizable; that is, there exists an invertible

matrix P whose columns are common eigenvectors of {A1, A2, . . . , An} so that P−1AiP is diagonal for all

Ai.
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2 Association Schemes

Let X be a finite set of size n > 0 and R = {R0, R1, ..., Rd} a set of d + 1 relations on X. (X,R) is an

association scheme when the following conditions are satisfied [5, p. 44]:

(A1) R0 is the diagonal relation, i.e. R0 = {(x, x) | x ∈ X}.

(A2) R partitions X ×X.

(A3) For any i ∈ {0, 1, . . . , d} the relation R−1
i := {(y, x) | (x, y) ∈ Ri} also belongs to R.

(A4) For all i, j, k ∈ {0, 1, . . . , d} and for all (x, y) ∈ Rk, the number

pkij := |{z ∈ X | (x, z) ∈ Ri ∧ (z, y) ∈ Rj}|

depends only on the choices of i, j, k.

If (x, y) ∈ Ri we say that x and y are ith associates. An association scheme is symmetric if Rl = R−1
l for all

0 ≤ l ≤ d and commutative if pkij = pkji for all i, j, k. For our purposes, we will deal only with commutative

association schemes. Later, we will display the intersection numbers with matrices Li for i = 0, . . . , d so that

the kj entry of Li is equal to p
k
ij .

We can also describe an association scheme in terms of matrices. Build the 01-matrix Ai for i ∈
{0, 1, · · · , d} to be the n × n matrix with xy entry equal to 1 if (x, y) ∈ Ri, and 0 otherwise. So if we

have a set of 01-matrices A = {A0, A1, . . . , Ad}, (X,A) is an association scheme if [5, p. 45]

(B1) A0 = I.

(B2)
∑d

i=0Ai = J where J is the matrix of all ones.

(B3) for any i ∈ {0, 1, . . . , d}, AT
i ∈ A.

(B4) for all i, j ∈ {0, 1, . . . , d}, AiAj =
∑d

k=0 p
k
ijAk for some scalars pkij (0 ≤ i, j, k ≤ d).

We call these the adjacency matrices of the scheme, and it is quickly seen that these criteria are equiv-

alent to the conditions (A1)-(A4) above. Since A is a set of d + 1 linearly independent matrices, the set

{A0, A1, . . . , Ad} forms a basis for a (d+1)-dimensional subalgebra ofMn(C) called the Bose-Mesner algebra,

which we denote by A. [6, p. 52]. We present some facts about A.

Lemma 2.1. Let A = {A0, A1, . . . , Ad} be the adjacency matrices of a commutative association scheme.

Then the matrices A0, A1, . . . , Ad are normal and pairwise commutative.

Proof. That the matrices commute follows from property (B4) and the assumption of a commutative as-

sociation scheme: AiAj =
∑d

k=0 p
k
ijAk =

∑d
k=0 p

k
jiAk = AjAi, so the matrices commute. Then we

know from property (B3) that, for all 0 ≤ i ≤ d, there exists 0 ≤ j ≤ d so that AT
i = Aj . Thus

AT
i Ai = AjAi = AiAj = AiA

T
i . So the matrices are normal.

We now construct an additional basis for A following that of Bannai and Ito in [6]. Since the adjacency

matrices Ai are normal and commute with each other, they are simultaneously diagonalizable by a unitary
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matrix. Let B = {u0, . . . , un−1} be an orthonormal basis of Cn where Aiuj = λijuj for all i, j and define

the relation ∼ on B so that uj ∼ uk if λij = λik for all i = 0, 1, . . . , d. It is immediately clear that ∼ is an

equivalence relation. Denote the equivalence classes of this relation by S0, S1, . . . , Sr. Since the eigenspace

of J =
∑d

i=0Ai corresponding to the eigenvalue n is equal to span{(1, 1, . . . , 1)}, without loss of generality
we can set S0 = {u0} = { 1√

n
1}.

We now define the matrices Ej by

Ej =
∑

uk∈Sj

uku
†
k

for all j = 0, . . . , r and for a matrix P set Pji = λik for uk ∈ Sj so that Ai =
∑r

j=0 PjiEj for all i = 0, . . . , d.

We will use without proof that r = d, giving the following theorem from [6, p. 59–60].

Theorem 2.2. The following properties hold:

(i) E0 = 1
nJ

(ii)
∑d

i=0Ei = I

(iii) EiEj = δijEi

(iv) E0, . . . , Er are linearly independent

(v) each Ej ∈ span{A0, . . . , Ad}

(vi) r = d

(vii) E†
i = Ei

Proof. (i) is easily seen since we defined E0 = u0u
†
0 = (1/n)11† = (1/n)J . Then we have Ai =

∑d
j=0 PjiEj ,

so I = A0 =
∑d

j=0 Pj0Ej =
∑d

j=0Ej , since Pj0 = 1 for all j. So (ii) is proved. By definition

EiEj = (
∑

uk∈Si

uku
†
k)(

∑
ul∈Sj

ulu
†
l );

but u†kul = δkluk since they are an orthonormal set. So EiEj = δijEi and (iii) is proved. That the Ej are

linearly independent then follows from (iii), and (v) follows from (iv) and (vi) since we have a set of linearly

independent matrices that span a space of dimension d. Finally E†
i = (

∑
uj∈Si

uju
†
j)

† =
∑

uj∈Si
uju

†
j = Ei,

so (vii) holds.

Since {A0, A1, . . . , Ad} and {E0, E1, . . . , Ed} are both bases of A, we can also express each Ei as a linear

combination of the A′
js. Define the matrix Q such that

Ei =
1

n

d∑
j=0

QjiAj .

Then P and Q are referred to as the first and second eigenmatrices of the association scheme respectively

[6, p. 60]. We note that PQ = nI.
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Now we consider the entry-wise multiplication of matrices, so that for two matrices A,B of the same size

we have (A ◦ B)ij = AijBij . This operation is also known as the Hadamard product of matrices. We first

want to show that A is closed under the Hadamard product. Since the relations in our association scheme

are disjoint and each Ai is a 01-matrix, we can see that

Ai ◦Aj = δijAi.

So for C,D ∈ A with C = c0A0 + · · ·+ cdAd and D = c0A0 + · · ·+ cdAd we have

C ◦D = (c0A0 + · · ·+ cdAd) ◦ (c0A0 + · · ·+ cdAd) = c0d0A0 + · · ·+ cdddAd.

So closure is proved. We can then write

Ei ◦ Ej =
1

n

d∑
k=0

qkijEk,

where we call the coefficients qkij the Krein parameters of the scheme. We finish this discussion by observing

a duality between {A0, A1, . . . , Ad} and {E0, E1, . . . , Ed}:∑
Ai = J

∑
Ei = I

A0 = I E0 = 1
nJ

AiAj =
∑
pkijAk Ei ◦ Ej =

1
n

∑d
k=0 q

k
ijEk

Ai ◦Aj = δijAi EiEj = δijEi

Ai =
∑
PjiEj Ej =

∑
QjiAj

In this paper, we apply this theory to study a particular association scheme on finite groups. Given a finite

group G of size n, the conjugacy class association scheme withX = G has the relationsR = {R0, R1, . . . , Rd}
whereRi = {(x, y) |x−1y ∈ Ci}.Wemust prove that this does in fact satisfy the requirements of an association

scheme. Consider (x, y) ∈ R0. Then we have that x−1y ∈ C0. Recalling that C0 = {1G} then gives

x = y, showing that R0 is the diagonal relation. Axiom (A2) follows from the fact that the conjugacy

classes partition G. Next suppose we have x, y so that x−1y ∈ Ci. Given any g ∈ G we then know that

g−1x−1yg ∈ Ci. Taking the inverse of both sides gives g−1y−1xg ∈ C−1
i = Cj for some 0 ≤ j ≤ d, so

(y, x) ∈ Rj meaning the inverse of every relation exists and thus (A3) is proven. Now we must show (A4).

Let (x1, y1) ∈ Rk and y ∈ Ck be given. We want to show that the sets

S1 = {z ∈ G : (x1, z) ∈ Ri, (z, y1) ∈ Rj}

= {z ∈ G : x−1
1 z ∈ Ci ∧ z−1y1 ∈ Cj},

S = {z ∈ Ci : z−1y ∈ Cj}

have the same size. Since x−1
1 y1 ∈ Ck, there exists g such that g−1x−1

1 y1g = y. We claim that S1 = x1gSg
−1.

Let z′ ∈ S. Then z′ ∈ Ci and z′−1y ∈ Cj . If we take z = x1gz
′g−1 ∈ x1gSg

−1 we find that x−1
1 z = gz′g−1 ∈

Ci. Finally we see that z−1y1 = gz′−1g−1x−1
1 y1 = gz′−1yg−1 ∈ Cj , so z ∈ S1 meaning S1 = x1gSg

−1. So

(A4) is proven, showing that we do have an association scheme.

Example. We will consider the conjugacy class association scheme of Zn. We have already shown that
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each conjugacy class in an abelian group has size 1, so the conjugacy classes of Zn are given by Ci = {i} for

i = 0 . . . n− 1. So each relation in {R0, R1, . . . , Rn−1} can be described by

Rb = {(0, b), (1, b+ 1), . . . , (n− b− 1, n− 1), (n− b, 0), (n− b+ 1, 1), . . . , (n− 1, b− 1)},

creating the associated adjacency matrix

Ab =

0 · · · b− 1 b b+ 1 b+ 2 · · · n− 1



0 · · · 0 1 · · · 0 0 0 0

0 · · · 0 0 1 · · · 0 0 1

0 · · · 0 0 0 1 · · · 0 2
...

...
...

...
...

...
. . .

...
...

0 · · · 0 0 0 0 · · · 1 n− b− 1

1 · · · 0 0 0 0 · · · 0 n− b
...

. . .
...

...
...

...
. . .

...
...

0 · · · 1 0 0 0 · · · 0 n− 1

for all b ∈ Zn. We now want to find the parameters of the scheme. For the cyclic group, characterizing the

intersection numbers proves to be simple; they are given by

pkij =

1, i+ j = k (modn)

0, otherwise.

Similarly to the intersection numbers, we find that the Krein parameters for Zn are given by

qkij =

1, i+ j = k (modn)

0, otherwise.

So the cyclic group Zn is a special case in which the intersection numbers and the Krein parameters are

equal. We return to Zn as an example again in Chapter 3.
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3 Group Representations and Characters

In this chapter, we cover only the essentials of representation and character theory needed to motivate

our results. The more interested reader should refer to [7], Ledermann’s book “Introduction to Group

Characters”, from which the material below is taken unless another reference is given.

Recall that the general linear group GLn(F) is the group of n× n invertible matrices with entries in the

field F. It is well known that every finite group is isomorphic to a group of matrices. Since we have more

tools to study the structure and properties of the general linear group than other groups, it is natural to

want a connection between the two. We are interested primarily in homomorphisms into the general linear

groups over the complex numbers as follows:

Definition. A degree n matrix representation of a group G is a group homomorphism ρ : G→ GLn(C).

Every group admits the trivial representation, or ρ : G → C defined by ρ(g) = 1 for all group elements

g. We are particularly concerned with irreducible representations, or a representation ρ so that no proper

subspace of Cn is preserved by ρ(g) for all g ∈ G. We note that all one-dimensional representations are

irreducible, since there are no proper subspaces of C. The function that sends each group element to the

trace of the matrix ρ(g) is called the character of the representation and is typically denoted by χ, so that

χ(a) = tr ρ(a). Note that if we have a, b, g ∈ G such that b = gag−1, then ρ(b) = ρ(g)ρ(a)ρ(g)−1. Taking

the trace gives

tr ρ(b) = tr [ρ(g)ρ(a)ρ(g)−1]

= tr [ρ(g)−1ρ(g)ρ(a)]

= tr ρ(a),

which we state as a lemma:

Lemma 3.1. Let G be a finite group and ρ : G→ GLn(C) any representation with corresponding character

χ(a) = tr ρ(a). If a, b are conjugate elements then χ(a) = χ(b).

So these characters are examples of class functions, or functions that are constant over the conjugacy

classes of a group. We will need one theorem from Ledermann (p. 49) below; this follows from an important

theorem of Maschke’s that every representation of a finite group G over C is equivalent to a direct sum of

irreducible representations.

Theorem 3.2. Let G be a group of order n. If G has d+ 1 conjugacy classes, there are, up to equivalence,

d+ 1 distinct irreducible representations over C given by ρ0, ρ1, . . . , ρd. If ρi is of degree ni, then

n =

d∑
i=0

n2i . (1)

We will later use this theorem to determine completely the irreducible representations of a given group. Now

let χi, χj be the characters of the representations ρi, ρj respectively and define their inner product by

⟨χi, χj⟩ =
1

|G|
∑
x∈G

χi(x)χj(x
−1).
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Then we have the equations ∑
g∈G

χi(g)χj(g
−1) = |G|δij (2)

d∑
i=0

χi(gj)χi(g
−1
k ) =

|G|
|Cj |

δjk (3)

where in (3) we have gj ∈ Cj and gk ∈ Ck. These equations are known as the first and second orthogonality

relations of characters respectively [7].

It is then convenient to display the characters in a table. Since all conjugate elements have the same

character, and there are the same number of irreducible representations as there are conjugacy classes, the

character table will have d + 1 rows and d + 1 columns. For our notation, the ij entry of the character

table is the character χi evaluated at gj for any gj ∈ Cj . We present an example of the character table

for G = D12 after a brief discussion of an important connection between the character table T and the

previously mentioned second eigenmatrix Q of the conjugacy class association scheme. We will need the

following well-known lemma:

Lemma 3.3 (Schur’s Lemma). [7, p. 24] Suppose ρ, σ are irreducible representations of a finite group G

with degrees m and n respectively. If there is a n×m matrix P such that Pρ(g) = σ(g)P for all g ∈ G, then

either

(i) P = 0, or

(ii) m = n and P is invertible.

Corollary 3.4. In the second case above, we have P = λI.

For a given degree m irreducible representation ρj of G, some fixed x ∈ G, and 0 ≤ i ≤ d, consider the

sum
∑

x∼iy
ρj(y). The elements y of G that are ith associates of x are those that satisfy x−1y = g for some

g ∈ Ci, so the sum can be rewritten as∑
x∼iy

ρj(y) =
∑
g∈Ci

ρj(xg) = ρj(x)
∑
g∈Ci

ρj(g),

since ρj is a homomorphism. Now let M =
∑

g∈Ci
ρj(g). Note that ρj(x)ρj(g)ρj(x

−1) = ρj(xgx
−1) and,

since g ∈ Ci, we also have xgx−1 ∈ Ci. Putting this together gives

ρj(x)Mρj(x)
−1 =

∑
g∈Ci

ρj(xgx
−1) =M,

since by the definition of a conjugacy class hCih−1 = Ci for all h ∈ G. So we have ρj(x)M = Mρj(x) and

thus, by Schur’s lemma, we know M = λI for some λ. Now we have∑
x∼iy

ρj(y) =Mρj(x) = λρj(x).

Let

u(x) =
[
ρj(x)11 ρj(x)12 · · · ρj(x)mm

]
10



for all x ∈ G; then the |G| ×m2 matrix U with the xth row given by u(x) satisfies AiU = λU for some λ.

Since M = λI and M is an m ×m matrix, trM = λm. Then for g ∈ Ci, we have tr ρj(g) = χj(gi) for

any gi ∈ Ci, since χj is a class function. This gives the equality

λm = |Ci|χj(gi) =⇒ λ = χj(gi)
|Ci|
m

noting m = χj(1G); but recalling the second orthogonality relation for characters, we also have

λ =
|Ci|Qji

k
,

where k is the dimension of the λ-eigenspace. It follows from Maschke’s theorem and the Wedderburn

structure theorem [3, Thm 18.4] that the columns of U are linearly independent, so using (1) we have

k = m2. So finally

χj(gi)
|Ci|
m

=
|Ci|
m2

Qji,

implying that Qji = mχj(gi) for gi ∈ Ci.

Example. The following are the character table and eigenmatrix Q in D12.

Q =



1 1 1 1 4 4

1 1 −1 −1 2 −2

1 1 1 1 −2 −2

1 1 −1 −1 −4 4

1 −1 1 −1 0 0

1 −1 −1 1 0 0



char. χ0 χ1 χ2 χ3 χ4 χ5

class

C0 1 1 1 1 2 2

C1 1 1 −1 −1 1 −1

C2 1 1 1 1 −1 −1

C3 1 1 −1 −1 −2 2

C4 1 −1 1 −1 0 0

C5 1 −1 −1 1 0 0

Example. As an example, we come back to Z5 = {0, 1, 2, 3, 4}. Since Zn is abelian, we know that all the

conjugacy classes have size one and thus all its representations are degree one. So for Z5, the adjacency

matrices are

A0 = I5, A1 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

 , A2 =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

A3 =


0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 , A4 =


0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 .

We note that for all b ∈ Zn, it holds that A
−1
b = AT

b . This follows from the the orthogonality of permutation

matrices. Similarly it is true that Ab = (A1)
b in Zn. We use these facts to simultaneously diagonalize the

adjacency matrices of Zn by first diagonalizing A1.

It can be calculated easily that the characteristic polynomial of A1 is given by f(λ) = λn − 1. Let

ω = exp(2πi/n), a primitive nth root of unity. Then the eigenvalues of A1 are given by {1, ω, ω2, . . . , ωn−1}.
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With this we find that

χj =



ω0

ωj

ω2j

...

ω(n−1)j


for 0 ≤ j ≤ n− 1 are the eigenvectors for A1. So by letting

P =


...

...
...

χ0 χ1 · · · χn−1

...
...

...


we can find the equality A1 = PD1P

−1 where

D1 =



1 0 0 · · · 0

0 ω1 0 · · · 0

0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ω(n−1)


.

Finally, taking matrix powers shows that (A1)
b = (PD1P

−1)b, implying Ab = P (D1)
bP−1. So the Ab are

simultaneously diagonalizable by P as (D1)
b is given by

Db :=



1 0 0 · · · 0

0 ωb 0 · · · 0

0 0 ω2b · · · 0
...

...
...

. . .
...

0 0 0 · · · ω(n−1)b


.

We find that irreducible representations of Zn (all of degree one) are given by

χj(a) = ωja

for j = 0, . . . , n− 1. So we now have all the needed information to fully construct the character table of Zn,

which will take the form

T =


1 1 · · · 1

1 ω · · · ωn−1

...
...

. . .
...

1 ωn−1 · · · ω

 .
So in this case, we can see that P = Q = T .
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4 Delsarte Theory

Though the focus of this project is the dihedral groups, we move away from this briefly to give some needed

background and history of the theory. In the late 1960s, Philippe Delsarte (at Philips Labs) studied subsets

of the vertices of association schemes due to their applications in digital communications. In particular, there

was interest in their application to error-correcting codes, or codes of binary numbers such that a message

can be recovered even if some bits are mistakenly flipped. As an example, consider the 3-cube below with

vertices labelled by the binary vectors of length 3. For this scheme we say that x and y are ith associates

000

001 101

100

010

011 111

110

Figure 1: The Hamming scheme for n = 3.

if they are Hamming distance i apart, where the Hamming distance is the number of coordinates in which

x and y differ. We quickly calculate that for n = 3 there are four relations whose adjacency matrices are

given, with vertices ordered as G = {000, 001, 010, 011, 100, 101, 110, 111}, by A0 = I8 and

A1 =



0 1 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0


, A2 =



0 0 0 1 0 1 1 0

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1

1 0 0 1 0 0 1 0

1 0 0 1 0 1 0 0

0 1 1 0 1 0 0 0


, A3 =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


.

From this we find the basis of primitive idempotents E0 = 1
8J8,

E1 =



3
8

1
8

1
8 − 1

8
1
8 − 1

8 − 1
8 − 3

8
1
8

3
8 − 1

8
1
8 − 1

8
1
8 − 3

8 − 1
8

1
8 − 1

8
3
8

1
8 − 1

8 − 3
8

1
8 − 1

8

− 1
8

1
8

1
8

3
8 − 3

8 − 1
8 − 1

8
1
8

1
8 − 1

8 − 1
8 − 3

8
3
8

1
8

1
8 − 1

8

− 1
8

1
8 − 3

8 − 1
8

1
8

3
8 − 1

8
1
8

− 1
8 − 3

8
1
8 − 1

8
1
8 − 1

8
3
8

1
8

− 3
8 − 1

8 − 1
8

1
8 − 1

8
1
8

1
8

3
8


, E2 =



3
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8 − 1
8

3
8

− 1
8

3
8 − 1

8 − 1
8 − 1

8 − 1
8

3
8 − 1

8

− 1
8 − 1

8
3
8 − 1

8 − 1
8

3
8 − 1

8 − 1
8

− 1
8 − 1

8 − 1
8

3
8

3
8 − 1

8 − 1
8 − 1

8

− 1
8 − 1

8 − 1
8

3
8

3
8 − 1

8 − 1
8 − 1

8

− 1
8 − 1

8
3
8 − 1

8 − 1
8

3
8 − 1

8 − 1
8

− 1
8

3
8 − 1

8 − 1
8 − 1

8 − 1
8

3
8 − 1

8
3
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8 − 1
8

3
8


,
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E3 =



1
8 − 1

8 − 1
8

1
8 − 1

8
1
8

1
8 − 1

8

− 1
8

1
8

1
8 − 1

8
1
8 − 1

8 − 1
8

1
8

− 1
8

1
8

1
8 − 1

8
1
8 − 1

8 − 1
8

1
8

1
8 − 1

8 − 1
8

1
8 − 1

8
1
8

1
8 − 1

8

− 1
8

1
8

1
8 − 1

8
1
8 − 1

8 − 1
8

1
8

1
8 − 1

8 − 1
8

1
8 − 1

8
1
8

1
8 − 1

8
1
8 − 1

8 − 1
8

1
8 − 1

8
1
8

1
8 − 1

8

− 1
8

1
8

1
8 − 1

8
1
8 − 1

8 − 1
8

1
8


from which we can obtain the first and second eigenmatrices

P = Q =


1 3 3 1

1 1 −1 −1

1 −1 −1 −1

1 −3 3 −1


So if we want a set of “easily distinguishable words”, then we should choose vertices that are pairwise

far apart. Take the subset C = {000, 111}. If we transmit the message 000, and there is one error, the

possibilities are 001, 010, and 100. So if the receiever knows there was exactly one error, they can determine

that the correct message was 000. A useful tool for understanding the error-correcting properties of a code

is the vector aC of length d + 1 whose ith entry ai gives the number of pairs of vectors in C that are at

Hamming distance i apart and scale the vector by |C|−1 we obtain

aC =
[
1 0 0 1

]
and observe that the two zeros in the middle represent the number of errors needed for a code to be

undecipherable—so in our case, if there is at most one error per code word during transmission, the message

is still decipherable. Later we will refer to this vector as the inner distribution of C. As a second example,

consider

C⊥ = {000, 011, 101, 110}

and note that while C is the binary rowspace of the matrix [1 1 1], C⊥ is the nullspace of this matrix over

the binary ring Z2; this is called the dual code of C. For our example, C has dual distribution

aCQ =
[
2 0 6 0

]
;

to shed light on this terminology, we give the inner distribution and dual distribution of the dual code C⊥:

aC⊥ =
[
1 0 3 0

]
, aC⊥Q =

[
4 0 0 4

]
.

In our project, subsets of the dihedral group will not have natural duals, but we are still interested in the

combinatorial properties of the inner and dual distributions. We now formally describe this theory in order

to apply it to any finite group.

Let A0, . . . , Ad and E0, . . . , Ed be the adjacency matrices and idempotents of the conjugacy class asso-

14



ciation scheme over a finite group G. Let some nonempty subset C of G be given; the following definitions

and theorems are largely adapted from Delsarte’s thesis at [8]. We first denote by x the characteristic vector

of C so that x has one entry for each g ∈ G and

xg =

1 g ∈ C

0 g /∈ C.

Then the h-entry of y = Aix is equal to |hCi ∩ C|. We now define two distributions on C. For a row vector

a of length d+ 1, let

ai =
1

|C|
|{x, y ∈ C : x−1y ∈ Ci}|.

Informally, each entry ai gives the “average” number of elements of C that are ith associates of an additional

element of C chosen uniformly at random. This vector is referred to as the inner distribution of C. We also

find that

ai =
1

|C|
xTAix;

this can be seen by recalling that the gh entry of Ai is 1 if g−1h ∈ Ci (and 0 otherwise) so xTAix counts the

number of pairs (g, h) ∈ C × C such that g−1h ∈ Ci, matching the first definition of ai. We define the dual

distribution of C similarly, with

bj =
|G|
|C|

xTEjx

for 0 ≤ j ≤ d and present the following lemma from [6] and [9]:

Lemma 4.1. Let C be a nonempty subset of a group G and let a,b be the inner and dual distributions of

C respectively. Then

1. ai ≥ 0 for all i

2. a0 = 1

3. a0 + a1 + · · ·+ ad = |C|

4. bj ≥ 0 for all j

5. b0 = |C|

6. b0 + b1 + · · ·+ bd = |G|

7. b = aQ.

Proof. (1) is clear from the first definition of ai as 1/|C| times the cardinality of a set. Recalling that

C0 = {1}, we know that if x−1y ∈ C0 then x = y. There are |C| pairs of elements in |C| satisfying this, so

a0 = |C|/|C| = 1. Next we can write

a0 + · · ·+ ad =
1

|C|
(xTA0x+ · · ·+ xTAdx) =

1

|C|
xT (A0 + · · ·+Ad)x =

1

|C|
· |C|2 = |C|,
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as A0 + · · · + Ad = J . Recall that the Ej are orthogonal projection matrices—then we can use the facts

Ej = E2
j = E†

j to show that

bj =
|G|
|C|

xTET
j Ejx =

|G|
|C|

⟨Ejx, Ejx⟩ ≥ 0,

so bj ≥ 0 for all j. Next we have

b0 =
|G|
|C|

xTE0x =
1

|C|
· |C|2 = |C|,

since E0 = 1
|G|J . So b0 = |C|. Then we can write

b0 + · · ·+ bd =
|G|
|C|

(xTE0x+ · · ·+ xTEdx) =
|G|
|C|

xT (E0 + · · ·+ Ed)x = |G|,

as E0 + · · ·+ Ed = I and xTx = |C|. Finally we observe that, given j,

d∑
i=0

aiQji =

d∑
i=0

Qji

|C|
xTAix =

1

|C|
xT

[
d∑

i=0

QjiAi

]
x =

|G|
|C|

xTEjx = bj ,

proving that bj =
∑d

i=0 aiQji and thus that b = aQ.

As in the motivating example of the Hamming scheme, we are interested in the number and positions of

zeros in the dual distribution b. For a subset T ⊂ {0, 1, . . . , d}, we say that a nonempty subset C ⊂ G is a

T -design if the dual distribution of C satisfies bi = 0 for all i ∈ T . We often want to know exactly which of

the entries are equal to zero, so we also define the set

T (C) = {j ̸= 0 | bj = 0}.

An equivalent definition for a T design is a subset T ⊂ {0, 1, . . . , d} so that each irreducible representation

ρi of G satisfies

tr

∑
h∈C

∑
g∈C

ρi(g
−1h)

 = 0

for all i ∈ T .
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5 Dihedral Group

5.1 Structure

We now focus entirely on the dihedral group. Recall that the dihedral group D2n is the group of order

2n with presentation ⟨r, s | rn = s2 = srsr = 1⟩. We will call group elements of the form r2i and sr2i

even rotations and even reflections respectively, and we will call elements of the form r2i+1 and sr2i+1 odd

rotations and odd reflections respectively. Additionally, we let R denote the subgroup consisting of all the

rotations and we let S denote D2n \R.
We first want to characterize all subgroups of D2n. We claim that every subgroup is either cyclic or

dihedral, including Klein-4 for n even. Let H ≤ D2n and first suppose that H ≤ ⟨r⟩. Since ⟨r⟩ is cyclic of

order n there is exactly one subgroup of order k for each divisor k of n, in particular ⟨rn/k⟩. So H must be

of this form for some k dividing n. Next suppose that H is not a subset of the rotations. Then H = ⟨rk, t⟩
for some 0 ≤ k ≤ n and some reflection t. If k is relatively prime to n, then we have H = D2n, so assume

k divides n. If k = 0 then the subgroup is simply {1, t}, since every reflection is its own inverse. Then if

k ̸= 0, H is isomorphic to the dihedral group of order 2n/k. We remark that in this case we call the dihedral

subgroup “degenerate” if k = n/2 (in which case it is isomorphic to the Klein-4 group).

Next, we want to determine which of these subgroups are normal. Recall that a subgroup N ≤ G is

normal if gNg−1 = N for all g ∈ G. It is immediately clear that if N is a subgroup of the rotations, then it

is normal in D2n. We claim that if n is odd, the only other normal subgroup is the trivial group and D2n

itself. But when n is even, there are two more; namely ⟨r2, s⟩ and ⟨r2, sr⟩.

5.2 Association Scheme

Theorem 5.1. The conjugacy classes of D2n are given by Ci = {ri, r−i} for i = 0 . . . ⌊n
2 ⌋ and Cn

2 +1 =

{s, sr2, . . . , srn−2}, Cn
2 +2 = {sr, sr3, . . . , srn−1} (for n even) or C⌈n

2 ⌉ = {s, sr, . . . , srn−1} (for n odd).

Proof. Consider the following table of conjugations gxg−1:

x\g rj srj

ri ri r−i

sri sri−2j sr2j−i

This demonstrates that every rotation is conjugate only to itself and its inverse, and reflections are conjugate

to reflections of the same parity (for n even) or to each other reflection (for n odd).

With this we find that there are d+ 1 relations in the conjugacy class association scheme over D2n, where

d =

n
2 + 2, n even

n−1
2 + 1, n odd.

Example. The conjugacy classes of D12 are given by C0 = {1}, C1 = {r, r5}, C2 = {r2, r4}, C3 = {r3}, C4 =

{s, sr2, sr4}, C5 = {sr, sr3, sr5} and the adjacency matrices by
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A0 = I12, A1 =



0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 1 0



, A2 =



0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0



A3 =



0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0



, A4 =



0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1

1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0



A5 =



0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0


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We now present a few results on the intersection numbers of the scheme, beginning with two examples.

We define the matrices Li so that the jk entry of Li is equal to p
j
ik.

Example. For D10, the Li are

L0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , L1 =


0 2 0 0

1 0 1 0

0 1 1 0

0 0 0 2

 , L2 =


0 0 2 0

0 1 1 0

1 1 0 0

0 0 0 2

 , L3 =


0 0 0 5

0 0 0 5

0 0 0 5

1 2 2 0

 .

Example. For D12, the Li are

L0 = I, L1 =



0 2 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 2 0 0 0

0 0 0 0 0 2

0 0 0 0 2 0


, L2 =



0 0 2 0 0 0

0 1 0 1 0 0

1 0 1 0 0 0

0 2 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2


, L3 =



0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


,

L4 =



0 0 0 0 3 0

0 0 0 0 0 3

0 0 0 0 3 0

0 0 0 0 0 3

1 0 2 0 0 0

0 2 0 1 0 0


, L5 =



0 0 0 0 0 3

0 0 0 0 3 0

0 0 0 0 0 3

0 0 0 0 3 0

0 2 0 1 0 0

1 0 2 0 0 0


.

We see that for any dihedral group, L0 will be equal to the identity matrix. This is because A0 is the

identity matrix, so the product of A0 with any other Ai will be equal to Ai. For the remainder of the results,

the odd and even cases must be considered separately. First suppose n is odd. Our first special case is if

k = 0, then

p0ij =


0, i ̸= j

2, i = j and 0 < i < d

n, i = j and i = d

.

Since k = 0, without loss of generality we can choose a = b = 1 as we just need that a−1b ∈ C0. So given

c ∈ D2n such that a−1c ∈ Ci and c−1b ∈ Cj , we can deduce c ∈ Ci and c ∈ Cj , since conjugacy classes in the

dihedral group are inverse closed. So if i ̸= j, p0ij = 0 since conjugacy classes partition the group. But when

i = j, p0ii = |Ci| thus n if i = d or 2 otherwise.

For the second special case, suppose j = d. Then

pkid =

0, 0 < i < d and k < d

2, 0 < i < d and k = d
.
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For the third special case, suppose i = d = j. Then

pkdd =

n, k < d

0, k = d

For the fourth special case, suppose k = d. Then

pdij = 0, 0 < i < d and 0 < j < d

For the rest, there are 4 equations that determine whether pkij is 1 or 0 for 0 < i, j, k,< d.

pkij =


1, k = ±(i+ j) (modn)

1, k = ±(i− j) (modn)

0, else

This characterizes all the intersection numbers of D2n for n odd. Results on the intersection numbers for n

even are given in [10].

5.3 Representations and Characters

We now fully determine the irreducible representations and their associated characters, allowing us to write

down a general form of the character table. Recall from Section 3 that, up to equivalence, the number of

irreducible representations is equal to the number of conjugacy classes and that

d∑
i=0

n2i = |G|

where ni is the degree of the representation ρi for i = 0, . . . , d. We also know from Theorem 2.8 in [7] that

the number of degree one irreducible representations is equal to the order of the quotient group D2n/N where

N is the commutator subgroup of D2n. We use these facts to first decide the order of the representations.

Consider the table of products xyx−1y−1 below:

x\y rj srj

ri 1 r2i

sri r−2j r2j−2i

This demonstrates that the commutator subgroup N is equal to the subgroup generated by r2, giving

{1, r2, r4, . . . , r(n/2)−2} for n even and {1, r, r2, . . . , r(n−1)/2} for n odd. Thus |D2n/N | = 4 for n even,

giving 4 one-dimensional irreducible representations, and |D2n/N | = 2 for n odd, giving 2 one-dimensional

irreducible representations.

We now have d−3 more irreducible representations of unknown degree (ni > 1) for n even, and d−1 more

for n odd. First consider n even. We know that the sums of the squares of the degrees of all representations
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is equal to 2n, giving

n24 + n52 + · · ·+ n2d = 2n− 4.

Note that n4 = n5 = · · · = nd = 2 is a solution to this equation, since the left hand side would then reduce to

4(d− 3) = 4(n2 +2− 3) = 2n− 4. But this shows that we cannot increase any of the n′is to a number greater

than 2, as then a subset of the other n′js would have to decrease to 0 or 1, neither of which are possible. So

for n even all remaining representations are 2-dimensional, and a similar argument works for n odd.

We are now ready to exactly determine the irreducible representations of the dihedral group. We first con-

sider one-dimensional irreducible representations of D2n for n even. Of course ρ0 is the trivial representation,

giving 1 for all conjugacy classes. We claim that the remaining one-dimensional irreducible representations

are given by

ρ1(r) = 1, ρ1(s) = −1

ρ2(r) = −1, ρ2(s) = 1

ρ3(r) = −1, ρ3(s) = −1

Since these are distinct one-dimensional representations, we know that they are irreducible. Now we look for

the two-dimensional irreducible representations, of which there must be d − 3. Consider the homorphisms

defined by

ρj(r) =

[
cos(2πj/n) − sin(2πj/n)

sin(2πj/n) cos(2πj/n)

]
, ρj(s) =

[
1 0

0 −1

]
for j = 4 . . . d. Because these matrices do not commute, they are irreducible. In order to differentiate the

characters of the two-dimensional representations from those of the one-dimensonal representations, we will

denote them by ψi for i = 1 . . . d−3 (n even) or for i = 1 . . . d−1 (n odd). We find that ψj(sr
k) = 0 and that

ψj(r
k) = 2 cos(2πjk/n). Then the two-dimensional irreducible representations for n odd are of the same

form as those for n even, and the only one-dimensional irreducible representations for n odd are the trivial

representation and the representation that sends r 7→ 1 and s 7→ −1. So the general form of the character

tables is as follows:

χ0 χ1 χ2 χ3 ψ1 · · · ψk · · · ψn
2 −1

C0 1 1 1 1 2 · · · 2 · · · 2

C1 1 1 −1 −1 2 cos( 2πn ) · · · 2 cos( 2πkn ) · · · 2 cos( (n−2)π
n )

C2 1 1 1 1 2 cos( 4πn ) · · · 2 cos( 4πkn ) · · · 2 cos( 2(n−2)π
n )

...
...

...
...

...
... · · ·

... · · ·
...

Cn
2

1 1 (−1)n/2 (−1)n/2 2 cos(π) · · · 2 cos(πk) · · · 2 cos((n−2
2 )π)

Cn
2 +1 1 −1 1 −1 0 · · · 0 · · · 0

Cn
2 +2 1 −1 −1 1 0 · · · 0 · · · 0

(n even)
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χ0 χ1 ψ1 · · · ψk · · · ψn−1
2

C0 1 1 2 · · · 2 · · · 2

C1 1 1 2 cos( 2πn ) · · · 2 cos( 2πn k) · · · 2 cos( (n−1)π
n )

C2 1 1 2 cos( 4πn ) · · · 2 cos( 4πn k) · · · 2 cos( 2(n−1)π
n )

...
...

...
... · · ·

... · · ·
...

Cd−1 1 1 2 cos( (n−1)π
n ) · · · 2 cos( (n−1)π

n k) · · · 2 cos(( (n−1)π
n (d− 1))

Cd 1 −1 0 · · · 0 · · · 0

(n odd).
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6 Designs in the Dihedral Group

We briefly saw natural interpretations of T -designs in the 3-cube, and we now focus on T -designs in the

conjugacy class association scheme of the dihedral groups. We will begin by characterizing the designs for

|T | = 1 and then combining restrictions in order to discover larger designs. For brevity, in the case where

T = {i} we say the subset is an i-design. It turns out that the task of determining designs on the one-

dimensional representations of D2n is much simpler than for the two-dimensional representations—this is in

part because the nature of the one-dimensional representations depends only on the parity of n. Thus we

present first some results on designs for the one-dimensional representations.

Theorem 6.1. For n even, if a subset C ⊂ D2n satisfies:

• |R| = |S|, then C is a 1-design;

• |Ce| = |Co| where Ce = {sirj ∈ C | j even}, Co = {sirj ∈ C | j odd}, then C is a 2-design;

• |C1| = |C2| where Ce = {sirj ∈ C | i+ j even}, Co = {sirj ∈ C | i+ j odd} then C is a 3-design.

Proof. Suppose we have C ⊂ D2n containing k rotations and k reflections. Recall that a product x−1y for

x, y ∈ D2n will equal a rotation if x and y are either both rotations or both reflections, and will equal a

reflection otherwise. So we have 2k2 pairs in C whose product is a rotation, and 2k2 pairs whose product

is a reflection. Since the value of χ1 is 1 for a rotation and -1 for a reflection, having an equal number of

products equal to rotations and reflections means b1 = 0.

Next take C ⊂ D2n so that |Ce| = |Co| = k. Since n is even we know that g is of the same parity as g−1

for all g ∈ D2n. Then for x, y ∈ C, x−1y lies in Ce if x, y are of the same parity and in Co otherwise. Just

as above, there are 2k2 pairs of each kind. Since χ2 sends even rotations to 1 and odd rotations to -1, we

have b2 = 0.

Finally take C ⊂ D2n with |C1| = |C2| = k. Note that we can write

C1 = {rj ∈ C | j even} ∪ {srj ∈ C | j odd}

C2 = {rj ∈ C | j odd} ∪ {srj ∈ C | j even};

so for x, y ∈ C we find that x−1y is contained in C1 if x, y ∈ C1 or if x, y ∈ C2 and x−1y is contained in C2

otherwise. So there are still 2k2 pairs of each kind. The character χ3 sends elements in C1 to 1 and elements

in C2 to -1, so we have b3 = 0.

We note that the first part of the proof also works for n odd, so that we have also found the 1-designs of

D2n for n odd.

Theorem 6.2. For n odd, if a subset C ⊂ D2n satisfies |R| = |S|, then C is a 1-design.

For convenience, we display these results as a table:
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condition on C

i n even n odd

1 |R| = |S| |R| = |S|
2 |Ce| = |Co| where

Ce = {sirj ∈ C : j even} N/A

Co = {sirj ∈ C : j odd}
3 |C1| = |C2| where

C1 = {sirj ∈ C : i+ j even} N/A

C2 = {sirj ∈ C : i+ j odd}

For the next conjecture, recall that we defined the set T (C) = {j ̸= 0 | bj = 0}.

Conjecture 6.3. For n even and all T ⊂ {1, 2, 3}, there exists a C with T (C) = T .

In other words, there exists a subset C so that there are zeroes only in the specified positions. We note

that the case T = {1, 2, 3} is satisfied by any C with an equal number of even rotations, odd rotations, even

reflections, and odd reflections.

We now move on to some theorems and conjectures about designs corresponding to the two-dimensional

representations. We will say that a subset is a design in the two-dimensional representations if the dual

distribution has zeros in the entries corresponding to the two-dimensional representations.

Theorem 6.4. The subgroup ⟨r2⟩ is a design only in the two-dimensional representations of D2n for any

even n ≥ 2.

Proof. Before proceeding to a proof we present a fact from basic geometry. Consider the n-gon with its

vertices placed around the unit circle as below:

A subset consisting of k vertices that are evenly spaced around the polygon sums to the center of the polygon

at (0, 0).

Since C = ⟨r2⟩ consists of only even rotations, it is clearly not a 1-design, since there are no reflections.

It is also not a 2- or 3- design. So all we have to show is that it is a design for all of the two-dimensional

representations.

Now let n be even and consider the case where n is divisible by 4. Then the inner distribution of C will

take the form

a =
[
n 0 2n 0 2n 0 · · · n 0 0

]
.
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Now take some two-dimensional representation ψk. Then the character afforded by this representation is

Qk =



2

2 cos( 2πkn )

2 cos( 4πkn )
...

2 cos( (n−2)πk
n )

2 cos(πk)

0

0


.

So we have

bk = aQk = 2n+ 4n cos(
4πk

n
) + · · ·+ 2n cos(πk) = 2n(1 + 2 cos(

4πk

n
) + · · ·+ cos(πk)) = 0,

since this is a sum of cosines of angles equally spaced by 4π
n gcd(n, k). We chose k arbitrarily, so our set is a

design for all two-dimensional representations.

Now suppose n is not divisible by 4. In this case we find that the inner distribution of C is given by

a =
[
n 0 2n 0 · · · 2n 0 0 0

]
.

Again take some two-dimensional representation ψk. Then character afforded by this representation is also

Qk =



2

2 cos( 2πkn )

2 cos( 4πkn )
...

2 cos( (n−2)πk
n )

2 cos(πk)

0

0


,

and taking the dot product gives

bk = aQk = 2n+ 4n cos(
4πk

n
) + · · ·+ 2n cos(

(n− 2)πk

n
) = 2n(1 + 2 cos(

4πk

n
) + · · ·+ 2 cos(

(n− 2)πk

n
)) = 0

since this is a sum of cosines of angles equally spaced by 4π
n gcd(n/2, k).

Theorem 6.5. Let n be even and suppose we have C ⊂ D2n as a T -design for T = {2} ⊔ D where 3 /∈ D
and T (C) = T . Let T ′ = {3} ⊔ D. Then there exists C ′ so that C ′ is a T ′-design and T (C ′) = T ′.

Proof. Given an appropriate subset C, we provide a simple construction of a satisfactory C ′. Decompose C
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into the disjoint union of four sets C0, C1, C2, C2 where

C0 = {rj ∈ C | j even}

C1 = {rj ∈ C | j odd}

C2 = {srj ∈ C | j odd}

C3 = {srj ∈ C | j even}.

From Theorem 6.1 we know that, because C is a 2-design, then |C0 ∪ C3| = |C1 ∪ C2|. Now consider

C ′ = (C ∩ ⟨r⟩) ∪ r(C \ ⟨r⟩); informally, C ′ is obtained from C by left-multiplying all reflections by r. With

this we get that |C ′
2| = |C3| and |C ′

3| = |C2|, so our new subset satisfies

|C ′
0 ∪ C ′

2| = |C ′
1 ∪ C ′

3|,

the definition of a 3-design. We now must show that C ′ is still a D-design. Whether or not C ′ is a 1-

design is unchanged, since our transformation did not change the number of rotations and reflections. As

for the remaining representations, recall that the character of any reflection under any two-dimensional

representation is zero, so the products of the rotations in C ′ with the translated reflections in C ′ do not

change the dual distribution. We can also see that for arbitrary i, j,

(sri)−1srj = r−issrj = rj−i, but also

(sri+1)−1srj+1 = r−i−1ssrj+1 = rj−i;

so the products of the shifted reflections with the shifted reflections also remain unchanged. Thus the dual

distribution b′ of C ′, in all entries apart from b2 and b3, is the same as the dual distribution of C. So the

theorem is proven.

Conjecture 6.6. For n prime, the only non-trivial design in the two-dimensional representations is the set

of rotations.

Let C ⊂ Zp for p prime. This conjecture can be proved by showing that if we have
∑

a∈C ω
a ∈ R for

ω = exp(2πi/p), then it must be that C = Zp. We believe that this can be argued using the irreducibility of

the pth cyclotomic polynomial for p prime.

Conjecture 6.7. For any n ≥ 2 there exists a design only in the even two-dimensional representations and

there exists a design only in the odd two-dimensional representations.

As an example, in any group D2n for n divisible by 4 we will have {1, rn/2} as a design only for ψ1, ψ3, . . ..

Conjecture 6.8. Given k|n, the subgroup of D2n given by ⟨r n
k , s⟩ ∼= D2k is a design for every two-

dimensional representation except ψik for i = 1, . . . , ⌊n−2
2k ⌋. Furthermore,

• when n is odd, this subgroup is also a 1-design;

• when n is even and not divisible by 4, this subgroup is a {1, 2}-design and is a 3-design if and only if

k is even;

26



• when n is divisible by 4, this subgroup is a {1, 2}-design and is never a 3-design.

Let T be the collection of subsets T ⊂ {0, . . . , d} such that there exists C ⊂ D2n as a T -design satisfying

T (C) = T . We now consider the problem of displaying the elements of T in a format that is compact

while remaining easily understandable. As n grows larger, so does the size of T, so many presentations

quickly become unreadable. Regardless of the manner in which we structure the figures, it is natural to

order T lexicographically. Below we present two options, the first of which is optimal when T is sparse due

to its compactness, and the second of which is optimal when there are many subsets due to its readability

regardless of the size of our collection.

0

1

23

4

5

6

7 8

9

(a) |T |=7

0

1

23

4

5

6

7 8

9

(b) |T |=5

0

1

23

4

5

6

7 8

9

(c) |T |=3

Figure 2: A display of the subsets in T for D28. We use double circles to distinguish entries corresponding to
the two-dimensional representations. An additional line indicates that both a subset and all of its nonempty
subsets are in T.
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|T | = 7 :
0 1 2 3 4 5 6 7 8

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

|T | = 6 :
0 1 2 3 4 5 6 7 8

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

|T | = 5 :
0 1 2 3 4 5 6 7 8

◦ ◦ ◦ ◦ ◦
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

|T | = 4 :
0 1 2 3 4 5 6 7 8

• • • •
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

|T | = 3 :
0 1 2 3 4 5 6 7 8

◦ ◦ ◦
• • •

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

|T | = 2 :
0 1 2 3 4 5 6 7 8

◦ ◦
• •

Figure 3: A display of the subsets in T for D24 ordered by size and lexicographically. We use filled dots to
indicate that a subset and all of its nonempty subsets are in T. We use a double line to demarcate entries
corresponding to the two-dimensional representations.
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