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ABSTRACT

Over the past few decades, solid-state devices have steered the field of nanoelectron-
ics. The advancement in semiconductor technology has led to the development of
classical integrated circuits, which follows the trend defined by Moore’s law. How-
ever, in order to achieve the next generation of computing circuits, one requires to
go beyond the limits of Moore’s law. This has led to a revolution in the development
of new quantum materials, and harnessing their physical properties. This new class
of quantum materials constitutes low-dimensional systems such as semiconductor
heterostructures and atomically thin two-dimensional (2D) materials. Tunability of
the physical properties offered by these structures, makes them ideal candidates to
host high-performance nanoelectronic circuits and quantum information platforms.
In this thesis, we develop a scalable first-principles informed quantum transport
theory to investigate the carrier transport properties of low-dimensional materials,
and reveal their novel electronic and thermoelectric properties.

While first-principles calculations effectively determine the atomistic potentials as-
sociated with defects and impurities, they are ineffective for direct modeling of
carrier transport properties at length scales relevant for device applications. Tra-
ditionally, scattering properties are obtained by applying the asymptotic boundary
conditions. However, these boundary conditions do not account for the decaying
evanescent mode contributions, that are crucial while determining the transport
properties of low-dimensional systems. Here, we develop a novel non-asymptotic
quantum scattering theory to obtain the transport properties in proximity to the
scattering centers, for confined as well as open domain in one-, two- and three-
dimensional systems. We then bridge this scattering theory and the k ·p perturbation
theory, with inputs from ab-initio electronic structure calculations, to construct a
versatile multiscale formalism. The continuum nature of the formalism enables us
to model realistic meso- and nano-scale devices.

The given formalism is applied to study electron scattering in quantum waveguides.
Several interesting phenomena are revealed through our analysis. The Fano res-
onance profile for the transmission spectrum of both propagating and evanescent
modes is observed. An enhancement of power factor far beyond the earlier pro-
posed limits is obtained by embedding attractive impurities within the waveguide.
A current rectification device is simulated, which is expected to find applications in
quantum transport.
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We further apply this formalism to reveal the novel electronic and thermoelec-
tric properties of monolayer lateral transition-metal dichalcogenide (TMDC) het-
erostructures. We show that material inclusions in such heterostructures leads to
enhancement of electron mobility by an order of magnitude larger than pristine
TMDCs. The band alignment between the materials also enhances the thermoelec-
tric figure-of-mertit (ZT) and power factor far beyond the pristine TMDCs. Our
study opens new avenues for constructing ultra-efficient in-plane thermoelectric
devices using lateral TMDC heterostructures.
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C h a p t e r 1

INTRODUCTION

1.1 Preface
Scattering phenomena are universal in their presence. The interaction between
particles, and the determination of the forces between them through scattering
experiments has been a central goal in understanding the physics of a system.
Scattering experiments employ prepared initial states in collision phenomena and
seek patterns in the final scattered states in order to deduce conclusions about the
interaction properties. The scattering of waves in optical, acoustical, atomic and
nuclear physics have a common methodology that has evolved into the present-day
theory of scattering [1–8].

The traditional treatment of scattering considers an ad-hoc condition that the distance
between scattering centers and the observer is asymptotically large. In Fig. 1.1, a
scattering scenario is displayed. A plane wave from a source situated far from the
scattering center initiates the scattering event. The outgoing waves are generated
due to scattering are evaluated at a very large distance from the scattering center. At
large distances, the solution wavefunction is expressed as a linear combination of
the incoming and outgoing basis functions with undetermined amplitudes. A partial
wave analysis is then performed in the asymptotic limit to obtain these amplitudes

Figure 1.1: A prototypical scenario of scattering is depicted. Incoming plane wave
from a source at infinity generates the outgoing waves. These outgoing waves are
evaluated in the asymptotic limit.
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in terms of the phase-shift parameters. For example, in the three-dimensional
(3D) open domain, the wavefunction is expressed in terms of the spherical Hankel
functions of the first kind h(1)m (kr) [9]. We can then easily deduce the scattering
amplitudes since all the Hankel functions have the same asymptotic form given by
eikr/r , which represents the outgoing spherical wave [10] . Lord Rayleigh [11]
developed this method for the first time in the context of acoustic scattering , and
later it was extended to quantum mechanics by Faxen and Holtsmark [12].

In the asymptotic limit, only the radial component of the scattered current contributes
to the cross-section. As a result, information about the angular current contributions
[8], and the distance between target and observer is lost in this analysis. In reports
by Dai et al.,[13, 14] it has been shown that a rigorous scattering treatment without
the asymptotic approximations will introduce a modification factor to the scattering
amplitude, and an additional phase factor to the scattered wavefunction. Moreover,
we can show that in multiband scattering processes, the wavefunction will have
contributions from not only the propagating waves, but also from the exponentially
decaying evanescent waves [72]. This will be particularly prevalent in transport
across heterointerfaces formed between the materials.

There has been a long history of providing a variational approach to scattering;
Schwinger pioneered these efforts [16] while solving for electromagnetic fields
in inhomogeneous waveguides for radar applications. In Schwinger’s formalism,
all the evanescent contributions vanish at the asymptotic limit, providing a closed
form expression for the scattering phase shift [17]. Kohn [18], Rubinow [19], and
Hulthén [20], have proposed variational methods for quantum systems involving
expansion in global basis functions which satisfy asymptotic BCs. The variational
parameters are determined by solving integral equations which are often difficult to
evaluate. Occasionally we may encounter spurious resonance-like behavior [21].
Moreover, global basis functions do not have the flexibility of local finite-element
interpolations to conform closely to the actual solution. Hence, their variational
minima are always above the value obtained for a local basis set. The Schwinger
variational method [22, 23] expresses the scattering T-matrix in terms of two square-
integrable wavefunctions which satisfy the Lippman-Schwinger equation [24]. Here
again global wavefunctions are used in this spectral basis approach, and the earlier
comments apply to this case as well. A synopsis of this line of development has been
given by Nesbet [25], and Adhikari [26]. Moreover, due to the asymptotic BCs used,
these methods are not applicable to domains limited to nanoscale structures. They
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cannot capture the presence of evanescent modes even when the defect potential is
of finite range.

Theworks in this thesis develop a non-asymptotic description for quantum scattering
theory and couch it in a fully variational framework that is particularly appropriate
for meso- and nano-scale condensed matter systems. We re-examine aspects of
preparing initial states and detecting the final states. The application of boundary
conditions, the requirements of (probability) current conservation, the determination
of decaying evanescent modes, and the near-field solutions are studied. Most
of the nontrivial examples in scattering requires to go beyond purely analytical
considerations. A detailed investigation of scattering effects in materials with our
methods allow us to accurately predict the experimental outcomes.

Nanoelectronic devices based on low-dimensional materials offers avenues to con-
struct integrated circuits beyond the limits of Moore’s law [27, 28]. Atomically
thin monolayers such as graphene [29], silicene [30], phospherene [31], transition
metal dichalcogenides (TMDC) [32–34] have all been explored to construct high-
performance field effect transistors, and these two-dimensional (2D) materials have
shown great potential to succeed silicon in next generation computers. Accurate
prediction of the transport properties in these materials is a crucial challenge to
overcome before they can be used in practical devices [27].

Electron scattering due to imperfections, impurities, and phonons determine the
carrier dynamics in materials. Carrier transport properties can also be engineered
by creating potential patterns and quantum confinements, such as through the ap-
plication of local potentials via STM/AFM tips [35, 36], surface functionalization
by organic molecules [37, 39, 40], or through the geometrical confinement in het-
erostructures.

First-principles calculations such as the density functional theory (DFT) are highly
effective in obtaining the electronic band structure, phonon dispersion relations, and
the local potential distributions due to defects and impurities associated with the
materials. In Fig. 1.2, as an example, we have displayed the contour plot of the
potential distribution of a graphene monolayer with a circular vacancy, obtained
using DFT calculations. This example shows that DFT can be used to precisely
obtain the potential distributions in low-dimensional materials. Realistic devices in
low-dimensional materials will constitute thousands of atoms. First-principles cal-
culations are computationally demanding to model such devices, and will not scale
accurately to determine the transport properties at such length-scales. Atomistic
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Figure 1.2: A contour plot of the potential distribution on a graphene monolayer
with a circular vacancy is displayed. The potential distribution is obtained using
DFT calculations.

tight-binding models are also too complex for simulating any device-scale appli-
cations. For example, complexity in modeling the transport properties of newly
discovered bilayer 2D materials is significantly amplified, as more than 104 atoms
contribute to the correlated behavior at magic angles [38]. Devices formed in
materials typically constitute hundreds to thousands of atoms. In this thesis, we
construct a multiscale quantum transport framework by bridging the novel non-
asymptotic scattering theory with the k · p perturbation theory, supplemented with
inputs from first-principles calculations. This formalism can easily scale into device
dimensions. Hence it will be very useful to simulate nanoelectronics circuits in a
variety of low-dimensional materials.

1.2 Overview of the thesis
In this section, we give a brief outline of the contents discussed in each of the
chapters of this thesis.

Chapter 2
The non-asymptotic quantum scattering theory is developed for carrier scattering
in one-dimensions. We describe the construction of absorbers around the scatter-
ing center to reduce the scattering BCs to simpler Dirichlet BCs. An absorption
parameter is introduced and increased smoothly within the absorber, which leads
to the damping of the wavefunction. Once we enclose the scattering region with
absorbers, an electron source is introduced to initiate the scattering event. The
differential equation developed here is solved using the action integral formulation,
to provide a variational principles framework. Accuracy of our method is studied
through a well known example of an electron scattering in double barriers.
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Chapter 3
We develop the non-asymptotic quantum scattering theory in electron waveguides.
We show that Cauchy (mixed) BCs are required to put the scattering theory into an
action integral formulation. These complex BCs are reduced to simpler Dirichlet
BCs by introducing totally absorbing “stealth regions.” Material properties of these
enclosing regions are optimized to give decaying solutions, so that the scattering
amplitudes vanish at the finite boundaries. With the active scattering region now
surrounded by absorbers, we construct an “electron antenna” to provide incident
waves. In two-dimensional quantum waveguides, we obtain the scattered wave-
function for geometrically complex scattering centers, showing the flexibility of our
method. The modal decomposition of reflected and transmitted waves allows us to
obtain transmission coefficients for both propagating and evanescent modes. Using
group theory, we develop selection rules for the scattered modes depending on the
symmetry of the potential. Our method outperforms the limitations of traditional
perturbative estimates, transfer-matrix, S-matrix discretizations, and other schemes
to provide a complete non-asymptotic variational description for electron transport
in quantum waveguides.

Chapter 4
We show that in electron waveguides, the Fano resonance profile associated with
propagating modes have their analogs with evanescent modes as well. This is found
to be an unusual and a universal effect for any attractive potential. Further, we
show that quantum dots or attractive impurity potentials embedded in the interior of
a quantum waveguide yields significantly large Seebeck coefficient (thermopower)
and power factor. Hence, they are good candidates for enhancing the thermoelectric
energy conversion efficiency. We study the effect of waveguide tapering on transport
properties, and the effect of curvature on the transmission coefficients. We propose
a nanoscale current rectification device in two-dimensions using tapered electron
waveguides.

Chapter 5
We develop a scalable first-principles-informed quantum transport theory to in-
vestigate the carrier transport properties of 2D materials. We derive a novel
non-asymptotic quantum scattering framework in 2D open domain to obtain the
transport properties in proximity to the scattering centers. We then bridge our scat-
tering framework with k ·p perturbation theory, with inputs from ab-initio electronic
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structure calculations, to construct a versatile multiscale formalism. The continuum
nature of our formalism enables us to model realistic devices, scaling from hundreds
to thousands of atoms. The given formalism also preserves the distance information
between the observer and target, and accounts for the crucial contributions of de-
caying evanescent modes across heterointerfaces. We apply this formalism to study
electron transport in lateral transition-metal dichalcogenide (TMDC) heterostruc-
tures and show that material inclusions can lead to an enhancement of mobility by
an order of magnitude larger than pristine TMDCs.

Chapter 6
In this chapter, we study the thermoelectric performance of lateral TMDC het-
erostructures within a multiscale quantum transport framework. Both n-type and
p-type lateral heterostructures are considered for all possible combinations of semi-
conducting TMDCs: MoS2, MoSe2, WS2, and WSe2. The band alignment between
the materials is found to play a crucial in enhancing the thermoelectric figure-of-
mertit (ZT) and power factor far beyond the pristine TMDCs. In particular, we show
that the room-temperature ZT value of n-type WS2 with WSe2 triangular inclusions
is five times larger than the pristine WS2 monolayer. p-type MoSe2 with WSe2 in-
clusions is also shown to have a room-temperature ZT value about two times larger
than the pristine MoSe2 monolayer. The peak power factor values calculated here,
are the highest amongst the gapped 2D monolayers at room temperature. Hence,
we show that the 2D lateral TMDC heterostructures opens new avenues to construct
ultra-efficient in-plane thermoelectric devices.

Chapter 7
In this chapter, we set up the framework to construct the non-asymptotic quantum
scattering theory in 3D open domain. In 3D, we consider a spherical source, and
the absorber to be a spherical shell. This framework allows us to model transport
properties of devices hosted in bulk materials as well. By combining the methods
developed in these chapters we achieve a scalable first-principles-informed quantum
transport framework for simulating 1D, 2D, and 3D nano-devices.

Chapter 8
Concluding remarks are presented in this final chapter.
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C h a p t e r 2

SCATTERING IN ONE-DIMENSION

In this chapter, the non-asymptotic scattering theory is described for the simplest
case of carrier scattering in one-dimensions. In Sec. 2.1, we describe the construc-
tion absorbers around the scattering center to simplify the boundary conditions,
and define the region for computation. An absorption parameter is introduced and
increased smoothly within the absorber, which leads to the damping of the wave-
function. This ensures that there is no reflection due to the absorbers. A procedure
for including a source, i.e. an antenna, in the active region is also described in the
same section. The differential equation developed here is solved through a gener-
alized variational approach based on discretization of the action integral, described
in Sec. 2.2. Concluding remarks are given in Sec. 2.3.

2.1 Boundary conditions: sources and absorbers
Let us briefly discuss scattering from a standard one-dimensional (1D) rectangular
barrier and the corresponding boundary conditions (BCs). We consider an incoming
plane wave with a given energy E and an amplitude a from a source at x = −∞ (see
Fig. 2.1). The reflected and transmitted wavefunctions are given by

ψ1 = aeik x + r e−ik x,

ψ3 = teik x, (2.1)

where the wavevector k =
√

2m∗E/~2, and m∗ is the effective mass of an electron.

We obtain the Cauchy (mixed) BCs at xa and xb that are given by[
dψ1(x)

dx
+ ikψ1(x)

]
x=xa

= 2ikaeik x
���
x=xa

,[
dψ3(x)

dx
− ikψ3(x)

]
x=xb

= 0. (2.2)

In numerical calculations, discretization of the scattering boundary leads to inaccu-
racies and a non-zero reflection from the boundary. Moreover, such BCs have to be
applied at each point on the boundary which is cumbersome in 2 and 3 dimensions.
This is formally resolved in the usual formulation by going to the asymptotic regime,
at the price of having a larger scattering region and sacrificing the evanescent modes
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in multiband wavefunctions. We can simplify the Cauchy BCs to Dirichlet BCs by
introducing totally absorbing stealth regions as shown in Fig. 2.2.

We consider a complex electron effective mass

m = m∗ (1 + i α(x)) , (2.3)

where α(x) is a cubic Hermite interpolation polynomial [41] varying smoothly from
0 to αmax within the stealth region and equal to 0 in the active (scattering) region.
Let α(xa) = α(xb) = 0 and, α(xL) = α(xR) = αmax as shown in Fig. 2.3. The wave
equation within stealth regions is given by

d
dx

(
1

(1 + iα(x))
d
dx
ψ(x)

)
+ k2(1 + iα(x))ψ(x) = 0. (2.4)

Solutions to the above equation will have highly damped behavior due to suitably
chosen α(x). Therefore we can ensure Dirichlet BCs on the outer boundaries of
such stealth regions at ψ(xL) = ψ(xR) = 0.

No-reflection condition at the stealth interface
From optics we know that any abrupt interfaces give rise to reflections. Fabry-Pérot
interference effects are observed when we have multiple interfaces [42]. The stealth
regions are designed to simplify the BCs, and should not alter the physics within the
active region. Hence we fix the parameters such that there is no reflection from any
wave incident on the stealth interface.

E

x

a e t e
ikxikx

r e
-ikx

xa
x

b1 2 3

V
0

Figure 2.1: A schematic diagram of scattering by a 1D barrier of heightV0 is shown.
We consider an incoming plane wave with an amplitude a and energy E . The
corresponding wavevector is k =

√
2m∗E/~2. Here, r and t are the reflection and

transmission amplitudes, respectively.
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E

xxa x
b1 2 3

Figure 2.2: Scattering through a 1D barrier of height V0 with stealth regions on
either side of the barrier is shown. We consider a source at x = x0 within the active
region which injects an incoming wave with an amplitude a and the energy E in
either direction. The corresponding wavevector is k =

√
2m∗E/~2. Here, r and t

are the reflection and transmission coefficients, respectively.

In Fig. 2.4, we consider a 1D problem with a stealth interface at x = 0. In the
active region x < 0, we have an incoming plane wave, of amplitude a and energy
E , that emerged from a source at x = −∞. A uniform stealth region is filled in the
region x > 0. In general, at an interface we will have both transmitted and reflected
waves. Let the electron effective mass in region 2 be m = m∗ (1 + i α), where α
is the absorption parameter considered to be a constant for the moment. The total
wavefunction is given by

ψ1(x) = aeik1x + re−k1x, x < 0;

ψ2(x) = teik2x, x > 0, (2.5)

1

Figure 2.3: A plane wave incident from the active region decaying rapidly to zero
within the absorber (shaded) is shown. The stealth function α(x) is a cubic Hermite
polynomial that varies smoothly in the stealth region and is shown as a continuous
curve.
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1

a e
ik  x

r e
-ik  x

1

1

y

x

Figure 2.4: The transmission and reflection of electron waves at the stealth region
interface are shown. Here k1 and k2 are the correspondingwavevectors in the regions
1 and 2, respectively. Also a, r and t are the incident, reflected and transmitted
amplitudes, respectively.

where the wavevector k1 =
√

2m∗E/~2, and k2 is as yet undetermined. The differ-
ential equations satisfied by the wavefunction in the two regions are given by

d2

dx2ψ1(x) + k2
1ψI(x) = 0, x < 0;

d
dx

m∗

m
d
dx
ψ2(x) + k2

1βψ2(x) = 0, x > 0, (2.6)

where the parameter β is fixed later through the no-reflection condition. Continuity
of the wavefunction at the interface x = 0 requires that

a + r = t. (2.7)

The probability current continuity demands that the mass-derivative of the wave-
function be continuous [43]. Hence, we have the condition

i
k1
m∗
(a − r) = i

k2
m

t. (2.8)

From Eq. (2.7) and (2.8), the reflection coefficient is given by

r = a
(

k1m − k2m∗

k1m + k2m∗

)
, (2.9)

and the no-reflection condition is

k2 =
m
m∗

k1 = (1 + iα) k1. (2.10)

Substituting Eq. (2.5) in Eq. (2.6), we obtain a dispersion relation of the form

−
m∗

m
k2

2 + βk2
1 = 0, (2.11)
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leading to β = (1 + i α). In practice, we consider the absorption parameter α to
increase smoothly over the stealth region so that there are no sharp interfaces or
jump conditions to generate any reflections. Therefore, the wave equation in the
stealth region is given by

−
~2

2m∗
d
dx

(
1

(1 + iα(x))
dψ(x)

dx

)
− E (1 + iα(x))ψ(x) = 0, (2.12)

with solutions of the form

ψ(x) ∼ exp
(
±ik1 x − k1

∫ ±x

0
dx′α(x′)

)
. (2.13)

We see that the solutions are highly damped, which allows us to apply Dirichlet
BCs at the boundaries of the stealth regions. The mass-derivative continuity [43] in
Eq. (2.6) for any interface at x0 > 0 requires α(x) to satisfy a condition of the form

1
1 + iα(x)

d
dx
ψ2

�����
x0−0+

=
1

1 + iα(x)
d
dx
ψ2

�����
x0+0+

. (2.14)

Hence, the absorption parameter α(x) has to be a smooth function. We choose α(x)
to be a cubicHermite interpolation polynomial which varies smoothly from0 toαmax

within the stealth region as shown in Fig. 2.3. The width of the stealth region and
αmax are optimized in such a way that the sum of reflection (R) and transmission (T)
coefficients is closest to 1 up to a desired accuracy. In the absence of scatterers, we
predetermine these parameters in a convenient manner. The no-reflection condition
similar to Eq. (2.10) is valid even for scattering in 2D waveguides. In Fig. 2.5,
we see that the percentage error decreases steadily as a function of the width of
the stealth region. The error can be decreased further by increasing the thickness
of the absorbers and increasing the mesh density. A choice of αmax can be made
for all energies by having αmax ∝ (E/1 eV)α0, where α0 is a fixed constant. We
note that creating absorbers surrounding the scattering center provides a convenient
way of specifying the region where we are interested in determining the transport
properties.

Schrödinger’s equation with a source term

Having enclosed the scattering center with totally absorbing stealth regions, we now
require an electron antenna or source within the active region which can inject plane
waves of given energy E and amplitude a. A “driving term” on the right hand side is
added to the standard Schrödinger equation to create a δ-function source at a given
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Figure 2.5: The percentage error (T + R − 1) × 100 is plotted as a function of the
width of the stealth region for scattering in a 2D waveguide. Here we choose the
incoming energy to be 0.01eV, α0 = 16, and the mesh size ≈ 5000. We have
employed C(1)- continuous quintic Hermite interpolation polynomials on a triangle
(see Appendix B) for all 2D calculations. The global matrix size is ∼30000×30000.

location. The Schrödinger equation with a source term in the active region is given
by [

−
d
dx

(
~2

2m∗
d
dx

)
+V(x)−E

]
ψ(x) =−S

~2

2m∗
δ(x−x0), (2.15)

where x0 is the location of the source within the active region and S is the source
parameter. In the absence of any potential, the equation forGreen’s functionG(x−x0)

in the active region is given by[
−

d
dx

(
~2

2m∗
d
dx

)
−E

]
G(x−x0) =−S

~2

2m∗
δ(x−x0). (2.16)

The Fourier transform of G(x − x0) is defined by

G(x − x0) =
1

2π

∫ ∞

−∞

dk′ g(k′) exp(ik′(x − x0)). (2.17)

Substituting Eq. (2.17) in Eq. (2.16) and representing the δ-function in the Fourier
space we obtain

g(k′) = −
S
2k

[
1

k′ − k − iε
−

1
k′ + k + iε

]
, (2.18)
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where we have used the ‘iε’ prescription to specify poles in the 1st and 3rd quadrants.
Now the integral in Eq. (2.17) is determined such that for x > x0 (x < x0) we evaluate
the contour integral in the upper (lower) half plane, as shown in Fig. 2.6, to obtain

G(x − x0) =
S

2ik


exp(ik(x − x0)), x > x0;

exp(−ik(x − x0)), x < x0.

(2.19)

We are then able to identify the source parameter to be S = 2ika, where a is the
amplitude and k is the wavevector for the incoming waves emerging on either side
of the source located at x = x0. Similar considerations in 2D and 3D lead to
appropriate sources in any geometry.

2.2 The action integral formalism: a generalized variational approach
Casting Eq. (2.15) as an action integral allows us to solve readily using variational
approaches. We first multiply Eq. (2.15) with a small variational δψ∗, and integrate
over dx between the limits xL to xR. We obtain an expression of the form

δL=

∫ xR

xL
dx δψ∗(x)

[ (
−

d
dx

(
~2

2m∗
d
dx

)
+V(x)−E

)
ψ(x)

+ S
~2

2m∗
δ(x−x0)

]
= 0. (2.20)

Re (k')

Im (k')

k + i 

-(k + i )

x > x0

x < x0

Figure 2.6: Poles and contours in the complex k′- space that are used to determine
the integral in Eq. (2.17) are shown. For x > x0 and x < x0 we chose the contour
and pole in the upper and lower half plane, respectively.
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Applying integral by parts to the first term in the above expression, we obtain

δL=

∫ xR

xL
dx

[
−

dδψ∗

dx

(
~2

2m∗

)
dψ
dx
+δψ∗ (V(x)−E)ψ(x)

+ δψ∗S
~2

2m∗
δ(x−x0)

]
= 0. (2.21)

We extract the variation term δψ∗(x) and obtain an expression

δL=

[ ∫ xR

xL
dx δψ∗(x)

[←−
∂ x

1
(1 + α(x))

−→
∂ x

+
2m∗

~2

[
V(x) − E (1 + iα(x))

] ]
ψ(x)

+

∫ xR

xL
dx δψ∗(x)S δ(x − x0)

]
= 0. (2.22)

Hence, the action integral for the 1D scattering problem with sources and absorbers
(corresponding to Eq. (2.15)) is given by

A= T ×

[ ∫ xR

xL
dx ψ∗(x)

[←−
∂ x

1
(1 + α(x))

−→
∂ x

+
2m∗

~2

[
V(x) − E (1 + iα(x))

] ]
ψ(x)

+

∫ xR

xL
dx ψ∗(x)S δ(x − x0)

]
, (2.23)

where, α(x) is taken to be 0 in the scattering region. We are solving the time-
independent (steady-state) problem so that the time integral over the range [0,T] in
the action is simply T , and Dirichlet BCs are implemented at x = xL and x = xR.

Finite element analysis (FEA) is a generalized variational approach in which we
discretize the physical domain of interest into several small elements [41, 44, 45].
Within each element, we express the wavefunction as a linear combination of inter-
polation polynomials multiplied by as-yet undetermined coefficients that correspond
to the value of the wavefunction at the vertices, called nodes of the elements that are
line intervals in 1D and triangles or squares in 2D. We have used quintic Hermite
interpolation polynomials for all calculations, for which the expansion coefficients
are the wavefunction values and its derivatives at the nodes [41]. The additional
derivative continuities allowed for in this case substantially increases the accuracy
as compared with traditional Lagrange interpolation polynomials [26]. A detailed
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Figure 2.7: Probability distribution for the first above-barrier resonant state with
incoming energy 0.355 eV is shown. The source is located at x = 10 nm. The stealth
region is shaded in gray. The barrier heights and widths are taken to be 0.3 eV and
10 nm, respectively.

discussion on the derivation of interpolation polynomials is given in Appendix A.
Sets of Lagrange and Hermite interpolation polynomials in one and two-dimensions
are listed in Appendix B.

Discretization of the action integral inEq. (2.23)within the finite element framework,
and variation of the resulting action with respect to ψ∗ leads to a system of linear
equations of the form M Ψ = b, where Ψ is the column vector containing function
values and derivatives of the wavefunction at the nodes, M is the corresponding
coefficient matrix, and b is the column vector corresponding to the integral over the
source term. We solve this matrix equation in a parallel computing environment
[47–50] to obtain the total wavefunction throughout.

For scattering through a 1D single barrier, transmission coefficients are determined
through our formalism and found to be accurate within 10−5 when compared with
analytical results [51]. We can systematically increase the accuracy further through
mesh size refinement (h-refinement), or by employing higher order interpolation
polynomials (p-refinement) for convergence within the FEA.

As a test case, we consider an electron scattering through a 1D symmetric double
barrier in GaAs. The effective mass of the electron is equal to 0.067 me, where
me is the free electron mass. The barrier heights and widths are taken to be 0.3
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Figure 2.8: The transmission coefficient as a function of energy for a double barrier
potential is shown. Each of the barriers is of height 0.3 eV with a width of 10 nm
and are 10 nm apart.

eV and 10 nm, respectively. In Fig. 2.7, we plot the probability distribution for
the first above-barrier resonant state corresponding to the energy 0.355 eV. Notice
that the probability density reaches a maximum at each barrier due to Fabry-Pérot
interference . Such resonances have been observed in several experiments involving
superlattices and heterostructures [52–55]. Within the stealth regions (shaded) the
wavefunction decays smoothly to zero as expected. In Fig. 2.8, we plot the well-
known tunneling transmission coefficient profile [56, 57] as a function of incoming
energy for the double barrier. Three resonant peaks that are observed below the
barrier (0.3 eV) are attributed to the electron trapped inside the well between the
two barriers.

We typically have ∼500 elements in 1D for these calculations, and the matrix size
is 2000×2000 when we use quintic Hermite interpolation polynomials. At a given
energy, the computational time is under 0.5minutes and thematrix condition number
is ∼10−6.

2.3 Conclusions
A typical text-book treatment of scattering involves an incoming prepared state
from x = −∞, and cross-sections are obtained by applying BCs in the asymptotic
limit . In finite, nano-scale systems it is necessary to obtain solutions within a
few wavelengths away from the scattering center. In this chapter, using the stealth
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elements, we have redefined the quantum scattering problem with “sources and
absorbers.” In summary, we have shown that

1. the quantum scattering can be brought into the variational framework using
the action integral formalism.

2. the use of stealth elements reduces the Cauchy BCs to simpler Dirichlet
BCs at the periphery. In this way we substantially reduce the computational
complexity. The parameter, α, is varied smoothly in the stealth region as a
function of coordinates r for each energy E to ensure no reflection at the
stealth interface.

3. Schrödinger’s equation with a source term provides a way of designing a
carrier antenna in the active region which inject the plane waves of a specified
energy and amplitude while the active region is enclosed by absorbers.

4. the method provides a way of readily handling geometrically complex poten-
tials and multiple scattering problems.

In confined geometries, the total wavefunction obtained through our analysis in-
cludes the contribution from evanescent modes. In two-dimensional or three-
dimensional open domains, the stealth elements are placed around the scattering
center in all directions and the source is located in the active region. These concepts
will be discussed in the subsequent chapters.
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C h a p t e r 3

ELECTRON SCATTERING IN QUANTUMWAVEGUIDES:
FORMALISM

In this chapter, we develop a non-asymptotic description for scattering in electron
waveguides, and couch it in a fully variational framework that is particularly ap-
propriate for nanoscale systems. This chapter is organized as follows. Motivation
and a summary of the important results are provided in Sec. 3.1. In Sec. 3.2, we
describe the electron scattering in quantum waveguides with sources and absorbers.
We re-examine aspects of preparing initial states and detecting the final states.
The application of boundary conditions, the requirements of (probability) current
conservation, and the determination of evanescent (decaying) modes and near-field
solutions are studied. In Sec. 3.3, we derive the selection rules for electron scattering
in a quantum waveguide. Concluding remarks are given in Sec. 3.4.

3.1 Introduction
In confined nanostructures (such as quantumwaveguides), the probability of evanes-
cent contributions are lost when measured at the asymptotic limit . In the frequently
used transfer-matrix and S-matrix methods , these contributions are explicitly in-
troduced as matrix elements corresponding to a finite set of evanescent modes.
However, the numerical value of computed transmission amplitudes depend on the
number of modes taken into consideration. Also, these matrix methods have large
discretization errors when employed for geometrically complicated distribution of
scattering centers. Hence, we require a fully variational scattering approach that
can determine the wavefunction accurately throughout the region of interest.

Disorder effects arise in quantum waveguides due to the presence of impurity and
defect distributions. Electron transport in such systems are of great interest for
several high-frequency device applications [58]. Such structures can be fabricated
at low temperature in Ga1−xAlxAs/GaAs and LaAlO3/SrTiO3 heterointerfaces [59]
to generate high mobility two-dimensional (2D) electron gases . Carbon nanotubes
can be used as multi-mode quantum waveguide [60]. The formalism and results
developed here are applicable and relevant to study such meso- and nano-scale
structures.
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Here, we note the following:

1. Our formalism can be applied to model electron transport in confined geome-
tries to obtain experimentally amenable results. While we are reporting results
for one dimensional (1D) and two dimensional (2D) systems, the method can
be extended to study three-dimensional (3D) scattering mechanisms. Scatter-
ing in 2D and 3D open domain will be discussed in the subsequent chapters.

2. We set up stealth (absorbing) regions to completely enclose the active re-
gion and effectively simplify the Cauchy BCs to Dirichlet BCs . Applying
boundary conditions at the asymptotic limit are necessary in the conventional
formulations. However, they are difficult to implement in numerical cal-
culations. Introducing absorbers on either side of the potential distribution
also eliminates the need for applying asymptotic BCs. Hence, we can also
effectively investigate the “near-field” scattering effects.

3. Through group theory, we identify selection rules for modes contributing to
the scattered wavefunction. Symmetry of the scattering potential effectively
eliminates the presence of those modes that do not obey the selection rules.

4. A universal way of calculating the amplitudes of both propagating and evanes-
cent modes has been described.

3.2 Scattering in 2D quantum waveguides
Let us consider a straight 2D mesoscopic waveguide of width w with wave prop-
agation along the x-axis, as in Fig. 3.1. Let Vc(y) and U0(x, y) be the confining
waveguide potential and the scattering potential, respectively. U0(x, y) is non-zero
only at the scattering center and Vc(y) is given by

Vc(y) =

{
0, 0 ≤ y ≤ w;
∞, y < 0 and y > w.

(3.1)

Electron waves are confined in the transverse direction and the solutions are those
of the infinite potential well of width w in the y-direction. Therefore the energy for
an incident wave in the nth subband is expressed as

En = Ex,n +
n2π2~2

2m∗w2 , (3.2)

where n is the integer mode number for the incoming wave. We refer to Ey,n =

n2π2~2/(2m∗w2) as the subband minimum corresponding to the band index n. The
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Figure 3.1: A schematic picture of scattering in a 2D waveguide of width w is
shown. The stealth regions are placed at either end of the waveguide. The wave
propagation is along the x-axis and the source is located x0.

basis wavefunctions are of the form

ψn(x, y) = an

√
2
w

exp(ikxn x) sin
(nπy
w

)
, (3.3)

which satisfies the dispersion relation given by

k2 = k2
xn +

n2π2

w2 , (3.4)

where kxn is the wavevector and an is the specified amplitude of the wave in themode
n. Note that in a straight empty waveguide, due to the translational symmetry , we
will have only real values of kxn. However, the presence of scattering centers breaks
this symmetry, and this results in both real (propagating) and purely imaginary
(evanescent) kxn contributions in the spectrum.

For a given x these basis functions individually satisfy the Cauchy BCs of the form[
∂ψn

∂x
− ikxnψn

]
= 0. (3.5)

Note that the evanescent modes have a wavevector of the form kxn = iKxn, and
satisfy BCs of the form (∂xψn + Kxnψn) = 0.

In section 2.1, we showed that such Cauchy BCs are essential for a variational
formulation of scattering. In the analytical consideration of scattering such BCs
are built into the solution by starting with an expansion in terms of the incoming
and outgoing basis wavefunctions. In 2D and 3D, a partial wave analysis is then
performed to obtain amplitudes and angular dependences in the asymptotic limit.
This method was first developed by Rayleigh [11] in the context of sound waves, and
later by Faxen and Holtsmark [12] for the scattering of electrons. For example, in
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the 2D open domain, the scattered wavefunctions are expressed in terms of Hankel
functions of the first kind H(1)m (kρ), all of which have the same asymptotic form [10]
given by eikρ/

√
ρ.

The mixed BCs can be used in the variational treatment of the scattering [61–64] as
the current continuity condition for the Hankel function of each order. However, it
is complicated to use such BCs in calculation [41]. This is because a derivative of
the Hankel function of order n is linked to Hankel functions of order n± 1 through a
recursion relation. Hence, the asymptotic form of the BCs is invoked. Moreover, in
a numerical treatment the geometry discretization of the scattering boundary leads
to inevitable inaccuracies and a non-zero reflection from the boundary. This is
formally resolved in the usual formulation by going to the asymptotic regime, at the
price of having a larger scattering region and sacrificing the evanescent modes in
multi-band wavefunctions.

Here we propose amethod to reducemixed BCs to simpler Dirichlet BCs by creating
absorbers (stealth regions) on either end of the waveguide as in Fig. 3.1. We consider
a complex effective mass and smoothly vary the optimized mass parameters within
these absorbers, constructed in such a way that there is no reflection from any
wave incident on them (see section 2.1). The complex electron effective mass is
considered to be of the form

m = m∗ (1 + i α(x)) , (3.6)

where α(x) is a cubic Hermite interpolation polynomial varying smoothly from 0
to αmax within the stealth regions, and equal to 0 in the active (scattering) region.
From the no-reflection condition (derived in section 2.1) we obtain thewave equation
within stealth regions without any scattering centers as[

∂

∂x
1

(1 + iα(x))
∂

∂x
+

∂2

∂y2 + k2(1 + iα(x))
]
ψ(x, y) = 0.

Solutions to the above equation are required to have highly damped behavior, leading
to Dirichlet BCs on the outer boundaries of such stealth regions.

Note that by introducing absorbers we can simplify the BCs, and define the region
of interest without going into the asymptotic limits. However, they do not affect the
scattering mechanism in the active region.

Once we enclose the active scattering region with absorbers, we require a source (an
electron antenna) in the active region at x = x0 to initiate the incoming plane waves
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(see Fig. 3.1). This will be achieved by introducing a source term to the Schrödinger
equation given by[

−
∂

∂x
~2

2m
∂

∂x
−

~2

2m
∂2

∂y2 + Vc(y) +U0(x, y) − En

]
ψ(x)

= −S(y)
~2

2m
δ(x − x0), (3.7)

where S(y) is a parameter specified along the source line; the effective mass m = m∗

in the active region, and this is made into a smoothly varying complex function in
the stealth regions as shown in Eq. (3.6).

The Green’s function solution to the above equation generates the incoming plane
waves. In section 2.1, we solve the Schrödinger equation with a δ-function source
and show that the solutions are plane waves emerging on either side of the source
located at x = x0. Waves traveling in the negative x (x < x0) direction will be
absorbed by the stealth region, and the waves traveling in the positive x (x > x0)

direction initiate the scattering event. Hence in quantum waveguides, for a given
incoming mode n, an incoming wave from the source is expected to be of the form

ψin(x, y) =

an

√
2
w

sin
(nπy
w

) 
exp(ikxn (x − x0)), x > x0;

exp(−ikxn (x − x0)), x < x0.

(3.8)

Substituting Eq. (3.8) in Eq. (3.7) and integrating with respect to x around x = x0

we obtain an expression for the source parameter given by

S(y) = 2ikxn an sin
(nπy
w

)
. (3.9)

In general, the source parameter can include several modes to account for multimode
electron transport. Note that in the forward direction (x > x0), the wavefunction in
Eq. (3.8) is equivalent to the standard incoming plane wave, except for a constant
phase factor exp(−ikxn x0). Hence, by solving Eq. (3.7) we obtain the total wave-
function ψ(x, y) = ψin + ψscat which includes the entire set of real (propagating)
and, complex (evanescent) wavevector spectrum of the Hamiltonian.

Once we formulate the quantum scattering problemwith sources and absorbers, we
can utilize numerical methods to obtain the total wavefunction ψ(x, y) throughout.
We solve Eq. (3.7) using a generalized variation approach based on discretization of
the action integral [41, 44, 45]. as shown in section 2.2. We note that our analysis
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yields the total wavefunction which encodes contributions from the infinite number
of propagating and evanescent modes, in contrast with the S -matrix approach where
a choice is made for the limited number of modes to be included in the calculation.

To summarize, using the method of sources (electron antenna) and absorbers
(stealth regions) we have developed a rigorous scattering theory without any asymp-
totic approximations. The Schrödinger equation with a source term is amenable to
a complete variational treatment using the discretization of the action integral.
Through this procedure we accurately obtain the total wavefunction. We can extract
the individual transmission coefficients using the modal analysis described below.

Modal Analysis
It is of importance to obtain the individual transmission and reflection coefficients
corresponding to each mode, to study various physical phenomena. Note that the
evanescent modes are purely real functions, hence they will not contribute to the
outgoing current Jscat . However, they contribute to the probability distribution
|ψ(x, y)|2. We determine the transmission and reflection coefficients through modal
analysis using the orthogonality of sine functions. The modal analysis is carried out
at either side of the potential distribution to obtain both reflection and transmission
coefficients.

Let us consider the incoming wave to be in the mode n. The transmission amplitude
for a mode m as a function of x measured to the right of the scattering potential is
given by

tnm(x) =
∫ w

0
dy sin

(nπy
w

)
ψscat(x, y). (3.10)

Note that for an incoming mode n, all modes m ≤ n are propagating, and m > n are
evanescent. This can been seen from the dispersion relation given in Eq. (3.4). For
propagating modes, the amplitude tnm ∼ exp(ikxnx), hence the probability density
|tnm |

2 is independent of coordinates. However, for evanescent modes the amplitude
tnm ∼ exp(−Kxnx), hence the probability density |tnm |

2 is a coordinate dependent
quantity.

Propagating modes

The transmission coefficient Tnm for a propagating mode m is defined as the ratio of
transmitted mode current JT

nm to the incoming current Jinc

Tnm =
JT

nm

Jinc
=

kxm |tnm |
2

kxna2
n

. (3.11)
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Similarly, the reflection coefficient Rnm for a propagating mode m is defined as the
ratio of reflected mode current JR

nm and the incoming current Jinc

Rnm =
JR

nm

Jinc
=

kxm |rnm |
2

kxna2
n

, (3.12)

where rnm is the reflection amplitude measured to the left of the scattering potential
distribution analogous to Eq. (3.10). Note that Tnm and Rnm are independent of
the coordinates, hence they survive even when the measurements are made at the
asymptotic limit. From the current continuity condition, we know that

m≤n∑
m=1

(
JT

nm + JR
nm

)
= Jinc, (3.13)

where we take the sum over only propagating modes, since there is no current
contribution from evanescent modes. Taking the ratio of Jinc on either side, and
substituting the expression for transmission and reflection coefficients, we obtain∑

m

(
Tnm + Rnm

)
= 1. (3.14)

Evanescent modes

To study the contribution of evanescent modes we define the reflection and trans-
mission coefficients as

T̃nm =
|t |2nm

a2
n
∼ exp (−2Kxm |x |) ;

R̃nm =
|r |2nm

a2
n
∼ exp (−2Kxm |x |) , (3.15)

where Kxn =
√

n2π2/w2 − k2 represents the evanescent wavevector. These coef-
ficients represent the probability strength of each evanescent modes. Since these
transmission coefficients are coordinate dependent, measurements have to be done
at a specific finite distance to detect them. Hence, the conventional scattering theory
with an asymptotic approximation is unable to include the evanescent wave contri-
butions. We note that the transmission and reflection coefficient for the evanescent
modes do not satisfy any current conservation rule similar to Eq. (3.14).

Through modal analysis we obtain all transmission and reflection amplitudes, hence
we can construct a diagonal representation of the transfer-matrix [46]. Furthermore,
for a given energy, the propagating modes are associated with the thresholds at lower
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Figure 3.2: The transmission T3 j and reflection R3 j coefficients are shown as a
function of energy for the propagating modes for scattering by a regular hexagonal
barrier of side length = 5 nm. The incoming mode is n = 3 and the barrier height
V0 = 10meV.

energy, and the evanescent modes are associated with the thresholds at energies
higher than the incident energy. Thus the transverse modes in the two cases are
mutually exclusive and can be identified and separated.

Throughout this chapter, we consider the width of the stealth region to be 900 nm,
hence all calculations are accurate within 0.1% as shown in Fig. 2.5.

As a typical system, we consider scattering and transport in a 2D GaAs waveguide
of width 30 nm. The corresponding lowest five subband minima are given by

Ey,1=6.24meV, Ey,2=24.95meV, Ey,3=56.14meV,
Ey,4=99.80meV, Ey,5=155.94meV.

We note that the defect and impurity distribution can exist in any shape in nanos-
tructures. With newer experimental techniques, it is possible to create and embed
quantum dots of several possible shapes in waveguides. In this chapter while we
treat specific potentials and geometries to discuss several universal phenomena, our
method based on geometry discretization can be considered for any complicated
potential distributions.

As a first example, we consider scattering through a regular hexagonal barrier
with each side of length 5 nm. The regular hexagonal shape is considered for
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Figure 3.3: The transmission T̃35 and reflection R̃35 coefficients are shown as a func-
tion of energy for the evanescent modes for scattering through a regular hexagonal
barrier of side length = 5 nm. The incoming mode is n = 3 and the barrier height
V0 = 10meV. The modal analysis is done at |x | = 10 nm.

the potential because it has a non-trivial geometry and has the same transverse
symmetry as that of the straight waveguide.a The use of symmetry arguments
will be elaborated on in the following in greater detail. In Fig. 3.2 and Fig. 3.3,
we plot the transmission coefficients as a function of energy for the propagating
and evanescent modes, respectively. Here, we consider the incoming wave from the
mode n = 3, and the modal analysis is done at |x | = 10 nm. Throughout this chapter,
we have re-scaled the potential as V0 = m∗U0/me, where me is the fundamental
electron mass. For GaAs, the effective mass m∗ = 0.067 me. Notice that only
the odd modes (even parity) contribute; this is explained through the presence of
a selection rule in the following section. In Fig. 3.3, we see that the evanescent
modes contribute fairly symmetrically for both transmitted and reflected waves, and
reach a maximum at the subband minimum (Ey,5) [65]. In Fig. 3.4, we show the
exponential decay of evanescent waves with distance for an energy E = 155meV.
The observed wavevector obtained through a curve fitting matches the theoretical
prediction. Note that the decaying behavior of transmission coefficients observed in
Fig. 3.4 are consistent with Eq. (3.15).

aWe chose a non-trivial geometry to show the flexibility of our method. This is not to be viewed
as a limitation. In fact, themethod transcends such geometrical considerations through discretization,
and is a strength of our approach.
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Figure 3.4: Decay of transmission (T̃35) and reflection (R̃35) coefficients for evanes-
cent modes are shown as a function of x(Å) for E = 155meV for scattering
through a regular hexagonal barrier of side length = 5 nm. The incoming mode
is n = 3 and the scattering potential is V0 = 10meV. Here we carried out
the modal analysis at every 25Å. Equations from the curve fitting are given by
T̃35 = 0.90208 exp (−2 × 0.00398 x), and R̃35 = 0.93368 exp (−2 × 0.00421 x).
Theoretically determined Kx5 = 0.00398/Å, which is close to the fitted values.

In Fig. 3.5, we show the flow of the probability current density through the waveg-
uide with a regular hexagonal barrier. Since the potential has C1h-symmetry and
the incoming mode is n = 3, the modes contributing to the scattered current are
n = 1 and 3. This leads to a peaking of the current at the middle of the waveguide.
This can be noted in the figure. Such analysis will influence the precision manipu-
lation of electron beams via patterned defect engineering as a new functionality in
microelectronics.

3.3 Selection rules for waveguide scattering
We seek a selection rule according to the symmetry of the scattering potential
U0, which determines the modes that contribute to the scattered wavefunction.
For 2D waveguides we write the Hamiltonian as H = H0 + U0, where H0 is the
Hamiltonian corresponding to ballistic transport. We note thatH0 hasC1h symmetry;
the corresponding character table is given in Table 3.1. Let H0 |m〉 = Em |m〉, where
|m〉 is a basis function for an irreducible representation Γm of C1h.

Let Umn = 〈m|U0 |n〉 represent the matrix elements corresponding to the scattering
potential. In general, U0(x, y) involve terms that transform according to different
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Figure 3.5: The probability current density at incoming energy E = 155meV (which
is just below the subband threshold at 155.94meV) is plotted for scattering through
a regular hexagonal barrier of side length = 5 nm. The incoming mode is n = 3,
and the barrier height is V0 = 10meV. The line source located at x = −80 nm
is represented by a dotted line. In this plot, the magnitude of probability current
densities ranges from 0 to 0.06, which is represented by a continuous contour color
coding varying from blue to red.

irreducible representations of C1h. Let U0 transform according to a representation
ΓV . We can then decompose ΓV in terms of irreducible representations A′ and
A′′. For simplicity, let ΓV be one of the irreducible representations. Then, from the
basis-function orthogonality theorem for groups [66, 67], we state thatUmn vanishes
unless Γm

⊗
ΓV

⊗
Γn = A′. Hence, in the scattering process only those modes

which satisfy this condition contribute to the reflected and transmitted waves.

In case of a hexagonal scatterer, the scattering region (hexagon) is invariant under
σh. Hence, ΓV = A′. We know that in a 2D waveguide, odd(even) numbered modes

C1h(m) E σh Basis functions

A′ 1 1 x x2, y2

A′′ 1 -1 y xy

Table 3.1: The character table for the symmetry group C1h along with the basis
functions corresponding to the irreducible representations.
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are in the irreducible representation A′(A′′). We see that

A′
⊗
ΓV

⊗
A′ = A′,

A′′
⊗
ΓV

⊗
A′′ = A′, (3.16)

A′
⊗
ΓV

⊗
A′′ = A′′.

Hence, when an incomingmode is odd (even) only odd (even)modes will contribute.
This is evident from Figs. 3.2 and 3.3. We note that all modes contribute to the
scattered wavefunction irrespective of the incoming mode only when U0(x, y) does
not have the mirror symmetry (σh). For example, if we provide a geometrical
perturbation through a small angular rotation to the hexagonal defect center, the
original C1h symmetry is lost and we observe that all modes open up to contribute
to the scattered wavefunction.

3.4 Conclusions
We have developed a non-asymptotic, fully variational description for quantum
scattering theory with sources and absorbers to study carrier transport in nano-
structures with defects and impurities.

In traditional scattering theory, Cauchy BCs are required for an outgoing current. In
two-dimensions, to apply Cauchy BCs we require the derivative of Hankel functions
∂ρHn(kρ) . The derivative ∂ρHn(kρ) satisfies a recurrence formula. Hence, it will
involve mixing of terms corresponding to the order n and n ± 1. This cumbersome
evaluation is usually avoided by invoking the asymptotic limit. In the asymptotic
domain, all Hankel functions Hn(kρ) take the same form exp(ikρ)/√ρ for all or-
ders n. This simplification is remarkably effective for calculating the scattering
amplitudes, and automatically yields the optical theorem. However, the evanescent
modes do not contribute in the asymptotic domain, and hence are not accounted for
in this usual formulation when applied for multiband scattering phenomena. In the
present formalism, we eliminate the requirement of going to the asymptotic limit
by enclosing the scattering region with absorbers. This provides a unique way of
simplifying and applying BCs without affecting the accuracy of results. A modal
analysis in the post-processing stage yields all the information associated with a
partial wave analysis.

The method presented here goes beyond the existing S-matrix, R-matrix, and
transfer-matrix approaches. The transfer matrix approach suffers from numerical
errors due to exponentially growing matrix elements introduced by the evanescent
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modes. In S-matrix and R-matrix approaches, the conductance value depends on
the number of modes used for the calculation [68, 69]. In all these methods smooth
potentials are discretized, and are considered to be a constant within each region
for constructing the local matrices. Hence, these methods are not suited for treating
complicated defect and impurity potential distributions. For example, hexagonal or
circular potentials are not readily amenable to such discretization.

At times, boundary element methods are also invoked in scattering problems. How-
ever, one observes highly inaccurate results around the resonance energy values
[70, 71]. Boundary integrals are cumbersome to handle when we include the
evanescent modes. However, the variational approach presented in this chapter,
based on discretization of the action integral provides a stable solution by converg-
ing quadratically to the actual value.

Lastly, we have described the selection rules for determining the modes contributing
to the scatteredwavefunction. Selection rules based on the symmetry of the potential
effectively eliminate the presence of modes which do not obey the given symmetry.

Essentially, waveguides of any shape, with any complicated defects and impurity
distributions can be modeled accurately with the method delineated in this chapter.
In other words, this method based on the geometry discretization has a remarkable
flexibility in its potential applications.

In the succeeding chapter, we apply our formalism to examine evanescent mode
contributions to Fano resonance , and the enhancement of thermoelectric power.
We also study the effect of geometrical tapering, and curvature on the transport
properties of a quantum waveguide.
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C h a p t e r 4

ELECTRON SCATTERING IN QUANTUMWAVEGUIDES:
APPLICATIONS

In this chapter, we present novel physics revealed through the application of the non-
asymptotic scattering theory developed in the previous chapter. The organization
of this chapter is as follows. A summary of concepts and results to be discussed in
this chapter is presented in Sec. 4.1. In Sec. 4.2, we calculate the Fano interference
profile arising due to the interaction between bound states in attractive potentials
with the propagating and evanescent waves. The dependence of transmission and
reflection coefficients on the variation of the scattering potential is discussed in
Sec. 4.3. We compare our method with the Feshbach coupled-channel theory in
Sec. 4.4 and show that the Feshbach coupled-channel theory predicts incorrect
energy value of the transmission minimum, and the Fano line width. Section 4.5 is
devoted to calculations of the conductance and Seebeck coefficient for scattering in
quantum waveguides. A novel result is the calculation of transmission coefficients
in tapered waveguides presented in Sec. 4.6. The effect of curvature on scattering in
bent waveguides is studied in Sec. 4.7. Concluding remarks are provided in Sec. 4.8.

4.1 Introduction
In the previous chapter, we developed a non-asymptotic, variational description for
quantum scattering theory with sources and absorbers, to study transport properties
in quantum waveguides. The introduction of absorbing regions, “stealth regions,”
as we call them, for enclosing the active scattering region provides a unique way
of simplifying and applying boundary conditions (BCs). The absorption parameter
is smoothly increased so that there is no unwanted back-scattering from the stealth
regions. Hence, the presence of near-field evanescent solutions are not eliminated
from consideration. Furthermore, the calculations can be focused on the physical
region without going to the asymptotic limit. We then obtain accurate solutions
throughout the region under consideration. In this chapter:

1. We show that in quantum waveguides with attractive impurity potentials the
Fano resonance profiles are observed for both propagating and evanescent
modes.
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2. We report results for the transport in tapered waveguides with different ta-
pering angles, and study their dependency on the directionality of incoming
waves. The transmission coefficients behave asymmetrically with respect to
the injection ports. This configuration is readily achievable using split-gate
geometry on semiconductor inversion layers. Hence our predictions can be
verified experimentally.

3. We calculate the conductance, Seebeck coefficient, and power factors of
waveguides with impurities, providing experimentally measurable quantities.
We have shown that quantum dots or attractive impurity potentials embedded
in the interior of a waveguide are good candidates for enhancing the ther-
moelectric energy conversion efficiency, since they yield large power factors
around the subband minimum.

4.2 Attractive scatterers and Fano resonance
Fascinating physics arises when we apply our method of sources and absorbers
[72] to study scattering in quantum waveguides with attractive scatterers. Let us
consider a straight two-dimensional (2D) mesoscopic waveguide of width w with
wave propagation along the x-axis. The hard wall confinement in the transverse
y-direction is considered. Therefore the energy for a wave in the nth subband is
given by

En = Ex,n +
n2π2~2

2m∗w2 , (4.1)

where n is the integer mode number for the incoming wave. We refer to Ey,n =

n2π2~2/(2m∗w2) as the subband minimum corresponding to the band index n. The
dispersion relation for the wavevector k is given by

k2 = k2
xn +

n2π2

w2 , (4.2)

where kxn =
√

2m∗Ex,n/~2. The transmission and reflection coefficients between a
propagating mode m and the incoming mode n are defined as [72]

Tnm =
kxm |tnm |

2

kxna2
n

; Rnm =
kxm |rnm |

2

kxna2
n

, (4.3)

where tnm, rnm, and an are the transmitted, reflected and, incoming amplitudes,
respectively. In the presence of scattering centers, the total scattered wavefunction
will have contributions from both propagating and evanescent modes. To study the



33

contributions from evanescent modes we define [72] the reflection and transmission
coefficients as

T̃nm =
t2
nm

a2
n
∼ exp (−2Kxm |x |) ;

R̃nm =
r2

nm

a2
n
∼ exp (−2Kxm |x |) , (4.4)

where Kxn =
√

n2π2/w2 − k2 represents the evanescent wavevector. These coeffi-
cients represent the probability strength of each evanescent modes [72].

Only the propagating modes contribute to the probability current, and the evanes-
cent modes being purely real functions will have vanishing current contributions.
Therefore, through the conservation of probability current we obtain the relation∑

m (Tnm + Rnm) = 1. We note that the transmission and reflection coefficients for
the evanescent modes (given in Eq. (4.4)) do not satisfy any such summation rule
[72].

As an example of a multiple scattering problem, we consider a 2D waveguide with
three circular impurities each of radius 30Å and a constant potential,V0 = −50meV.
In Fig. 4.1, we observe an asymmetric Fano resonance [74] transmission profile for
the propagating modes due to interference between scattering states in one subband
and a bound state supported by a different subband [75–77], an effect analogous to
that of atomic autoionization [78]. Multiple Fano resonances observed in Fig. 4.1
are a special feature of multiple scattering.

The Fano resonance profile in waveguides has been qualitatively explained for the
propagating states with an attractive δ-potential scatterer through two-band models
[75, 76]. Such a Fano resonance has been reported for special cases of scattering
from a rectangular impurity potential [79, 80], from two antidots [81], the Pöschl-
Teller[82] attractive impurity potential [83, 84], and an impurity in the bottleneck
conduction channel [85]. Experimentally, asymmetric Fano resonances have been
observed in single-electron transistors with droplets of confined electrons [86],
crossed carbon nanotubes [87], and in quantum wires coupled to a quantum dot
[88, 89].

Through the Feshbach coupled-channel [79, 80, 90] theory and an S-matrix ap-
proach it has been shown that one can derive a Briet-Wigner type formula with an
additional asymmetry parameter for transmission coefficients of propagating modes
[91]. However, we observe a characteristic resonance profile even for the evanes-
cent modes in either direction which reach a maximum at the resonance as seen in
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Figure 4.1: The transmission (T11) and reflection (R11) coefficients are shown as
a function of energy for the propagating mode n = 1, with an incoming wave
from the same mode, for scattering through three vertically aligned circular im-
purities of radius 3 nm whose centers are 10 nm apart, and depth −50meV. The
zero-transmission energy for T11 (ER), the corresponding Fano q factor, and the
line width Γ are given by ER1 = 0.087 eV; qR1 = −1.1607; ΓR1 = 0.001 eV, and
ER2 = 0.102 eV; qR2 = 0.3229; ΓR2 = 0.009 eV, respectively.

Fig. 4.2. This is due to the interference between the quasi-bound metastable state
and the evanescent modes. Notice that only the odd numbered modes contribute
since the potential has C1h symmetry, and the evanescent coefficients reach a max-
imum at the 5th subband minimum (155.94meV), as expected [72]. Such a profile
was not found in all earlier theoretical simulations since they used asymptotic BCs
[92]. In Section 4.4, we briefly discuss the Feshbach coupled-channel approach to
derive the transmission coefficients with the Fano form and compare the results with
our method. We find that there are small errors for the Fano parameters obtained
through the Feshbach approach even for the simplest geometries. Moreover, the
Feshbach approach is not amenable to a closed form solution, other than for very
few potentials generated by simple geometrical structures [80].

In Fig. 4.1, we observe the Fano profile reversal at energy E = 0.0917 ev (marked
by a green arrow in the plot). This can be quantified by noting the change of sign
in the q -factor from −1.1607 to 0.3229. This q-reversal phenomenon has been
widely studied in atomic physics, where the weak mixing of the interloper levels
are attributed to such q-reversal observed in the Rydberg series spectrum [93, 94].
Connerade and Lane [94] have derived several conditions for such q-reversal. This
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Figure 4.2: The transmission (T̃15) and reflection (R̃15) coefficients for evanescent
modes are shown as a function of energy for the evanescent mode n = 5, with an
incoming wave from the mode 1 at a distance l = 10 nm, for scattering through
vertically aligned three circular impurities of radius 3 nm whose centers are 10 nm
apart, and whose potential depth is V0 = −50meV.

phenomenon has also been identified in the transmission spectrum of quantum dots
connected with 1D-channels [89, 95]. Such a change in parity is not observed for
the evanescent modes which reach a maximum around the energy corresponding to
the zero transmission.

In Fig. 4.3, we notice that for a hexagonal impuritya the Fano resonance profile
changes parity while switching from the incoming mode 1 to the incoming mode 2.
This is yet another type of q-reversal which occurs due to the change in symmetry
of the incoming mode.

In Fig. 4.4, we plot the probability current at E = 47meV for scattering through
a hexagonal impurity with potential V0 = −10meV for an incoming mode 1. We
observe that the current direction is unaltered since T11 = 1 at this energy due to
the Fano resonance, as seen in Fig. 4.3(a). The magnitude of the probability current
density has diffraction spikes due to the hexagonal shape of the impurity scattering
potential, as seen in Fig. 4.4. Notice that when we have a repulsive hexagonal
barrier, the probability current density will flow around the barrier [72]. On the

aAll phenomena discussed in this chapter are essentially valid irrespective of the geometry of
the potential. We have used a nontrivial hexagonal, circular or rectangular geometries to illustrate
the universal behavior through our numerical work.



36

V0 = - 10 meV
 

Energy (eV)

T
 a

n
d

 R
Propagating

0.0

Energy (eV)

0.2

0.4

0.6

0.8

1.0

0.02 0.04 0.06 0.08 0.1

Figure 4.3: The transmission and reflection coefficients for propagating modes (a)
T11 and R11, and (b) T22 and R22 in transport through a hexagonal impurity with
V0 = −10meV are plotted. Each side of the hexagon equals 5 nm. The zero-
transmission energy (ER), the Fano q-factor, and the line-width Γ are given by (a)
ER = 0.055 eV; q = −1.1384; Γ = 0.006 eV, and (b) ER = 0.0764 eV; q = 0.3161;
Γ = 0.008 eV.

other hand, with an attractive hexagonal potential, the current will reach a maximum
at the center of the potential and form diffraction spikes emanating from its vertices.

In Fig. 4.5, we show the decay of evanescent modes T̃24 and R̃24 with distance for
scattering through a hexagonal defect with V0 = −10meV, at energy E = 76meV
at which T22 = 0 (see Fig. 4.3 (b)). Through exponential curve fitting we notice
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Figure 4.4: The probability current density at E = 47meV for transport through
a hexagonal impurity potential with V0 = −10meV for an incoming mode n = 1
is shown. At this energy T11 = 1 due to the Fano resonance, and hence we obtain
an unperturbed current flow in the forward direction throughout. In this plot, the
magnitude of the probability current density ranges from 0 to 0.065, which is
represented by a continuous contour color coding varying from blue to red.
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Figure 4.5: Decay of transmission (T̃24) and reflection (R̃24) coefficients for evanes-
cent modes are shown as a function of x(Å) for E = 76meV for scattering
through a regular hexagonal impurity of side = 50Å. The incoming mode is
n = 2 and the scattering potential is V0 = −10meV. Here we carried out the
modal analysis [72] at every 25Å. Equations from the curve fitting are given by
T̃24 = 11.18650 exp (−2 × 0.02045 x), and R̃24 = 5.18618 exp (−2 × 0.01969 x).
Theoretically determined Kx5 = 0.02045/Å, which is close to the curve fit values.
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that the evanescent modes have large amplitudes around the scattering center. Note
that the decaying behavior of the transmission and reflection coefficient observed in
Fig. 4.5 is consistent with Eq. (4.4).

4.3 Effect of varying potential on electron transmission
In this section, we discuss the effects of varying the potential on the transmission
profile for both propagating and evanescent modes. We include the case of both
attractive and repulsive scatterers. For a rectangular barrier, the coefficient T11

attains a resonance maximum which will shift towards the next allowed subband
minimum (Ey,3 = 0.056 eV) with increase in the barrier height as shown in Fig. 4.6.
We effectively have slowed down the waves in the barrier region by increasing the
barrier height. Whereas for the evanescent waves, the maximum will be still at the
next allowed subband minimum (Ey,3) and its maximum will increase with barrier
height.

In Sec. 4.2, we discussed the emergence of the Fano profile for the transmission
coefficients in the case of attractive scatterers. Here, we study the effect of varying
the impurity potential for such a resonance. To illustrate this we study the scattering
through a hexagonal impurity. In Fig. 4.7, we plot coefficients T22 and T̃24 as a
function of energy for different values of the potential barrier. We see that for weaker
attractive potentials (V0 = −5meV), we have a strong resonance with T22 = 1 near
Ey,4 = 99.80meV (see Fig. 4.7). The resonance value decreases for more negative
potential values, since the bound states move further below the continuum. For
V0 = −120meV, the Fano resonance profile disappears. Additional bound states
may appear which can interact with scattering modes if we further deepen the well.

The evanescent mode (T̃24) reaches a maximum when T24 ≈ 0 which is much
before the 4th subband minimum (Ey,4) (see Fig. 4.7(b)). There are two governing
conditions which lead to high amplitudes for the evanescent modes; (i) at the
transmission minimum for the propagating modes the evanescent modes will have
a peak, and (ii) they also tend to reach higher values at the subband minima. For
V0 = −120meV, T̃24 has a much lower value since there is no Fano resonance, with
the maximum value at the subband minimum.

4.4 Feshbach coupled-channel theory and Fano resonance
The Fano resonance for waveguide scattering with attractive scatterers are typically
treated [79, 80, 91] within the Feshbach approach [90]. We compare the analytical
expression for transmission coefficients obtained through this analysis and the nu-
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Figure 4.6: The transmission coefficients T11 and T̃13 as a function of energy for a
rectangular barrier with varying height are shown. A modal analysis [72] is done at
|x | = 10 nm for the scattering coefficients.

merically calculated ones with our approach. In a 2D straight waveguide, we expand
the scattered wavefunction in the form

ψ(x, y) =
∞∑

n=1
χn(x) sin

(nπ y
w

)
, (4.5)

and the coupled-channel equation for χn(x) is given by[
−
~2

2m
d2

dx2 +
(
Ey,n − E

)]
χn(x) +

∞∑
m=1

Unm(x)χm(x)=0, (4.6)
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Figure 4.7: The transmission coefficients T22 and T̃24 as a function of energy for
a regular hexagonal impurity with a side length of 5 nm for different values of the
potential are shown. A modal analysis is done at |x | =10 nm for the scattering
coefficients.

where Unm(x) =
∫ w

0 dy sin(nπ/w)V0(x, y) sin(mπ/w) is the coupling matrix ele-
ment. In order to compare our method with other methods and results we consider
the simplest potential of the form

V0(x, y) =


−α δ(x), |y − w/2| ≤ ys,

0, otherwise,
(4.7)

where w is the waveguide width and ys < w/2 is the range. Numerically, we
specify the above potential by having several nodal values along the line x = 0, and
|y − w/2| < ys. Through this procedure, the δ(x) dependence of the potential is
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Figure 4.8: The transmission coefficient T11 is plotted as a function of energy
obtained using our method (continuous curve) and using the Feshbach approach
(dashed curve) for α = −0.01 eVm and ys = 10 nm for a straight waveguide of
width 30 nm. The Fano parameters determined through (i) Feshbach calculations are
ER = 0.05612 eV, q = 0.0046, and Γ = 0 eV, (ii) our formalism are ER = 0.05572 eV,
q = 0.0047, and Γ = 3.4× 10−6 eV. The difference between the parameters obtained
through our method and the Feshbach approach is within 3%.

integrated out in the action integral. The coupling matrix element is

Unm(x) = −αδ(x) unm;

unm =

∫ ys+w/2

−ys+w/2
dy sin(nπ/w) sin(mπ/w). (4.8)

The off-diagonal (inm, n)matrix elements occurwhen the potential has a finite range
2ys that is less than the width w of the waveguide. The potential has C1h symmetry,
and hence only the odd-modes are relevant to our analysis. For an incoming wave
in mode 1 let us study the scattering within the energy interval Ey,1 < E < Ey,3. We
retain only the first two bands, the propagating (n = 1) and the evanescent (n = 3)
in Eq. (4.6). If the coupling matrix element U13 is absent, we write[

−
~2

2m
d2

dx2 +U11(x)
]
χ0

1 (x) = (E − Ey,1)χ
0
1 (x). (4.9)

Hence the formal solution to |χ1〉 is given by

|χ1〉 =
��χ0

1
〉
+ Ĝ1U13 |χ3〉 , (4.10)
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where
〈
x |χ0

1
〉
= χ0

1 (x), is the solution to Eq. (4.9), and Ĝ1 is the Green’s function
operator given by

Ĝ1 =

[
~2

2m
d2

dx2 + E − Ey,1 −U13 + iε+
]−1

. (4.11)

We use the ansatz [91, 120] χ3(x) = t̃13Φ0(x), where t̃13 is the evanescent amplitude
and Φ0(x) is the bound state solution to the equation:[

−
~2

2m
d2

dx2 +U33(x)
]
Φ0(x) = (E − Ey,3)Φ0(x), (4.12)

where E is the bound state energy. Solving Eqs. (4.9), (4.11) and (4.12) we obtain
the transmission amplitudes in the form

t11 = t
(E − E)

(E − (E + ∆) + iΓ)
,

t̃13 =
F

(E − E + i η)
, (4.13)

where the corresponding parameters are listed in Table 4.1.

E = Ey,2 −
mα2u2

33
2~2 ; t =

ik1(
ik1 +

mα u11

~2

) ,
∆=

(
α4m3

~6

) ©­­­­«
u33u11u2

13

k2
1 +

m2α2u2
11

~4

ª®®®®¬
; F =−α t u13

√
u33mα
~2 ,

Γ=

(
α3m2

~4

) ©­­­­«
u33u2

13k1

k2
1 +

m2α2u2
11

~4

ª®®®®¬
; η = α3u2

13u33 t
m2

k1~4 .

Table 4.1: The Fano parameters corresponding to the amplitudes defined in
Eq. (4.13) are listed, where k1 =

√
2m(ER − E1)/~2.

Within the resonance approximation [80], we have the transmission coefficient

T11 = |t11 |
2 = |t |2

(E − E)2

(E − E − ∆)2 + Γ2
. (4.14)
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Let the quasi-bound state energy ER = E + ∆, and we define the reduced variables

ε =
(E − ER)

Γ
; q =

∆

Γ
, (4.15)

where the Fano q-factor determines the asymmetry of the line shape, and Γ represents
the line-width. With this reduction we obtain

T11 = |t |2
(ε + q)2

ε2 + 1
, (4.16)

which has the standard Fano form [74, 78, 91]. When T11 = 0 (at E = E), we see
that the evanescent amplitude t̃13 reaches a maximum, as seen in Fig. 4.7.

In Fig. 4.8, we compare the transmission coefficient T11 obtained using our method
and the Feshbach approach. We observe that the Feshbach approach has a small
error in predicting the energy value of the transmission minimum and the Fano
line width Γ is under-estimated, as compared with our approach. This is evident
already for the simplest δ-potential. We expect to have significant errors with such
coupled-channel theory when we consider geometrically more complex potentials.
This is because the Feshbach approach is essentially a two-band model, whereas our
method incorporates contributions from all the subbands. Moreover, such analytical
methods are not amenable to a solution, other than for a very few potentials generated
by simple geometrical structures. We note that our method transcends any such
geometrical complications and is expected to yield accurate results.

4.5 Enhancement of power factor through defects and impurities
Consider transport through a multichannel lead connected to reservoirs at equilib-
rium attached to the waveguide on either end. The conductance G and the Seebeck
coefficient (thermopower) S, for a given chemical potential µF and temperature T ,
calculated using the Landauer-Büttiker formalism [96–102] are given by

G(µF,T) =
2e2

h

∑
i

∫ ∞

0
dE

(
−

df
dE

)
Ti(E), (4.17)

and

S(µF,T) =
kB

e

∑
i

∫ ∞

0
dE

(
−

df
dE

)
Ti(E)

(
E − µF

kBT

)
∑

i

∫ ∞

0
dE

(
−

df
dE

)
Ti(E)

, (4.18)

where, f is the Fermi-Dirac distribution function, kB is the Boltzmann constant, e

is the fundamental electron charge and Ti is the transmission probability from all
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channels to the channel i given by Ti =
∑

j Ti j . In the low temperature limit, these
expressions reduce to a simpler form [103, 104] given by

G(µF,T = 0) =
2e2

h

∑
i

Ti(µF) =
2e2

h

∑
i, j

Ti j(µF),

(4.19)

S(µF,T) =
(kBπ)

2

3e
T

d
dE
(ln G(E, 0))

�����
E=µF

.

Weevaluate the conductance and the Seebeck coefficient as functions of the chemical
potential in the case of attractive and repulsive scatterers for different values of the
potential. It is essential to determine both G and S to characterize the energy
conversion efficiency by the dimensionless figure of merit (ZT) given by

ZT =
GS2

κ
T, (4.20)

where κ is the thermal conductance of the material which includes phonon and
electron contributions.

In Fig. 4.9, we plot the conductance as a function of chemical potential for different
heights of a hexagonal barrier. Conductancewill no longer preserve the quantization,
and it will be suppressed as we increase the barrier height. Near the subbandminima
we observe the Ramsauer-Townsend type resonance due to the high probability of
evanescent modes [65, 105]. In Fig. 4.10, we plot the thermopower as a function
of the chemical potential for different heights of a hexagonal barrier. We see that
the thermopower reaches high positive values at low energies around the subband
minima. Increase in the barrier height can slightly increase the values of the Seebeck
coefficient though its profile remains the same. The power factor (GS2)will be close
to 1 around the second subband minimum, and will not vary much with the barrier
height (see Fig. 4.11).

In the case of attractive scatterers, resonant dips are observed for the conductance
(see Fig. 4.12) at the subband minima which are attributed to the formation of quasi-
bound states whose energies are determined by finding poles of the Green’s function
for the system [68, 106]. We see that the conductance decreases and the resonant dips
disappear as we deepen the negative potential. The quasi-bound states lead to both
positive and negative values for the Seebeck coefficient around the subband minima
(see Fig. 4.13). Notice that the maximum value of the thermopower decreases as
we deepen the negative potential. From Fig. 4.14, we see that the power factor can



45

0

1

2

3

4

0.02 0.06 0.1 0.14

μF (eV)

G
(

, 
T

 =
 0

) 
(2

e
2
/ 
h

)

Figure 4.9: The conductance G(µF,T = 0) as a function of the chemical potential
µF for scattering from a regular hexagonal barrier defect with a side of length 5 nm.
We have shown the conductance for four different potential values. Within the inset
we have shown G(µF,T = 0) between the range 0.054 − 0.06 eV.
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Figure 4.10: The Seebeck coefficient S(µF,T) (in units of µV/ K) as a function of
the chemical potential µF for scattering from a regular hexagonal barrier defect with
side length 5 nm evaluated at T=10K is shown. The thermopower for four different
potential values are displayed.
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Figure 4.11: The power factor GS2 (in units of k2
B /h) as a function of the chemical

potential µF for scattering from a regular hexagonal barrier defect with side length
5 nm evaluated at temperature T = 10 K . We have shown the power factor for four
different potential values.

reach large values around the subband minima in the case of impurity scatterers.
We obtain multiple peaks at each subband minimum since the Seebeck coefficient
has multiple resonances.

Transport in a waveguide, with attractive impurities or quantum dots being present,
provides the means of obtaining large Seebeck coefficients and the power factor.
This will be of interest in thermoelectric applications [107, 108], and these can
be extended to spatially confined nanostructures. Having an attractive impurity
distribution surpasses the limits on the power factor asserted earlier [109] in the
case of ballistic transport.

We note that the Landauer-Büttiker conductance formula in the present form will
not take into account changes in the potential arising from a charge accumulation
due to the evanescent modes. It would require a self-consistent solution [110] of the
Schrödinger-Poisson equation to calculate the additional potential which depends
on the probability density of carriers in the evanescent modes. This issue will be
addressed separately in the near future.

4.6 Tapered waveguides
Next, we study the ballistic transport in a tapered waveguide. In this case, the energy
levels for local subband minima at one end are lower or higher than the subbands
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Figure 4.12: The conductance G(µF,T = 0) as a function of the chemical potential
µF for scattering from a regular hexagonal impurity with a side length 5 nm is
shown. The conductance for four different potential values is displayed. We observe
the formation of resonant dips at the subband minimum which disappear for V0 =
−120meV.

at the other end. Hence, new propagating and evanescent modes will emerge in the
scattered wavefunction. A tapered waveguide will still preserve the C1h symmetry
if the tapering angle is the same in either direction. Therefore, contributions from
different modes still follow the selection rules discussed in Sec. 3.3.

In Fig. 4.15, we plot the transmission and reflection coefficients for the tapered
waveguide with a left end of width 50 nm, and the right end of width 10 nm. We
choose our incoming energy below the first subband minimum (56.14meV) of the
right end. We perform the modal analysis [72] at either end of the waveguide to
obtain the scattering amplitudes. Since this set up does not allow any transmission of
propagating waves below 56.14meV, we observe only contributions for the current
coming from the reflection coefficients R11 and R13. However, we observe a fairly
high amplitude for the evanescent transmission coefficient T̃11 due to the tapering.
Evanescent modes lead to electron localization in the waveguide, thereby altering
the potential through a change in the local electron distribution. Since we have
evanescent modes only in the transmission direction, tapered waveguides provide
the means of changing the conductance while keeping the current constant.

Next, we study the transport from a smaller to a wider cross-sectional waveguide.
In Fig. 4.16, we plot the transmission coefficients for three different tapering angles.
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Figure 4.13: The Seebeck coefficient S(µF,T) (in units of µV/K) as a function of
the chemical potential µF for scattering from a regular hexagonal impurity with
side length 5 nm evaluated at T=10K is shown. S(µF,T) for four different potential
values are displayed. We can obtain large Seebeck coefficient by deepening the
value of negative potential.

For our choice of incoming energies we observe only propagating modes since a
wider cross-section has all subband minima below the incoming subband minimum
for the smaller cross-section. We see that only the 1st , 3rd and 5th modes contribute,
again as per the selection rules (refer Sec. 3.3).

Though our incoming mode is n = 1, we observe other odd number modes because
of the coupling generated to these modes from the tapering boundaries of the
waveguide.

At Ey,3 = 56.14meV for the incoming mode, we observe a strong resonance in
the transmission profiles. By increasing the tapering angle we can decrease the
contribution from mode 1, while contributions from the 3rd and the 5th mode
increase. The tapered waveguide provides a new way of developing a nanoscale
rectifier since the currents through it that are initiated at either end are inequivalent.
This is seen in Figs. 4.15 and 4.16.
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Figure 4.14: The power factor GS2 (in units of (k2
B /h)) as a function of the chemical

potential µF for scattering from a regular hexagonal impurity with side length 5 nm
evaluated at a temperature T = 10 K is shown. We have shown the power factor
for four different potential values. We can obtain large power factors around the
subband minima.

4.7 Curved waveguides
While designing electronic circuits, invariably we will have channels with bends
connecting different straight waveguides. Goldstone and Jaffe [111] have shown
that the curved channels in 2D and twisted tubes in 3D can support bound states.
Schult et al. [112] found the presence of bound states in a classically unbound
system of crossed wires. We expect to have evanescent modes even in the ballistic
transport through empty curved or crossed channels since the translational symmetry
is broken. It has been shown that we can obtain a series of Fano lines in an
empty curved waveguide due to curvature effects [113]. Olendski andMikhailovska
[114] have shown the presence of a Fano resonance profile when a quantum dot is
embedded in a uniformly curved waveguide. Such calculations are done by solving
the wave equation in the circular coordinate system, and the potential is taken to be
circularly symmetric. In our method, we have no such constraints since we work
with a discretized space. As an example we obtain the transmission coefficients for
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Figure 4.16: The transmission coefficients for the propagating modes (a) T11, (b)
T13, and (c) T15 as a function of energy are plotted for a tapered waveguide going
from the smaller (30 nm) to a wider cross-section for three different tapering angles.

different bending angles in a curved waveguide with an embedded square quantum
dot.

In Fig. 4.17, we plot the transmission coefficients T11, T̃12, T̃13 and T̃14 for scattering
from a square quantum dot of dimensions 20×20 nm and a potentialV0 = −10meV.
The bent geometry of the waveguide does not have C1h symmetry, hence all modes
contribute to the wavefunction. Since the energy is taken to be below Ey,2 =

0.0249 eV, we have only one propagating mode (n = 1). We see several transmission
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Figure 4.17: The transmission coefficients for the propagating mode (a) T11, and for
the evanescent modes (b) T̃12, (c) T̃13, and (d) T̃14 are plotted as a function of energy
for a curved waveguide of width 30 nm embedded with a square quantum dot of
dimensions 20 × 20 nm. The potential within the quantum dot V0 = −10meV.

dips forT11 due to the Fano effect. As explained earlier, such a dip in the propagating
mode leads to a high probability for evanescent modes. For a curvature angle of
θ = 30o, T̃12 will be as large as 85 at E = 0.0126 eV. The probability of evanescent
modes decreases with the curvature angle as seen in Figs. 4.17(b), (c) and (d). We
note the formation of Fano line profiles even for the evanescent modes around the
transmission minima.

4.8 Conclusions
We have shown that in quantum waveguides with attractive scatterers, there are
two dominant characteristics of the evanescent modes: (i) the evanescent modes
reach a maximum at the subband minimum, and (ii) the evanescent modes have
large amplitudes around the zero-transmission resonance energy. A universal way
of calculating amplitudes of both propagating and evanescent modes is described.
We have displayed the Fano resonance profile for both propagating and evanescent
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modes for the case of scattering from impurities. This effect can be explicitly
evaluated for any attractive scattering potential. The resonance formula for the two
cases are derived in Section 4.4.

Earlier theoretical developments were constrained by the need for analytical tech-
niques, limiting considerations to δ-function potential. With our method, we can
easily overcome this artificial limitation. Moreover, electron transport in a waveg-
uide with multiple scattering centers are not an issue anymore. Since we are
espousing a numerical calculation, there is no additional step required as in earlier
considerations, such as repeatedly invoking the Born approximation [115].

We have described the scattering mechanism in tapered and curved waveguides.
These 2D waveguides can be fabricated on inversion layers of hetero-interfaces
which hosts 2D electron gas, and by designing appropriate gate geometries. Thus,
the results can be readily confronted with experimental outcomes. In tapered waveg-
uides, the direction of the incoming current has a broken inversion symmetry. This
provides a unique situation of possible current rectification throughout the device
geometry.

We can include the effect of an external magnetic field using a local gauge which
acts as a multiplicative term for the matrix elements [116]. This generates rapidly
converging results even in the presence of a magnetic field. The usual gauge-
invariant substitution for the momentum operator leads to a quadratic diamagnetic
potential which is troublesome to evaluate at large distances from the orbit center.
The Ueta method [116] circumvents this problem. Similarly, the Dresselhaus [117]
andRashba [118] spin-orbit effects can be incorporated as additive terms in the action
integral. Absorption effects can be deftly included in our method by introducing a
negative imaginary part to the potential [119]. Such a scheme will account for gate-
contacts in 2D inversion layers, where the gate-contacts siphons off the probability
current going across the device.

Calculations of conductance, Seebeck coefficient, and power factors can directly
predict experimentally measurable quantities. Lastly, we have shown that quantum
dots or attractive impurity potentials embedded in the interior of a waveguide are
good candidates for fabricating thermoelectric devices since they yield large power
factors around the subband minima.
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C h a p t e r 5

SCALABLE FIRST-PRINCIPLES-INFORMED QUANTUM
TRANSPORT THEORY IN TWO-DIMENSIONAL MATERIALS

This chapter is organised as follows. In Sec. 5.2, we develop a non-asymptotic
quantum scattering theory based on sources and absorbers. With this setup, we
obtain the total wavefunction that includes both propagating and evanescent band
contributions. This formalism is extended to a multiband framework, by integrating
with it the k · p perturbation theory with inputs from DFT calculations. This will be
explained further in Sec. 5.3. In Sec. 5.4, we describe the method to evaluate the
scattering times within the relaxation time approximation. In that section we will
also explain the method to include the thermal properties in our formalism through
deformation potentials obtained through DFT calculations. In Sec. 5.5, we apply
our formalism to study transport properties in lateral TMDC heterostructures. We
observe the emergence of Fano resonances in 2Dmaterials with material inclusions.
We also study the mobility of electrons in lateral heterostructures for a family of
TMDC monolayers. Concluding remarks are given in Sec. 5.6.

5.1 Introduction
Density-functional theory (DFT) [122] provides a parameter-free method for the
electronic structure calculations, and accurately determine the atomistic potentials
associated with heterointerfaces, defects, and impurities. However, DFT is inef-
fective for direct modeling of carrier transport properties at length scales relevant
to device applications. There have been efforts to provide an atomistic quantum
transport framework based on the tight-binding methods [123], plane-wave repre-
sentation of the empirical pseudo-potentials [124], and DFT-based non-equilibrium
Green’s function techniques [125, 126]. However, such simulations are limited to a
small number of atoms, ranging from few hundreds to thousands, and can be com-
putationally expensive. Moreover, scattering across the material interfaces will have
significant contributions from the decaying evanescent modes. Traditional scatter-
ing calculations will not be able to account for these crucial contributions, since the
probabilities of evanescent modes vanish at the asymptotic limit where the bound-
ary conditions BCs) are applied to determine the scattering amplitudes. Hence,
we require a scattering framework where the scattering properties are evaluated in



54

Band-o set

Poten al

Distribu ons

Phonon 

Sca ering rates 

Band 

Parameters

Ec, Ev, a, t,  ... 

DFT

Figure 5.1: Flowchart of the quantum transport framework discussed in this chapter.

proximity to scattering centers.

In this chapter, alternatively, we setup a first-principles-informed continuum quan-
tum transport theory. We first develop a novel non-asymptotic quantum scattering
theory for the open domain. We show that bridging our scattering theory framework
and the k · p perturbation theory, using inputs from ab-initio electronic structure
calculations provides a versatile multiscale formalism. This formalism can easily
scale into device dimensions. Hence it will be very useful to simulate and design
electron optics, and nanoelectronics platforms. In Fig. 5.1, we display the flowchart
of the quantum transport framework discussed in this chapter. The band parame-
ters, potential distributions, and phonon scattering rates are obtained through DFT
calculations. These quantities will be an input to the k · p Hamiltonian which is then
solved using the non-asymptotic quantum scattering theory. By combining the car-
rier scattering rate obtained through our calculations with the phonon scattering rate
obtained though first-principles calculations, we can accurately obtain the mobility
and thermoelectric performance of the devices.

In Fig. 5.2, we consider a heterointerface formed between MoS2 and WS2 monolay-
ers. From the electronic structure calculations, we know that MoS2 (Ec = −4.31 eV)
has a lower conduction band minimum than WS2 (Ec = −3.97 eV) monolayer.
Hence, when an electron with energy −4.31 eV≤ E <−3.97 eV is injected from
the MoS2 to the WS2 monolayer, transport occurs only through the evanescent
modes. These evanescent modes are placed within the bandgap and will have



55

Figure 5.2: A schematic representation of the heterointerface between MoS2 and
WS2 monolayers is shown. We also display their corresponding conduction and
valence bands near the K−point. MoS2 (Ec = −4.31 eV) has a lower conduction
band minimum than WS2 (Ec = −3.97 eV). Hence, below the energy −3.97 eV,
electron transport across the interface occurs only through evanescent modes.

purely imaginary wavevectors. This results in exponentially decaying contribu-
tions to the scattered wavefunction. Traditional scattering calculations will not be
able to account for these crucial contributions, since the probabilities of evanescent
modes vanish at the asymptotic limit where the boundary conditions are applied
to determine the scattering amplitudes. We then require a new quantum scattering
framework that will accurately compute both the evanescent modes and angular
current contributions in the near-field of the scattering center.

5.2 Construction of sources and absorbers
Our first aim is to formulate a framework to obtain the scattering properties without
applying asymptotic boundary conditions (BCs). In the conventional variational
formulation of the scattering theory, asymptotic BCs are applied either by mapping
the far-field partial wave expansion into the near-field region [63], or by approx-
imating the Sommerfeld radiation conditions [10, 127]. However, both of these
approaches fail to account for the decaying evanescent solutions, since they inherit
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Figure 5.3: Schematic representation of the construction of a circular source (red
line) and absorber (gray region, also known as the stealth region) around a scattering
center (green shaded region). We can apply Dirichlet boundary conditions at the
boundary of the absorber. Amplitudes on the source circle are chosen as per
Eq. (5.10), so that the planewaves are injected into the region confining the scattering
center.

the asymptotic BCs.

Previously, for electron scattering in waveguides, we proposed a method to reduce
the scattering BCs to Dirichlet BCs by creating absorbers (stealth regions) on either
end of the waveguide [72]. An extension of this technique to 2D open domain
is achieved here by creating circular absorbers around the scattering center, as
shown in Fig. 5.3. Within the absorber, we perform a coordinate transformation
ρ → ρ (1 + iα(r)), and an energy transformation E → E (1 + iα(r)). Here, α(r)
is the cubic Hermite interpolation polynomial varying smoothly from 0 to αmax .
Through such transformation, it has been shown that the no-reflection condition
is satisfied [72], and the absorber will not reflect any wave back into the active
region confined within the absorber. Therefore, scattering properties in the active
region remain unaffected with the presence of the absorber. As a result of such a
transformation, the wavefunction will decay rapidly within the absorber, and we can
apply the Dirichlet BCs at the boundary of the absorber. Through this technique,
we can confine the computational domain, and preserve the near-field nature of the
wavefunction in the region confined by the absorber (scattering region), that are
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otherwise lost due to the application of asymptotic BCs.

Once we enclose the active scattering region with the absorber, we require a source
(an electron antenna) in the active region to initiate the incoming plane waves (see
Fig. 5.3). This is achieved by introducing a source term in the Schrödinger equation.
In order to derive this source term, we start with the Green’s function equation for
the Schrödinger operator in the 2D circular coordinate system given by[

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 + k2
]

G(ρ, ρ′)

= S(ρ′, φ′)
δ (ρ − ρ′)

ρ′
δ (φ − φ′) , (5.1)

where S(ρ′, φ′) is the source termwhose form is yet to be determined, the wavevector
k =

√
2m∗E/~2, E is the incoming energy, and m∗ is the effective mass. We expand

the Green’s function in the Fourier form given by

G(ρ, ρ′) =
1

2π

∞∑
m=−∞

eim(φ−φ′)gm(ρ, ρ
′). (5.2)

Inserting this into Eq. (5.1) we obtain

1
2π

∞∑
m=−∞

eim(φ−φ′)
[
1
ρ

∂

∂ρ

(
ρ
∂gm

∂ρ

)
+

(
k2 −

m2

ρ2

)
gm

]
= S(ρ′, φ′)

δ (ρ − ρ′)

ρ′
δ (φ − φ′) . (5.3)

Multiplying Eq. (5.3) by e−imφ and integrating over φ from 0 to 2π we obtain[
1
ρ

∂

∂ρ

(
ρ
∂gm

∂ρ

)
+

(
k2 −

m2

ρ2

)
gm

]
= S(ρ′, φ′)

δ (ρ − ρ′)

ρ′
. (5.4)

The radial part gm(ρ, ρ
′) is the Green’s function for the one-dimensional Sturm

Liouville operator [128], and will be of the form

gm(ρ, ρ
′) = Am


Jm(kρ)Hm(kρ′), ρ ≤ ρ′

Jm(kρ′)Hm(kρ), ρ > ρ′
, (5.5)

where, Jm(kρ) and Hm(kρ) are the Bessel and Hankel function of first kind, respec-
tively. We determine the coefficient Am by applying the jump condition at ρ = ρ′

given by

∂gm

∂ρ

�����
ρ′+ε

−
∂gm

∂ρ

�����
ρ′−ε

=
S(ρ′, φ′)

ρ′
,

AmW[Jm(kρ′),Hm(kρ′)] =
S(ρ′, φ′)

ρ′
, (5.6)
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where, the WronskianW[Jm(kρ′),Hm(kρ′)] = 2i/πρ′. Thus

Am = −
iπ
2

S(ρ′, φ′). (5.7)

Substituting Eqs. (5.5) and (5.7) into Eq. (5.2), we obtain the total Green’s function
of the form

G(ρ, ρ′) = −
i
4

S(ρ′, φ′)×

∞∑
m=−∞

eim(φ−φ′)


Jm(kρ)Hm(kρ′), ρ ≤ ρ′

Jm(kρ′)Hm(kρ), ρ > ρ′
,

By using the additional theorem for Bessel functions we have

G(ρ, ρ′) = −
i
4

S(ρ′, φ′)H0(k
��ρ − ρ′

��). (5.8)

We note that H0(k |ρ − ρ′|) represents the wave originating from the point source
at ρ′. As shown in Fig. 5.3, to obtain a circular source we integrate G(ρ, ρ′) over
the angular coordinate φ′ from 0 to 2π. Hence the wavefunction emerging from the
circular source is given by

ψin(ρ, ρ
′) = −

i
4

∫ 2π

0
dφ′S(ρ′, φ′)H0(k

��ρ − ρ′
��). (5.9)

Our aim is to generate plane waves propagating in the forward direction from the
circular source within the region ρ ≤ ρ′. Hence we choose the source term

S(ρ′, φ′) =
2i
π

∞∑
n=−∞

in einφ′

Hn(kρ′)
. (5.10)

Now, substituting the above form into Eq. (7.11) we obtain

ψin =

∞∑
m=−∞

im eimφ


Jm(kρ) , ρ ≤ ρ′;

Jm(kρ′)
Hm(kρ′)

Hm(kρ), ρ > ρ′,
(5.11)

where we have utilized the orthogonal properties of the function einφ′. We know the

expansion of plane wave eik x = eikρ cos φ =

∞∑
m=−∞

eimφimJm(kρ). Hence

ψin =


eik x , ρ ≤ ρ′;

∞∑
m=−∞

eimφim Jm(kρ′)
Hm(kρ′)

Hm(kρ), ρ > ρ′,
(5.12)
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we obtain plane waves impinging on the scattering center from a circular source at
ρ = ρ′, as shown in Fig. 5.3. The wavefunction in the ρ > ρ′ region will simply get
absorbed by the stealth region.

Once we formulate the quantum scattering theory with the source and absorber, we
can employ numerical methods to obtain the total wavefunction ψ. In the presence
of a scattering potential, we obtain the total wavefunction ψ = ψin + ψsc. Here,
ψsc will include both the radial and angular current contributions. ψsc will also
the evanescent solutions in case of an absorbing scattering potential or in case of
multiband scattering processes, as discussed in the next section.

Throughout this chapter, we have solved the Hamiltonian equation by casting it
into an action integral. This action integral is solved using finite element analysis
(FEA) [41, 44–46]. In FEA, we discretize the physical domain of interest into
small elements. Within each element, we express the wavefunction as a linear
combination of interpolation polynomials multiplied by undetermined coefficients.
These coefficients correspond to the value of the wavefunction and their derivatives
at the vertices (nodes) of the element. With this approach, one can systematically
increase the accuracy through mesh size refinement (h-refinement) or by employing
higher order interpolation polynomials (p-refinement).

Scattering cross-section length at a finite distance
The differential cross-section is determined by dividing the scattered flux by the
incoming flux, given by

dσ
dφ
=

Jsc · dS
Jin

, (5.13)

where Jsc is the scattered current, and Jin = ~k/m∗ is the magnitude of the current
from the incoming plane wave. In the traditional scattering theory, the detector is
at infinity, and the outgoing wave in 2D is a circular wave of the form eikρ/

√
ρ.

When the observer is at a finite distance ρ, the outgoing wave-front incident on the
observer will have both radial and angular components. The surface element dS is
considered to be orthogonal to the outgoing current [13, 14]. In 2D scattering,

Jsc · dS = Jscn · dSn,

= Jsc
√
gdφ, (5.14)

where g is the determinant of the metric gµν. In 2D circular coordinate system

√
g = ρ

√
1 +

1
ρ2

(
dρ
dφ

)2
. (5.15)
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Figure 5.4: (a) Scattering cross-section length obtained through our scattering for-
malism is plotted as a function of incoming energy. Here, the dotted line represents
the cross-section measured by an observer at infinity, whereas the continuous line
represents the cross-section measured by an observer at a finite distance 10 nm.
Radius of the hard circle potential considered here are equal to 8 nm, 5 nm and
3 nm. (b) The analytical result through partial wave analysis, and the numerical
result obtained through our calculation for the scattering cross-section in hard circle
potential is plotted as a function of energy.



61

Hence,

Jsc · dS = Jsc

√
1 +

1
ρ2

(
dρ
dφ

)2
ρ dφ, (5.16)

where

Jscρ =
~
m

Im
(
ψ†sc

∂ψsc

∂ρ

)
,

Jscφ =
~
m

Im

(
ψ†sc

ρ

∂ψsc

∂φ

)
.

In order to compare with the expression given in the standard scattering theory, we
would like to express the scattered flux in Eq. (5.16) only in terms of the scattering
current components. We know that

∂

∂x
= cos φ

∂

∂r
−

sin φ
r

∂

∂φ
,

∂

∂y
= sin φ

∂

∂r
+

cos φ
r

∂

∂φ
. (5.17)

Hence we can express the scattered current as

Jsc =

[
Jscx

Jscy

]
=

[
cos φ − sin φ
sin φ cos φ

]
·

[
Jscρ
Jscφ

]
. (5.18)

Now let us take that the surface of revolution for the scattered current, expressed
in a parametric form given by ρ = ρ (φ). The tangential vector at a point on this
surface will be of the form

t =

[
−ρ(φ) sin φ
ρ(φ) cos φ

]
. (5.19)

The normal vector will be

n =
∂t
∂φ
=


−ρ(φ) cos φ −

∂ρ(φ)

∂φ
sin φ

−ρ(φ) sin φ +
∂ρ(φ)

∂φ
cos φ


. (5.20)

Hence the scattered current is given by

Jsc = Jsc
n
|n|
=

Jsc√
ρ2 +

(
∂ρ

∂φ

)2


−ρ(φ) cos φ −

∂ρ(φ)

∂φ
sin φ

−ρ(φ) sin φ +
∂ρ(φ)

∂φ
cos φ


. (5.21)
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Equating Eq. (5.18) and (5.21) we obtain the angular components of the scattered
as

Jscρ =
−ρJsc√

ρ2 +

(
∂ρ

∂φ

)2
,

Jscφ =

∂ρ

∂φ
Jsc√

ρ2 +

(
∂ρ

∂φ

)2
. (5.22)

Hence we find that
Jscφ
Jscρ
= −

1
ρ

dρ
dφ
. (5.23)

By substituting this relation to Eq. (5.16) we obtain

Jsc · dS = Jsc

√√√
1 +

(
Jscφ
Jscρ

)2

ρ dφ. (5.24)

We know that Jsc =
√(

Jscρ
)2
+

(
Jscθ

)2
= Jscρ

[
1 +

(
Jscφ /J

sc
ρ

)2
]
. Substituting this

relation for Jsc in Eq. (5.24) we obtain

Jsc · dS = Jscρ

1 +
(

Jscφ
Jscρ

)2 ρ dφ, (5.25)

and the differential cross-section length is given by

dσ
dφ
=

Jsc · dS
Jin

=

Jscρ

1 +
(

Jscφ
Jscρ

)2 ρ
Jin

. (5.26)

Note that as the source and observer are pushed to infinity (ρ→∞),

Jscφ → 0,

Jsc →
~

m∗
| f |2

ρ
, (5.27)

dσ
dφ
→
| f |2

k
,

where f is scattering amplitude. Hence, we obtain the standard definition of the
differential cross-section length [9] in the limit ρ→∞.
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To validate our scattering formalism, we consider the case of 2D scattering from a
hard circle. The hard circle potential is given by

V(ρ) =


0, ρ ≤ a

∞, ρ > a
, (5.28)

where, a is the radius of the circle. Through partial wave analysis, we can obtain a
closed form result for the scattering cross-section length σ measured at the asymp-
totic distance as described in the next subsection. In Fig. 5.4(b), we compare the
analytical result (see Eq. (5.32)), and the result obtained through our formalism. We
see that these results match accurately. Behavior of σ at low and high energy limits
observed in Fig. 5.4(b) are discussed in the next subsection.

In Fig. 5.4(a), we plot the cross-section length obtained from an observer at a
very large distance (asymptotic limit), and at a finite distance 10 nm. We see a
significant difference between between their quantitative values. In case of the hard
circle potential, difference between the asymptotic and non-asymptotic predictions
increases with decreasing distance between the observer and the hard circle. In
Fig. 5.4(a), we see that the deviation between the prediction at the asymptotic limit,
and for the observer at 10 nm is maximum for the hard circle radius of 8 nm. This
is because the effective distance from the hard circle and the observer is least for
8 nm potential. Thus confirming that in nanoscale systems it is especially important
to employ the non-asymptotic scattering theory developed here to obtain accurate
transport properties. In chapter 7, we derive the source term for the non-asymptotic
scattering theory in three-dimensions (3D). Such analysis in 3D can be employed to
obtain transport properties in bulk materials.

Scattering from a Hard circle potential
In this section, we discuss the analytical results for the scattering from a hard circle
potential in 2D. Even though, this problem has been addressed before in the literature
[170, 171], they have not discussed the limiting behaviors. Furthermore, some of
their work contains minor errors.

The hard circle potential of radius a in a 2D space is given by

V =

∞, ρ ≤ a

0, ρ > a
. (5.29)
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The solution wavefunction for the above potential will be of the form

ψ(ρ, φ) =


0, ρ ≤ a

eikρ cos φ +

∞∑
n=−∞

cn einφHn(kρ), ρ > a
. (5.30)

To determine the coefficients cn, we utilize the boundary condition ψ(a, φ) = 0.
Hence,

cn =
−inJn(ka)

Hn(ka)
, (5.31)

where we have used the expansion of the planewave eikρcosφ =

∞∑
n=−∞

(in)einφJn(kρ).

Through partial wave analysis, we obtain the total cross-section length given by

σ =
4
k

∞∑
n=−∞

|Jn(ka)|2

|Hn(ka)|2
. (5.32)

To compare the quantum mechanical calculations with classical mechanics predic-
tions, we consider the cross-section length in the high energy limit ka >> 1. We
know that,

Jn(ka) −−−−−→
ka→∞

√
2
πka

cos
(
ka −

nπ
2
−
π

4

)
,

Hn(ka) −−−−−→
ka→∞

√
2
πka

e
i
(
ka −

nπ
2
−
π

4

)
. (5.33)

Therefore,

σ '
4
k

∞∑
n=−∞

cos2
(
ka −

nπ
2
−
π

4

)
. (5.34)

Classically, the particle will not be deflected by the potential if the impact parameter
b > a. The angular momentum Lφ will follow the limit

��Lφ�� = n~ ≤ ~ka. Hence,
we can restrict the sum in Eq. (5.34) between the limits −ka ≤ n ≤ ka. With this
simplification we obtain the cross-section length

σ ' 4a, (5.35)

which is twice the classical mechanics prediction [170].

To obtain the low energy limit (ka << 1) of the cross-section length, we retain only
the first term (n = 0) in the series given in Eq. (5.32). In this limit,

J0(ka) −−−−→
ka→0

1,

H0(ka) −−−−→
ka→0

2
π

ln (ka). (5.36)
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Hence,

σ '
π2

k
1

(ln (ka))2
. (5.37)

This is not an analytic function. This can be explained as follows. We know that the
incoming current Jin = ~k/m∗ −−−−→

ka→0
0. In the long wavelength limit, the scattered

current Jsc ∼ 1/(ln (ka))2 −−−−→
ka→0

0. Hence, we obtain a 0/0 form in the total

cross-section length, which does not have a convergent value. Therefore, as k → 0,
cross-section length will diverge even though the scattering current vanishes.

5.3 Envelope function scattering theory with sources and absorbers
The low energy dynamics of the charge carriers in semiconducting materials can
be described by the k · p Hamiltonian [129–132]. This Hamiltonian provides an
accurate characterization of the energy dispersion around the high-symmetry points
of the Brillouin Zone, in terms of a small number of input band parameters. These
band parameters are taken from the database [133] obtained from DFT and many-
body perturbation theory calculations. In this section, we describe the scattering
theory for the envelope functions for the k · p Hamiltonian.

The k · p Hamiltonian effectively captures the coupled dynamics of the conduction
and valence bands around the high-symmetry points of the Brillouin Zone. This
is also the region in which we are most interested in determining the transport
properties. Effects of remote bands can be easily included by using the Löwdin
perturbation theory [134]. Effects due to strain, magnetic field, and spin-orbit
coupling are included as additional input parameters. Being a long-wavelength
theory, k · p perturbation theory is well suited to simulate transport properties in
device-relevant scales.

Let us consider the Hamiltonian equation of the form

(H0 + V0 + Vd − E) · ψnk

= S(ρ′, φ′) ηscale Ank
δ(ρ − ρ′)

ρ′
, (5.38)

where S(ρ′, φ′) is the source term defined in Eq. (5.10), Ank is the incoming am-
plitude, n is the band-index, k is the wavevector, and ηscale is a scale factor whose
form is as yet to be derived. Here, V0 is the cell periodic potential, and Vd is
the defect/impurity potential obtained from DFT calculations. In the envelope
function approximation (EFA), the general form of the wavefunction and the incom-
ing amplitudes are expressed as a linear combination of a finite number of bands
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[129, 135, 136], given by

ψnk =

nband∑
m=0

Fm umk,

Ank =

nband∑
m=0

am umk, (5.39)

where Fm is the slowly-varying envelope function, umk is the cell-periodic Bloch
function, am is the incoming amplitude, and nband is the number of bands con-
sidered. Here, the expansion is at a fixed k value, and we will assume from now
on that the expansion is around k = 0. Within the framework of EFA, we perform
‘cell-averaging’ by integrating over each unit cell in the crystal. Bloch functions
satisfy Schrödinger’s equation with band-edge energies, and results in:∫

cell
d2ρ u†n0 · um0 = δmn,∫

cell
d2ρ u†n0 (H0 + V0) · um0 = Emδmn,∫

cell
d2ρ u†n0 p · um0 = pmn, (5.40)

where pmn is themomentummatrix. This averaging procedure results in the equation
of the form [〈

Hkp
〉
cell + (Vd − E) 1

]
· F = S(ρ′, φ′) ηscale A

δ(ρ − ρ′)

ρ′
, (5.41)

where
〈
Hkp

〉
cell is the k · p Hamiltonian, and 1 is the identity matrix. From now on

we denote
〈
Hkp

〉
cell simply as Hkp. The envelope function is F =

(
F1 F2 ...

)T
,

and the incoming amplitude is A =
(

a1 a2 ...
)T
. In the absence of the defect

potential Vd , the incoming amplitudes satisfy an equation of the form[
Hkp − E 1

]
· A = 0. (5.42)

Hence, for an given energy we can obtain A by solving the above matrix equation.
Note that Eq. (5.42) represents the standard k·pHamiltonian equation for the pristine
material.

We also need to obtain an expression for the scale factor ηscale employed in Eq. (5.41).
For simplicity let us consider the k · p Hamiltonian in one-dimension (1D). The
expression we obtain here for 1D will translate into higher dimensions as well. Let
us consider the equation[

Hkp(x) − E1
]
· F = S ηscaleA δ(x), (5.43)
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where, the source term in 1D is given by S = 2ik1 [41, 72], where k1 is the incoming
wavevector. The solution to the above equation in terms of the Fourier components
is given by

F(x) =
1

2π

∫
dk eik x2ik1 ηscale

adj(Hkp − E1) · A
Det(Hkp − E1)

. (5.44)

Let us constrain Hkp be a 2×2 matrix, with eigenenergies given by Ec and Ev. Then

F(x) =
ik1
π
A (Ec − Ev)

∫
dk

eik xηscale

(k2 − k2
1)(k

2 − k2
2)...(k

2 − k2
N )
, (5.45)

where k1, k2...kN are the solutionwavevector for the determinantal equationDet(Hkp−

E1) = 0. The Hamiltonian Hkp can include terms in higher order k (such as
k, k2, k3...), and hence the determinant equation will have N roots. Hence, we
choose

ηscale =
(k2 − k2

2)...(k
2 − k2

N )

(Ec − Ev)
, (5.46)

so that the the incoming wavefunction ψ(x) will have the form

ψ(x) = Aeik1x . (5.47)

The expression derived in Eq. (5.46) will follow for 2D and higher dimensions as
well.

We cast Eq. (5.41) into an action integral, and solve the equation within the vari-
ational framework. The advantages of the action integral formulation are that
there is no ambiguity about reordering of operators for symmetrization [137], and
we can easily evaluate the conserved current using the gauge-variational approach
introduced by Gell-Mann and Levy [138] and used extensively by us [137] (see
discussion below). This action integral is solved using the finite element analysis.

Action integral formation
In this section, we explain the action integral formulation employed to solveEq. (5.41).
Let us consider a general form of the k · p Hamiltonian in a 2D material given by

Hkp = Axx k2
x + Ayyk2

y + Axykx ky + Bx kx + Byky + C, (5.48)

where Axx,Ayy,Axy,Bx,By,C are the coefficient matrices, kx = −i∂x , and ky =

−i∂y. For simplicity, we have considered only the terms up to the second order
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derivatives. With this Hamiltonian, the action integral corresponding to Eq. (5.41)
is given by

A =

∫
d2ρF† · Lkp · F

+

∫
d2ρ S(ρ′, φ′) ηscale F

† · A
δ(ρ − ρ′)

ρ′
, (5.49)

where Lkp is the Lagrangian operator given by

Lkp =
[
®∂xAxx ®∂x + ®∂yAyy

®∂y +
1
2

(
®∂xAxy ®∂y + ®∂yAxy ®∂x

)
+

i
2

(
®∂xBx − Bx ®∂x

)
+

i
2

(
®∂yBy − By

®∂y

)
+ C

]
,

where ®∂ and ®∂ represent the derivative operator acting on the functions appearing to
the left and right side, respectively. This will ensure the correct operator ordering
at the material interface [137].

Across a material interface, the envelope wavefunction, and the probability current
has to be continuous. The continuity of the envelop function is ensured by using
Hermite interpolation polynomials in our calculations, which will have both first
and second derivative continuity [73]. The probability current is evaluated using a
gauge-variational approach that is commonly used in high energy/particle physics.
Following Gell-Mann and Levy [138], we perform a transformation of the envelop
function with respect to an arbitrary gauge function of the form, F→ F eiΛ(ρ). With
this transformation, we obtain the conserved current

Jx = F
† ·

δLkp

δ ∂xΛ
· F,

Jy = F† ·
δLkp

δ ∂yΛ
· F. (5.50)

The interfacial potential is obtained from the DFT calculations, and will be contin-
uous across the interface. Hence, this conserved current will also be continuous.

5.4 Relaxation time approximation
Within the Boltzmann transport formalism, important transport properties such as
the mobility, conductance and Seebeck coefficeints are expressed in terms of the
total relaxation time τ(E). To determine τ(E), we need to consider both the intrinsic
and extrinsic scattering rates. The extrinsic scattering rate arises from the potential
scattering. According to the Matthiessen’s law

1
τ(E)

=
1

τe(E)
+

1
τph(E)

, (5.51)
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where, τe is the extrinsic carrier scattering time, and τph is the total intrinsic scat-
tering time arising from all the acoustic and optical phonon mode contributions.

Carrier scattering time
Through kinectic theory [139], for elastic scattering processes in 2D, τe is given by

τe(E) =
1

nd σm 〈v〉
, (5.52)

where nd is the disorder density, 〈v〉 is the average velocity, andσm is the momentum
scattering cross-section defined as

σm =

∫ 2π

0

dσ
dφ
(1 − cos φ) dφ, (5.53)

where, dσ/dφ is the differential cross-section length. The average incident velocity
is

〈v〉 =
1
π

∫ π/2

−π/2
dβ v cos β, (5.54)

where v = |∇k En(k)| /~ is the carrier velocity, and β is the angle between the velocity
vector and the longitudinal axis. For example, for a uniform velocity distribution,
〈v〉 = 2v/π.

Phonon scattering time
First-principles calculations provide a convenient way of determining the phonon
scattering times by computing the deformation potentials of the crystal lattice [140].
In 2D materials, the phonon scattering rate from the longitudinal and transverse
acoustic phonons is given by [141–143]

1
τph,0

=
m∗D2

1 kBT

~3 ρ2D c2
s
, (5.55)

where m∗ is the effective mass, D1 is the first-order deformation potential, T is the
absolute temperature, ρ2D is the 2D ion mass density, and cs is the sound velocity
of the acoustic phonons. The intervalley acoustic phonon and optical phonon rates
are expressed in terms of the zero-order deformation potential D0, and is given by

1
τph,1

=
m∗D2

0
2~2ωξ ρ2D

(
e~ωξ/kBT

Θ(E − ~ωξ) + 1
)

f BE
ξ , (5.56)

where Θ is the Heaviside step function, ωξ is the phonon frequency, and f BE
ξ

is the Bose-Einstein distribution function for the phonon mode ξ. Effect of the
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Figure 5.5: The total phonon scattering rates for the K-valley electrons are plotted
as a function of energy for TMDCs at temperature T = 300K. Scattering rates are
calculated using the deformation potentials listed in Ref. [141–143].

Fröhlich interaction can be implicitly added to the deformation potential [142]. We
neglect the first-order optical deformation potential contributions, that are typically
small while compared to the values from Eqs. (5.55) and (5.56). Hence the total
intrinsic phonon scattering rate is computed by summing over the all phonon modes,
τ−1

ph =
∑
ξ

τ−1
ξ .

In Fig. 6.3, we have plotted the total intrinsic phonon scattering rate at room tempera-
ture for TMDCmonolayers. We have included deformation potentials for the acous-
tic and optical phonon modes corresponding to the transition K → {K,K′,Q,Q′}.
Emergence of contributions from optical phonon modes are observed as steps in
the scattering rate. We observe that MoSe2 (WS2) has the strongest (weakest) in-
teraction with phonons in the family of TMDC monolayers. WX2 has a greater
electrical conductivity than MoX2. These observations and scattering rate values
are consistent with previous first-principles study in the literature [141, 142].

5.5 Transport properties in TMDC heterostructures
Transition metal dichalcogenides have attracted tremendous recent interest in fab-
ricating high-mobility nanoelectric circuits [144–146]. In contrast to graphene,
TMDCs host massive Dirac fermions due to their direct bandgap, which negates
the probability of Klein tunneling [147]. Strong coupling between spin and valley
degrees of freedom are observed in TMDCs due to their lack of inversion symmetry
[148]. This makes them interesting candidates to realize valleytronic devices as well
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[149].

Similar crystal structure and comparable lattice constants observed in MX2 (M =
Mo, W; X = S, Se) monolayers have motivated the study of TMDC-based quantum
confinement and heterostructures [121, 150–155] . Experimentally, such lateral
heterostructures can be realized through multistep chemical vapor deposition tech-
niques, bottom up synthesis, and micromechanical techniques [156–165]. Ability
to pattern the material inclusions in these systems provides an enhanced level of
control over their electrical properties. Hence, they have a great potential to realize
in-plane transistors, photodiodes, cascade lasers, and CMOS circuits.

As shown in Fig. 5.2, mismatch between the band-offsets at a heterointerface between
two TMDC monolayers breaks the translational symmetry of the system. Hence
the evanescent modes (with complex wavevector) contribute significantly to their
transport properties. Therefore, in 2D lateral heterostructures the carrier scattering
calculations have to carried out using the method described in Sec. 5.3. In TMDCs,
a seven-band k · p model can accurately capture the most important dispersion
features of the conduction (CB) and valence (VB) bands [166]. We can the apply
Löwdin perturbation theory [134] to reduce the seven band model into a two-band
model corresponding to the lowest CB and highest VB. Here, we keep the terms
upto second-order in the diagonal element in the Hamiltonian corresponding to the
basis set {|φc, s, η〉 , |φv, s, η〉}. Here, s = ±1 is the spin index, and η = ±1 denotes
the valley ±K . C3h symmetry dictates that the Hamiltonian should have the form

Hkp = H0 + at
(
η kxσ̂x + ikyσ̂y

)
− λ η

(σ̂z − 1)
2

s, (5.57)

where σ̂ denotes the Pauli matrices, a is the lattice constant, t is the effective hopping
integral, λ is the spin-orbit (SO) parameter, and H0 is given by

H0 =

[
Ec + αsk2 0

0 Ev + βsk2

]
. (5.58)

Here, αs, βs are the material parameters, and Ec and Ev are the CB minima and
the VB maxima, respectively. The k · p theory is corrupted with the occurrence of
spurious solutions. We have utilized the Foreman transformations [167] to eliminate
the spurious solutions, and hence, we consider βs = 0. In Table 6.2 we have listed
all the k · p parameters used in our calculations for MoS2. WS2, MoSe2, WSe2

monolayers. We have neglected strain matrix elements since MoS2 (MoSe2) and
WS2 (WSe2) have comparable lattice constants. Material parameters between the
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Ec Ev a t λ α+(α−)

(eV) (eV) (Å) (eV) (eV) (eV·Å2)

MoS2 -4.31 -5.89 3.184 1.059 0.073 -5.97(-6.43)
WS2 -5.97 -5.50 3.186 1.075 0.211 -6.14(-7.95)
MoSe2 -3.91 -5.23 3.283 0.940 0.090 -5.34(-5.71)
WSe2 -3.61 -4.85 3.297 1.190 0.230 -5.25(-6.93)

Table 5.1: The k ·p parameters used in our calculations are listed. These parameters
were obtained from the previously reported first-principles study [133, 166].
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Figure 5.6: Electron scattering rate is plotted as a function of energy forMoS2(WS2)
and WS2(MoS2) triangular heterostructures. A(B) material pattern is displayed in
the inset. The material parameters are employed here are listed in Table 6.2, and
nd = 1012 cm−2. Width of each layer is taken to be 4 nm. Scattering rates are
calculated using the envelope function scattering theory discussed in Sec. 5.3.

two layers are smoothly interpolated through the self-consistent potential distribution
obtained from the DFT calculations.

In Fig. 5.6, we have plotted the electron scattering rate for a 2D triangular superlattice
betweenMoS2 andWS2 monolayers. There have been experimental efforts to realize
such structures through lateral epitaxy [164]. MoS2 has a lower CB minimum
compared to WS2 (see Table 6.2). Hence, for energies below −3.97 eV (marked
by a green arrow in Fig. 5.6) transport in WS2 layers can occur only through the
evanescent modes. Evanescent wavevectors are the purely imaginary k roots of the
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k · p Hamiltonian defined in Eq. (6.2). Firstly, we observe that the WS2 (MoS2)
structure has a lower scattering rate (higher lifetime) while compared to the MoS2

(WS2) structure. This is because an electron injected from the WS2 layer can
scatter off through the additional propagating conduction channels available from
MoS2 inclusions. We observe that for transport in the MoS2 (WS2) structure,
above the incoming energy E > −3.97 eV (E − Ec = 0.34 eV, marked by an arrow
in Fig. 5.6), corresponding to the CB minima of WS2, the electron scattering rate
decreases significantly, since the evanescent modes disappear above this energy. The
resonances observed in the MoS2 (WS2) structure, below the energy E < −3.97 eV
are due to the interaction with the trapped electron states within the WS2 barrier.

For transport in the WS2 (MoS2) structure, we observe maxima and minima in the
electron scattering rate around E − Ec = 0.1 eV (see Fig. 5.6). This marks the
occurrence of Fano resonance in the transmission profile, an effect analogous to
that of atomic autoionization [74], first observed in the context of inelastic electron
scattering by a helium atom. Analogous Fano profiles are observed around the
subband minima of a quantum waveguide with attractive potentials [15]. Here, the
MoS2 inclusion acts as a quantum well and leads to the formation of quasi-bound
metastable states. Interaction between the propagating modes and the quasi-bound
states leads to the Fano resonance. Multiple Fano resonances are observed when
we have a superlattice of WS2 and MoS2 layers as shown in Fig. 5.7. Formation of
Fano resonances leads to an enhancement in the thermoelectric figure-of-merit far
beyond the pure 2D monolayers. This phenomenon will be discussed in detail in a
subsequent chapter [168].

Lastly, we study the mobility of electrons in the TMDC heterostructures. Around
the K-valley, the CB is isotropic and parabolic in nature. Hence, the mobility can
be defined as

µ =
e

m∗
1
n

∫
dE g(E) E τ(E)

(
−
∂ f (E)
∂E

)
, (5.59)

where, the 2D carrier density n =
∫

dE g(E) f (E), g(E) is the density of states,
and the Fermi-Dirac distribution is f (E) = (1 + exp [(E − EF)/kBT])−1. Due to the
parabolic nature of CB, we consider constant g(E) = gsgvm∗K/2π~

2, where gs and gv
(gv = 1, 2 for VB, CB) are the spin and valley degeneracies, respectively. In Fig. 5.8,
we plot the total mobility (including both phonon and electron contributions) at
room temperature for the n-type TMDCmonolayers with triangular inclusions. The
density of triangular inclusions is considered to be nd = 1012 cm−2. We observe an
enhancement in the mobility at low carrier density. The WS2 monolayer with MoS2
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Figure 5.7: Electron scattering rate is plotted as a function of energy for WS2-
MoS2 lateral heterostructures. Electrons are initiated from the WS2 layer. Here, the
notation 4 nm(3) represents that there are 3 periods of WS2 and MoS2 layers, and
each layer has a width 4 nm. The material parameters employed here are listed in
Table 6.2 and nd = 1012 cm−2. Scattering rates are calculated using the envelope
function scattering theory discussed in Sec. 5.3.

inclusion will have the highest mobility amongst the considered combinations. This
can be attributed to twomain factors: 1) additional CB channels available fromMoS2

inclusions enhance the electron scattering lifetime, 2)WS2 monolayer has the highest
phonon scattering lifetime amongst the family of TMDC monolayers (see Fig. 6.3).
The MoS2 monolayer with WS2 inclusion will have relatively lower mobility. This
is because the evanescent modes, being real functions will not contribute to the
probability current, and hence, suppress the overall mobility. We also note that the
mobility observed here in WX2 monolayers with triangular inclusions is an order
of magnitude larger than the phonon-limited mobility, and the mobility calculated
in layers with charged vacancies. In charged vacancies, Coulomb contributions
suppress the mobility [169]. Hence, short-range potentials such as the inclusions
considered here are promising candidates to realize high-mobility devices.

5.6 Conclusions
We have developed a non-asymptotic quantum scattering theory using a novel
method of sources and absorbers. The Cauchy boundary conditions that are nec-
essary in the variational formulation of scattering are reduced to simpler Dirichlet
boundary conditions by constructing a perfect absorber (stealth region) around the
scattering centers. This will also allow us to define a finite computational domain.
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Figure 5.8: Electron mobility at room temperature is plotted as a function of 2D
carrier density for the triangular inclusions in TMDC heterostructures. The material
parameters employed here are listed in Table 6.2 and nd = 1012 cm−2.

In the conventional scattering theory, the scattering properties are determined at the
asymptotic distance. This will result in the loss of evanescent mode contributions in
multiband scattering processes, and when we have absorbing scattering potentials.
Introducing an absorber will facilitate the evaluation of the scattering properties at
a finite distance, and it will preserve the distance information between the observer
and the scattering center. Once we enclose the active scattering region with the ab-
sorber, we require a carrier source that will generate plane-waves in order to initiate
the scattering event. We have derived the expression for the circular source term
introduced in the right-hand side of the Hamiltonian equation.

We have shown that even for the simplest case of scattering from a hard circle
potential, the cross-section length measured at a finite distance using our formalism,
and at the asymptotic distance obtained through the analytical formulation will have
significant differences in their numerical values. The carrier scattering time is
inversely proportional to the cross-section length. Hence, our formalism will be of
great interest in nanoscale systems, where the transport measurements are made in
proximity to the scattering centers.

We have shown that bridging our scattering theory framework with the k · p pertur-
bation theory, with inputs from ab-initio electronic structure calculations, provides a
versatile multiscale formalism. The continuum nature of our formalism will enable
the modeling of realistic devices, scaling from hundreds to thousands of atoms.
Carrier scattering rates obtained through our formalism combined with the phonon
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scattering rates obtained through DFT calculations can accurately calculate the ther-
moelectric properties of the nano-devices. Hence it will be very useful to design
and simulate nanoelectronics circuits using 2D materials.

We obtained the phonon scattering rates forMX2 (M = Mo, W; X = S, Se) monolay-
ers through deformation potential calculations. We observed that the WS2 (MoSe2)
has the highest (lowest) phonon scattering time in the family of MX2 monolayers.
This observation is consistent with other first-principles study in the literature.

As an application of our formalism, we studied the transport properties in lateral
TMDC heterostructures. Material inclusions in TMDCs acts as a short-range scat-
tering centers. We observed the emergence of novel Fano resonances for the first
time in 2D materials, when the MoS2 is encapsulated within the WS2 monolayer.
MoS2 inclusion here acts as a quantum well, and forms the quasi-bound states that
will interact with the propagating modes.

Lastly, we studied mobility as a function of carrier density in a family of TMDC
layers with triangular inclusions. Here WS2 monolayer with MoS2 inclusions is
observed to have the highest mobility by an order of magnitude larger than the
phonon-limited mobility. Hence, these lateral TMDC heterostructures should be
explored as candidates to realize high-mobility devices.
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C h a p t e r 6

BOOSTING THERMOELECTRIC EFFICIENCY IN LATERAL
TRANSITION-METAL DICHALCOGENIDE

HETEROSTRUCTURES

In this chapter, we apply the scalable first-principles informed quantum scattering
theory developed earlier to study the thermoelectric properties of lateral transition
metal dichalcogenide heterostructures . In Sec. 6.1, we provide the motivation to
study the thermoelectric performance in 2D lateral heterostructures. The methods
employed here to calculate the thermoelectric properties are detailed in Sec. 6.2.
In Sec. 6.3, we describe the main results and discuss the enhancement of the
thermoelectric performance in lateral TMDCheterostructures far beyond the pristine
TMDCs. Concluding remarks are provided in Sec. 6.4.

6.1 Introduction
Thermoelectric devices can play a pivotal role in fulfilling future demands for clean
energy [172–174]. A good thermoelectric material must have a high thermoelectric
figure-of-merit ZT , defined as

ZT =
σS2T
κe + κph

, (6.1)

whereT is the absolute temperature, σ is the electrical conductance, S is the Seebeck
coefficient, κe is the electronic thermal conductivity, and κph is the lattice phonon
thermal conductivity. In bulkmaterials, the value of ZT is limited byσ and S varying
in inverse proportion, and κe and σ varying in direct proportion (Wiedemann-Franz
law) [175]. Hence, for a long period of time thermoelectricity was believed to be an
inefficient source of energy for practical application [176]. However, the works of
Hicks andDresselhaus [177–179] illustrated that in nanostructures one could achieve
a substantial increase in the value of ZT by reducing the dimensionality of the system.
The density of electron states per unit volume increases in lower dimensions, thereby
resulting in an enhancement in ZT [180]. Since then the field of thermoelectricity
has focused on: a) increasing S and σ independently through quantum confinement
effects, and b) decreasing κph by systematically controlling phonon contributions
[181]. Additionally, other techniques such as band-gap engineering [182], carrier-
pocket engineering [183], energy filtering [184], and semimetal–semiconductor
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transition [185] have been developed to engineer the thermoelectric properties of
nanostructures.

Traditionally, semiconductor superlattices and heterostructures have been used to
construct efficient thermoelectric devices. However, in such structures, it is exper-
imentally difficult to achieve the efficiency predicted by the theory, since a large
number of parameters have to be optimized [186]. In this regard, two-dimensional
(2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have
attracted tremendous attention due to their unique physical and chemical properties
[187]. The high degree of flexibility of 2Dmaterials to tune the electrical and thermal
properties, makes them ideal candidates for thermoelectric applications. The pro-
totypical 2D material, graphene, has exhibited a power factor (PF) value as high as
34.5mWm−1K−2 at room temperature [188]. However, it has limited thermoelectric
applications due to the extremely high thermal conductivity (2000 − 4000Wm−1K−1

for freely suspended samples at room temperature [189, 190]). In comparison,
monolayer (1L) TMDCs maintain a very low thermal conductance due to signifi-
cantly lower phonon mean free paths [191, 192]. Hence, TMDCs have tremendous
potential to realize in-plane thermoelectric and Peltier cooling devices.

There have been several first-principles studies in the literature, calculating the
thermoelectric quantities in 1L and layered TMDCs [193–199]. p-typeMoS2 1L and
n-type WSe2 1L were observed to have maximum ZT values at room temperature,
and at higher temperatures, respectively. Also, bilayerMoS2 is observed to have a PF
of 8.5mWm−1K−2, which is highest amongst the materials with a non-zero bandgap
[198]. Yet the conductance and ZT values observed in TMDCs are much lower than
the corresponding quantities in traditional thermoelectric materials, such as Bi2Te3,
and phonon-glass electron-crystals [108]. There are opportunities to boost the
thermoelectric performance in TMDCs through the formation of heterostructures.

Similar crystal structure and comparable lattice constants observed in MX2 (M =
Mo, W; X = S, Se) monolayers have motivated the construction of lateral TMDC
heterostructures. Experimentally, such structures are fabricated through multi-
step chemical vapor deposition techniques [158–162], one-pot synthesis [163], and
omnidirectional epitaxy [164]. In traditional thermoelectric materials, such as
Bi2Te3, quantum confinement through the formation of heterostructures have been
demonstrated to enhance the figure-of-merit [200, 201]. We can anticipate such an
enhancement in lateral 2D TMDC heterostructures as well.

In this chapter, we study the thermoelectric performance of lateral TMDC het-
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erostructures within a multiscale quantum transport framework with inputs from
first-principles calculations. We specifically consider triangular inclusions (see
Fig. 6.1), since 2D TMDCs are typically grown as triangular flakes. We study both
n-type and p-type lateral heterostructures, for all possible combinations of semi-
conducting TMDC monolayers: MoS2, MoSe2, WS2, and WSe2. n-type WS2 with
WSe2 triangular inclusions is found to have ZT ≈ 1 at room temperature, which is
five times larger than ZT value of pristine n-type WS2 1L. The peak power factor
for the lateral TMDC heterostructures obtained here, are the highest amongst the
gapped 2D 1L reported at room temperature till date.

Figure 6.1: A schematic representation of (a) a triangular inclusion in 2D materials
is displayed. Here, M′X2 material is confined within the MX2 matrix. (b) an
in-plane thermoelectric device using lateral TMDC heterostructures is shown. 2D
monolayer is placed on an oxide substrate that can be grown on p+silicon material.



80

6.2 Methods
To determine the thermoelectric quantities in Eq. (6.4) we need to determine the
density of states g(E) and the total scattering time τ(E). The density of states g(E) is
computed fromDFT calculations. The phonon and electron scattering contributions
of τ(E) are determined independently.

DFT calculations were performed, using the Vienna Ab Initio Simulation Package
(VASP) [205, 206], to obtain the density of states for the various TMDC mono-
layers studied here. Core and valence electrons were modeled using the projector-
augmented wave (PAW) method [207, 208] and the local density approximation
[209, 210] was used to describe electron exchange and correlation. The kinetic
energy cutoff was set to 500 eV and a Gaussian smearing of 0.1 eV was used for
Brillouin-zone integrations. The Brillouin zones were sampled using an 18 × 18 × 1
Γ-centered k-point mesh. The lattice parameters for the TMDC monolayers were
fixed at the bulk experimental parameters [MoS2: [211]; MoSe2: [212]; WS2 &
WSe2: [213]]. As semilocal functionals underestimate the fundamental gaps of
semiconductors, the density of states were shifted, a posteriori, to match the quasi-
particle gaps reported in Ref. [133].

The deformation potentials obtained using the first-principles calculations [141, 142]
were employed to compute both the acoustic and optical phononmode contributions.
We have included the zeroth order acoustic and optical, and first order acoustic
mode contributions. Effect of the Fröhlich interaction is implicitly added to the
deformation potential [142]. The total τph is determined using the reciprocal sum
of these contributions as prescribed by Matthiessen’s law. Further details of these
calculations can be found in Ref. [214].

For elastic scattering processes in 2D, the kinetic definition of τe is given by
τe(E) = 1/(ndσm 〈v〉), where nd is the disorder density, 〈v〉 is the average veloc-
ity, and σm is the momentum scattering cross-section. 〈v〉 = 2v/π for a uniform
incoming velocity distribution. σm is determined using a multiscale quantum trans-
port framework [214]. Carrier scattering in lateral heterostructures occurs via both
propagating and evanescent modes. Standard scattering calculations cannot account
for these crucial contributions of decaying evanescent modes, since their probabil-
ities vanish at the asymptotic limit, where the boundary conditions are applied to
determine the scattering amplitudes. On the other hand, our methodology accurately
includes these contributions since we have circumvented the need for the asymptotic
boundary conditions by introducing absorbers around the scattering centers.
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Ec Ev a t λ α+(α−) mc
K mv

K

(eV) (eV) (Å) (eV) (eV) eV·Å2 (me) (me)

MoS2 -4.31 -5.89 3.184 1.059 0.073 -5.97(-6.43) 0.45 0.53
WS2 -5.97 -5.50 3.186 1.075 0.211 -6.14(-7.95) 0.3 0.34
MoSe2 -3.91 -5.23 3.283 0.940 0.090 -5.34(-5.71) 0.53 0.58
WSe2 -3.61 -4.85 3.297 1.190 0.230 -5.25(-6.93) 0.33 0.36

Table 6.1: The band parameters used in our calculations are listed. These parameters
were obtained from the previously reported first-principles study [133, 166].

Scattering properties are determined through a 2-band k · p Hamiltonian of the form

Hkp = H0 + at
(
η kxσ̂x + ikyσ̂y

)
− λ η

(σ̂z − 1)
2

s, (6.2)

where σ̂ denotes the Pauli matrices, a is the lattice constant, t is the effective hopping
integral, λ is the spin-orbit (SO) parameter, and H0 is given by

H0 =

[
Ec + αsk2 0

0 Ev

]
. (6.3)

Here, αs is a material parameter, and Ec and Ev are the CB minimum and the VB
maximum at the K-valley, respectively. All the material parameters employed in
this chapter are listed in Table 6.2. A detailed discussion of the quantum trans-
port framework employed here is described in Ref. [214]. The quantum transport
calculations combined with the Boltzmann transport theory determine σ, S and κe

(see Eq. (6.4)). To determine the ZT factor we also require the phonon thermal
conductivity κph (see Eq. (6.1)). Typically κph is computed through the phonon
dispersion relations. We have utilized the κph values listed in Ref. [192], that are
obtained using DFT calculations.

6.3 Results
Nature of scattering in TMDC heterostructures
In our calculations, the thermoelectric properties are evaluated using the Boltzmann
transport theory under the relaxation time approximations. Within this framework,
the kinetic definitions of the conductance, Seebeck coefficient, and the electrical
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thermal conductivity are given by

σ = e2I0,

S =
1

eT
I1
I0
, (6.4)

κe =
1
T

[
I2 −

I2
1
I0

]
,

with
In =

∫
dE v2 τ(E) g(E) (E − µF)

n
(
−
∂ f0
∂E

)
, (6.5)

where e is the elementary charge, g(E) is the density of states, v = |∇k En(k)| /~
is the carrier velocity, f0(E) = 1/(1 + e(E−µF )/kBT ) is the Fermi-Dirac distribution
function, µF is the Fermi level, and τ(E) is the total scattering time. The density
of states g(E) is extracted from the electronic band structure obtained using the
density functional theory (DFT) calculations within the local-density approxima-
tions (LDA). Figure 6.2 displays the density of states as a function of energy for
MoS2, WS2, MoSe2 and WSe2 1L. g(E) is normalized with the unit-cell area and
the corresponding layer thickness. The PF and ZT value are sensitive to the small
variations of g(E) near the band edges.

To determine τ(E), we need to consider both the intrinsic and extrinsic scattering
rates. According to the Matthiessen’s law

τ(E)−1 = τe(E)−1 + τph(E)−1, (6.6)

where τe is the extrinsic carrier scattering time arising from the material inclusions,
and τph is the total intrinsic scattering time arising from all the acoustic and optical
phonon mode contributions. The intrinsic scattering rate τph is assumed to remain
unaltered from the pristine 1L, a commonly used assumption while studying nano-
structured thermoelectric materials [204].

Figure 6.3 shows the total phonon scattering time versus energy at room tempera-
ture for pristine n-type and p-type 1L TMDCs. We have included the acoustic and
optical phonon modes corresponding to the transition K → {K,K′,Q,Q′}, via cor-
responding zeroth and first-order deformation potentials (see Methods for details).
The optical phonon modes emerge as steps in the scattering rate. In the family
of TMDC 1L, MoSe2 (WS2) has the strongest (weakest) interaction with phonons.
In general, WX2 has a greater phonon-limited electrical conductivity than MoX2.
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Figure 6.2: Density of states per unit energy per unit area obtained from DFT
calculations is plotted as a function of energy for 1L (a) MoS2, (b) WS2, (c)
MoSe2, and (d) WSe2. DFT calculations were performed within local-density
approximations (LDA), and the spin-orbit effects are neglected. Hence, all bands
are doubly degenerate.

These observations and scattering times are consistent with other first-principles
studies reported in the literature [141, 142].

To calculate the carrier scattering time τe, we have employed a multiscale quan-
tum transport framework informed by first-principles calculations described in
Ref. [214]. Material inclusions break the translation symmetry of the system. Hence,
the scattering in these structures can occur via both propagating (real wavevector)
and evanescent modes (purely imaginary wavevector). As an example, in Fig. 6.4,
we have plotted the heterointerface formed between MoS2 and WS2 1L. Electronic
structure calculations dictate that MoS2 1L (Ec = −4.31 eV) has a lower conduction
band (CB) minimum than WS2 (Ec = −3.97 eV) 1L. When an electron in the CB
with energy −4.31 eV≤E <−3.97 eV is injected from the MoS2 to WS2 1L, scatter-
ing occurs only through the evanescent modes. Similarly, for carriers in the valence
band of p-type WS2, with energy −5.50 eV≥E >−5.89 eV (corresponding to the
valence band maximum of MoS2) only evanescent modes are available for scatter-
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Figure 6.3: The total phonon scattering time versus energy for (a)K-valley electrons,
and (b) K-valley holes are plotted for TMDCs at temperature T = 300K. Scattering
times are calculated using the deformation potentials listed in Ref. [141–143].

ing. Evanescent modes are situated within the bandgap, and result in exponentially
decaying contributions to the scattered wavefunction.

Thermoelectric quantities in Eq. (6.4) are directly proportional to the total scattering
time τ(E). Figure 6.5 displays the electron scattering rate, 1/τe as a function of



85

Ec = -4.31 eV

Ec = -3.97 eV

Evanescent modes

MoS2

WS2

k ~ Imaginary 

Figure 6.4: The conduction and valance band near the K−point are plotted for MoS2
and WS2 1L. In the presence of scattering centers, below the energy −3.97 eV (for
n-type MoS2), and above the energy −5.89 eV (for p-type WS2) carrier transport
across the interface occurs only through the evanescent bands.

energy in four different n-type material combinations. We see thatWS2(MoS2) has a
higher scattering time (inverse of the scattering rate) while compared toMoS2(WS2).
A similar trend is followed by WSe2(MoSe2) and MoSe2(WSe2) 1L as well.

Power factor and ZT values in TMDC heterostructures
The main results for the peak power factor and ZT values for the n-type and p-type
TMDC lateral heterostructures are listed in Table 6.2 and Table 6.3, respectively.
In these tables, the notation A(B) represents that the material B inclusions are
confined within the matrix of the material A. The material inclusion is considered
to be an equilateral triangle, and optimized at the side length 8 nm. Throughout our
calculations the density of inclusions is consider to be nd = 1012 cm−2.

We observe that the n-type WS2(WSe2), and p-type MoSe2(WSe2) have the maxi-
mum ZT values at room temperature. On the other hand, n-typeWS2(WSe2), n-type
WS2(MoS2), and p-type MoS2(MoSe2) have larger ZT values at higher tempera-
tures. In Tables 6.2 and 6.3, for comparison, we have listed the room temperature ZT

values for pristine 1L TMDCs obtained from Refs. [192, 193]. For the n-type WS2

1L we observe up to five times larger ZT value with WSe2 inclusions as compared
to a pristine n-type WS2 1L. Similarly, for p-type MoSe2 with WSe2 inclusion, we
observe an enhancement by a factor of two in the ZT values while compared to a
pristine MoSe2 1L. In general, ZT values increase with temperature, as there is a
multiplicative factor of temperature in Eq. (6.1).

The calculated peak value of the PF for n-type WS2(WSe2) and WS2(MS2) 1L at
room temperature is 5.977mWK−2m−1 and 4.565mWK−2m−1, respectively. These
values are about twice the peak PF value observed in pristine TMDC 1L [198].
Moreover, they are of the same order of magnitude as the observed PF in the
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Figure 6.5: The electron scattering rates versus energy for a K-valley electron are
plotted for transport in (a) MoS2(WS2) & WS2(MoS2), and (b) MoSe2(WSe2) &
WSe2(MoSe2) 1L heterostructures.

traditional thermoelectric materials, such as Bi2Ti3 (5.2mWK−2m−1 [202]) and
BiSbTe (5.4mWK−2m−1 [203]) crystals.

In Table 6.2, we observe that n-type MoS2(WS2) and MoS2(MoSe2) have signif-
icantly lower thermoelectric values compared to a pristine MoS2 1L. Similarly,
p-type WSe2(WS2) and WSe2(MoSe2) have significantly lower thermoelectric val-
ues compared to a pristine WSe2 1L (see Table 6.3). These phenomena can be
explained as a direct consequence of band alignment as explained in Sec. 6.3.



89

Band alignments and the thermoelectric enhancement
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Figure 6.6: The bar chart display the band alignment in the semiconducting TMDC
1L. The conduction band minimum and valance band maximum are represented by
Ec and Ev, respectively. These numerical values are listed in Table 6.2.

In Fig. 6.6, we observe that the WS2 has a higher CB minimum at the K-valley than
MoS2. Hence,MoS2 inclusions provide additional conduction channels for electrons
entering from the n-type WS2 1L. This will increase the electron scattering time as
seen in Fig. 6.5. Whereas in the n-typeMOS2 withWS2 inclusions scattering occurs
through the evanescent modes offered by the WS2 inclusion. This will significantly
decrease the scattering time. Moreover, being real functions the evanescent modes
indirectly decrease the probability current by draining the probability of propagating
channels. Thereby, significantly reducing the conductance values.

The total scattering time τ(E) follows the reciprocal sum rule defined in Eq. (6.6).
Hence, lower of the two scattering times between τph and τe will be the dominating
contributor to the thermoelectric quantities. For transport in n-type MoS2(WS2) 1L,
τe is an order of magnitude lower than τph around the band edge. Hence, we obtain
low values of PF and ZT values as shown in Table 6.2.

In p-type heterostructures, the valence band (VB) maxima between the two layers
determine the occurance of evanescent modes. In Fig. 6.6, we see that WS2 has a
higher VB maximum than MoS2. Thus scattering in the p-type WS2(MoS2) occurs
through evanescent modes. Hence we observe that the p-type WS2 heterostructures
have lower ZT values while compared to the corresponding pristine 1L as seen in
Table 6.3. Due to additional conduction channels offered by the WS2 inclusions, an
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enhancement in the ZT and PF values are observed in the p-typeMoS2(WS2) 1L. An
analogous mechanism explains the enhancement observed in p-type MoSe2(WSe2),
which has the highest room temperature ZT value amongst the p-type heterostruc-
tures.

Figure 6.7 displays the conductance, Seebeck coefficient, PF, and electrical thermal
conductivity as a function of the reduced Fermi-level ηF = (E − Ec)/kBT for n-
type MoS2(WS2), and n-type WS2(MoS2) 1L heterostructures. Note that σ and
κe monotonically increase with ηF . Comparing Fig. 6.7(a) and (e), we observe
a significant enhancement in σ for WS2(MoS2) as reasoned earlier, whereas the
Seebeck coefficient remains of the same order for both the heterostructures. Hence
we obtain high PF and ZT values for the n-type WS2(MoS2) 1L heterostructures.
A similar trend is followed by other material combinations as well. We note that
the PF increases slightly with increase in the width of material inclusions, and we
found it to be optimized for the side length 8 nm. Unlike Schrödinger particles, the
massive Dirac particles in TMDC inclusions have a critical length below which they
will not occupy any bound states [121]. Below this critical length, heterostructures
considered here will have the thermoelectric values similar to that of pristine 1L. In
Fig. 6.8, we have displayed the ZT value as a function of the reduced Fermi-level
ηF = (E − Ec)/kBT for n-type MoS2(WS2), and WS2(MoS2) 1L heterostructures.
We again see that the ZT is observed to have a maximum value for the side length
8 nm.

6.4 Conclusions
In this chapter, we have investigated the thermoelectric properties of the semicon-
ducting transition metal dichalcogenide lateral heterostructures using a multiscale
quantum transport framework. The triangular inclusions were considered here since
TMDCs are grown experimentally as triangular flakes. We observed that the n-type
WS2 monolayer with WSe2 inclusions has the highest room-temperature ZT values,
which is about five times larger than the pristine WS2 monolayer. p-type MoSe2

with WSe2 inclusions was observed to have a room-temperature ZT value about
two times larger than the pristine MoSe2 1L. The peak PF values calculated in
these heterostructures are of the same order as the traditional high-performance
thermoelectric materials such as Bi2Ti3 and BiSbTe. These PF values obtained here
are highest amongst the gapped 2D monolayers. Hence the 2D lateral heterostruc-
tures in transition metal dichalcogenides provides exciting new avenues to construct
ultra-efficient in-plane thermoelectric devices.
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Figure 6.7: The conductance, Seebeck coefficient, power factor, and electrical
thermal conductivity are plotted as a function of the reduced Fermi-level ηF = (E −
Ec)/kBT for the n-type MoS2(WS2), and n-type WS2(MoS2) 1L heterostructures.
We have considered triangular material inclusions of radius 4, 6, and 8 nm.
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Figure 6.8: The ZT value is plotted as a function of the reduced Fermi-level
ηF = (E − Ec)/kBT for the (a) n-type MoS2(WS2), and (b) n-type WS2(MoS2) 1L
heterostructures. We have considered triangular material inclusions of radius 4, 6,
and 8 nm.
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C h a p t e r 7

SCATTERING THEORY IN THREE-DIMENSIONS USING
SOURCES AND ABSORBERS

In this chapter, we set up the framework for the quantum scattering theory in 3D,
using our source and absorber scheme. In 3D, we consider a spherical source, and
the absorber will be a spherical shell. An incoming plane wave will be of the form

eik·r = 4π
∞∑

l=0

l∑
m=−l

il Y ∗ml(kθ, kφ)Yml(θ, φ) jl(kr), (7.1)

where, Yml are the Laplace spherical harmonics, jl(kr) are the spherical Bessel
function, and (kθ, kφ) define the direction of the wavevector k. Following a similar
scheme as in Sec. 5.2, we will derive an expression for the source term that can
generate plane waves of the form given in Eq. 7.1.

In order to derive this source term, we start with the Green’s function equation for
the Schrödinger operator in the 3D circular coordinate system given by[

∇2 + k2] G(r, r′) = S(r′, φ′, θ′)
δ (r − r′) δ (φ − φ′) δ (θ − θ′)

r2 sin θ
, (7.2)

where S(r′, φ′, θ′) is the source termwhose form is yet to be determined, thewavevec-
tor k =

√
2m∗E/~2, E is the incoming energy, and m∗ is the effective mass. We

expand the Green’s function in the Fourier form given by

G(r, r′) =
∞∑

l=0

l∑
m=−l

Y ∗ml(kθ, kφ)Yml(θ
′, φ′)gl(r, r′). (7.3)

Substitute this form of the Green’s function into Eq. (7.2), multiply byYml(θ, φ), and
integrating over φ (from 0 to 2π) & θ (from 0 to π) we obtain[

1
r
∂

∂r

(
r2 ∂gl

∂r

)
+

(
k2 −

l(l + 1)
r2

)
gl

]
= S(r′, φ′, θ′)

δ (r − r′)
r′2

. (7.4)

Here, we have used the orthogonality relations∫ π

0
dθ sin θ

∫ 2π

0
dφY ∗m′l ′(θ, φ)Yml(θ, φ) = δmm′δll ′, (7.5)

and
δ (φ − φ′) δ (θ − θ′)

sin θ
=

∞∑
l=0

l∑
m=−l

Y ∗ml(θ
′, φ′)Yml(θ, φ). (7.6)
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The radial part gl(r, r′) is the Green’s function for the radial part of Helmholtz
equation, and will be of the form

gl(r, r′) = Am


jl(kr)hl(kr′), r ≤ r′

jl(kr′)hl(kr), r > r′
, (7.7)

where, jl(kr) and hl(kr) are the spherical Bessel and Hankel function of first kind,
respectively. We determine the coefficient Am by applying the jump condition at
r = r′ given by

∂gl

∂r

�����
r ′+ε

−
∂gl

∂r

�����
r ′−ε

=
S(r′, φ′, θ′)

r′2
,

AmW[ jl(kr′), hl(kr′)] =
S(r′, φ′, θ′)

r′2
, (7.8)

where, the WronskianW[ jl(kr′), hl(kr′)] = i/kr′2. Thus

Am = −ik2 S(r′, φ′, θ′). (7.9)

Substituting Eqs. (7.7) and (7.9) into Eq. (7.3), we obtain the total Green’s function
of the form

G(r, r′) = −ik2 S(r′, φ′, θ′)×

∞∑
l=0

l∑
m=−l

Y ∗ml(kθ, kφ)Yml(θ
′, φ′)


jl(kr)hl(kr′), r ≤ r′

jl(kr′)hl(kr), r > r′
,

(7.10)

Toobtain a spherical sourcewe integrateG(r, r′) over the solid angle dΩ′ = sinθ′dθ′dφ′,
where φ′ goes from 0 to 2π, and θ′ goes from 0 to π. Hence the wavefunction emerg-
ing from the spherical source is given by

ψin(ρ, ρ
′) =

∫ π

0
dθ sin θ

∫ 2π

0
dφ′G(r, r′). (7.11)

Our aim is to generate plane waves propagating in the forward direction from the
spherical source within the region r ≤ r′. Hence we choose the source term

S(r′, θ′, φ′) =
4πi
k2

∞∑
l=0

l∑
m=−l

il Y ∗ml(kθ, kφ)Yml(θ
′, φ′)

hl(kr′)
, (7.12)
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where, hl(kr′) is the spherical Hankel function. With this set up the incoming
wavefunction in the absence of external potential is given by

ψin =



eik·r , r ≤ r′;

4π
∞∑

l=0

l∑
m=−l

il Y ∗ml(kθ, kφ)Yml(θ
′, φ′)

jl(kr′)hl(kr)
hl(kr′)

, r > r′.

Hence, we obtain plane waves incident on the scattering center from a spherical
source at r = r′.

With this set up, we can obtain the total wavefunction using finite element analysis
as described in earlier chapters. The total wavefunction ψ = ψin + ψsc, where ψsc

is the scattered wavefunction. In a multiband scattering processes, ψsc will include
both propagating and evanescent mode contributions. We can extend this scattering
framework in 3D open domain to multiband processes by using the k ·p perturbation
theory, as discussed in chapter 5.

Finally, we note that the formalism developed here can be extended to study transport
properties in any combination of 3Dmaterials. This will allow us to model transport
properties of devices hosted in bulk materials as well. We have previously provided
the framework to setup a formalism in 2D open domain as well. Together, these
formalism provide a scalable first-principles based quantum transport framework
for simulating both two- and three-dimensional nanodevices.
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C h a p t e r 8

CONCLUSIONS

In this thesis, we have developed a first-principles-informed multiscale quantum
transport theory to study the transport properties of low-dimensional systems.
Green’s function sources combined with the stealth regions (absorbers) facilitates
the construction of a non-asymptotic quantum scattering theory, for confined and
open-domains in one, two, and three dimensions. This approach fully accounts for
the evanescent solutions that are crucial for determining the scattering properties
across heterointerfaces. The geometry discretization scheme employed within our
framework, accurately models the transport properties of any complex device geom-
etry. In effect, we have rewritten the traditional scattering treatment with accurate
evaluation of the transport properties in proximity to the scattering centers.

This theory is further extended to two-dimensional materials by integrating with
k ·p perturbation theory, with inputs from ab-initio electronic structure calculations.
Density functional theory calculations are used to obtain the material parameters,
thermal contributions, defect and interfacial potential distributions. Hence, we
combine the best of three different numerical methods to obtain a versatilemultiscale
formalism.

We implement this theory to show a novel Fano q-reversal phenomenon, and a
current rectification process in semiconductor quantum waveguides. The current
rectification device is expected to find significant applications in quantum transport.

We further analyzed the thermoelectric performance of semiconductor quantum
waveguides, and monolayer lateral transition metal dichalcogenide (TMDC) het-
erostructures. We obtain a significant enhancement in the thermoelectric perfor-
mance of both the systems, compared to the earlier reported values in their pristine
forms. The peak power factor values for the lateral TMDC heterostructures cal-
culated here, are the highest amongst the gapped 2D monolayers reported at room
temperature. Hence, our analysis opens new avenues to construct ultra-efficient
in-plane thermoelectric devices.

This quantum transport framework developed can also be employed for realizing
novel electron optics platforms in molecular junctions, graphene and Van der Waals
heterostructures. Our analysis can also be readily extended to study transport in
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spintronic, valleytronic, and twistronic devices in layered materials. The fundamen-
tal advances in the theory of quantum transport accomplished here will guide us to
develop cutting-edge nanodevices and quantum information platforms.
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A p p e n d i x A

FUNCTION TRANSFORMATIONS AND INTERPOLATION
POLYNOMIALS IN FINITE ELEMENT ANALYSIS

This Appendix is organized as follows. Importance of interpolation polynomials in
Finite element analysis is briefly discussed in Sec. A.1. A familiarity with function
transformation and group theory is required to follow the arguments presented here.
A primer on the active and passive transformations is provided in Sec. A.2. A
brief introduction to group theory and a transformation by a symmetry operator
is discussed in Sec. A.3. In Sec. A.4, the concept of function transformations is
introduced with two illustrations. In Sec. A.5, as an example, we formally introduce
the scheme based on group representation theory to derive the linear and Hermite
interpolation polynomials in one dimension. We further extend this procedure in
Sec. A.6 to develop C(2)-continuous quintic shape functions in the element that can
represent an arbitrary function with C(1)-continuity for the normal derivative across
two triangular elements with a common edge. Transformation of these polynomials
to an arbitrary triangular element is discussed in Sec. A.7, so that it is readily
applicable in FEA. In Sec. A.8, we summarize the properties of the different choices
of interpolation polynomials available on a triangular element. Concluding remarks
are presented in Sec. A.9.

A.1 Introduction
Finite element analysis (FEA) has been shown to be a powerful method for the
numerical solution of partial differential equations, and is known to be a versatile
tool in applications to a wide variety of physical problems including structural
mechanics, electromagnetic field modeling, and quantum mechanics [41, 44, 45].
The solution delivered by FEA depends critically on two essential steps. One
is the discretization of the physical domain into 1D line elements, 2D rectangles
and triangles, or 3D cubes and tetrahedra, that are faithful to the original physical
domain. The other is the use of appropriate interpolation polynomials that will
represent the solution on each of the discretized regions, or elements, with some
level of accuracy over these finite elements. By a choice of using selectively finer
and finer mesh refinements for the discretization where the solutions might vary
considerably (h-refinement), and using higher order polynomials (p-refinement) for
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the interpolation of the solution within each element, it is possible to obtain desired
accuracy for the solution. In addition, FEA may be thought of as the discretization
of the action integral to directly evaluate the integral. Hence it is very well founded
in variational principles which justifies its wide applicability for physical problems.

It is usual to employ linear or quadratic Lagrange interpolation polynomials on the
finite elements, so that we have interelement continuity for the solutions, though
they may display a “pixelated” form. This is known as C(0)-continuity. We can
employ C(1)- or C(2)-continuous polynomials for a better representation of the phys-
ical solutions; these correspond to the first or second derivative continuity within
and across elements, respectively. We have demonstrated the advantages of such
polynomials which are called Hermite interpolation polynomials [41]. In general,
Hermite interpolation polynomials can be devised to ensure C(n)-continuity across
elements. Here C(n)-continuity means that the function and its derivatives upto nth

order are continuous within each element. The requirements on such polynomials
depend on the type of derivative continuity needed in an element of a particular
geometry, on the number of nodes per element, and the order of the polynomial
derivatives desired at each node.

Figure A.1: The two dimensional Pascal triangle.

In the following, we show that group theory provides a beautiful approach for deter-
mining the interpolation polynomials on equilateral triangles using their symmetry.
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We set the stage by perusing the Pascal triangle of Fig. A.1, which lists the terms in
the complete polynomials of a given degree.

For complete 2D quintic polynomials the Pascal triangle shows that 21 terms are
present in the polynomials. We will obtain 18 of the parameters by having the
nodal values of the function, its first, and second derivatives at the three vertices;
this corresponds to the six values (degrees-of-freedom, or DoF) at each vertex
node. The remaining three DoF are usually obtained by the normal derivative in the
outward direction, with a node at each midpoint of the sides. Polynomials obtained
in this manner are not in fashion [215], mainly because the number of DoF at the
vertices of the triangle being different as compared with the DoF at the mid-side
nodes. Since much of FEA programming involves book-keeping issues anyway,
this change in the DoFs from vertices to mid-side nodes should be considered more
an irritation than a limitation. However, there are other reasons to avoid using
these polynomials. For instance, a side shared by two adjacent triangles will not
have continuity of the normal derivative since the polynomials associated with the
opposite vertex will influence the value of the function being represented. Then
adjacent triangles sharing a side, but have opposite nodes placed asymmetrically
about the shared side will have different normal derivatives. In addition, such
a 21 DoF Hermite triangle will not deliver tangential continuity across adjacent
elements since the mid-side nodes seek normal derivative continuity. Alternately,
if the tangential derivative is specified at the mid-side nodes, the continuity of the
normal derivatives across elements will degrade. A similar limitation arises for the
case where all the three nodal degrees of freedom, corresponding to the function
value and its two first derivatives, are assigned to a single node at the centroid of the
triangle.

A more practical way for finite element programming would be to remove the
condition on normal derivatives at the mid-points, thereby making the triangle to
be one with 18 DoF. Now, the reduction of the number of parameters from 21 to
18 is achieved imposing a condition that the normal derivative of the across the
edges of the triangle varies as a cubic rather than a quartic polynomial [216, 217].
In other words, the cubic continuity of the normal derivative of the interpolated
function across the edges of the triangle is implicit and is enabled without the use
of a node on each edge. Meanwhile, tangential continuity across the three sides
of the triangle depends on the function value, the first tangential derivative, and
the second tangential derivatives, all of which are defined at the two nodes at the
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ends of the sides. Such methods of reducing the number of coefficients through
combining terms in the 21-term polynomials are not readily generalized to other
possible requirements. Thus, the choice of the type of data specified at each node,
the number of nodes, and the continuity condition on the polynomial order of the
nth derivative will require special schemes to determine the Hermite interpolation
polynomials explicitly.

In the following, we present an alternate way in which group representation theory
can be applied to derive the interpolation polynomials using the symmetry of the
element. This method was first proposed by Kassebaum, Boucher and Ram-Mohan
(KBR) [73]. Here we provide a detailed account for the derivation of polyno-
mials presented in Ref. [73]. We generalize the formalism to derive new sets of
polynomials in three dimensions.

Sets of quintic polynomials on a triangular element obtained through the three
methods mentioned above are compared below:

• Polynomials with 21 degrees-of-freedom (DoF) with explicit normal deriva-
tives at the mid-side nodes are computationally efficient except that we need
to match the normal derivatives at the common side for 2 adjacent triangles.
This is not automatic since the normal derivatives across the shared edge from
two adjacent triangles will not agree if these are arbitrary scalene triangles.
The alternative choice of a node at the centroid of the triangle with 3 DoF
also has non-unique interelement derivative continuity across the sides.

• Polynomials with 18 DoF as presented first by Bell [216], require that the
normal derivatives vary as a cubic function across the sides of the triangle.
We are thus reducing the number of DoF by three.

• In the KBR method, we obtain 19 conditions on the coefficients of the poly-
nomials using the group representation theory. Additional conditions are
obtained for the polynomial by demanding inter-element continuity and Tay-
lor expansion compatibility. These conditions ensure a unique normal across
the common side of 2 adjacent triangles, the behavior at and across the shared
edge being determined only by the nodal DoFs at the two vertices. The
method based on group representation theory can be generalized to obtain
shape functions of any order in three and higher dimensions.
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A.2 Coordinate transformation
A coordinate transformation is an operation which relates one set of basis vectors to
another set of basis vectors. In the current context we will assume it to be a linear
transformation.

Given a set of basis vectors {ei ≡ (e1, e2, e3)}, every vector V can be written as a
linear combination of these basis vectors

V = v1e1 + v2e2 + v3e3. (A.1)

Let {e′i = (e′1, e
′
2, e

′
3)} represent the new basis vectors. We can express them in

terms of our original set as

e′1 = a11e1 + a12e2 + a13e3,

e′2 = a21e1 + a22e2 + a23e3,

e′3 = a31e1 + a32e2 + a33e3. (A.2)

And conversely,
e1 = b11e

′
1 + b12e

′
2 + b13e

′
3,

e2 = b21e
′
1 + b22e

′
2 + b23e

′
3,

e3 = b31e
′
1 + b32e

′
2 + b33e

′
3. (A.3)

Using Einstein’s summation convention, we can write Eqs. (A.2, A.3) as

e′i = ai je j, (A.4)

e j = b j ke
′
k, (A.5)

where i, j, k = 1, 2, 3. Let e′i and e j represent two sets of orthonormal bases so that

ei · e j =δi j ; and e′i · e
′
j = δi j . (A.6)

Substituting Eq. (A.5) in Eq. (A.4) we have,

e′i = ai j b j ke
′
k . (A.7)

Taking a dot product with e′n on both sides we have

e′j · e
′
n = ai j b j k

(
e′k · e

′
n
)
,

δ jn = ai j b j k δkn,

δ jn = ai j b jn. (A.8)
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If we consider ai j and bi j to be the {i, j}-th elements of the two matrices A and B,
respectively, we have the relation

A · B = I, (A.9)

where I is the identity matrix. Therefore

A = B−1. (A.10)

Rotation matrices in 2D

θ

X

Y

α

β

X'

Y'

v

θ

Figure A.2: The passive transformation of a vector is shown. The vector is held
fixed while the coordinate system is rotated.

Let us consider a two-dimensional coordinate transformation shown in the Fig. A.2.
It is straightforward to determine the matrix elements ai j in this two-dimensional
rotation. Since the length of the vector is the same in either of the coordinates (x, y)
and (x′, y′), |V | = |r | = |r′|, we have

x = |r | cosα; y = |r | sinα;

x′ = |r | cos β; y′ = |r | sin β.

Now α = β + θ, so that

x′ = |r | cos(α − θ) = |r |(cosα cos θ + sinα sin θ),

= x cos θ + y sin θ. (A.11)

and, similarly

y′ = |r | sin(α − θ) = |r |(− cosα sin θ + sinα cos θ),

= −x sin θ + y cos θ. (A.12)
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We see that the transformation matrix in 2D is given by[
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

]
·

[
x

y

]
. (A.13)

The generalization to 3D is performed using Euler angles defined for rotations about
coordinate axes [218, 219]. Two transformation operations in 3D will in general
depend on the order in which they are applied; i.e. the reversal of the order of two
rotation operations can lead to a different orientation for the resulting axes depending
on the order. The transformations are said to be non-commutative.

Note that the transformation matrix

B =

[
cos θ sin θ
− sin θ cos θ

]
=

[
(e′1 · e1) (e

′
1 · e2)

(e′2 · e1) (e
′
2 · e2)

]
, (A.14)

has matrix elements that are dot-products of the unit vectors; these entries in the
matrix are seen to be the direction cosines of the angles between the coordinate
vectors.

Passive Transformation
The transformations discussed in the previous section are called passive transforma-
tions. We let the vectorV be fixed in coordinate space while the basis set transforms
from {ei} to {e′j}. Any vector can be represented in terms of components along
either of the basis vectors as

V = viei = v′je
′
j . (A.15)

(In matrix form, basis vectors {ei} are represented by a row array and vector
components {vi} by a column vector.) Substituting Eq. (A.5) into Eq. (A.15) we
relate the vector components in the transformed basis to the components in the
earlier basis as

v′je
′
j = vi(bike

′
k),

v′je
′
j = (vibik)e

′
k . (A.16)

Taking a dot product with e′n on both sides we get

v′je
′
j · e

′
n = vibik(e

′
k · e

′
n),

v′jδ jn = (vibik)δkn,

v′n = vibin, (A.17)
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which represents the rule for the transformation of the vector components under a
passive transformation. Again, in Fig. A.2, notice that the vectorV is fixed in space,
but its components are different in the two coordinate systems designated by XY

and X′Y ′.

Active Transformation
In an active transformation, we let the coordinate basis be fixed but transform
the physical vectors.a After an active transformation we go to a new vector with
transformed components with the basis vectors held fixed, in contrast with a passive
transformationwherewe held the vector fixed. FigureA.3 shows the fixed coordinate

V'

V

θ

β

X

Y

α

|V'|=|V|

Figure A.3: The active transformation of a vector is shown.

system in which a vector V is rotated by an angle θ in the anti-clockwise sense to a
new vector V ′. The components of V =

{
vx, vy

}
differ from those of V ′ =

{
v′x, v

′
y

}
while the magnitude of the two vectors are the same. With β = α + θ and |V ′| =

|V | = v, we have

v′x = v cos β = v cos(α + θ),

= (v cosα) cos θ − (v sinα) sin θ;

= vx cos θ − vy sin θ. (A.18)

In a similar manner,

v′y = v sin β = v sin(α + θ),

= (v cosα) sin θ + (v sinα) cos θ.

= vx cos θ + vy sin θ. (A.19)
aImagine that we are physically “taking hold” of the vector and rotating it in an active transfor-

mation.
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Expressing the above equations in matrix notation we have[
v′x

v′y

]
=

[
cos θ − sin θ
sin θ cos θ

]
·

[
vx

vy

]
.

In general,
v′i = ai jv j . (A.20)

for i, j = 1, 2, 3. Here, ai j is the (i j)th element of the matrixA. The transformation
matrixA is the transpose (inverse) of the orthogonal matrixB appearing in passive
transformations.

Thus we can go from the vector V to V ′ by doing the transformation of the
components, as in above Eq. (A.20) and by keeping the basis vectors fixed. Notice
that the transformation law for the active transformation, Eq. (A.20) is the inverse
of the passive transformation Eq. (A.17).

In a passive transformation, we always stay in the transforming coordinate (body
frame), whereas in the active transformation we work with a fixed (lab frame)
coordinate system. Hence, the transformingmatrices for the two pictures are inverses
of each other.

A.3 Coordinate transformation using symmetry operators
We now present a very brief introduction to group representation theory essentially
to define the concepts and the notations. The reader is directed to standard books
on group representation theory for a more complete treatment [132, 220, 221].
A non-empty set G, with associated operators (a, b, c . . .), is said to be a “group,”
when the following four properties are satisfied:

1. Closure: The product of any two elements of the group is itself an ele-
ment of the group.
2. Associativity: The operation is associative; that is, (a · b) · c = a · (b · c) for all
a, b, c in G.
3. Identity: There is an element ε in G such that a · ε = ε · a = a for all a in G.
4. Inverse: For each element a in G, there is an element a−1 in G such that
a · a−1 = a−1 · a = ε .

For any given system, the set of all possible operations which leaves the system
invariant forms a group known as its ‘symmetry group.’ Let R be an element of a
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symmetry group G. Once we know the way in which the corresponding operator
R transforms the given geometry, we can deduce the rule with which the group
element will transform the basis vectors (passive perspective) or the coordinates of
a vector (active perspective) in space.

For example, the symmetry group of an equilateral triangle, C3v consists of all
geometrical transformations that take the triangle to itself. The elements of the
group C3v are (see Fig. A.7.

1. the identity ε ,

2. a rotation by ±2π/3 about the axis perpendicular to the plane of the triangle,
denoted by C3,C−1

3 ,

3. reflection about the planes bisecting the three vertex angles, denoted by
σ1, σ2, σ3.

Now consider the element C3 in the symmetry group. Physically, C3 is an anticlock-
wise rotation by an angle 2π/3 with respect to the z-axis. Therefore

C3 ·


x

y

z


=


cos

(
2π
3

)
sin

(
2π
3

)
0

− sin
(

2π
3

)
cos

(
2π
3

)
0

0 0 1


·


x

y

z


, (A.21)

=


−1

2

√
3

2 0

−
√

3
2 −1

2 0

0 0 1


·


x

y

z


. (A.22)

In general, we may write

R ·


x

y

z

 = D(R) ·


x

y

z

 , (A.23)

where R is an element in G and D(R) is the corresponding 3 × 3 matrix. For
simplicity, the above expression can be written as

R · r = Ri j x j . (A.24)

Here, Ri j is the (i j)th element of the matrixD(R).
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A.4 Function transformations
Let us consider a function f (xi) in coordinate space operated on by a group element
R. In an active sense, the transformation takes the coordinates x j to x′i given
by x′i = ai j x j . Suppose that the function f (xi) is acted on by the operator PR

corresponding to the element R thereby yielding a new function f ′(x′j). Here
we write f ′ (not f ), since the functional form will change due to the coordinate
transformation. For example, f (x) = x2 + x under the reflection operation x → −x

will go to a new function f ′(x) = x2 − x. Notice that due to the transformation the
functional form has changed. Just to be explicit on which transformation is being
used, many texts will represent the function f ′(x) by PR f (x). Here PR f should be
considered as a new designation for the transformed function.

Since the function value remains the same after the transformation. We have the
relation

PR f (x′i ) = f (x j),

PR f (aik xk) = f (x j). (A.25)

In vector notation we write
PR f (r′) = f (r). (A.26)

Here, r′ = R · r, which is an active transformation.

We can imagine a passive transformation as being on the rotated (transformed)
coordinate system and tracing back to the original coordinate system. In the passive
sense, we can write the above Eq.(A.26) as

PR f (r) = f (R−1 · r). (A.27)

In Eq.(A.27) we have exchanged the labels for primed and unprimed coordinate
systems. This is because we want to work always with the unprimed coordinate
system.

Examples : One of the famous plane curves is the clothoid whose curvature is
proportional to its arc length. The general form of the clothoid [222] is given in
parametric form by

clothoid[n, a](t) = a
(∫ t

0
du sin

(
un+1

n + 1

)
,

∫ t

0
du cos

(
un+1

n + 1

))
. (A.28)
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Figure A.4: The clothoid[1, 1] (continuous curve) and clothoid ′[1, 1] (dotted
curve) obtained through the function transformation of a rotation of π/2 in the
anti-clockwise sense about the z-axis are shown.

For n = 2 this is known as Euler’s spiral or Cornu’s spiral. Under anticlockwise
rotation by π/2 about the z-axis in the passive sense we obtain the new function

clothoid ′[n, a](t) = a
(
−

∫ t

0
du cos

(
un+1

n + 1

)
,

∫ t

0
du sin

(
un+1

n + 1

))
. (A.29)

As one can anticipate, the functional forms of the two clothoids are different. In
Fig. A.4, we have shown the functions clothoid[1, 1] (continuous curve) and
clothoid ′[1, 1] (dotted curve).

As an example of rotation of 2 dimensional surfaces, consider a special hyperbolic
paraboloid known as themonkey’s saddle [222]. On a normal hyperbolic paraboloid
a man can easily sit on the saddle as there are indentations for his legs, but not a
monkey as there is no space to accommodate its tail. However, a monkey’s saddle

Figure A.5: The function monkeysaddlerot(x, y) is obtained through an anticlock-
wise passive rotation by π/4 of the function monkeysaddle(x, y).
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would be right for it as shown in the Fig. A.5. Its functional form is given by

monkeysaddle(x, y) = x3 − 3xy2. (A.30)

Under the anticlockwise rotation by an angle of π/4 about the z-axis, we get the new
function

monkeysaddlerot(x, y) = monkeysaddle(R−1 · r),

= monkeysaddle
(
(x − y)
√

2
,
(x + y)
√

2

)
,

=
(x − y)3

2
√

2
−

3(x − y)(x + y)2

2
√

2
. (A.31)

These two examples illustrate the idea of function transformation.

As an example of function transformation with a group operator we consider the
symmetry group of an equilateral triangle C3v; the group of rotation operators
leaving the triangle invariant is

G =
{
E,C3,C3

−1} . (A.32)

Clearly, G is a subgroup of C3v. We would like to know the action of the elements
of the group G on a function F(x, y) = xy2.

Let PE, PC3, PC−1
3

be the operators which transforms a function under the rule given
by the elements of the groupG. Transformation of F(x, y) under the identity element
E is given by

PE F(x, y) = F(E−1(x, y)),

= F(x, y) = xy2. (A.33)

To determine the transformation of F(x, y) under the operation C3, we write

PC3 F(x, y) = F
(
C3
−1(x, y)

)
.

We now need the transformation of the coordinate vector under C−1
3 . We have

C3
−1


x

y

z


=


−1

2 −
√

3
2 0

√
3

2 −1
2 0

0 0 1


·


x

y

z


=


− x

2 −
√

3y
2

√
3x
2 −

y
2

z


. (A.34)
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Therefore

PC3 F(x, y) = F
(
C3
−1(x, y)

)
,

= F

(
−

1
2

x −

√
3

2
y,

√
3

2
x −

1
2
y

)
,

=

(
−

x
2
−

√
3y
2

) (√
3x
2
−

y

2

)2

. (A.35)

In a similar manner, operation of PC3
−1 on F(x, y) is given as

PC3
−1 F(x, y) = F (C3(x, y)) =

(
−

x
2
+

√
3y
2

) (
−

√
3x
2
−

y

2

)2

. (A.36)

A.5 Interpolation polynomials and symmetry in 1D
We now show how group representation theory can be used to determine the poly-
nomials used for finite element interpolation in one dimension.

Linear interpolation polynomials
Let us first derive the linear Lagrange interpolation polynomials in one dimension
through symmetry considerations. The simplest element in one dimension is a line
with nodes located at each end at x1 = 1 and x2 = −1. Our “standard element”
ranges over [−1, 1].

It is evident that the standard element has a bilateral symmetry about the midpoint,
denoted by S2. The corresponding group elements are, the identity operation de-
noted by ε , and the mirror operation about the origin which is labeled by m. We
construct the character table of S2 in Table A.1 using standard procedures discussed
in textbooks on group representation theory [132, 220, 223]. Here S2 has two
irreducible representations given by Ag, for the symmetric, and Au for the anti-
symmetric representation, respectively. (The subscript g is for the German word
“gerade” which means “even” and u is for “ungerade” which means “odd.”)

An arbitrary scalar, s is invariant under any group operation. Under the mirror
operation m, we have m · s = s . Thus s belongs to the representation Ag. The
function value at a point, a numerical value, must be a scalar, so that it belongs
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ε m Linear Quadratic
Ag 1 1 z x2, y2, z2, xy
Au 1 −1 x, y xz, yx
Γ 2 0 {x, y}

Table A.1: Character table for the bilateral symmetry group, S2. We have included
the character for the equivalence representation Γ. The entries are the characters of
different classes of the group. The last two columns contain the linear and quadratic
functions corresponding to the representation in the first column.

to the representation Ag. Similarly, a vector V in one-dimension transforms as
m ·V = −V under the mirror operation. Hence it, belongs to the representation Au.

Consider the linear interpolation polynomials with as-yet unknown coefficients in
the interval [-1,1]. The polynomials must have the general form

N1(x) = a1 + b1x,

N2(x) = a2 + b2x. (A.37)

An arbitrary function ψ(x) can be represented by ψ(x)=ψ1N1(x) + ψ2N2(x), where
ψ1, ψ2 are the values of the function at the node. With nodes located at ±1 the nodal
conditions on these shape functions at the two nodes are

N1(−1) = 1; N1(1) = 0, (A.38)

N2(−1) = 0; N2(1) = 1. (A.39)

Denoting the node at x = −1 by x1 and at x = +1 by x2 (see Fig.A.6) the nodes are

Figure A.6: The standard 1D line element. Nodes are located at x = 1 and x = −1
which are denoted as x1 and x2 respectively.
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seen to transform as

ε ·

[
x1

x2

]
=

[
x1

x2

]
=

[
1 0
0 1

]
·

[
x1

x2

]
,

m ·

[
x1

x2

]
=

[
x2

x1

]
=

[
0 1
1 0

]
·

[
x1

x2

]
. (A.40)

These 2 × 2 coefficient matrices form a representation for the bilateral group which
may be called the nodal equivalence representation, Γ. Hence, we have the repre-
sentation

Γ(ε) =

[
1 0
0 1

]
, Γ(m) =

[
0 1
1 0

]
. (A.41)

The traces of these matrices, viz. 2 and 0, are listed in the third row of Table A.1.
Clearly, this is a reducible representation as our group has only one dimensional
representations. From Table A.1, we see that the equivalence representation can be
decomposed as the sum of the 2 irreducible representations

Γ = Ag + Au. (A.42)

Nodal coordinates, {x1, x2} transform as per the representation Γ. Hence the linear
functions in this space will have components belonging to both the representations
Ag and Au, and these can be determined by operating with the corresponding pro-
jection operators.

Let G be a group of order h and Γi be an li-dimensional representation of G. For
a group element R in G, its representation is given by a li × li square matrix Γi(R).
Then the projection operator [220], corresponding to the matrix element Γi

mn for
1 ≤ m, n ≤ li is given by

P

(
Γ

i
mn

)
=

li
h

∑
R

Γ
i
mn (R) · PR, (A.43)

where PR is the operator corresponding to the element R [220]. From now onward,
we denote any group element as R and the corresponding projection operators as
PR. The projection operator P

(
Γi

mn
)
projects out a function F on to a part f i

mn

which belongs to the mth row and nth column of the representation Γi. Hence

P

(
Γ

i
mn

)
F = f i

mn. (A.44)



114

For the group S2, we have 2 one-dimensional irreducible representations. From
Table A.1 the projection operator of the representation Ag is given by

P(Ag) =
1
2
[1.Pε + 1.Pm] ,

=
1
2
[Pε + Pm] . (A.45)

Let us apply this procedure to find N2(x). We see that

P(Ag)N2(x) =
1
2
[Pε + Pm] [a2 + b2x],

=
1
2
[(a2 + b2x) + (a2 − b2x)] ,

= a2. (A.46)

P(Au)N2(x) =
1
2
[1.Pε − 1.Pm] [a2 + b2x],

=
1
2
[(a2 + b2x) − (a2 − b2x)] ,

= b2x. (A.47)

Hence,
N2(x) = (P(Ag)N2(x) + P(Au)N2(x)). (A.48)

From Eq. (A.38)

N2(1) = (P(Ag)N2(1) + P(Au)N2(1)) = 1. (A.49)

P(Ag) is symmetric and P(Au) is antisymmetric under the mirror operation m.
Since, the node x2 can be obtained through the mirror operation on node x1, we have

P(Au)N2(−1) = m · P(Au)N2(1),

= −P(Au)N2(1),

= −b2. (A.50)

Therefore, we have the relation

P(Au)N2(−1) = −P(Au)N2(1). (A.51)

From Eq. (A.48) and (A.50),

N2(−1) = m ·
[
P(Ag)N2(1) + P(Au)N2(1)

]
,

=
[
P(Ag)N2(1) − P(Au)N2(1)

]
= 0. (A.52)
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We solve Eqs. (A.49) and (A.52) to obtain self-consistency conditions as

P(Ag)N2(1) =
1
2
,

P(Au)N2(1) =
1
2
. (A.53)

Using the above Eq.(A.53) we have

a2 =
1
2
, b2 =

1
2
. (A.54)

Hence our shape function is given by

N2(x) =
1
2
(1 + x) . (A.55)

To get N1(x), we can use the existence of mirror symmetry between x1 and x2.

N1(x) = m · N2(x) =
1
2
(1 − x) . (A.56)

This example illustrates the method for the simplest of shape functions. This proce-
dure can be easily generalized to higher dimensions as discussed in the subsequent
sections.

1D Hermite interpolation polynomials and group theory
TheHermite interpolation polynomials on a straight side element give us the freedom
to impose derivative continuity at the nodes. As an example, let us determine the
one dimensional cubic interpolation polynomials for an element having two nodes,
with two degrees-of-freedom at each node. Let, N (0)i (x), N (1)i (x) be the polynomials
associated with node i, having nodal conditions

N (0)i (x j) = δi j ;
d
dx

N (0)i (x j) = 0; (A.57)

N (1)i (x j) = 0;
d
dx

N (1)i (x j) = δi j, (A.58)

where i, j = 1, 2. The superscripts 0 and 1 represent the order of the derivative that
is normalized to unity at one of the nodes, i. As before, we derive the interpolation
polynomials defined over the range, [−1, 1]. We can represent the interpolated
function ψiel(x), whose values and derivatives at nodes are known in the form

ψiel(x) =
2∑

i=1

[
N (0)i (x)ψi + N (1)i (x)ψ

′
i

]
. (A.59)



116

The subscript iel provides the index for the element of interest. We have to assign
values of two parametersψi andψ′i at each node, hence we have 2 degrees of freedom
at each node.

It is known that the symmetry of a function is specified by the symmetry of the bound-
ary conditions that are imposed [224]. The boundary conditions must be satisfied by
each of the components of the function that belong to the separate irreducible rep-
resentations of the symmetry group of the boundary conditions. For the Lagrange
interpolation polynomials in the above, decomposition into different irreducible
representations at the boundary can be seen explicitly in the Eqs. (A.46, A.47).

A general polynomial over the range [−1, 1] for the case of two nodes with 2 DoF
at each node is a cubic function. (We have 2 DoF × 2 nodes=4 as the number of
conditions needed to specify the polynomial. Sowe need to determine 4 coefficients,
hence we choose a cubic polynomial which has 4 terms.) As before we denote the
node at x = −1 as x1 and the node at x = 1 as x2.

Let us derive the shape function, N (0)2 (x) using group theory considerations. Let

N (0)2 (x) = a1 + b1x + c1x2 + d1x3. (A.60)

Here, a1, b1, c1 and d1 are as yet undetermined coefficients. Nodal conditions on
this polynomial are

N (0)2 (1) = 1, N (0)2 (−1) = 0; (A.61)

dN (0)2
dx
(x = 1) =

dN (0)2
dx
(x = −1) = 0. (A.62)

We noted in the earlier section that the shape functions in this standard element will
be in the equivalence representation Γ, which decomposes as Ag + Au. We can write
the Ag and Au part of the shape function as

P(Ag)N
(0)
2 (x) =

1
2

[
PεN (0)2 (x) + PmN (0)2 (x)

]
=

1
2
(a1 + c1x2), (A.63)

P(Au)N
(0)
2 (x) =

1
2

[
PεN (0)2 (x) − PmN (0)2 (x)

]
=

1
2
(b1x + d1x3). (A.64)

Nodal conditions for the value of the shape function, N (0)2 (x), given in Eq. (A.61)
are rewritten as

P(Ag)N
(0)
2 (1) + P(Au)N

(0)
2 (1) = 1, (A.65)

P(Ag)N
(0)
2 (−1) + P(Au)N

(0)
2 (−1) = 0, (A.66)
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Since, m · x2 = x1, we can simplify Eq. (A.66) as

P(Ag)N
(0)
2 (−1) + P(Au)N

(0)
2 (−1) = m ·

[
P(Ag)N

(0)
2 (1) + P(Au)N

(0)
2 (1)

]
,

= P(Ag)N
(0)
2 (1) − P(Au)N

(0)
2 (1) = 0, (A.67)

Here we have used the fact that P(Ag) is even and P(Au) is odd under mirror
operation. We solve the Eq. (A.65) and (A.67) to get

P(Ag)N
(0)
2 (1) =

1
2
(a1 + c1) =

1
2
, (A.68)

P(Au)N
(0)
2 (1) =

1
2
(b1 + d1) =

1
2
. (A.69)

We wish to obtain the representation for the derivative of the shape functions. For
that purpose, we introduce the concept of direct product between two representa-
tions. Let, Γ1 and Γ2 are m- and n-dimensional representations of the same group
G.Then the direct product [220] of these two representations is defined as

Γ = Γ1 ⊗ Γ2, (A.70)

where Γ is a m × n-dimensional representation of the group G.

Under the mirror operation the derivative operator transforms as

m ·
d
dx
= −

d
dx
. (A.71)

Hence derivative operator is in the representation Au. Therefore, the derivatives of
the shape functions belonging to the representation Ag + Au transform as

Au ⊗ (Ag + Au) = Au + Ag . (A.72)

The derivative nodal conditions in Eq. (A.62) decompose at the node x1 as

P(Ag)
dN (0)2

dx
(1) + P(Au)

dN (0)2
dx
(1) = 0, (A.73)

and at x2 as

P(Ag)
dN (0)2

dx
(−1) + P(Au)

dN (0)2
dx
(−1) = 0,

m ·

[
P(Ag)

dN (0)2
dx
(1) + P(Au)

dN (0)2
dx
(1)

]
= 0,

P(Ag)
dN (0)2

dx
(1) − P(Au)

dN (0)2
dx
(1) = 0. (A.74)
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Solving the Eqs. (A.73, A.74) we have

P(Ag)
dN (0)2

dx
(1) = b1 + 3d1 = 0, (A.75)

P(Au)
dN (0)2

dx
(1) = 2c1 = 0. (A.76)

The self-consistency conditions in Eqs. (A.68), (A.69), (A.75) and (A.76) can be
cast into the matrix form 

1 1 0 0
0 2 0 0
0 0 1 1
0 0 1 3


·


a1

c1

b1

d1


=


1
0
1
0


. (A.77)

Here the coefficients are rearranged in such a way that 4 × 4 matrix will take the
block-diagonal form. We have two blocks each of dimension 2, which are consistent
with the representations given in the Eq. (A.42,A.72). We invert the above matrix
equation to determine the coefficient values,

a1

c1

b1

d1


=



1 −1
2 0 0

0 1
2 0 0

0 0 3
2 −1

2

0 0 −1
2

1
2


·



1

0

1

0


, (A.78)

and obtain the shape function

N (0)2 (x) =
1
4

(
2 + 3x − x3

)
. (A.79)

Before we proceed to obtain other shape functions, we introduce a new classification
for the shape function or the interpolation polynomials depending on the nodal
conditions.
The functions whose values are set to 1 at a node and 0 at all the other nodes are
called scalar shape functions. Hence, N (0)1 (x) and N (0)2 (x) are scalar shape functions
as their values are set to 1 at the node x = −1 and x = 1, respectively.
The functions whose first derivative value is set to 1 at a node and 0 at all the other
nodes are called vector shape functions. Hence, N (1)1 (x) and N (1)2 (x) are vector shape
functions as their x derivative values are set to 1 at the node x = −1 and x = 1,
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respectively. This classification will be useful when we discuss the transformation
properties of these shape functions from one node to an another, as well as from the
standard element to an arbitrary element.

Next, we derive N (1)2 (x) using a similar procedure. Let

N (1)2 (x) = a2 + b2x + c2x2 + d2x3. (A.80)

The nodal conditions on this polynomial are

N (1)2 (1) = N (1)2 (−1) = 0.

dN (1)2
dx
(x = 1) = 1,

dN (1)2
dx
(x = −1) = 0.

Nodal conditions on the value of N (1)2 are invariant under the mirror operation.
Hence N (1)2 has components in irreducible representations of the group S2. Hence,
at x = 1 we write

P(Ag)
dN (1)2

dx
(1) + P(Au)

dN (1)2
dx
(1) = 1, (A.81)

and at x = −1 we have

P(Ag)
dN (1)2

dx
(−1) + P(Au)

dN (1)2
dx
(−1) = 0,

m ·

[
P(Ag)

dN (1)2
dx
(1) + P(Au)

dN (1)2
dx
(1)

]
= 0,

P(Ag)
dN (1)2

dx
(1) − P(Au)

dN (1)2
dx
(1) = 0. (A.82)

Solving the Eqs.(A.81) and (A.82) we have

P(Ag)
dN (1)2

dx
(1) = b2 + 3d2 =

1
2
,

P(Au)
dN (1)2

dx
(1) = 2c2 =

1
2
. (A.83)

Similarly, for the shape function values of N (1)2 (x) we can deduce the conditions as

P(Ag)
dN (1)2

dx
(1) = a2 + c2 = 0,

P(Au)
dN (1)2

dx
(1) = b2 + d2 = 0. (A.84)
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We can cast the above four equations in matrix form as
0 4 0 0
1 1 0 0
0 0 2 6
0 0 1 1


·


a2

c2

b2

d2


=


1
0
1
0


, (A.85)

and invert the matrix to determine the coefficients a2, b2, c2 and d2. We then have

N (1)2 (x) =
1
4

(
−1 − x + x2 + x3

)
. (A.86)

Shape functions associated with node x2 are now obtained through appropriate
symmetry group transformations. We deduce N (0)1 (x) through the mirror operation
on N (0)2 (x) to get

m · N (0)2 (x) = N (0)2 (ξ(x)) ,

= N (0)2 (−x),

m · N (0)2 (x) = N (0)1 (x),

=
1
4

(
2 − 3x + x3

)
. (A.87)

where ξ(x) = m−1 · x = −x. Under the group transformation from the node x2

to x1, the shape functions N (1)1 and N (1)2 transform from one to the other as the
component of a vector in one-dimensional space. Hence we call N (1)2 and N (1)1 as
vector shape functions.b While transforming to N (1)1 from N (1)2 we will have the
Jacobian associated with the transformation as a coefficient. We write

N (1)1 (x) = N (1)2 (ξ(x))
dx
dξ
=

1
4
(−1 + x + x2 − x3). (A.88)

Let us verify that the above expression satisfies the required boundary conditions.
We see that

N (1)1 (1) = N (1)2 (−1)
dx
dξ
= 0,

N (1)1 (1) = N (1)2 (1)
dx
dξ
= 0. (A.89)

Using the chain rule for differentiation we have

dN (1)1 (x)

dx
=

dN (1)2 (ξ(x))

dξ
dξ
dx

dx
dξ
,

=
dN (1)2 (ξ(x))

dξ
. (A.90)

bWe will explain this concept in more detail in Sec. A.6.
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Hence

dN (1)1
dx
(1) =

dN (1)2
dξ
(ξ(1)) =

dN (1)2
dξ
(−1) = 0.

dN (1)1
dx
(−1) =

dN (1)2
dξ
(ξ(−1)) =

dN (1)2
dξ
(1) = 1. (A.91)

First, we note that for vector shape functions transformation from one node to an
another will involve the Jacobian factor

dx
dξ

as the coefficient. Second, notice that
for scalar and vector shape functions have different transformation properties. A list
of all 4 DoF cubic polynomials on a 1D line element that support C(1)-continuity
across the element are listed in Table B.1.2. It is straightforward to derive the 6 DoF
C(2)-continuous quintic Hermite polynomials in 1D in a similar manner. These are
displayed in Table B.1.3. One of the highlights of our formalism is that once we
determine all the polynomials at a node, we can easily generate the polynomials
associated with the other nodes in the element by group transformations.

A.6 Shape functions for a triangular element
Now consider the interpolation polynomials in two dimensions specifically on a
triangular element with nodes located at the vertices. The data at its vertices provide
a total of 18 DoF with which to describe an arbitrary function over the triangle, with
6 DoF values at each of the three vertices. From Fig. A.1, we see that the next higher
complete polynomial with more than 18 terms is the quintic polynomial which has
21 parameters.

Here the nodal conditions will have two types of symmetries. For example, let a
function f (x) be a constant f1 at the vertex 1 and zero at vertices 2 and 3 of an equi-
lateral triangle. A mirror operation which takes vertex 2 to 3 leave f (x) invariant.
Hence, f (x) has S2 symmetry. Let ∂x f is set to 0 at all the three vertices. Any
operation in the symmetry group C3v leave the ∂x f value invariant. Hence, ∂x f (x)

is invariant under the operators of the group C3v.

Let the desired shape function be written as an arbitrary complete fifth order poly-
nomial

N (m,n)i (x, y) =
21∑
j=1

c(i)j xayb, (i = 1, 2, 3), such that a + b ≤ 5, (A.92)
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ε 2C3 3m Linear Quadratic
A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 - -
E 2 −1 0 {x, y}

{
x2 − y2, xy

}
, {xz, yz}

Γeq 3 0 1 {x, y, z}

Table A.2: Character table for the symmetry group of an equilateral triangle. We
have included the character for the reducible representation Γeq, which is explained
in the section A.6. The last two columns contains the linear and quadratic basis
functions of the corresponding representation in the first column.

where c(i)j are real coefficients to be determined.

The superscripts on Ni denote the derivative order necessary for the shape function
to be equal to unity at its associated node and they have the values

{(m, n) = (0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0, 2)} . (A.93)

The indices m and n are associated with the order of the x and y derivative of Ni

which is set to 1 at the associated node.

For example, N (0,0)1 is the polynomial whose value is set 1 at the node r1 and 0
at all other nodes (see Fig. A.7). Similarly, N (1,0)1 and N (0,1)1 are the polynomial
whose x and y derivative is set to 1 at the node r1 and zero at all other nodes,
respectively. Similarly N (2,0)1 , N (1,1)1 and N (0,2)1 are the polynomial corresponding
to second derivative ∂xx , ∂xy and ∂yy respectively. Since we require, values of the
function, its two first derivatives and three second derivatives to be defined at each
node, we have 6 conditions × 3 nodes=18 Hermite interpolation polynomials on the
equilateral triangle.

Scalar shape functions N (0,0i are normalized to unity at a specified vertex, i, and zero
at the other two vertices. They have bilateral symmetry in the function value at the
nodes. Since, all of its derivatives are set to zero at all 3 vertices, derivatives of
scalar shape functions will have the symmetry of an equilateral triangle.

Let us derive the expression for N (0,0)1 which is the shape function associated with
the node at r1. The polynomial expansion is projected into the irreducible repre-
sentations of the bilateral group S2 and the group of the equilateral triangle C3v.
Character table for S2 and for C3v are given in Table A.1 and A.2 respectively. The
triangle can be constructed from one of its halves using the operations of S2, so the
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m1

m2

m3

e1

e2

r1= (1 ,0 )

r
2

r
3

Figure A.7: The equilateral triangular element and the mirror operations of the
group C3v.

nodal conditions can be applied to just two nodes that belong to one of the halves.
Similarly, the nodal conditions that are symmetric with respect toC3v can be applied
at just one vertex. The conditions on other two nodes are imposed implicitly through
group theoretical operations.

As noted before, irreducible representations of S2 are Ag and Au. The nodal con-
ditions on the symmetry components are provided using in the projection operator
in Eq. (A.43) as Note that we are putting these conditions manually in such a way
that N (0,0)1 is normalized to unity at r1 and zero at r2 or r3, as per our original nodal
conditions.

P(Ag)N
(0,0)
1 (r1) = 1; P(Au)N

(0,0)
1 (r1) = 0, (A.94)

P(Ag)N
(0,0)
1 (r2) = 0; P(Au)N

(0,0)
1 (r2) = 0. (A.95)

From Fig. A.7 we note that

P(Ag)N
(0,0)
1 (x, y) =

1
2

[
PεN (0,0)1 (x, y) + PmN (0,0)1 (x, y)

]
,

=
1
2
[N (0,0)1 (x, y) + N (0,0)1 (x,−y)], (A.96)

and

P(Au)N
(0,0)
1 (x, y) =

1
2

[
PεN (0,0)1 (x, y) − PmN (0,0)1 (x, y)

]
,

=
1
2
[N (0,0)1 (x, y) − N (0,0)1 (x,−y)]. (A.97)

We use the notation

N (0,0)1 =

21∑
n=1

cnpn(x, y), (A.98)
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where pn(x, y) = xayb, for all possible a, b such that a + b ≤ 5. So Eq. (A.96) and
Eq. (A.97) become

P(Ag)N
(0,0)
1 (x, y) = c21x5 + c19x4 + c18x3y2 + c16x3 + c14x2y2 + c12x2

+c11xy4 + c9xy2 + c7x + c5y
4 + c3y

2 + c1,
(A.99)

P(Au)N
(0,0)
1 (x, y) = c20x4y + c17x3y + c15x2y3 + c13x2y + c10xy3

+c8xy + c6y
5 + c4y

3 + c2y.
(A.100)

Now we can use Eqs. (A.94, A.95) to get 4 equations to determine the coefficients
{ci}.

The rest of the nodal conditions equate the derivatives of the shape function N (0,0)i

to zero at all the three nodes, which have the symmetry of the equilateral triangle.
Therefore, these nodal conditions decompose as per the irreducible representations
of the symmetry group C3v. To get these conditions we need the concept of “Equiv-
alence Representation” which is introduced in the next section.

Equivalence Representation
We noted earlier that the group representation theory has reduced the problem of
finding shape functions associated with each node in an element to that of finding
shape functions that belong only to those nodes that cannot be transformed from
other nodes under operations of the symmetry group of the element. Nodes that
can be transformed into each other under an element of the symmetry group we
call them to be equivalent. The notion is motivated from group theory applied to
covalent molecules [132, 221]. Two bonds in a molecule are said to be equivalent
if they transform to one another under an operation in the symmetry group of the
molecule. For example, the shape of the ammonia molecule (NH3) is a trigonal
pyramid. Three hydrogen (H) atoms are at the vertices of the triangle and the
nitrogen (N) atom is at the top vertex of the pyramid. Hence it has C3v symmetry.
All three N-H bonds can be brought into each other under the symmetry operations
of the group C3v. Therefore, we say that all the three N-H bonds are equivalent.

In case of the equilateral triangle element (see Fig. A.7), node at r2 and r3 can be
brought into the node at r1 by rotation and reflection operations of the symmetry
group C3v respectively. Hence all these three nodes are equivalent. Therefore, once
we determine the shape function N (0,0)1 , we can determine N (0,0)2 and N (0,0)3 by simply
applying the symmetry operations on N (0,0)1 . The shape functions associated with the
derivative DoFs at r1 are treated in a similar manner once we account for the vector
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nature of
{
∂x, ∂y

}
and the tensor nature of the second derivatives

{
∂xx, ∂xy, ∂yy

}
under a coordinate transformation.

Nodal equivalence representation

The transformation that takes one equivalent node into the other generates a represen-
tation for the symmetry group that we call as the nodal equivalence representation
[73]. The matrix components, Deq

i j of the nodal equivalence representation Γeq(R)

is given by

R · xi =

3∑
j=1

Deq
i j x j . (A.101)

Let us obtain the nodal equivalence representation for the equilateral triangle el-
ement. From Fig. A.7, we see that under the mirror operation m1, the node at
r1 remain invariant. Whereas, the node at r2 and r3 transform into one another.
Therefore

m1 ·


x1

x2

x3

 =

x1

x3

x2

 =

1 0 0
0 0 1
0 1 0

 ·

x1

x2

x3

 , (A.102)

and the nodal equivalence representation of m1 is given by

Γ
eq(m1) ≡


1 0 0
0 0 1
0 1 0

 . (A.103)

We can use a similar procedure to obtain the representation Γeq for rest of the
operators in the group C3v. Notice that this representation will have only one’s
and zero’s as its components. As in molecular symmetry and molecular bonds we
say that the trace or character of the nodal equivalence representation of a group
operator R is equal to the number of nodes which remain invariant under R.

Γeq is a 3-dimensional representation of the group C3v. For the group C3v, we
have two one-dimensional representations and one two-dimensional representation
as seen in Table A.2. Hence, the nodal equivalent representation is reducible. We
can decompose Γeq in terms of the irreducible representations as

Γ
eq = A1 + E . (A.104)

The nodal equivalence representation determines the projection operator compo-
nents to which we need to apply the consistency conditions. From Eq. (A.104), we



126

P(A1)
[
∂x N (0,0)1

]
r2
= 0; P(A1)

[
∂2

xx N (0,0)1

]
r2
= 0;

P(E11)
[
∂x N (0,0)1

]
r2
= 0; P(E11)

[
∂2

xx N (0,0)1

]
r2
=; 0

P(E22)
[
∂x N (0,0)1

]
r2
= 0; P(E22)

[
∂2

xx N (0,0)1

]
r2
= 0;

P(A1)
[
∂yN (0,0)1

]
r2
= 0; P(A1)

[
∂2
yyN (0,0)1

]
r2
= 0;

P(E11)
[
∂yN (0,0)1

]
r2
= 0; P(E11)

[
∂2
yyN (0,0)1

]
r2
= 0,

P(E22)
[
∂yN (0,0)1

]
r2
= 0; P(E22)

[
∂2
yyN (0,0)1

]
r2
= 0,

P(A1)
[
∂2

xyN (0,0)1

]
r2
= 0,

P(E22)
[
∂2

xyN (0,0)1

]
r2
= 0; P(E11)

[
∂2

xyN (0,0)1

]
r2
= 0.

Table A.3: Self-consistent nodal conditions for first and second derivatives of the
polynomial N (0,0)1 .

see that only A1 and E contribute to the representation. Hence, we need to apply
the self-consistency conditions only for the projection operators of A1 and E .

We know that the nodal conditions on the first and second derivatives of N (0,0)1
have C3v symmetry. Hence we need to apply the self-consistency conditions for
derivatives at any one of the nodes. We set each projected component of derivatives
of N (0,0)1 to zero at r2. Thus, we get 15 remaining nodal conditions, 6 corresponding
to the first and 9 to the second derivatives as shown in Table A.3. The components
of P(A2) for the first and second derivatives vanish as A2 does not appear the
Eq. (A.104).

The natural basis e1, e2 are chosen to represent the two dimensional E irreducible
representation of C3v, which comprises of the column vector along x- and y- axis
respectively. We know that the character of a representation χi(R) for an element
R, is equal to the sum of the diagonal elements of the matrix representation Γ(i)(R).
It is well known that for an arbitrary function, the sum of the diagonal projection
operators c of a representation projects out the part belonging to that representation.

cSee p. 42 in Ref. [220].
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Hence it is sufficient to apply the self-consistency conditions for diagonal projection
operators P(E11),P(E22). Off-diagonal projection operators P(E12),P(E21) will
not contribute any additional conditions.

Tensor equivalence representation

We stated earlier that the shape functions can be classified according to their nodal
conditions. Shape functions whose value is set to unity at a node are called scalar
shape functions. In the current case, N (0,0)i for i = 1, 2, 3 are scalar shape functions.
Similarly, N (1,0)i , N (0,1)i are called as vector shape functions as one of their first
derivatives is set to 1 at the ith node. The shape functions with one of the second
derivatives is set to 1 at a node are called rank-2 tensor shape functions. Here,{

N (2,0)i , N (1,1)i , N (0,2)i

}
for i = 1, 2, 3 are rank-2 shape functions. Transformation

rules from one node to another are different for the scalar, vector, and rank-2 tensor
shape functions. We wish to obtain the representation for the group C3v with scalar,
vector and rank-2 shape functions as its basis.

The scalar shape functions transform under a coordinate transformation individ-
ually as a scalar. Since scalars belong to the representation A1, the equivalence
representation for scalar shape functions is given by

A1 ⊗ Γ
eq = A1 ⊗ (A1 + E) ,

= A1 + E . (A.105)

Note that the dimension of the representation is 3, same as the number of scalar
shape functions in our set. The irreducible representation A1 provides the scalar
nature of the shape functions under transformation and the equivalent representation
Γeq includes the contribution from all the three nodes. Hence we need to take their
direct product, which incorporates both the scalar nature of the shape functions and
the nodal equivalence.

Vector shape functions transform pairwise. We can treat
{
N (1,0)i , N (0,1)i

}
as a vector

in a 2-dimensional vector space and deduce the appropriate transformation prop-
erties. Since {x, y} form a basis for the representation E of the group C3v (see
Table A.2), and the pair {x, y} transforms as a vector, vector shape functions are in
the representation

E ⊗ Γeq = A1 + A2 + 2E, (A.106)
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a 6 dimensional representation, since we have 2 nodes × 3 vertices = 6 vector shape
functions. Similarly, rank-2 tensor shape functions are in the representation

(E ⊗ E)ord ⊗ Γ
eq = 2A1 + A2 + 3E, (A.107)

where, we define (E ⊗ E)ord to be a 3 dimensional representation of C3v formed
by the basis

{
x2, xy, y2}. (The direct product, E ⊗ E is a 4-dimensional reducible

representation. Since, we need a 3-dimensional representation (as there are only 3
rank-2 shape functions at each node) we work with the representation (E ⊗ E)ord .)

We obtain another condition on the polynomial N (0,0)1 by taking the mirror symmetry
of the nodal conditions with respect to the e1-axis. The irreducible representation E

has four projection operators corresponding to the four matrix element components,
E11, E12, E21 and E22. From Eq. (A.43) we see that,

P(E11) =

[
1
3

(
2Pε − Pc3 − Pc2

3
+ 2Pm1 − Pm2 − Pm3

)]
.

Under the mirror operation m1, P(E11) remain invariant. Hence

m1 · P(E11) = m1.

[
1
3

(
2Pε − Pc3 − Pc2

3
+ 2Pm1 − Pm2 − Pm3

)]
,

=
1
3

[
2Pε − Pc3 − Pc2

3
+ 2Pm1 − Pm2 − Pm3

]
, (A.108)

implies that P(E11) is even. Similarly, the projection operator P(E12) is even, and
the projection operators P(E21), P(E22) are odd with respect to the group operation
m1 (reflection through the e1-axis).

Since boundary conditions for N (0,0)1 are symmetric with respect to the mirror oper-
ation m1, N (0,0)1 has to be a even function. Hence, it only comprise of components
in A1 and E11. From Eq. (A.106), N (1,0)1 contains components in A1 and E11, and
N (0,1)1 contains components in A2 and E22. Similarly from Eq. (A.107), N (2,0)1 has
components in A1 and E11, N (1,1)1 has components in A2 and E22, and N (0,2)1 has
components in A1 and E11.

We have 18 nodal conditions from Eqs. (A.94, A.95) and from Table A.3 to de-
termine the coefficients of terms in the polynomial N (0,0)1 . By applying these 18
self-consistency conditions for the projected components, we can express all the 21
coefficients in terms of the polynomial N (0,0)1 in terms of 3 as yet unknown coef-
ficients. These 3 coefficients are taken arbitrarily to be c14, c15 and c18. For this
choice of coefficients the projected component for the element E22 is

P(E22)N
(0,0)
1 (x, y) = −

1
12

c15(1 + 2x)2y(1 − 2x + x2 − 3y2). (A.109)
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Figure A.8: Two adjacent triangles with nodes at {1, 2, 3} and{2, 3, 4} share a
common side {23}. The polynomials associated with the node at 1 and4 may have
different values along the side {23}. In order to remove this inconsistency, we
impose a condition that the polynomials associated with the node 1 and 4 and their
corresponding normal derivatives are zero along the side {23}.

Since P(E22) is odd with respect to the mirror operation m1 and N (0,0)1 is an even
function, the projected component P(E22)N

(0,0)
1 should vanish. Hence, c15 must be

set to zero. This is the 19th condition for the polynomial.

Inter-element continuity
Each side in the interior of the discretized physical region is shared by two triangular
elements. We will face inconsistency if the opposite nodes to the shared side from
the two adjacent triangles influence the value of the shape functions along this side
(see Fig. A.8). One way to remove this inconsistency is by requiring that the value of
the shape functions associated with a node is zero along its opposite side. Since we
desire C(1)-continuity across an element, we impose that even the normal derivative
of the shape functions associated with a node is zero on the opposite side. This is
the 20th condition. It so happens that for N (0,0)1 (x, y), with 19 conditions imposed
through group theory are sufficient to make its value vanish at the opposite side.
From Fig. A.7 we see that for the vertex r1, normal at the opposite side is e1. Hence,

∂x N (0,0)1 (−
1
2
, y) = −

1
16

c14(3 − 4y2)2 = 0. (A.110)

This implies that the coefficient, c14=0. With this condition, in Fig. A.8 we see that
along {23} only the DoFs at 2 and 3 affect the inter-element properties.

We have fixed 20 of the 21 undermined coefficients by the above mentioned condi-
tions. As the shape function along the edge depends only on the vertices at the ends
of the edge, we have built in the tangential derivative continuity along each edge.
We deduce the last constraint by noting that the shape function must be compatible
with the Taylor expansion of the normal derivative along an edge containing the
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vertex, as discussed in the following section.

Taylor expansion compatibility
Let us suppose that the function which we express in terms of the shape functions
is f (x, y). A Taylor series expansion of the function away from a node {x1, y1} and
along one of the two edges is

f (x, y) = f (x1, y1) +

[
∂ f
∂x

]
(x1,y1)

(x − x1) +

[
∂ f
∂y

]
(x1,y1)

(y − y1)

+

[
∂2 f
∂x2

]
(x1,y1)

1
2
(x − x1)

2 +

[
∂2 f
∂y2

]
(x1,y1)

1
2
(y − y1)

2

+

[
∂ f
∂x

y

]
(x1,y1)

(x − x1)(y − y1) + . . . .

(A.111)

But according to the finite element Hermite interpolation scheme, we should be able
to express the same function in the basis of interpolation polynomials given as

f (x, y) = f (x1, y1)N
(0,0)
1 +

[
∂ f
∂x

]
(x1,y1)

N (1,0)1 +

[
∂ f
∂y

]
(x1,y1)

N (0,1)1 + . . . . (A.112)

Let us take the normal derivative of the function f (x, y). Using Eq. (A.111) we
obtain

∂n f (x, y) =
[
∂ f
∂x

]
(x1,y1)

n1 +

[
∂ f
∂y

]
(x1,y1)

n2 +

[
∂2 f
∂x2

]
(x1,y1)

(x − x1)n1

+

[
∂2 f
∂y2

]
(x1,y1)

(y − y1)n2 +

[
∂ f
∂x

y

]
(x1,y1)

(x − x1)n2

+

[
∂ f
∂x

y

]
(x1,y1)

(y − y1)n1 + . . . .

(A.113)

wheren = n1e1+n2e2 is the normal to an edge containing the vertex 1. Alternatively,
using Eq. (A.112) we obtain

∂n f (x, y) = f (x1, y1)∂nN (0,0)1 +

[
∂ f
∂x

]
(x1,y1)

∂nN (1,0)1 +

[
∂ f
∂y

]
(x1,y1)

∂nN (0,1)1 + . . . .

(A.114)
Since function value at the node f (x1, y1) does not appear in the above equation,
by comparing with Eq. (A.112) we find the desired additional constraint on that the
normal derivative of N (0,0)1 vanishes along the edge

∂nN (0,0)1 (Σ) = 0, (A.115)
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where Σ is the set of points on the side connected to the vertex 1. From the Fig. A.7
we note that the normal vector for the edge containing vertices 1 and 2 is

n = cos
(π
6

)
e1 + sin

(π
6

)
e2,

=
1
2
e1 +

√
3

2
e2.

(A.116)

Eq. (A.115) now takes the form

1
2

(
∂x +
√

3∂y
)

N (0,0)1

(
x,

1
√

3
(1 − x)

)
=

27
81

(
c18 −

40
27

)
(1 − x)2(1 + 2x)2

= 0. (A.117)

This implies, c18 = 40/27. In Fig. A.8 we see that the polynomials associated with
the node 1 are made quartic along the sides {12} and {13}.
With all 21 conditions applied to the complete fifth order polynomial in two-
–dimensions, N (0,0)1 is fully specified to be

N (0,0)1 =
1
27

(
9 + 30x + 10x2 − 30x3 + 8x5 − 10y2 − 30xy2 + 40x3y2

)
. (A.118)

The scalar shape function at node r2 can be obtained by an anti-clockwise rotation
by an angle 2π/3 on N (0,0)1 .

N (0,0)2 = C3 · N
(0,0)
1 (x, y),

= N (0,0)1

(
C−1

3 (x, y)
)
,

= N (0,0)1

(
1
2
(−x +

√
3y),

1
2
(−
√

3x − y)

)
. (A.119)

On substitution into Eq. (A.118) we have

N (0,0)2 =
1
54
(x − 1)(1 + 2x)2(11 − x(2 + 3x) − 15y2). (A.120)

Similarly, we obtain N (0,0)3 through an appropriate group operation in C3v. As
yet we have determined the shape functions whose values are normalized at a
particular node. They are classified as scalar shape functions. To determine the
shape functions whose derivatives are normalized at a node we need to take care of
their tensor nature under a coordinate transformation. For the 18 DoF polynomials
on an equilateral triangular element we have rank-0 (scalar), rank-1 (vector) and
rank-2 tensor shape functions.We would like to obtain rank-1 and rank-2 tensor
shape functions associated with the node r2 and r3 (see Fig. A.7) by transforming
the shape functions associated with the node r1, which we have already obtained
through group theory.



132

Interpolation of a constant function A constant function, ψ(x, y) = ψ can be repre-
sented using Hermite interpolation polynomials as

ψ =

4∑
i=1

ψiN
(0,0)
i (x, y). (A.121)

Derivatives of ψ are zero throughout. Hence, vector and rank-1 shape functions
will not contribute in the above interpolation. The function value at the ith node,
ψi = ψ. Therefore, we require a condition that the sum of the scalar interpolation
polynomials add up to unity. This condition is true in any dimension. For example,
the sum of 1D linear interpolation polynomials on the standard line element (see
Sec. A.5) is given by

N1(x) + N2(x) =
1 + x

2
+

1 − x
2
= 1. (A.122)

For the set of 18 DoF polynomials on a triangular element, we know that the scalar
shape functions associated with node r2 and r3 are obtained through anti-clockwise
and clockwise rotation by an angle 2π/3 on N (0,0)1 , respectively. Therefore

N (0,0)1 (r) + N (0,0)2 (r) + N (0,0)3 (r) = N (0,0)1 (r) + N (0,0)1

(
C−1

3 · r
)
+ N (0,0)1 (C3 · r),

= 1. (A.123)

If we use the above relation instead of the condition through the Taylor expansion
(see Eq. (A.117)), we obtain the same expression for the shape function, N (0,0)1 (x, y)

as before.

Creating Equivalent Shape functions
We know that

r2 = C3 · r1, (A.124)

where, C3 give rise to an anticlockwise rotation by an angle 2π/3. The transforma-
tion rule for the scalar shape function is given by

N (0,0)2 (r2) = N (0,0)1

(
C−1

3 r1

)
, (A.125)

as explained in Sec. A.4. Whereas under group transformation the shape functions
N (1,0)1 and N (0,1)1 transform like x and y components of a vector in x − y plane,
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Figure A.9: A flowchart representing the steps for deriving the interpolation poly-
nomial

respectively. The active transformation rule for coordinates of a vector V under C3

rotation is given by [
v′x

v′y

]
=

[
a11 a12

a21 a22

]
·

[
vx

vy

]
, (A.126)

where ai j are the matrix components of the group operation C3. The transformation
rule for the vector shape functions associated with vertex 2 is given by[

N (1,0)2 (r)

N (0,1)2 (r)

]
=


a11 a12

a21 a22

 ·

N (1,0)1

(
C−1

3 r
)

N (0,1)1

(
C−1

3 r
) . (A.127)

In component form we have

N (1,0)2 (x, y) = a11N (1,0)1 (b11x + b12y, b21x + b22y) (A.128)

+a12N (0,1)2 (b11x + b12y, b21x + b22y);

N (0,1)2 (x, y) = a21N (1,0)1 (b11x + b12y, b21x + b22y) (A.129)

+a22N (0,1)2 (b11x + b12y, b21x + b22y), (A.130)

where bi j are the components of the rotation matrix, C−1
3 .
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The rank-2 shape functions are composed of 3 shape functions,{
N (2,0)i ,N (1,1)i ,N (0,2)i

}
, for i = 1, 2, 3. A general rank-2 tensor T1 in 2-dimensional space

has 3 parameters. T1 is represented by a 2 × 2 square matrix as

T1 =

[
p1 p3

p3 p2

]
, (A.131)

where, p1, p2 and p3 are real numbers. Under a group transformation the general
rank-2 tensor transforms as

T ′ = A · T ·A−1. (A.132)

SinceC−1
3 is the inverse of rotationC3, we have aik bk j = δi j . Hence, transformation

rule for rank-2 tensor shape functions associated with vertex 2 is given by[
N (2,0)2 (r) N (1,1)2 (r)

N (1,1)2 (r) N (0,2)2 (r)

]
=


a11 a12

a21 a22

 ·
N (2,0)1

(
C−1

3 r
)

N (1,1)1

(
C−1

3 r
)

N (1,1)1

(
C−1

3 r
)

N (0,2)1

(
C−1

3 r
) ·


b11 b12

b21 b22

 . (A.133)

In a similar manner, we can derive the transformation rules for the shape functions
associated with the vertex 3.

Vector shape functions
The shape functions whose first derives are set to unity at a vertex are called vector
shape functions. The labeling is based on the fact that

{
N (1,0)1 ,N (0,1)1

}
transforms like

a vector under a symmetry operation of the group C3v. As an exercise, let us apply
the above mentioned procedures to derive the polynomial N (0,1)1 (x, y).

At vertex 1, the partial derivative of N (0,1)1 with respect to y is set to unity and its
function value and the other first and all the three second derivatives are set to zero.
Therefore, ∂yN (0,1)1 will have bilateral symmetry. Hence

P(Ag)
∂N (0,1)1
∂y
(r1) = 1; P(Au)

∂N (0,1)1
∂y
(r1) = 0,

P(Ag)
∂N (0,1)1
∂y
(r2) = 0; P(Au)

∂N (0,1)1
∂y
(r2) = 0.

Furthermore, N (0,0)1 , ∂x N (0,0)1 , ∂xx N (0,0)1 , ∂xyN (0,0)1 and ∂yyN (0,0)1 are zero at all the
three nodes. Hence they have C3v symmetry. We know that, nodal equivalence
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P(A1)N
(0,1)
1 (r2) = 0, P(A1)∂x N (0,1)1 (r2) = 0;

P(E11)N
(0,1)
1 (r2) = 0, P(E11)∂x N (0,1)1 (r2) = 0;

P(E22)N
(0,1)
1 (r2) = 0, P(E22)∂x N (0,1)1 (r2) = 0;

P(A1)∂
2
xx N (0,1)1 (r2) = 0; P(A1)∂

2
yyN (0,1)1 (r2) = 0;

P(E11)∂
2
xx N (0,1)1 (r2) = 0; P(E11)∂

2
yyN (0,1)1 (r2) = 0,

P(E22)∂
2
xx N (0,1)1 (r2) = 0; P(E22)∂

2
yyN (0,1)1 (r2) = 0,

P(A1)∂
2
xyN (0,1)1 (r2) = 0; P(E11)∂

2
xyN (0,1)1 (r2) = 0.

P(E22)∂
2
xyN (0,1)1 (r2) = 0;

Table A.4: Self-consistent nodal conditions for the polynomial N (0,1)1 through C3v
symmetry.

representation is Γeq = A1 + E . Hence we obtain 3 nodes × 5 DoF =15 self-
consistency conditions as listed in Table A.4. We solve for these self-consistency
conditions to obtain the polynomial in terms of 3 undetermined coefficients.

N (0,1)1 (x, y) =
1

108
(2x + 1) [27c18(2x + 1)y3

+27(x − 1)y2(c15(2x + 1) + 2c14) + 3(x − 1)3(−2c14(x + 2)

−3c15(2x + 1)) + 54c14y
4

+(2x + 1)y
(
4(3 − 4(x − 1)x) − 9c18(x − 1)2

)
]. (A.134)

From Eq. (A.106) we see that N (1,0)1 will have components in A1 and E11, and N (0,1)1
will have components in A2 and E22. Therefore the component of N (0,1)1 in A1 and
E11 should vanish.

P(A1)N
(0,1)
1 = −

1
36
(4c14 + 3c15)(2x + 1)

(
(x − 1)2 − 3y2

) (
x2 + y2 − 1

)
,

= 0. (A.135)

P(E11)N
(0,1)
1 =

1
72
(2c14 − 3c15)(2x + 1)

(
(x − 1)2 − 3y2

) (
(x − 1)x − y2

)
,

= 0. (A.136)
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Solving these two simultaneous equations we see that, c14 = c15 = 0. So we are left
with just one undetermined coefficient.

To have the inter-element continuity as explained in Sec. A.6, the polynomial and
its normal derivative along {23} has to be zero along the side opposite to the vertex
1 (see Fig. A.8). This is indeed true.

To obtain another condition on the polynomial we impose the condition that the
normal derivative along the sides containing the vertex 1 is a cubic function. We
see that

1
2

[
∂x +
√

3∂y
]

N (0,1)1

(
x,

1
√

3
(1 − x)

)
=

4c18x4

3
√

3
−

4c18x3

3
√

3
−

c18x2
√

3

+
2c18x

3
√

3
+

c18

3
√

3
+

8x4

27
√

3
(A.137)

−
32x3

27
√

3
+

4x2

9
√

3
+

40x

27
√

3
+

25
54
√

3
.

After grouping terms we set the coefficients of quartic terms to zero, leading to

c18
4

3
√

3
+

8
27
√

3
= 0,

(A.138)

Hence,

c18 = −
2
9
. (A.139)

Hence the required interpolation polynomial is given by

N (0,1)1 (x, y) =
1
54
(2x + 1)2y

(
(6 − 7x)x − 3y2 + 7

)
. (A.140)

In a similar manner, we get the functional form for the polynomial N (1,0)1 as

N (1,0)1 (x, y) = −
1
54
(x − 1)(2x + 1)2

(
x(3x + 2) + 15y2 − 11

)
. (A.141)

To get N (0,1)2 and N (0,1)2 we need to consider the vectorial nature of the transformation.
From Eq. (A.127) we have

N (0,1)2 (x, y)

N (1,0)2 (x, y)

 =

−1

2 −
√

3
2

√
3

2 −1
2

 ·

N (1,0)1

(√
3y
2 −

x
2,−

√
3x
2 −

y
2

)
N (0,1)1

(√
3y
2 −

x
2,−

√
3x
2 −

y
2

) . (A.142)
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Substituting appropriate functions we get

N (0,1)2 (x, y) =
(2x +1)

108

(
−x +

√
3y +1

)2 (
11 −6x2 −

√
3(3−2x)y −5x

)
, (A.143)

N (1,0)2 (x, y) =
1

108

(
−x +

√
3y + 1

)2 (
4
√

3x3 + 2x2
(
5
√

3 − 4y
)

+x
(
−8y

(√
3y − 3

)
− 3
√

3
)

+y
(
6
(√

3 − 2y
)
y + 23

)
− 11
√

3
)
.

(A.144)

From Fig. A.8, the polynomials associated with the node 1 and their normal deriva-
tives are set to zero along the side {23}. But the second normal derivatives of such
polynomials associated with the node 1and 4 may have different values along the
side {23}. Hence, we say that the 18 DoF polynomials are C(1)-continuous across
the element. All 18 quintic Hermite interpolation polynomials in the standard equi-
lateral triangular element that support C(1)-continuous quartic polynomials across
shared sides of elements are listed in Table B.2.3.

Shape functions on a right triangle
In a typical finite element calculation the integration of the Lagrange density is
carried out by transforming from the general triangular element, defined in the
“global” coordinate system, into a standard element. This “local” finite element can
be an equilateral triangle as in Fig. A.7, or a right triangle (see Fig. A.12). This
is dictated by the availability of Gauss quadrature points and weights on the local
element. So it is useful to map the shape functions accordingly from the local to the
global element.

To begin with, we would like to show that the geometrical transformation from the
coordinates of a right triangle to an arbitrary triangle is a linear transformation.
The standard right triangle with vertices at P1 = (0, 0), P2 = (1, 0) and P3 = (0, 1)
is chosen. Let us consider an arbitrary triangular element with vertices located at
the coordinates (ξi, ηi), i = 1, 2, 3. Let ρ = (ξ, η) represent the coordinates on an
arbitrary triangle and r =(x, y) are the variables on the standard right triangle.

The linear shape functions on the standard right triangle are given by

M1(x, y) = 1 − x − y,

M2(x, y) = x, (A.145)

M3(x, y) = y.
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Figure A.10: The C(2)-continuous 18 DoF quintic Hermite interpolation polynomi-
als that have C(1)-continuous normal derivatives across the element are plotted on
the standard equilateral triangle.

Figure A.11: Pictorial representation of additional conditions applied to determine
18 DoF polynomials on an equilateral triangle.

A general function ψ(ξ, η), with the given values ψi at the three vertices of the
arbitrary triangle can be interpolated as

ψ(ξ, η) ≈

3∑
i=1

ψi Mi(x, y). (A.146)

We can represent the coordinates ξ and η themselves in terms of linear shape
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functions as

ξ = ξ1M1(x, y) + ξ2M2(x, y) + ξ3M3(x, y),

= ξ1 (1 − x − y) + ξ2 x + ξ3 y,

= (ξ2 − ξ1)x + (ξ3 − ξ2)y + ξ1, (A.147)

and

η = η1M1(x, y) + η2M2(x, y) + η3M3(x, y),

= η1 (1 − x − y) + η2 x + η3 y,

= (η2 − η1)x + (η3 − η2)y + η1. (A.148)

This is an isoparametric mapping. Equations (A.147) and (A.148) can be written as
a 2 × 2 matrix of the form[

ξ − ξ1

η − η1

]
=

[
ξ2 − ξ1 ξ3 − ξ1

η2 − η1 η3 − η1

]
·

[
x

y

]
,

ρ − ρ1 = J · r. (A.149)

This is a linear mapping between the variables (x, y) and (ξ, η). The determinant
of the matrix J is the Jacobian of the transformation. For example, consider the
transformation from the coordinates (x, y) in the standard triangular element (see
Fig. A.12) to the coordinates (ξ, η) in our equilateral triangle (see Fig. A.7). From
Eq. (A.149), the corresponding transformation is given by

ξ − 1

η

 =

−3

2 −3
2

√
3

2 −
√

3
2

 ·

x

y

 , (A.150)

where the Jacobian of the transformation is given by

J =


−3

2 −3
2

√
3

2 −
√

3
2

 . (A.151)

Hence 
ξ

η

 =

−3

2 −3
2

√
3

2 −
√

3
2

 ·

x

y

 +
[
1
0

]
, (A.152)

and the inverse transformation is given by
x

y

 =

−1

3
1√
3

−1
3 − 1√

3

 ·

ξ

η

 +


1
3

1
3

 . (A.153)
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Let us consider the transformation of the linear shape functions labeled by {Mi(x, y)‖i=1, 2, 3}
on the right triangle (seeEq. (A.145)) to obtain the linear shape functions {Ni(ξ, η)| i=1, 2, 3}
on our standard equilateral triangle. The corresponding passive coordinate transfor-
mation is obtained by inverting the Jacobian matrix in Eq. (A.151). Hence

x

y

 =

−3

2 −3
2

√
3

2 −
√

3
2


−1

·


ξ − 1

η

 ,
=


1 − ξ

3
+

η
√

3
1 − ξ

3
−

η
√

3
.

 . (A.154)

Since we have only scalar shape functions, transformation rule at the ith node is
given by

Ni(ξ, η) = Mi (x(ξ, η), y(ξ, η)) ,

= Mi

(
1 − ξ

3
+

η
√

3
,
1 − ξ

3
−

η
√

3

)
. (A.155)

Substituting Eq. (A.145) in Eq. (A.155) we get

N1(ξ, η) =
2(ξ − 1)

3
+ 1,

N2(ξ, η) =
η
√

3
+

1 − ξ
3

,

N3(ξ, η) =
1 − ξ

3
−

η
√

3
. (A.156)

Transformation rules for the Hermite shape functions

Let us consider the concrete case of mapping our Hermite shape functions from
the equilateral triangle into a right angled triangle. Transformation properties
closely follow our discussion in Sec. A.6. Let M (m,n)i (x, y) be the shape functions
on the right triangle, with i = 1, 2, 3. The possible combinations of (m, n) are
{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}. Transformation properties for scalar shape
functions follow simply as

M (0,0)i (x, y) = N (0,0)i (ξ(x, y), η(x, y)) , (A.157)

given the shape functions N (0,0)i on the equilateral triangle. For example,

M (0,0)1 (x, y) = N (0,0)1 (ξ(x, y), η(x, y)) ,

= N (0,0)1

(
1
2
(−3x − 3y + 2),

1
2
√

3(x − y)

)
. (A.158)
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Therefore,

M (0,0)1 (x, y) = −(x + y − 1)2
(
6x3 + 3x2(y − 1) + x(3(y − 2)y − 2)

+ (y − 1)
(
6y2 + 3y + 1

) )
. (A.159)

We can derive M (0,0)2 (x, y) and M (0,0)3 (x, y) in a similar fashion.

2
P

3P

1
P

(0,0)

 e'
1

 e'
2

(1,0)

(0,1)

Figure A.12: The right triangular element typically used in Finite element analysis.

In the case of vector shape functions M (1,0)i , M (0,1)i , the transformation properties are
given by 

M (1,0)i (x, y)

M (0,1)i (x, y)

 =

−1

3
1√
3

−1
3 −

1√
3

 ·

N (1,0)i (ξ(x, y), η(x, y))

N (0,1)i (ξ(x, y), η(x, y))

 . (A.160)

For example,

M (1,0)1 (x, y) = −
1
3

N (1,0)1 (ξ(x, y), η(x, y))

+
1
√

3
N (0,1)1 (ξ(x, y), η(x, y)) . (A.161)

Substituting Eq. (A.152) into the above equation we get

M (1,0)1 (x, y) = −
1
3

N (1,0)1

(
1
2
(−3x − 3y + 2),

1
2
√

3(x − y)

)

+
1
√

3
N (0,1)1

(
1
2
(−3x − 3y + 2),

1
2
√

3(x − y)

)
.

(A.162)

Hence

M (1,0)1 (x, y) = −
1
2

x(x + y − 1)2 [x(6x + 3y − 4) − 4y − 2] . (A.163)
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Derivations of the rest of the vector shape functions follow the same steps. Transfor-
mation properties for the rank-2 shape functions follow from the discussion above
and from Sec. A.6. In Table B.2.4 we list a set of 18 DoF quintic Hermite polyno-
mials on the right triangle that support C(1)-continuous quartic polynomials across
shared sides of elements. These interpolation polynomials were reported for the
first time by Kassebaum et al., [73] where they also compared and contrasted these
new polynomials with previously reported 18 DoF polynomials by Bell [216].

Figure A.13: The C(2)-continuous 18 DoF quintic Hermite interpolation polynomi-
als that have C(1)-continuous normal derivatives across the element are plotted on
the standard right triangle.

A.7 Transformation to an arbitrary triangular element
In finite element analysis, the central idea is to express the solution as a linear com-
bination of a set of shape functions multiplied by as-yet undetermined coefficients.
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We can always find such polynomials for an arbitrary element. However having to
find the explicit form in global coordinates in every element is very inefficient. Thus
we seek to develop a method to obtain the shape functions on an arbitrary element
given a set of shape functions on a standard element.

We choose the standard element as before to be the equilateral triangle with vertices
P1 = (1, 0), P2 = (−1/2,

√
3/2), P3 = (−1/2,−

√
3/2). Let us suppose that an

arbitrary triangular element has vertices located at V1 = (x1, y1),V2 = (x2, y2) and
V3 = (x3, y3) in the global coordinate system. The transformation of coordinates
ρ = (ξ, η) from the points in standard equilateral triangle, to the global coordinates
r = (x, y) in the arbitrary triangle is given by

x

y

 =


1
3 (2x1 − x2 − x3)

1
3

(√
3x2 −

√
3x3

)
1
3 (2y1 − y2 − y3)

1
3

(√
3y2 −

√
3y3

) ·

ξ

η

 +


1
3 (x1 + x2 + x3)

1
3 (y1 + y2 + y3)

 ,
=


∂x
∂ξ

∂x
∂η

∂y

∂ξ

∂y

∂η

 ·

x

y

 +

x0

y0

 . (A.164)

In vector notation

r = J · ρ + r0, (A.165)

where r0 is the position vector of the center of the triangular element. This is a linear
transformation as in Eq. (A.149). The Jacobian matrix of the above transformation
is given by

J =


J11 J12

J21 J22

 =

∂x
∂ξ

∂x
∂η

∂y

∂ξ

∂y

∂η

 . (A.166)

Let
{
M (m,n)i

}
be the set of shape functions on the triangular element in the global

coordinates, which are to be determined given the shape function
{
N (m,n)i

}
in the

standard equilateral element. Equation (A.165) transforms the vertex Pi of the
standard equilateral triangle to the vertex Vi of the arbitrary triangle. Hence the
nodal conditions for the corresponding shape functions should remain the same.
The nodal conditions for the scalar shape functions is written as

M (0,0)i (x j, y j) = N (0,0)i

(
ξ j, η j

)
,

= N (0,0)i

(
J−1 · (rj − r0)

)
,

= δi j, (A.167)
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where, i, j = 1, 2, 3. Therefore,the transformation rule for the scalar shape function
associated with the ith node is simply given by

M (0,0)i (x, y) = N (0,0)i

(
J−1 · (r − r0)

)
. (A.168)

To obtain the transformation rules for the vector and rank-2 tensor shape functions,
we need to take into account of their tensorial nature under transformation (see
Sec. A.6). Nodal conditions on the vector shape functions is written asd[

∂x

∂y

]
⊗

[
M (1,0)i (xi, yi) M (0,1)i (xi, yi)

]
=[

∂ξ

∂η

]
⊗

[
N (1,0)i (ξi, ηi) N (0,1)i (ξi, ηi)

]
= I2. (A.169)

Let us consider[
∂ξ

∂η

]
⊗

[
M (1,0)i (xi (ξ, η) , yi (ξ, η)) M (0,1)i (xi (ξ, η) , yi (ξ, η))

]
=


∂x
∂ξ

∂y

∂ξ
∂x
∂η

∂y

∂η

 ·

∂x

∂y

 ⊗
[
M (1,0)i (xi, yi) M (0,1)i (xi, yi)

]
,

(A.170)

Substituting Eq. (A.169) in Eq. (A.170) we obtain[
∂ξ

∂η

]
⊗

[
M (1,0)i (xi, yi), M (0,1)i (xi, yi)

]
=


∂x
∂ξ

∂y

∂ξ
∂x
∂η

∂y

∂η

 ·
∂ξ

∂η

 ⊗
[
N (1,0)i (ξi, ηi), N (0,1)i (ξi, ηi)

]
= JT

[
∂ξ

∂η

]
⊗

[
N (1,0)i (ξi, ηi), N (0,1)i (ξi, ηi)

]
. (A.171)

The operator
[
∂ξ,∂η

]T
is acting on both the left and right side of Eq. (A.171). If

we remove this operator in Eq. (A.171), we get a transformation rule for the vector

dHere, the direct product
[
∂x
∂y

]
⊗

[
M (1,0)i (xi, yi) M (0,1)i (xi, yi)

]
is defined to be[

∂xM (1,0)i ∂xM (0,1)i

∂yM (1,0)i ∂xM (0,1)i

]
, where all the derivatives are evaluated at the point (xi, yi).
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shape functions on the arbitrary triangular element in terms of the vector shape
functions on the standard equilateral triangle. Hence we write[

M (1,0)i (x, y) M (0,1)i (x, y)
]

= JT ·
[
N (1,0)i (ξ(x, y), η(x, y)) N (0,1)i (ξ(x, y), η(x, y))

]
. (A.172)

Transposing the above relation we have[
M (1,0)i (x, y)

M (0,1)i (x, y)

]
= J ·

[
N (1,0)i (ξ(x, y), η (x, y))

N (0,1)i (ξ(x, y), η(x, y))

]
= J ·

[
N (1,0)i

(
J−1 · (r − r0)

)
N (0,1)i

(
J−1 · (r − r0)

) ] . (A.173)

Now the nodal conditions on the second derivatives of the rank-2 tensor shape
functions evaluated at the vertex (xi, yi) is written as

∂xx

∂xy

∂yy

 ⊗
[
M (2,0)i M (1,1)i M (0,2)i

]
=


∂ξξ

∂ξη

∂ηη

 ⊗
[
N (2,0)i N (1,1)i N (0,2)i

]
= I3. (A.174)

Let us consider
∂ξξ

∂ξη

∂ηη

 ⊗
[
M (2,0)i M (1,1)i M (0,2)i

]
(A.175)

=



(
∂x
∂ξ
∂x +

∂y

∂ξ
∂y

)
·

(
∂x
∂ξ
∂x +

∂y

∂ξ
∂y

)
(
∂x
∂ξ
∂x +

∂y

∂ξ
∂y

)
·

(
∂x
∂η
∂x +

∂y

∂η
∂y

)
(
∂x
∂η
∂x +

∂y

∂η
∂y

)
·

(
∂x
∂η
∂x +

∂y

∂η
∂y

)

⊗

[
M (2,0)i M (1,1)i M (0,2)i

]
.
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The above equation, Eq. (A.176), can be expanded to write
∂ξξ

∂ξη

∂ηη

 ⊗
[
M (2,0)i M (1,1)i M (0,2)i

]
(A.176)

=



(
∂x
∂ξ

)2
2
∂x
∂ξ

∂y

∂ξ

(
∂y

∂ξ

)2

∂x
∂ξ

∂x
∂η

∂x
∂ξ

∂y

∂η
+
∂x
∂η

∂y

∂ξ

∂y

∂η

∂y

∂ξ(
∂x
∂η

)2
2
∂x
∂η

∂y

∂η

(
∂y

∂η

)2


·


∂xx

∂xy

∂yy

⊗
[
M (2,0)i M (1,1)i M (0,2)i

]
.

Using Eq. (A.174) we have
∂ξξ

∂ξη

∂ηη

 ⊗
[
M (2,0)i M (1,1)i M (0,2)i

]
(A.177)

=



(
∂x
∂ξ

)2
2
∂x
∂ξ

∂y

∂ξ

(
∂y

∂ξ

)2

∂x
∂ξ

∂x
∂η

∂x
∂ξ

∂y

∂η
+
∂x
∂η

∂y

∂ξ

∂y

∂η

∂y

∂ξ(
∂x
∂η

)2
2
∂x
∂η

∂y

∂η

(
∂y

∂η

)2


·


∂ξξ

∂ξη

∂ηη

⊗
[
N (2,0)i N (1,1)i N (0,2)i

]
.

Hence we can write down the transformation rule for the rank-2 tensor shape func-
tions as

[
M (2,0)i M (1,1)i M (0,2)i

]
=



(
∂x
∂ξ

)2
2
∂x
∂ξ

∂y

∂ξ

(
∂y

∂ξ

)2

∂x
∂ξ

∂x
∂η

∂x
∂ξ

∂y

∂η
+
∂x
∂η

∂y

∂ξ

∂y

∂η

∂y

∂ξ

(
∂x
∂η

)2
2
∂x
∂η

∂y

∂η

(
∂y

∂η

)2


·

[
N (2,0)i N (1,1)i N (0,2)i

]
. (A.178)
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Transposing the above relation we obtain


M (2,0)i (x, y)

M (1,1)i (x, y)

M (0,2)i (x, y)


=



(
∂x
∂ξ

)2
2
∂x
∂ξ

∂y

∂ξ

(
∂y

∂ξ

)2

∂x
∂ξ

∂x
∂η

∂x
∂ξ

∂y

∂η
+
∂x
∂η

∂y

∂ξ

∂y

∂η

∂y

∂ξ(
∂x
∂η

)2
2
∂x
∂η

∂y

∂η

(
∂y

∂η

)2



T

·


N (2,0)i

(
J−1 (r − r0)

)
N (1,1)i

(
J−1 · (r − r0)

)
N (0,2)i

(
J−1 · (r − r0)

)

. (A.179)

Hence the transformation rule for rank-1 shape functions in terms of the entries of
the Jacobian matrix J is given by


M (2,0)i

M (1,1)i

M (0,2)i

 =


J2
11 J11J12 J2

12

2J11J21 J12J21 + J11J22 2J12J22

J2
21 J21J22 J2

22


·


N (2,0)i

N (1,1)i

N (0,2)i

 . (A.180)

The set of 18 DoF polynomials contains scalar, vector and rank-2 tensor shape
functions. Hence the transformation for the polynomials associated with ith node is
given by

M (0,0)i

M (1,0)i

M (0,1)i

M (2,0)i

M (1,1)i

M (0,2)i


(x, y, z)=



1
J11 J12

J21 J22

J2
11 J11J12 J2

12
2J11J21 J12J21 + J11J22 2J12J22

J2
21 2J21J22 J2

22

6×6

·



N (0,0)i

N (1,0)i

N (0,1)i

N (2,0)i

N (1,1)i

N (0,2)i


(
J−1 (r − r0)

)
, (A.181)

where i = 1, 2, 3.
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A.8 Summary
Properties of different sets of polynomials on a triangle
It is very appropriate at this stage to summarize the properties of the different sets
of Hermite interpolation polynomials we have considered here. This provides an
overview of the properties of these polynomials in 2D triangles, allowing us to make
choices as to which set would be applicable and natural for a given problem.

18 DoF

1. Complete quintic polynomials with 21 coefficients are treated with group
representation theory.

2. Nodes are at the vertices of the triangle, and f , ∂x f , ∂y f , ∂xx f , ∂xy f , and
∂yy f are defined at each vertex.

3. Polynomials and their normal derivatives are set to zero at the opposite side
of the given node.

4. Supports C(2)-continuous quintic polynomials in each element.

5. The set of 18 DoF polynomials first derived by KBR [73] supports tangential
C(2)- and normal derivative C(1)-continuity across the element.

21 DoF

1. Coefficients of quintic polynomials with 21 terms are obtained through the
matrix inversion method.

2. Nodes are located at the vertices and at the centroid of the triangle. We define
f , ∂x f , ∂y f , ∂xx f , ∂xy f , ∂yy f at each vertex and f , ∂x f , ∂y f at the centroid of
the triangle.

3. Polynomials are zero at the side opposite to a given node. But their nor-
mal derivatives do not have unique values across the interface between two
elements. Hence the inter-element normal derivative continuity is not guar-
anteed.

4. 18 DoF polynomials are preferred over 21 DoF polynomials for any finite
element calculations.
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A.9 Concluding remarks
We have presented a new method based on the group representation theory to derive
interpolation polynomials that satisfy the requirement of C(n)-continuity across
elements using the symmetry of the finite element. We have applied this method to
derive linear interpolation polynomials and cubicHermite interpolation polynomials
in one dimensional straight element. For an equilateral triangular finite element,
the 18 DoF C(2)-continuous quintic Hermite interpolation polynomials with C(1)-
continuous normal derivatives across the element were derived. Transformation of
these polynomials to a right triangle element and to an arbitrary triangular element
is discussed.

We have shown in our earlier work that the 18 DoF finite elements yields better accu-
racy by several orders of magnitude, with a smoother representation of fields than the
vector finite element methods for electromagnetic field calculations in waveguides
[227], photonic crystals [228], and three-dimensional cavities [229, 230]. Hermite
finite elements presented here do not generate any spurious solutions that afflict
Lagrange finite elements, even though both are scalar in nature. These polynomials
are shown to provide an efficient and accurate means of solvingMaxwell’s equations
in a variety of systems, potentially offering a computationally inexpensive means of
designing devices for optoelectronics and plasmonics of increasing complexity. The
development of C(1)- and C(2)-continuous set of Hermite interpolating polynomials
in three dimension will make this method a feasible option for a large number of
engineering applications. These finite elements provide a robust method for quan-
tum mechanical calculations as well [231]. Simulations based on these scalar finite
elements are applicable to a broad class of physical systems, e.g., to semiconduct-
ing lasers which require simultaneous modeling of transitions in nanoscale quantum
wells or dots together with EM cavity calculations, to modeling plasmonic structures
in the presence of EM field emissions, and to on-chip propagation within monolithic
integrated circuits in high frequency electronics.

In conclusion, Hermite finite elements presented here provide significant advantages
in both electromagnetic and quantummechanical modeling of complex systems that
should attract their more universal usage in physics and engineering applications.
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A p p e n d i x B

LIST OF INTERPOLATION POLYNOMIALS

In this appendix, we list the set of shape functions on a 1D line element, and the 18
DoF quintic polynomials on the standard equilateral and right triangular elements.

B.1 List of polynomials on a 1D line element

N1(x) =
1
2
(1 − x); N2(x) =

1
2
(1 + x).

Table B.1.1: Linear interpolation polynomials on a 1D line element with vertices at
x = −1 and x = 1.

N (0)1 (x) =
1
4

(
x3 − 3x + 2

)
; N (1)1 (x) =

1
4
(x − 1)2(x + 1);

N (0)2 (x) =
1
4

(
−x3 + 3x + 2

)
; N (1)2 (x) =

1
4
(x − 1)(x + 1)2.

Table B.1.2: Cubic Hermite interpolation polynomials on a 1D line element with
vertices at x = −1 and x = 1 that support C(1)-continuity across the element.
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N (0)1 (x) =
1
16
(1 − x)3(3x(x + 3) + 8),

N (1)1 (x) =
1
16
(1 − x)3(x + 1)(3x + 5),

N (2)1 (x) =
1
16
(1 − x)3(x + 1)2,

N (0)2 (x) =
1
16
(x + 1)3(3(x − 3)x + 8),

N (1)2 (x) =
1
16
(1 − x)(x + 1)3(3x − 5),

N (2)2 (x) =
1
16
(x − 1)2(x + 1)3.

Table B.1.3: Quintic Hermite interpolation polynomials on a 1D line element with
vertices at x = −1 and x = 1 that support C(2)-continuity across the element.

B.2 List of polynomials on a triangular element

N1(x, y) = 1 +
2
3
(x − 1); ,

N2(x, y) =
1
3
(1 − x) +

y
√

3
,

N3(x, y) =
1
3
(1 − x) −

y
√

3
.

Table B.2.1: Linear interpolation polynomials on the standard equilateral trian-
gular element. Coordinates of the vertices are located at (1, 0), (−1/2,

√
3/2) and

(−1/2,−
√

3/2) which are labeled as the vertex 1, 2 and 3, respectively.
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M1(x, y) = 1 − x − y,

M2(x, y) = x,
M3(x, y) = y.

Table B.2.2: Linear interpolation polynomials on the standard right triangular el-
ement. Coordinates of the vertices are located at (0, 0), (1, 0) and (0, 1) which are
labeled as the vertex 1, 2 and 3, respectively.
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N (0,0)1 (x, y) = 1
27 (1+2x)2(9−10y2−2x(3+(1−x)x−5y2)).

N (1,0)1 (x, y) = 1
54 (x−1)(1+2x)2(11−x(2+3x)−15y2).

N (0,1)1 (x, y) = 1
54 (1+2x)2y(7+x(6−7x)−3y2).

N (2,0)1 (x, y) = 1
72 (1−x)(1+2x)2(3−x(2+x)−5y2).

N (1,1)1 (x, y) = 1
108 (2x + 1)2y

(
x(7x − 2) + 3y2 − 5

)
.

N (0,2)1 (x, y) = 1
216 (1+2x)2((7+5x)y2−(1−x)3).

N (0,0)2 (x, y) = 1
27 (−4x5 + 10

√
3x4y + 5x3 (

3 − 4y2) − 5x2
(
3
√

3y + 1
)

−5x
(
−3y2 + 2

√
3y + 3

)
+ y(y

(
3
√

3y
(
2y2 − 5

)
+ 5

)
+15
√

3) + 9).
N (1,0)2 (x, y) = 1

108 (1+2x)(1−x+
√

3y)2(11−5x−6x2−
√

3(3−2x)y).
N (0,1)2 (x, y) = 1

108 (1−x+
√

3y)2(4
√

3x3+2x2(5
√

3−4y)
+y(23+6(

√
3−2y)y)−x(3

√
3−8y(3−

√
3y))−11

√
3).

N (2,0)2 (x, y) = 1
432 (1+2x)2(1−x+

√
3y)2(3−3x+

√
3y).

N (1,1)2 (x, y) = 1
216 (1+2x)(1−x+

√
3y)2(11y+x(3

√
3+2
√

3x−2y)−5
√

3).

N (0,2)2 (x, y) = − 1
432

(
−x +

√
3y + 1

)2 (
4(1 − 4x)y2 − 4

√
3(x − 3)xy

+x(4x(x + 3) − 3) − 8
√

3y3 + 13
(√

3y − 1
) )
.

N (0,0)3 (x, y) = 1
27 (1−x−

√
3y)2(x(3−4x(2+x))

+2
√

3(2 − x)xy−4(1−x)y2−2
√

3y3+3(3+
√

3y)).
N (1,0)3 (x, y) = 1

108 (1+2x)(1−x−
√

3y)2(11−5x−6x2+
√

3(3−2x)y).
N (0,1)3 (x, y) = 1

108 (1−x−
√

3y)2(11
√

3−4
√

3x3−2x2(5
√

3+4y)
+ y(23−6y(

√
3+2y))+x(3

√
3+8y(3+

√
3y))).

N (2,0)3 (x, y) = 1
432 (1+2x)2(1−x−

√
3y)2(3−3x−

√
3y).

N (1,1)3 (x, y) = 1
216 (1+2x)(1−x−

√
3y)2(

√
3(1−x)(5+2x)+(11−2x)y).

N (0,2)3 (x, y) = 1
432 (1−x−

√
3y)2(13−4x3+13

√
3y−4y2

−8
√

3y3−4x2(3+
√

3y)+x(3+4y(3
√

3+4y))).

Table B.2.3: Quintic Hermite interpolation polynomials in the equilateral triangu-
lar reference element with vertices at (1, 0), (−1/2,

√
3/2) and (−1/2,−

√
3/2) that

support C(1)-continuous quartic polynomials across shared sides of elements [73].
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M (0,0)1 (x, y) = (1−x−y)2(3x2(1−y)−6x3+x(2+3(2−y)y)
+(1−y)(1+3y+6y2)).

M (1,0)1 (x, y) = 1
2 x(1−x−y)2(2+4y+x(4−6x−3y)).

M (0,1)1 (x, y) = 1
2 y(1−x−y)2(x(4−3y)+2(1−y)(1+3y)).

M (2,0)1 (x, y) = 1
4 x2(1−x−y)2(2−2x−y).

M (1,1)1 (x, y) = xy(1−x−y)2.
M (0,2)1 (x, y) = 1

4 y
2(1−x−y)2(2−2y−x).

M (0,0)2 (x, y) = x2(x(10−3x(5−2x))+15(1−x)2y−15(1−x)y2).

M (1,0)2 (x, y) = 1
2 x2(1−x)(6x2−15(1−y)y−x(8−15y)).

M (0,1)2 (x, y) = 1
2 x2y(x(3y−4)+3(2−y−y2)).

M (2,0)2 (x, y) = 1
4 x2(x−1)(2(x−1)x−5(1−x)y+5y2).

M (1,1)2 (x, y) = 1
2 x2y(y2+y+x(2 − y)−2).

M (0,2)2 (x, y) = 1
4 x2(1+x−y)y2.

M (0,0)3 (x, y) = y2(15x2(y−1)+15x(1−y)2+y(10−3y(5−2y))).
M (1,0)3 (x, y) = 1

2 xy2(6−3x(1+x−y)−4y).
M (0,1)3 (x, y) = 1

2 y
2(1−y)(15(x−1)x−(8−15x)y+6y2).

M (2,0)3 (x, y) = 1
4 x2y2(1−x+y).

M (1,1)3 (x, y) = 1
2 xy2(x+x2+2y−xy−2).

M (0,2)3 (x, y) = 1
4 y

2(y−1)(5x2−5x(1−y)−2(1−y)y).

Table B.2.4: Quintic Hermite interpolation polynomials derived in the equilateral
triangular reference element that supportC(1)-continuous quartic polynomials across
shared sides of elements mapped into the right triangle with vertices at (0, 0), (1, 0)
and (0, 1) which are labeled as the vertex 1, 2 and 3, respectively.
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