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Abstract

Monitoring software actions is one of the most studied approaches to help security researchers
understand how software interacts with the system or network. In many cases, monitoring is
an important component to help detect attacks that use software vulnerabilities as a vector to
compromise endpoints. Attacks are becoming more sophisticated and network use is growing
dramatically. Both host-based and network-based monitoring are facing different challenges. A
host-based approach has more insight into software’s actions but puts itself at the risk of compro-
mise. When deployed on the server endpoint, the lack of separation between different clients only
further complicates the monitoring scope. Compared to network-based approaches, host-based
monitoring usually loses control of a software’s network trace once the network packet leaves the
endpoint. On the other hand, network-based monitoring usually has full control of a software’s
network packets but confronts scalability problems as the network grows. This thesis focuses on the
limitations of the current monitoring approaches and technologies and proposes different solutions
to mitigate the current problem.

For software-defined networking, we design and implement a host-based SDN system that
achieves the same forwarding path control and packet rewriting functionality as a switch-based
SDN. Our implementation empower the host-based SDN with more control in the network even
without using any SDN-enabled middleboxes, allowing SDN adoption in large-scale deployments.
We further corroborate flow reports from different host SDN agents to address the endpoint com-
promise problem. On the server endpoint, we leverage containers as a light-weight environment
to separate different clients and build monitoring infrastructures to narrow down the monitoring

scope that have the potential to facilitate further forensic analysis.
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1 Introduction

Software, which was created to facilitate the use of a computer system, has now become the cause
of many security problems. Due to the natural complexity in its design, software usually contains
vulnerabilities that give attackers the chance to corrupt the entire system. Sometimes, such corruption
is achieved without leveraging a software vulnerability: an email with a malware download link, that
deceives the user into clicking it can also corrupt the system.

To protect our systems against these threats, researchers have proposed different approaches. Some
have tried to run a untrusted system in an isolated environment through virtualization [22]. Others have
added instrumentation at a binary level to capture the behavior of software [2] or tried to distinguish
a normal software from a malicious one through learning-based algorithm [3]. Though they rely on
different assumptions or threat models, these approaches share one thing in common: they try to
characterize the software’s behavior.

To gain knowledge of software’s behavior, a widely-used method is to monitor software actions.
Monitoring systems deployed within the host can provide more insight into software activities. By
vetting network activities or auditing system call traces in the kernel, the security system gains internal
view of the network stack and understands software actions at a functional level [34]. While this
approach provides insight, the cost of this increased visibility is that the monitoring system is as
likely to be compromised as the software being monitored. Most endpoint monitoring systems rely on
a trustworthy kernel space. In the presence of a kernel compromise, these monitoring systems may
use anti-circumvention techniques to hinder their removal or sabotage. However, the monitoring can
be manipulated to provide faulty information about a software’s action. In addition to host-based
monitoring, there are monitoring systems that are deployed in the network, usually on a network
middlebox (where they have more attack resistance). Compared to host-based monitoring approach,
these network middleboxes (usually under control of the network operator) can also act as part of the
defense-in-depth component to form an overlapping control that rejects a software’s abnormal network
activity even when endpoint security system is compromised.

To gain advantages above, visibility is sacrificed. Network monitoring system usually have to
monitor multiple sources which can result in scalability problems they are used in large networks. For
both network-based and host-based monitoring, scalability, visibility and attack resistance are three
different metrics that hard to balance. Previous work has proposed virtual machine introspection [23],
which pulls the monitoring system outside the monitored system for greater attacker resistance. It’s
the virtual machine monitor (VMM) on the host machine to retain the same visibility as a host-
based method. Because of the strong isolation between the host and guest system, the semantic

gap between the host and guest machine makes it hard to extract meaningful information [17]. For



network-based monitoring, some works have focused on its scalability problems by using a decentralized
approach [54] at the cost of higher management overhead. Other work has tried to extract information
about the endpoint software from the network traces [3] using learning-based algorithm to compensate
for decreased visibility. These approaches mitigate the visibility problem but are subject to adversary
learning, in which the attacker deceives the algorithm to a provide false fingerprint for the network
traffic [5].

Monitoring software actions on the server endpoint raises additional challenges. A server application
is usually a piece of software that allows multiple users to share the service at the same time. When
multiple users access the server simultaneously, concurrent streams are generated from each user that
cause the monitoring system only to monitor an intertwined network flow and execution traces. This
significantly increases the difficulty of analyzing the monitoring data and makes it even harder to
associate a server’s action with individual users. To facilitate analyzing the server’s action and isolating
different users, previous work [52] created a one-to-one client-server model using virtual machines. But
virtual machines they use are slow and require significant resources, which hinders the scalability.

The many problems mentioned above cannot be addressed by a single solution. This thesis focuses
on a subset of the problems in turn. We propose to fuse theses solutions into a comprehensive system.

In the first direction, we focus on software-defined networking (SDN). The design paradigm of SDN
enables flexible control of the network devices. Ever since it has been proposed, researchers have been
taking advantage of this feature to develop different applications in various domains. For this part,
we focus only on SDN’s ability to monitor network and perform traffic engineering. When used as a
network monitoring tool, SDN allows the user to specify flexible policies that achieve traffic monitoring
at different granularity. Its traffic enginnering feature can be used to control the path of a network flow,
such as forcing a packet to go through multiple layers of defences and allowing network operators to
practice a defense-in-depth strategy. SDN also allows network middleboxes to perform packet header
rewriting, allowing defenders to perform obfuscation that achieves a networked moving target defence
(MTD) [32]. Despite SDNs provide great promise, previous works have shown that the SDN approach
has scalability problems when deployed in a large scale network [50]. To address this problem, prior
works that have tried moving SDN agent into an end-host [53, 43]. This transaction achieved better
scalability and is able to provide more informed flow reports. But these efforts have not achieved
SDN’s ability to control the packet path and traffic engineering, so they have not fully realized SDN’s
ability to facilitate network and endpoint security. In Section 3, we show that a host-based SDN can
achieve the same functionality as a switch-based SDN. We recognize that when moving SDN into the
host, it faces the same security challenge as other host-based monitoring systems. In section 4, we
show that flow reports from multiple host SDN agents can be corroborated to help the SDN controller

detect a compromised agent. Such detection mechanisms allow the controller to gain authentic flow



reports about the software’s action in the end-host and provides security guarantees for the host-based
SDN system.

In the second direction, we focus on monitoring and logging the software’s execution data on a server
endpoint. We leverage a single-use server model to build monitoring infrastructures that untwine and
forward different users’ requests to different server instances. For each server instance, we leverage the
Linux auditing system [26] to log important system calls on a per-server instance basis. In the single-
use server model, each server instance runs in a tailored container environment and is associated with a
specific user during a normal session. Because different users only access their own server instance, our
monitoring infrastructure is able to get a clean view of user’s requests and record the server’s action for
that specific user. Such monitoring mechanisms can separate the user’s forensic evidence and greatly
reduce the volume of monitoring data needed to conduct any post-attack analysis. In Section 5, we
first give an overview of the single-use server model that we developed and focus on the design and
implementation of the monitoring infrastructure that work withs the model.

By exploring these directions, we make the following contribution:

e Building SDN Infrastructure for a Legacy Network: We leverage features in managed
switches, such as the support for multiple spanning trees in different virtual local area net-
works (VLANSs), to manipulate forwarding paths on legacy switches. We create an OpenFlow-
compatible SDN controller to build custom topologies and configure the legacy switches. Our

controller supports OpenFlow clients and manipulates state to allow arbitrary forwarding paths.

e Design and Implementation an Endpoint SDIN agent: Given the popularity in enterprise
networks, we implement an SDN agent in the Microsoft Windows operating system. The agent
uses a kernel-mode network driver to implement the SDN controllers orders and to rewrite packets

and perform flow path control.

e Corroborated Host-based SDN Enforcement system: In our Corroborated Host-based
SDN Enforcement (CHOSE) system, an endpoint sensor reports flow and contextual data (e.g.,
originating user and application) for each new network connection. We design and implement a
SDN controller that correlate host agents’ report. When switch-based SDN agents are involved

in the communication path, its report will be used as part of the verification as well.

e Evaluating Traffic Engineering, Performance, Scalability and Security: We first eval-
uate our host-based SDN in an experimental network environment and showed that it can im-
plement flow rules, QoS field manipulation, and path selection equivalent to switch-based SDNs
with only minimal overheads (Section 3.6). We then evaluate the CHOSE system and show that

it can detect and block flows with inaccuracies that indicate a compromised host SDN agent.



We evaluate our system and show that when a communication path involve two host SDN agent
and a single switch SDN agent, our controller can verify the flow information and allow the flow

to establish within 20ms for about 90% of the flows.

Implementing Container Monitoring Infrastructure: Based on the single-user server
model, we design and implement two monitoring components. The first component is a proxy
middlebox that serves as a demultiplexer for the single-use server model. By using a cookie-based
method, our proxy is able to associate each user sessions with its assigned container. The second
component is a container system call auditing system. Since the original Linux audit system
cannot be namespaced [18], it cannot be used directly to audit system calls on a per-container
basis. Our implementation relies on the kauditd to provide a host-wide view of the system call
and netlink socket to receive container process event. When combining the two component

together, we are able to separately log each container’s system call on the host machine.



2 Background and Related Work

In this section, we introduce the basic concepts involved in this work and discuss some related works.

2.1 Software-Defined Networking and its Application

In the software-defined networking paradigm, control-plane decisions are separated from the underlying
hardware that performs packet forwarding and modification. The OpenFlow protocol [38] provides an
API for a logically-centralized controller to interact with a set of packet forwarding devices, which are
often network switches. Because it uses a standard protocol, devices from difference manufacturers
can be managed using the same language. In OpenFlow, a switch sends a PacketIn packet to an
OpenFlow controller whenever it encounters a packet whose fields are not a match for any of the
switch’s cached rules. When issuing the PacketIn request, the switch includes a copy of the associated
packet. The controller consults its policy to determine the appropriate action. The controller may
optionally create a FlowMod packet to order the switch to store a new rule or update the existing rules
with match criteria corresponding to the flow along with an action the switch should take on future
matching packets. Finally, the controller issues a PacketOut message that telling the controller what
to do the with the packet contained in the PacketIn message.

The OpenFlow protocol allows a controller to essentially treat each SDN switch as a configurable
rule cache. A controller can push coarse-grain rules, which contain wildcards for various flow headers,
to allow a switch to operate with few PacketIn elevation requests. Alternatively, a switch can use
fine-grained rules, which typically specify a fixed flow tuple (i.e., IPsources IPdest., transport proto-
col, pOrtsource, POTtgest.) that only matches a single connection. This design paradigm and protocol
implementation provide a structural framework for researchers to explore different applications.

The use of fine-grained rules can be attractive for security purposes because the resulting packet
elevations give the OpenFlow controller detailed visibility into the communication occurring on the
network. This empowers the controller to act as a network-wide flow-based access controller. Based on
such features, researchers have proposed different approaches that leverages SDN for network monitor-
ing. OrchSec [63] is a monitoring system that detects attack traffic by incorporating the functionality
of a network monitor to signal initial signs of an attack to the SDN controller and dropping the at-
tack traffic. Also leveraging the visibility of network flows and a global view of the entire network,
Raumer et al. have proposed MonSamp [47], which is an SDN framework that performs a sample-based
flow monitoring that satisfies the requirement for quality of service (QoS). Their approach samples
only a subset of traffic from SDN switches to avoid the problem of packet drops that result from
over-utilizing monitoring links. To provide an SDN-based solution for multimedia delivery, Egilmez et

al. proposed OpenQoS [19], an SDN controller design that groups network traffic into multimedia flows



and data flows. It place multimedia flows on QoS-guaranteed routes while the data flows remain on
their traditional shortest-path. Based on the monitoring ability of SDN, there are also efforts that

leverage SDN to denial of service mitigation [41, 62] and intrusion detection [51].

2.2 Software-Defined Networking Limitations

Research depends on SDN’s ability to provide network monitoring to allow the controller to make
different decisions based on the flow information it receives from SDN agents. Different levels of
granularity can be adopted to control which packets are elevated to the controller. Previous work
found that fine-grained rules in OpenFlow come at a cost [14]. While MAC and VLAN entries can
be managed in SRAM, SDN rules involving other fields must be stored in ternary content addressable
memory (TCAM). TCAM memory is expensive, both financially and in terms of energy consumption.
Some switches can store around 2,000 entries, while others, such as the Dell PowerConnect 8132F,
only store 750 OpenFlow rules [35]. OpenFlow-enabled switches also have a price premium compared
to similar-capacity traditional managed switches. To address the limitation imposed by the use of
TCAM, Wen et al. proposed RuleTris [59], an SDN flow table update optimization framework that
leverages dependency graphs to minimize the update delay. When combined with their dependency
preserving algorithm, RuleTris can achieve a 15 ms end-to-end per-rule update latency. TCAM’s
limited capacity is another problem for TCAM. To efficiently make use of the TCAM, Katta et al. pro-
posed CacheFlow [33]. Their system caches the most popular rules in the TCAM. To handle table miss
caused by other unpopular rules, they rely on a software approach that leverage a ”splicing” technique
that break the long dependency chain and create a few new rules that covers those unpopular rules.

Their method proved to be effective in handling table misses.

2.3 Host-Based SDN

While OpenFlow was originally designed for use with physical hardware in network switches, one of
the more popular OpenFlow implementations is in software. Open vSwitch (OVS) [45] is often used on
virtual machine (VM) hypervisors to provide SDN functionality between VMs. In the Scotch approach,
Wang et al. [58] proposed using OVS to enhance the scalability of fine-grained flows by using OVS on
VM hypervisors. As shown in previous work, OVS tends to have better performance than physical
switches [29], but such performance advantage is gained by running the agent on a server and the host
in the VM. OVS is not designed just for the a single physical endpoint.

Even with OVS, the SDN agent is still regarded as a network SDN agent. Although this network-
based approaches provide more attack resistance, but the visibility may be insufficient. To further

increase the visibility, Taylor et al. [53] proposed a host-based SDN that monitors the activity on the



end-host in addition to the network flow. Najd and Shue [43] transformed Taylor’s host-based SDN
into an OpenFlow-compatible implementation that could complete a flow elevation to a controller in

less than 9 milliseconds.

2.4 Spanning Trees and Virtual LAN

A virtual local area networks (VLANS) create logical network segments, each with their own broadcast
domains with on top of a physical network. Hosts in different VLANs cannot directly communicate
without traversing a middlebox or router that spans the VLANs. VLANSs can span physical switches
by tagging each Ethernet frame with a VLAN ID. Each physical switch interface is configured as either
an access port, which accepts only a single VLAN, or as a trunk port, which can carry traffic from
multiple VLANSs. In a VLAN-enabled network, switches maintain a MAC address table which stores
entries containing VLAN identifiers, MAC addresses, interface ports, and aging timers. The switch
uses both the VLAN identifier and the MAC address to determine which interface port to use for each
packet. Packets without a tag are assigned to a default VLAN identifier associated with the interface.

Since each VLAN has its own set of interface port restrictions, each VLAN can have its own spanning
tree. The multiple spanning tree protocol (MSTP) allows interface ports to trunk multiple VLANs
to create multiple logical links for the underlying physical links. Despite the physical infrastructure
having loops, each VLAN spanning tree can selectively disable ports to create a tree. The multiple
spanning tree approach can address the scalability concerns in Ethernet. To build scalable Ethernet
for the data center, Mogul et al. proposed SPAIN [42], which consists of a host driver program that
randomly chooses a path from a set of usable spanning trees. They can achieve high throughput and
fault tolerance when a forwarding path fails to deliver packets. The PAST [50] approach uses a per-
address spanning tree rather than a per-VLAN spanning tree, which requires entries to be stored in

the TCAM table of a SDN switch.

2.5 Kernel Monitoring

The kernel monitoring approach can get system call traces for software. By analyzing the temporal
ordering of the system calls, the security system can learn characteristics that reveal how software
operates at a functional level. This information can be used to define the normal behavior of the
software. Earlier work leverages the visibility in kernel space to monitor software’s behavior and
secure the user-space application. Mitchem et al. [40] use a loadable kernel module that monitors
system calls and tries to detect malicious behavior. This approach requires the user to be trusted
to not disable the module. In the cloud computing environment, Thu Yein et al. proposed a kernel

monitoring approach [60] that combines the system call monitoring in the guest OS kernel with SVM-



based external monitoring on the host machine. Their approach only monitors a subset of system
calls. To prevent rootkits from modifying the system call table in the guest kernel, they use system

call hashing that extracts a copy of the system call table upon installation.

2.6 Detecting Compromises on Endpoints

Once a host is compromised, an attacker may attempt to conceal the compromise in order to remain
persistent or to spread laterally across the network. When trust assumptions, such as a trustworthy
OS or kernel space, are violated, attackers can deactivate a host’s defenses. For example, malware has
been found to deactivate anti-virus [39] to evade detection. Attackers may also disguise their traffic,
using mimicry techniques [57] to appear legitimate.

To relax assumptions about a trustworthy OS, trusted hardware, such as trusted platform modules
(TPMs) [55] or secure co-processors [48], can be used to provide attestations. These approaches tend
to suffer from fragility to minor changes (when a static root of trust is used) [10] or from classic
time-of-check-time-of-use (TOCTOU) issues [9] (when a dynamic root of trust is used).

Our CHOSE approach differs from the above methods. We try to detect security systems that
provide inaccurate data, or omit data, by comparing their monitoring data with data from other
security systems on the network. This distributed monitoring approach can highlight attacks even

without special trusted hardware.

2.7 Containerization and Virtualization

A monitoring system often shares the same operating systems with the monitored software. Kernel
monitoring approaches rely on the kernel’s functionality to be intact. Otherwise they cannot provide
any authentic monitoring data. To make the monitoring system more attack resistant, other works [6,
30, 31] tries to break the in-host model by moving the security system to an isolated environment while
keeping some visibility to the monitored system. Tal et al. proposed a VM introspection-based intrusion
detection system [23] that breaks the traditional in-host monitoring model. In their work, they use
virtual machine monitor technology, which gives them access to the hardware state information about
the virtual machine. By interpreting these hardware events at the OS-level, their approach allows
them to define IDS policies. By controlling and monitoring the guest OS at both the hardware and
the software level, they add attack resistance. However, this approach introduces semantic gaps where
the the security software needs to infer the activities that happened in the VM. Another virtualization
technology which has gained popularity is containerization. Unlike virtual machines, containerization
is achieved by leveraging a sequence of security enhancement functions and isolation technologies that

are already used in the host system. Therefore, such isolation is light-weight and does not require an



environment on a separate operating system. Among the various container technologies, Docker is one
of the most popular. Using AppArmor Mandatory Access Control (MAC) [56], a Docker container
prevents links to secure sensitive directory such as /etc and /sys. The use of cgroup and namespace
further partition and limit the accessible resource from within the container. In addition, Docker adopts
a per-container level seccomp filtering that whitelist system calls [4]. Such environments provide the
isolation we need to run multiple server instances that each only serve a single user. In our work, we
designed a single-use server model where the monitored server software is running in a container and
the monitoring mechanism operates from outside the container. Using the isolation provided by the
container, our approach can preserve attack resistance while being able to directly observe software

actions.



3 Host-Based SDN

SDNs offer a lot security benefits, but the limitations of current SDNs impede their adoption and
application on large scale. For Switch-based SDNs, when a SDN agent is deployed on the network
perimeter, it foresees the network event before the inbound traffic reach the endpoint, allowing network
operators to stay ahead of security threat. When deployed within a network, it observes network
activities between the endpoints and checks any sign of internal threat. Its ability to control the packet’s
forwarding path enables flexible network isolation. But to use switch-based SDN, the most obvious
limitation is cost: the physical switch hardware must support SDN and this may require upgrading
network infrastructure which lead to both capital and installation costs [8]. Another limitation is that
hardware components on the SDN switch hinder the use of fine-grained rules to use in large network.
Host-based SDNs provide more detailed flow reports to the network operator and can scale better than
the switch-based SDN. However they have not achived the same features as switch-based SDN.

Given the benefits and limitations of both types of SDN, we explore the the possibility of combining
two types of SDN and ask the following research questions: Can host-based SDNs achieve all the
original goals of the SDN paradigm? What are the costs of performing switch-based SDN functions on
a host-based SDN?

3.1 Required Functionality in Host-Based SDNs

We first examine the functionality requirements for host-based SDNs to achieve feature parity with
switch-based SDN. We then describe the design and implementation in achieving these functionality.
In the SDN design paradigm, the SDN agent can be located in both a physical switch or in the host.
As showen in Figure 1, the location of the SDN agent does not affect the original design pattern. The
controller can still have a global view of the network. Through protocols like OpenFlow, the controller

can manage each host agent the same way as it does for the switch agent. Such a simple shift may
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Figure 1: Comparison between switch-based SDN and host-based SDN
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seems easy to accomplish, but some unsolved problems remains. SDN switches have multiple interface
ports and can prioritize queued traffic or forward packets through arbitrary interface ports. These
capabilities are key for traffic engineering and quality of service. However, it is unclear if SDN agents
on hosts can achieve similar functionality on legacy switches. To be considered equivalent, a host-based

agent would need to be able to achieve the following requirements:

e Influence the Forwarding Path: While a host-based SDN cannot specify the forwarding path
of a packet, it can influence how switches will treat a packet. With carefully preallocated VLAN
spanning trees, a host-based SDN agent may be able to select a VLAN to determine the path.

e Rewrite Packet Header: The SDN agent must be able to rewrite packet headers. Such func-
tion is necessary to achieve some SDN applications. In terms of quality of service, rewriting
packet headers can trigger prioritization and QoS features when host agents are used with man-
aged switches. When implemented with proper functions, it also allow the host agent to perform

packet transformations (e.g., NAT) or packet tunneling protocols (e.g., MPLS).

Combined, these features would allow network operators to achieve the same goals as in switch-

based SDN.

3.2 Design Goals

Our approach is designed to support SDN in a regular legacy network. Such networks can include data
center network or even a large enterprise networks. These networks typically have managed switches
that support VLANs and traffic engineering options. While networks can use unmanaged switches,
these switches lack VLAN, traffic engineering, and even configurations like the spanning tree protocol
that avoid link loops, limiting traffic to a single forwarding path between destinations. We thus design
our approach with traditional, non-SDN managed switches and routers in mind.

Our approach is designed to require only minimal host configuration via a kernel network driver that
can be automatically installed with standard software deployment tools. We further support legacy
hosts that do not run the SDN software, such as printers or embedded devices, but note that the traffic
engineering functionality may be unidirectional with legacy devices since only the SDN-enabled host
would be able to use non-default VLANs or QoS fields.

Our traffic engineering is designed to support network path selection through a sequence of network
middleboxes. Such middleboxes can be a firewall or IDS system. Further, the approach is designed to

be scalable even when fine-grained match rules are in place.
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Figure 2: A network with 2 VLANSs configured so the links of each VLAN consists of different spanning trees

3.3 Strategic Preallocation of VLAN Spanning Trees

We leverage VLANSs and their support for multiple spanning trees to allow hosts to influence forwarding
paths. As described in Section 2, both the VLAN identifier and destination MAC address are used
to determine which output interface port to use when multiple VLANs are configured on the switch.
When redundant physical links are present in the network, there are multiple spanning trees for that
network as well. To enable different forwarding paths, the network can be strategically configured
with VLANSs so link between each configured interface port that is part of the spanning trees of the
network. Figure 2 shows two spanning trees based on the same physical network topology. For each
spanning tree, a different VLAN identifier is configured on the corresponding interfaces. When VLAN
tagged packets are forwarded in this network, different VLAN identifiers will yield different forwarding
paths. Using such method, when a host agent sends out packets with a different VLAN identifiers, it
enables the agent to influence a packet’s forwarding path. In this section, we discuss in detail how we
strategically configure VLANs in the network.

Spanning Tree Enumeration Given a network represented by a graph, we can determine the
total number of spanning trees, ¢, of the graph by calculating the determinant of the graph’s Laplacian

matrix. Specifically, for a complete graph with n vertices, t = n" 2

. If we choose to configure each
spanning tree with a single VLAN, such an approach may require VLAN identifiers that exceed the
maximum number of VLANs that can be used in a network (which is 4,094 in the IEEE 802.1Q
standard [25]). Therefore, when choosing spanning trees, we only select a set of spanning tress that
covers a set of alternative forwarding paths rather than the default forwarding paths (which is already
covered by the default spanning tree of the network). Such alternative forwarding path can be selected

by the user who runs an SDN controller that programmatically calculates the path.

Before discussing the detail of the algorithm we used, we first define some notation. Let S =
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{51, $2, ..., st } be the set of spanning trees for a network G = (V, E) where |V(G)| = n and |E(G)| = m.
Let P = {p1,p2, ..., pr} be the set of k different user-selected paths.

To compute the set S, we use Winter’s approach [61] to enumerate the all the spanning trees for
G = (V,E). That algorithm recursively finds a partition in the spanning tree space by determining
whether or not the edges connecting the biggest labeled vertex and its adjacent vertices belong to the
spanning tree. It contracts the biggest labeled vertex into its adjacent vertices if the edge belongs to
the spanning tree and deletes the edge if it does not. Such a contraction process is repeated until there
is only one node left. This algorithm has a time complexity of O(n + m + nt). Simply listing all the
spanning trees of a graph requires O(nt) time.

Path Selection To get the set P, we consider cases in which an alternative forwarding path
between two switches is needed. In our design, all the hosts on the network are members of a default
VLAN. This allows basic communication without requiring any special SDN rules. Therefore, the
user-selected path set, P, does not contain the default path between each pair of switches. The SDN
agent thus needs to change the packets only for flows in which a non-default forwarding path is desired
by the SDN controller. There are many situations in which an alternative forwarding path might be
desired. A user-selected path can be QoS motivated routing path where an alternative forwarding
path is selected to avoid a hop spot in the network. It could also be a security-motivated path, where
all the traffic from a host is being forwarded to pass through a network firewall. The SDN controller
can arbitrarily select a different path for each network flow.

We generalize such cases into a constrained shortest path problem. Given a set of ordered vertices,
V' = {v1,v2,...,v4} € V, which represent a set of switches along our forwarding path, let set ¥ contain
all the possible permutations o = (a(v1)1}:;7;)527.)-,-.7.1.)70(%)) of V'. Given a pair of nodes (a,b) and the set X,
Algorithm 1 will compute the shortest path between a and b that visits all the nodes in V'. Algorithm 1
first compute the all pair shortest path for the network represented by graph G = (V, E) and stores
the result in a two dimensional array d where d[i][j] represent the shortest path between vertices 4
and j. In iteration k, the algorithm compute the shortest path between a and b visit vertices V' in a
ordering that specified by oy.

We show the correctness of the algorithm via a proof by contradiction. First, we show that sp
calculated in each iteration is indeed the shortest path from a to b that visits each vertex in V' in
that specific order. Suppose that there exists sp’ < sp, then one of the sub paths in sp’ must have a
shorter distance than the same sub path in sp, which contradicts the fact that each sub path is already
the shortest path that calculated by the all pair shortest path algorithm. Since our algorithm always
updates the d(a,b) when encountering smaller sp, it produces the correct result at the end. When
computing the shortest path that goes through a single network firewall, algorithm 1 can be reduced

to the calculation d(a, f) 4+ 6(f,b), where f represents the firewall node.
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Algorithm 1: Shortest walk including required nodes

initialize d(a,b) = oo;
d = all_pair_shortest_path(G);
for each o, € P do
sp = dla)[ok(v1)] + U2} ok (vn)][ow(vns1)] + dlok (vg)][b;
if sp < d(a,b) then
| d(a,b) = sp;
else
| continue;
end
end
return d0(a, b);

This approach allows us to construct a simple path between any two nodes within at least one
spanning tree. If the controller decides to use a path that is not covered by any spanning tree, then
the controller must first configure a spanning tree to cover that path. This can be done proactively,
before a flow is created, or reactively, when a packet is elevated to the controller. This VLAN tree
configuration is equivalent to the FlowMod rules in a switch-based SDN.

VLAN Spanning Tree Selection After computing the spanning tree set .S and the path set P,
we then apply our spanning tree selection algorithm to compute the set S’ € S such that covers every
path in P. From the above, we see that the set P = {p1, pa, ..., p,} is the universe path we want to
cover. And for each spanning tree s; € S it covers a subset of paths in P. We let s; = P; denote
the spanning tree s; covers every path of P; € P. Therefore, to compute S’ that contain the minimal
number of spanning trees is a set cover problem which is NP-Complete. Therefore, to calculate S’,
we use a greedy algorithm that repeatedly add the spanning tree that covers the most paths in the
remaining part of the set P.

Suppose the spanning tree set .S and path set S are already calculated using algorithms mentioned
above. And for each spanning tree s; € S, we calculate the set of path it can over denoted by P;.

Algorithm 2 describe the greedy algorithm that calculates S’.

Algorithm 2: Greedy spanning tree selection

initialize S = 0, P = {p1,p2, .., pg};
while P # ) do
find s; that covers the most paths in P;

S =8+ {s;};
P=P-P
end

This greedy approach is an approximation algorithm that produces a sub-optimal solution within

a logarithm factor to the optimal solution. If the optimal solution needs r spanning trees, then
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Algorithm 2 requires at most r In ¢ spanning trees (¢ being the total number of paths in set P). With
this knowledge, the user can decide whether to use an exhaustive search to find the optimal solution

if the number of required spanning trees exceeds the network configuration limit.

3.4 Flow Header Rewriting at the Host SDN Agent

Our host-based SDN agent has two parts: 1) a kernel network driver, which supports packet inspection
and header rewriting, and 2) a service that handles the OpenFlow communication. When new flows
are detected, the kernel driver sends the packet to the OpenFlow service for instruction. That service

elevates the packet to the controller if there are no relevant rules cached locally.

3.5 Implementation

The host-based SDN system implementation centers around two components: the SDN controller and

the SDN agent on the endpoint.

3.5.1 SDN Controller

The SDN controller must preconfigure the network with VLANs that each are associated with a
different spanning tree based on the result of the spanning tree selection algorithm. It also needs to
configure managed switches with QoS settings so the host agent can send labeled packets to trigger the
functionality. The controller can configure these values remotely using an SSL/TLS, SSH, or Simple
Network Management Protocol (SNMP) API supported by the network switches and routers.

To calculate the appropriate VLAN spanning trees, the SDN controller needs to know the network
topology. This can be learned via routing and spanning tree protocols. However, in our implemen-
tation, we assume the topology graph is already available. Our controller reads the topology graph
represented in the dot [24] language. The dot language can specify the relationship between different
vertices along with attributes for each edge and vertex in the graph. In our implementation, we include
interface ports and network firewall information in the dot file.

Our SDN controller is implemented in C+4. To handle communications with the host agent,
we use the botan library to handle the TLS encryption and decryption. To parse the dot file, we
leverage the functions in the cgraph library. Also, we implement the controller to use OpenFlow
1.0 [20] standard. When a VLAN tagging is required for the flow, the controller uses the SetVLANVID
action in its PacketOut and FlowMod packet. The same action can also be used to set the PCP filed
within the 802.1q filed to trigger QoS. To alter the DSCP field in the IPv4 header, the controller uses
the SetNWTos action. We do notice that OpenFlow1.0 only supports a limited number of SetField

actions. To enable more flexible packet header rewriting, a SetField action can be used (defined in
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OpenFlow 1.3 [21]), which leveragesf a bit mask approach to support modification of multiple field in

one action.

3.5.2 Host SDN Agent

Given the popularity of Microsoft Windows in enterprise networks, we implement the host SDN agent
as a Windows kernel network driver that can be easily installed via software deployment tools without
requiring end-user configuration.

In OpenFlow, an SDN agent typically only elevates the first packet of a flow to the controller unless
instructed otherwise. We thus need a mechanism to identify new flows when they are created, elevate
the first packet to the controller, and queue subsequent packets until a response is received from the
controller. To achieve this goal, we leverage the Windows Filtering Platform (WFP) [13], a packet
filtering engine that allows us to inspect and modify packets at different layers of network stack. To
identify the creation of new flows, we register so-called callout functions with layers of the special
Windows Application Layer Enforcement (ALE) group to monitor socket operations. ALE is a set of
layers that trigger on the packets associated with the connect and accept system calls in TCP. For
UDP flows, ALE layers trigger on the first packet that is sent to, or received from, a unique remote
entity. Using this functionality, we are able to elevate packets on a per-connection or per-socket level.

The controller communication module is implemented as a user-space administrative service that
implements the OpenFlow protocol. The communication with the controller is authenticated and
encrypted. To elevate a packet to the controller, the service first receives the packet from the kernel
driver and embeds it into an OpenFlow PacketIn. Upon receiving response from the controller, the
service first decrypts and verifies the packet before delivering the OpenFlow packet to the kernel driver
for processing.

The kernel driver implements the controller’s instructions for the flow. These instructions typically
involve packet header modifications, such as setting fields in the IPv4 header or Ethernet VLAN
headers. To modify a packet efficiently, we adopt an in-line packet modification approach. We use
callouts in the WFP engine to intercept the packet’s header at different layers in the network stack.
In our implementation, we support packet header modifications from the link layer up through the
transport layer. We offload checksum recalculation from header modifications to the the NIC along

with VLAN tag modifications, yielding high performance.

3.6 Evaluation

In our evaluation, we explore the effectiveness of our approach at achieving its traffic engineering goals

along with the overhead of implementing these techniques in a host-based SDN agent.
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3.6.1 Experiment Setup

To test our system, we build a full-mesh network topology of four switches, as shown on the left in
Figure 3. We flash four consumer-grade TP-Link Archer C7 routers with the OpenWrt [46] firmware

to act as our managed switches. Each switch has its wireless and routing functionality disabled.
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Figure 3: Experiment network topology and VLAN configuration

From our full mesh topology, we generate and test four different spanning trees and assign VLAN
IDs to each of them, as shown on the right in Figure 3. As we mentioned in Section 2.4, for an
interface to uniquely determine which VLAN a packet belongs to, it must be configured with its native
VLAN (into which the untagged traffic will be put). The VLAN spanning tree represented by the
solid line is configured to be the native VLAN of the associated interfaces while the VLAN spanning
tree represented by the dashed lines is configured to be the trunked VLAN of that interface. For the
interfaces that connect with each host, we configure the host to be a member of the default VLAN
(VLAN 1) and configure each interface to trunk the rest of the VLANSs.

We run the controller on a Ubuntu 16.04 virtual machine with 2 GBytes of RAM and 1 CPU cores
running at 2.6 GHz. The endpoints are Windows 10 virtual machines with 4 GBytes of RAM and
2 CPU cores running at 2.21 GHz. The VM is deployed on a windows host machine with 32 GB
RAM and a 6 core 2.21GHz CPU. The host that runs endpoints VM is installed with multiple network
interface cards that allow each VM to bridged to a separated NIC that connected to different physical
switches.

To evaluate the performance overhead of our host agent, we enable different functionality to be

performed by each components and measure the cost of each operation separately. Table 1 shows the
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Table 1: Host-Based SDN Components and Functionality

Header Field Header Field Packet Flow Table
Modification (Software) | Modification (Hardware) | Elevation Lookup
Kernel Network Driver v X X v
Userspace Service X X v X
Network Interface Card X v X X

all the essential operations performed by each component.

3.6.2 Packet Header Modifications

We evaluate the host agent’s ability to modify the packet based on the controller’s instructions. As
mentioned in Section 3.5, some header modifications, such as the VLAN tagging and checksum recal-
culations, can be offloaded to the NIC. In such cases, the kernel driver only needs to specify the offload
flag, and the NIC will fulfill the corresponding calculation and insertion request. For other header
field modifications, the kernel driver must modify the packet header in software. We will evaluate the
hardware-based and software-based header rewriting separately.

To evaluate both types of header rewriting, we use a TCP socket program to generate network flows
with different packet generation rates. To determine the overhead of packet modifications, we measure
the end-to-end round trip time (RTT) with and without modification under the same forwarding path.
In both types of experiments, we exclude the time required to elevate the packet to the controller by
locally setting a rule to modify the field to a pre-determined value.

To evaluate packet modifications by the driver, which include header fields from the network or
transport layer, we explore the Differentiated Services Code Point (DSCP) field in IPv4 header as
a representative example. In this scenario, we only perform the header rewriting on the responding
machine. We use Wireshark on the sender to record the time that elapses between the first packet
transmission and the receipt of the response from the destination. Such time period captures exactly
one packet header modification.

We first show results of the baseline (no modification) case in Figure 4. Figure 5 and Figure 6 show
the result of different types of header rewrite. Both type of packet modification, the delay caused by
the operation is minimal. The difference between the baseline and the DSCP rewriting appears only
in the 64Mbps case and grows to around 1ms in about 50% of cases. In essence, even in software, the

driver is able to keep pace with the packet rate.
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When comparing the result between no modification (Figure 4) and VLAN tagging (Figure 5), we
see that when the packet rate is under 16Mb/s, the baseline case has a slight advantage that 90% of
trials completed under 3 ms, compared to 5ms for the VLAN tagging. But as the packet rate increases,
the difference between two cases decreases. When the packet rate is 32Mb/s the difference is less than
1ms (around 9ms for baseline and 10ms for VLAN insertion). Finally, when the packet rate becomes
64Mb/s, both cases require around 17ms to complete the round trip for 90% of the trials. Since, in
both cases, the NIC has to process the packet, such result proves the work load caused by the regular
packet processing is the dominating factor, especially when the packet rate is high. The extra work

load induced by the VLAN tagging causes unnoticeable overhead.

3.6.3 Evaluating Arbitrary Forwarding Path Functionality

We examine the host agent’s ability to influence the path used to forward a packet. We confirm

that a packet traverses a specific path by using a simple repeater (also called an Ethernet hub) that
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broadcasts every bit received on an interface port to all other ports. We install a monitoring device
on one of the ports, allowing us to passively confirm the packet transmission on each segment.

While conducting this experiment, we also measure the time required to elevate a packet to the
SDN controller, since the controller dictates the path each flow will take. For each new flow a host
sends, we record the end-to-end RTT, which includes the delay caused by the elevation, the overhead
of one VLAN tagging operation, and the propagation delay. We conducted our experiment using the

following four scenarios:
e 1-hop-forwarding: Host 1 communicates with Host 2 using the VLAN 1 spanning tree.
e 2-hop-forwarding: Host 1 communicates with Host 3 using the VLAN 20 spanning tree.
e 3-hop-forwarding: Host 1 communicates with Host 2 using the VLAN 10 spanning tree.

e asymmetric-forwarding: Host 1 communicates with Host 2 using VLAN 10 (3 hops) for the
outbound path and VLAN 20 (1 hop) for the return path.
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Figure 7: Round trip time with different forwarding path

Comparing Figure 7 to the result of packet modification (Figure 5 and Figure 6) shows that elevation
dominate the overall SDN operational costs. When compared with the 8Mb/s case in Figure 5 , by
taking the difference, we find that it takes around 3-4ms for a host agent to complete a single elevation.
As we will show in our next experiment, this elevation cost is slightly better than an enterprise grade
SDN switch. In Figure 7, we also observe that even different cases take different forwarding paths, the
propagation delay between them does not differ much. This is because the hop numbers we choose for
each case are too small to show the difference.

For the default forwarding case, no elevation or packet tagging is involved, allowing it to serve as the
baseline for the propagation delay between two hosts. The other scenarios examine when multiple hops

are needed to reach the destination. When conducting the experiments, we found that the prescribed
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path indeed followed, that bi-directional communication functioned, and that no TCP re-transmissions
or packet loss were observed. We found that dynamically selecting the forwarding path on a per-flow

basis does not have side effects in terms of packet loss.

3.6.4 Impact on Host Flow Table Size

As we mentioned in Section 2, for a switch-based SDN, fine-grained flow rules that involve matching
filed more than just VLAN and MAC addresses need to be stored in TCAM [50]. As shown by Table 2

below, most of the SDN switches have a flow table that can store less than 5K entries.

Table 2: SDN switch TCAM table comparison

Switch TCAM Table | MAC Table Data

Model Size (entries) | Size (entries) | Source

Dell 8132F 750 128k [36, 16]

HP 540621 1500 64k 36, 27]

Pica8 P-3290 2000 32k [36, 1]
HP 3800 series 4000 64k [28]
Cisco Nexus 9000 5000 92k [12]

For our host-based SDN, we implemented a flow table that was maintained by our network driver.
This experiment examines the performance impact as the flow table size grows. To populate entries
in the flow table, we first generate flows each using a different source port, each flow will be approved
by the controller and associated with a SetVLANID action. After the flow table has been populated,
we randomly select already-approved flows and reuse them to send traffic between two hosts that are
installed with our agent. In this experiment, we enable only the flow look-up and the VLAN tagging
operation in the receiver’s machine. Using the same metric as the packet modification experiment,
we measure the round trip time on the sender’s machine. For each flow table size, we sample 30

conversations and plot the graph.
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Figure 8: Round trip time under different flow table size
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Figure 8 shows that as flow table size increase, the round trip time increase as well which means
it takes more time to look up the table and find corresponding actions. When comparing the result
between 100-entry and 5000-entry, we find that around 40% of the flows take more than 1 msec to
complete the round trip. This is due the linked list data structure we are using, which only support

entry look-up in linear time. A switch to BT tree or hash table can support better look-up time.

3.6.5 Elevation comparison with switch-based SDN agent

We compare the overhead of packet elevation between host agent and switch agent. In this experiment,
we use an HP 2920-24G enterprise switch to connect the hosts and the SDN controller. In the switch
agent case, we configure the switch with SDN functionality enabled. In the host agent case, we
configure the switch as a simple layer 2 learning switch. For the SDN controller, we configured it to
involve minimal computation by simply approving every new flow it receives without any parsing and
decision making. Figure 9 shows the result of the experiment, the result is taken from our previous

work [37].

100%

90% - /

Percent of Trials
w
(=]
&

10% —— Switch Agent
Host Agent

—
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Round Trip Time (milliseconds)

Figure 9: Round trip time comparison between host agent and switch agent

From Figure 9, we can see that the host agent is slightly faster than the switch agents in terms
of packet elevation. Both agents requires around 12ms to complete two elevations plus the packet
round trip. In essence, the switch-based agents may be using slower generic processing hardware for
elevations than is available on endpoints to maintain a reasonable manufacture cost. It is likely that

host-based agents will remain at least similar to switch-based SDNs in their elevation performance.

3.6.6 Impact on Legacy Switch Table Size

From Table 2, we can see that traditional managed switches typically have a switch table containing

entries ranging from 32k up 128k. For some switches, the number of entries a MAC table contains can
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be up to 100 times larger than the number of entries that stored in its TCAM. When a per-VLAN
spanning tree is used in a network, it can cause a single MAC address to be associated with multiple
VLAN ID, inflating the necessary number of entries. However, this inflation would only occur when
the SDN controller wants a host to use a non-default path. Since it can run arbitrary software, the
controller is free to optimize its orders to achieve its traffic engineering goals while minimizing table
inflation.

In this experiment, we analytically show how the number of entries in a switch’s MAC table are
affected by the multiple spanning trees. We first define some notations and assumptions for the
analysis. Suppose originally in a network that configured with a single spanning tree, a switch has to
store a total number of m entries in its MAC table and each entry have a aging time of ¢ seconds. For
simplicity, we further assume there are a total number of m’ unique MAC addresses among that m
entries and each address belongs to a different host. Let’s consider a busy network where each of the
m’ hosts initialize a number of ¢ flows to the other m’ — 1 hosts during a time period of ¢.

Given the above setting, let’s consider the same network and switch when multiple spanning trees
are configured. Suppose our SDN controller only choose to use a non-default spanning tree for p
percent of the flows from every hosts and the spanning tree selected for a flow is randomly pooled from
a total number of ¢ spanning trees. Under this assumption, each of the m’ hosts will add extra entries
to the MAC table. The expectation of the number of unique spanning trees used for the fp flows
originated from a single host are ¢(1 — (1 — %)fp). Therefore during a time period of ¢, the estimated
number of entries increased on that switch is ¢(1 — (1 — %)fp) x m'.

Given the above analysis, let’s consider a large and busy network where there are 10,000 unique
addresses in the MAC table of a switch. each of those 10,000 host generates 15 flows per second that
destined to the other 10,000 hosts. The SDN controller selects 5% of the flows to use a non-default
spanning tree from a total number of 10 spanning trees. As a result, we get that the switch requires
a MAC table of 110k entry size to store all the entries for each of the 10,000 hosts. Even under such
intense activity, a switch that has 128k MAC table size can also handle this situation.

To address the table inflation, a short aging timer can be set to prune unused entries. For a
traditional managed switch, a frame that does not match any existing (MAC, VLAN) pair entry
results in the switch broadcasting the packet out each interface. In our approach, each host is a
member of VLAN 1 by default. Therefore, when a host is asked to use a non-default VLAN ID to
tag its outbound packets, the first packet will be broadcast by the switch. Such broadcasts can be
avoided by tagging the ARP packet which is already broadcast. In our implementation, we allow such

broadcasts to occur for simplicity.
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3.7 Discussion and Conclusion

For operations that are traditionally performed on routers such as NAT or PAT, endpoints can also
perform those operations with appropriate extension implementation. But these operations are already
supported by legacy routers in modern networks and may not need to be integrated into the SDN.
From a practical standpoint, if SDN support for these features were needed, it may be more cost
effective to upgrade a small number of routers to support coarse-grained SDN rules than to upgrade
all the switches in an enterprise.

Our analysis has examined the ability of a host-based SDN to perform the same forwarding path
control and inspection capabilities of a switch-based SDN. The evaluation in Section 3.6 showed that
the performance overhead for our system is negligible. Our host-based SDN can store flow rules much
like a switch-based SDN, but only for a single hosts. This means the SDN controller is no longer
constrained by the limited TCAM table size and can choose to push fine-grained rules even in a large
network. More importantly, all the SDN functionality is achieved without using any SDN middleboxes.
From a economic stand point, our approach allow user to benefit from the SDN without upgrading
any network devices. Such cost reduction may allow organizations to begin mass deployments of SDN

technologies even in large enterprise networks.
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4 Detecting Host SDN Agent Compromise

We have discussed the benefit of moving SDN agent into the host. Such a shift mainly addresses
the visibility and scalability problem for the original switch-based SDN. But such shift also exposes
the SDN agent to new risks. Unlike network-based monitoring systems, which runs on an endpoint
or middlebox that the network operator fully controls, such host-based SDN agents are running on a
user’s endpoint. For an adversary who has compromised the user’s endpoint, the host agent’s reporting
can be silenced or even subverted to provide false information. The compromise can be achieved by
targeting directly to the host-based SDN agent or through vulnerabilities in other software.

To address such problems, we observe that in some cases, the data provided by a host SDN agent can
be corroborated with data from another agent in a remote endpoint. An agent’s reports about network
flows, for example, can be easily corroborated by examining the data flows reported by agents on other
machines. There are also cases where only a portion of the data can be corroborated. For example, a
remote host SDN agent may not be able to definitively confirm application layer headers. With only
partial verification, it may be possible to determine whether the unverified portion is consistent with
the verified data.

In this section, we focus on the host-based SDN agent and examine how its data reporting via the
OpenFlow protocol can be evaluated using data from other SDN nodes. For an SDN agent, it first
seeks guidance from the controller whenever a flow that lacks a matching entry in the local rule cache
is encountered. When multiple SDN agents exist along the communication path, multiple independent
reports are receive on the SDN controller. If the controller detects any inconsistency from those reports,
then it may be able to pinpoint a compromised host agent.

This problem is not unique to our host-based SDN agent. Other security systems, such as firewall
or host-based intrusion detection system that adopt the similar reporting mechanism as the SDN agent

face the same problem. Therefore, the approach can be adopted by other endpoint security systems.

4.1 Corroborated Host-Based SDN Agent Enforcement

In this section, we provide example attacks, their consequences, and how corroborated sensing can help.
We then describe the system and threat model we are considering. We then describe the Corroborated

Host-Based OpenFlow Sensor Enforcement (CHOSE) system and scenarios in which it is effective.

4.1.1 System Overview and Threat Model

In Figure 10, we provide an example local area network for an organization. The organization’s
network is connected to the Internet via a gateway router. The network has a set of switches, each

of which are legacy switches. An SDN controller manages the host agents that are installed on the
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hosts. Communication in this network may be external, such as Host 1 communicating to a host on

the Internet, or internal, such as Host 1 communicating to Host 2.

Network
Gateway

Host 1 Host 3

Legacy Switch — Switch —1 Legacy Switch

Host 2 Host 4

Controller

Figure 10: An example enterprise network with SDN agents on each end-point.

In this example, the trusted computing base (TCB) includes the SDN controller and the net-
work switches. The physical connections between the switches, hosts, and controllers are considered
uncompromised and reliable.

The trusted computing base does not include the host. The report from the SDN agents could be
erroneous or absent due to attacks that have compromise the kernel components that the SDN agent
depend on. In some cases, a set of compromised host agents may collude to with a goal of evading
detection. There are also cases where a host with a compromised agent tries to communicate with
another host with a properly working agent. In both cases, as long as there is an uncompromised
SDN agent along the communication path, the controller can detect the inconsistency from their flow
reports. Such uncompromised SDN agents can be an host agent or a switch agent. If it is a switch
agent, we consider it to be the TCB. We configure such switch agent to elevate the first packet of every
new flow it receives so the SDN controller can receive a complete report.

We consider an adversary who focuses on maintaining persistence, the ability to move laterally
within an organization, and to maintain communication with a command and control system. That
adversary requires covert communication channels. Such an adversary would forgo resource exhaustion
DosS attacks since they are easily detected and can be trivially mitigated by prior work [7]. Accordingly,
we omit any further analysis of DoS attacks.

The defender’s goal is to receive a full reporting of all communication flows that occur in the network
in a logically-centralized controller. The defender wants to block any flow requests from sensors that
are inconsistent with other sensors. With this full accounting of flows, the defender can construct
arbitrary access control policies on the controller. Since the development of effective network access

control policy is its own active research area, we consider it beyond the scope of this work.
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4.1.2 Corroborated Sensing Deployment Scenarios

When hosts are deployed with SDN agents, each will act as an independent reporting system. When
network communications happens between such hosts, the SDN agents are essentially report flow

information about the same communication.

1. Packetln 5. Packetin

2. FlowMod + PacketOut| Controller (6. FlowMod + PacketOut

3. TCP SYN_ 4. TCP SYN |
”|  Legacy
Host 1 Switch » Host 2
8. TCP 7.TCP
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Figure 11: When both endpoints run an SDN agent, if either is uncompromised, that uncompromised agent will alert
the central coordinator of inconsistencies via its PacketIn data.

Using the network in Figure 11 as an example, consider Host 1 and Host 2 are communicating
through a TCP connection. As shown by the graph, the same TCP SYN packet have been reported to
the controller twice through the PacketIn as indicated by line 1 from Host 1 and line 5 from Host 2.
In this case, if the SDN agent on either Host 1 or Host 2 provide faulty flow information about the
SYN packet, or refuse to engage in the packet elevation process, the controller is able to detect such
mismatch.

This detection mechanism goes to the heart of the attacker’s goals. To establish communication for
command and control or to propagate the attack to other machines, the adversary must establish new
connections. However, an endpoint with SDN agent will reveal this low when the adversary makes the
connection attempt, causing the adversary to be detected. The attacker must alter a sensor to avoid
this reporting, but any alteration will result in a mismatch on the remote host’s agent.

In the Figure 11 example, the controller will receive conflicting information and know one of the
two hosts is compromised, but will not know which SDN agent is the one that provide faulty infor-
mation. Such information is helpful in terms of containing the attack, but to definitely determine the
compromised SDN agent, it require other report source. If in the communication path, the switch is
an SDN enabled switch as shown in Figure 12, the controller can determine which host is deceptive.
The SDN enabled switch would provide information about the SYN packet (shown by line 4). Further,
since the SDN switch is in the network’s TCB, its reports can be used as ground-truth data. Without

a ground-truth, network operators would need to check both hosts for a potential compromise.
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Figure 12: When an SDN switch is on the network path, the controller receives PacketIn data that allows it to identify
which endpoint, if any, is faulty.

When two host-based SDN agent corroborate to detect agent compromises, the controller must be
careful with what rules it pushes to the agents. As showed in figure 13, when there are only SDN agent
running in the hosts, the controller needs to use uni-directional FlowMod to detect if either of the host

agent elevate the faulty flow information.
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Figure 13: When one of the hosts is compromised (shaded in black), the controller will notice a discrepancy when
receiving a PacketIn from the non-compromised host (shaded in gray).

In Figure 13, we show the process that would occur if either Host 1 or Host 2 was compromised
in this example scenario. In the event Host 1 is compromised (the left diagram in Figure 13), it could
fail to send a PacketIn in Step 1 or send an inaccurate PacketIn (e.g., a PacketIn with inaccurate
payload or header information) and receive the controller’s approval. However, Host 2 would then
send a PacketIn in Step 5 and the controller would notice the discrepancy between the two PacketIn
messages, deny the flow in Step 6 and drop all the packets in the flow, preventing the application at
Host 2 from receiving them.

If Host 2 were compromised, which is depicted in the right side of Figure 13, a similar process
would occur, but the detection would be slightly delayed. In this case, the first 4 steps would proceed

and Host 2 would either neglect to provide a PacketIn in Step 5 or provide inaccurate information.
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Since the SYN packet would already have reached Host 2 in Step 4, Host 2 could process the message
and respond in Step 7. However, if the controller only pushes a unidirectional FlowMod rule in Step 2,
Host 1 would again elevate the packet to the controller in Step 9. At that point, the controller would
note that Host 2 failed to send a proper PacketIn associated with the SYN packet and would insert a
denial FlowMod into Host 1 in Step 10, preventing the application at Host 1 from communicating with

the compromised host.
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Figure 14: If both hosts collude (shaded in black), only a middlebox or an SDN switch between the hosts can be used
to detect the malicious flows.

When both hosts are malicious and only legacy switches connect the hosts, it is possible for the
hosts to collude and choose not to elevate packets to the controller. Without a middlebox or an SDN

switch that connects the devices (as shown in Figure 14), this scenario cannot be avoided.

4.2 Uncorroborated Data in Host SDN Agent

For the host-based SDN agent, the flow information it can provide through PacketIn can contain more
than just the packet itself. Because of the visibility into the host. The PacketIn can also contain
information about the user and originating application. Such contextual information is only available
at the host that originate the packet therefore cannot be easily matched like the port and address
information.

There are cases a controller may be able to detect obvious signs of forgery, such as a connection
on port 22, commonly associated with the SSH protocol, purportedly originating from an email client.
In this case, the controller needs to know what applications are network flows usually associated with.
When an trusted agent (such as an SDN switch) reports authentic flow information, the controller
can use this information to look up its supposed application and compare it with the next or previous
report that describe the same flow. An application discrepancy indicate the sign of agent compromise.
However, for a sophisticated attacker, he would likely be able to craft contextual data that would

plausibly be associated with the verifiable network headers and packet payload.
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To create an association between the network flows and their originating applications, learning-
based algorithm might play a role. Previous work [3] has shown that by observing a sequence of packets
of a network flow, a learning-based algorithm can classify such a packet sequence to its originating
application. Such an approach does not depend on the payload of the network packet but only use
header information and other collected statistics. This approach, although provide extra application
information, cannot give affirmative answers due to the accuracy of packet classification algorithms [49)].
Also, the flow report from a host SDN agent may contains information like process identifier that is
verifiable only on the host itself. To gain trust in information that cannot be corroborated or inferred,
trusted hardware may play a role. However, when a root of trust or a trusted execution environment
is established, one must ensure that the dependent components are all in the trust chain or all in the
trusted environment. Such a requirement might place extra as constraint that limits the appliability

of these approaches.

4.3 Implementing the CHOSE System

The CHOSE system has three components: 1) a switch-based SDN agent on physical switch that
comply with the OpenFlow protocol, 2) the host-based SDN agent as we described in Section 3, and
3) a custom SDN controller that manages connections for both switch and host SDN agents. The
implementation of the host agent have already been discussed in Section 3 and the switch agent is
running on a enterprise grade SDN switch. In this section, we focus on the implementation of the SDN

controller.

4.3.1 SDN Controller Customization

The SDN controller must support both the host-based SDN agent and communication from traditional
agents running on switches. This controller distinguishes the different SDN agent type based on the
destination transport layer port and handles the communication in separate threads of execution.

When receiving a PacketIn, the controller must determine what SDN agents would be on the
path from the source machine to the destination for that flow. If the PacketIn arrives from the first
expected SDN agent on the path, the controller consults its normal policy rules to determine whether
the flow should be allowed. If not, it sends FlowMod and PacketOut messages to the agent that order
the packet and all other packets in the flow to be dropped. If the controller policy dictates the flow
should be allowed, the controller stores a record of the flow in a local list of active flows and then sends
FlowMod and PacketOut messages to the requesting SDN agent to approve the source to destination
direction of the flow.

Since the controller sent a FlowMod only to the originating SDN agent during its approval, subse-
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quent SDN agents on the path will again elevate the packet to the controller. If the controller receives
a PacketIn from an SDN agent, and that agent is not the first agent that should have appeared on
the flow, the controller will check to see if it already has an entry for the flow in its active flows list.
If it does not, the controller will send FlowMod and PacketOut messages to the agent that order the
packet and all other packets in the flow to be dropped. It will also make note of the SDN agent that
failed to elevate the flow. Alternatively, if the controller sees that the flow is in its active list and was
previously approved, it will order the SDN agent to approve the flow.

In this approach, the controller makes only unidirectional forwarding approvals in its FlowMod
messages. This is essential to detecting compromised or malfunctioning agents that are at or near the
destination. When a reply is issued, such as the SYN+ACK packet in a TCP connection, each agent
on the reverse path will again elevate the packet to the controller. At that point, the controller can
confirm it has received all the expected requests from agents in the original direction. It can then send a
FlowMod message that updates the original uni-directional flow approval to instead allow bi-directional
communication on each agent on the path.

With this approach, the controller receives corroboration on packets elevated from each OpenFlow
agent any time there are multiple OpenFlow agents on the path. Further, if at least one OpenFlow
agent on the path is not compromised, the controller will be able to detect the existence of any

compromised agent on the path that omitted or modified the flow information.

4.4 Evaluating the Security and Performance of CHOSE

In this section, we describe our experimental setup, our performance evaluation process and results, and
the security evaluation methodology and results. In our evaluation, we aim to answer two questions:
1) What overhead does corroborated sensing introduce to an existing SDN deployment? 2) What

security guarantees does corroborated sensing offer to such a system?

4.4.1 Experiment Setup

In both our performance and security evaluation, we configure our network to match Figure 11. We
use an HP 2920-24G enterprise switch with its SDN functionality enabled to connect our hosts and
controller. Our controller runs on a laptop that runs VirtualBox to host Ubuntu 16.04 VM. We
configure the controller with 2 IP address and place one of the IP addresses under the control of SDN
so that the communication between sensors and controller will also be subject to the SDN’s elevation
model. We then connect two end-hosts to the switch. The first host is a Mac mini that runs VirtualBox
to host a Windows 10 VM. The second host is a Macbook Pro that runs VirtualBox to host a Windows
10 VM.
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4.4.2 Performance Evaluation

To determine the overhead associated with corroborated sensing, we compare it with regular SDN
behavior in both switch-based and host-based SDN configurations. We create a HT'TP client program
using winsock2 to connect to HT'TP server written with the Mongoose web server library. Our client
creates connections in a serial fashion.

We ensure that the tested SDN agents on the hosts and switch will perform a flow elevation for
each new connection. Since the system uses FlowMod rules to avoid elevating subsequent packets in
a flow, the overheads associated with packet elevations will only affect the first round trip in a flow.
Accordingly, we use the round trip time (RTT) on the first set of packets in the flow (e.g., the SYN and
SYN+ACK TCP packets) as our performance metric.

By comparing the time required under varying deployment scenarios, we can determine the latency
associated with elevation requests from switch and end-host agents along with the time required for

the controller to correlate flow requests. We use the following four scenarios in our testing:

e Scenario 1: Switch-Based SDN Agent Only: In this scenario, neither of the hosts run
an SDN agent and simply transmit packets using the native Windows networking stack. The
physical SDN switch elevates each new connection it sees to the SDN controller. The controller
only processes standard OpenFlow packets and it approves all new flow requests it receives. Since
this controller engages in minimal computation, this scenario provides a baseline for a physical

switch’s performance.

e Scenario 2: Host-Based SDN Agent Only: In this scenario, both of the hosts run our
Windows SDN agents. The agents gather end-host application context and flow data and include
this information in elevation requests to the controller for each new connection. In this case, the
controller processes the modified OpenFlow messages for the host sensors. However, the physical
SDN switch is configured as a simple learning switch and does not send any elevation requests

to the controller.

e Scenario 3: Both Switch and Host Agent: This scenario uses OpenFlow agents at both hosts
and the physical switch. The controller processes packet elevations from both types of agents.
However, the controller statelessly approves the flows independently and does not perform any

correlation or analysis of the requests across SDN agents.

e Scenario 4: Full Sensing and Flow Correlation: In this scenario, the SDN agents run at
the hosts and the physical switch. The controller examines the elevations across SDN agents and

correlates the requests to identify discrepancies or missing elevation requests.
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4.4.3 Round Trip Timings

For each of these scenarios, we conduct 500 trials, with each trial consisting of a new connection
in which the RTT for the initial packets are measured. Once the connection is established, it is

immediately terminated and the next trial begins. We present the results of these trials in Figure 15.
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Figure 15: Round-trip time of serial connections across 500 trials.

The overhead of corroborated sensing is the timing difference between the third scenario, in which
host and switch agents are used but the controller acts statelessly, and the fourth scenario, in which
the SDN agents are identical as in the third scenario but the controller correlates flows across SDN
agents. In Figure 15, the distribution curve of the round trip times associated with these two scenarios
largely overlap, indicating that the performance costs of corroborated sensing are not significant.

From these experiments, we see that most flows complete in less than 15 milliseconds, even with
corroborated sensing, and that around 90% of flows complete in less than 20 milliseconds. The perfor-
mance of the host-based only sensor is faster in most cases than the switch-only sensor. This appears
to be due to the physical switch using its relatively-slow integrated processor for performing flow ele-
vations and the TCAM that store the flow is relatively slow to access. As one might expect, the RTTs
in the third scenario, which requires elevations from the hosts and the switch, are roughly the sum of

the times in Scenarios 1 and 2.

4.5 Security Evaluation

We examine the effectiveness of the corroborated sensing approach using the configuration described
by Scenario 4 in the performance evaluation. We create four cases in which we vary the proper

operation status of the client and the server. Across the four possible combinations, we vary whether
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the host elevates packets normally or whether it evades proper operation by not elevating the packet

appropriately.
Table 3: Number of connections allowed and denied by scenario.
Case Client Server | Client Flows | Server Flows | Client Flows | Server Flows
Number | Status | Status Approved Approved Rejected Rejected
1 Normal | Normal 500 500 0 0
2 Normal | Evades 500 0 0 500
3 Evades | Normal 0 N/A 500 N/A
4 Evades | Evades 0 N/A 500 N/A

In Table 3, we show the results of testing these four cases across 500 trials each. As expected,
when both the client and server are operating normally, all the flows are approved. In the second case,
where the client acts properly but the server agent does not, the initial packets are approved and reach
the server, but the server’s responses are dropped because the server failed to elevate both the client’s
original packet and the server’s response packet to the controller. Scenarios 3 and 4 proceed identically
since the controller denies the packets when the SDN switch elevates them because the client failed
to originally elevate the packets. In that case, the packets are discarded before the server can receive
them, so the server never knows to create a response.

As we discussed in Section 4.1.2, if the switch between the hosts is legacy, the uncompromised host
triggers the controller’s detection rather than the SDN switch. Further, if both hosts are compromised
with a legacy switch, the communication goes undetected. We omit these cases for brevity.

In these experiments, we simply disable the sensor rather than having it create forged data. Since
the flow decisions use the network tuple (IP addresses, ports, and transport protocol), any alteration
of these fields would constitute a new flow and thus the forgery in an elevation request would cause the
actual packets to not match a flow rule when an uncompromised agent elevates the packet, resulting
in a drop rule by the controller. Alterations of other fields in the packet headers could be detected

simply by including those fields in the controller’s local active flows table.

4.6 Discussion

In this section, we examine how network operators can detect compromises that affect the accuracy
of data reported by host-based SDN agent by correlating that data with other sensors in the network.
We show that if a single non-compromised sensor exists on the network path a flow takes, a centralized
network controller can detect discrepancies in the information reported by any compromised sensors
on that same path with perfect accuracy. Our performance results show that this corroborated sensing
comes with little extra cost over a standard OpenFlow deployment. In around 90% of cases, the round

trip time of the first packet exchange in a connection took less than 20 milliseconds, which includes
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all of the required flow elevation. Since this flow elevation occurs only during the first round trip of
a new flow, these overheads are unlikely to affect the user experience while offering tangible security

benefits.

35



5 Monitoring on Server Endpoint

In this section we move our focus to software on the server endpoint. Unlike client-side software,
software on the server endpoint, such as a web server or mail server, usually has to provide service for
multiple users at the same time. The resources and execution context on that single server is being
shared among different users. Such sharing can cause security problems on both the server side and
client side. In many cases, the server is acting as fullly privileged intermediate proxy between the users
and back-end resources. This situation can allow adversaries to modify or alter other user’s back-end
data in cases of a server compromise. An adversary may further seek chances to propagate the threat
to other users when they access the same compromised server. Server application’s action are usually
hard to analyze as well. Simply monitoring the execution trace of the server application will only
generate a sequence of intertwined data. In the case of an attack, the defender cannot easily attribute

execution traces to different user’s requests in order to locate the source.

5.1 Single-Use Server Model

To address the problem mentioned above, we explore an one-to-one client-server (C/S) model that
isolates different users even when they are accessing the server at the same time. The one-to-one C/S
model can gives each user a separated execution context that allows us to exercise a least privilege
strategy. With such a separation, each server instance can be constrained differently based on the user’s
role. This separation helps with the monitoring as well, since each server instance only generates the
execution trace of a single user. This naturally classifies the monitoring data into different groups and
narrows down the scope if any of those data require further analysis. Previous work has tried building
such server model using virtual machines [52], but VMs are heavy-weighted and resource-consuming:
That approach cannot scale to a large number of server instance.

In this section, we give an overview of a single-use server model that we design and implement.
Then, we focus on the monitoring infrastructures we build to work with the single-user server model.
Instead of using virtual machines, our single-use server model leverages containerization as a light-
weight runtime to hold multiple server instances. Container also benefit the monitoring. As mentioned
in Section 2.7, unlike virtual machine, containers share the same system with the host but still provide
a certain level of isolation. This allow us to clearly view any in-container activity without using

hypervisor monitor approach. Our single-use server model consists of the following components:

e Application Container: The container that runs the server applications. In our design, we

consider the application container as untrusted and can be vulnerable to attacks.

e Container Manager: This entity is responsible for allocating and recycling of any application
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containers. It manages a pool of running application containers. The manager will respond the
client-to-SuS middlebox when it receive a request that ask for new containers. The manager
also needs to maintain back-end account and password information that associated with each

application container.

e Authentication Container: For applications that request user to authenticate, this container
retrieve the credential and perform any necessary validation on behalf of the application con-
tainer. The authentication container also communicate with the container manager in case where

a permission adjustment is required.

e Client-to-SuS Middlebox: This middlebox act as a request demultiplexer for the SuS model.
Any client data must reach this middlebox first before being forwarded to their assigned server

instance. This middlebox also perform monitoring, logging of user’s network trace.

e SuS-to-Backend Middlebox: This middlebox perform monitoring and logging of communica-
tions between the application container and back-end resources. When retrieving data from the
back-end resource, it will compare the command with a set of approved actions to detect any

unapproved access.

In our single-use server model, a server application is placed in the application containers. Each
application container is initially configured with a least-privileged back-end resource account. When
a user access the server, the client-to-SuS middlebox will determine which application container this
request should be forwarded to. When a user authenticate, the authentication container will verify
user’s crendential and inform the manager to adjust the permission to match the priviledge associated
with the authenticated user. When a user exit or remain inactive for a period of time, the client-to-SuS

middlebox will inform the container manager to reclaim this inactive container.

5.2 Client-to-SuS Middlebox

One problem with running such a single-use server model is that we have to differentiate different
users and assign them to the correct server instance. For different server applications, the approach
might differ. For a SSH server, a user needs to authenticate itself before the access is granted, in such
case, its original authentication process can be incoparate into the autentication container to build
portal that first identify the user and then dispatch the user to its own server instance. If a user is
allowed to access the server first as an anonymous user and then authenticate itself, the process will
be a lot more complicated. In this section, we use web server as an example, and discuss the design
and implementation how the client-to-SuS middlebox can differentiate different user and proxy their

request to the assigned web container.
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In a web application, a user’s requests are usually in a HT'TPS packets, our font-end middlebox first
perform a SSL termination that not only alleviate server instance of the extra computational pressure
but also reveal the HTTP header that allow us to use customized header filed to differentiate users
before performing any forwarding. To identify a user, our approach uses an HTTP cookie, which we
call the SUS_DEMULTIPLEX_COOKIE. If a user contacts with the client-to-SuS middlebox without or with
an expired cookie, the middlebox treats it as a new client and asks the container manager to assign
a new container for this user. After receiving the response, the middlebox forwards the user to its
newly assigned container. Upon receiving the first response from the server instance, the middlebox
uses a Set-Cookie header filed to transfer the cookie back to user so that the next request from that
user will contain the same cookie information to identify itself. The middlbox needs to updates an
internal mapping structure between the cookie value and the container IP address. In cases where
a user’s request already contain a valid SUS_DEMULTIPLEX_COOKIE cookie, the middlebox performs a
mapping lookup to retrieve the appropriate container IP and forwards the requests accordingly. In
our design, each entry in the mapping structure contains a timestamp value which is also maintained
by the middlebox and is used to track inactive containers and allow the container manager to perform

any necessary container pruning.

5.3 Container Auditing

The client-to-SuS middlebox discussed allows us to obtain a clean view of the user’s requests. Using the
information between the user’s identity and its assigned container IP, we can easily separate different
user’s requests. Such separation greatly reduced the number of requests that can reach the server
instance. Therefore, the server’s response actions are also simplified. If we are able to monitor and
record theses actions, a connection between a single user’s request and the response of that request
can be built to help analyze a server application’s action. Since the Docker framework is one of the
most popular in the market [15], in this section we focus on the Docker containers and discuss the
detail of how we leverage the Linux’s auditing system to monitor and record the action of each server
application container.

The Linux auditing system is a native feature on Linux that collects different system activities. It
works at the kernel level and can observe every process’s operation, such as system calls or access to
the file system. Although it is a versatile tool for monitoring process, it does not have a view inside
each container. When a host machine runs multiple server instance, each within a container, the native
auditing system can only observe different audit records from different processes but cannot associate
the audit data with its container if the processes that generate the audit record is running within a

container. To address this problem, we design and implemented a container auditing program that log
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audit record on a per container basis.

5.3.1 Overview

As we mentioned above, the native auditing system only views the process that runs on a host machine.
To get a per container audit record, an obvious approach is to install the auditing program inside of
each container and log the record along with the container’s identity. Then, all the logged record are
generated by in-container processes. Such an approach is straightforward but very costly. Because
it requires each of the containers to perform extra works, in a host with a large number of running
containers, this approach may not scale well. Therefore, we perform the auditing from outside the

container and try to determine if a audit record belongs to a in-container process or not.

5.3.2 Container Startup

To achieve the above goal, we must first understand the startup process of a Docker container. In

Listing 1, we shows the process hierarchy of a running container.

Listing 1: Process hierarchy of a running container

systemd,1 splash
containerd, 1321
containerd-shim, 2740 ...
apache2, 2772 -DFORGROUND
apache2, 3193 -DFORGROUND
apache2, 3194 -DFORGROUND
apache2, 3196 -DFORGROUND

containerd is a process that manages the container life cycle. When a container starts, the containerd
needs to invoke RunC, which according to the OCI (Open Container Initiative) specification, will load
the the image and execute the command that starts the application process. This process makes Runc
the parent process of the container application process. After RunC finishes its job, it will exit and a
re-parenting process makes containerd-shim the new parent process of application process. After the

entire procedure is finished, a container is setup.

5.3.3 Container Auditing Design

Processes that are started during the container startup will have containerd -shim as their direct
parent. For processes that are started later, we can iterate up through the process tree to find
containerd-shim in the path. For processes that are not running within the container, the same

process tree searching will end at systemd without traversing a containerd-shim node. With this
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knowledge, we can label all the process on a host machine with container information and separate the
system-wide audit records and associate them to each running container. To achieve the above goal,
we need the following functionality:

Notification of the Process Event: To determine whether a process belongs to a container, a
straightforward method require us to run the pstree command every time we receive an audit record.
Such an approach can be very costly if a considerable number of auditing rules are added. Instead,
we decide to maintain a process tree so our container auditing program can directly access this in-
memory process tree whenever it is needed. With correct data structures, the program can quickly
iterate through the tree and determine if a audit record belongs to a in-container process.

To build an in-memory process tree, we need a real-time notifications of the system’s process
events. When receiving a process start event, our program needs to insert a new node into the tree
and delete a node if a process exit event is received. Except for maintaining the in-memory process tree,
process event notifications also allow us to immediately become aware when a container is started. By
examining the process name and looking for RunC and containerd-shim, we gain the parent process’s
identifier of any in-container processes. Such information allows us to determine whether a process
tree iteration should stop or continue.

Notification of Docker Container Event: The functionality mentioned above allow us to
quickly determine whether a process is an in-container process or not. Such information is insufficient
because we still do not know which container an audit record belongs to. This problem can be solved
when we have notifications of Docker container events. When a container is started, we will receive
a notification about the container’s identifier along with its initial process’s identifier. Because the
containerd-shim process is usually the direct parent of this initial process, we are able to create a
mapping between containerd-shim’s identifier with container’s identifier.

When the above two approaches are combined, we can start performing a top-down labeling of the
entire process tree as we receive more process events. As showen in Figure 16, when inserting a node
into the process tree, the container for this newly created process can be immediately determined by
checking the label information of its direct parents. If its parent process is unlabeled or labeled as a
non-container process, then this child process is labeled as a non-container process. Otherwise, it is
labeled as a in-container process and we associate this new in-container process with its container’s
identifier.

Linux Auditing Record The last functionality we need is to receive Linux’s auditing record in our
program. The Linux’s native auditing program consists of two parts: a kernel module named kauditd
that perform the actual collection of system’s auditing record and a userspace service named auditd
that receive record from the kernel. Since the auditd does not consider an in-container process’s

auditing record differently, we cannot directly use the native userspace program. To get the auditing
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Figure 16: Tree structure to determine if a process is a in-container process

record, we must receive messages from kauditd. One way to achieve this is through netlink socket
communication which requires a NETLINK_AUDIT socket type and parsing of the kernel’s message to get
the record. Another method is to leverage an audit record dispatcher, audispd, which can parse and
forward the kernel’s message to any user defined audispd plugin. We use the latter method to receive
our audit record.

To summarize, with notifications of Docker container events and the system’s process event, we are
able to create a in-memory process tree that helps us determing in-container processes and associates
them with their container identifier. With the help of audit record dispatcher, we can receive a complete

audit record from the system and perform further processing for each record.

5.3.4 Container Auditing Implementation

We implement our container auditing program using the C++ language. To work with Linux’s native
auditing system, we use the libaudit [44] and libauparse [11] libraries. To get notifications of

Docker container event, we pipe the output of the shell command docker event to our program. To
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get process event notification, we implement a netlink socket that receives and parses the kernel’s
process event notification. For the process tree, we implement it using the map structure from C++’s
standard library. Each process node is defined as an entry which can be accessed from its process’s
identifier. For each process node, we implement a struct that contains its parent process identifier and
another map that store the identifiers of children processes. Using this data structure, we are able to
quickly locate a process in the tree and perform parent tracing to determine its container information
if it is an in-container process.

The overall structure of our program is shown in Figure 17. Each of the components mentioned in
Section 5.3.3 update the process tree structure. We implement another queue that allows the audispd
program to add an in-container process’s audit record into the queue and the worker process will
perform any further parsing and adding container identity information with each audit record. The
reason for such implementation is because the kernel space only has a very limited buffer to store audit
record and the auditspd tool can only send one record at a time. Therefore, our program must first

process each record as fast as possible to not overflow the kernel buffer.
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Figure 17: The components in the container audit program

5.3.5 Evaluation

In this section, we evaluate our container audit program by verifying if it can indeed differentiate audit
records that belongs to an in-container process and a non-container process.
To conduct the experiment, we use system call audit rules as an example. We first specify three

different system call audit rules using the auditctl program. Listing 2 shows command to add system
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call rules. For each of the rules, we specify two different system calls using the -8 parameter and name

each rule after the -k parameter.

Listing 2: System call audit rules specified for the experiment

sudo auditctl -a always,exit -F arch=b64 -3 getpid -S getppid -k "testl-syscall"
sudo auditctl -a always,exit -F arch=b64 -S mmap -S brk -k "test2-syscall"

sudo auditctl -a always,exit -F arch=b64 -5 setitimer -S getitimer -k "test3-syscall"

On a host machine with multiple running containers, we write three testing program which we name
testl, test2 and test3. These three programs will repeatedly execute the system calls specified in the
audit rule that ared named after the program’s name. Program testl and test2 run inside different
containers while program test3 runs on the host machine. We record the logged audit records from
our program and check for any incorrect association between the container’s identity and audit record.
We found that our container program can correctly differentiate audit rules that are generated by
processes that are in different container. Our program never mistakenly records any audit record

generated by non-container processes.

5.3.6 Discussion

In this section, we discussed the monitoring component that we implement to work with the single-
user server model. Our evaluation showed that the container auditing program can correctly log audit
record on a per-container basis. Future evaluations will examine the performance of our container
auditing tool, such as evaluating the auditing program’s CPU and memory usage as more rules added.
We also need to determine what types of audit rules can play a significant role in capturing server

application’s action.
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6 Future Work and Conclusion

The goal of this work is to address some limitations of the current approaches and technologies for
network and endpoint monitoring. In Section 3, we focus on the host-based SDN system and note
that previous attempts to move SDN agents from switches to host only realize part of the functionality
of switch-based SDN. The missing functionality may limit host-based SDN deployment as a versatile
security system. Our implementation empowers host-based SDNs with forwarding path control and
packet rewriting while keeping the SDN’s original design paradigm. Such improvements give host-
based SDNs more control in the network that other network-based monitoring, but also grant them
with visibility into the software’s action like a host-based monitoring approach. In Section 4, we focus
on the endpoint compromise problem that is faced by our host-based SDN. We made the observations
that multiple host agents in a network are a set of independent reporting systems, that in many cases,
report about the same endpoint activity. Such information redundancy can be used to help detect
agent compromises. Based on this observation, we implement an SDN controller that corroborate
individual agents’ reporting to detect any faulty or inaccurate flow reports which indicate a sign of
agent compromise. We also realize that such detection mechanisms and deployment of multiple agent
in a network is essential to form defense-in-depth in which each agent’s control overlaps with other.
Such security benefit might have other potential applications we might explore in the future. In
Section 5, we addressed the difficulty of monitoring server application’s action. By taking advantage
of a single-use server model, we implement monitoring infrastructures that first separate different users’
requests at the front-end and log audit records that describe each server instance’s response to that
single user. The separation between different users allow us to get a clean view of user’s request and
server’s response. Our infrastructure greatly reduced the monitoring scope. The audit records when
associated to the network traffic build a connection between the consequence and cause, allowing us
to understand the way a server application works at functional level. Taking advantage of container’s
disposable feature, these data record can even help us replay the past event step by step. Such replay
functionality will help us to ease the forensic analysis. We hope to build a tool that help defenders to
pinpoint the cause of the problem. In the future, we will explore to what extent we can facilitate the

forensic analysis process by leveraging the separation under the single-user server model.
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