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Abstract

Wireless device development requires extensive testing of the hardware and software that

is being developed. Existing technologies used to test Bluetooth systems are limited by both

design constraints and high hardware costs, restricting their usefulness. This project devel-

oped and demonstrated a Bluetooth testbed addressing limitations with existing systems

by taking a unique approach to data collection. The three parts of this project are: a

throughput test with data logging, a firmware loading utility for the hardware used in this

project, and an interface with a commercially available Software-Defined Radio.
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Chapter 1

Introduction

Wireless communications technology is rapidly growing in speed, reliability, and impor-

tance in the modern world. The ubiquity of smartphones, which combine multiple wireless

technologies into one device, causes high demand for improvements in wireless communi-

cation systems. Experts predict the number of internet connected devices to more than

triple to 70 billion between 2015 and 2025; this increase is largely driven by expanded use

of wireless technologies in third-world countries and Internet-of-Things (IoT) devices pri-

marily using Wi-Fi and Bluetooth (BT) [23]. Existing data and predictions for number of

internet-connected devices and devices per person are shown in Figure 1.1. This increase

in the number and kinds of wireless devices drives demand for supporting equipment in all

stages of wireless device development. This project focuses on one aspect of the development

process: hardware validation of BT devices in a controlled wireless environment.

Development and testing of wireless devices requires both a controlled wireless environ-

ment and equipment capable of capturing, analyzing, and recording transmissions from the

test device. Environmental control is usually done using a Faraday cage or an anechoic

chamber, often large enough to walk into and set up a bench for equipment. Processing

the wireless signals is usually performed by dedicated hardware that is limited to a single

protocol. One leader in this market, octoScope, offers a unique combination of environmen-

tal isolation and protocol testing. Anechoic chambers are available in sizes ranging from a

bread box to a small refrigerator, with an example shown in Figure 1.2. Chambers can be
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Figure 1.1: Historic and future trends for global internet-connected devices, originally
from [23]. The steep increase between 2015 and 2025 is due to emerging markets and
IoT devices.
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Figure 1.2: A small octoScope system with a Wi-Fi router being tested [15]. On top of the
anechoic chamber is the server and emulation hardware allowing for simulation of multiple
Wi-Fi access points and end-users. This project worked towards adding Bluetooth support
to these systems.

connected to each other to extend the enclosed environment. In addition to such chambers,

wireless hardware is also available to emulate many simultaneous Wi-Fi networks with con-

nected devices to allow the device in development to be tested in a real-world environment.

Such hardware also is available to emulate standardized wireless settings, such as inside a

house, and make directional antenna performance measurements. This tight integration of

environmental controls with protocol testing allows for faster, more accurate data collection

and represents the future for this type of equipment.

Current BT development systems have a number of limitations even if a system like those

produced by octoScope is used. Most of these limitations exist because the test system is

not part of the BT connection it is monitoring. Data availability about the connection being

tested is generally high, but hardware that can accommodate the channel hopping system

used in BT is expensive and requires large computational resources. Additionally, while

data about environmental factors is readily available, data contained within the packets

themselves may be unavailable due to encryption used in the connection. Partially as a
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result of the encryption issue, statistics about the connection itself are largely linked to

physical parameters and do not include analysis of data carried over the link itself.

The goal of this project was to develop a BT system that will enable testbeds to be

a partner in the link instead of an outside observer. Acting as a link partner lessens

hardware performance requirements because a commercially available BT radio can be

used that automatically manages the channel changes and encryption instead of a Software-

Defined Radio (SDR) with custom software and enough processing power to perform all the

calculations in real time. In addition to lessening hardware requirements, a commercial

BT radio can give context-aware analysis of data crossing the link that the SDR cannot.

To support the BT radio used in this project, a customizable firmware loader utility was

built to allow rapid switching of test scenarios ranging from human interface devices to

data transfer. Lastly, an external receiver was added to fill in gaps in the availability of

environmental data, addressing one of the major limitations of a BT radio approach.

This thesis is organized as follows: Chapter 2 presents necessary background information

on the design of BT communication, various existing BT testing systems, and different data

formats encountered in this project. Chapter 3 presents the proof-of-concept data collection

system, demonstrating capabilities for collection and analysis of a wireless file transfer.

Chapter 4 covers the development of a customizable firmware loader purpose-built for the

hardware used in this project. Chapter 5 presents the framework for a secondary receiver to

augment environmental data collection capabilities. Lastly, the final chapter discusses the

overall outcomes of the project and highlights areas for improvement in the future, should

the project be continued.
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Chapter 2

Overview of Bluetooth and Related

Technologies

Bluetooth (BT) is a family of wireless communication standards using the 2.4GHz

Industrial, Scientific, and Medical (ISM) band, a section of the electromagnetic spectrum

with fewer regulations and no licensing requirements [24][25]. Originally conceived as a

wireless replacement for RS-232 cables, it has grown to be used for a multitude of applica-

tions, from sensors and game controllers to audio and data transmissions [5]. A separate

protocol named Bluetooth Low Energy (BLE) was introduced in 2010 alongside the renamed

Bluetooth Classic (BTC) in BT version 4.0, focusing on reducing power requirements to al-

low better connections for battery powered Internet-of-Things (IoT) devices. BLE is similar

to but not compatible with the original BTC, although many devices support both proto-

cols. Key differences in physical parameters between BLE and BTC are listed in Table 2.1.

This project was based on a BLE system so information will be for that protocol unless

otherwise noted.
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Figure 2.1: BLE layer diagram. The HCI is located between the link layer and higher parts
of the protocol stack.

2.1 Bluetooth Communication

2.1.1 BLE Protocol Stack

Below the application layer, the BT stack is split into two sections, as illustrated in

Figure 2.1: the “host” and the “controller”. The controller handles the physical and link

layers including much of the pairing process, while the host handles everything between the

link layer and the application layer. Between the host and controller is the Host Controller

Interface (HCI). The host and controller can be either split between the BT chip and a

higher level CPU, such as in a cell phone, or both can exist on the same BT Integrated

Circuit (IC).

2.1.2 Physical Properties

BT has multiple device classes based on transmit power. Most devices transmit at

+4dBm, which gives roughly 33ft of range, depending on the surrounding environment [24].

The most powerful transmitters broadcast at +20dBm, enabling over 300ft of range de-

pending on receiver sensitivities.

Table 2.1: Comparison between BTC and BLE physical parameters. Important differences
are the hopping times and number of channels.

Version Base Data Rate Coding Scheme Number of Channels Hopping Time

BTC 1Mbps GFSK 79 625µs
BLE 1Mbps GFSK 40 75ms-4s
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Figure 2.2: BLE channel locations in the ISM band. The large red background channels
are the most frequently used Wi-Fi bands in the US market. The gold channels are the
BLE advertising channels, chosen to avoid interference from Wi-Fi to increase reliability
of discovering other devices. Note that they are numbered out-of-order from the regular
channels.

BLE splits the ISM band into 40 different 2MHz channels. Three of these 40 channels

are reserved as advertising channels, used to allow devices to see each other, and to initiate

a connection [24]. These channels were selected to avoid the most commonly used Wi-Fi

channels, as interference between Wi-Fi and BT can cause problems for both protocols [4].

Figure 2.2 highlights the advertising channels used to avoid Wi-Fi interference. The other

37 channels are used for transmissions between connected devices.

Detection of broadcast packets is based on a one byte preamble, used to synchronize

receivers before transmission of packet bits, and a four byte Access Address (AA) [18][11].

The AA for connections is a semi-random number and created during connection setup,

and the AA for advertising channels is a constant set by the BLE specification. Using both

a preamble and an AA increases receiver efficiency since the receiver can stop processing

packets not addressed to it.

Broadcast packets contain a payload and a Cyclic Redundancy Check (CRC) after the

AA. Both of these fields are whitened before broadcast using the output of the Linear

Feedback Shift Register (LFSR) shown in Figure 2.3. The whitening process randomizes

bits before broadcast to remove long sequences of 1s or 0s that could confuse a receiver.

This does not improve security, as the LFSR connections are known and the state can be

easily brute-forced [6][18]. The structure of a broadcast BLE packet is shown in Figure 2.4.
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Figure 2.3: BLE packet whitening LFSR [24]. The LFSR is initialized for each transmission
with a value known to both the master and the slave.

Preamble Access Address CRCPayload (variable length)

Whitened

Figure 2.4: BLE packet structure. The payload can be any size from 2-257 bytes [1]. The
Preamble and AA are not whitened because they are used for packet detection by a receiver.
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Figure 2.5: BLE connection interval timing diagram. Packets other than the heartbeat
packets at the beginning of the connection event are not required.

Broadcast BLE packets are usually intended for a single device, either the master or

the slave of the connection. Unlike many other master slave systems, a BT slave can have

multiple masters and itself be a master for other devices. Each master and its slaves are

referred to as a “piconet”, and a group of interconnected piconets comprise a “scatternet”

as shown in Figure 2.6. The master slave system primarily manages the Time-Division

Multiple Access (TDMA) scheme, where the master tells the slaves which time segments

they can use to communicate. BT connections can dynamically change the master/slave of

a connection between two devices, which is necessary for some data transfer protocols [24].

BT uses frequency hopping across many channels to avoid environmental interference.

Channel hopping is deterministic so the master does not need to inform the slave of the

transition. Additionally, the hopping sequence is unique to each master/slave connection,

not the entire piconet. The channel is changed every 625µs in BTC. For BLE, the channel

changes every Connection Interval (CI), which can range from 75ms to 4s and is unique to

each connection. A CI starts with a packet to and from the slave and may contain additional

packets [24], as shown in Figure 2.5. These heartbeat packets are used to detect connection

loss and manage other administrative functions of the connection. In adaptive modes, the

master may mark channels as bad in the connection channel map due to low Signal-to-Noise

Ratio (SNR) or high Packet Error Rate (PER), for example caused by interference from

Wi-Fi or microwave ovens [9]. If a bad channel is chosen, a different good channel is picked

instead. Depending on the BT version and channel hopping algorithm, an eavesdropper

can learn the required parameters to follow a target connection with their own device and

use targeted interference to cause the target connection to modify their channel map [3].
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Figure 2.6: Depiction of a possible BT scatternet [8]. Some devices belonging to multiple
piconets can act as both a master (M) and a slave (S). Nodes marked “P” are advertising-
only nodes and are not relevant to this project.
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2.1.3 Pairing Process

Before the master/slave direction can be established, the two devices must connect to

each other in a process called “pairing”. Pairing fulfills multiple goals, including establishing

encryption keys, clock synchronization, and starting the channel hopping sequence [24].

BLE versions 4.0 and 4.1 use a pairing process very similar to older versions of BTC, while

versions 4.2 and later use a new system aimed at minimizing security risks [24][16].

BLE 4.0 and 4.1 use a process called LE Legacy Pairing. At the beginning of the

process the two devices exchange information about themselves including IO capabilities,

which determine what key exchange system they use to transfer the Temporary Key (TK)

and Short Term Key (STK) used for the rest of pairing. The simplest method is called Just

Works (JW) [24], which requires no input capabilities on either device. This makes it the

simplest pairing method, but it is also the most vulnerable. In this mode, the TK is set

to 0, making the other keys relatively easy for an eavesdropper to brute force and spy on

future connections. The second method is the Passkey method [24], in which the TK is a

six digit number generated on one device and entered on the other device. Assuming the

attacker has no knowledge of the passkey this method does prevent against Man-In-The-

Middle (MITM) attacks unlike JW [16]. However, the additional key length of the TK is

not enough to prevent an eavesdropper from brute forcing the keys used in the connection

and decrypting future communications.

The final method is Out Of Bound (OOB) pairing [24], which uses a different communi-

cation system such as Near-Field Communication (NFC) to transfer the keys. An advantage

here is the TK can be up to 128 bits, preventing brute force attacks. Assuming the OOB

channel itself is secure, this process is secure against both MITM and eavesdropping at-

tacks. Of the three legacy pairing options, OOB has the capability of being most secure.

Potential security vulnerabilities for the different pairing systems are provided in Table 2.2.

Table 2.2: Comparison of security vulnerabilities in the different BLE pairing schemes.
Pairing using LE Secure Connections is much safer than LE Legacy Pairing.

Version Just Works Passkey OOB NC

Legacy Pairing eavesdropper/MITM eavesdropper secure N/A
Secure Connections MITM secure secure secure
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Figure 2.7: BLE pairing process selection. LE Secure Connections can only be used when
connecting devices running at least BLE version 4.2. This process prioritizes more secure
pairing methods, falling back to less secure methods when devices have lower functionality.
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BLE 4.2 used a different scheme called LE Secure Connections, based on a single Long

Term Key (LTK) derived from an Elliptic-Curve Diffie-Hellman (ECDH) authentication

process [24]. The process still changes based on input capabilities and operates similarly to

those used in LE Legacy Pairing. The pairing process selects a system to use by prioritizing

security for a given set of device capabilities. The flowchart for process selection is presented

in Figure 2.7.

The updated JW system does not add anything to the ECDH scheme, so it is still

vulnerable to MITM attacks. However it is resilient against eavesdropping attacks due to

the increased security of ECDH over the older system. All the other schemes add additional

protections on top of JW for increased security. The updated Passkey method relies on

inputting the same six digit number into both devices. The actual input digits are only

used for preventing MITM attacks and do not have an effect on the final LTK. The updated

OOB pairing system has no functional differences from the old system other than switching

to ECDH. MITM resistance is again based on the other system used for the OOB data

transfer. Finally, the updated system introduces a fourth option called Numeric Comparison

(NC) [24]. Similar to Passkey, the system starts with JW and adds a confirmation to

prevent MITM attacks. In NC mode, each device calculates a six digit number based on

the exchanged LTK. The numbers are displayed on each end device and confirmed to be

identical. Since a MITM attack would result in different LTKs for each end, the numbers

would not match, thus preventing MITM attacks.

2.2 Sniffing Systems

When developing a wireless communications device it is important to have access to

the data sent across the communications channel. Usually this is done by “sniffing” the

link, meaning some device listens in on the channel to be studied and records what data

is transmitted. Sniffing systems can be split into two categories: inline or promiscuous

sniffers, as illustrated in Figure 2.8. A promiscuous sniffer is a third device that listens to

communication between the device being tested and another device. The other choice is an

inline sniffer, where the data across and about the link comes from a participating device
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Inline
sniffer

Device
under
test

Wireless
connection

Promiscuous
sniffer

Intercepted transmissions

Figure 2.8: Promiscuous and inline sniffers in use. The promiscuous sniffer must listen in
on a connection it is not a part of, while the inline sniffer must be part of the connection
to be spied on.

you control. Promiscuous sniffing has potential advantages over in-line sniffing, namely the

system can be designed to monitor multiple links at once and can offer more information

about the wireless spectrum environment.

Few sniffers exist that are specifically designed for BT development, a selection of which

are listed in Table 2.3. A couple commercial options exist based on BT chipsets that

attempt to track an ongoing connection, but this type of sniffer has multiple issues in

real world use. The first is finding the connection to be spied on. Due to the channel

hopping used in the BT protocol, the sniffer needs to wait on a channel until it hears

enough of the target connection to estimate the correct channel map and hopping distance.

This introduces huge packet losses until the tracking starts, and packet drops when the

predicted and actual channel jumps mismatch [3]. Depending on the product, it may miss

the beginning of transmission windows due to channel switching latency [10][18]. Lastly,

Table 2.3: Comparison of commercially available promiscuous BT sniffing options [2]. Note
the widely varying price points and that the LimeSDR is not BT specific.

Device Type Cost

Bluefruit LE IC $30
Ubertooth One IC $120

LimeSDR SDR $300
Frontline BPA IC $3,500+

Ellisys Bluetooth Tracker SDR $10,000+
Sodera BT Analyzer SDR $20,000+

Ellisys Bluetooth Explorer SDR $30,000+
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these sniffers also have problems decoding the intercepted packets. The dewhitening is

straightforward, but decrypting packets is largely impossible without the encryption key

which may be unavailable [7].

The other commercial option for BT sniffing is Software-Defined Radio (SDR) based

equipment. This approach has numerous advantages over using a BT IC. They are ca-

pable of monitoring the entire range of BT channels at once, meaning they do not drop

packets by being on the wrong frequency, do not need the channel map, and can monitor

an arbitrary number of connections at once. Additionally, SDR based equipment can be

updated to support newer versions of BT as they come to market. However, SDR sniffers

are not without disadvantages. They require much more processing power to handle the

high data rates generated by the wide bandwidth. Additionally, they still suffer from the

same encryption restrictions that the BT IC based sniffers have. Lastly, SDR based units

specific to BT generally cost thousands of dollars [2], while the chip-based options cost up

to a couple hundred dollars.

For BT development, inline sniffing is significantly easier to implement because it re-

moves the need to actually follow the connection or deal with dewhitening and encryption

as these are handled automatically by the BT controller. The major downside to inline

sniffing is lower information availability. By the time packets are given to the host, the

controller has already performed symbol identification and link layer processing, meaning

raw packet data or other environmental factors are unavailable. A secondary issue specific

to BT is the need for the in-line sniffer to be able to emulate multiple types of devices. Since

applications of BT widely vary, the BT specification groups capabilities into “profiles” that

together support an overall use case, such as an audio receiver or filer transfer service. Some

devices such as laptops or cellphones support many profiles, but no single firmware image

can support all possible profiles potentially required in a testing environment. This was not

a problem for this project but needs to be considered for inline sniffing approaches to BT.
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Figure 2.9: Picture of the CYW20719 evaluation board [21]. The micro-USB connection
used to communicate with a computer is on the left, the buttons and user-controllable LEDs
are in the bottom right, and the CYW20719 and built-in antenna are on the daughter board
on the right.

2.3 Cypress Development Tools

A single Cypress chip model met project requirements, the CYW20719 [19]. The IC can

act as a generic HCI device or use a custom serial protocol, referred to as “API” mode, that

moves much of the host functionality onto the chip. Almost all of the relevant documenta-

tion for the chip was in a document named “WICED HCI UART Control Protocol” [22].

The majority of the document discusses the Application Programming Interface (API)

mode communication protocol. The document also includes detailed information about the

firmware loading process into both RAM and ROM. Most of the work conducted in this

project involved writing programs based on information in this document.

Much of the work for this project was done using an evaluation board for the CYW20719

built by Cypress, which is shown in Figure 2.9. The board features a single CYW20719

IC, with both a built-in antenna and a connection for an external antenna. The rest

of the board includes a USB interface so the chip can communicate with the development

computer, power and reset buttons, and some LEDs controllable by the CYW20719 through
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General-Purpose Input/Output (GPIO) ports. This project used the chip in API mode and

turned on a debugging mode that pipes all the HCI messages out the main serial port as

well. The disadvantage is all the physical and link layer packaging is missing, but that data

is unavailable in all possible modes.

The Integrated Development Environment (IDE) used to program the CYW20719,

named WICED, is a version of the Eclipse IDE modified by Cypress to include their APIs

and example firmware images for multiple chip variants. The compilation and image loading

process in WICED is well streamlined. If the evaluation board is plugged into the develop-

ment computer and in the right mode, WICED automatically loads firmware images onto

the CYW20719 after compilation.

Cypress provides a companion utility to its example images called ClientControl (CC) [20].

CC performs all the necessary communications over a serial link to the evaluation board to

properly run the example images, in addition to offering firmware flashing capabilities. CC

can also communicate with another provided utility, BTSpy. BTSpy can understand both

API mode and HCI packets, turn them into a human readable format, and log the packets

for later analysis, all of which is useful for CYW20719 development.

2.4 Data Formats

2.4.1 I32HEX Firmware Images

The firmware images produced by the compiler follow the I32HEX format as shown in

Figure 2.10. Here, data is stored as a series of records in an I32HEX file. Records are a series

of ASCII characters representing the data in hexadecimal format, and must be translated

before use by an image loader. Each record has a header containing a 16-bit destination

address and associated data. Multiple record types exist depending on what the data is, of

which 3 are relevant to this project: memory offset, raw data, and End of File (EoF). Since

the CYW20719 is a 32-bit device, the 16-bit memory address in each record is not sufficient

to specify the destination. The memory offset records are used the specify the high 16 bits

added to the address given in each following record. The data packets contain bytes to be

written into memory, and the end of file record indicates the image is complete. Writing a
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Start
code

Record
length

Record
type

Destination
address CSData (variable length)

Figure 2.10: Representation of I32HEX record format. The data field is variable length,
but was almost always 240 bytes long in firmware files made by Cypress.

firmware loader was an important part of this project because reflashing the CYW20719 is

required for the final product to support multiple BT device types.

2.4.2 Cypress HCI Packets

The original intent of the inline sniffing system was to capture and record each bit that

was sent or detected by the test antenna. Unfortunately, the CYW20719 does not support

transferring raw antenna bits outside of the chip [19]. Cypress was contacted to determine

if any additional capabilities existed that might be used, but there were not any options.

The data available from the chip is either HCI packets or Cypress API packets [22]. HCI

packets are two of layers removed from the antenna in the BT stack which obscures activity

in the physical or link layers but is otherwise a detailed log of events in the BT link. The

non-HCI Cypress packets use a format unique to Cypress, illustrated in Figure 2.11, and

decoding them is not supported by Wireshark [28]. This project only used the HCI packets

from the CYW20719, since the Cypress format packets were discovered to be redundant as

the same information appears in the concurrent HCI packets.

The BT specification provides multiple options for how data transfers over the HCI

are completed, chosen based on the transport layer protocol used. Most of the differences

between protocols are in prepended flag bytes. Two protocols are relevant to this work:

HCI H1 and HCI H4. H1 has nothing added to the HCI packets, and H4 has one flag byte

Packet
type

HCI
packet
type

Event
ID

Group
ID Packet length HCI packet (variable length)

Figure 2.11: HCI packet inside of a Cypress API wrapper. Note the flags in the HCI packet
type field do not match those required for HCI H4 format.
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indicating if the packet is a command from the host, an event from the controller, or one

of two other specific data types. Since Cypress wanted the same packet format to work for

both their API mode and transferring HCI packets, the HCI packets are packaged into an

API mode wrapper similarly to but are incompatible with HCI H4. The HCI packet format

itself is specified in the BT Core Specification but did not have much of an impact on this

project since Wireshark has built-in decoding capabilities.

2.4.3 BTSnoop

Once the HCI packets are extracted from the Cypress wrapper, they need to be pack-

aged into a packet capture format for analysis in another program. A format called

BTSnoop (BTS) is specifically used for BT HCI packet captures. It is the standard for

BT logs created by the Android operating system and is supported by Wireshark [14]. Fig-

ure 2.12 shows a visual representation of the BTS file format. A BTS file consists of a file

header followed by packet records, each of which contain one HCI packet. The file header

contains an identification pattern common to all BTS files, making file type identification

easy and independent of filename extension. The header also contains a BTS version num-

ber and a datalink type, identifying which HCI transport layer flags are included in the

packet data. The packet records are structured as original packet length, included packet

length, packet flags, cumulative packet drops, timestamp, and packet data [12]. Original

and included length both measure the packet, not the record, with original representing

as-transmitted and included as-recorded. The optional difference in length allows shorten-

ing of large packets if log file size is a concern. The packet flags indicate if the packet is

a command or data and packet direction. Cumulative drops counts the total number of

missing previous packets in case the logging system is slow or runs into errors. Timestamps

have microsecond resolution which should be enough to avoid two packets having the same

timestamp. BTS does not specify that packets must be sorted by timestamp, but out of

order packets may cause errors in interpreters. After the timestamp is the packet itself,

including any prefixes required by the packet packaging format. Integer data fields are

declared to be big-endian, which avoids ambiguity when moving data files between system

with different endianness.
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Identification pattern

Version number Datalink type

Original length Included length

Packet flags Cumulative drops

Timestamp

Packet data (variable)

Header

Packet

8 bytes

Figure 2.12: BTSnoop file format. Note the data fields are arbitrary length and not aligned
to any specific byte boundary.

The BTS format supports both HCI H1 and HCI H4 packets. When using BTS in

H1 mode, the file still needs a flag byte indicating packet direction and if the packet is

a command/event or some kind of data. This can be translated from the H4 flags, but

calculating the H4 flags from the BTS H1 flags is not possible. When the CYW20719 sends

out HCI debug packets, the API wrapper only includes the H1 flags. Interestingly, the API

format gives the logical inverse of the flags needed by the BTS format, possibly because it

is simpler to implement or matches other flag systems already used in the API.

2.4.4 PCAP & PCAPNG

The most widely used format for storing captured wired and wireless packet data is

called Packet Capture (PCAP) [27], which is shown in Figure 2.13. Generally, these files

are opened with the networking utility Wireshark, which supports a wide range of useful

network analysis features. PCAP is not without flaws - it is an older standard that does not

support improvements as easily as newer standards and does not support multiple protocols

in the same file [27]. That feature is built into PCAP Next Generation (PCAPNG) as one

of the improvements over the older standard [17] (see Figure 2.14).

The PCAP file format is largely similar to BTS, with a global header followed by in-

dividual packet headers and packets. PCAP file headers are more complicated because

the PCAP format is designed to support many different packet types. The global header

starts with a Magic Number, primarily used to identify the file type as PCAP. Since the
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Magic Number Major
version

Minor
version

Timezone correction Timestamp accuracy

Original lengthIncluded length

Timestamp seconds Timestamp microseconds

Snapshot length Data Link type

Packet data (variable)

Header

Packet

8 bytes

Figure 2.13: Minimum PCAP file. Packet data is variable length and not padded to any
specific size multiple.

endianness of fields is not declared by the format, the Magic Number is also used to iden-

tify file endianness. Lastly, it also differentiates the more common microsecond resolution

files from the nanosecond resolution ones. Following the Magic Number is the PCAP ver-

sion information along with timezone correction and timestamp accuracy, neither of which

are used in practice. The end of the global header contains a packet overall length limit

and the link type information, which in this research is equal to BT HCI H4. The packet

headers themselves contain timestamps, which are split into seconds and microseconds or

nanoseconds, as well as the included and original packet lengths as in BTS.

The PCAPNG format was designed to improve upon the PCAP format, especially

through design with future proofing and to remove weaknesses in the older standard. The

official goals are “extensibility”, “portability”, and “file merger”, meaning new capabilities

should be added in ways that do not break old interpreters, a file should contain all necessary

information to interpret the file, and data can be appended to a file without issue [17].

A PCAPNG file starts with a Section Header Block (SHB), which describes blocks

between it and the following SHB should one exist. A SHB starts with a block type iden-

tification, followed by the block total length and “Byte-Order Magic” used for endianness

identification. Data endianness can change mid-file because it depends on the computer cre-

ating the section and sections can be appended to existing files. After these identifiers are

the major and minor version numbers as well as the total section length. Version numbers

are used by the interpreter to decide if it can parse the given section - different sections can
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Block type

Link type Reserved

Block total length

Block type

Block total length

Snapshot length

Options (variable, padded)

Block total length

Block Type

Block total length

Interface ID

Timestamp (high)

Timestamp (low)

Captured packet length

Original packet length

Packet data (variable, padded)

Options (variable, padded)

Block total length

Section length

Major version Minor version

Byte-Order magic

Block total length

Options (variable, padded)

SHB

IDB

EPB

4 bytes

Figure 2.14: Minimum PCAPNG file as used in this project. The options fields are unused,
and packet data must be padded to be a multiple of 32-bits long.
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have different versions within the same file. Section length can be used to skip the entire

section if it is not parsable, although it may be set to indicate the size to be calculated from

the contained blocks. Several optional fields may be present, followed by a repetition of

the block total length. All blocks end with the block total length to allow for easy reverse

seeking through the file. Additionally, every field in the file is aligned to 32-bit boundaries.

This does require padding of variable length fields such as packet data with zeros, although

this greatly simplifies block identification and searching the file in both directions.

Following the SHB is an Interface Description Block (IDB), which is analogous to the

file header in PCAP. The IDB contains a link type identification, HCI H4 in this project,

and total packet size limit for associated blocks. Each section can have multiple interface

descriptions, allowing for mixed technology files combining both Wi-Fi and BT data [17].

Enhanced Packet Blocks (EPBs) follow an IDB. They contain a reference to the asso-

ciated IDB, timestamp information, and original and included packet lengths. The packet

lengths do not include the length of padding required to align with a 32-bit boundary. The

amount of padding is not required to be the minimum possible, so some interpreters might

have issues finding the beginning of the optional data fields after the packet if any are

included. Other block types are defined but not relevant to this work.

PCAP and PCAPNG do not support HCI H1 formatted packets, only H4 and other

more complex systems. Switching from BTS to PCAPNG caused problems with the required

packet flags since the API format flags do not exactly correspond to H4 flags. A collaborator

created a method to accurately determine the H4 flags, which will be presented in his thesis.

2.5 Summary

This chapter presented relevant background info on BLE terminology along with data

formats and development tools used throughout the rest of the project. Even though little

of this project directly developed BT software, the overall structure of BT communications

both informed and guided the direction of the project. The next chapter will focus on the

first, and largest, section of the project: creating and testing a BLE in-line sniffing system

demonstrating a file transfer throughput test.
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Chapter 3

File Transfer Capabilities

This section presents a hands-on demonstration of simultaneous BT communication

and sniffing capabilities using the system described in Figure 3.1. The demonstration uses

a device under test, in this case a smartphone, a commercial BT IC running customized

firmware, and a computer acting as a controller and ultimate data destination. During the

demonstration, the smartphone negotiates with the BT IC to transfer a file, which is then

sent to the computer alongside other data for further analysis. This part of the project

successfully shows creation of a custom software interface between a computer and the BT

IC, collection and logging of packets in real time, and data analysis after packet logging.

Evaluation
board

Smart
phone

Bluetooth
connection

USB
connection

Test
master

File data
CommandsConfirmations

Figure 3.1: Overview of file transfer architecture. The CYW20719 largely acts as a interface
between the test phone and the test laptop.
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3.1 Reverse Engineering the Evaluation Board System

The first step was to generate a packet log based on data received from the BT chip itself.

Project requirements did not constrain what kind of firmware needed to be running on the

CYW20719. The startup guide for the evaluation board included instructions for how to

generate human readable packet logs using CC and BTSpy. The guide was followed and the

BTSpy output contained the same information the log needed to contain. It was unknown

at the time how CC and BTSpy communicated with each other or which application was

translating packets that came over the serial port into a human readable format. To try

and figure things out, two different terminal emulators (PuTTY and TeraTerm) were used

instead of CC to open the serial port with the evaluation board. TeraTerm did not support

the baud rate normally used by the CYW20719 (3M), so the slower alternate speed (115200)

was employed. Once the change was made, both terminal emulators created logs of the bits

transmitted over the serial port instead of the human readable format BTSpy returned.

Not surprisingly, BTSpy did not work with the terminal emulators. It was determined that

CC sent BTSpy data over an internal port and translation was split between them, thus

making a terminal emulator work with BTSpy infeasible.

Becasue the terminal emulators did not communicate with BTSpy, obtaining the same

log in both a human readable format and serial characters for comparison was very difficult.

Given the firmware image being used did not require any user input, it was possible to get

logs from BTSpy, TeraTerm, and PuTTY separately that were similar enough to begin

reverse engineering the protocol used between the BT chip and the computer, along with

a translation into a human readable format. A python script was created that opened

a serial port with the evaluation board and sorted packets based on parts of the packet

header. Eventually, a coworker found documentation from Cypress detailing the same

control protocol being reverse engineered. This documentation facilitated a return to test

development using the BT chip because packets to and from the device could be easily

interpreted.
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3.2 Throughput Test Using ClientControl

After discovering the protocol documentation, work commenced on a throughput test.

It was decided to start with a firmware image that emulated a keyboard while a collab-

orator worked withe other firmware images. Loading the keyboard example image onto

the evaluation board did not work as intended. The associated documentation revealed

that the firmware image expects to be run on hardware that appears to never have been

manufactured. The documentation also gave instructions for how to run the image on the

evaluation board. Keystrokes were successfully sent from the evaluation board to a second

device after working out some errors in the instructions. However, The process was tied to

using CC, which would not work as a long term solution.

Designing the throughput test system without CC started with a collaborator’s discov-

ery: an example firmware image written for a different chip variant demonstrating Object

Push Profile (OPP), used to transfer file between devices, could easily be modified to work

with the CYW20719 by copying some API libraries from the development environment of

the other chip to the CYW20719 environment. The required changes were performed and

the firmware was loaded onto the evaluation board. Fortunately, CC did not recognize that

the firmware was running on unintended hardware. As a first step, correct operation of CC

interfacing with the OPP firmware was successfully demonstrated. To do this, the firmware

image needs to be loaded onto a CYW20719 and started. CC will automatically identify

which example firmware is running. In OPP mode, a button is clicked in CC to enable

the test and wait for a file transfer. The evaluation board acts as a data sink for OPP

file transfers - often used to transmit images or contact VCards. Using a phone as a data

source, an image or a VCard was selected to transfer to the development computer and the

evaluation board was selected from the BT sharing options shown in Figure 3.2, initiating

the transfer. The evaluation board sends all the data over the serial link to CC, which saves

the transferred file to the computer and displays the total amount of data transferred and

elapsed time. The results of a successful transfer are displayed in Figure 3.3.
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Figure 3.2: Screenshot of BT sharing options on an Android phone. The evaluation board
appears as “OPP Server” in this image. The specific text displayed on other devices is
configurable by changing a field in the firmware source code.
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Figure 3.3: Example CC screen at the end of a file transfer. The name of the file and size
are visible, while the elapsed time can be calculated from the last two messages in the log
view.
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3.3 Throughput Test Using a Python Script

After demonstrating file transfer capabilities using the provided software, the next step

was to duplicate the necessary parts of CC in a custom python script. Since the serial

protocol definition was available, it was decided to start by spying on the serial link between

the CYW20719 and CC. The communication was known to be bidirectional, since the

evaluation board was invisible to the test phone without using the utility.

To spy on the serial link a tool called Advanced Serial Port Monitor (ASPMON) was

used. Other utilities such as “Free Serial Analyzer” and “Serial Port Sniffer” were available

but were incapable of spying on the link since Cypress uses an uncommon speed of 3M

baud [26][22]. Using the slower alternate speed was tried but found to introduce significant

errors during file transfer even when using CC. Hardware link duplicators that accomplish

the same task are available for serial links over RS-232 cables but do not support USB,

which the evaluation board uses. Since everything over the link is the Cypress protocol

instead of something more common, some trial and error was needed to set up ASPMON

properly and force it to ignore what it thought were control characters.

Once a log file was successfully created, translation of Cypress protocol into a human

readable format commenced. The beginning of the log was CC identifying what firmware

image was running on the connected BT chip. Once that was determined, CC sent com-

mands to enable visibility to other BT devices and accept incoming connections. This

explained why the evaluation board did not appear on the test phone without using CC -

the program starts in a non-advertising state and needs to be told to switch over. At this

point the first indication that the Cypress protocol documentation [22] was questionable

started to appear - some packet definitions did not match what was actually being sent,

and entire groups of packets that appeared in the log were not described anywhere in the

protocol definition document.

Implementation of the interface and translation program, named PyControl, was per-

formed in multiple stages, with the first stage focused on configuring the CYW20719 to

advertise and accept connections. Several required commands were added to the packet

translator written during the reverse engineering process. Once added, the CYW20719
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would accept connections and appear to accept file transfer requests. However, the process

would stall with no data transferred but never actually fail on either end.

The VCard transfer logs were inspected to find the missing part of the puzzle, one area

of the log looked promising but the command was missing from the protocol definition

document. Cypress support was contacted informing them of the missing information and

other issues discovered with the document, asking if a newer version was available with the

errors resolved. Cypress support indicated that they were working on a new version but

it would not be available for this project; instead they highlighted a lookup table in some

source code used by firmware images to translate packets. While not ideal, this provided

enough information to determine that the untranslated section was the CYW20719 telling

CC of the incoming file transfer and asking for permission to continue, which CC confirmed.

The confirmation messages were added to PyControl and the file transfers began to move

data.

3.4 Recreating the Transferred File

The filename is sent over as part of the transfer request packet and used to name the file

created on the test computer. Once the file transfer is confirmed, the file data itself comes

over the link contained in HCI packets. To reconstruct the file itself, the data portions of

the HCI packets are written into a file in the order they are sent. VCard transfers were used

to determine the data portion of the HCI packets. An entire VCard fits within a single HCI

packet, allowing total header and footer lengths to be determined so those sections can be

separated from the file data. Much of the early testing was conducted using VCards and

very small JPEG images since the effective data rate is so slow - under 400kbps in good

environments and even slower with increased interference from other BT devices or Wi-Fi.

This makes testing code iterations very time consuming when testing with files larger than

1MB. Once the smaller transfers were working consistently, testing started on larger files

on the order of 4MB. These larger file sizes introduced a new error: the packet parser

would randomly become misaligned to packet edges on the serial port and fail until the

serial buffer was flushed. Errors generally occurred only on files 2MB or larger and were
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not consistent test to test, as well as being frequently bunched together. It was suspected

that these errors were caused by the serial buffer between the evaluation board and the

control computer overflowing and losing a packet section.

3.5 Resolving Serial Buffer Overflow

Completely filling the serial buffer causes loss of data until buffer space is available, at

which time the buffer starts accepting data again. If the buffer starts accepting data in the

middle of an incoming packet, the parser does not know how to interpret the data since

it is not a packet header, causing further loss of data. It was unclear why the buffer was

overflowing. Originally it was thought to be caused by long processing times in python since

it is an interpreted language. Significant inefficiencies that were part of the original packet

translator were removed from the code such as unnecessary type conversions performed

on all incoming bytes. Determining the effectiveness of any change was difficult due to

the unpredictable nature of the errors, but these changes did not appear to improve the

situation. Removing code that relied on user input and increasing the size of the serial

buffer was tried, although it did not make any apparent changes. Increasing the size of the

buffer may have been a slight improvement but the API call used for this change is limited

to Windows systems and could not be the final solution.

Eventually it was determined the issue was related to hard disk latency on the project

laptop, which had a 5400rpm hard disk. The code wrote every packet to the output file

and log individually. Additionally, the project was saved in the a Dropbox folder at the

time, and Dropbox attempts to stay current to every file update. These factors combined

to cause 99% hard disk utilization for the entire time my script was transferring a file, as

seen in Figure 3.4. If the operating system added in any disk access calls to the queue due

to background tasks, PyControl needed to wait the additional time for the file write call to

clear since python cannot continue until the write is complete. This additional time caused

the serial buffer to fill with packets because the OPP firmware cannot delay data transfer.

The modified PyControl was switched to cache everything in system memory and write

it all out as a block at the end of the transfer. Transfers are effectively limited to under
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Figure 3.4: Screenshot of the hard disk latency. Note the extremely high utilization since
the test started roughly 40 seconds previously. Average response time sporadically exceeded
50 milliseconds, representing a huge delay in the python code.

Figure 3.5: Throughput graph output of PyControl transferring an image from the test
smartphone. The occasional dips below 150kbps are caused by hard drive latency spikes.
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Table 3.1: Reliability testing data of the throughput test using PyControl. No errors that
occurred were caused by PyControl, only the smartphone used during the tests.

File Size 10kB 9.7MB

Trials 20 20
Successes 12 15

Failures (PyControl) 0 0
Failures (Smartphone) 8 5

Average Time (s) 0.426 282.1
Throughput (kbps) 188 275

10MB due to slow speeds, which will easily fit inside system memory without issue. After

implementing this change, buffer overflows were no longer experienced.

Reliability testing was conducted to ensure no remaining issues existed in PyControl

that would negatively impact the throughput test. Testing was conducted using both small

and large file sizes to ensure no more size-dependent errors existed. Testing data is shown

in Table 3.1. Unfortunately the alternate smartphone used to create this data exhibited

multiple failures, but no recorded failures were caused by the PyControl system. All tri-

als fell within ±10% of the average time for the file size and data rates are comparable

to transfers completed with ClientControl for large files, between 250-300kbps. The low

measured throughput for small files may be caused by a lack of timing data points or a

small measurement offset amplified by the shorter timeframes instead of a true throughput

difference.

Once PyControl was confirmed to operate without errors and create log files properly,

testing started using a custom octoScope board with two CYW20719 chips on it. Switching

hardware did not present any issues, and a live demonstration was created showing successful

file transfer, logging, and throughput calculation and graphing capabilities (shown in Figure

3.5). The demonstration itself went smoothly, except for an issue with the filename of the

transfer. It turns out that the alternate smartphone puts space characters in some filenames,

which the python script does not handle properly. Once a different file was selected, the

demonstration succeeded without any further errors.
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3.6 Summary

This part of the project successfully demonstrated the critical parts of an inline BLE

sniffing system. In spite of many roadblocks encountered during the prototyping phase, the

final system implementation creates a BLE link, and arranges a data transfer while simul-

taneously logging packets for further analysis and calculating throughput measurements.

Future work should expand on what is described here by adding support for other BLE

profiles and relevant metrics, such as an audio profile and measuring received audio quality.

The next chapter focuses on the second part of this project, a custom firmware loader for

the CYW20719.
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Chapter 4

Firmware Loader

To support testing multiple types of BT devices, the CYW20719 needs to run different

firmware images. Since the chip can only store one image at a time, a new way to load a the

image onto the chip is needed. Cypress provides multiple utilities to do this, but they were

either limited to Windows or had a GUI, which did not meet the project requirements. As a

result of this, a custom firmware loader based on instructions from Cypress was developed.

4.1 Firmware Loader Development

The next task in this project was the creation of a custom firmware loader. Cypress

provides this functionality built into the WICED IDE, CC, and a command line utility, but

these are not portable solutions. Consequently, work was started on the firmware loader

based on a description of the firmware loading process in the Cypress protocol document [22].

Implementation was fairly straightforward since the documentation was easy to understand

and had good coverage in that section. However, initial attempts using the preliminary

script gave errors which depended on the image being loaded.

Firmware loading would consistently fail at a seemingly arbitrary record depending on

the specific image. After some minor code changes, the loader always failed at record number

52 no matter what image was being loaded. At this point, Cypress support was contacted

for assistance. After a few weeks working on other tasks with no progress, it was decided to

compare the firmware loader of this project to the firmware loading process performed by
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HCI header
Address (actual)/[sent]

(0x12
[0x34

Packet
length Data (variable length)34 56

56]
78)

7812

Figure 4.1: HCI packet format for firmware load packets. HCI commands sent to the
CYW20719 do not need to be wrapped in an API header.

the WICED IDE. ASPMON was used to capture a failed attempt using the custom loader

and a successful image transfer using the IDE. While comparing the two, it was realized

that the memory addresses in the successful transfer were in little endian format, which was

not considered as an option since every other interaction with the chip had been big endian

format up to this point, including the memory addresses in the firmware image created

by the compiler. Little endian memory format causes the write RAM commands making

up the majority of the firmware loading process to have a very strange arrangement: big

endian header, little endian destination address, big endian data. Due to how the firmware

is stored in the image file, the 32-bit destination address is split into the high 16 bits and

low 16 bits. According to the file transfer specification, the destination address is sent over

as high bytes followed by low bytes, which itself is not little endian. This ultimately causes a

destination address of 0x12345678 to be transferred over the serial link as 0x34127856. The

memory address structure, inside of a larger packet, is shown in Figure 4.1. It is unclear

why it works this way.

It was determined that the loader consistently failed at the same record was because it

was attempting to write to an invalid memory address, which the chip ignores and does not

respond to. Because all records are the same size and all image files start at the beginning

of flash memory, the script always jumped out of memory and failed at the same record.

The memory addressing issue was fixed by adding a method to swap the two bytes of

each 16-bit address field before the packet is sent to the CYW20719. After the fix, the

firmware loader claimed everything was working and the image was running on the board

when it completed. However, scanning for Bluetooth devices using the test phone revealed

that the chip was not running the new firmware image but continued running the previous

one. While comparing the new code transfer to the successful one, two remaining differences
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were discovered: the IDE was using an optional minidriver, and there was an undocumented

command being sent to the chip by the IDE before loading the final image.

Cypress documentation claims that optional minidrivers are used when the base chip

is not capable of writing the image, usually caused by storing the firmware in off-chip

flash. Since this was not being done for this project, it was originally decided to ignore

the minidrivers entirely. However, it was then decided to use it to minimize the differences

between my implementation and the IDEs. Adding that in was very easy - the minidriver

was stored in a folder in the IDE and it was in the same format as the regular firmware

images such that it could use all the same loading code.

The only remaining difference between the two implementations was the undocumented

command. However, the custom code was claiming it got the correct execution started

response from the board. It was initially thought that a command towards the end of the

loading process was missing since clearly the firmware was not actually executing. The

issue here was that a trial version of ASPMON was being used which had a total character

count limit; the final steps of the firmware loading process could not be observed because

the size of the minidriver combined with the firmware image was too large. The IDE files

were reviewed for a much smaller image to test with such that the entire process could

be observed. While looking for a suitable image, a log of the IDE loading a firmware

image was discovered. After loading the minidriver was the line “Transmitting ‘Chip erase’

command 01 CE FF 04 EF EE BE FC”. The hexadecimal command was the same as the

undocumented command in the serial log. Once the chip erase command was added to the

loader it successfully loaded a new firmware image and began execution. The image survived

power cycling the eval board, proving the firmware image was written to flash memory. In

spite of running in python, the code loads firmware images faster than the IDE, largely

because the code does not perform any integrity checks after writing the image. This is

not an issue in this system because the chip images will be frequently updated so it can be

reloaded easily if there are any errors in the process.
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Figure 4.2: Flowchart of the firmware loading process. If any of the steps fail the solution
is to power-cycle the eval board and try again.

4.2 Firmware Loading Process

The firmware loader script is simple as there is not much variation in what can happen

during the loading process. An overview of the process is shown in Figure 4.2. The only

complicated part is finding the correct serial port to communicate with the chip. Each chip

has two serial ports: one for HCI and Cypress API messages and one called the “Peripheral

UART” generally used for developer debug messages. The HCI port must be used to load

firmware, so the script first looks for a port name starting with “WICED HCI UART”, as

used on the eval board. Two CYW20719s are installed on the octoScope board used in this

project and the USB serial interface on the board does not preserve port names. Since the

four ports are always consecutive, the script looks for four ports in a row and connects to

the lowest port number. This always hits the HCI port for chip one because the order does

not change. Limiting ourselves to only using one chip has not been a problem so far, but

future versions of this code should have a more robust port selection scheme. Should both

previous port selection methods fail, the script attempts to connect to the lowest available

port number - this was added to support working with other hardware versions.

Once the serial port is opened, the loader script sends the “HCI reset” command as

defined in the Bluetooth standard and waits for a response [24]. The script assumes the

chip is expecting a connection at 3M baud. Generally this is true, since all the firmware

images used in this project set that as the baud rate for all ports. If the chip does not

have a firmware image at boot it defaults to autobaud mode, where it attempts to identify

incoming HCI reset commands and select the same baud rate. The chip responds to very
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few messages in autobaud mode, but fortunately behaves as expected to the HCI reset

command [22].

After the chip sends a reset confirmation response, the loader script sends the “download

minidriver” command. Interestingly, the documentation claims downloading a minidriver

is optional after sending this command and the sender can skip directly to sending the

final firmware image, for which there is no separate command. It is suspected that Cypress

named the command for ease of understanding and not necessarily to reflect function, as it

acts as a “expect write RAM commands” command.

At this point the behavior of the loader script differs from the firmware programming

interfaces published by Cypress. First, the reset command does not succeed if the script

is run within the first 10-15 seconds after plugging the eval board in. The IDE and CC

may act similarly but it is difficult to test these as they both have long wait times before

processing a firmware load. It is suspected this has to do with the boot process but this is

a much longer time window than expected as normal boot times are less than 5 seconds. A

second issue was also encountered in testing. After plugging the eval board in, the script

can be run repeatedly until it passes HCI reset. The first time it passes reset, it will always

pass download minidriver. After it has passed download minidriver once it will always fail

there until power cycling the chip, whether or not a firmware image was loaded and no

matter now many times it passes HCI reset. The official programs do not appear to exhibit

this behavior, it is suspected this is caused by interactions with autobaud mode that the

custom loader was not designed to handle but the official utilities can manage.

After passing download minidriver, the script starts processing and sending over the

minidriver image. Data records in the minidriver firmware image usually contain 16 bytes of

data each. Each data packet sent to the chip requires a confirmation response within 200ms.

Originally, the serial port was set up with no timeout and the script was forced to wait the

entire response period before checking the serial port. This worked but was much slower than

the official utilities. The port timeout was set to slightly longer than the largest specified

delay period and the script sleep time was removed. Most write responses come within

10ms, representing a significant improvement in processing times. The official utilities send

over 240 bytes of data per packet, requiring fewer confirmation packets than the custom
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script that sends each record individually. This project does not do this as the larger packet

sizes require merging record segments together and recalculating the destination memory

addresses. This change would speed up both the minidriver and final image loading, but

without this the loading process takes less than five seconds to complete, so adding in the

improvement is not worth the increase in code complexity.

After downloading the minidriver and sending the command to boot into the minidriver,

the official applications switch to 115200 baud and send a command to switch back to 3M

baud. Through testing it was discovered the baud switching is unnecessary. It is unknown

why the official utility does this, other than potentially to deal with a minidriver that

expects 115200 baud. After the loader script sends the “boot minidriver” command, it

sends the “erase flash” command followed by the actual firmware image itself. Loading the

firmware uses the same process as the minidriver, the only difference being the firmware is

loaded into flash memory not RAM like the minidriver. When the image is complete, the

script sends a command to reboot into flash memory and the image begins running.

4.3 Summary

This chapter presented the successful development of a custom firmware loader script for

CYW20719 devices. In spite of both errors and missing information in the documentation,

the firmware loader works as expected under normal conditions. Future work should inves-

tigate the situations where this utility operates differently from those provided by Cypress,

as that is the major remaining unknown for this part of the project. The next chapter will

examine the final part of the project, integration of a SDR-based packet decoder based on

a commercially available SDR from Litepoint.
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Chapter 5

Promiscuous Sniffing Using a

Litepoint SDR

The Litepoint IQxel-M16W (IQxel) offers the ability to view the radio environment in

the ISM band in the chamber while a test is running. The front panel of the IQxel is shown

in Figure 5.1. It also has the ability to store a time slice of the waveform and can decode

packet data as-transmitted from the waveform itself when configured correctly. OctoScope

wants to use the IQxel to fill in gaps the HCI logs may have.

Figure 5.1: Image of Litepoint IQxel-M16W [13]. Each of the ports on the front can be
configured as an input or an output and monitored separately.
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5.1 Packet Capture

Work on the IQxel began with a web interface hosted on the device itself. With as-

sistance from a coworker, the IQxel was configured to automatically recognize recognized

where packets were in time. However, most packets could not be decoded and the IQxel

thought the ones it could decode were BTC packets, when the input was known to be BLE

advertising packets. Additionally, the eye diagram of the decoded packet (see Figure 5.2),

a representation of the shape of the signal, revealed something was set incorrectly. That

turned out to be the Automatic Gain Control (AGC) clipping the signal severely, since

it was setting the reference level to just above the noise floor of -40dBm instead of the

signal level of +15dBm. The signal level of +15dBm was much higher than expected, in

part because at this point in testing the evaluation board was plugged into the IQxel input

directly using the optional second antenna connection instead of attaching an antenna to

the IQxel. Once the expected signal level was fixed, the eye diagram looked reasonable,

seen in Figure 5.3, and which packets the IQxel could decode was predictable. The packets

appeared in a capture in groups of three, of which the middle was always decoded and the

other two were not. It was suspected that the CYW20719 was transmitting one packet on

each BLE advertising channel, only one of which was close enough to the center frequency

to be decoded. Additionally, the packets still appeared as BTC. At this point, Litepoint

was contacted for assistance and given a raw capture file including a set of three packets.

They responded with a number of settings that needed to change using the remote access

python library. A preexisting script to inspect BTC packets using the IQxel, originally

based on a script used for Wi-Fi, was modified to change the required settings and inspect

BLE packets. Once the changes were implemented, the originally misidentified packets were

Table 5.1: Settings used on the IQxel to successfully decode BLE packets.

Parameter Value

Sampling Rate 160MHz
Center Frequency 2441MHz

Reference Level 20dBm
Capture Length 50ms

Packet Type BLE
Channel Number Auto-Detect
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Figure 5.2: Eye diagram for data with incorrect receiver settings. The data was severely
clipped, leading to random noise where a packet should be.

Figure 5.3: Eye diagram for data taken with correct receiver settings. Frequency offset of the
received signal from the channel center, used in BT to represent packet data, is the vertical
axis, while time offset from symbol center is represented on the horizontal axis. Individual
symbols in the transmission are layered on top of each other, showing the repeatability and
accuracy of captured symbol transitions. This is a good representation of clean, real-world
data.
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decoded by the IQxel into BLE data successfully. The final settings used for packet capture

and decoding are given in Table 5.1. Once the packets were decoded on the IQxel, the script

pulled the packet bits from the IQxel for processing into a PCAPNG file. For an unknown

reason, the SCPI API returns packet data from the IQxel as a series of bytes with each byte

representing one bit. This requires some processing to fix the formatting before creating the

PCAPNG file. Additionally, at the time of writing the correct endianness and order of the

bits is unknown. Currently, the script arranges the bits to present the same data reported

by a BLE advertising packet sniffer application on the test smartphone, but this may need

further refinement if the correct ordering is different. Once the packet data is corrected, the

packets are written into a JSON file that is converted into a PCAPNG file using a different

script. Future work will likely include changing the script to create PCAPNG files directly.

5.2 Litepoint Interface

Access to the IQxel is provided through an Ethernet port, connecting the test computer

to the webserver running on the IQxel. The web interface provides real-time data and control

over the IQxel, including port configurations alongside data acquisition and interpretation

controls. A screenshot of the web interface is given in Figure 5.4. The IQxel can also be

controlled with SCPI commands through either the web interface or the Ethernet port using

a python API provided by the company. The SCPI web interface supports most but not

all of the commands needed for this project and is difficult to extract data from for later

analysis, so the python API was used.

The IQxel cannot decrypt or dewhiten packets it receives from an ongoing BLE connec-

tion. Future work will include code that pulls encrypted packets from the IQxel during a

run of the image transfer test. Then it will find the encryption key in the log file created

during the test and decrypt the IQxel data after dewhitening the packets. At the time of

writing, the IQxel has only been used to decode advertising packets.
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Figure 5.4: IQxel web interface. Input configuration controls are on the left, while user-
configurable graphs are on the right. The data shown is advertising packets taken during
initial testing of the IQxel.

5.3 Summary

This chapter presented the basis for enhancing the existing sniffing framework using an

IQxel. This addition can be used to fill in gaps in data from the HCI packets and give

a more complete picture of the wireless environment of the BLE connection. At the time

of writing the IQxel has only been used to detect advertising packets; a collaborator is

continuing the work presented here to develop a more complete system implementation.
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Chapter 6

Conclusion

6.1 Research Outcomes

This project was successful in achieving the goals set at its inception. The inline sniffing

system is reliable, does not negatively impact link performance, and provides a platform for

analysis of both the link itself and application-layer data. Testing showed that the sniffing

system does not introduce additional errors into the system or slow down data transfer

speeds. Additionally, the system is based on a commercially available BLE IC and has

full compatibility with evaluation hardware, significantly lowering required hardware costs.

The firmware loading utility developed to support this hardware successfully updates the

firmware on the IC using images created by the official compiler, broadening the number

and types of supported tests. Finally, the interface with the IQxel system enhances capture

performance by filling in gaps in data collected by the inline sniffer. Overall, this project

successfully built and demonstrated a framework for future developments in BT research

and development.

6.2 Future Work

While this project was successful, each phase of the project has areas that would need

addressing in future work. The PyControl software has some small issues requiring input

sanitization, but the major area for improvement is adding support for other test types. For
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example, supporting the audio streaming or keyboard emulation example firmwares could

be very useful for real-world testing. The firmware loader is predictable but fails frequently

and does not properly manage autobaud mode like the official utilities. While these issues

were unimportant to the goals of this project they would likely need to be resolved for

future applications. Additionally, both the firmware loader and PyControl need a more

robust system for identifying the correct serial port to connect to for communicating with

the CYW20719. The final section of the project, interacting with the IQxel, is in earlier

stages of development that the other two. The next step in this area would be using the

IQxel to capture and export packets during a live file transfer. After that, some post-

processing scripts should be written to translate the packets into a format Wireshark can

interpret. While this project is far from complete, future work has clear objectives and

concrete places to move forward from.
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Appendix A

Throughput Software

A.1 PyControl

1 import time

2 #python -m cProfile -s tottime pycontrol.py

3 import logger_class

4 import interpreter_class

5 import communicator_class

6 import plotter

7

8 comms = communicator_class.Communicator()

9 interp = interpreter_class.Interpreter()

10 logs = logger_class.Logger()

11

12

13 hci_packets = []

14

15 #reset board

16 #send queued packets

17 #go into main loop

18

19 ###The reset is still not working the way I expect

20 #returns the body of the first HCI packet
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21 #packet_one = comms.reset_board()

22 #need to handle the first one manually, since interp doesn't see it

23 #hci_packets.append([ord(packet_one[0]),packet_one[1:]])

24

25 comms.send_initial_packets()

26

27

28 def transfer_a_file():

29 global time #I dunno why this needs to be here but not the others

30 #SLEEPING WHILE PROCESSING CAN CAUSE THE INPUT BUFFER TO OVERFLOW

31 #Also cache everything, since the hard drive can get angry

32 data_packets_timing = []

33 data_packets = []

34 file_name = ""

35 while True:

36 interp.new_packet()

37

38 header = comms.get_header_bytes()

39

40

41 len_needed = interp.parse_header(header)

42 #check len needed for errors

43 #flush buffer to log file in the future

44 #change this so that interp handles it silently

45 if len_needed < 0:

46 comms.clear_input()

47 continue

48

49 body = comms.get_packet_bytes(len_needed)

50 interp.parse_params(body)

51 #print interp

52

53 if interp.is_HCI_packet():
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54 pass

55 hci_packets.append([interp.get_HCI_direction(),

interp.get_HCI_packet_bytes()])↪→

56

57 elif interp.file_transfer_requested():

58 print "file transfer started"

59 file_name = body[13:-1]

60 print "file name: %s" % file_name

61 comms.send_packet(interp.get_transfer_req_response())

62 file_transfer_started = True

63 data_packets_timing.append([time.time(), 0])

64

65 elif interp.is_data_packet():

66 data_packets.append(body)

67 data_packets_timing.append([time.time(), len_needed])

68

69 elif interp.file_transfer_complete():

70 print "file transfer complete"

71 break

72

73

74 logs.open_file_transfer(file_name)

75 for packet in data_packets:

76 logs.write_to_file_transfer(packet)

77 logs.close_file_transfer()

78

79 times = [t for t,size in data_packets_timing]

80 time_zero = times[0]

81 time_offsets = [x - time_zero for x in times]

82 sizes = [size for t,size in data_packets_timing]

83

84 #fix getting the timestamps, this isn't a good way to do it

85 plotter.show_throughput_plot(time_offsets, sizes, file_name, logs.timestamp)
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86

87

88 #to fix

89 #why doesn't it advertise after a reset?

90

91 num_transfers = 1

92 #while True:

93 print "%s transfers expected" % num_transfers

94 for i in range(num_transfers):

95 print "ready for transfer"

96 transfer_a_file()

97 #waiting at the prompt is blocking, don't leave it waiting here

98 #yes_no = raw_input("transfer another file? ")

99 #if yes_no[0] not in "yY": break

100

101 #HCI packets recieved after completing the final image transfer ARE NOT LOGGED

CURRENTLY↪→

102 logs.open_hci_log()

103 for dir, packet in hci_packets:

104 logs.log_HCI_packet(dir, packet)

105 logs.close_hci_log()
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A.2 Communicator

1 import serial

2 import serial.tools.list_ports as lp

3 import time

4

5 #send reset command first?

6

7 #everything CC sends on connection

8 trace_enable = '19 02 00 02 00 01 01'

9 set_discoverable = '19 08 00 02 00 01 01'

10 set_pairable = '19 09 00 01 00 01 '

11 get_version_num = '19 02 FF 00 00'

12 set_psm_number = '19 05 23 02 00 13 00'

13 set_mcu_size = '19 04 23 02 00 00 02'

14

15 commands = [trace_enable, set_discoverable, set_pairable, get_version_num,

set_psm_number, set_mcu_size]↪→

16

17 class Communicator():

18

19 def __init__(self):

20

21 self.out_packet_queue = [trace_enable, set_discoverable, get_version_num,

set_pairable]↪→

22

23 correct_port = ""

24 #the above depends on your computer etc

25 #you need the HCI uart, not the PUART

26

27 #find the correct port based on name

28 ports = lp.comports()

29 for port in ports:

30 if port[1].startswith("WICED HCI UART"):
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31 #Cypress development board

32 correct_port = port[0]

33 print "found WICED HCI:", correct_port

34 break

35 else:

36 #look for 4 consecutive ports, pick the first one

37 #This needs to be updated to be more robust

38 names = [port[0] for port in ports]

39 if len(names) < 4:

40 print "no reasonable port found"

41 #this will need to change eventually

42 quit()

43 #Two chip octoScope board, 2 ports per chip

44 correct_port = sorted(names)[0]

45 print "picked lowest port number:", correct_port

46

47

48

49

50 self.HCI_UART = serial.Serial(correct_port, 3000000, timeout=None)

51 #timeout none causes all reads to be blocking

52 #means I don't have to poll anything

53 #WINDOWS ONLY, and it's a request not a command

54 self.HCI_UART.set_buffer_size(rx_size = 12800, tx_size = 12800)

55 time.sleep(.100)

56 #pyserial doens't hold until the port is actually ready

57 #meaning it doesn't flush properly if you don't wait

58

59 self.clear_input()

60 print "input cleared on startup"

61

62

63 #returns the header, blocks until there is one
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64 def get_header_bytes(self):

65 return [ord(x) for x in self.HCI_UART.read(5)]

66

67 def reset_board(self):

68 #this wasn't working right - going back to power resetting the board

69 self.send_packet("19 01 00 00 00")

70 print "sent reset command"

71 print "device starting",

72 while True:

73 #I don't know what it's sending over, so I can't do anything smarter

74 byte = self.HCI_UART.read(1)

75 if byte is chr(0x19):

76 boot_response = [ord(x) for x in self.HCI_UART.read(4)]

77 #chr(8) is a backspace, it gets rid of the space between prints

78 print chr(8) + ".",

79 if boot_response == [0x03, 0x00, 0x04, 0x00]: break

80 print "\ndevice started"

81 #the first hci packet is always the first of the group of 4

82 #so I know the length

83 return self.HCI_UART.read(4)

84

85 def get_packet_bytes(self, reqd_length):

86 return ''.join(self.HCI_UART.read(reqd_length))

87

88 def send_packet(self, packet_bytes_string):

89 self.HCI_UART.write(bytearray.fromhex(packet_bytes_string))

90

91 def send_queued_packet(self):

92 message = self.out_packet_queue.pop(0)

93 self.send_packet(message)

94 return message

95

96 #this needs to actually wait for confirmation that the instrucitons completed
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97 #not sure how to keep hci packets during this. They would only be

98 #le rand changes, which aren't all that important.

99 #Maybe just toss them???

100 #Do we add the magic packets from before?

101 #Why does this still act differently than clientcontrol???

102 def send_initial_packets(self):

103 for packet in self.out_packet_queue:

104 #There isn't any sleep time when CC sends it

105 #time.sleep(.100)

106 self.send_packet(packet)

107 print "board initialized"

108

109 def add_to_queue(self, packet_bytes_string):

110 self.out_packet_queue.append(packet_bytes_string)

111

112 def num_out_queued(self):

113 return len(self.out_packet_queue)

114

115 def clear_input(self):

116 if self.HCI_UART.in_waiting > 0:

117 self.HCI_UART.reset_input_buffer()

118 #print "cleared input"

119 #if this starts in the middle of a RX, things may go sideways

120

121 def read_all_input_buffer(self):

122 return [ord(x) for x in self.HCI_UART.read(self.HCI_UART.in_waiting)]

123

124 def input_buffer_length(self):

125 return self.HCI_UART.in_waiting

126

127 def close_port(self):

128 self.HCI_UART.close()
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A.3 Interpreter

1 file_transfer_request_response = "19 01 20 02 00 01 00"

2

3 class Interpreter:

4

5 def __init__(self):

6 self.parsed_packets = 0

7 self.new_packet()

8

9 #reset the stored packet info

10 def new_packet(self):

11 self.group = -1

12 self.event_num = -1

13 self.length = -1

14 self.params = []

15

16 #probably freaks out if there's an issue

17 #assumes it is a WICED header

18 #returns remaining length of packet

19 def parse_header(self, header_bytes):

20 if header_bytes[0] is not 0x19:

21 print "Header problem - likely overflowed serial buffer"

22 return -1

23

24 self.event_num = header_bytes[1]

25 self.group = header_bytes[2]

26 self.length = header_bytes[3] + ( header_bytes[4] << 8 )

27 return self.length

28

29

30 def parse_params(self, param_bytes):

31 if not self.is_HCI_packet():

32 self.params = param_bytes
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33 else:

34 self.params = [ord(param_bytes[0]), param_bytes[1:]]

35 self.parsed_packets += 1

36

37 def is_HCI_packet(self):

38 return self.is_packet_type(0, 3)

39

40 def get_HCI_direction(self):

41 return self.params[0]

42

43 def get_HCI_packet_bytes(self):

44 return self.params[1]

45

46 def total_packets(self):

47 return self.parsed_packets

48

49 def hexify(self, p):

50 q = lambda x: [hex(y)[2:].zfill(2) for y in x]

51 return [q(x) for x in p]

52

53 def response_required(self):

54 return (self.group, self.event_num) in self.response_table.keys()

55

56 def get_required_response(self):

57 return self.response_table[(self.group, self.event_num)]

58

59 def is_data_packet(self):

60 return self.is_packet_type(32, 5)

61

62 def file_transfer_requested(self):

63 return self.is_packet_type(32, 4)

64

65 def file_transfer_complete(self):
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66 return self.is_packet_type(32, 2)

67

68 def get_transfer_req_response(self):

69 return file_transfer_request_response

70

71 def is_packet_type(self, group_code, event_code):

72 return self.group == group_code and self.event_num == event_code

73

74 def __str__(self):

75 if self.is_HCI_packet():

76 return "packet %s (HCI)" % self.total_packets()

77

78 if self.is_data_packet():

79 return "data: %s" % " ".join([str(x) for x in self.params])

80

81 out = "packet %s (Cypress)\n" % self.total_packets()

82

83 out += "group: %s\n" % self.group

84 out += "event: %s\n" % self.event_num

85 out += "length: %s\n" % self.length

86 out += "parameters: %s" % self.params#self.hexify(self.params)

87

88 return out
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A.4 Logger

1 import time

2

3 def get_timestamp():

4 t = time.time()*1000000 #seconds to useconds

5 t += 66463223296000000

6 #Magic number derived from testing. No idea where it comes from

7 #fixes timestamp numbering in wireshark

8 #it's over 2100 years

9 return int(t)

10

11 def get_pcap_timestamp():

12 t = time.time()

13 t_us = (t - int(t)) * 1000000

14 return int (t), int(t_us)

15

16 class Logger:

17

18 def __init__(self):

19 self.num_HCI_packets = 0

20 self.timestamp = get_pcap_timestamp()[0]

21 #print timestamp

22

23 def good_hex(self, x):

24 #you could replace lstrip with [2:] but that's less readable

25 return hex(x).rstrip("L").lstrip("0x").zfill(2)

26

27 #don't be a moron here

28 def log_int_to_file(self, num, pad_length_bits):

29 byte_character_length = pad_length_bits / 4

30 #number of characters the string should have, 4 bits per character

31 #turn int into hex string

32 num_string = self.good_hex(num).zfill(byte_character_length)
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33 #python appends "L" to longs when you print them

34 #remarkably, L is not a number in hex

35 #pad to correct length

36 chrs = [chr(int(''.join(x),16)) for x in zip(*[iter(num_string)]*2)]

37 #see zip documentation

38 self.hci_log.write(''.join(chrs))

39

40 #Wireshark doesn't recognize all packet types for some reason

41 #packet bytes is an array of ints in 0-255

42 def log_HCI_packet(self, direction, packet_bytes):

43 #PCAP timestamp

44 ts_sec, ts_u_sec = get_pcap_timestamp()

45 #ts_sec - Seconds only epoch time

46 self.log_int_to_file(ts_sec,32)

47 #ts_u_usec - Microseconds offset to ts_sec

48 self.log_int_to_file(ts_u_sec, 32)

49 #PCAP length

50 direction_of_packet = direction % 2

51 #incl_len

52 self.log_int_to_file(len(packet_bytes) + 1 + 4, 32)

53 #orig_len

54 self.log_int_to_file(len(packet_bytes) + 1 + 4, 32)

55 self.log_int_to_file(direction_of_packet, 32)

56 #trying to fix h4 formatting with the below

57 total_packet = chr(direction) + packet_bytes

58 #if direction_of_packet == 0: total_packet = total_packet[1:]

59 self.hci_log.write(total_packet)

60

61 self.num_HCI_packets += 1

62

63 def close_hci_log(self):

64 self.hci_log.close()

65
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66 def open_file_transfer(self, file_name):

67 self.file = open("./files/%s_%s" % (self.timestamp, file_name), "wb")

68

69 def open_hci_log(self):

70 self.hci_log = open("./files/%s_hci_log.pcap" % self.timestamp, "wb")

71 #some systems get angry if files don't have extensions

72 #timestamp included so files aren't overwritten

73 #need to have it opened as binary to fix accidentally writing CRLF

74 self.hci_log.write(bytearray.fromhex("a1b2c3d4 0002 0004 00000000 00000000

0000ffff 000000c9"))↪→

75 '''

76 Magic Number

77 Major Version

78 Minor Version

79 Timezone

80 Sig Figs

81 Max Packet Size

82 Data Link Type

83 '''

84

85 def write_to_file_transfer(self, data_bytes):

86 self.file.write(data_bytes)

87

88 def close_file_transfer(self):

89 self.file.close()
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A.5 Plotter

1 import matplotlib.pyplot as plt

2

3 def show_throughput_plot(time_offsets, packet_sizes, file_name, log_timestamp):

4 #format:

5 #time offsets started at beginning of file, 0 bit packet size

6 number_of_seconds = int(time_offsets[-1]) + 1

7 binned_sizes = [0.0]*number_of_seconds

8 times = range(number_of_seconds)

9 for time, size in zip(time_offsets, packet_sizes):

10 binned_sizes[int(time)] += round(size / 125.0, 4) #8/1000, bytes to kb

11

12 average = sum(binned_sizes) / number_of_seconds

13 #plot line first so the curve is on top

14 plt.axhline(average, color='r')

15 plt.plot(times, binned_sizes)

16 plt.ylabel("kbps")

17 plt.xlabel("seconds")

18 plt.title(file_name)

19 #need to save before show, not sure why

20 plt.savefig("./files/%s_%s_throughput.png" % (log_timestamp, file_name[:-4]))

21 #I believe show is blocking, don't want to leave it up indefinitely

22 #plt.show()

23 plt.close()
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Appendix B

Firmware Flasher Utility

1 ################################################################################

2

3 import serial

4 import serial.tools.list_ports as lp

5 import time

6 import sys

7 import os

8

9 #firmware image must be in the same folder as this script

10 #the below makes it so the terminal can call this script from anywhere

11 #print os.path.dirname(__file__)

12 #os.chdir(os.path.dirname(__file__))

13 ### port initialization ########################################################

14 correct_port = ""

15 #you need the HCI uart, not the PUART

16 #find the correct port based on name

17 ports = lp.comports()

18 for port in ports:

19 if port[1].startswith("WICED HCI UART"):

20 #Cypress development board

21 correct_port = port[0]

22 print "found WICED HCI:", correct_port
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23 break

24 else:

25 if len(ports) > 0:

26 correct_port = ports[0][0]

27 print "attempting lowest port: %s" % correct_port

28 else:

29 print "no available com ports"

30 quit()

31

32

33 HCI_UART = serial.Serial(correct_port, 3000000, timeout=.300)

34 #Using a timeout longer than any wait period

35 #if the board responds faster than spec the script will take less time

36 #this also makes some other code easier

37 time.sleep(.100)

38 #pyserial doesn't hold until the port is actually ready

39 #meaning it doesn't flush properly if you don't wait

40 HCI_UART.reset_input_buffer()

41 print "input cleared on startup"

42

43 ### methods ####################################################################

44 def send_packet(packet_bytes_string):

45 HCI_UART.write(bytearray.fromhex(packet_bytes_string))

46

47 commands = {"hci_reset":"01 03 0C 00",

48 "download_minidriver":"01 2E FC 00",

49 "baud_3M":" 01 18 FC 06 00 00 C0 C6 2D 00",

50 "erase_chip":"01 CE FF 04 EF EE BE FC",

51 "launch_minidriver":"01 4E FC 04 00 00 22 00",

52 "launch_ram":"01 4E FC 04 FF FF FF FF"}

53

54 #Expected response only changes based on sent command type

55 #so the method calculates the correct "command succeeded" response
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56 #compares the success response to the actual response

57 #returns true if they match, fatal errors if they don't

58 def recieve_response(command_name, p=True):

59 sent_command_type = commands.get(command_name, "01 4C FC")[3:8] #default is

the header for write ram↪→

60 expected_response = [int(x,16) for x in ("04 0E 04 01 " + sent_command_type +

" 00").split()]↪→

61 response = [ord(x) for x in HCI_UART.read(len(expected_response))]

62 if response == expected_response:

63 if p: print "response received"

64 return True

65 else:

66 print "\ncommand error"

67 print "expected", expected_response

68 response = response + [ord(x) for x in HCI_UART.read(HCI_UART.in_waiting)]

69 print "HCI Buffer:", response

70 quit()

71

72 #wrapper for sending control commands to the board

73 def send_command(command_name):

74 print "sending command %s:" % command_name,

75 send_packet(commands[command_name])

76 return recieve_response(command_name)

77 #recieve_response deals with the failures

78

79 #takes in an integer, returns the hex string representation without a leading 0x

80 #or trailing "L" for python longs, with a minimum character length of 2

81 def good_hex(x):

82 #you could replace lstrip with [2:] but that's less readable

83 return hex(x).rstrip("L").lstrip("0x").zfill(2)

84

85 def reset_board():

86 #Looping this doesn't actually do anything useful
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87 if send_command("hci_reset"): return

88 print "could not reset device. Please cycle power"

89 quit()

90

91 def flip_halfs(two_byte_hex): #stupid little endian memory address nonsense

92 return two_byte_hex[2:] + two_byte_hex[:2]

93

94 def update_baud():

95 pass

96 #I haven't needed to do this, even though the documentation indicates it

always happens↪→

97

98 #break up an I32HEX line into it's parts

99 def parse_image_line(line):

100 #the following returns the image record string split into pairs of characters

101 #representing a single hex byte

102 pairs = ["".join(x) for x in zip(*[iter(line[1:])]*2)]

103 byte_count = int(pairs[0],16) #how many pairs we are supposed to have

104 address = flip_halfs(''.join(pairs[1:3])) #memory address destination

105 type = pairs[3] #record type indicator - see HEX image documentation

106 data = ''.join(pairs[4:-1]) #the data contained in the record

107 checksum = pairs[-1] #not actually used at the moment

108

109 if byte_count != len(data)/2:#checks for a basic length mismatch

110 #This only came up when I was doing something stupid

111 #but it's a good check to have

112 print "record length mismatch", line, byte_count, len(data)

113 quit()

114

115 return byte_count, address, type, data, checksum

116

117 ### process and write out image lines method ###################################

118 def write_image(file_name):
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119 #make sure when you run this, the CWD in the terminal is a folder

120 #with this script and the firmware image in it

121 rom_image = ''

122 #I'm reading in the whole thing so that I can do the progress bar easily

123 #also helps avoid HDD random io slowness

124 with open(file_name, "r") as file:

125 rom_image = file.readlines()

126 print "writing image", file_name

127

128 memory_offset = "FFFF" #always gets changed by the first line of the rom image

129 num_records = len(rom_image)

130 for index, line in enumerate(rom_image):

131 byte_count, address, type, data, checksum = parse_image_line(line)

132

133 if type == "00": #normal data record

134 header = "014CFC"

135 length = good_hex(byte_count + 4)

136 message = header + " " + length + " " + address + memory_offset + " "

+ data↪→

137 #There's no command in the table for this, since it changes based on

the data↪→

138 send_packet(message)

139 recieve_response("write_ram", p=False)

140 #if the recieve fails, the program quits

141 #No data validation is ever done, but here is an option for where to

do it↪→

142

143 if type == "04": #extended memory addressing

144 #data will always be 2 bytes, big endian

145 #this covers the offset for the beginning of flash memory

146 #also deals with crossing page boundaries and discontinuous data

147 memory_offset = flip_halfs(''.join(data))

148
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149 if type == "05":

150 continue

151 #deal with this later

152 #has to do with launch ram addresses,

153 #per "WICED HCI UART Control Protocol" chapter 2

154 #the minidriver always launches from 0x00220000

155 #and the flash image always launches from the

156 #"launch flash image" address at 0xFFFFFFFF

157 #So I think this can just be ignored

158

159 if type in ["02","03"]:

160 #x86 specific stuff.

161 #per documentation, this is I32HEX, meaning types 2 and 3 don't occur

162 print "\nimage error", line

163 quit() #no sense continuing from here

164

165 #stdout allows me to do a carrage return and overwrite - print has auto

CRLF which is harder to deal with↪→

166 sys.stdout.write("\r%s of %s records processed" % (index+1,num_records))

167 if type == "01": #end of file indication

168 print

169 return #no more file writing to do

170

171

172

173 ### setup file transfer ########################################################

174 reset_board()

175 #if reset fails, try again

176 send_command("download_minidriver")

177 #if the minidriver fails, you need to cycle board power - it only accepts once

178 #it might be in autobaud mode - look into this later

179 write_image("minidriver-20739A0-uart.hex")

180 send_command("launch_minidriver")
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181 send_command("erase_chip")

182 ### write image file ###########################################################

183 write_image("octoAdv20719_A.hex")

184 send_command("launch_ram")

185 print "\nimage running"

186

187 HCI_UART.close()
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Appendix C

Litepoint Interface

1 # coding: utf-8

2 #cd "C:\Users\Galahad Wensing\Desktop\pycontrol\Litepoint_interface"

3 #py PackettoJSONLitepointBT.py 169.254.22.24 test.json

4 '''

5 Instructs a Litepoint IQxel to re-analyze all

6 packets within an IQ capture in Channel 1 and write results

7 to a JSON file.

8 '''

9

10

11 import sys

12 import lime #provided by Litepoint

13 import json

14 import time

15 import datetime

16 import argparse

17

18 #takes in a "bytes" class where each byte is one bit

19 #I dunno why lime does it that way

20 def bytes_to_hex_str(input_bytes,base=2):

21 bit_str = "".join([str(x) for x in input_bytes])[::-1] #[::-1] reverses the

bit sequence↪→
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22 val = int(bit_str,base)

23 hex_str = hex(val)[2:] #gets rid of leading 0x

24

25 #swap hex string but preserve pairs

26 #may need to flip hex str pairs or val around to get the data correctly

endianed↪→

27 #groups = zip(*[iter(hex_str)]*2)

28 #pairs = ["".join(x) for x in groups][::-1]

29 #hex_str = "".join(pairs)

30

31 #new_order = []

32

33 return hex_str

34

35 def help():

36 print("Usage: ")

37 print(" python %s [<jsonFile>]" % __file__)

38 print(" [<jsonFile>] - filename for JSON packet storage")

39 exit()

40

41 packet_dict_entries = {

42 "Preamble Bytes": "PRE",

43 "Header Bytes": "PDUH",

44 #"Header Bytes": "HEAD",

45 "Payload Bytes": "PAYL",

46 "CRC Bytes": "CRC",

47 }

48

49 def packet_to_json(jsonFilename, LP_IP_address='169.254.22.24'):

50

51 single_packet_dict_default = {

52 "Capture Timestamp": "01:01:1980:13:00:00.000000",

53 "Preamble Bytes": "",
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54 "Header Bytes": "",

55 "Payload Bytes": "",

56 "CRC Bytes": ""

57 }

58

59 dictofAllPackets = {}

60

61 lime.initLime()

62 con = lime.connect(address=LP_IP_address, port=24000)

63 con.setTimeout(60000)

64

65 lime.Print("Getting packet count:")

66 #turn this into a list, send after \n join?

67 scpi_commands = '''

68 BT;CONF:DRAT LEN;

69 BT;CONF:DEWH ON;

70 BT;CONF:CHAN:AUTO ON;

71 BT;CONF:SLOC CIND;

72 BT;CONF:LEN:SWOR:AUTO ON;

73 BT;CONF:LEN:PHE LINK;

74 BT

75 CHAN1

76 BT

77 CALC:POW 0,1

78 BT;FETC:SYNC?

79 '''

80 #set to channel 1

81 #set commands bluetooth

82 #calculate power of capture segment, no offset, one packet. Nothing is

returned. I don't think this is used↪→

83 #why set bluetooth again?

84 #fetch segment sync. Does it default to segm1? returns status, total

packets, complete packets↪→
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85 r = con.query1d(scpi_commands)

86 #if r[0]=='0': #if fetch segment succeeded

87 if r[0] is not '0':

88 lime.error("No valid packets found\n")

89 #I don't know if this will stop execution or not

90

91 packet_count = int(r[2]) #number of complete packets

92 print("packet_count : %d" % packet_count)

93

94 ts = time.time()

95 capturetime =

datetime.datetime.fromtimestamp(ts).strftime('%m:%d:%Y:%H:%M:%S.%f')↪→

96 #this gives you the time the script is run why???

97

98 for packetNumber in range(packet_count):

99 print()

100 print("*****Packet : %d" % (packetNumber))

101

102 single_packet_dict = single_packet_dict_default.copy() #copy default

packet dictionary↪→

103 single_packet_dict['Capture Timestamp'] = capturetime

104

105 #get packet type here!!

106 #determine analysis type

107 #how do we get packet type????

108

109 scpi_commands_template = '''

110 CHAN1

111 BT

112 CLE:ALL

113 CALC:POW {0},1

114 CALC:TXQ {0},1

115 CALC:SPEC {0},1



74

116 '''

117 #set channel one, bluetooth, clear all

118 #dunno why we keep setting chan1 bt

119 #calculate power, offset packet num packets, one packet (calculate power

for packet # packetNumber). no return.↪→

120 #calculate transmit quality for current packet. what is transmit

quality??? no return.↪→

121 #calculate spectrum for current packet. no return.

122

123 scpi_commands = scpi_commands_template.format(packetNumber, 1)

124 #print(scpi_commands)

125 con.scpi_exec(scpi_commands) #run calculation commands

126

127 r = con.query1d("*wai;err:all?")

128 #wait for commands to finish. Request all error messages.

129 if int(r[0]) != 0: #if there are errors

130 print("error: %s" % r)

131 dictofAllPackets[packetNumber] = single_packet_dict

132 continue

133

134

135 for info_type in packet_dict_entries.keys():#this should preserve as typed

order↪→

136 query = packet_dict_entries[info_type]

137 scpi_commands = '''BT;FETC:SEGM1:TXQ:LEN:%s?''' % query

138 #print(scpi_commands)

139 r = con.query1d(scpi_commands)

140 if r[0] is "0":

141 bits = r[1]

142 print("Number of %s bits: %s" % (info_type, len(bits)))

143 packet_hex = bytes_to_hex_str(bits)

144 single_packet_dict[info_type] = packet_hex

145 else:
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146 print("%s fetch error %s" % (info_type, r[0]))

147

148 r = con.query1d('''FETC:SEGM1:SYNC:PST?''')

149 if r[0] is "0":

150 # print(r[1])

151 single_packet_dict['Capture Timestamp'] = "".join([str(x) for x in

r[1]])↪→

152

153 key = str(int(packetNumber))

154 dictofAllPackets.update({key:single_packet_dict})

155

156 #print(dictofAllPackets)

157 json_str = json.dumps(dictofAllPackets, indent=4)

158

159 #print(json_str)

160 f = open(jsonFilename,"w")

161 f.write(json_str)

162 f.close()

163

164

165

166

167 if __name__ == "__main__":

168

169 parser = argparse.ArgumentParser(description='This script commands a LitePoint

analyzer to re-analyze and then save results to JSON.')↪→

170 parser.add_argument('LP_IP_address', type=str, help='IP address of the

LitePoint analyzer')↪→

171 parser.add_argument('JSON_file', type=str, help='Name of output JSON file')

172 args = parser.parse_args()

173 LP_IP_address = args.LP_IP_address

174 jsonFile = args.JSON_file

175
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176 # Read the parameters

177 '''

178 if len(sys.argv) >= 3:

179 help()

180

181 if len(sys.argv) <= 1:

182 help()

183 jsonFile = sys.argv[1]

184 '''

185

186 print("jsonFile =%s " % jsonFile)

187

188 packet_to_json(jsonFile, LP_IP_address=LP_IP_address)
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