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Abstract 

 The National Science Foundation‟s Course, Curriculum, and Laboratory Improvement 

(CCLI) program in the Division of Undergraduate Education has been active since 1999; 

however, there has been little effort to establish or maintain records concerning the types of 

projects, extent of funding, and attributes of funded projects.  Using data from interviews with 

NSF staff and stakeholders and archival evidence of historical grants, we created a profile that 

provides a cross-section of historically funded CCLI awards in engineering education and a 

snapshot of CCLI‟s current status. 
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Executive Summary 
 

In today‟s rapidly changing global economy, science and technology are driving forces.  

American businesses are realizing the need for high-quality engineers in order to compete in the 

international marketplace.  The economic and technological superiority of the United States 

depends on the strength of those working in science, technology, engineering and mathematics 

(STEM) fields.  STEM workers are the key to a high-technology society.  Their innovations 

sustain and cultivate the technological advantage of the country.  Thus, STEM education has 

become a high priority for international businesses and national education policy. 

The National Science Foundation (NSF) funds education research and development 

projects through its Course, Curriculum, and Laboratory Improvement (CCLI) program. To 

systematically build upon past studies, funding programs like CCLI need to know three things: 

1) how their funds have been spent; 2) what they have learned from this research; and 3) what 

they would like to know next.  If CCLI had a summary of its awards, it would have all of this 

information at its fingertips.  Until recently, such information was not readily available.   

This project filled this gap by creating a profile of the National Science Foundation‟s 

CCLI awards in engineering education.  The profile helps the National Science Foundation to 

communicate with potential applicants and policy makers alike and thus helps to accelerate the 

pace of education reform. 

 Work on this project began with an extensive review of pertinent literature.  Among the 

topics investigated were: 

 The National Science Foundation and its role in the history and development of 

STEM education, 

 The psychology of education and education pedagogy, 

 Applying undergraduate education to careers in engineering, 

 Efforts by engineering organizations such as the Accreditation Board for 

Engineering Technology and the Engineering Education Coalitions to improve 

undergraduate engineering education, and 

 The future of undergraduate engineering education. 

The literature review process also provided an invaluable understanding of terms and topics 

commonly used within the world of education research, particularly in engineering.  
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 Following the literature review, a methodology for constructing the profile was created.  

The methodology was designed in a manner that would increase the efficiency of the database 

construction process and maximize the usefulness of the profile to CCLI Program Staff, potential 

CCLI applicants, and other NSF stakeholders.  Two methods were primarily used for gathering 

necessary data: interviews and the construction and manipulation of an awards database. 

Interviews were held with persons deeply invested in engineering education research and 

development such as: 

 Current and former NSF Program Directors (PDs), 

 Principal Investigators (PIs) working on CCLI-awarded projects, 

 Government stakeholders including senior staffers from the Senate Committee on 

Health, Education, Labor, and Pensions (HELP), and 

 Members of organizations committed to improving undergraduate engineering 

education such as the American Society for Engineering Education (ASEE) and 

the Accreditation Board for Engineering and Technology (ABET). 

Interviews were used to determine which characteristics would be most important to include in 

the profile and to ensure that the profile had a broader context than merely the CCLI awarding 

process.   

A combined database of 584 CCLI engineering education awards was constructed using 

information from the NSF‟s public awards database coupled with data manually extracted from 

the NSF‟s internal awards database.  Using this database, analysis began on objective and 

subjective characteristics of proposals.   

Aggregate objective data was collected and analyzed for all 584 proposals in engineering 

education since the inception of CCLI.  A subset of 125 proposals was also created including all 

Phase 1 and Phase 2 proposals from the years 2006 and 2007.  These years encompassed the 

entire period since CCLI overhauled its funding structure and research solicitation.  For these 

125 proposals, an in-depth analysis of subjective characteristics, found only by reading 

individual proposals, was conducted. 

 The aggregate data was investigated first in order to gain background knowledge on the 

people and institutions working on the projects funded by the CCLI.  Analysis provided 

information on: 

 The types of institutions receiving awards,  
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 The amounts awarded to these institutions, and 

 Senior personnel involved with these projects. 

 After the historical analysis of all 584 awards, an analysis of subjective characteristics of 

Phase 1 and Phase 2 projects awarded in the years 2006 and 2007 was completed to better profile 

the current funding program.  Topics investigated included but were not limited to: 

 Academic discipline, 

 Number of persons involved and impacted, 

 Focus of the research or development, 

 Evaluation methods, 

 Dissemination methods, and 

 Which ABET criteria for accreditation were targeted by the project. 

Using Microsoft Excel, a template for rating proposals on these various subjects was created and 

then implemented.  

 After careful examination of the data, a list of recommendations was made and presented 

to the staff of the Course, Curriculum, and Laboratory Improvement program at the National 

Science Foundation.  These recommendations include: 

 Expanding the analysis of subjective characteristics to all 584 CCLI awards in 

engineering education since the inception of the program, 

 Continuing to update the database as awards are made, 

 Revising the current record keeping system to expedite the data entry process for 

future updates to the profile, 

 Expanding work done in this project to other academic disciplines within CCLI 

including but not limited to Chemistry, Biology, and Physics, 

 Expanding the profile to include characteristics which time did not allow this 

project to investigate, and 

 Disseminating the results of this project to the entire engineering education 

reform community. 

Access to information from sources such as the National Science Foundation greatly assists in 

advocating the engineering education reform movement.  In order to maintain its place in the 

global economy, the United States needs well-trained professional engineers.  As the demands on 

the engineering community change, so too should the way engineers are educated.  The National 
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Science Foundation is in an ideal position to assist with this endeavor and should continue to 

play a leading role to improve engineering education. 
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1. Introduction 
 

In today‟s rapidly changing global economy, science and technology are driving forces.  

American businesses are realizing the need for high-quality engineers in order to compete in the 

international marketplace.  The economic and technological superiority of the United States 

depends on the strength of those working in science, technology, engineering and mathematics 

(STEM) fields.  STEM workers are the key to a high-technology society.  Their innovations 

sustain and cultivate the technological advantage of the country.  Thus, STEM education has 

become a high priority for international businesses and national education policy. 

Ideally, businesses and educational institutions would have access to high-quality STEM 

graduates.  Unfortunately, this is not the case.  In fact, the percentage of undergraduates in 

STEM programs is falling rapidly, from 32% to 27% from 1994 to 2003 (Ashby, 2).  As fewer 

students graduate with STEM degrees, the number of jobs available is increasing.  Employment 

in STEM fields rose by 23%, which easily outpaces the 17% job growth outside of STEM fields 

(Ashby, 3).  If these trends hold, there will undoubtedly be a shortage of STEM workers in the 

near future.   

In response to this looming shortage, several organizations including the National 

Science Foundation (NSF), the National Academy of Engineering (NAE), and the American 

Society for Engineering Education (ASEE) have begun initiatives to improve the STEM 

curriculum and recruit more STEM students.  The NSF has several programs to advance STEM 

education at a postsecondary level through its Division of Undergraduate Education.  One such 

program is Course, Curriculum, and Laboratory Improvement (CCLI). 

The National Science Foundation created CCLI in 1999 by combining three earlier 

programs.  It is now the main avenue for educational research and development projects for 

STEM education at the undergraduate level (NSF 2007).  In the eight years since the program 

began, CCLI has funded approximately 2000 projects for undergraduate education development 

(2007).  Despite the large number, little effort has been made to characterize the nature and 

extent of these projects.   

Since there has been no sophisticated analysis of CCLI project funding, the NSF cannot 

examine past and present projects collectively to determine their broader educational impact and 

effectiveness.  Likewise, they cannot satisfactorily inform policy makers and other external 
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stakeholders of the progress their programs have made in STEM education.  In order to examine 

the educational impact and effectiveness of its programs, the NSF would first need a profile of 

CCLI expenditures for STEM education.  The profile should include information about the 

academic field of the research, the nature of the effort (pedagogy development, assessment, 

material development, etc.), the participants (number of principal investigators, institutions 

involved, etc.), the evaluation efforts included in the project, and the manner in which the 

researchers allocated their funds.   

We collected all available information and synthesized it into a profile of CCLI 

engineering education grants.  To develop this profile we: 

 Identified the important characteristics of project proposals to include in the profile.  The 

categories of information include data such as: targeted field, award value, nature of 

research effort, etc. 

 Applied the profile to the engineering education proposals the National Science 

Foundation‟s CCLI program has funded, assessed trends, and mapped the direction of the 

program. 

 Identified how NSF personnel and applicants to NSF funding programs would use this 

profile in the future. 

 Demonstrated how CCLI programs align with the direction proposed by professional 

engineering education organizations such as ABET (Accreditation Board for Engineering 

and Technology) or EEC (Engineering Education Coalitions). 

The NSF program officers will help shape the direction of our research as we uncover patterns 

and trends among the proposals.  We searched for patterns in given categories and presented the 

information to the NSF staff.  They then provided a list of more specific information and new 

topics to investigate.  This iterative process aided in making the profile as exhaustive as possible.  

To gain another perspective, we interviewed representatives from many groups outside of the 

NSF including policy makers, representatives from engineering accreditation boards, and 

engineering educators. 

 This analysis sheds light on CCLI grants for engineering education.  It will aid the NSF 

in understanding the nature and extent of its engineering education programs.  The profile 

reflects the input of stakeholders outside of the NSF who are deeply invested in these programs, 

particularly funding applicants and the larger federal STEM funding community.  It will enable 
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the NSF to more effectively communicate with engineering education faculty and thereby 

improve the dialogue between the NSF and principal investigators.  Ideally, it will speed 

improvement in engineering research and development projects and accelerate engineering 

education reform. 
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2. Literature Review 

In order to fully develop our profile, it is necessary to understand the broader context of 

undergraduate STEM education. In this chapter, we will begin with a short description of the 

National Science Foundation and its role in the history and development of STEM education.  

Next, we will review current theories of student learning and education pedagogies. In addition, 

we will explore the context of STEM programs in the larger business world, including recent 

developments by ABET and other professional organizations. 

2.1 The National Science Foundation 

The National Science Foundation (NSF) was created by Congress in 1950 as an 

independent federal agency with a mission “to promote the progress of science; to advance the 

national health, prosperity, and welfare; [and] to secure the national defense…” (NSF, 2007).  

Today it provides 20% of all federally-funded basic research in colleges and universities and is 

the leading source of funding for mathematics, computer science, and social science research.  Its 

mission is vast and varied, as it touches virtually all scientific research in the United States.  

There are approximately 1,700 employees at the national headquarters, but through the grants it 

funds it supports thousands of researchers across the United States as well as in locations such as 

Antarctica and the many US Territories.   A more complete description of the NSF may be found 

in Appendix A. 

The NSF also serves as a forum for communication in the scientific community.  As 

many ideas come through the organization, they are discussed both in terms of intellectual merit 

and broader impact by NSF staff.  The organization has an average of “150 scientists from 

research institutions on temporary duty.” (NSF, 2007)  These scientists review grant proposals to 

ensure they are innovative and are valuable to the academic community. 

Each year, a wide variety of projects receive funding.  Of the many recipients, one of the 

most visible is public television.  Other projects funded by the NSF are as diverse as the impact 

of wireless networking on fighting California wildfires, and looking into “A Mathematical 

Solution for Another Dimension.” (NSF, 2007)  It both solicits proposals for specific areas of 

research and accepts unsolicited proposals for grants.   
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The mission of the Division of Undergraduate Education (DUE) within the NSF is “to 

promote excellence in undergraduate science, technology, engineering and mathematics (STEM) 

education for all students.” (NSF, 2007)  STEM is a large initiative not only for undergraduate 

students, but it also intends to foster interest from early childhood through post-secondary 

education.  Because part of DUE‟s mission is to increase the number of STEM graduates, it is 

important to recognize the trends of intended majors for incoming freshmen. 

2.2 Population Trends in STEM Programs 

 On January 13, 2006, the National Science Board (NSB) presented President George W. 

Bush with its Science and Engineering Indicators 2006.   Its purpose is to analyze “key aspects 

of the scope, quality, and vitality of the Nation‟s science and engineering enterprise and global 

science and technology” (NSB, iii).  Within its section on Higher Education in Science and 

Engineering, the report discusses many aspects of the population involved in undergraduate 

engineering.  Included was a table of “Freshmen intending S&E majors.”  An abridged version 

of the table is included below (Table 2.2-1). 

 
Table 2.2-1: Freshmen intending S&E major, as percentage of undergraduate population (adapted from NSB, 2006) 

 

 The percentage of undergraduates in engineering programs has fluctuated since 1983; 

however, there is a general downward trend in the percentage of new students entering 

engineering programs, as illustrated in Figure 2.2-1.  
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Figure 2.2-1: Freshmen Intending Engineering Majors (adapted from NSB, 2006) 

 This downward trend, coupled with an increasing demand for a technically trained 

workforce, has led to a shortage of engineers. According to Cornelia Ashby, Director of 

Education, Workforce, and Income Security Issues for the Government Accountability Office, “it 

is uncertain whether the number of STEM graduates will be sufficient to meet future academic 

and employment needs and help the country maintain its technological competitive advantage” 

(p. 17). Though modest gains have been made in recent years, the lack of engineers requires that 

current STEM programs produce the highest quality engineering graduates and encourage more 

students to study engineering in the future. 

2.3 STEM Program Analysis 

At the beginning of the Cold War, the United States government recognized an increased 

need for STEM programs. The Soviet Union presented a very real threat to the technological 

superiority of the United States. By the 1960s, the United States had established a model for 

STEM education in its undergraduate programs.  Since then, little has changed, especially in 

engineering education. According to Juan C. Lucena (2003), “Today‟s contested but still 

dominant model of building blocks of math, science, engineering sciences, and engineering 

analysis lie in the scientization of engineering knowledge that began after World War II and 

reached its peak in the 1960s” (p. 421).  The model Lucena mentions focuses on the synthesis of 

scientific principles into engineering curricula (p. 421).   

Unfortunately, this approach is no longer sufficient in the modern age of globalization. 

Many reputable individuals and organizations are beginning to argue that engineering graduates 

in the United States are inadequately prepared for the realities of the engineering workplace 
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(U.S. Department of Education [DOE], 6).  The National Academy of Engineering stated that 

universities must “broaden engineering education so that those technically grounded graduates 

will be better prepared to work in a constantly changing global economy” (Educating…, 1).  

Indeed, some prominent multinational businesses are now calling for improvements in 

engineering education and “corporate reformers have called for cross-cultural competency and 

flexibility in engineering education in light of the challenges of globalization” (Lucena, 421). 

Federal agencies such as the NSF and the Department of Education can play influential and 

leading roles in promoting innovative approaches to engineering education in undergraduate 

curricula, but the government needs a new set of goals and metrics for the programs it sponsors. 

STEM Program Metrics 

The success of STEM programs can be characterized both by their national impact and 

their individual goals. Whether a project meets its individual goals satisfactorily is often a 

question best answered by the sponsoring agency, be it the NSF, Department of Education, or 

another agency. However, at the turn of the 21
st
 century the federal government felt it was 

necessary to establish definable metrics for the quality of STEM education programs on a 

national level. 

The Academic Competitiveness Council 

In February, 2006, President Bush signed into law the Deficit Reduction Act of 2005. 

Section 8003 of this act included the establishment of the Academic Competitiveness Council 

(ACC). The ACC‟s primary function is to identify and analyze the effectiveness of STEM 

programs, identify areas of project overlap, and recommend processes to integrate overlapping 

projects (Deficit Reduction Act of 2005, 2006). In order to do this, the ACC has adopted a series 

of scientific methods to analyze STEM programs (DOE, 14). 

The ACC determined that current educational development programs did not feature 

adequate evaluation mechanisms for their programs (DOE, 31). As a result, many federal 

program agencies are now in the process of redefining their methods of analysis. The ACC hopes 

to deliver “consistent information on the effectiveness of federal programs” (DOE, 31). 

Through its analysis, the ACC has developed a series of goals and metrics by which to 

analyze all federal STEM programs. Table 2.3-1 lists the ACC‟s metrics for evaluating 

undergraduate education. The ACC believes that its metrics are broad enough to define success 
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for all federal agencies with STEM focus. According to the ACC, success can be defined 

quantitatively by “increas[ing] the number of undergraduates who enroll in and complete STEM 

degree programs and are prepared to enter STEM or STEM-related careers or advanced 

education” (DOE, 19).  From 1995 to 2004, the percentage of students with STEM degrees 

decreased from about 32% to 27% of college graduates (Ashby, 6).  Furthermore, data collected 

by the Bureau of Labor Statistics (Figure 2.3-1) show a decreasing trend from 1995 to 2004 in 

the number of STEM graduates in proportion to the number of STEM jobs in the workforce, 

from 9.48% to 8.58% (National Occupational… 2006).  This suggests that current STEM 

programs have not been successful in producing sufficient engineers, and a new approach may 

be required.  

 Metric  Source and Supplemental Information  

1

  

The number and/or percentage of students 

who declare and complete a STEM major 

or program of study (this includes 

students who transfer from 2- year 

colleges and go on to complete 4- year 

STEM degrees, even if they transferred 

prior to completing an associate‟s degree)  

Institutions of higher education or IPEDS can provide the basic 

information on number of STEM graduates. • Persistence from 

freshman year (% of STEM-oriented freshmen getting B.S. degrees 

in STEM 5 or 6 years later); Data on freshman plans available from 

the Higher Education Research Institute (HERI) covering a large 

sample of institutions ("The American Freshman: National 

Norms"); similar data are available from ACT and SAT • National 

Center for Education Statistics • Unit Record System  

2

  

The number and/or percentage of STEM 

graduates who stay in STEM by attending 

a STEM or STEM-related graduate 

program  

Department of Education & NSF/ SRS recent graduates surveys 

(available biennially) provide aggregated data on total number of 

students who are enrolled in graduate programs. • Unit Record 

System  

3

  

The number and/or percentage of STEM 

graduates who take a job in a STEM or 

STEM-related field  

Department of Education & NSF/ SRS recent graduates surveys 

(available biennially); however, new definitions are required for 

STEM-related fields.  

4

  

Employer satisfaction with student 

preparation and readiness to enter the 

STEM job market  

American Customer Satisfaction Survey  

5

  

Where appropriate, student achievement 

on national STEM exams, standardized 

tests within disciplines, and licensure 

exams  

Professional societies • Testing services organizations  

Table 2.3-1: Undergraduate National Goals and Metrics/Program, Project and Intervention Metrics (DOE, 40) 
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Figure 2.3-1: STEM Graduates as a Percentage of Total STEM Jobs (adapted from National Occupational…, 2006) 

Qualitative success, though difficult to measure, can be defined by “encourag[ing] and 

support[ing] STEM professional collaborations, networks, communities, and alliances among 

educators, students, practitioners, government, professional organizations, and industry” (DOE, 

19) and by “support[ing] advancement and development of STEM personnel, programs, and 

infrastructure in education institutions” (p. 19).   

Standardized Testing 

Standardized testing and licensure exams provide a quantitative testing metric and ensure 

an equal opportunity for all STEM students. They offer a concrete score to analyze the technical 

skills of a student; however, they cannot address the wider requirements of NSF stakeholders.  

Standardized tests cannot determine a test-taker‟s interpersonal communication skills and 

flexibility, crucial skills to a modern engineering career.  Nevertheless, they can be valuable in 

determining the effectiveness of certain STEM projects. According to Philander Smith College 

President Walter Kimbrough, “assessment and accountability measures -- when used properly -- 

are important barometers to show the strengths and weaknesses of a postsecondary institution” 

(Dervarics, 304). However, testing is not always the most acceptable way to analyze a program. 

Chris Gallagher, an associate professor at the University of Nebraska-Lincoln, warns that “we 

could see standardized testing emerge as a powerfully controlling force in post-secondary 

institutions” if it is used improperly (2007).  
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Establishing valuable measures of success is only part of the problem in reforming STEM 

education.  Even if these metrics exist, they are useless if the education process is not improved.  

These metrics are designed to measure improvement in engineering knowledge and increased job 

performance upon graduation.  Thus, a complete understanding of engineering education 

programs requires awareness of how people learn, retain, and apply knowledge.  Phillip Wankat 

(2002) confirmed this saying, “Ideally engineering and technology education would be built on a 

foundation of principles based on how people learn” (p. 3).  Furthermore, engineering educators 

need to recognize that “today‟s concerns extend beyond undergraduate engineering per se, to the 

interplay of the engineering profession, the practice of engineering, and engineering education as 

a system” (Educating…, 15).  Increased understanding in these areas will enable educators to 

skillfully adjust their pedagogies to educate more effectively, producing better scores on tests 

and ultimately better engineers. 

2.4 The Psychology of Education 

 More is known about how the human mind gathers and processes information than ever 

before.  This is particularly true for engineering education.  According to Wankat (2002), “the 

scientific knowledge base on learning has only recently become well-enough established that 

educators can use this knowledge to design educational experiences that will result in learning” 

(p. 3).  Many theories exist regarding the brain‟s ability to process information and synthesize it 

to solve problems. 

Constructivism 

 As they complete formal schooling, students take progressively more challenging 

courses.  They use the information they have learned in one class and apply it to the next in the 

sequence.  This process of building on existing knowledge is known as constructivism.  

According to Wankat, “preconceptions are always present and they will affect the knowledge 

structure” (p. 3).  Thus, if students are unfamiliar with the background information or were 

unable to properly synthesize the content required for the course, they will have significant 

difficulty processing this new material.  Wankat goes on to state that “unless the incorrect 

preconceptions are forcefully corrected, they can remain embedded at the base of the new 
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knowledge structures built by the students” (p.3).  To be most efficient, professors would need to 

prevent these misconceptions from ever occurring. 

Transfer 

 Not only do students learn by building on knowledge they already possess, they can 

create knowledge by applying information learned in other disciplines to the problem at hand.  

This process is called transfer.  Engineers frequently apply transfer of information in their 

problem solving process.  They learn the basics of many disciplines, such as static systems, 

thermodynamics, and fluid mechanics, and apply them to increasingly complex problems.  

Previously used solution techniques can also be adapted to solve similar problems.  According to 

Jonassen, Strobel, and Lee, (2006) “engineers primarily rely on experiential knowledge” (p. 

145).  The foundation of experience is a critical instrument to the professional engineer.  

Therefore, effective undergraduate engineering programs should include a wide variety of 

complex problems that require engineers to think flexibly and utilize the transfer of knowledge. 

2.5 Education Pedagogies 

 Using what is known about education, teachers can create learning experiences that help 

students more effectively retain and develop information. In the last few decades, great strides 

have been made in education research and many new teaching styles have emerged. In addition, 

older theories of hands-on education have had a resurgence in recent years and are now being 

modified and implemented fully in some academic programs.  

Collaborative Instruction 

Efforts to improve engineering education systems are increasingly focusing on 

collaborative instruction. Collaborative instruction involves creating instructor groups from 

persons of diverse academic backgrounds. The benefits of partnership are numerous. Through 

collaboration, institutions can improve curricula, enhance undergraduate learning by 

implementing inquiry-based courses, and facilitate education research (Schneider and Pickett, 

259). Collaboration is becoming more valuable to educators in STEM fields; in fact, according to 

Schneider and Pickett (2006), “collaborative partnerships are considered essential in order to 

make real and lasting changes in STEM education” (p. 260).  This is because the increasingly 

complex requirements for engineering education call for input from a variety of experts in a 
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diverse array of fields.  Without collaboration, it would be impossible to fully educate 

engineering students for the business world.  Although these academic partnerships bring 

together diverse ideas and new solutions to problems and allow the production of a higher 

quality product, they also require consistent communication to maintain high levels of 

performance (Schneider and Pickett, 2006). 

Student Engagement 

Perhaps one of the most influential factors in student learning is the student‟s motivation 

to learn.  If a student is apathetic or unenthusiastic about learning, he or she will not learn nearly 

as much as will a student engaged in the learning process .  It is thus extremely important to 

know what motivates students and what bores them.  Typically, students are more motivated to 

learn about subjects that are easier to understand.  Wankat (2002) suggests that teachers should 

“make sure that almost everyone can understand and be successful at the beginning of each new 

section” (p. 6).  In this way, fewer students lack engagement from the start.  They will be more 

likely to successfully learn more advanced applications of the topic.  Furthermore, the National 

Academy for Engineering stresses that “institutions must teach students how to be lifelong 

learners (Educating…, 2).  To keep up with the fast pace of change required of  engineering by 

industry, students must be engaged enough to continue the learning process beyond their formal 

schooling.   

The Role of Professors 

 Like most of their peers in other disciplines, engineering professors generally hold 

advanced degrees in their respective fields but have little formal instruction in education.  

Wankat says “most professors are not aware of the scientific knowledge base and design their 

courses on a „seat of the pants‟ feeling for what improves learning” (p. 3).  Thus, many 

engineering professors may be underperforming educators.  They may not understand what 

motivates students, or conversely, what leads to student lethargy.  If engineering educators more 

clearly understood what drives students and how students learn, they could improve student 

engagement and, thus, undergraduate education.  There is a noticeable lack of information 

regarding the number of engineering professors who hold education degrees.  William Kelly, the 

head of the Public Affairs Department for the American Society for Engineering Education 

(ASEE) confirmed this via email, stating “we do not have this data. My guess is - a very small 
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number” (Kelly, personal communication, Sept. 27, 2007).  Recently, however, some universities 

are taking note of this problem.  Beginning in 2008, Virginia Polytechnic Institute will offer a 

Ph.D. in Engineering Education (Crumbley, 2007). Virginia Tech is the second university, after 

Purdue University, to offer an Engineering Education doctoral program. 

Undergraduate Research 

Research opportunities have become valuable supplements to undergraduate STEM 

education.  One study funded by the NSF showed that students who participate in undergraduate 

research are “more likely to pursue advanced degrees and careers in science, technology, 

engineering and mathematics (STEM) fields” (NSF 2007).  The findings of this study were 

published in the magazine Science on April 27, 2007.  Thus, to increase the number of students 

completing STEM degree programs, NSF stakeholders should provide more undergraduate 

research opportunities. 

Inquiry-Based Learning 

While traditional lecture-based education is the prevailing method of teaching on many 

college campuses, inquiry-based learning has unique advantages.  In March, 2007, a 

“Comparison of Student Learning in Challenge-based and Traditional Instruction in Biomedical 

Engineering” was published in the Annals of Biomedical Engineering.  It compared lecture-based 

classes with “inquiry approaches” which also go by the title of “Problem- and Project-based 

Learning, Authentic Inquiry, Challenge-based Learning and Discovery Learning” (Martin, 

Rivale, Diller, 1314).  The study found that programs including inquiry-based learning are more 

effective than strictly lecture-based education in fostering innovation in undergraduate students.  

2.6 Applying Undergraduate Education to Careers in Engineering 

Programs that incorporate group projects, inquiry-based teaching, and senior capstone 

projects are more likely to achieve the desires of employers than programs focused on more 

traditional pedagogies (Ciancolo, Flory, Atwell, 2006). According to a review of 554 

publications from universities, 284 “reported innovations in design education as one of the 

prevalent vehicles to educate flexible engineers” (Lucena, 425). Indeed, flexible engineers who 

can adapt to a variety of business problems are what modern, globalized businesses require to 

compete with foreign nations (Lucena, 425). Therefore, undergraduate programs must adopt new 
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methods to educate their students if they wish to prepare them for successful careers in STEM 

fields. 

Barriers to Systemic Reform in Engineering Education 

 Even though many educators realize the benefits of engineering education reform, many 

barriers still exist.  A research-based culture still holds significant sway in curriculum 

development decisions.   As Coward, Ailes, and Bardon suggest, “faculty that are oriented 

toward research… pursue their interests and either resist change in undergraduate teaching 

practices or [are] distracted from it.  In the face of such conditions, institutions as a whole have 

less pressure to change” (Coward, Ailes, Bardon, 38).  To stimulate change in the face of 

institutional inertia, a majority of faculty will need to recognize the value of educational reform.  

Many new pedagogies require significant faculty and monetary resources to implement.  

Specific pedagogies focusing on laboratory-based instruction may even require investment in an 

entirely new set of equipment.  In addition, educating engineering faculty on education research 

and methods is costly and time-consuming.  Given the financial restrictions of smaller 

institutions, applying certain more costly innovations may not be feasible.    

 Despite the abundance of research on new and innovative teaching techniques, 

disseminating these efforts to faculty across the nation has been difficult.  According to Jeffrey 

Froyd, an education researcher at Texas A&M University, “the traditional means of 

disseminating research results (e.g., conference papers, journal articles, etc.) are insufficient to 

catalyze systemic reform” (Educating…, 94).  More faculty members at more institutions across 

the nation need to know about the research being done in engineering education to bolster this 

reform. 

The Engineering Education Coalitions 

The National Science Foundation, in its efforts to spearhead undergraduate engineering 

education research, continues to draw feedback from engineering firms and agencies. Indeed, it 

was the call from American businesses that forced the United States to re-evaluate its current 

engineering education programs and encouraged the NSF to establish the Engineering Education 

Coalitions (EEC) in the 1990s. In total, six coalitions of engineering colleges and universities 

worked over a period of fifteen years from 1990 through 2005.  Each coalition worked for 10 

years with an annual budget of $2-3 million (Coward et al., iii).  Appendix B contains a table of 
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the participating institutions in each of the coalitions and a summary of the major 

accomplishments of each coalition.   

The EEC‟s primary function was “to produce new structures and fresh approaches 

affecting all aspects of U.S. undergraduate engineering education, including both curriculum 

content and significant new instructional delivery systems” (Lucena, 422-3).  According to 

Jeffrey Froyd, “Reforms developed by EECs have reinvigorated undergraduate engineering 

curricula at institutions throughout the coalitions and beyond and are turning out graduates who 

are better prepared to meet the challenges of a constantly changing global workforce” 

(Educating…, 83).  The developments of the coalitions focused on teamwork, “open-ended 

learning,” and technology in the classroom (Coward et al., 37).  According to the Foundation 

Coalition, one of the members of the EEC, engineering students should be able to work 

effectively in teams, communicate efficiently, adapt to changes and demands in a project 

description, and integrate knowledge from diverse academic backgrounds (1998). 

Accreditation Board for Engineering and Technology 

A major criticism of current engineering curricula is the relative lack of preparedness of 

engineers and scientists for the modern business world. According to Jonassen et al. (2006), 

“Workplace engineering problems are substantively different from the kinds of problems that 

engineering students most often solve in the classroom” (p. 139).  In order to respond to this 

criticism, undergraduate education programs need to be reformed to better prepare students for 

their careers in STEM-related fields. 

In addition to the EEC, the Accreditation Board for Engineering and Technology (ABET) 

ensures engineering graduates possess a certain set of skills vital to the workforce.  According to 

Thomas and Alam (2003), “it is the intent of ABET that engineering education be shaped by the 

consumers of … engineering graduates” (p. 10). Because of the wide recognition of ABET‟s 

authority, it serves as a regulatory body for engineering programs.  

ABET was founded in 1932 by the Engineers Council for Professional Development.  It 

is made up of 28 participating bodies including various engineering organizations and societies. 

Appendix C contains a list of the organizations that constitute ABET.  ABET‟s mission, among 

other things, is to “anticipate and prepare for the changing environment and the future needs of 

constituencies” (Criteria…, 2007).  In 2000, ABET released a new series of requirements for 
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program accreditation. These requirements are designed to reflect the new demands for engineers 

capable of working in a globalized marketplace.  The changes “shifted the basis for accreditation 

from inputs, such as what is taught, to outputs - what is learned.” (ABET, Criteria…, 2007) 

For a college or university‟s program to earn accreditation, ABET Engineering Criteria 

2000 (EC2000) requires the students in an accredited program to attain the following: 

(a)  an ability to apply knowledge of mathematics, science, and engineering  

(b) an ability to design and conduct experiments, as well as to analyze and 

interpret data  

(c) an ability to design a system, component, or process to meet desired needs 

within realistic constraints such as economic, environmental, social, political, 

ethical, health and safety, manufacturability, and sustainability  

(d) an ability to function on multi-disciplinary teams  

(e) an ability to identify, formulate, and solve engineering problems  

(f)  an understanding of professional and ethical responsibility  

(g) an ability to communicate effectively  

(h) the broad education necessary to understand the impact of engineering 

solutions in a global, economic, environmental, and societal context  

(i) a recognition of the need for, and an ability to engage in life-long learning  

(j) a knowledge of contemporary issues  

(k) an ability to use the techniques, skills, and modern engineering tools 

necessary for engineering practice. (ABET, Criteria…, 2007) 

 

Every ABET-accredited program must include these aspects in the curriculum.  The assumption 

is that, if a school succeeds in achieving these goals, it will produce engineers who are well 

prepared for the workforce.   

Despite these new accreditation criteria, engineering curricula do not fully prepare 

students for all aspects of their future careers.  For example, many engineering students, who will 

be designing for consumers against strict budgets, do not take courses in finance, marketing, 

economics, or other non-engineering fields.  George Hairston (2000), CEO of Southern Nuclear 

Operating Company, argues “this lack of knowledge leaves them less prepared for a rapidly 

changing workplace where varied skills are paramount, resulting in a slower than expected 

integration period” (p. 3).  A goal of engineering programs should be to significantly reduce the 

adjustment period from college to the workforce.  

There is no prescribed way to implement the ABET EC2000 requirements into an 

engineering education program.  Faculty members have significant freedom in the design of their 

courses.  Some utilize traditional lecturing practices, some use inquiry-based teaching or active 
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learning methods, and some use a combination of both.  Some employ group projects and some 

do not.  There must be an ideal balance of these strategies to enhance undergraduate education. 

Many new programs are developing methods to introduce design experiences with non-

engineering constraints in first year curricula in an effort to educate engineers about the realities 

of business as soon as possible. The culmination of this strategy is the senior capstone project, in 

which students are exposed “to the key elements of design – design methods, project 

management, teaming, engineering economics, ethics, risks, and professional issues – before 

graduation” (Hughes, 2001). The capstone project allows graduates to enter the workforce with 

more knowledge of engineering systems and problems.  By developing improved interpersonal 

communication and project management skills, these candidates are more desirable to 

employers.  

Future Undergraduate STEM Content 

 The Engineering Education Research Colloquies (EERC), a body of more than seventy 

STEM education researchers, formed in 2006, defined five major research areas for the 

development of engineering education (The Research Agenda…, 259).  These areas of research 

are: engineering epistemologies, engineering learning mechanisms, engineering learning 

systems, engineering diversity and inclusiveness, and engineering assessment.  The areas were 

defined to “provide synergy and a roadmap for organizing our efforts for educating engineers for 

the dynamic world of engineering practice” (The Research Agenda…, 259).  With the necessary 

research defined, researchers can more easily collaborate to transform engineering education for 

the years to come.   

Ideally, in the future, professors of undergraduate engineering programs will more fully 

understand how a student learns and engineering curricula will provide ideal preparation for 

modern engineering careers.  Educators will take advantage of all that is known about teaching 

engineers.  Upon graduation, all students will have solved complex problems with conflicting 

goals, non-engineering constraints, and multiple solutions (Jonassen et al., 2006).  Students will 

have a firm grasp that there is more than one good solution to an engineering problem, and great 

engineers will find better solutions.  They will understand that engineering solutions are often 

optimizations of certain essential criteria against lesser, but still important, criteria.  As stated by 

the EERC: 
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“meeting these and future challenges requires a transformational 

change rather than incremental improvements in how we recruit and 

educate engineering students.  Business, academic, and government 

leaders from across the engineering enterprise have repeatedly 

remarked that systematic research of how we educate engineers must 

be the path by which we transition from episodic cycles of educational 

reforms and move to continuous, long-lasting improvements in our 

education system.”  (The Research Agenda…, 259) 

 

 Thus, engineering education research is paramount.  To systematically build upon past 

studies, researchers need to be aware of them.  To aid researchers, grant-awarding organizations, 

such as the NSF, need to know three things: 1) how their funds have been spent; 2) what they 

have learned from this research; and 3) what they would like to know next.  If the NSF had a 

summary of its grant proposals focused on engineering education, it would have all of this 

information at its fingertips.  This project aims to fill this gap by creating a profile of the 

National Science Foundation‟s CCLI awards in engineering education.  The profile would prove 

to be a useful tool in discussion about engineering education research with potential applicants 

and policy makers alike and, ideally, help accelerate the pace of education reform. 
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3. Methodology 

The goal of this project was to develop and implement a profile of NSF awards for 

undergraduate engineering education research and development funded through its Course, 

Curriculum, and Laboratory Improvement (CCLI) program.  The profile is an in-depth 

assessment of key characteristics that identifies and analyzes trends and patterns in the proposals 

that have received funding.  The implementation of the profile “paints a picture” of the nature 

and extent of existing engineering education research and will aid in making the best use of the 

available resources for engineering education research in the future.  To achieve this goal, we:  

 Identified all CCLI projects focusing on engineering; 

 Identified the important characteristics of project proposals and negotiation 

correspondence to include in the profile.  The categories of information include data such 

as targeted field, award value, nature of research or development effort, etc.; 

 Rated the proposals with respect to each characteristic for the profile; 

 Assessed historical trends in engineering education proposals CCLI has funded; 

 Identified how NSF personnel and applicants to NSF funding programs would use this 

profile. 

3.1 Identifying Awards in Undergraduate Engineering Education 

 Perhaps the most important step to creating the profile was deciding what information to 

include.  On its public project database, CCLI lists several categories of information for each 

proposal.  Data are available regarding the dollar amount awarded to each project, the term of the 

award, and the institution sponsoring a project to name a few.  Despite the availability of the 

data, efforts to synthesize this information by NSF had been limited.   

The National Science Foundation‟s online award database contains a few thousand 

awards from CCLI across all disciplines.  To extract only projects focusing in engineering, we 

searched the database for all CCLI proposals awarded by NSF program officers who worked in 

engineering.  The list of NSF program officers who had worked in engineering since the 

inception of CCLI was supplied by our National Science Foundation liaison, Dr. Russell Pimmel.  

Searching the database for only CCLI projects approved by these program officers reduced the 

list to approximately 800 proposals.  These proposals were entered into a preliminary database.  
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A review of the proposals at this time indicated that not all were specific to engineering.  Some 

of the engineering program officers had also awarded proposals focusing in disciplines outside of 

engineering.  Collectively, we read all of the abstracts for the remaining projects.  If the abstract 

listed a non-engineering discipline code or was unrelated to engineering, the project was 

removed.  After removing all non-engineering projects the database contained 584 awards.   

3.2 Identifying Characteristics for the Profile 

We rated each proposal according to several classes of characteristics.  Each 

characteristic was assigned a value describing the proposal.  The final profile contained two 

distinct types of characteristics: objective and subjective.  Objective characteristics are explicitly 

stated either in the public database or in the front material of the proposal, and subjective 

characteristics required a judgment by the reviewer. 

3.3 Objective Characteristics 

Objective characteristics described fundamental information about an award.  Some of 

these items were selected from information in the existing online database and other items were 

obtained from the proposal itself.  After creating an exhaustive list of possible characteristics, the 

most relevant of those fields were chosen to analyze. The original list of objective characteristics 

was compiled through brainstorming and an analysis of the relevant literature.  This list was 

designed to include as many facets of the proposals as possible.  In order to narrow the list to a 

more manageable and relevant set, a combination of a review of previously sponsored 

evaluations performed by SRI International and a cost-benefit analysis were used.  SRI 

International has released several reports on contract for the NSF, including one concerning the 

Course, Curriculum, and Development (CCD) program, the predecessor to CCLI.  Many of the 

characteristics in these reports matched those in our preliminary list; therefore, those 

characteristics that were common to both our list and the SRI reports were included in the final 

list.  In addition, under the advice of Dr. Pimmel we recognized a set of certain characteristics 

that would be too time-consuming to include.  Dr. Pimmel identified a list of characteristics that 

he felt were important to the profile.  We analyzed the amount of time necessary to include 

certain characteristics and balanced this against their importance as identified by Dr. Pimmel.  



 32 

Using these techniques, a final list of characteristic was established. The final list of objective 

characteristics is found in Appendix D. 

Each objective characteristic was assigned an indisputable value. For example, the value 

for the total budget is apparent regardless of the reviewer. While certain fields in the online 

database may have contained more than one entry (for example, an award with two NSF program 

element codes), no decision was required by the reviewer, as every proposal contained this 

information clearly stated in its electronic file in the NSF database.  Information was entered into 

a Microsoft Excel spreadsheet with drop down boxes to maintain consistent coding of 

characteristics between proposals and reviewers. 

Using Microsoft Excel, these characteristics were analyzed in a variety of ways. The 

software‟s ability to rapidly sort information and create charts made it exceptionally valuable.  

By charting these characteristics both against each other and against time, it was possible to 

recognize trends in the data.  In addition, aggregate data were collected and analyzed, including 

total money awarded by CCLI for engineering education research and the total number of 

engineering education grants awarded since the beginning of the program. 

3.4 Subjective Characteristics 

 Defining subjective characteristics required more input than is available in the public 

NSF award databases themselves.  Each subjective characteristic required the reviewer to read 

into a proposal to extract a value.  Due to the strict time limitations on our research, it became 

apparent that we would only be able to review a limited number of proposals.  Furthermore, it 

was necessary to select a smaller number of subjective characteristics to investigate in order to 

effectively analyze the data in a reasonable amount of time.   

An initial list of subjective characteristics was formed from our literature review process, 

observations from reading proposals from the current solicitation period, and suggestions from 

Dr. Russell Pimmel, our liaison at the National Science Foundation.  In order to finalize our list 

of possible subjective characteristics, interviews with program officers, program directors, and 

division directors (all past and present employees of the NSF), principal investigators, and 

external stakeholders were used.  The initial list of subjective characteristics served as a basis for 

discussion regarding which characteristics should be included in the profile. 
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Following the interviews, some new characteristics were added to our list and some 

characteristics were removed.  If a characteristic named by an interviewee was missing from the 

initial list, it was considered for addition.  Characteristics were added to the list if the benefits of 

analyzing that characteristic outweighed the time and effort necessary to evaluate it.  

Characteristics were removed from the list if no interviewees found the characteristic valuable or 

if the characteristic were deemed too time-consuming to evaluate.  A determination of the benefit 

of analyzing certain characteristics was made through consideration of interviewee responses and 

suggestions from Dr. Pimmel.  A complete list of subjective characteristics examined in the 

profile is found in Appendix E. 

Interviews with Program Directors and Division Directors 

 Program Directors (PD) and Division Directors (DD) are, primarily, in charge of 

overseeing the review process of incoming proposals.  Ultimately, they decide whether a project 

will be funded or declined.  Because of this, they have intimate knowledge of the proposal 

review process and have presuppositions regarding the demographics of funded projects.  

Interviews with PDs were used to determine which characteristics to include in the profile, the 

perceived direction of CCLI grant funding, and funding strategies.  Practice interviews were 

conducted with Dr. Russell Pimmel and Dr. Dan Udovic, a PD working with CCLI awards in 

biology.  The practice interviews allowed opportunities to test interview questions and rehearse 

the interviews before conducting them with the engineering program directors.  Interview 

questions were revised after these practice interviews to increase clarity and focus.  We 

interviewed seven PDs and two DDs in total.  A final list of the interview questions asked of the 

PDs and DDs is listed in Appendix G.   

Only three of our potential program director interviewees and two division directors were 

still working at the NSF building in Arlington.  For these interviews, it was appropriate to meet 

in person.  A lead interviewer asked questions while a scribe recorded the responses. Since many 

candidates could not be met in person, however, the remaining interview candidates were 

contacted by phone. Two scribes were used for phone interviews in order to assure all data were 

collected.  

The interviews were conducted in a semi-structured manner, allowing the interviewee to 

expand on a specific point if desired.  It was important, however, to assure that the conversation 
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followed the same path in each interview.  In this way, it was possible to remain confident that 

the answers were elicited by a similar thought process across all interviews. 

Interviews with Principal Investigators 

 Since a main goal of this project was to aid communication between the NSF and grant 

applicants, it was important to consider principal investigators (PI).  PIs develop project ideas, 

draft proposals, and carry out the research after the proposal is funded.  Interviews with PIs were 

designed to determine additional characteristics to include in the profile.  Questions asked their 

opinions on the direction of engineering education research, reasons for applying to the CCLI 

program, and what information would be valuable to PIs during the proposal writing process. 

 A list of PIs to contact was provided by Dr. Pimmel.  The selected PIs represented a 

diverse array of institutions and academic disciplines.  Some PIs were from community colleges 

and others were from large research universities.  The PIs chosen were also particularly active in 

engineering education research and reform.  The PIs interviewed also represented a wide 

geographical area, so interviews had to be completed by phone.  A chief interviewer asked the 

questions while a scribe recorded the responses.  Interviews were conducted in a semi-structured 

fashion, which allowed for interviewers to ask probing questions while assuring the conversation 

generally followed the same path.  In total, we interviewed five PIs.  Questions asked of the PIs 

can be found in Appendix H.  

3.5 Addressing Other Stakeholders 

Our final product can have benefits beyond the NSF grant awarding process.  To gain 

insight into what information is useful to organizations outside of the NSF, we interviewed 

policy makers and members of professional societies within engineering.  With their input, our 

profile has context greater than the proposal awarding process within CCLI. 

Legislative Committees 

The National Science Foundation is funded by the United States government.  Thus, 

legislators who write and approve funding legislation are major stakeholders in NSF programs.  

We contacted and interviewed two Senior Education Advisors for United States Senators 

involved in education policy to hear their insight into how legislators view STEM education and 

how they might use this profile.  To ensure politically neutral discussion, we simultaneously 
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interviewed a Democratic staff member and a Republican staff member from the Senate 

Committee on Health, Education, Labor, and Pensions.  Interviews focused on the need for 

STEM education and the focus of STEM education policy.  A complete list of interview 

questions is found in Appendix I. 

Engineering Organizations 

 A number of organizations other than academic institutions and research and 

development funding entities are involved in engineering education development.  Among these 

are the American Society for Engineering Education (ASEE), the Accreditation Board for 

Engineering and Technology (ABET), and the National Academy of Engineering (NAE).  

Because these organizations are intimately involved in engineering education, their input was 

required to make the profile truly multifunctional.  We interviewed a representative from each 

organization.  A list of the interview questions for representatives of engineering organizations 

found in Appendix J. 

Applying Values to Subjective Characteristics 

For each of the subjective characteristics, we applied a similar method of analysis as for 

objective characteristics.  A Microsoft Excel spreadsheet was developed with drop-down boxes 

to ensure responses were limited to a given set to expedite data analysis.  Each rater was given a 

set of proposals to read and assess values.  Since each subjective characteristic described a trait a 

proposal might display, the corresponding value would classify the proposal as displaying the 

characteristic or not.  A glossary including definitions for the characteristics can be found after 

the appendices.  Because these subjective characteristics are sometimes harder to identify, all 

three raters were enlisted to discuss ambiguous proposals.  This rating scheme was designed to 

ensure reliability between raters and proposals.   

3.6 Narrowing the Data Set 

For objective characteristics, it was possible to analyze all 584 awards in the database.  

Data analysis was performed using Microsoft Excel.  This process was efficient for any number 

of projects and did not require the reviewer to read individual proposals.  All analysis involving 

objective characteristics was performed on the original database.  However, we realized that this 

database would be too large to perform effective analysis for subjective characteristics.  It was 
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necessary to narrow the original database to a smaller, more manageable size, before analysis 

could continue.  All analysis involving subjective characteristics was performed on a smaller 

database that was sampled from the original.  

Sampling  

Because subjective characteristics require a more in-depth reading of the proposal to rate, 

they take longer to analyze than the objective characteristics.  A database that was both small 

enough to analyze in the given time frame and also large enough to provide accurate data was 

necessary to perform analysis on the subjective characteristics.  After finalizing the list of 

characteristics that we would use, each team member reviewed three projects individually to find 

an estimate of the time required to review each proposal.  It was determined that each proposal 

took approximately 30 minutes to review.  We then decided to set aside three days for proposal 

reviewing and determined that we could complete 108 projects within the time period.  Dr. 

Pimmel advised that it would be more helpful to external stakeholders if more recent projects 

(since the new designations in 2006) were analyzed instead of taking all projects since 1999.  He 

also noted that Phase III projects were so diverse in their goals and methods it would be difficult 

to characterize them generally.  Therefore, we composed our sample of all Phase I and II projects 

from the years 2006 and 2007, providing both a current and significant sample.  A breakdown of 

this sample used for extracting subjective characteristics is listed in Appendix K. A total of 90 

unique projects were identified from a total of 125 awards (collaborative projects include 

multiple awards to different universities for the same project). 

Manipulating the Data 

 Once all of the proposals were rated, the raw data needed to be extracted into a more 

analyzable form.  To do this, data were first grouped by value for each characteristic to learn the 

total number of proposals with each value.  Then, these groups of similar values were sorted by 

year to assess chronological trends in characteristics.  Graphs with trend lines were made with 

the data to help visualize these tendencies.  After the trend analysis, multiple characteristics were 

correlated to each other to see if there were patterns between characteristics.  For example, the 

focus of research and development was correlated to the phase of the project to identify if some 

types of research and development occur more often in projects of a certain phase.  Graphs were 

also used to help evaluate these data. 



 37 

Completing this methodology led to the creation of a profile of CCLI awards in 

engineering.  This profile is a careful assessment of key characteristics that details general trends 

in engineering awards since the inception of the CCLI program and comprehensively examines 

the awards from 2006 and 2007.  The profile considers the objective and subjective 

characteristics of proposals deemed most valuable by those most familiar with the NSF awarding 

process.  The subsequent chapter presents our findings.  
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4. Results and Analysis 

This chapter contains the findings of the research described in the preceding chapter.  The 

results are coupled with analysis.  The chapter begins with an overview of all engineering 

education proposals funded since the inception of CCLI and continues with a much more 

detailed analysis of the projects funded in 2006 and 2007.  All confidence levels were 

determined using a Z-test for proportions. 

4.1 Aggregate Data and Historical Trends 

For data previously available in the NSF Awards Database, we were able to consider all 

584 CCLI engineering education proposals.  The following sections detail our results both 

aggregately and as historical trends.  Topics covered in this section include the demographics of 

sponsoring institutions, investigators doing the research, and types of projects funded. 

Types of Institutions 

 In the period between 1999 and 2003, most awards were given to small and medium-

sized institutions (under 25,000 undergraduates).  Only about 15 percent of all awards were 

given to schools with more than 25,000 undergraduates.  However, since 2004, there was a large 

increase in awards to large schools, with awards to these institutions comprising just over 25 

percent of all awards.  This increase came at the expense of smaller universities (those with 

fewer than 10,000 undergraduates).  While traditionally making up between 35 and 40 percent of 

all funded awards since 1999, beginning in 2005 small schools began comprising only 25 percent 

of all award recipients, a number on par with the largest schools. Medium-sized schools 

(between 10,000 and 25,000 undergraduates) have been steady at about 45 percent of all awards 

since 1999. The dramatic rise in awards to large schools coincides with the cessation of funding 

for two of the Engineering Education Coalitions: the SUCCEED coalition and the Gateway 

coalition.  It is possible that these universities, seeking a method to replace coalition funding, 

began applying for CCLI grants in 2004.  In fact, these schools alone collectively applied for 10 

awards in 2004, which made up 16% of all 2004 engineering awards.  Figure 4.1-1 displays these 

trends. 
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Figure 4.1-1: Awards by Size of School 

 The distribution of awards to public and private universities has been dominated by 

public universities.  For every year since 1999, public universities have received approximately 

70 to 80 percent of awards.  While the number has fluctuated in this time, there is no statistically 

significant change since 1999.  Figure 4.1-2 displays these numbers. 
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Figure 4.1-2: Awards by Type of Institution 
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Another way we looked at the data was by highest degree awarded.  The majority of the 

organizations given awards were Doctoral universities.  Masters universities followed, though at 

a diminutive amount in comparison.  About five percent of awards were given to non-degree 

awarding institutions such as professional societies.  Community colleges and technical schools 

awarding associates degrees also received a small portion of the awards.  Figure 4.1-3 displays 

this information. 

 

Figure 4.1-3: Percentage of Awards by Highest Degree 

The total number of awards made vs. undergraduate population was relatively equally 

distributed.  However, as shown in Figure 4.1-4, the number of organizations receiving these 

awards varied significantly.   

 

Figure 4.1-4: Number of Organizations and Awards by Undergraduate Population 
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Figure 4.1-5 shows once undergraduate populations grew to 15,000 or more students, the 

average number of awards per organization greatly increased.  
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Figure 4.1-5: Average Awards per Organization by Undergraduate Population 

The majority of organizations were given one award.   Generally, as the number of 

awards given to an organization increased, the number of organizations receiving that many 

awards decreased.  This is shown in Figure 4.1-6. 
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 Figure 4.1-6: Number of Organizations vs. Number of Awards 

Figure 4.1-7 displays that the total amount awarded per organization was diverse.  

Because some organizations were given a higher number of awards and other organizations had a 

smaller number of high value awards, the total amount awarded to an organization varied.  
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Total Amount Awarded per Organization
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Figure 4.1-7: Total Amount Awarded per Organization 

Awards 

Since the inception of the CCLI program, $99,688,322 has been awarded to engineering 

education research and development projects.  The majority of awards have had values of less 

than $150,000.  These smaller awards amount to 69% of all awards.  There have been multiple 

awards for larger denominations however, with more than five percent of all awards having a 

value of more than $500,000.  Figure 4.1-8 displays the distribution of awards by size. 
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Figure 4.1-8: Percentage of Awards by Award Value 

 In the period before the CCLI designations shifted (1999 – 2005), most awards were 

worth less than $150,000, with only about 20 percent worth more than this figure.  However, 
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after the new Phase 1, 2, and 3 designations were introduced, the number of small awards has 

decreased.  Since 2004, nearly 40 percent of awards were valued at more than $150,000.  This 

trend corresponds to an increase in Phase 2 and 3 awards and an overall shift in philosophy 

towards larger, regional and national awards.  Figure 4.1-9 shows this trend. 
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Figure 4.1-9: Awards by Award Size 

 Many awards are funded for a term length of around 36 months.  A total of 205 awards 

were funded for 36 months, which comprises 30 percent of all awards (n = 584).  In addition, 

many awards are awarded for terms between 30 and 42 months.  The number of these awards 

comprises 67 percent of all awards.  Longer award periods are also somewhat more common 

than awards with shorter terms, with awards for 48 or more months totaling 140, while awards 

less than 30 months in length totaled 80. These numbers are shown in Figure 4.1-10. 
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Figure 4.1-10: Awards by Term Length 

 A shift has occurred in the focus of awards since 1999.  Adaptation and Implementation 

(A&I) proposals have shown a steady decrease in awards.  In 1999, 38 A&I proposals were 

awarded, while only 19 A&I proposals were funded in 2005.  Educational Materials 

Development (EMD) projects began with 24 projects each of the first two years before peaking 

at 42 projects in 2002.  After this peak EMD projects resumed their earlier levels, with 25 

projects in both 2004 and 2005.  National Dissemination (ND) projects remained roughly 

constant at a low level over the course of the CCLI program.  Fewer than five ND projects were 

awarded each year.  In 2002, a new program code was introduced called Assessment of Student 

Achievement (ASA).  Since ASA was only in existence for four years, it is difficult to identify 

any trends in the data; however, fewer than 10 awards per year were made in this category.  

These data are reflected in Figure 4.1-11. 
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Distribution of Awards by Program Code
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Figure 4.1-11: Distribution of Awards by Program Code 

In 2006, the program designations changed from descriptions of the type of project to a 

system which reflected the stage of development for the project.  Since then, proposals have been 

categorized as Phase 1 (Exploratory), Phase 2 (Expansion), and Phase 3 (Comprehensive).  Phase 

1 projects have a budget of up to $150,000 ($200,000 when four-year colleges collaborate with 

two-year colleges) and a term of 1-3 years (CCLI, 7).  These projects are “expected to be 

significant enough to contribute to the STEM education knowledge base” (7).  Phase 2 projects 

have a total budget of up to $500,000 and a term of 2-4 years.  “Phase 2 projects build on 

smaller-scale successful innovations or implementations, such as those produced by Phase 1 

projects, and refine and test these on diverse users in several settings” (7).  Phase 3 projects have 

a total budget of up to $2,000,000 and a term of 3-5 years.  These projects “include a diversity of 

academic institutions and student populations” (7).  They also focus on outreach and 

dissemination activities that have a national impact.   

Figure 4.1-12 shows an annual breakdown of projects by phase since 2006.  There was a 

noticeable increase in the number of Phase 3 projects from 2006 (2%) to 2007 (10%).   
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Figure 4.1-12: Distribution of Awards by Phase 

We explored the number of proposals awarded each year.  Though there seems to be no 

linear trend to the data, there is significant deviation between years.  As few as 47 proposals 

were awarded in 2003 and as many as 90 were awarded in 2007.  These data are shown in Figure 

4.1-13. 
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Figure 4.1-13: Number of CCLI Awards in Engineering by Year 

 The total value of awards changed from year to year as well, in some cases very 

drastically.  When the CCLI program began in 1999, $14.2 million were awarded to institutions.  

This value gradually declined until a trough of $7.6 million was reached in 2004.  However, over 

the next three years, a dramatic increase of almost $10 million occurred to a total of $17.5 

million in awards by 2007.  This is the result of a substantial amount of co-funding from other 
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programs for CCLI awards.  In some cases, fluctuations in CCLI engineering spending can be 

attributed to proposal pressure.  These data are shown in Figures 4.1-14 and 4.1-15.  

 

Figure 4.1-14: CCLI Budget for 1999 - 2007 
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Figure 4.1-15: Percent of CCLI Budget and S-STEM Contributions Spent on Engineering Awards by Year 

The changes in award values over time were also investigated.  Since the beginning of the 

CCLI program, engineering education awards have shown an increasing trend in value.  The 
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twice trimmed mean was slightly more than $121,000 in 1999.  The trimmed mean was 

calculated by excluding the two highest values and the two lowest values in each year.  This was 

done to decrease the effect of outliers on the averages.  One award in 1999 had a value of $5.99 

million, which was ten times larger than the next most valuable award.  Without trimming the 

mean, the result would have been skewed greatly in that direction.  The trimmed mean reached a 

peak of almost $225,000 dollars in 2006.  These numbers are reflected in Figure 4.1-16. 
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Figure 4.1-16: Average Award Value (Trimmed Mean) 

Geography 

 The next characteristic of proposals we looked into was geography of the sponsoring 

institutions.  All but two states or territories have had institutions receive awards.  New 

Hampshire and West Virginia are the exceptions.  The geographic distribution of the states was 

examined regionally, using regional designations specified in literature published by the US 

Department of State (US Diplomatic…, 2006).  A list of states by region can be found in 

Appendix L.  There was an uneven distribution of awards between regions, with the Mid-West 

(151) receiving more than five times more awards than New England (27).  Figure 4.1-17 

displays this information.  In addition, only 28% of New England‟s accredited schools received 

awards, and the Mid-West region received the most with 47% of accredited programs receiving 

awards.  These data are found in Figure 4.1-18. 
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Figure 4.1-17: Awards by Geographic Region 
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Figure 4.1-18: Percent of Accredited Schools Receiving Funding by Geographic Region 

Senior Personnel 

 After that, the number of senior personnel (principal investigators, co-investigators, and 

other persons directly involved in the research) working on projects was examined.  The majority 

of projects had two or fewer senior personnel.  Of all the 584 projects, 55% (322) had either one 

or two senior personnel.  On the other hand, many projects had five or more senior personnel, 
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including three projects which had seven senior personnel.  These data are displayed in Figure 

4.1-19. 
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Figure 4.1-19: Awards by Number of Senior Personnel 

 A further exploration of the number of senior personnel working on projects involved the 

changes in the average number of senior personnel per award each year.  Though the numbers 

fluctuated to as high as 2.8 in 2003 and as low as 2.0 in 2004, the average number of senior 

personnel hovered around 2.5.  There is no noticeable increasing or decreasing trend to the data.  

This is shown in Figure 4.1-20.   
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Figure 4.1-20: Average Number of Senior Personnel 
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 The principal investigators conducting this research almost exclusively held doctoral 

degrees.  Of the projects awarded for 2006 and 2007, only one was led by a PI without a Ph.D.  

On average, PIs had earned their degrees 14 years prior to receiving the awards.  PIs were also 

likely to have applied for NSF funding in the past.  On average, investigators had received eight 

prior NSF awards and been declined twelve times.  Though nearly all PIs held doctoral degrees, 

the academic rank of the faculty conducting the research was more varied.  Nearly equal 

numbers of full professors (30%), associate professors (36%), and assistant professors (34%) 

received awards.  These data are displayed in Figure 4.1-21. 
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Figure 4.1-21: Percentage of Investigators by Academic Rank 

4.2 Projects Funded in 2006 – 2007 

 Dr. Pimmel advised that a current cross-section of CCLI funding would be more useful to 

external stakeholders, especially principal investigators.  These stakeholders have little interest in 

the historical trends in CCLI; instead, they would be primarily attentive to the current state of 

CCLI.  Therefore, we analyzed all Phase 1 and 2 projects from 2006 and 2007.  The NSF‟s 

internal proposal database contained full proposals for all of these projects, which were read and 

scored individually according to the finalized grading rubric.  The results and analysis that 

follow exclusively describe the proposals from 2006 and 2007. 
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Rating Proposals 

Values assigned to subjective characteristics described whether a proposal displayed the 

characteristic.  Because many CCLI projects were multi-focused, they frequently displayed more 

than one characteristic in a specific area.  For example, a project could have included both a 

materials development portion and a faculty development portion.  Thus, this project was 

considered as both a materials development and faculty development project.  Consequently, this 

project was double counted in the results for project focus and the percentage breakdowns sum to 

greater than 100%.  Similarly, other areas like dissemination methods, where projects frequently 

used more than one method, and outreach to underrepresented groups, where multiple groups 

were often targeted, include projects that displayed more than one characteristic in a given area.  

As such, these percentage breakdowns also sum to greater than 100%. 

Academic Discipline 

In terms of academic discipline, the most work in a single subject was in Electrical 

Engineering.  Mechanical Engineering followed.   Examples of projects in the Engineering-Other 

category include but are not limited to: Industrial Engineering, Biological Engineering, and 

Service Engineering.  When the projects were separated by phase, it became apparent that the 

most Phase 2 projects were in Engineering-Other.  Chemical, Civil, and Electrical Engineering 

followed.  Mechanical Engineering only had one Phase 2 project, despite the large number of 

Phase 1 projects in that discipline.  These data are displayed in Figure 4.2-1. 
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Figure 4.2-1: Projects by Phase 

People Involved 

Every proposal contains a project data form in which the principal investigator self-

reports the number of people affected by the proposed project. The average number of 

undergraduates affected by each project was 1181, with 21 graduate students, 68 faculty, and 139 

K-12 students also affected per project.  However, Phase 2 projects exhibited impact on a much 

larger number of participants across the board (100% confidence).  Nearly three times as many 

undergraduates (2219) were impacted by Phase 2 projects as compared to Phase 1 projects (821).  

Even larger disparities existed within other demographics: 3.6 times as many faculty were 

impacted by Phase 2 projects compared to Phase 1 projects, and 6.3 times as many graduate 

students were affected by Phase 2 projects as Phase 1 projects.  Figures 4.2-2 and 4.2-3 illustrate 

these data. 
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Figure 4.2-2: Average Number of Undergraduate and K-12 Students Reported Impacted by Projects 
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Figure 4.2-3: Average Number of Graduate Students and Faculty Reported Impacted by Projects 

Project Scope 

 Sixty percent of all projects focused on multiple courses.  However, a significantly larger 

portion of Phase 2 projects focused on multiple courses (22 of 27) compared to Phase 1 projects 

(42 of 70), and there is 96% confidence of this result.  Approximately 45% of Phase 1 and 2 
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projects were multi-disciplinary, with 30 of 70 Phase 1 and 14 of 27 Phase 2 projects exhibiting 

multi-disciplinary focus.  Figure 4.2-4 illustrates these data. 
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Figure 4.2-4: Curricular Scope of Projects 

Of the 97 Phase 1 and Phase 2 projects in 2006 and 2007, 4 projects (or 5%), did not 

affect any courses directly.  These projects focused primarily on faculty development and did not 

make any modifications a course.  The majority of projects affecting multiple courses affected 

both levels of undergraduate study.  A breakdown of the targeted course levels of projects is 

shown in Figure 4.2-5. 
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Figure 4.2-5: Courses Affected by Course Level 

Type of Research and Development 

Materials development was the most highly represented focus area of the project set 

(representing 71% of all projects) followed by curriculum development (57%), faculty 

development (30%), and pedagogy development (29%). Development of assessment tools and 

research each comprised approximately 10% of the project set.  Collaborative projects reflected 

this distribution as well, with the exception of pedagogical development projects, of which there 

was only one. 

 For Phase 1 projects, the distribution of projects to small (less than 10,000 

undergraduates, 18 total institutions), medium (between 10,000 and 24,999 undergraduates 

inclusive, 58 total), and large (25,000 or more undergraduates, 24 total) schools was comparable 

to the actual distribution of schools by size; however, Phase 2 projects are represented much 

more heavily by small schools than would be expected by their distribution (100% confidence).  

In addition, medium schools are more likely than large schools to fund Phase 2 projects (89.6% 

confidence).  Figures 4.2-6, 4.2-7, and 4.2-8 provide more information about the focus of 

projects. 
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Focus of Development
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Figure 4.2-6: Focus of Development by Phase and Size of School 
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Figure 4.2-7: Collaborative Project Focus 
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Number of Awards by Size of School and Phase
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Figure 4.2-8: Number of Awards by Size of School and Phase 

Materials Development 

The most common focus of CCLI engineering education projects was the development of 

educational materials.  This covers a broad range of items from technological materials such as 

software, online tutorials, and methods for simulation and visualization to new textbooks, 

workbooks, case studies, and manuals.  Two projects even developed educational video games.   

Technology developments comprised a major portion of the educational materials 

developments.  A breakdown of the technology developments is found in Figure 4.2-9.   
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Figure 4.2-9: Developing Technological Materials 

The most common development (41 projects) was to create or improve sets of 

experiments.  Also popular were the development of modules (37).  More data about educational 

materials are displayed in Figure 4.2-10. 
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Figure 4.2-10: Other Materials Development 

Pedagogy Development 

 Pedagogy development was a main focus of 29% of all projects.  Efforts to improve 

pedagogy were diverse, however.  Many of these efforts were focused on laboratory classes, with 

over 43% of projects working to improve the way laboratory classes were taught.  Twenty-one 
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percent of Phase 1 projects and 26% of Phase 2 projects focused on developing lecture 

techniques.  These data are shown in Figure 4.2-11.  Nearly four-fifths of all projects 

incorporated an active learning component and 28% involved some kind of group work.  Fifteen 

percent of projects included a distance learning component.  One noticeable difference between 

Phase 1 and Phase 2 projects involved peer-led learning.  Only 1% of Phase 1 projects involved 

peer-led learning, while 19% of Phase 2 projects included a peer-led learning component.   
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Figure 4.2-11: Type of Pedagogy Development 

Evaluation Methods 

 Evaluation methods varied greatly from proposal to proposal.  Many techniques were 

common among them, however.  The most popular evaluation method was the use of student 

surveys.  Sixty-nine percent of all projects included a student survey in the evaluation plan.  Pre- 

and post-tests, including the use of concept inventories were also very popular, with 52% of 

projects utilizing this method.  Other recurring methods include student interviews (40%), 

faculty surveys (28%), and student focus groups (26%).  Additionally, there were some slight 

differences between the evaluation procedures of projects of different phases.  Phase 2 projects 

were more likely to have both summative and formative evaluation measures than Phase 1 

projects.  These data are displayed in Figure 4.2-12. 
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Figure 4.2-12: Evaluation Techniques 

The person conducting the evaluation varied from project to project as well.  A 

significant portion of projects included experts skilled in evaluation either directly or by contract.  

As can be seen in Figure 4.2-13, 62% of Phase 1 projects included expert evaluators, while 81% 

of all Phase 2 projects included this component.  In addition, exactly half (11 of 22) of Phase 2 

projects involving expert evaluators made use of personnel outside the sponsored institution, 

either evaluation specialists on contract or expert faculty from other universities.  The remainder 

made use of specialists from within the institution itself.  Comparably, 20 of 43 Phase 1 projects 

involved external expert evaluators while the remaining 23 involved internal expert evaluators. 

Overall, Phase 2 projects were more likely to use expert evaluators than Phase 1 projects (95% 

confidence). 
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Experts Used in Evaluation
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Figure 4.2-13: Experts Used in Evaluation 

Dissemination Methods 

 Proposed dissemination methods varied from project to project.  A few projects utilized 

very unique dissemination methods including a mobile demonstration booth and the creation of a 

new academic journal.  Many projects used similar dissemination methods, however.  A vast 

majority of proposals used websites, conferences, and/or journals to disseminate their findings.  

Conferences and/or websites were used by 82% of all projects, with journals close behind at 

72%.  Though these methods were popular among all projects, certain dissemination methods 

were more popular among Phase 2 proposals, such as workshops and the use of mail and email.  

For example, workshops were used by 67% of Phase 2 projects, but only 30% of Phase 1 

projects utilized that method.  These data are shown in Figure 4.2-14. 
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Most Popular Dissemination Methods
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Figure 4.2-14: Most Popular Dissemination Methods 

Outreach to Underrepresented Groups 

Many projects included efforts to address underrepresented groups in engineering, often 

aimed to increase interest and retention of these groups.  Almost two-fifths (39%) of all projects 

specifically considered underrepresented groups.  Many of these projects targeted minorities 

(32%) and women (25%).  A small number of projects also focused their efforts on addressing 

persons with disabilities.  These categories are not mutually exclusive: projects may have 

addressed more than one population group.  These results are displayed in Figure 4.2-15. 
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Figure 4.2-15: Projects Addressing Underrepresented Groups 

ABET Criteria 

 With the recent ABET EC 2000 criteria the focus of projects has addressed these 

concerns.  Over 40% of projects focused on designing and conducting experiments.  

Approximately 25% of Phase 1 projects focused on improving student ability to design a system, 

with 41% of Phase 2 projects containing this focus.  In addition, almost half of Phase 2 projects 

involved teams while about 30% of Phase I projects involved teams.  Overall, Phase 2 projects 

exhibited slightly more focus on addressing ABET criteria when compared to Phase 1 projects, 

including more concentration in communication, ethics, and problem solving (71% confidence).  

Figure 4.2-16 shows these trends. 
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Figure 4.2-16: ABET Criteria Addressed by Projects 
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5. Further Observations 

5.1 Proposal Pressure 

 NSF program directors recommend proposals by choosing the most competitive 

proposals.  Each program director has their own unique definitions for competitive.  In addition, 

there is no quota for awards based on discipline.  If it is assumed that a certain percentage of all 

proposals will be funded, it can also be assumed that a smaller number of proposals in a certain 

discipline will result in fewer awards in that discipline.  Because of this, the number of 

engineering awards per year may fluctuate based on the total number of engineering proposals 

that were submitted.  This result manifests itself in a number of ways.  Certain years may 

experience a lower amount of total funding for CCLI engineering awards, and certain disciplines 

may experience more or less than their fair share of awards when compared to aggregate 

proportions such as national undergraduate enrollment in that discipline.  This may also be the 

cause for shifts in the annual number of proposals in specific phases or program codes, or the 

types and sizes of schools awarded to on any given year.  

5.2 Differences between Phase 1 and Phase 2 Projects 

Through our analysis, it became clear that Phase 1 projects and Phase 2 projects are 

distinctly different.  Differences emerged in nearly every measure of scope, from the people 

affected to evaluation and dissemination methods.  Though these disparities may have been 

expected, they are no less noteworthy.  With one of the major objectives of Phase 2 projects 

being to increase dissemination and implementation of previous research, it was expected that 

Phase 2 projects impact a higher number of people at all academic levels than Phase 1 projects, 

as it is shown in Figures 4.2-2 and 4.2-3.  Figure 4.2-4 shows Phase 2 projects included more 

multiple course impact than Phase 1 projects.  Phase 2 projects also had a higher number of 

expert evaluators (Figure 4.2-12), and types of dissemination methods (Figure 4.2-14).   

5.3 Relations between Interviews and Results 

 One of the goals of performing interviews was to understand the direction and status of 

the engineering education reform movement as seen by its stakeholders, including professional 

organizations and the NSF.  By identifying the successful aspects of the movement as well as the 
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failures we hoped to determine how closely the NSF‟s CCLI program aligns with the goals of 

other stakeholders.  In order to do this, it was necessary to build a cross-section of the recent 

projects funded by CCLI in addition to determining the techniques and methods that are 

considered most effective in reforming engineering education.  By doing this, it is possible to 

recognize whether the projects funded by CCLI contain characteristics of accepted, successful 

engineering education reform. 

 Many interview respondents expressed concerns, both positive and negative, about 

certain areas, including the need for effective dissemination and assessment, the importance of 

soft skills in engineering, the value of innovative and effective new pedagogies involving active 

learning techniques, the balancing act between innovation and adaptation of novel ideas on a 

limited resource budget, the cultural barrier at major universities, and the importance of 

revolutionary versus evolutionary change.  In order to address these concerns, inferences from 

the data must be made. 

Assessment 

 Education has for countless years been considered a soft science; however, many 

respondents expressed the need for education reform to be a process that includes scientific 

methods and analysis.  Formative and summative evaluation of funded projects must be used to 

ensure the effects of a project are well understood.  CCLI funded projects meet this concern.  

Over 80% of Phase 1 and over 90% of Phase 2 projects exhibit both formative and summative 

evaluation techniques.  In addition, as many as 80% of Phase 2 projects involve the use of 

experts specifically for project evaluation.  CCLI funded projects exemplify a keen awareness of 

the importance of proper, scientific project analysis. 

Dissemination 

 A frequently cited cause of the slow place of engineering education reform is the inability 

to disseminate and implement effective new pedagogies.  Even for new pedagogies that, after 

formal analysis, turn out to be ineffective, the importance of disseminating the methods and 

techniques used in the study cannot be understated.  Yet, over 60% of all projects continue to 

rely on “traditional” dissemination methods, including websites, journal publication and 

conferences.  In fact, almost 90% of Phase 2 projects involved the use of a website as a means of 

dissemination, and approximately 80% of both Phase 1 and Phase 2 projects involve presentation 
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at conferences.  While these methods can be efficient means of dissemination for certain topics, 

respondents often mentioned the ineffectiveness of these passive dissemination techniques.  Only 

a small number of Phase 1 projects expressed the use of unique, active dissemination techniques; 

however, approximately two-thirds of Phase 2 projects involved workshops, the most common 

form of active dissemination.  Despite this, CCLI projects overall rely primarily on passive 

techniques as their primary method of dissemination, reinforcing the concerns of stakeholders. 

Soft Skills in Engineering and ABET Criteria d, f, and g 

 The ABET EC2000 criteria have shifted the views of many engineering programs across 

the country to outcomes assessment.  This has caused a dramatic shift in all aspects of 

engineering education.  Although the new criteria are less than a decade old, representatives from 

leading professional organizations feel that they have been fully synthesized, or at least 

recognized, by most departments across the country.  Of the new criteria, there is a new focus on 

soft skills in engineering, including teamwork, communication, and professional ethics.  While 

team-based pursuits are incorporated into CCLI programs quite often (almost 50% of Phase 2 

and just over 30% of Phase 1), only about 20% of all projects focus on communication skills, 

and even fewer (approximately 10%) focus on professional responsibility and ethics.  With the 

exception of team skills, ABET‟s and others‟ concerns over the lack of focus on soft skills in 

engineering education has gone largely unheeded by CCLI programs. 

Active Learning Pedagogies 

 Interview respondents expressed a concern that some new pedagogical techniques were 

not focusing on active learning, which has been proven to be more effective than passive, 

lecture-based methods.  Fortunately, this concern seems to be addressed by CCLI investigators.  

More than three-quarters of unique projects expressed some sort of active learning component, 

with much of the remainder containing faculty development or research type projects for which 

this may not be applicable.  The data suggest that CCLI investigators recognize the importance 

of active learning techniques in their projects. 

Scope 

 According to respondents, in order to accomplish effective reform in engineering 

education, strong ideas must impact the maximum number of persons that can be achieved 



 68 

within a project‟s budget.  As a matter of fact, the average number of undergraduates impacted 

by each project is self-reported by principal investigators to be over one thousand, and the 

average number of faculty impacted by each project is about 17.  

While incremental change is important and necessary in the effective development of 

engineering education reform, large scale, curriculum wide change is also significant in the 

process.  The ABET EC2000 criteria have already jumpstarted the move towards revolutionary 

change by imposing the new accreditation criteria; therefore, it is expected that principal 

investigators continue this trend.  Over 60% of all projects and 80% of Phase 2 projects impact 

more than one course, a component of systemic change.  Not only that, but multi-disciplinary 

efforts extend to nearly 45% of all projects, representing a strong push by investigators to include 

change across an entire curriculum, or at least more than one aspect of a curriculum.  These 

statistics indicate that CCLI investigators have a keen interest in sustaining revolutionary versus 

evolutionary change.  

Faculty Inertia 

 Interview respondents from professional organizations and universities noted that, while 

many faculty are active in the engineering education reform process, there is still a significant 

portion of those who are not interested in education research and would rather focus efforts on 

their disciplinary research.  The data in this report is reflective of the portion of faculty who are 

deeply committed to improving undergraduate engineering education; therefore, it is difficult to 

say with certainty how widespread this phenomenon of faculty inertia may be.  However, 

interview respondents cited the lack of reward system for education research for faculty, limited 

time resources, and the lack of prestige education research offers as major hurdles for 

engineering programs to overcome should they wish to further engineering education reform.  

Combined, these hurdles represent a cultural barrier that slows the progression of reform.  
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6. Recommendations 
 

 After completing the project, we have identified several recommendations to present to 

the National Science Foundation to continue the construction of the profile of CCLI awards in 

engineering and expand the work to other disciplines.  This chapter contains these 

recommendations. 

We recommend that the National Science Foundation expand the examination of 

subjective characteristics to all 584 awards in engineering.  This will allow for comprehensive 

historical analysis of CCLI funding in engineering.  Furthermore, it will provide a complete 

overview of the research and development efforts in engineering education funded through 

CCLI.   

We recommended that CCLI continue to update this database as new awards are made.  

The current database thoroughly analyzes awards from 2006 and 2007.  These data will soon 

become outdated, and their usefulness will expire.  If the database were continually updated, the 

profile would remain applicable indefinitely.  CCLI would always have an up-to-date profile of 

their awards, both from the past funding cycle and as trends since the beginning of the program. 

We recommend revisions be made to the current record-keeping system to allow for 

minimal manual extraction of data from the proposals.  Budget information, academic discipline, 

geographic information, and other objective data could automatically be extracted to a database 

using a computer application when an award is made.  Program directors could code proposals 

for subjective characteristics as they recommend them for funding.  Since program directors are 

quite familiar with proposals at this time, coding then would eliminate the need to re-read 

proposals at a later date.  This would greatly expedite the construction of the database.    

 Furthermore, we recommend that CCLI expand this profile to disciplines outside of 

engineering.  The information provided by the engineering profile would be equally valuable to 

other disciplines.  A database of a similar nature is currently under construction for awards in the 

Biological Sciences.  If databases were constructed for Chemistry, Computer Science, 

Geological Sciences, Mathematics, Physics, Social Sciences, and Interdisciplinary programs, 

CCLI would have a complete profile of all of its awards.  A coordinated interdisciplinary effort 

would ensure these databases were compatible.  This could improve interdisciplinary 
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communication between program directors and help focus solicitations for new research and 

development. 

 The profile could be expanded to include some characteristics that have not been 

included to date.  The profile should include a section detailing the use of concept inventories as 

an evaluation method.  It should also include a characteristic specifying the development of 

concept inventories as an assessment tool.  Concept inventories were a recurring theme in many 

proposals, but the profile has failed to consider them specifically.  An in-depth analysis of the 

ABET criteria fulfilled by development projects could prove insightful.  If researchers were 

aware of the underdeveloped aspects of engineering education, they could work to fill this void.   

Adding information to the profile could fill gaps regarding what has been learned through 

the research supported by CCLI and what needs to be learned next.  If the profile included 

additional information, it would better guide communication and cooperation between the many 

stakeholders in engineering education.   

Also, an investigation into the outcomes of the projects funded is recommended to gain 

further insight into the effectiveness of engineering education reform.  While dissemination of 

projects is being performed on a project-by-project basis, the analysis of the results of funded 

projects would be better able to show what is and what is not working in engineering education.  

A general overview of engineering education reform would assist in breaking down the barriers 

hindering improvements in undergraduate education. 

Finally, and most importantly, it is necessary to disseminate this information to as many 

groups as possible.  The National Science Foundation should share this information with 

potential applicants, policy makers, and those organizations with vested interests in engineering 

education.  If more people had access to this information, it would further stimulate discussion 

on engineering education research and accelerate the pace of engineering education reform. 
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Appendix A: National Science Foundation 
  

The National Science Foundation (NSF) was created by Congress in 1950 as an 

independent federal agency with a mission “to promote the progress of science; to advance the 

national health, prosperity, and welfare; [and] to secure the national defense…” (NSF, 2007).  

Today it provides 20% of all federally-funded basic research in colleges and universities and is 

the leading source of funding for mathematics, computer science, and social science research.  Its 

mission is vast and varied, as it touches virtually all scientific research in the United States.  

There are approximately 1,700 employees at the national headquarters, but through the grants it 

funds it supports thousands of researchers across the United States as well as in locations such as 

Antarctica and the many US Territories.    

 When it was founded in 1950, the National Science Foundation had only enough funds 

for 28 grants.  The first location at 901 16th Street, NW, Washington, DC was roughly the size of 

a large house. Not only has it grown to giving approximately 10,000 new grants every year, it 

has also grown in physical size. Presently, the Foundation occupies a substantial block of offices 

in the Ballston area of North Arlington, Virginia.   

After the Soviet Union launched the satellite Sputnik, an emphasis on the technology 

needed to keep pace in the Space Race led to an increase in budget to well over $100 million.  

While that pales in comparisons to today‟s budget of $5.92 billion, it demonstrated the added 

significance placed on federal funding for scientific research. 

The NSF also serves as a forum for communication in the scientific community.  As 

many ideas come through the organization, they are discussed both in terms of intellectual merit 

and broader impact by NSF staff.  The organization has an average of “150 scientists from 

research institutions on temporary duty.” (NSF, 2007)  These scientists review grant proposals to 

ensure they are innovative and are valuable to the academic community.  

Each year, a wide variety of projects receive funding.   Of the many recipients, one of the 

most visible is public television.  Other projects funded by the NSF are as diverse as the impact 

of wireless networking on fighting California wildfires, and looking into “A Mathematical 

Solution for Another Dimension.” (NSF, 2007)  It both solicits proposals for specific areas of 

research and accepts unsolicited proposals for grants.   
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 There are 7 major directorates to the National Science Foundation: Biological Sciences; 

Computer & Information Science & Engineering; Education & Human Resources; Engineering; 

Geosciences; Mathematical & Physical Sciences; and Social, Behavioral and Economic 

Sciences.  Along with the Office of the Director, Office of the Inspector General, and the 

National Science Board, there are a total of 10 major branches to the foundation. 

 The Directorate for Education and Human Resources, where our efforts will be 

concentrated, is subdivided into 6 divisions: Graduate Education; Research on Learning in 

Formal and Informal Settings; Undergraduate Education; Experimental Programs to Stimulate 

Competitive Research; Division of Research, Evaluation, and Communication; and Human 

Resource Development.  We will be working with the Division of Undergraduate Education, 

whose mission is “To promote excellence in undergraduate science, technology, engineering and 

mathematics (STEM) education for all students.” (NSF, 2007)  STEM is a large initiative not 

only for undergraduate students, but it intends to foster interest from early childhood through 

post-secondary education.   

 Within the DUE falls the Course, Curriculum, and Laboratory Improvement (CCLI) 

program.  It “supports efforts to create new learning materials and teaching strategies, develop 

faculty expertise, implement educational innovations, assess learning and evaluate innovations, 

and conduct research on STEM teaching and learning.”  Also, it “provides indirect funding for 

undergraduate students or focuses on educational developments for this group such as curriculum 

development, training, or retention.” (NSF, 2007)  Figure A1 on the following page details how 

CCLI falls within the organizational structure of the National Science Foundation. 
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Figure A1 – Organizational Chart of the National Science Foundation 
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Professors interested in obtaining NSF funding for a project must submit a proposal 

which is reviewed by both an NSF program officer and a panel of experts. These reviewers will 

determine if a project possesses an innovative idea that will have the potential to be disseminated 

beyond the home university. In addition, the panel must feel confident the investigator and the 

university are competent of performing their stated goals within their budget and time frame. 

Often, the principal investigator will engage in a correspondence directly with the program 

officer to refine the proposal during the application phase.  Figure A2 below details the flow of 

proposals during the approval process. 

 

Figure A2 – Flow chart of proposals through the National Science Foundation 

Along with funding research projects and furthering the interest of children and young 
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changing technology, and generally better the lives of the US population and in turn those of the 
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the potential to bring more prestige to our universities, in turn attracting higher quality professors 

and students and enhancing the academic environment.   
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Appendix B: Engineering Education Coalitions 
 

Coalition Participating Institutions Major Contributions 

Engineering Coalition of 

Schools for Excellence in  

Education and Leadership 

(ECSEL) 

 
http://echo.ecsel.psu.edu/ 
 

1990–2001 

City College of the City University of 

New York 

First-year engineering 

design courses 

 

Assessments of innovative 

pedagogical approaches 

Howard University 

Massachusetts Institute of 

Technology 

Morgan State University 

Pennsylvania State University 

University of Maryland 

University of Washington 

Synthesis 

 
http://www.synthesis.org 

 

1990–2001 

California Polytechnic State 

University at San Luis Obispo 

Artifact dissection 

 

NEEDS (National 

Engineering Education  

Delivery System) 

Cornell University 

Hampton University 

Iowa State University 

Southern University 

Stanford University 

Tuskegee University 

University of California at Berkeley 

Southeastern University and 

College Coalition for  

Engineering Education 

(SUCCEED) 

 
http://www.succeednow.org 
 

1992–2003 

Clemson University Multidisciplinary capstone 

design courses 

 

SUCCEED longitudinal 

student database 

 

 

 

Florida A&M University -  

Florida State University 

Georgia Institute of Technology 

North Carolina Agricultural and  

Technical State University 

North Carolina State University 

University of North Carolina 

Charlotte 

University of Florida 

Virginia Polytechnic Institute and 

State University 
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Gateway 

 
http://www.gatewaycoalition.org 
 

1992–2003 

Columbia University First-year engineering 

curricula 

 

Multimedia modules 

Cooper Union 

Drexel University 

New Jersey Institute of Technology 

Ohio State University 

Polytechnic University 

University of South Carolina 

Foundation 

 
http://www.foundationcoalition.org 
 

1993–2004 

Arizona State University First two years of 

engineering curricula 

 

Engineering science 

concept inventory  

assessment instruments 

Maricopa Community College District 

Rose-Hulman Institute of Technology 

Texas A&M University 

Texas A&M University Kingsville 

Texas Women’s University 

University of Alabama 

University of Massachusetts 

Dartmouth 

University of Wisconsin Madison 

Greenfield 

 
http://www.greenfield-coalition.org 
 

1994–2005 

Lawrence Technological University Learning objects 

 

Manufacturing curricula Lehigh University 

Michigan State University 

University of Detroit Mercy 

Wayne State University 

Figure A3 – Engineering Education Coalitions Membership and Major Accomplishments (from Educating…, 85) 
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Appendix C: ABET Organizations 

ABET Member Societies 

American Academy of Environmental Engineers (AAEE) 

American Congress on Surveying and Mapping (ACSM) 

American Institute of Aeronautics and Astronautics (AIAA) 

American Institute of Chemical Engineers (AIChE) 

American Industrial Hygiene Association (AIHA) 

American Nuclear Society (ANS)  

American Society of Agricultural and Biological Engineers (ASABE) 

American Society of Civil Engineers (ASCE)  

American Society for Engineering Education (ASEE) 

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 

American Society of Mechanical Engineers (ASME) 

American Society of Safety Engineers (ASSE) 

Biomedical Engineering Society (BMES) 

Computing Sciences Accreditation Board (CSAB)  

Health Physics Society (HPS) 

Institute of Electrical and Electronics Engineers (IEEE) 

Institute of Industrial Engineers (IIE) 

The Instrumentation, Systems, and Automation Society (ISA) 

National Council of Examiners for Engineering and Surveying (NCEES) 

National Institute of Ceramic Engineers (NICE) 

National Society of Professional Engineers (NSPE) 

Society of Automotive Engineers (SAE) 

Society of Manufacturing Engineers (SME) 

Society for Mining, Metallurgy, and Exploration, Inc. (SME-AIME) 

Society of Naval Architects and Marine Engineers (SNAME) 

Society of Petroleum Engineers (SPE) 

The Minerals, Metals, and Materials Society (TMS) 
 

Associate Member Societies 

Materials Research Society (MRS) 

 

(ABET 2007) 
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Appendix D: Objective Characteristics 

Dates 

 Application date (mm/dd/yyyy) 

 Date awarded (mm/dd/yyyy) 

 Date project completed (mm/dd/yyyy) 

Project Level 

 Phase (code) 

 Standard or continuing grant 

 Collaborative project (Yes, No) 

Budget and Term 

 Award value (dollar amount) 

 Award term (months) 

 Percent awarded as PI‟s salary (percent) 

 Percent awarded as senior personnel salary (percent) 

 Percent awarded as other personnel wages (percent) 

 Percent awarded as materials or supplies (percent) 

 Percent awarded as equipment (percent) 

 Percent awarded as dissemination costs (percent) 

 Percent awarded as travel costs (percent) 

 Funding from outside the NSF (dollar amount) 

Academic Focus  

 Academic discipline (code) 

Principal Investigators 

 Area of degree (code) 

 Level of degree (code) 

 Experience since Ph.D. (year of award – year of degree) 

 Number of senior personnel (number) 

 Number of previous NSF awards (number) 

 Number of previous declines (number) 

 Academic rank of faculty (Assistant Professor, Associate Professor, Professor) 

Institutions Involved 

 Public or private  

 4-year or 2-year 

 Highest degree offered (code) 

 State (US Postal Service abbreviations) 
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 Geographic region (New England, Mid-Atlantic, South, Midwest, Southwest, West) 

 Number of institutions involved (number) 

People 

 Number of undergraduate students (number) 

 Number of graduate students (number) 

 Number of faculty (number) 

 Number of pre-college students involved (number) 
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Appendix E: Subjective Characteristics 
Codes used to rate proposals can be found in Appendix F. 

Academic Focus 

 Academic concentration (code) 

 Course level (code) 

 Majors or non-major engineers or non-majors 

 Single discipline or multi-disciplinary 

 One course or multiple courses or no courses affected 

Goals of Research or Development 

 Curriculum development/improvement (Yes, No) 

 Pedagogy development (Yes, No) 

 Materials development (Yes, No) 

 University faculty development (Yes, No) 

 Development of assessment tools (Yes, No) 

 Research (Yes, No) 

 K-12 community outreach/education (Yes, No) 

 Dissemination to other universities (Yes, No) 

 Addresses underrepresented populations (Yes, No) 

o Addresses women (Yes, No) 

o Addresses minorities (Yes, No) 

o Addresses persons with disabilities (Yes, No) 

Materials Development 

 Software development (Yes, No) 

 Uses professional software (Yes, No) 

 Remote laboratory (Yes, No) 

 Online tutorial (Yes, No) 

 Simulation (Yes, No) 

 Laboratory manual (Yes, No) 

 Visualization tool (Yes, No) 

 Set of experiments (Yes, No) 

 Instructor‟s manual (Yes, No) 

 Games (Yes, No) 

 Kit (Yes, No) 

 Case study (Yes, No) 

 Laboratory tool (Yes, No) 

 Textbook (Yes, No) 

 Workbook (Yes, No) 

 Video (Yes, No) 

 Modules (Yes, No) 
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 Other (Yes, No) 

Faculty Development 

 Materials dissemination (Yes, No) 

 Conference (Yes, No) 

 Workshop (Yes, No) 

 Other (Yes, No) 

Pedagogy Development 

 Active learning (Yes, No) 

 Lecture development (Yes, No) 

 Discussion development (Yes, No) 

 Laboratory development (Yes, No) 

 Collaborative learning (Yes, No) 

 Peer-led learning (Yes, No) 

 Co-operative education (Yes, No) 

 Distance learning (Yes, No) 

 Other (Yes, No) 

Professional Skills Development 

 Ethics (Yes, No) 

 Teaming (Yes, No) 

 Design (Yes, No) 

 Problem solving (Yes, No) 

 Economics and business (Yes, No) 

 Communication (Yes, No) 

Evaluation 

 Formative or summative or both 

 Pre- and post-tests (Yes, No) 

 Student surveys (Yes, No) 

 Faculty surveys (Yes, No) 

 Student focus groups (Yes, No) 

 Student interviews (Yes, No) 

 Expert evaluation specialists (Yes, No) 

 University evaluator (Yes, No) 

 Other (Yes, No) 

Dissemination 

 Website (Yes, No) 

 Conferences (Yes, No) 

 Journals (Yes, No) 

 Mailings/e-mailings (Yes, No) 
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 Specialty and collaborative groups (Yes, No) 

 Seminars (Yes, No) 

 Workshops (Yes, No) 

 Other (Yes, No) 
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Appendix F: Codes Used to Rate Proposals 

Phase: 

1  Phase 1 

2  Phase 2 

3  Phase 3 

A&I  Adaptation and Implementation 

ND  National Dissemination 

ASA  Assessment of Student Achievement 

EMD  Educational Materials Development 

Academic Discipline and Area of Degree: 

31  Computer Science 

32  Computer Engineering 

33  Information Science and Systems 

34  Software Engineering 

35  Computing – Other 

   

42  Geology 

51  Engineering - Aeronautical/Astronautical 

53  Engineering – Chemical 

54  Engineering – Civil 

55  Engineering – Electrical 

56  Engineering - Mechanical 

57  Engineering – Materials 

58  Engineering - Engineering Technology 

59  Engineering – Other 

   

71  Psychology – Biological 

72  Psychology – Social 

73  Psychology – Cognitive 

   

91  Assessment / Research 

99  Interdisciplinary 

0  Other 

Level of Degree and Highest Degree Offered: 

A  Associate 

B  Bachelor 

M  Master 

D  Ph.D. 

U  Unknown 

Course Level: 

UP  Upper-level Undergrad (Junior + Senior) 

LO  Lower-level Undergrad (Freshman + Sophomore + introductory course) 

BO  Undergrad (Upper-level and Lower-Level) 
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Appendix G:  Interview Questions for Program Directors 
 

1. What do you see as the direction of CCLI programs?  

a. What types of programs do you see CCLI funding in the future? 

b. Have you noticed any trends in the proposals you review? 

 

2. What is your overall strategy for funding grants? Do you consider certain projects more 

heavily based solely on their focus? 

 

3. If there were a profile describing the nature of CCLI Awards, what information should it 

have? 

a. What types of information would be valuable to your work, particularly the 

decision-making process? (or, would have been useful if interviewee is no longer 

employed at NSF) 

i. What would you like to know about PIs? 

ii. What would you like to know about the other people working on the 

projects? 

iii. What would you like to know about the instructional approach advocated? 

iv. What would you like to know about the institutions sponsored? 

v. What would you like to know about budgetary information? 

vi. What would you like to know about project evaluation? 

vii. What would you like to know about project dissemination? 

viii. What would you like to know about the academic areas of research? 

ix. What would you like to know about the level of the course funded, i.e. 

core, elective, for non-majors? 

b. What other types of information would you be curious about? 
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Appendix H: Interview Questions for Principal Investigators 
 

1. What do you feel is the direction of engineering education? 

2. How did you learn about the CCLI funding program? 

a. Why did you choose to pursue funding through this avenue? 

3. Imagine you had a profile of the CCLI program that you could use as you were building 

or developing your next project. 

b. If you were developing a new project that you hoped to get CCLI funding for, 

what types of information would be valuable to you? 

c. If you were writing a proposal for a project you‟ve already developed, what types 

of information would be helpful in making your proposal more competitive? 

4. What would you like to know about the instructional approaches of funded CCLI grants? 

5. What would you like to know about the evaluation methods of funded CCLI grants? 

6. What would you like to know about the dissemination efforts of funded CCLI grants? 

7. What would you like to know about the academic areas of research of funded CCLI 

grants? 

8. What other types of information would you be curious about? 
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Appendix I: Interview Questions for Legislators 
 

1. How is the need for STEM Education perceived on Capitol Hill? 

 

2. What has led to this feeling of need for STEM Education? 

 

3. What do you see as the focus of STEM funding programs? 

 

4. What are future goals of STEM legislation, especially regarding undergraduate 

programs? 

 

5. Why are science and technology so important when it comes to global competitiveness? 
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Appendix J: Interview Questions for ASEE, NAE, and ABET 
 

1. In what direction do you think engineering education is heading? 

 

2. Do you feel that ABET 2000 has impacted research on engineering education? If so, then 

how? 

 

3. What stance does ASEE/NAE/ABET hold about the future of engineering education 

research? 

 

4. What is the role of faculty development in engineering education reform? 

 

5. What is the role of curriculum development in engineering education reform? 

 

6. From your understanding of the engineering education research being performed, do you 

feel like there is a sufficient balance between faculty development and curriculum 

development focus? 

 

7. If there were a profile of CCLI grants, what information would be useful to you? 

 

a. What are you interested in knowing about the type of research and development 

being conducted? 

 

b. What are you interested in knowing about the types of institutions doing the 

research? 

 

c. What are you interested in knowing about dissemination efforts? 
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Appendix K: Breakdown of Database for Subjective 
Characteristic Analysis 

 

Sampled Projects Phase 1 Phase II Collaborative 

2006 21 12 13 

2007 49 15 20 

 70 27 33 

Total Projects  97  

Collaborative Considerations    

Total Collaborative Awards 33   

Total Collaborative Projects 12   

Total Unique Projects 97   
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Appendix L: List of States by Region 
 

New England: 

Connecticut 

Maine 

Massachusetts 

New Hampshire 

Rhode Island 

Vermont 

 

 

 

 

 

 

 

 

Mid-Atlantic: 

Delaware  

Maryland 

New Jersey 

New York 

Pennsylvania 

Washington D.C. 

South: 

Alabama 

Arkansas 

Florida 

Georgia 

Kentucky 

Louisiana 

Mississippi 

North Carolina 

South Carolina 

Tennessee 

Virginia 

West Virginia 

 

 

Midwest: 

Illinois 

Indiana 

Iowa 

Kansas 

Michigan 

Minnesota 

Missouri 

Nebraska 

North Dakota 

Ohio 

South Dakota 

Wisconsin 

Southwest: 

Arizona 

New Mexico 

Oklahoma 

Texas 

 

 

 

 

 

 

 

 

 

 

West:  

Colorado 

California 

Idaho 

Montana 

Nevada 

Oregon 

Utah 

Washington 

Wyoming 

 

 

 

 

 

Other: Alaska, Hawaii, Puerto Rico 

 

 

Adapted from: 

U.S. Diplomatic Mission to Germany. (2006) Retrieved November 29, 2007 from 

http://usa.usembassy.de/travel-regions.htm 
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Glossary of Terms and Acronyms 

A&I: Adaptation and Implementation 

ABET: Accreditation Board for Engineering and Technology 

ACC: Academic Competitiveness Council 

ASA: Assessment of Student Achievement 

ASEE: American Society for Engineering Education 

Assessment: projects which aim to “design tools to measure the effectiveness of new materials 

and instructional methods, (2) develop and share valid and reliable tests of STEM 

knowledge, (3) collect, synthesize, and interpret information about student reasoning, 

practical skills, interests, or other valued outcomes, and (4) apply new and existing tools 

to conduct broad-based evaluations of educational programs or practices if they span 

multiple institutions and are of general interest” (CCLI, 6). 

Award: A proposal which has been recommended by a program director and granted funding.  

Each award has a unique entry in the NSF Awards database. 

CCD: Course, Curriculum, and Development 

CCLI: Course, Curriculum, and Laboratory Improvement 

Characteristic: a feature of a proposal 

Collaborative Project: a project financed by multiple awards, each to a different university or 

institution, but with a common focus 

Curriculum Development: projects that revise, enhance, or create new curricula 

DD: Division Director 

DOE: Department of Education 

DUE: Division of Undergraduate Education 

EC2000: Engineering Criteria 2000 

EEC: Engineering Education Coalition 

EERC: Engineering Education Research Colloquies 

EMD: Educational Materials Development 

Faculty Development: projects that “design and implement methods that enable faculty to gain 

[…] expertise. Projects should provide professional development for a diverse group of 

faculty so that new materials and teaching strategies can be widely implemented” (CCLI, 

6). 

Group Dissemination: Any dissemination where results are distributed to members of an 

organization, association, corporation, or other group or dissemination to universities 

within a research collaborative 

Kit: a collection of laboratory supplies and/or instructional matter that can be easily transported 

for use inside or outside the classroom 

Laboratory Tool: any device designed to assist in a laboratory environment 

Mailings: Any dissemination where results are mass-mailed or mass-emailed to any list 

Materials Development: projects that “develop new learning materials and tools, or […] revise 

or enhance existing educational materials […] based on prior results” (CCLI, 6). 

Modules: any independent set of lessons that can be easily added to a course 

NAE: National Academy of Engineering 

ND: National Dissemination 

NSB: National Science Board 

NSF: National Science Foundation 
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On-Line Tutorial: any resource available via the internet for the purpose of instruction 

PD: Program Director 

Pedagogy Development: projects that “develop […] or create new and innovative teaching 

methods and strategies […or] revise or enhance existing […] teaching strategies, based 

on prior results” (CCLI, 6). 

Phase 1: a CCLI project with a budget of up to $150,000 ($200,000 when four-year colleges 

collaborate with two-year colleges) and a term of 1-3 years.  Phase 1 projects are proof-

of-concept projects. 

Phase 2: a CCLI project with a total budget of up to $500,000 and a term of 2-4 years.  Phase 2 

projects are expansions on smaller-scale innovations and implementations. 

Phase 3: a CCLI project with a total budget of up to $2,000,000 and a term of 3-5 years.  Phase 3 

projects are comprehensive, national dissemination efforts. 

PI: Principal Investigator 

Program Director: a National Science Foundation employee responsible for (among other 

things) reviewing proposals and recommending funding 

Principal Investigator: the lead researcher or developer for a project 

Project: a unique research or development initiative, financed by one or more awards. 

Remote Lab: any project that develops a laboratory experience that can be accessed from offsite 

Research: projects that “(1) develop and revise models of how undergraduates STEM students 

learn and (2) explore how effective teaching strategies and curricula enhance learning” 

(CCLI, 6). 

Simulation: any representation or model of a system that requires user interaction  

Software Development: any project that creates a new software application 

STEM: Science, Technology, Engineering, and Mathematics 

Uses Professional Software: any project that uses a professionally developed and widely 

distributed software 

Value: a description of a characteristic for a given proposal 

Visualization Tool: any representation or model of a system that allows a user to understand a 

process with minimal user interaction 
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