


Abstract 
A mist reactor was used to study plant growth and development under various 

environmental conditions towards the production of healthy plantlets ready for soil 

transplant in one step from inoculation. In addition, a 3D type of cultivation via surface 

attachment of explants to vertically hanging strips inside the mist reactor was also 

investigated to maximize productivity with minimal footprint. Using carrot as the model 

species, pre-embryogenic cell suspensions were successfully spray-inoculated onto 

hanging poly-L-lysine (PLL)-coated nylon mesh to which they then attached and remained 

for several weeks while they developed into rooted plantlets. To study single step 

micropropagation from shoot explants to fully acclimatized plantlets, Artemisia annua was 

used as the model species. Nodal cuttings of A. annua were inoculated onto PLL-coated 

mesh strips by briefly immersing the strips in the suspension of nodal cuttings. 

Investigation of medium, phytohormones, CO2, ventilation level and humidity ensued 

resulting in selection of a preferred final process that reduced physiological aberrations like 

hyperhydricity and was time efficient. The nodal cuttings that attached to the strips were 

first misted with half strength shooting medium for 7 days to develop new shoots. Then the 

new shoots were misted with the rooting medium supplemented with NAA for 12 days to 

develop roots. Rooted plantlets were acclimatized in the same rooting medium for 9 days 

to acquire fully functional stomata prior to planting into soil. Taken together this study 

suggested that fully developed plantlets ready for planting into soil could be obtained in a 

single step in a bioreactor from embryogenic cells or from nodal explants. 
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Chapter 1  Backgrounda 

 Micropropagation introduction  

Micropropagation is a modern plant propagation technology that uses plant tissue culture 

techniques to clonally and rapidly reproduce a large number of pathogen-free progeny plants 

from a small amount of initiating plant material (cells, tissues, and organs). The process is not 

subject to variation of season or weather. It generally consists of in vitro initiation, 

multiplication, elongation and rooting under controlled environment, acclimatization and ex 

vitro establishment in the soil. The regeneration of whole plants in vitro involves alteration of 

growth regulators (phytohormones) and other culture medium constituents. With the advances 

of tissue culture and genetic modification techniques, micropropagation has evolved into a 

flourishing industry and an important research tool (see section 1.2), and offers many 

advantages over traditional plant vegetative propagation. On the other hand, it is very labor 

intensity and therefore more expensive than other propagation methods. See Table 1.1 for a 

detailed description of pros and cons of micropropagation.  

 Commercial production and applications 

After its establishment in the 1960s (Murashige 1974), micropropagation has grown into a 

large global commercial industry. Hundreds of companies throughout the world are engaged 

annually in producing billions of plants by micropropagation (Singh and Shetty 2011; 

Winkelmann et al. 2006). These companies are mostly located in European countries (e.g. 

a Portions of this chapter was published in Fei & Weathers (2015). 
                                                 



 

Netherland, Belgium, Germany and Italy), the USA, India, South Africa, Israel, China, 

Argentina, and Brazil. The variety of plants produced via micropropagation covers 

horticultural species, agricultural crops, and other economically important plants (Anderson 

et al. 2011; Lewandowski et al. 2003). With the advances in tissue culture technology, 

micropropagation has expanded its potential into plant production for biofuels (Cavallaro et 

al. 2014; Czako and Márton 2012), and environmental restoration (Giri et al. 2004; Merkle et 

al. 2012; Peña-Ramírez et al. 2010; Stukely et al. 2007; Willyams and Daws 2014).   

Table 1.1 Advantages and disadvantages of micropropagation 

 Micropropagation 
Advantage · Rapid mass propagation; 

· Clonal propagation; 
· Year round production; 
· Minimal need for elite stock plant material; 
· Can propagate recalcitrant plants and those difficult to 

propagate by seed; 
· Easy production of new variety by in vitro hybridization and 

transformation;  
· Minimal requirement on space and arable land; 
· Germ and pathogen free; 

Disadvantage · Labor intensive; 
· Abnormalities can occur due to typical in vitro environment in 

sealed sterile containers (high relative humidity; low light 
intensity; limited gas exchange; presence of sucrose and plant 
growth regulators); 

· Risk of contamination due to the presence of sugar in the 
culture medium. 

 

Besides rapid plant multiplication, in vitro techniques have many applications in genetic 

improvement, germplasm conservation, elimination of pathogens, and production of 

secondary metabolites, recombinant proteins and vaccines (Engelmann 2011; Huang and 
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McDonald 2012; Paz-Maldonado and González-Ramírez 2014). One of the most important 

arenas for tissue culture is agriculture. As world population expands, food scarcity becomes 

more urgent. Facing this challenge, tissue culture has an important role and offers great 

potential in agriculture by providing safe, high quality planting material of food crops to feed 

the world (Ashraf et al. 2012; Le 2005). Besides food, plant-derived secondary metabolites 

are also target products. 

Compared to whole crop plants, in vitro cultures of plant cells or differentiated tissues offer a 

source of defined standard phytochemicals in large volumes produced via a more efficient, 

reliable and predictable manner (Kumar et al. 2014; Urbańska et al. 2014). Among secondary 

metabolites, those produced by medicinal plants have gained much attention (Hu and Jia 2012; 

Murthy et al. 2014; Rout et al. 2000). Large scale cultures of cells, adventitious and/or hairy 

roots and somatic embryos for medicinal compounds have been developed (Baque et al. 2012; 

Cui et al. 2013; Paek et al. 2009; Paek et al. 2005; Shohael et al. 2014).  

 Micropropagation methods and stages 

Methods of micropropagation 

The methods currently available for propagation of plants in vitro can be summarized as 

follows: 

1) Multiplication of shoots from axillary buds. 
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This is by far the most common and reliable method of true-to-type in vitro propagation 

mainly due to the high genetic fidelity of axillary originated shoots (George et al. 2008a). It 

is also the method by which most micropropagated plants currently are produced (George, et 

al. 2008a). Explants for initiating in vitro cultures include shoot meristems (apical dome with 

1-2 youngest leaf primordial), shoot tips (shoot apical meristem with a few primordial and 

unexpanded leaves), nodes, and floral meristems. New axillary shoots are induced from these 

explants by the addition of plant growth hormones in the medium. When these newly-

developed shoots grow into microshoots, they are separated for further subculture or rooting. 

There is an exception in nodal culture because it does not need the addition of plant growth 

hormones to develop axillary shoots that arise from pre-existing axillary buds in the nodes.  

2) Formation of adventitious shoots either directly on pieces of tissues or organs (direct 

organogenesis); or indirectly from undifferentiated callus (indirect organogenesis).  

Direct adventitious shoot formation from a primary explant is used for a variety of ornamental, 

crop, cash and medicinal plants including Achimenes, Saintpaulia, Sinningia, Streptocarpus, 

Anthurium, Begonias, Cactus, Epiphyllum, Gerbera, Hosta, Lilium, Dendrobium, Vanilla, 

Orchis, Musa, Annona, Ananas, Embelia. (Annapurna and Rathore 2010; George, et al. 2008a; 

Nagori and Purohit 2004; Rout, et al. 2000). Explants for direct organogenesis can be a leaf ± 

the petiole, internode and fragmented shoot meristem (George, et al. 2008a). Induction of 

adventitious shoots from a primary explant requires cytokinins (Huetteman and Preece 1993; 

Lu 1993). The induced shoot initials may form a proliferating mass of shoots (bud cluster) 
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when transferred to liquid culture. Bud cluster culture is also suitable for large-scale 

production in bioreactors, but at some point is also likely to develop hyperhydric shoots 

(Alvard et al. 1993). To address this problem, Ziv proposed using growth retardants to 

minimize shoot size during bud cluster proliferation followed by a separate step with medium 

changes to encourage shoot elongation (Ziv et al. 1998; Ziv 2005). Compared to axillary shoot 

production, this technique is more prone to yielding off-types as a result of some cells 

reverting to the meristematic state during shoot regeneration (Miguel and Marum 2011; 

Skirvin et al. 1994). To minimize genetic variation, the initial adventitious shoots formed on 

primary explants are followed by only axillary shoot development during succeeding 

subcultures (George, et al. 2008a).  

In contrast, indirect adventitious shoots arise from undifferentiated callus previously 

dedifferentiated from the mother explant. Callus growth can be induced with a high level of 

auxin in the medium, and can generally form on leaf, stem, root segments, pieces of storage 

tissue, embryos, and shoot tips (George, et al. 2008a). Adventitious shoots are then induced 

from callus by reducing the auxin to cytokinin ratio in the medium (George, et al. 2008a). 

These shoots derived from callus have even greater somaclonal variation compared to direct 

adventitious shoots and as a result are not as desirable in commercial production unless new 

genotypes are required for selection and plant breeding (Skirvin, et al. 1994).  

3) Somatic embryogenesis either directly from pieces of tissues or organs, or indirectly 

from undifferentiated callus or cell suspensions. 
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Somatic embryogenesis is a process in which a bipolar structure, resembling a zygotic embryo, 

develops from a non-zygotic cell. Unlike unipolar growth of shoots and roots, bipolar somatic 

embryos can form whole plants once geminated without culturing on multiple types of 

medium. The bipolar structure can be formed directly on explants, and suitable explants for 

direct somatic embryogenesis include zygotic embryos of monocotyledons, dicotyledons and 

gymnosperms, parts of young seedlings, anthers, female gametophytes, ovules, nucellar 

embryos, nucellus tissues and even other somatic embryos (George, et al. 2008a). Some 

species, i.e. orchids, have protocorms or procorm-like bodies, and these structures can also 

give rise to whole plants similar to formation of somatic embryos (Lee et al. 2013). However, 

since direct somatic embryogenesis does not provide a mechanism for proliferation of 

embryogenic tissue, it is quantitatively disadvantageous as embryos directly initiated in vitro 

may be inadequate for large-scale cloning, except through shoot multiplication. 

Similar to indirect adventitious shoots, indirectly formed somatic embryos also first must 

undergo a dedifferentiation step from mother explants to form callus and cell cultures, and 

then re-differentiate from them to form somatic embryos. Although induction of embryogenic 

callus requires auxin in the culture medium, subsequent embryo development requires absence 

of auxin in the culture medium (George, et al. 2008a). For plants with embryogenic 

competence, embryogenic callus is commonly formed from seed embryos, highly 

meristematic tissue, and in some cases from root sections (George, et al. 2008a). In 

embryogenic cell suspension cultures, plantlets can theoretically be produced in large numbers 

6 
 



 

using lower cost bioreactors because plantlets do not require individual handling. The derived 

somatic embryos are then either further geminated in vitro into plantlets or encapsulated as 

synthetic seeds to be sowed in soil (Etienne-Barry et al. 1999). Once initiated, embryogenic 

callus can continue producing embryos with each subculture. After successive subculture 

passage, callus and embryogenic cell suspensions may lose their embryogenic competence 

(Corredoira et al. 2003; Liu et al. 2009b; Reynolds 1986; Vasil 1985). Somatic embryos can 

also be used as “synthetic seeds” for direct sowing into ex vitro conditions, but this requires 

careful control of bioreactor conditions to synchronize embryo development (Shimazu and 

Kurata 2003). There is also species-dependent pretreatment, encapsulation or dehydration that 

may be required (Ducos et al. 2005; Haque and Ghosh 2014; Jayasankar et al. 2001; Sharma 

et al. 2013; Standardi and Micheli 2013). Also, somatic embryogenesis has a high frequency 

of genetic variation (Miguel and Marum 2011; Skirvin, et al. 1994); only a few mainly woody 

plant species (e.g. coffee, conifer, spruce, date palm, oil palm, ginseng) are currently 

propagated in large scale via embryogenesis (Ducos et al. 2009; Gupta and Timmis 2005; 

Othmani et al. 2011; Shohael et al. 2005; Shohael, et al. 2014; Soh et al. 2011; Yang et al. 

2013).  

4) Formation of storage organs for only some species. 

Species that naturally produce storage organs (bulbs, corms, tubers) can be induced to form 

small versions of these organs in vitro to provide a convenient and rapid means of 

micropropagation and/or genotype storage. Small bulbs can be produced from axillary buds, 
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adventitious buds developed on leaf pieces, inflorescence stalk, and detached bulb scales. 

Induction of small bulbs requires high sugar and auxin levels (Vishnevetsky et al. 2003). 

Examples of in vitro propagation via bulb formation include Amaryllis (De Bruyn et al. 1992), 

Allium (Kim et al. 2003), Lilum (Miwa 1991), Narcissus (Santos et al. 1998), and Tulipa (Rice 

et al. 1983). Small corms (cormlets) can form on buds, the basal end of callus and root 

primordia in the presence of high levels of sugar, auxins, cytokinins and sometimes growth 

retardants (Ziv et al. 1970; Ziv 1989). Some examples of in vitro propagation via cormlet 

formation include gladiolus (Ziv 1989), saffron (Devi et al. 2011), and banana 

(Venkatachalam et al. 2006). Miniature tubers (microtubers) also can be induced from 

buds/shoots in vitro under high levels of sucrose, cytokinins, auxins, and growth retardants 

(e.g. paclobutrazol) (Romanov et al. 2000; Vreugdenhil et al. 1994; Ziv 2005). Potato (Hussey 

and Stacey 1981), yam (Balogun 2009; Jova et al. 2005) and cocoyam (Omokolo et al. 2003) 

are some examples of propagation by in vitro microtuber formation. 

 
Stages of micropropagation  

The general protocol for micropropagation is composed of 6 stages (0-V) (Figure 1.1). While 

the practices in stage 0, IV and V are generally the same for different micropropagation 

methods, the strategy used for stages I-III may vary (see Table 1.2).  

Stage 0 Mother plant selection and preparation. This stage includes 1) careful selection of the 

mother plant, which must be typical of the variety or species, and free from any sign of disease; 

2) some pre-treatments in an effort to reduce contamination level of explants and to improve 
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in vitro growth. Pretreatments may include moving chosen plants to sterile soil, using non-

overhead watering, and chemical treatment to prevent systemic bacterial, fungal, or viral 

disease (Debergh and Maene 1981).   

Stage I Initiation of aseptic culture. In this step, selected plant tissue, e.g. leaf, bud, stem 

(node), root, seed, or embryo, is first excised, sterilized by disinfectants to kill off any surface 

contaminants, and then rinsed repeatedly with sterile water prior to being placed in nutrient 

medium. Commonly used sterilizing solutions include hypochlorite, mercuric chloride, 

ethanol, silver nitrate, bromide water, and hydrogen peroxide. The explant is often 

sequentially soaked in more than one of these solutions before an aseptic culture is established. 

Usually a batch of explants is treated as described and transferred to culture at the same time.        

Containers having contaminated explants are discarded after the initiation of aseptic culture. 

Those remaining uncontaminated and also with vigorous growth are considered successfully 

established in vitro cultures, and can then be used in the next step. Stage I would be regarded 

as satisfactorily completed if an adequate number of aseptic in vitro cultures are successfully 

established. For indirect somatic embryogenesis, an auxin is often included in this stage to 

induce embryogenic cell suspensions or callus. 
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Figure 1.1 Stages of micropropagation 
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Stage II Multiplication. The aim of this stage is to produce new plant outgrowths or 

propagules that when separated from the cultures are capable of giving rise to whole plants. 

Depending on different micropropagation methods, tissues being multiplied can be newly-

developed axillary or adventitious shoots, somatic embryos, or miniature storage or 

propagative organs. The multiplication of shoots is usually achieved through a higher ratio of 

cytokinins to auxins in the medium (Wickson and Thimann 1958). Cytokinins are extremely 

effective in removing the apical dominance of shoots and thus generate “bushy” shoot cultures 

(Mok 1994; Sachs and Thimann 1967). The multiplied shoots can also be used as the basis for 

further cycles of multiplication to increase their number. On the other hand, node culture does 

not require such a high level of cytokinins to stimulate boost of axillary buds but instead relies 

on repeated subculture of single nodes or nodal pieces with several nodes to obtain axillary 

shoots. The medium in node culture is generally good for shoot elongation and thus can be 

used after multiplication with exposure to cytokinins and before rooting. For indirect somatic 

embryogenesis, embryogenic cells from Stage I are transferred to auxin-free medium to 

develop somatic embryos.  

Stage III Elongation and rooting. In this stage, newly developed shoots and somatic embryos 

are separated and further developed into complete plantlets. Stage III includes shoot rooting 

or germination of somatic embryos in cytokinin-free medium. Sometimes shoots may need an 

additional elongation period prior to rooting. Each separated new shoot from stage II is 

transferred to rooting medium, which usually contains a high concentration of auxin (e.g. IBA, 
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NAA) to stimulate in vitro rooting of many plants. This can be the most labor intensive step 

in micropropagation, comprising 35-75% of the total cost of production (Debergh and Maene 

1981). Rooting may also occur ex vitro in conjunction with stage IV by removing unrooted 

shoots from the in vitro environment to soil or other potting mixtures (Hazarika 2003). 

Unrooted shoots can also be chopped into nodal segments and shoot tips (~5mm), 

encapsulated usually in alginate for storage, and then used as “seed” for greenhouse culture 

(Ahmad et al. 2012; Chand and Singh 2004; Preece and West 2006; Sarkar and Naik 1998; 

Singh et al. 2009; Singh et al. 2010).  

Stage IV Acclimatization and transplant to the soil. In contrast to ex vitro conditions, the 

typical in vitro environment has high relative humidity, no pathogens, and low light intensity 

(Aitken-Christie et al. 1995a, also see Table 1.3). Because of these differences, plantlets 

developed in vitro differ with soil grown plants mainly in two aspects. First, in vitro cultured 

plants have dysfunctional leaf stomata that are incapable of complete closure under conditions 

of low relative humidity (Brainerd and Fuchigami 1982; Correll and Weathers 2001b; George 

et al. 2008c; Joshi et al. 2006). Plantlets in vitro also have less leaf epicuticular wax or wax 

with altered chemical composition than plants grown in soil (Correll and Weathers 2001b; 

George, et al. 2008c; Grout 1975; Sutter 1985). As a result, these tissue cultured plants lose 

water rapidly when moved to external conditions (Conner and Conner 1984; Grout and Aston 

1977; Preece and Flickinger 2009; Sutter and Langhans 1982).   
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Table 1.3 Environmental comparison of typical in vitro and in vivo condition 

 In vitro Ex vitro (soil grown) 
Aerial physical 
environment 

· Controlled temperature 
between 20-25 °C 

· Cool white fluorescent or 
LED light bulb with limited 
light spectrum 

· Low light intensity 35-70 
μmol m-2· s-1 

· Fluctuating CO2 
concentration between day 
and night 

· Accumulation of ethylene 
· >95% relative humidity 
· Limited ventilation 

· Temperature not controlled 
· Full spectrum sun light 

with intensity ~2000 
μmol m-2·s-1 

· Consistent ambient air with 
relative humidity 
20%~70% 

Chemical 
environment 

Composition defined medium 
containing sugar, inorganics, and 
growth regulators 

· Chemically undefined soil; 
· Use of pesticides and 

fertilizers after seeding 
Biological 
environment 

Axenic culture · Symbiotic microorganisms 
· Viral and bacterial infection 
· Pest attack 

Second, plantlets in vitro have lower photosynthetic ability than field plants (Triques et al. 

1997). The reduced photosynthesis is a result of readily available sucrose (or other carbon 

hydrates) in the medium and low light intensity as well as CO2 in vitro (Grout 1988). Moreover, 

plantlets in vitro can also develop lethal abnormalities with severe physio-morphological 

changes, i.e. hyperhydricity, as a result of in vitro culture conditions (see section 1.3). So there 

is a necessity for plants to undergo a period of acclimatization during which they develop 

functional stomata, normal epicuticular wax, and sufficient photosynthetic activity in 

persistent and new leaves to sustain their survival ex vitro (Chandra et al. 2010; Correll et al. 

2001; Correll and Weathers 2001a; Correll and Weathers 2001b; Pospisilova et al. 1999).  
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In practice, plantlets are carefully removed from Stage III containers, potted into soil or some 

other potting mixture, and then kept for several days to weeks in high humidity and reduced 

light intensity. High humidity can be generated by automated intermittent fogging or misting 

(Okada et al. 1992; Preece and Flickinger 2009). Humidity is then gradually reduced together 

with gradually increasing light intensity to prepare plants for greenhouse or field conditions 

(Kirdmanee et al. 1995b; Pospisilova, et al. 1999).  

Plantlets can also be acclimatized in vitro, which involves changing in vitro conditions by 

physical and chemical means (Ziv 1995a). Physical manipulation deals with alteration of the 

gaseous environment to resemble ex vitro condition, and includes reducing relative humidity 

(Cha-Um et al. 2010; Correll, et al. 2001; Correll and Weathers 2001a; Deng and Donnelly 

1993) and increasing CO2 availability (Correll and Weathers 2001b; da Silva et al. 2005; Deng 

and Donnelly 1993; McCartan et al. 2004). These treatments often may also include reduction 

or elimination of sugar in the medium to stimulate autotrophic growth (da Silva, et al. 2005; 

Deng and Donnelly 1993), addition of growth retardants such as paclobutrazol or uniconazole 

(Cha-um et al. 2009; Murali and Duncan 1995; Ritchie et al. 1991), addition of an osmotic 

pressure stressor, e.g. PEG (Zaid and Hughes 1995), and abscisic acid (ABA) (Hronková et 

al. 2003). Incorporation of these practices during stage II and III have not only improved plant 

quality in vitro but also shortened the time required for acclimatization (Shin et al. 2014). 

Indeed the practice of photoautotrophic micropropagation (see section 1.6) is an attempt to 

produce in vitro plants that are physiologically similar to those grown in a greenhouse.   
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Stage V Confirmation of genetic fidelity. In this stage the quality of micropropagated plants 

is confirmed by disease indexing and genetic fidelity testing. Pathogen and contamination 

diagnosis range from conventional microscopy to ELISA and genomic analysis (Cassells and 

Doyle 2006; Cassells 2012). Genetic fidelity tests nowadays use PCR-based DNA markers 

such as arbitrary (Random Amplified Polymorphic DNA, RAPD), semi-arbitrary (Inter-

Simple Sequence Repeat, ISSR; Amplified Fragment Length Polymorphism, AFLP), and 

sequence-based (Simple Sequence Repeat, SSR) (Chavan et al. 2013; Fatima et al. 2013; 

Singh et al. 2013) methods. 

 Hyperhydricity 

Hyperhydricity is a physiological disorder in plant tissue cultures that causes a reduction of 

propagation and death of tissues when transferred to ex vitro conditions. It occurs in a wide 

range of plant species and develops mainly in leaves and stems. The hyperhydric tissue 

appears visibly as glassy, watery in appearance, and leaves are curly, rigid, and brittle (Dewir 

et al. 2006b; Ziv 1991c). Studies on leaf structure indicate that compared to normal leaves, 

hyperhydric leaves have round and elevated stomata, larger epidermal and mesophyll cells, 

bigger intercellular spaces, and thinner cuticles (Gaspar 1991; Ziv 1991c; Ziv and Ariel 1994). 

Compared to normal leaves, hyperhydric leaves also have a higher content of water in the 

apoplast, lower levels of chlorophyll, reduced lignin as a direct result of reduced 

phenylalanine ammonia lyase (PAL) activity and phenols, lower levels of cellulose, pectins 
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and cutin, as well as callose deposits (Debergh et al. 1992; Kevers 1985; Kevers and Gaspar 

1986; Kevers et al. 1987; Olmos et al. 1997; Ziv 1991b; Ziv and Ariel 1994).  

Biochemical analysis of hyperhydric leaves showed elevated lipoxygenase (LOX) activity and 

malondialdehyde content (MDT, the decomposition product of lipid by LOX), and increased 

solute leakage, suggesting lipid peroxidation due to oxidative stress (Dewir, et al. 2006b; 

Olmos, et al. 1997; Piqueras et al. 2002; Wu et al. 2009). The occurrence of oxidative stress 

was confirmed by direct evidence of increased hydrogen peroxide in hyperhydric shoots, i.e. 

epidermal cell walls and intercellular space, depletion of antioxidants, and elevated 

antioxidant enzyme activity (Dewir, et al. 2006b; Fernandez-García et al. 2008; Saher et al. 

2004; Sreedhar et al. 2009; Wu, et al. 2009).  

Oxidative stress in hyperhydric tissue may be caused by hypoxia that results from water over 

accumulating in the apoplast for the following reasons. First, excessive water, hydrogen 

peroxide (H2O2) and peroxidase activity co-localize in the intercellular space (apoplast) 

(Fernandez-García, et al. 2008; Gribble et al. 1998). Second, the air volume of the apoplast is 

dramatically reduced as a result of water accumulation and this significantly affects gas 

diffusion (Jackson 2008; van den Dries et al. 2013). Third, hyperhydric shoots showed 

alteration in carbohydrate metabolism in their oxidative pentose phosphate and fermentative 

pathways, suggesting adaptation to hypoxia stress conditions (Saher et al. 2005c).  
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Oxidative stress triggers a series of downstream events that ultimately result in hyperhydric 

symptom. For example, increased H2O2 triggers over-production of ethylene by activating 1-

aminocyclopropane-1-carboxylic oxidase (ACO) gene expression (Kim et al. 2008). Pectins 

are a group of heterologous polymers in the primary cell wall contributing to cell adhesion, 

cell wall architecture, and cell wall mechanical strength (Saher et al. 2005b). They are highly 

de-esterified in hyperhydric tissue due to significantly increased expression and activity of 

pectin methyl esterases (PMEs) induced by oxidative stress (Chandran et al. 2008; Qu et al. 

2011; Saher, et al. 2005b). Less esterification of pectin of hyperhydric tissue yields a stiffer 

pectate gel via alteration of the Ca2+ bridge, contributing to cell wall stiffening and rigidity of 

hyperhydric tissue (Fernandez-García, et al. 2008; Goldberg et al. 1996).  

Although the complete mechanism underlying development of hyperhydric symptoms are yet 

to be elucidated, the major environmental factors that contribute to the process are known 

(Table 1.3). High relative humidity, limited gas exchange, high levels of cytokinins and 

ammonium in the medium, and soft-gelled media are all known to induce hyperhydricity 

(Dutta Gupta and Prasad 2010; Ivanova and van Staden 2008; Ivanova and Van Staden 2009; 

Kevers et al. 2004). Thus, hyperhydricity can theoretically be reduced and even ‘reversed’ by 

changing these environmental conditions. For example, hyperhydric shoots of Rubus 

chamaemorus produced normal shoots after transfer from submersion in liquid medium to 

gelled medium (Debnath 2007). Control of hyperhydricity has been achieved by reduction of 

relative humidity through elevated ventilation or bottom-cooling (Casanova et al. 2008; 
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Correll, et al. 2001; Correll and Weathers 2001a; Ivanova and Van Staden 2010; Majada et al. 

1997; Saher et al. 2005a), by altering the type of cytokinin (Ivanova and Van Staden 2011; 

Kadota and Niimi 2003; Sandal et al. 2001), by increasing ion and/or magnesium 

concentration (Yadav et al. 2003), by altering gelling agent (Ivanova and Van Staden 2011; 

Whitehouse et al. 2002), by increasing agar concentration (but at the cost of reduced shoot 

multiplication) (Casanova, et al. 2008; Saher, et al. 2004), by using porous support material 

(Tascan et al. 2010), by addition of growth retardants to reduce shoot growth (Chen and Ziv 

2001), and by adding anti-vitrification agents (Whitehouse, et al. 2002), osmotic stressors 

(Kadota et al. 2001), rare earth elements (Wang et al. 2007), and antioxidant agents, e.g. 

polyamines (Tabart et al. 2014). The antioxidant effect of polyamines results from their anion- 

and cation-binding properties during radical scavenging, and also from their capability to 

inhibit both lipid peroxidation and metal-catalysed oxidative reactions (Groppa and Benavides 

2008). 

 Physical environmental factors that affect in vitro tissue 

cultures： 

The key to successful micropropagation is to produce high quality plantlets in vitro 

physiologically resembling ex vitro plants as much as possible. The quality of plant tissue in 

vitro is greatly affected by the microenvironment in which plant tissues are cultured. 

Understanding how plants in vitro respond to these environmental factors paves the way for 

production of plantlets with improved physiology (Figure 1.2). 
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Figure 1.2 Key factors for in vitro production of high quality plantlets 

 

1.5.1 Light 

White fluorescent lamps have been the primary light source used in micropropagation because 

their spectrum (400-700 nm) generally matches the requirements of in vitro cultures and they 

give a relatively uniform horizontal distribution of photosynthetic photon flux density over 

the entire culture shelf. 

Besides fluorescent lamps, light emitting diodes (LED) with a single wavelength have been 

widely studied as an alternative light source. A mix of blue (450-480 nm) and red (640-660 

nm) LED yielded better overall plant growth than that of fluorescent light (Kim et al. 2004b; 

Micropropagation 
Light: 15~100 µmol m-2·s-1 
RH: > 90% 
O2: ambient level 
CO2: 0.039% ~ 0.3% (v/v) 
C2H4: minimal level for organogenesis 
Gas exchange: < 0.05 vvm 

Light: 50~300 µmol m-2·s-1 
RH: 75 ~ 85% 
O2: ambient level 
CO2: 0.0039 ~ 0.3% (v/v) 
C2H4: as low as possible 
Gas exchange: > 0.05 vvm 

Embryogenesis 
Light: 15~100 µmol m-2·s-1 
RH: > 90% 
O2: ambient level 
CO2: 0.3% ~ 5% (v/v) 
C2H4: minimal level for organogenesis 
Gas exchange: 0 ~ 0.005 vvm 

Light: 50~300 µmol m-2·s-1 
RH: 75 ~ 90% 
O2: ambient level 
CO2: 0.3% ~ 5% (v/v) 
C2H4: as low as possible 
Gas exchange: >0.005 vvm 
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Li et al. 2010; Nhut et al. 2003). The preferred ratio of blue and red light is species and cultivar 

dependent. For example, the strawberry cultivar ‘Akihime’ showed better plantlet growth 

under 30% blue+70% red than other ratios with more red LED in the light mix (Nhut, et al. 

2003). Among three blue:red ratios, 3:1, 1:1 and 1:3, plantlets of Gossypium hirsutum showed 

best growth under the 1:1 ratio (Li, et al. 2010). Plantlet growth of Brassica napus, however, 

was greater under a 3:1 blue to red light mix than 1:1 or 1:3 of blue to red light mix (Li et al. 

2013). The protocorm-like-body of Dendrobium officinale yielded similar shoot number under 

blue:red ratios of 2:1 and 1:1, and shoot numbers under these two light conditions were more 

than those cultured under a 1:2 of a blue:red LED mix (Lin et al. 2011b). Integration of small 

amount of far-red LED light into a red and blue light mix enhanced leaf expansion, numbers 

of leaves and roots, chlorophyll contents, and biomass of Oncidium plantlets (Chung et al. 

2010). 

Increasing light intensity accompanied with CO2 enrichment of the culture environment 

promotes accumulation of photosynthetic compounds and stimulates photoautotrophic growth 

of chlorophyllous tissues (Kozai et al. 1990; Xiao and Kozai 2006b). With increased light 

intensity, the morphology of in vitro tissues also resembles ex vitro tissues with increased 

thickness of leaves, larger palisade and spongy parenchyma and functional stomata (Fan et al. 

2013). Light enhances biomass yield probably by enhancing photomixtrophic growth (Ahmed 

et al. 2008; Geipel et al. 2014). Light also activates and/or enhances major enzymes involved 

in secondary metabolite production, and thus also enhances the production of compounds like 
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phenolics (Victório et al. 2011), flavonoids (Koyama et al. 2012), and ginsenosides (Yu et al. 

2005).  

Besides light intensity, light quality also greatly affects growth, physio-morphological 

characteristics and even secondary metabolite production of plant tissues in vitro. Besides 

their photosynthetic importance, blue and red light also regulate photomorphogenesis, growth, 

and development of plantlets in micropropagation. Through cryptochrome, blue light can 

increase leaf number, and thickness, chlorophyll content in leaves and promote differentiation 

(Kurilčik et al. 2008; Li, et al. 2010; Lin, et al. 2011b; Liu et al. 2011; Macedo et al. 2011; 

Poudel et al. 2008). In contrast to stimulating effects, blue light may also inhibit shoot 

elongation and rooting (Kurilčik, et al. 2008; Lee et al. 2007; Moreira da Silva and Debergh 

1997; Nhut, et al. 2003). Red and far red light signal through phytochrome regulation of 

plantlet elongation, starch accumulation in leaves, formation of storage organs, leaf expansion, 

rooting, as well as somatic embryogenesis (Appelgren 1991; Ascencio-Cabral et al. 2008; 

Chen et al. 2014; D'Onofrio et al. 1998; Hahn et al. 2000; Heo et al. 2006; Hunter and Burritt 

2004; Jao et al. 2005; Li, et al. 2010; Macedo, et al. 2011; Nhut, et al. 2003; Poudel, et al. 

2008; Rodríguez-Sahagún et al. 2011; Sæbø et al. 1995; Torné et al. 2001; Wu and Lin 2012). 

Far-red (FR) light counteracts the phytochrome activity of red light and it is the R:FR ratio 

that is critical in altering physiological responses. For example, the stem of chrysanthemum 

plantlets irradiated under the R:FR ratio of 0.5 was longer, but also more fragile than those 

grown under R:FR≥ 1 (Kim, et al. 2004b), suggesting secondary effects on gibberellins and 
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lignin. Plants of Ruppia maritima grown under an R:FR ratio of 0.55 produced fewer nodes 

and branches than did plants grown under the ambient R:FR ratio of 0.95 (Rose and Durako 

1994). While plantlet length and leaf area increased, the number of axillary shoots of Azorina 

vidalii (Wats.) Feer decreased when R:FR was reduced from 1.1 to 0.6 (Moreira da Silva and 

Debergh 1997). Compared to a R:FR ratio of 98, a lower ratio of 6 decreased in somatic 

embryogenesis of Araujia sericifera (Torné, et al. 2001)  

Although seemingly sparsely studied, light quality can also play a role in embryogenesis. For 

example, compared to darkness, far-red, or red-far-red exposure, red light increased somatic 

embryos fourfold in quince (Cydonia oblonga) (D'Onofrio, et al. 1998). While initiation of 

somatic embryos from Agave tequilana showed no dependency on light quality, later 

development into the cotyledon stage was maximized after exposure to either red or white 

light (Rodríguez-Sahagún, et al. 2011). Red or white light stimulated development of 

cotyledons on China rose (Rosa chinensis Jacq.) somatic embryos, whereas most darkness-

grown somatic embryos did not have any cotyledons (Chen, et al. 2014). Chen et al. (2014) 

also showed that in China rose, the calli from white light gradually lost their embryogenesis 

capability, while the calli from red light remained embryogenic. In carrot suspensions, 

darkness produced the most somatic embryos, which did not differ from cells exposed to red 

or green light (Michler and Lineberger 1987). On the other hand, both white and blue light 

inhibited somatic embryo formation (Michler and Lineberger 1987). Michler and Lineberger 

(1987) also showed that in carrot, red light enhanced development of the heart stage.    
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1.5.2 Relative humidity 

The typical relative humidity (RH) inside a conventional tightly-sealed culture vessel ranges 

from 95% - 100% (Fujiwara and Kozai 1995). Such a high RH is beneficial for germination 

of somatic embryos in vitro (Roberts et al. 1990). However, compared to soil-grown plants, 

leafy tissues grown under high humidity usually developed a thinner layer of cuticle wax 

(Sutter and Langhans 1982) and dysfunctional stomata (Brainerd and Fuchigami 1982; Kozai 

and Zobayed 2003). Plantlets with these developmental abnormalities exhibited excessive 

water loss and death when exposed to ambient humidity ex vitro. When in vitro plantlets are 

moved into greenhouse or field environments, they have to develop fully functional stomata 

during acclimatization (Brainerd and Fuchigami 1982). The above mentioned developmental 

abnormalities are accentuated in hyperhydric plantlets, which usually do not survive 

acclimatization (Ziv 1991a). 

Moderately reduced RH (75%-85%) improves plant growth, epicuticular wax deposition, 

stomatal function, and reduces hyperhydricity, and consequently results in improved ex vitro 

survival and resistance to desiccation (Correll and Weathers 2001b; Gribble 1999; Kozai et al. 

1993; Maier and Post-Beittenmiller 1998; Sáez et al. 2012; Tanaka et al. 1992; Zobayed et al. 

2001b). Reduced RH also promotes new bud formation (Ibrahim and Debergh 2001). On the 

other hand, for non-hyperhydric tissue in vitro, reduced RH also may result in slightly reduced 

net photosynthesis (Tanaka, et al. 1992). This reduction in photosynthesis under lower RH 

was attributed to smaller leaf area, reduced stomatal opening leading to reduced mesophyll 

diffusion of intercellular CO2, and decreased quantum yield and efficiency (Kozai, et al. 1993; 
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Tosens et al. 2012; Zhang et al. 1996). When RH was < 70%, in vitro growth and subsequent 

biomass yield were significantly decreased (Gribaudo et al. 2003; Yue et al. 1993). RH of in 

vitro cultures, therefore, should be kept around 75-85% to maintain vigorous plantlet growth 

without biomass loss (Kozai, et al. 1993). Reduction of RH in closed culture vessels has been 

achieved through bottom cooling and/or increased ventilation with ambient air (Gribble 1999; 

Saher, et al. 2005a).   

 

1.5.3 Gas components 

The gas environment of the headspace of culture vessels directly affects photosynthesis and 

thus growth of in vitro plantlets. Main gases of concern for plant tissue culture include carbon 

dioxide (CO2), oxygen (O2) and ethylene (C2H4), as further discussed. 

1.5.3.1 Carbon dioxide (CO2) 

Availability of CO2 in the headspace of the culture containers is important for photosynthesis 

of chlorophyllous tissue grown in vitro. Conventional culture containers with their poor 

ventilation are CO2 limited, below the critical concentration of 35 μL L−1, so photosynthesis 

is also limited (De Proft et al. 1985; Fujiwara et al. 1987). Increasing the CO2 concentration 

inside culture containers through increased ventilation or headspace enrichment promoted 

photosynthesis and autotrophic growth when accompanied with elevated light intensity (see 

section 1.6, Kozai, et al. 1990; Mosaleeyanon et al. 2004; Thongbai et al. 2011). To stimulate 

photosynthesis of in vitro plant tissues, CO2 levels between 0.1-0.3% are needed (Kozai et al. 
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2006; Kozai 2010; Park et al. 2011; Radochová and Tichá 2008; Shim et al. 2003; Vyas and 

Purohit 2006; Zobayed et al. 1999a). CO2 levels >1%, however, resulted in decreased 

chlorophyll content and net photosynthetic rate (Cournac et al. 1991; De Proft, et al. 1985; 

Norikane et al. 2010). For the C4 plant Actinidia deliciosa, 0.2% CO2 was adequate to inhibit 

photosynthesis (Arigita et al. 2002). Reduction of photosynthetic rate by excessive CO2 is 

probably due to reduced Rubisco (the enzyme responsible for CO2 fixation) activity (de la 

Viña et al. 1999; Fuentes et al. 2005; Hdider and Desjardins 1995; Norikane, et al. 2010). 

As a result of increased photosynthesis, biosynthesis of secondary metabolite may also 

increase. For example, St. John’s wort yielded more hypericin and pseudohypericin under 0.15% 

CO2 than ambient controls (Mosaleeyanon et al. 2005). CO2 enrichment of air to 0.08% 

increased biosynthesis of flavonoids and phenolic compounds in in vitro cultured Zingiber 

officinale Roscoe (Ghasemzadeh et al. 2010). 

Elevated CO2 levels in the culture container also increase somatic embryogenesis (Barbón et 

al. 2008b; Rosnow et al. 2011) and root biomass (Cha-um et al. 2011; Fisichella and Morini 

2003; Jeong et al. 2006; Rosnow, et al. 2011). The mechanism by which CO2 stimulates cell 

and tissue growth may arise not only from increased photosynthesis but also from non-

photosynthetic CO2 assimilation. For example, CO2 enrichment increased biomass of 

heterologous cell and root cultures, suggesting CO2 can affect the growth of cell and root 

tissue per se and independent of photosynthesis (Ducos et al. 1988; Jeong, et al. 2006; Maurel 

and Pareilleux 1986; Thanh et al. 2006). The mechanism whereby non-photosynthetic CO2 
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assimilation occurred was probably via phosphoenolpyruvate carboxylase activity (Bihzad 

and El-Shora 1996; Nagano et al. 1994; Ting and Osmond 1973).  

CO2 levels not tolerated by photosynthesis may be appropriate for other responses. For 

example, effective CO2 levels for enhanced somatic embryogenesis varied with species and 

cultivars from 0.3 to 5% (Barbón et al. 2008a; Barbón, et al. 2008b; Buddendorfjoosten and 

Woltering 1994; Chung and Bae 2000; Huang et al. 2006; Rosnow, et al. 2011; Takamura et 

al. 2010). An extremely high CO2 concentration (e.g. 10%), however, is toxic to embryo 

proliferation (Hohe et al. 1999a). For heterotrophic cell suspension cultures, high CO2 

concentrations (2.5%-5%) increased biosynthesis of anthraquinones, total phenolics and 

flavonoids in Morinda citrifolia (Jang et al. 2013). Cell suspensions of Panax ginseng, 

however, yielded less ginsenosides under such CO2 conditions (Thanh, et al. 2006). 

Adventitious root cultures of Panax ginseng also yielded lower levels of ginsenosides under 

2.5%-5% CO2 enrichment than ambient controls (Jeong, et al. 2006). 

1.5.3.2 Oxygen (O2) 

Oxygen is essential for aerobic respiration of plant tissue in vitro. In conventional culture 

vessels containing photosynthetic tissues, O2 level progressively decreases during the dark 

period (Chen 2006), suggesting the necessity of improving gas exchange to keep a relatively 

stable gaseous environment. In photorespiration, oxygen competes with CO2 for Rubisco 

binding in C3 plants and, therefore, can inhibit growth of chlorophyllous explants (Bauwe 

2001). Oxygen at 1% enhanced the net photosynthetic rate both in vitro and ex vitro (Fila et 
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al. 2006). Root development, however, requires adequate O2 throughout the root zone (Drew 

1997). For land plants, flooding the root zone generates hypoxic stress and triggers 

biosynthesis of endogenous ethylene, which then enhances the development of aerenchyma 

in the roots and adventitious roots on the stem to adapt to the flooding situation (Drew et al. 

1979). Root development in vitro can be greatly improved by the use of porous supporting 

materials that increase O2 diffusion around roots (see section 1.5.5). 

Oxygen also affects differentiation of embryogenic cells. Although callus formation and 

explant viability is not affected, anoxia almost completely inhibits embryogenesis (Fisichella 

and Morini 2003), suggesting oxygen is required for embryogenesis. Low O2 concentration 

may enhance embryo formation by simulating the in ovule environment normally encountered 

during zygotic embryo development (Carman 1988). The overall demand on O2 then increases 

during subsequent maturation to the cotyledon stage (Jay et al. 1992; Shigeta et al. 1996; 

Shimazu and Kurata 1999). 

Of course O2 and CO2 function in combinations that may fluctuate at different concentration 

optima depending on developmental stage of somatic embryos. Thus, while the early stage of 

embryogenesis may prefer relatively low O2 and high CO2 levels (de Feria et al. 2003; El 

Meskaoui and Tremblay 1999; Fisichella and Morini 2003; Kvaalen and Arnold 1991), there 

is considerable species and cultivar variation. For example, embryo initiation of celery is 

favored under 30% dissolved oxygen (DO) (ca. 5 mL L-1) plus 3% CO2 (Huang, et al. 2006). 

On the other hand one cultivar of Cyclamen persicum had significant more embryos formed 
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at 40% DO (ca 7mL L-1) than another cultivar where there was better embryo formation at 

lower oxygen levels (Hohe et al. 1999b). Embryo differentiation is also affected as shown in 

Coffea arabica where a DO of 80% (ca. 14 mL L-1) generated more total embryos, but many 

fewer at the torpedo stage than at 50% DO (ca. 8.4 mL L-1) (de Feria, et al. 2003). 

1.5.3.3  Ethylene (C2H4) 

Ethylene is a volatile plant growth regulator produced by all living plant tissues. It has a wide 

range of developmental and physiological effects including fruit ripening, leaf epinasty with 

root anoxia, stem length reduction, lateral cell expansion, apical dominance and dormancy 

breakage, adventitious root and root hair formation, and stress response mediation (Abeles et 

al. 1992a; Abeles et al. 1992b; Bleecker and Kende 2000). During in vitro cultivation, 

biosynthesis of C2H4 increases in response to environmental stress (George et al. 2008b; Saher, 

et al. 2004). Once produced and released into the headspace, C2H4 cannot be absorbed by 

plants and can accumulate to high concentrations in sealed culture vessels (De Proft, et al. 

1985; El Meskaoui and Tremblay 1999; Santamaria et al. 2000b), resulting in growth 

abnormalities (Biddington 1992; Fujiwara and Kozai 1995).  

During organogenesis of in vitro explants, signaling by critical concentrations of ethylene 

seems beneficial to initiate differentiation in morphogenic responses including shoot 

regeneration (Chatfield and Raizada 2008; Kevers et al. 1992) and root initiation (Ivanchenko 

et al. 2008; Kim et al. 2010). For shoot morphogenesis, the critical concentration varies with 

species and cultivars (Al-Khayri and Al-Bahrany 2004; Kumar et al. 1998). For subsequent 
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growth, however, the concentration of C2H4 in sealed vessels is generally toxic to shoots and 

roots (Jin Goh et al. 1997; Kevers, et al. 1992; Neto et al. 2009; Reis et al. 2003). Growth can 

be improved by decreasing ethylene concentration and use of inhibitors of the ethylene signal 

pathway (Buddendorfjoosten and Woltering 1994; BuddendorfJoosten and Woltering 1996; 

Kevers, et al. 1992; Kumar et al. 2009; Ma et al. 1998; Park et al. 2012; Santana-Buzzy et al. 

2006; Zobayed et al. 2001a).  

Ethylene also seems to be required for early differentiation during somatic embryogenesis 

(Huang, et al. 2006; Huang et al. 2001; Jha et al. 2007; Kępczyńska et al. 2009; Kępczyńska 

and Zielińska 2011; Liu et al. 2010; Lu et al. 2011; Nissen 1994). However, there are some 

conflicting reports on the effect of headspace C2H4 on somatic embryogenesis (George, et al. 

2008b; Jiménez 2005). It is thus likely that species and cultivars vary in their endogenous 

production of C2H4 and optimal C2H4 concentration for embryo development. Sub-optimal-

producers may need an exogenous supply of C2H4, while over-producers may require removal 

of C2H4 (El Meskaoui and Tremblay 1999; El Meskaoui and Tremblay 2001; Pérez-Jiménez 

et al. 2014). In sealed containers C2H4 generally accumulates to toxic levels for subsequent 

embryo maturation (El Meskaoui et al. 2000). Embryo development can be improved, 

however, by increasing ventilation, using a C2H4 trap (e.g. potassium permanganate), adding 

inhibitors of C2H4 biosynthesis (e.g. aminooxyacetic acid, aminoethoxyvinyglycine), or action 

(e.g. silver nitrate, CO2) (Hosseini et al. 2009; Kumar, et al. 1998; Roustan et al. 1994; 

Roustan et al. 1989; Roustan et al. 1990; Wang et al. 2011). 
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Although the role of C2H4 in development of hyperhydric symptoms is not clear, C2H4 

biosynthesis is stimulated in hyperhydric tissues (Franck et al. 2004; Kevers and Gaspar 1985; 

Kevers and Gaspar 1986; Saher, et al. 2004). C2H4 may inhibit abscisic acid-mediated 

stomatal closure and reduce lignin synthesis (Tanaka et al. 2005). Application of C2H4 

inhibitors, however, does not necessarily reduce hyperhydricity (Fal et al. 1999; Kevers and 

Gaspar 1985; Mayor et al. 2003; Park et al. 2004). 

1.5.4 Gas exchange  

The gas environment inside a culture container is highly dependent on the gas exchange rate 

(ventilation) of the headspace gas. Rate of gas exchange is usually defined as the number of 

volumetric exchanges of headspace gas per unit time. In passive ventilation, the unit time is 

usually per hour due to low gas exchange and the gas exchange rate is described as N; whereas 

in forced ventilation, the unit time is usually per minute and the gas exchange rate is described 

as vvm, which is the number of volumetric headspace gas exchanges per minute. These two 

units of gas exchange rate are interconvertible: N=vvm×60. Increasing gas exchange benefits 

growth by increasing CO2 level and reducing relative humidity as well as toxic volatiles (i.e. 

C2H4) in the headspace of a culture container (Thongbai et al. 2010; Xiao et al. 2003; Zobayed, 

et al. 2001a). As a result of improvement in the headspace environment, plantlets in vitro show 

increased photosynthesis and biomass (shooting and rooting), decreased hyperhydricity, more 

deposition of epi-cuticular wax, functional stomata, and enhanced contents of secondary 

metabolites (Hahn and Paek 2001; Ivanova and Van Staden 2010; Majada et al. 1998; Majada 
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et al. 2001; Majada, et al. 1997; Majada et al. 2002; Mohamed and Alsadon 2010; Mohamed 

and Ibrahim 2012; Shohael and Paek 2013; Wang et al. 2013; Zhao et al. 2012).  

In practice, the gas exchange rate can be increased by increasing passive ventilation in culture 

containers or integrating a system of forced ventilation. In passive ventilated culture 

containers, the gas exchange rate is increased by using porous closures or gas permeable 

membranes on the closure (Chen et al. 2006b; Fujiwara and Kozai 1995; Mohamed and 

Alsadon 2010; Tsay et al. 2006). By using these strategies, the gas exchange rate can be 

elevated from 0.04 times h-1  (0.00066 vvm) under non-ventilated conditions to around 5 times 

of headspace volumetric exchange h-1  (0.083 vvm) (Chen and Chen 2002; Cui et al. 2000; 

Thongbai, et al. 2010). Except for small culture containers, the gas exchange rate under 

passive ventilation may still be limited, so even in spite of CO2 enrichment, CO2 concentration 

inside the container is challenging to maintain at ambient levels (0.039%) (Xiao, et al. 2003). 

Increased ventilation in gelled medium can desiccate the medium when gas exchange is 

increased even via passive ventilation and then alter osmotic potential of the medium, thereby 

limiting in vitro growth (Shim, et al. 2003; Yann et al. 2010). 

Forced ventilation, on the other hand, is more effective than passive ventilation in terms of 

gas exchange rate for promoting photosynthesis of shoots, in vitro rooting and ex vitro survival 

(Gutiérrez et al. 2011; Kubota and Kozai 1992; Son et al. 2009; Zhao et al. ; Zobayed 2005; 

Zobayed et al. 2004). Forced ventilation is also more effective than passive ventilation in 

promoting photosynthesis of cotyledonary stage embryos and their subsequent germination as 
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well as conversion to plantlets in bioreactors (Afreen et al. 2005; Ducos et al. 2007b; Ducos 

et al. 2007c). Compared to passive ventilation, forced ventilation is a more reliable means of 

controlling the headspace environment (Zobayed, et al. 2004).  

Forced ventilation is now essential for maintaining efficient gas exchange for 

photoautotrophic growth in large culture containers, i.e. bioreactors (Xiao et al. 2011). Forced 

ventilation is achieved by flushing humidified air into the culture container via an air pump 

connected to a sterile air filter (Kozai et al. 2000). The gas exchange rate under forced 

ventilation can be adjusted to more than 10 times h-1 (0.16 vvm), which efficiently replenishes 

CO2 for photosynthesis in bioreactors (Xiao and Kozai 2006b; Xiao, et al. 2003; Zobayed et 

al. 1999b; Zobayed 2000) and provides more uniform gas distribution in the headspace and 

usually, therefore, in the culture medium.  

  

1.5.5 Cultivation substrates 

Conventional micropropagation uses agar mixed together with nutrients to form a gelled 

matrix on which plant tissues grow. However, agar is expensive and induces severe 

hyperhydricity, thus other gelling agents (e.g. gellan gum, guar gum, and starch) have been 

used (Babbar et al. 2005; Franck et al. 1998; Jain and Babbar 2002). Among these alternatives, 

gellan gum (Gelrite, Phytagel) has found wide acceptance. Compared to agar, it also gives rise 

to better quality plant tissues that have greater shoot multiplication, longer shoots, and larger 
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miniature storage organs (Babbar, et al. 2005; Kumar et al. 2003; Podwyszynska and 

Olszewski 1995; Veramendi et al. 1997).  

Besides gelled medium, there are other options for porous supporting substrates depending on 

end goal, i.e. for plantlet rooting. Root development needs sufficient oxygen around the root 

zone (Drew 1997). Gelled medium is 100% water, and solubility of O2 under typical in vitro 

culture conditions may not be adequate to support healthy root development (Atkinson and 

Mavituna 1991; Geankopolis 1993; Spomer and Smith 1996). Compared to gelled matrices, 

porous supporting materials soaked with liquid medium provide more oxygen throughout the 

root system, resulting in roots with improved physiological and anatomical features (Afreen 

et al. 1999; Fujiwara and Kozai 1995; Jay-Allemand et al. 1992; Newell et al. 2003; Prasad 

and Gupta 2006). In addition to benefiting root development, use of porous materials (e.g. 

polyester fiber) also reduced hyperhydricity in static liquid cultures (Tascan, et al. 2010). 

Common supporting materials include Florialite (a mixture of vermiculite and cellulose fibers) 

(Afreen, et al. 1999; Afreen et al. 2000; Kozai, et al. 2000; Marriott and Sarasan 2010; 

Nakamura 2006; Nguyen et al. 1999; Saldanha et al. 2014; Xiao and Kozai 2006a; Xiao, et 

al. 2003; Zobayed, et al. 1999b), vermiculite (Heo et al. 2001; Xiao and Kozai 2006b), 

sugarcane bagasse (Mohan et al. 2004; Rodríguez-Vázquez et al. 1999), perlite (Lucchesini 

et al. 2006; Xiao et al. 2000), ‘rockwool’ (Kubota and Kozai 1992; Norikane, et al. 2010), 

and mixed perlite and vermiculite (Oh et al. 2012). In commercial operations, Florialite and 

vermiculite are preferred mainly because of their relative ease of handling and quality of root 
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development (Kozai, et al. 2006; Zobayed, et al. 2004). Use of these porous materials 

enhances water and nutrient uptake and thereby promoting overall growth of plantlets and 

ultimately their ex vitro survival (Afreen, et al. 1999; Kirdmanee et al. 1995a; Nguyen, et al. 

1999).  

 Photoautotrophic micropropagation 

Photoautotrophic micropropagation was developed after the observation that shoots in vitro 

are photosynthetic so increased headspace CO2 concurrent with increased light intensity 

promoted photosynthesis (Kozai, et al. 1990). Since one major difference between plantlets 

in vitro and those in the soil is photosynthetic ability, the quality of plantlets in vitro and their 

ex vitro survival can be greatly improved if they grow autotrophically in vitro. However, the 

typical in vitro environment is CO2 and light limited, and has to be adjusted for 

photoautotrophic growth in vitro by increasing light intensity (100-300 µmol m-2·s-1) and 

headspace CO2 levels, while gradually eliminating sugar in the medium (Kozai, et al. 2006; 

Kozai 2010; Park, et al. 2011; Radochová and Tichá 2008; Serret et al. 1997; Shim, et al. 

2003; Vyas and Purohit 2006; Zobayed, et al. 1999a). Light intensity beyond 300 μmol m−2·s−1 

does not yield a higher photosynthetic rate (Fan et al. 2013). Some C4 plants, such as sea oats 

and kiwi, need sucrose to accumulate starch and start the photosynthetic machinery (Arigita 

et al. 2010; Valero-Aracama et al. 2007). To increase headspace CO2, ventilation is improved 

and RH is generally reduced resulting in plantlets not only capable of photoautotrophic growth 

but also having better physiological characteristics, i.e. stomata and cuticle, than those 
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cultured in conventional containers (Afreen 2005; Couceiro et al. 2006). Thus plantlets in 

vitro are well established for ex vitro survival and stage IV acclimatization can therefore be 

eliminated (Badr et al. 2011; Hahn and Paek 2001; Park, et al. 2011; Xiao and Kozai 2004; 

Zobayed et al. 2000). Besides physiological improvements, photoautotrophic 

micropropagation also reduces contamination risk by using sugar-free medium, and thus 

larger vessels can be used. As a result of these benefits, there are reductions both in plant loss 

and production costs compared to conventional propagation using small vessels and sugar-

containing medium (Kozai, et al. 2006; Xiao and Kozai 2004; Zobayed, et al. 2004). 

After studies on how in vitro plants responded to microenvironment conditions (see section 

1.5), commercial scale photoautotrophic (sugar-free) micropropagation modules with large 

vessels/bioreactors (120L) and forced ventilation were developed (Kozai, et al. 2006; 

Zobayed, et al. 2004). Explants were cultured on porous supporting materials (e.g. vermiculite 

and Florialite) soaked with liquid sugar-free medium, light intensity between 100-300 μmol 

m-2 s-1, and forced air ventilation with ± CO2 (Kozai, et al. 2006; Xiao and Kozai 2004). Xiao 

et al. (2011) even raised the possibility of scaling up the culture system to an aseptic room 

culture where the whole room is the “vessel”. Hundreds of plant species have now been 

cultivated via photoautotrophic micropropagation (Kubota et al. 2005; Xiao, et al. 2011).  

 Bioreactors for micropropagation:  

The use of bioreactors for plant propagation originates from the limitations in traditional 

micropropagation production technology. Those limitations involve periodic transfer of plant 
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materials to fresh medium to sustain continuous tissue growth and proliferation as well as 

switching from one stage to the next. All of these operations require significant labor in 

handling each plantlet, which in turn increases production cost (Chu 1995; Florkowski 1988; 

Pachauri and Dhawan 1989). Traditional micropropagation uses gelled medium and a large 

number of small containers, which not only complicates automation but also provides an 

adverse culture environment which can ultimately result in plant abnormalities and losses 

during acclimatization (see section 1.4).  

Use of a bioreactor to automate all or some of the various stages can reduce labor input and 

hence cost of plantlets since explants are no longer manually positioned in the culture 

container and medium can be readily renewed without manual transfer of plantlets (Aitken-

Christie et al. 1995b; Alister et al. 2005; Lorenzo et al. 1998; Takayama and Akita 2006). 

Nutrient distribution is also more uniform in liquid than in gelled medium (Adelberg and Fári 

2010; Smith and Spomer 1995; Williams 1992). However, plant species vary considerably in 

morphology as well as in their demand on nutrients and environmental conditions, so 

bioreactor design for micropropagation is challenging. As a result, many types of bioreactors 

have been designed and used for cultivating plant tissue and organ cultures as illustrated 

schematically in Figure 1.3. These include: A, the classic stirred tank (STR); B, the bubble 

column reactor (BCR); C, balloon-type bubble reactor (BTBR); D, rotating drum; E, life 

reactor; F, Lifeguard reactor; G, Growtek reactor; H, continuous partial immersion (CPI) 

reactor with medium replenishment; I, the artificial plant ovary (APO) reactor; J and K, 
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temporary immersion systems (TISs) riding on a rocker; L, the ‘3R’ reactor; M-P, 

pneumatically driven TISs; and Q, the mist reactor. A number of these reactors also have 

disposable culture bags whereby both contamination risk and initial capital cost are reduced. 

These bioreactors differ by method of agitation and ventilation, vessel construction and type 

of immersion. In Figure 1.3 reactors with disposable culture bags include: E, the life reactor; 

P, the box-in-a-bag; and Q, the mist reactor. The focus here is not on cell suspensions, but 

rather on cultivation of fully differentiated plantlets.   
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Figure 1.3 Various bioreactors used for plant tissue, organ and somatic embryos. Triangles 
in the figure indicate liquid level. A, the classic stirred tank (STR); B, the bubble column 
reactor (BCR); C, balloon-type bubble reactor (BTBR); D, rotating drum; E, life reactor; F, 
Lifeguard reactor; G, Growtek reactor; H, continuous partial immersion (CPI) reactor with 
medium replenishment; I, the artificial plant ovary (APO) reactor; J and K, temporary 
immersion systems (TISs) riding on a rocker; L, the ‘3R’ reactor; M-P, pneumatically driven 
TISs; and Q, the mist reactor. 
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1.7.1 Liquid-phase (continuous complete submersion) reactors  

Plant tissues in liquid phase reactors (Figure 1.3A-E) are always immersed in the liquid 

medium. The stirred tank reactor is used for microbial cultures (Figure 1.3A). Its impellers for 

agitation of the medium create high hydrodynamic shear stress to differentiated plant tissues, 

and thus it is not a reasonable design. There are other stirred reactors that use a spinning filter 

or cell lift impeller and aeration tubes to provide low shear and bubble free aeration for 

somatic embryos (Moorhouse et al. 1996; Sorvari et al. 2005; Styer 1985). However, these 

reactors are not good options for plant tissues due to tissue adhesion to the spinning filter and 

aeration tubes (Sorvari, et al. 2005). Furthermore, capital and operation costs exceeded 

product yield and value (Moorhouse, et al. 1996). The rotatory drum reactor (Figure 1.3D) is 

another mechanical driven low shear mixing reactor; it has been used to culture bulblets (Paek 

et al. 1996). 

Low-shear mixing and aeration in reactors can also be achieved by bubbling; these reactors 

include air-lift (Figure 1.3B), bubble column (BCR, Figure 1.3B), and balloon type bubble 

(BTBR, Figure 1.3C) reactors. The air-lift and BCR reactors are comprised of a cylinder of 

glass or plastic (autoclavable) with a bottom frit attached via tubing to a gas supply, e.g. air, 

which passes through the frit subsequently forming small bubbles that rise through the column 

of liquid medium thereby aerating and mixing the culture. Gas vents via a serile filter at the 

top. Compared to BCR and BTBR, the air-lift reactor has an additional draft tube placed either 

inside or outside the growth chamber to provide greater nutrient circulation. The airlift and 
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bubble column reactors have been used to produce somatic embryos (Misra and Dey 2013; 

Tapia et al. 2009; Yang, et al. 2013). Unfortunately one of the problems with cylinder shaped 

reactors is foaming, so the BTBR was developed. The broad surface area of the culture liquid 

alleviates foaming and provides even better gas exchange than the cylinder shaped reactors 

(Shohael, et al. 2014). A variety of different plant species have produced somatic embryos in 

the BTBR at a variety of volumes (Table 1.5, (Chin et al. 2014; Ho et al. 2006; Kang et al. 

2006; Shohael, et al. 2014; You et al. 2012).   

The air-lift Life reactor (Figure 1.3E) used a disposable plastic bag to culture bud clusters of 

ferns, potato, banana, and gladiolus (Ziv, et al. 1998). However, microtubers produced in the 

Life reactor were malformed and had a low sprouting rate, and the microshoots showed 

significantly lower ex vitro survival compared to those developed on gelled medium 

(Grigoriadou and Leventakis 2003). 

One common problem of submerged liquid cultures is their limited gas exchange (Curtis 2005). 

They also have a high risk of developing hyperhydricity, i.e. for woody trees and 

dicotyledonous species (Debnath 2007; Paek, et al. 2005; Preil 2005). Shoots may therefore 

be difficult to cultivate in liquid-phase reactors. To avoid shoot hyperhydricity, Ziv et al. (1998) 

added growth retardants to the medium in the reactor to minimize shoot development. This 

method, however, requires subsequent transfer of plant materials onto hormone-free medium 

prior to soil transplant (Ziv, et al. 1998).  
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Table 1.4 Examples of species cultivated as plantlets in different types of bioreactors shown 
in Figure 1.3 

 

Reactor type Culture type and plant species Ref.  
Liquid- 
phase  
 

Stirred 
reactors  

Somatic embryos of Picea sitchensis 
Shoots/plantlets of Stevia rebaudiana 

(Moorhouse, et al. 1996) 
(Takayama and Akita 2006) 

Rotary drum Bulblets (Paek, et al. 1996) 
Air-lift, 
BCR, BTBR 
 

Microtubers of Solanum tuberosum 
Protocorms and Protocorm-like-bodies 
Dendrobium candidum 
Cymbidium sinense 
Oncidium 
Shoots/plantlets  
Chrysanthemum  
Alocasia amazonica  
Anoectochilus formosanus Hayata 
Somatic embryos of a variety of species  

(Akita and Takayama 1994) 
 
(Cui et al. 2014) 
(Gao et al. 2014) 
(Yang et al. 2010) 
 
(Sivakumar et al. 2005) 
(Jo et al. 2008) 
(Yoon et al. 2007)  
see Table 1.5 

Gas/liquid 
gas-phase: 
CPI  

Lifeguard 
Growtek  

Shoots/plantlets 
Santalum album, Dendranthema grandiflora, 
Ananas comosus, Solanum tubersosum, Ananas 
comosus Chrysanthemum, Hypericum perforatum 
Somatic embryos of Catharanthus roseus 

 
(Dey 2005; Goel et al. 2009) 
 
 
(Mujib et al. 2014) 

Modified 
BCR or 
BTBR 
reactors for 
CPI  

Bulblets  
Allium sativum 
Lilium spp 
Microtubers of Solanum tuberosum 
Shoots/plantlets  
Allium sativum 
Spathiphyllum cannifolium  
Vitis spp 
Alocasia amazonica 

 
(Kim et al. 2004a)  
(Nesi et al. 2014) 
(Piao et al. 2003) 
 
(Kim, et al. 2004a) 
(Dewir et al. 2006a)  
(Jin et al. 2013) 
(Jo, et al. 2008) 

Rotary CPI 
reactor  

Microtubers 
Solanum tuberosum 
Dioscorea opposite 

 
(Akita and Ohta 1998) 
(Akita and Ohta 2002) 

APO Plantlets of Hosta, Gerbra, Arundo, Eucalyptus (Adelberg and Fári 2010) 
Liquid/gas-
phase: TIS 

Thin-film 
liquid 
rocker,  
3R, 
BioMINT 

Microtubers of Solanum tuberosum 
Minirhizome of Curcuma longa 
Shoots/plantlets 
Alocasia amazonica  
Hosta 
Hemerocallis 
Cedrela odorata 
Capsicum chinense 
Ananas comosus and tobacco 

(Kämäräinen-Karppinen et al. 2010), 
(Adelberg and Cousins 2007) 
(Adelberg and Toler 2004) 
(Adelberg 2005) 
(Adelberg et al. 2007)  
(Peña-Ramírez, et al. 2010) 
(Bello-Bello et al. 2010) 
(Adelberg and Fári 2010) 

RITA®, 
Twin flask 
system and 
their 
variations 

Somatic embryos, microtubers and plantlets of a 
wide variety of ornamental plants, fruits, cash crops, 
tree species etc. 

Reviewed in (Berthouly and Etienne 
2005; Georgiev et al. 2014; González 
2005; Watt 2012). Also see Table 1.5. 

Modified 
BCR or 
BTBR for 
temporary 
immersion 

Bulblets of Lilium spp 
Protocorm-like-bodies of Phalaenopsis 
Shoots/plantlets 
Solanum tuberosum  
Cymbidium sinense 

(Lian et al. 2003) 
(Young et al. 2000) 
 
(Piao, et al. 2003) 
(Gao, et al. 2014) 

TRI, Box-in-
bag 

Embryo-plantlet conversion of Coffea spp 
 
Photoautotrophic shoots/plantlets of a variety of 
species 

(Afreen 2006; Ducos, et al. 2007b) 
(Kubota, et al. 2005; Xiao, et al. 
2011) 

BIB® Shoots/plantlets 
Ananas comosus 
Melaleuca alternifolia 

 
(Scheidt et al. 2009) 
(Scheidt et al. 2011) 

Gas-phase Mist reactor Somatic embryos of Dacus carrota 
Shoots/Plantlets of Dianthus caryophyllus 

(Fei and Weathers 2014) 
(Correll and Weathers 2001a) 
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Due to the growth conditions in submerged cultures, plants best cultivated in liquid-phase 

bioreactors are leafless structures (bulblets, microtubers, protocorms, and protocorm-like 

bodies) and somatic embryos (Table 1.4 and 1.5). Nevertheless, some successful examples of 

species grown in liquid-phase reactors were Stevia rebaudiana (Takayama and Akita 2006), 

Chrysanthemum (Sivakumar, et al. 2005), Alocasia amazonica (Jo, et al. 2008) and 

Anoectochilus formosanus Hayata (Yoon, et al. 2007). 

1.7.2 Gas/liquid-phase reactors 

Since liquid phase culture is suboptimal for shoot cultivation, the tissues from which most 

species are micropropagated (Alvard, et al. 1993; Hahn and Paek 2005; Kim et al. 2011), a 

wide variety of bioreactors have been developed with designs and configurations offering 

periodic and/or partial immersion in liquid medium. These reactors integrate features that 

provide a better gaseous environment for plant materials and also simplify operation compared 

to the standard stirred tank reactor. For example, temporary immersion reactor systems (TIS; 

Figure1.3 M,N,O and P) that allow for periodic wetting of the inoculum with nutrient medium 

yield better somatic embryo development, microtuber quality with high sprouting rates, and 

growth of shoots and roots than in gelled medium or liquid phase reactors (Berthouly and 

Etienne 2005; Etienne and Berthouly 2002; Georgiev, et al. 2014; Nhut et al. 2006; Watt 2012; 

Yan et al. 2013). The headspace of some gas/liquid-phase reactors can be further integrated 

with forced ventilation to improve the headspace environment for plantlet growth (Wang, et 

al. 2013; Zhao, et al. 2012).  
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1.7.2.1 Continuous partial immersion reactor (CPI) 

Reactors in this category can simply be a container installed with a support (raft, plugs) inside 

(Figure 1.3F). Explants are positioned on the culture support and fed with liquid medium 

continuously at the root zone, akin to in vitro hydroponic culture. A CPI reactor can be easily 

built in-house using a glass jar capped with a ventilation port and a porous raft (Hahn and 

Paek 2005). Compared to liquid-phase reactors, CPI reactors showed better microtuber 

production (Piao, et al. 2003) and more successful in shoot cultures of ornamental plants 

(Table 1.4).  

Table 1.5 Some examples of somatic embryos cultivated in bioreactors 

Bioreactor 
Type 

Species Volume (L) Ref. 

BTBR Eleutherococcus senticosus 500 (Shohael, et al. 2014) 

Eleutherococcus koreanum 18 (Park et al. 2005) 
Transgenic E. senticosus SEs 130 (Kang, et al. 2006) 
Panax notoginseng 3 (You, et al. 2012) 
Santalum album 10 (Misra and Dey 2013) 

TIS  Coffea arabica 1 
1-10 

(Etienne-Barry, et al. 1999) 
(Ducos, et al. 2007b) 

Saccharum spp. cv Q165 ≤ 1 (Mordocco et al. 2009) 
Hevea brasiliensis 1 (Etienne et al. 1997) 
Theobroma cacao 1 (Niemenak et al. 2008) 
Bactris gasipaes Kunth 1 (Heringer et al. 2014) 

BCR Castenea dentate x mollisima 0.1-1.0 (Kong et al. 2014) 
Eleutherococcus senticosus 10 (Yang et al. 2012) 
Lilium x formolongi (5 cvs) 2 (Ho, et al. 2006) 
Picea sitchensis 2 (Ingram and Mavituna 2000) 

Mist Dacus carrota 4 (Fei and Weathers 2014) 
Shake flasks Quercus suber L. 0.1-0.25 (Jiménez et al. 2011) 

The Lifeguard (Figure 1.3F) is one example of a CPI; there is a floating raft placed inside a 

plastic box (Ziv 1999). However, there is no medium replenishment or ventilation. Similar to 

the Lifeguard, the Growtek reactor (Figure 1.3G) included a side tube for medium exchange 
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(Kar et al. 1999). The side tube could be modified to act as a ventilation port to provide 

diffusive or forced ventilation to the headspace environment (Sharma et al. 2011).  

The BCR and BTBR can be modified to be the CPI reactor (Figure 1.3H), by installing a 

raft/net inside the reactor to avoid plantlet submersion. Compared to complete submersion, 

the CPI yielded better bulblet formation in garlic (Kim, et al. 2004a), better shoot proliferation 

in Spathiphyllum cannifolium (Dewir, et al. 2006a) and greater rooting percentage in Alocasia 

amazonica (Jo, et al. 2008). Growth of these plants using a CPI reactor was also better than 

temporary immersion, suggesting these species may prefer continuous contact with nutrient 

medium. However, dicotyledonous species (e.g. Gypsophila paniculata) suffered from 

hyperhydricity in a modified BCR reactor (Zhang et al. 2007). Hyperhydricity in this reactor, 

was significantly reduced when the headspace was ventilated (Wang, et al. 2013).  

Akita et al. (1998) developed a simple rotary drum bioreactor (Figure 1.3D) composed of a 

cylinder shaped bottle equipped with an air-permeable membrane on the cap, a layer of 

polyurethane at the bottom of the container and a stainless steel mesh column to immobilize 

the plant materials; these bottles were slowly rotated on a bottle roller. Compared to static 

submersion, microtuber formation of potato and yam was better in the rotary drum reactor 

(Akita and Ohta 1998; Akita and Ohta 2002).  

Fari et al. (2010) invented an “artificial plant ovary” (APO, Figure 1.3I) consisting of 1) a 

horizontal placed column as a growth chamber, 2) a medium-filled artificial “umbilical cord” 
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going through the longitudinal axis of the growth chamber, 3) several medium reservoirs 

connected to the ends of the medium supply cord, 4) ventilation ports at both ends of the 

column and 5) a controller to adjust the medium level inside the chamber by controlling 

medium supply. This APO provides flexible control on medium, switching between media 

and ventilation, and thus plant materials placed inside the column progressed through shooting, 

rooting and pre-acclimatization without any manual transfers between developmental steps 

(Adelberg and Fári 2010). The reactor was tested on some economically import plants 

including Hosta, Gerbra, Arundo, Eucalyptus, and is currently used for commercial 

production of Arundo donax (Adelberg and Fári 2010). 

1.7.2.2  Temporary immersion system (TIS) 

In a TIS, plant materials are cultured in a humid gas phase and periodically immersed in liquid 

medium. Compared to liquid-phase reactors, TIS reactors are more suitable for shoot cultures 

and therefore have a longer list of plants that have been successfully cultivated (Table 1.4). 

Immersion and drainage can be achieved by mechanical driven tilting, rotating or lifting, by 

pneumatically driven ebb and flow or by gravity driven ebb and flow. The RITA® and twin 

flask reactor are most popular among TIS reactors and have been used to propagate a large 

variety of plants via shoot cultures (Berthouly and Etienne 2005; Georgiev, et al. 2014; Watt 

2012).  

System with tilting, rotary or lifting machines:  
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A thin-film liquid rocker system (Figure 1.3J) composed of individual rectangular culture 

boxes and a rocker platform was designed by Adelberg (2005). Due to the high cost and 

contamination problems of the initial version of the culture box, a more recent version (2.7 L) 

made of polycarbonate with diffusive ventilation was developed (Kämäräinen-Karppinen, et 

al. 2010). The thin-film rocker box has been used to propagate Alocasia amazonica (Adelberg 

and Toler 2004), Hosta (Adelberg 2005), Hemerocallis (Adelberg, et al. 2007), minirhizomes 

of Curcuma longa (Adelberg and Cousins 2007), and microtubers of Solanum tuberosum 

(Kämäräinen-Karppinen, et al. 2010). One drawback of this system is the depletion of 

nutrients; there is only a thin layer of medium at the bottom of culture boxes. To overcome 

this problem, vessels are being redesigned to provide nutrient replenishment (Adelberg and 

Fári 2010), but to my knowledge, there is not yet any application. 

The BioMINT bioreactor (Figure1.3K) also rides on a rocker platform to achieve temporary 

immersion (Robert et al. 2006). It is built of two polypropylene vessels, one for the plant 

materials and the other for the liquid culture medium. The vessels are coupled together through 

a perforated adaptor allowing the flow of the liquid media from one vessel to the other. 

Ventilation ports on the vessels enable diffusive or forced ventilation. Spanish red cedar (Peña-

Ramírez, et al. 2010; Peña-Ramírez et al. 2012) and Habanero pepper (Bello-Bello, et al. 2010) 

cultured in BioMINT showed better shoot growth, root development and ex vitro survival than 

in gelled medium. 
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A rotary driven system 3R (Figure 1.3L) has a segment across the center to separate plant 

materials from media (Mészáros et al. 2004). The vessel rolls 180 degrees back and forth to 

provide periodic immersion (Fari et al. 2006; Mészáros, et al. 2004). This system was used to 

propagate pineapple and transformed tobacco shoots in large scale (Adelberg and Fári 2010). 

Unfortunately the capital cost of building and running this system is high (Adelberg and Fári 

2010).  

Pneumatically driven TIS: 

Transfer of medium in pneumatically driven TIS is achieved by applying air pressure onto the 

medium. Many TIS belong to this type; the twin flask system and the RITA® are 

representatives of this group.  

In a twin flask system (BIT®, Figure 1.3M), liquid is passed horizontally between two flasks 

(Escalona et al. 1999). Air pressure alternatively applied to the medium reservoir and the 

growth chamber periodically transfers medium between the two bottles; this system is easy to 

build in-house. Transfer of medium can also be achieved by alternatively changing the 

interrelated vertical position of the two vessels (FÁRI et al. 2010). BIT® can be easily scaled 

up by using larger containers (Hempfling and Preil 2005; Wilken et al. 2014). Forced 

ventilation can be readily integrated into the growth chamber to improve the headspace 

environment (Wang, et al. 2013; Zhao, et al. 2012). Twin flask reactors are used for shoot 

proliferation, elongation and rooting in a variety of species (Berthouly and Etienne 2005; 

Georgiev, et al. 2014; Watt 2012).  

48 
 



 

The RITA® system (Figure 1.3N) is a 1 L vessel comprising two compartments, an upper plant 

growth chamber and a lower medium reservoir (Teisson and Alvard 1995). Liquid is pressure 

fed from the medium reservoir into the top growth chamber to the level of the plant materials. 

Gas vents with sterile filters are used to equalize pressure. The liquid is held in the top chamber 

for a short period of time and then drained back to the bottom chamber until the next filling. 

This can occur at any regularly set interval, which is often species specific. This system was 

mainly intended for mass propagation of somatic embryos but has also been used for 

proliferating shoots, bud clusters and microtubers (Akdemir et al. 2014; Berthouly and 

Etienne 2005; Georgiev, et al. 2014; Polzin et al. 2014; Ramos-Castellá et al. 2014). The 

original small RITA® system was the basis for larger scaled systems based on the same 

principles.  

The Plantima vessel, a RITA® variant (Figure 1.3N), uses a larger two-compartmented 

rectangular container (Yan et al. 2010). It was reported to improve plantlet growth and reduce 

hyperhydricity in Siraitia grosvenorii and Dioscorea (Yan, et al. 2010; Yan, et al. 2013). 

A Plantform bioreactor (Figure 1.3N) is another variation of RITA® using a plastic container 

(4L) fitted with a perforated plastic raft as the culture vessel (Sayegh and Welander 2012; 

Welander et al. 2014). This system has been used to propagate apple, blueberry, raspberry, 

blackberry, rhubarb, potato, several types of grasses and banana (www.plantform.se/pub/).  
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Soccol et al. (2008) developed a bubble immersion bioreactor (BIB®, similar to Figure 1.3L) 

with a 90 cm high growth chamber fitted with multiple tiers to accommodate plant materials. 

Instead of immersion in liquid, plant materials were periodically immersed in bubbles of 

nutrient medium. This reactor reportedly yielded better shoot proliferation than RITA® for 

pineapple and tee tree (Scheidt, et al. 2009; Scheidt, et al. 2011; Soccol et al. 2008). 

The BCR and BTBR have also been modified to be vertical twin-flask systems (Figure 1.3O). 

To provide temporary immersion, gas pressure is periodically applied to the medium reservoir 

connected to the bottom of the growth chamber by tubing. Similar to RITA®, liquid is drained 

back into the reservoir by gravity after the air pressure is released. The growth chamber in the 

modified BCR and BTBR is fitted with a supportive net to prevent plant materials from 

submersion. A vertical twin-flask system also allows the two bottles to be stacked. For 

example, the SETIS™ reactor (similar to Figure 1.3O http://www.setis-systems.be/) is 

comprised of two stacked flat containers with the growth chamber on top of the medium 

reservoir. Horizontal placement of stacked vessels saves shelf space.  

Afreen et al. (2002) developed a temporary root zone immersion reactor system (similar to 

Figure 1.3O) for photoautotrophic micropropagation. In this system, plant materials fixed in 

porous plugs are periodically immersed in their root zone (plug part); forced ventilation with 

CO2 enriched air and high light intensity are also provided to stimulate autotrophic growth 

(Afreen et al. 2002b). The system is also available at a commercial scale (Kozai et al. 2006). 

Compared to the TIS that submerses explants during immersion time (e.g. RITA® and twin 
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flask system), the TRI reactor showed better embryo-to-plantlet development as well as shoot 

and root growth (Afreen 2006).  

The growth chamber of a TIS can also be made of transparent disposable plastic as shown in 

the box-in-bag TIS (Figure 1.3P). To provide a reasonable height of headspace for explant 

growth, the plastic bag is fitted outside a box with a lateral screen on which plant materials 

reside and grow. This reactor provides uniform light transmittance, and was used to produce 

pre-germinated embryos using torpedo stage embryos as inoculum (Ducos, et al. 2007c; 

Ducos et al. 2008). Despite the high light transmittance, this bioreactor has a large foot print; 

it also has a problem with medium mixing and the sterile vent connector parts on the bag were 

too costly to be disposable (Ducos et al. 2007a), so the design was abandoned. 

Application strategies of TIS 

Many studies compared TIS reactors with conventional gelled medium, and the results were 

consistent in favoring TIS; they yielded greater biomass with better quality (normal leaf 

anatomy, higher chlorophyll content, less hyperhydricity) (Georgiev, et al. 2014; Watt 2012; 

Yan, et al. 2010; Yan, et al. 2013; Yang and Yeh 2008). When used in production of somatic 

embryos, the TIS also yielded more embryos with better quality compared to semi-solid 

medium (Heringer, et al. 2014; Mallón et al. 2012; Niemenak, et al. 2008). On the other hand, 

protocorm-like-bodies proliferated better in the BTBR than in the TIS (Gao, et al. 2014; Yang, 

et al. 2010). 
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Compared to continuous partial immersion reactors, the TIS is a better option for 

dicotyledonous and tree species in terms of shoot proliferation, root development and embryo-

to-plantlet conversion (Georgiev, et al. 2014; Kim, et al. 2011). In contrast monocotyledonous 

species generally prefer continuous partial immersion to temporary full immersion (Dewir, et 

al. 2006a; Jo, et al. 2008; Kim, et al. 2004a; Nesi, et al. 2014). 

 

Comparisons between different temporary immersion systems are still limited and there are 

no clear cut suggestions on which bioreactor to choose. Somatic embryogenesis seems better 

in a RITA® than a twin flask system (Heringer, et al. 2014; Sankar-Thomas and Lieberei 2011). 

As embryos mature and become chlorophyllous in the cotyledonary stage, light transmittance 

becomes important for germination of somatic embryos and their subsequent plantlet 

development (Afreen et al. 2002a). However, the cylindrically shaped vessels in most TIS 

reactors e.g. the twin flask system, restricted light penetration into their center and thus, also 

restricted somatic embryo development in the center of the culture vessel (Ducos, et al. 2007b). 

Compared to twin flask systems, the RITA® was more effective for embryo-to-plantlet 

conversion and microshoot production, which was probably because there was more uniform 

light transmittance in the RITA® (Heringer, et al. 2014; Scherer et al. 2013). Likewise, the 

box-in-a-bag TIS yielded more synchronized somatic embryo maturation after the torpedo 

stage than did the cylindrically shaped twin flask systems probably because the former 

provided more uniform light transmittance (Ducos, et al. 2007b; Ducos, et al. 2007c; Ducos, 
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et al. 2008). Scheidt et al. (2009, 2011) found BIB® to be superior to RITA® for the 

propagation of pineapple and tea tree seedlings.  

 

Immersion cycle in a TIS affects somatic embryo development, microtuber formation, shoot 

proliferation, and root development, with cycle length dependent on species and development 

step (Berthouly and Etienne 2005; Georgiev, et al. 2014; Ramos-Castellá, et al. 2014). While 

microtuber and bulblets develop well under long or frequent immersions (e.g. 10 min h-1) 

(Ashraf et al. 2013; Balogun et al. 2014; Kämäräinen-Karppinen, et al. 2010; Ramos-Castellá, 

et al. 2014), shoot tissues require short, infrequent immersion cycles (e.g. 5 min 12 h-1) 

(Georgiev, et al. 2014; Valdez-Tapia et al. 2014; Watt 2012). Somatic embryos grow well 

under short, frequent cycles (several minutes every few hours) (Albarrán et al. 2005; Mallón, 

et al. 2012; Niemenak, et al. 2008; Oliva et al. 2014; Pérez et al. 2013; Teisson and Alvard 

1995). 

 

1.7.3 Gas-phase reactors 

The mist reactor is, to our knowledge, the only truly gas-phase reactor. It uses aeroponics and 

provides nutrient medium to cells, explant tissues or organs via an ultrasonic nozzle that yields 

a fine mist that coalesces and drips back into the medium reservoir. With the elimination of 

immersion in liquid phase, plant materials grown in nutrient mist bioreactors have unlimited 

gas exchange, and thus showed better in vitro growth than gelled medium or liquid-phase 

reactors in terms of shoot proliferation, in vitro rooting, biomass yield, hyperhydricity and 

secondary metabolite contents (Towler et al. 2006).  
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The original mist reactor had gas-driven spray nozzles to generate nutrient mist, and was used 

to culture a variety of plant tissues and species with improved shooting and estimated reduced 

production cost (Weathers and Giles 1988). The spray nozzles, however, were easily clogged. 

A submerged ultrasonic transducer was then used for mist generation (Liu et al. 1998; Tisserat 

et al. 1993), and was used to propagate shoot tissues and microtubers (Cheetham et al. 1992; 

Hao et al. 1998; Liu et al. 2003; Weathers et al. 1988; Woo and Park 1993). However, 

deterioration of the ultrasonic element occurred as a result of direct contact with medium 

(Tisserat, et al. 1993). The acoustic window mist bioreactor was then developed and simplified 

later with the design to avoid direct contact of medium to the transducer (Buer et al. 1996; 

Chatterjee et al. 1997). By altering the misting cycle, plant leaves developed functional 

stomata and epicuticular wax, and hyperhydricity was greatly reduced; in vitro rooting and 

acclimatization was also merged into one step yielding high ex vitro survival in the acoustic 

window mist bioreactor (Correll, et al. 2001; Correll and Weathers 2001a; Correll and 

Weathers 2001b).  

 

The earlier versions of the mist reactor were difficult to scale up, and the ventilation was 

completely controlled by the misting cycle. So an improved version of the mist reactor (Figure 

1.3Q) was then developed using a liquid-driven ultrasonic spray nozzle for nutrient dispersion 

and a disposable plastic bag as a growth chamber (Liu et al. 2009a).   
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 Summary  

Micropropagation is a powerful tool in rapid clonal propagation of plants and offers great 

potential in germplasm preservation. However, current methods used in commercial 

production are time consuming and labor intensive, which limits economic expansion. Use of 

bioreactors to automate plant tissue growth and improve plant quality has shown great 

potential for reducing plantlet production cost.  
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Chapter 2  Hypothesis and research objectives 

 Hypothesis 

The potential of the mist reactor to maximize plant growth, reduce hyperhydricity and increase 

ex vitro survival is tremendous because of its flexible control on headspace environment and 

nutrient feeding. The medium exchanges, CO2 levels, and nutrient feeding cycles can be 

manipulated with ease to provide desired nutrient supply and culture environment at different 

development steps including shooting, rooting and acclimatization. Plant material transfers 

associated with these in vitro culture steps can therefore be eliminated in the improved mist 

reactor. Thus, I hypothesize that one-step micropropagation from cell or leaf inoculum through 

shooting, rooting and acclimatization to soil-ready plants can be achieved using this reactor. 

The challenge was to scale vertically in a gas phase environment. 

 Research objectives 

To achieve the goal of one-step micropropagation, there are several technical objectives:  

1) To investigate the effects of misting cycle, ventilation, and CO2 levels on somatic embryo 

development using carrot as the model species;  

2) To study how growth and key aspects of plant physiology respond to misting cycle, 

ventilation, CO2 level and light intensity during shooting, rooting and acclimatization in these 

propagation steps compared to gelled medium and use Artemisia annua as the model species; 

3) To explore the potential of integrating poly-cation amino acid, poly-L-lysine (PLL), coating 

technology to provide a hanging style vertical growth akin to a “hanging garden” through 
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surface attachment of plant materials to PLL-coated substrates hanging inside the mist reactor 

with the aim of decreasing labor and increasing quality and yield capacity while minimizing 

the cultivation footprint. 

 Thesis organization 

The work on one-step micropropagation through somatic embryogenesis and integration of 

surface adhesion technology for somatic embryo development in a “hanging garden” style is 

described in Chapter 3. In Chapter 4, comparisons of plant growth in mist reactor and 

traditional gelled medium are presented for different development steps including shooting, 

rooting, and acclimatization. Chapter 5 contains an investigation on the attachment of small 

pieces of shoot tissue to substrates with PLL coating, and one-step micropropagation of A. 

annua by PLL attachment. Chapter 6 presents conclusions and suggests future directions. 

Chapters 1 and 3 have already been published in part or in their entirety. Chapters 4 and 5 are 

written for publication submission. 
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Chapter 3  From cells to embryos to rooted 

plantlets in a mist bioreactor 
 
Published as: 
 
Fei, L. and Weathers, P. (2014) From cells to embryos to rooted plantlets in a mist 
bioreactor. Plant Cell Tiss Org Cult, 116, 37-46. 
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 Abstract  

A mist bioreactor using a disposable bag as culture chamber was used to propagate carrot 

embryogenic cells into rooted plantlets. The best operating configuration was akin to a vertical 

hanging garden using 50–90 µm nylon mesh for explant attachment. Cells spray inoculated 

into the reactor were 51.2 % viable. Misting cycle and aeration conditions were studied and 

showed that under the same hourly volumetric nutrient feed and 0 VVM, embryo development 

in the reactor was best using a 0.3 min on/2.7 min off misting cycle, yielding about 23 % post 

heart stage embryos. Compared to 0 VVM, 3 % CO2 enrichment improved embryo 

development in reactor culture. Spray inoculated cells also attached to several vertically hung 

poly-L-lysine coated strips and then developed in situ into embryos. Cell attachment was 

significantly improved when they were suspended in salt-free sucrose solution during spray 

inoculation. Almost 90 % of the originally attached cells remained on the nylon mesh 24 h 

later after spraying with B5 medium in the mist reactor. Strip grown embryos had the same 

post heart stage ratio but shorter overall length compared to those developed on a horizontal 

platform. Young plantlets developed uniformly up and down the hanging strips and did not 

detach after 3 weeks of culture suggesting this technology may prove useful for improving 

micropropagation.  

 
Key words:  Mist bioreactor, Somatic embryogenesis, Poly-L-lysine, Adhesion,  
Micropropagation, Plant tissue culture 
 
Abbreviations: 
N50, N70, N90: nylon screens with openings of 50, 70 and 90 µm, respectively; 
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P74, P105: polypropylene screen with opening of 74 and 105 µm, respectively; 

  Introduction 

Millions of plants are commercially propagated annually via micropropagation (Loberant and 

Altman 2010), which is labor intensive and associated with developmental abnormalities 

(Hazarika 2006; Pospisilova, et al. 1999; Towler, et al. 2006). There have been many efforts 

to develop cost-effective, and simple bioreactors with the aim of automating micropropagation, 

but designing reactors for plant tissue culture must reconcile environmental factors (shear 

stress, aeration, RH, nutrient supply) with healthy plant development, cost and simplicity of 

use. These factors determine plant quality, ex vitro survival, and overall production costs 

(Lowe et al. 2003; Ziv 1991a). Indeed, bioreactors offer possibility of automation, decreased 

labor costs and potential for mass propagation scale-up (Paek et al. 2001; Paek, et al. 2005). 

 

Liquid-phase reactors developed for micropropagation include the stirred tank reactor, bubble 

column reactor, balloon type bubble reactor, and air lift reactor, but they often produce 

hyperhydric shoots due to submergence in liquid (Aitken-Christie, et al. 1995a; Ziv 2010).  

Attempts to reduce hyperhydricity used temporary immersion systems (TIS) that either 

completely or partially submerge plant tissues in liquid medium (Afreen 2006; Etienne and 

Berthouly 2002; Weathers et al. 2010) using various mechanisms (Adelberg and Fári 2010; 

Robert, et al. 2006); (Fari, et al. 2006); (Afreen 2006; Ducos, et al. 2009). In TIS, the 

immersion cycle, volume of nutrient medium and the container are critical for efficient shoot 

proliferation (Snyman et al. 2011). Compared to continuously submerged cultures, growth 
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generally improved, but hyperhydricity was still a problem and was greater than 50% for some 

species (Shaik et al. 2010; Snyman, et al. 2011).  

Nutrient mist reactors are gas-phase reactors that provide in vitro plants with small droplets 

of culture medium fully infused with whatever gas or gas mixture is generated as an aerosol 

into the growth chamber. Mist bioreactors of various configurations promote better plant 

growth with increased shooting, somatic embryo formation and regeneration rate (Towler, et 

al. 2006). Using a disposable plastic bag as growth chamber also offers an inexpensive means 

for cultivating in vitro plantlets with adjustable control of nutrient feeding and ventilation (Liu, 

et al. 2009a). Plantlets are exposed to improved gas exchange, controlled relative humidity 

and medium feeding, all resulting in healthy growth with high ex vitro survival (Correll and 

Weathers 2001a).  

 

In earlier studies using an older version of the mist reactor, control of the headspace 

environment, including relative humidity, CO2 and nutrient supply, produced high quality 

plantlets (Correll, et al. 2001; Correll and Weathers 2001a; Correll and Weathers 2001b). 

Mist-grown Dianthus developed a better quality cuticle and functional stomata than plantlets 

grown in Magenta boxes (Correll and Weathers 2001a). Mist reactor-grown plantlets also 

rooted better and showed higher ex vitro survival than controls (Correll and Weathers 2001a). 

Together these studies suggested the potential for automation of in vitro plant propagation 

using the mist bioreactor by connecting the otherwise discrete stages of micropropagation into 

a one-step process within a single culture system. This study used carrot as a model to 
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investigate the possibility of developing cells through embryogenesis to fully rooted plantlets 

in a mist reactor. We chose carrot as model because of its well-established protocol to initiate 

embryogenic cells and subsequent conversion to embryos. Embryo developmental response 

to nutrient supply and aeration was studied using two configurations of the reactor. In 

particular, we were interested in the following questions: Would the cells survive the 

inoculation process? Would they develop into embryos? Would they immobilize via adhesion 

to PLL-coated substrates after spray inoculation, and would they develop in situ into rooted 

plantlets? 

 Material and Methods 

3.3.1 Plant material and maintenance  

Carrot (Daucus carrota) suspension cultures were initiated from callus developed from 

explants of commercially purchased carrots grown on semi solid Gamborg’s B5 medium with 

30 g L-1 sucrose (B5; (Gamborg et al. 1976) and 1 mg L-1, 4-dichlorophenoxyacetic acid (2,4-

D; B5+2,4-D). Cells were grown in liquid B5+2,4-D in 250ml Erlenmeyer flasks at 120 RPM 

and 25°C and sub-cultured every 2 weeks. To induce somatic embryos, 7-day-old 

undifferentiated cells were successively sieved through 500 and 350 µm sterile stainless steel 

screens, washed with B5 3 times by centrifugation at 200 × g for 2 min, and resuspended in 

B5 to a density of 105 cells mL-1 for further experiments. Embryogenic cells spontaneously 

develop into somatic embryos between 14-21 days during growth on B5 (without 2,4-D). 
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3.3.2 Mist reactor  

Details of mist reactor (Figure 3.1a) construction, assembly of components and operation were 

previously reported (Liu, et al. 2009a). Operational parameters related to this study are 

provided in descriptions for each experiment. All parts were autoclaved except the mister 

located in the screw cap, which was sterilized as follows: tap water washed to remove large 

debris; soaked in 200 ppm fresh ClO2 for 5-6 hr; then wrapped with 4 layers of Al foil, heated 

at 100°C for 20 hr, cooled to room temperature in a sterile hood before being unwrapped and 

aseptically screwed onto the shoulder of the reactor that also supports the culture bag. 

 

3.3.3 Viability of cells after spray inoculation  

Inoculation was carried out by spraying an 8-day-old cell suspension into the culture bag. To 

test viability, 30 mL of cells (105 mL-1) in B5 were sprayed through the ultrasonic nozzle using 

various ultrasonic power inputs ranging from 4.5-6 watts. Cells emerging from the nozzle tip 

were collected for 30 sec and stained with 0.01% (w/v) fluorescein diacetate (FDA, Sigma 

31545) for 20 min (Widholm 1972). Viable cells were counted before and after spraying 

through the ultrasonic nozzle. 
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Figure 3.1 Mist reactor system. a Photo of reactor system layout: A mist cap, B growth 
chamber, C support platform, D medium reservoir, E peristaltic pump, F liquid flow 
controller, G time controller, H ultrasonic power supply. b Photo of stainless steel mesh 
support platform inside reactor culture bag with example of mesh (arrow). c Carrot embryos 
at different developmental stages under 100×: A globular, B heart, C torpedo, D 
cotyledonary. d Rooted embryos developed on P105 mesh after 4 weeks. e Top view of 6 
spoke shaped scaffold inside reactor for strips to hang. f Growth chamber tilted at 45° with 
plantlets growing on a platform inside the bag. g Growth chamber vertically placed with 
plantlets growing on vertically hung +PLL strips inside the bag. Bars c 100 µm 
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3.3.4 Somatic embryogenesis in the mist bioreactor with various misting 

cycles  

For initial embryogenesis experiments, a 16 cm diameter platform, composed of nylon mesh 

(Small Parts, various opening sizes stated later, obtained from Amazon.com supply) covering 

a stainless steel mesh screen (3 mm opening) supported by an outer ring of silicon tubing was 

placed inside the reactor bag to provide a supportive surface for embryo development (Figure 

3.1aC, b). The bag was first aerated with sterile filtered humidified air to its full 3D inflated 

shape and then kept at 0 VVM over the entire culture period of 2 weeks. Aeration rate VVM 

is defined as gas volume flow per unit of culture space volume per minute. During inoculation, 

the inflated bag was flushed with 38-60 mL min-1 of B5 using 4.5-6.0 watts of ultrasonic 

power for 15 min before spraying with carrot cells at 50 mL min-1 through the ultrasonic 

nozzle. For each reactor run, 150 mL of 105 mL-1 cells were used. The medium reservoir was 

filled with 350 mL B5, and after optimization testing (Figure 3.2), ultrasonic power was set 

at 4.5 watts for all subsequent runs. Embryo development was quantified at total volumetric 

medium feed rates of 150 or 300 mL hr-1, and misting cycles of either 4 or 20 mistings hr-1 

(15 vs. 3 min cycles). Embryos formed on nylon screens were harvested after 2 weeks axenic 

culture under continuous light. Embryos at the heart, torpedo, and cotyledonary stages of 

development were counted (Li and Kurata 2005). For controls, deep petri-dishes filled with 

15 ml B5 onto which were placed 9, 1.9 cm diameter nylon mesh discs of either 50 (N50, 

Small Parts CMN-0050-C) or 90 µm (N90, Small Parts CMN-0090-C) nylon mesh, or 105 

µm polypropylene mesh (P105; Small Parts CMP-0105-D). A 20 µL aliquot of cells was 
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pipetted onto each disc. For all experiments dishes and reactors were placed under continuous 

cool white fluorescent light of 12 µmol s-1m-2 and 25°C. After 2 weeks of incubation embryos 

at the heart (H), torpedo (T), and cotyledonary (C) stages (Figure 1c) were counted on each 

disc and the ratio (R) of post-heart embryos that developed was defined as: 

R=(T+C)/(H+T+C). 

 

3.3.5 Somatic embryogenesis in the mist bioreactor with various aeration 
conditions  

Reactor set up and initiation were the same as those in the misting cycle study: 2 weeks growth, 

300 mL hr-1 total volumetric feed, misting cycle of 0.3 min on, 2.7 min off (30 mistings hr-1). 

Aeration conditions included 0 VVM, 0.05 VVM of ambient air and 0.05 VVM of 3% CO2 

enriched air. VVM was based on the 7 L total volume of the plastic culture bag. Controls were 

the same cells inoculated on B5 Phytagel in vented 1 L screw cap polycarbonate boxes 

(DiIorio et al. 1992) with the same aeration. Overall length and developmental stage of 

embryos were measured. 

 

3.3.6 Cell adhesion to Poly-L-lysine (PLL) coated substrates  

Strips of 2 cm × 4 cm N50 and N70 screen or polypropylene sheet were submerged in 0.01% 

of PLL (Sigma Aldrich P1274) solution for 30 min and then air dried for 30-120 min (Towler 

and Weathers 2003). To measure cell attachment the difference in blotted cell fresh weight 

(FW) was measured after application to the nylon or polypropylene strips ± PLL and then 

weighed again after being held vertically and washed 10 times from top to bottom each time 
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with 0.3 mL dH2O. Using this procedure, attachment incubation times of 15-240 min at 0.0025 

- 0.05% (W/V) PLL were investigated. Retention ratio was determined as: post wash FW/ 

initial FW cells.  

 

Cell adhesion in spray inoculation was measured by using cells washed twice with dH2O, 

resuspended in 15 g L-1 sucrose solution (105 mL-1), pH 5.8, ± B5 medium salts and then 

sprayed into a reactor bag hung with strips (2 × 4 cm) of N50, N70 or P74 polypropylene 

(Small Parts CMP-0074-A, now discontinued) mesh ± PLL. The flow rate during inoculation 

was 10-15 mL min-1, at 5.0 watts, and 30 min duration. Strips were removed from the reactor 

bag and attached cells were counted at 15 locations with 15 grids of 0.01 cm2 averaged to 

represent the adherent cells for that strip. Cell retention after spray inoculation was measured 

on hanging strips that were put back into the reactor bag and sprayed with B5 for 24 hours at 

feed rate of 50 mL min-1 (300 mL hr-1) and a misting cycle of 0.3 min on, 2.7 min off. Cells 

remaining on the strip after 24 hr were considered attached. 

 

3.3.7 Somatic embryogenesis on PLL coated N70 mesh hanging inside the 
mist reactor  

Cells were also sprayed into the mist reactor in which strips of PLL coated N70 (Small Parts 

PN CMN-0070-C) were hung and a N70 covered platform was placed (Figure 3.1aC) to 

maintain the 3D shape of the bag. Cells at 105 cells mL-1 were spray inoculated at 10-15 mL 

min-1 onto PLL coated strips already hung within the reactor (Figure 3.1e). Cells were sprayed 

as a single passage of the entire suspension volume with no recirculation through the 
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peristaltic pump. After inoculation, cells were fed B5 with a misting cycle of 0.3 min on, 2.7 

min off, 300 mL hr-1 feed rate, at 0 VVM for 2 weeks to encourage embryogenesis and rooting. 

Controls were the same cells inoculated on B5 Phytagel medium. After harvest, developing 

embryos on N70 strips and platform were counted and measured as previously described. To 

test the concept of one-step growth from cells to plantlets, manually attached cells on N70 

strips were also grown in the reactor using the same cultivation conditions for three weeks. 

For manual cell application, cells were concentrated by centrifugation (200 × g for 2 min), 

washed three times with 15 g L-1 sucrose, and then sterile PLL coated strips were dipped into 

the slurry of cells and incubated for 5 min prior to hanging in the reactor.  

 

3.3.8 Statistical Analyses  

All experiments had ≥ 3 replicates and One-way ANOVA and Duncan’s range analysis were 

used to measure statistical significance. Reactors in the misting cycle study were run in 

duplicate and results analyzed using nested ANOVA (Grafen and Hails 2002).  

 

 Results and Discussion 

3.4.1 Cell viability after spray inoculation  

After passage from the reservoir through the peristaltic pump, cell viability decreased about 

25%. Spraying through the ultrasonic nozzle further decreased viable cells to 30-50% (Figure 

3.2). Though not statistically different, viability appeared to decrease slightly with increasing 

sonic power at constant flow rate, but when flow rate was varied with constant sonic power 

input, viability was not affected. At 4.5 watts, 51.2% of all cells sprayed remained viable using 
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a 55 mL min-1 flow rate (Figure 3.2). These results showed that cells could be inoculated via 

spraying into the reactor without excessive loss of viability. 

 
Figure 3.2 Viability of carrot cells at various combinations of ultrasonic power and flow rate. 
Cells were pumped through ultrasonic nozzle and then cell viability was measured using 
fluorescein diacetate. N=5; ±SE; *p ≤ 0.05 
 

3.4.2 Embryogenesis on horizontal platforms in the mist reactor  

Embryo development was studied in two reactor configurations: on a horizontal platform, or 

on vertical hanging strips inserted into the culture bag (Figure 3.1 b, e). Average single cell 

size is about 50 µm, so N50, N90 and polypropylene (P105) meshes were aseptically laid on 

the platform and then spray inoculated with cells. After 2 weeks only heart, torpedo and 

cotyledonary stage embryos were counted because globular stage embryos were difficult to 

differentiate from cell aggregates (Figure 3.1c). About 18% of control embryos developed to 

either torpedo or cotyledon stage for both N50 and N90, and about 23% for P105; all were 

about three times their mist reactor counterparts (Figure 3.3a). Although the more open 

meshes, N90 and P105, seemed to provide better substrates for embryo development than the 
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less open mesh, N50, in the Petri dish controls, roots grew through the openings of P105 

(Figure 3.1d). Because this would result in root shear damage during harvest, P105 was 

rejected for further study. There was no significant difference between either N50 or N90, so 

both were further studied.  

 

To improve embryo development in the mist reactor, various feeding strategies were tested 

including changing the frequency and volume of medium fed to cells and the VVM. When 

total volumetric delivery was 150 mL hr-1, increasing the feeding frequency from 1 min on/14 

min off (4 mistings hr-1), to 0.2 min on/2.8 min off (20 mistings hr-1) doubled the formation 

of post heart stage embryos (Figure 3.3b). When the delivery feed was doubled from 150 to 

300 mL hr-1, it appeared that embryo development increased, but results were not statistically 

significant (p = 0.09) at 4 mistings hr-1 (1.5 min on, 13.5 min off) unless the frequency of 

misting was increased again to 20 mistings hr-1 (0.3 min on, 2.7min off) (Figure 3.3b). Then 

developed embryos exceeded that of the controls. Mesh size of the two tested substrates, N50 

and N90, had no effect. Petri dish controls showed about 18% embryo development to the 

post heart stages, better than most of the mist reactor experiments. However, once the total 

volumetric feed was 300 mL hr-1 and at a frequency of 20 mistings hr-1, then the number of 

developed embryos in the mist reactor exceeded 20% (Figure 3.3b). Continuous misting at 

300 mL hr-1 did not further increase embryogenesis and embryo development remained at 

about 21- 23% (Figure 3.3b). Taken together, increasing the total volumetric feed promoted 

better embryo development, but was less effective than increasing misting frequency.  

70 
 



 
 

Somatic embryos lack chlorophyll and stomata resulting in a low rate of photosynthesis 

(Afreen, et al. 2002a). Embryos live solely on their exogenous nutrient supply and growth 

improves with better nutrient contact. In this study, short but frequent misting produced more 

developed embryos compared to less frequent cycles, and this seemed to indicate that the cells 

were using the delivered nutrients more efficiently when medium contact was short, but 

frequent. It is possible that nutrient absorption during frequent misting cycles is saturated. The 

more frequently cells are fed small amounts of nutrients, the more they are likely to absorb 

those nutrients resulting in better growth. In the case of 300ml hr-1, cells had 20 feedings hr-1 

with a 0.3 min/2.7 min misting cycle, whereas they only had 4 feedings hr-1 with the 15 min 

misting cycle. Therefore, frequent short mistings may result in a higher percentage of nutrient 

absorbance and thus better embryo development compared to less frequent but longer 

exposure to mist. Similar results were observed for coffee somatic embryos in TIBs (Albarrán, 

et al. 2005). 

 

Headspace gas was also investigated as an important factor affecting embryo development. 

Compared to 0 VVM, 3% CO2 yielded a significantly greater post heart stage ratio in reactor 

culture, but root length was not significantly different (Table 3.1).  
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Figure 3.3 Embryo development in mist reactor with different substrates (a) and nutrient 
supply cycles (b). Misting cycles were indicated as on time/off time per cycle. N=3 for petri 
dish control; N=2 for each reactor condition; all reactor data are shown in min/max and Petri 
dish data are shown in ±SE, in b, A,B,C compares embryo development on N50 in all 
conditions and a,b,c compares embryo development on N90 in all conditions, p ≤ 0.05 
 

In Phytagel, the post heart stage ratio was greatest when 0.05 VVM ambient air was 

continuously flushed through the system (Table 3.1). In all conditions, reactor-grown embryos 

had significantly greater post heart ratio and longer overall rooted embryos than those grown 

in Phytagel (Table 3.1). The only exception was at 0.05 VVM air; there was no significant 

difference between embryos grown in the reactor and Phytagel. 
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Table 3.1 Effect of aeration on carrot somatic embryogenesis after 14 d culture. 

Aeration condition Post heart stage ratio (%) Rooted embryo length (cm) 
Phytagel Reactor Phytagel Reactor 

0 vvm 19.5 b 24.9 b* 0.25 a 0.46 a* 
0.05 vvm air 31.2 a 36.8 ab 0.29 a 0.48 a* 
0.05 vvm 3% CO2 26.3 ab 40.1 a* 0.36 a 0.60 a* 

Post heart stage ratio %: torpedo + cotyledon stage embryos over sum of all embryo stages. Average of N50 
and N90 were presented in “Reactor” columns since no significant difference was observed between these two 
substrates. Comparisons within columns with the same letter are not significantly different at p ≤ 0.05 by 
Duncan's multiple range test; * p ≤ 0.05 for comparisons between columns, i.e. between reactor and Phytagel 
control; N= 3. 

 

Gases, i.e. O2, CO2 and C2H4, are important for embryo development. O2 consumption usually 

increases as embryos mature (Jay, et al. 1992; Shigeta, et al. 1996; Shimazu and Kurata 1999). 

Similar to observations by Ducos et al. (2009), embryo development in shake flasks was 

inhibited (data not shown), suggesting O2 limitation. CO2 is produced during embryogenesis 

and increasing concentrations often promote embryo development (Barbón, et al. 2008a; 

Buddendorfjoosten and Woltering 1994; Chung and Bae 2000; Huang, et al. 2006; Rosnow, 

et al. 2011; Takamura, et al. 2010), so excessive aeration, while improving O2 availability, 

may actually inhibit embryogenesis by stripping away CO2. Since carrot cell regeneration did 

not respond to CO2 enrichment up to 2% (Tate and Payne 1991), we chose 3% (v/v) to 

investigate its effect on carrot embryo development. Compared to the other two conditions, 

3% CO2 enrichment seemed to expedite embryo development (Table 3.1). Although CO2 

stimulation of root growth is well known (DiIorio, et al. 1992; Fisichella and Morini 2003; 

Jeong, et al. 2006; Weathers and Zobel 1992; Wyslouzil et al. 2000), this was not observed in 

our study. C2H4, also produced by embryos, inhibits development at high concentrations in 

tightly-sealed vessels with a limited headspace (Roustan, et al. 1994; Roustan, et al. 1989; 
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Roustan, et al. 1990; Wang, et al. 2011). Possible inhibition by C2H4 was only observed in 0 

VVM Phytagel, but not in the 0 VVM reactor where cells developed into healthy embryos 

suggesting that in this large bag (7L) at this low density of cells (< 1 g FW) , there were 

adequate nutrients including gases. Further investigation of the role of headspace gases is 

warranted when larger amounts of biomass are involved, e.g. during scale-up.  

 

3.4.3 Cell adhesion to PLL coated surfaces  

To move from a horizontal to a vertical reactor configuration, cells must attach to a substrate; 

a hanging garden of carrot plantlets was envisioned. PLL coated sheeting or mesh were 

vertically hung inside the culture bag and cell attachment measured. PLL enhanced cell 

binding on polypropylene sheeting as did longer binding times (Figure 3.4a). PLL also 

enhanced binding on N70 mesh, but only when subjected to longer binding times, e.g. 30 min 

vs. 15 for sheeting (Figure 3.4b). Cell binding kinetics showed that the process was swift and 

nearly complete in ~1 hr; more than twice as many cells attached to sheeting than to the mesh 

(Figure 3.4c). The minimum effective PLL concentration for either sheeting or mesh was 

0.005% (Figure 3.4d). Although sheeting showed better cell binding, in the reactor bag cells 

did not remain bound during vertical spray inoculation tests (data not shown), so we continued 

our study with only mesh. 
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Figure 3.4 Cell binding when manually applied to PLL coated materials. Cell retention 
ratio (%) measured as cells remaining after vertically flushing ten times of 0.3 mL water 
down each strip, ±SE. a ± PLL coated polypropylene sheet. b ±PLL coated nylon screen 
(N70). c Kinetics of cell adhesion on polypropylene sheet and N70. d Cell binding at 
different PLL coating concentrations. SE bars shown, in a,* +PLL vs. –PLL, p≤ 0.05; #, 
30 min binding +PLL vs. 15 min binding +PLL, p≤ 0.05; in b, * +PLL vs. –PLL, p≤ 0.05; 
in c, a, b, c, compares binding on each material, p≤ 0.05; in d, A, B indicate statistical 
difference between polypropylene sheet and a, b indicate statistical difference between 
N70 for PLL concentrations, p ≤ 0.05 
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3.4.4 Effect of sucrose and salts on binding  

To improve cell binding on the mesh we tested different binding solutions. We initially tried 

to spray cells in deionized water, but they failed to develop into embryos, likely the result of 

an imbalance in osmotic pressure and subsequent changes in cell physiology (Guo et al. 2005; 

Shoji et al. 2006). When different meshes were compared, there was no significant difference 

in binding ± PLL using ½ strength B5 with 15 g L-1 sucrose (Figure 3.5a).  

 

  
 

Figure 3.5 Cell binding when sprayed into mist reactor hung with various meshes and sprayed 
with different suspension media. a Cells were suspended in half strength B5 with 15 g L-1 
sucrose. b Cells were suspended in 15 g L-1 sucrose. c Cell retention on +PLL meshes after 
binding in 15g L-1 sucrose after spraying B5 for 24 hr, ±SE, N=3 for all tests, * p≤ 0.05 
 

When the B5 salts were eliminated, binding increased substantially on all 3 meshes (Figure 

3.5b), and of those bound cells, >85% remained attached 24 hr after being sprayed with B5 

(Figure 3.5c). The increased cell attachment to PLL coated substrates resulting from removal 

of B5 was similar to that observed for Catharanthus roseus cells (Facchini et al. 1989). There 

are a variety of free cations in B5, and it is postulated that they may interfere with cell adhesion 

to surfaces by affecting the electrical potential of the plant cell wall (Shomer et al. 2003). 
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These results showed that cells can bind to PLL coated mesh and remain attached potentially 

for long duration. 

 

3.4.5 Somatic embryogenesis and subsequent growth on PLL coated mesh 
hanging inside the mist reactor  

Spray inoculated cells attached irregularly, but developed into small rooted embryos (Figure 

3.6a); development was statistically the same as those on a N70 covered platform and the petri 

dish controls. Although overall length of rooted embryos on the hanging strips (0.34 cm) was 

significantly greater than those on the petri dish controls (0.25cm), it was less than embryos 

on the N70 covered platform (0.45 cm). It is possible that nutrient availability to embryos on 

the horizontal platform was greater than for the embryos on the vertically hanging strips.  

 

To determine if cells attached to PLL coated surfaces could develop into rooted plantlets, we 

first set up a reactor hung with PLL coated N70 strips to which cells had been manually 

applied. After 3 weeks of culture using a misting cycle of 0.3 min on, 2.7 min off at 50 mL 

min-1 medium flow rate, fully rooted healthy plantlets formed on the vertically hanging strip 

(Figure 3.6b). Both sides of the strip had attached plantlets and there was no observed 

difference in growth or quality from top to bottom of the hanging strip suggesting a reasonably 

uniform distribution of the nutrient mist was provided to the embryos (Figure 3.6b).  
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Figure 3.6 In vitro propagation on PLL coated surfaces in a mist bioreactor. a Embryos 
developed on PLL coated surface after 14 days of reactor culture by spray inoculation. b 
Fully rooted plantlets developed on PLL coated surface after 20 days of reactor culture by 
manual inoculation 

 

3.4.6 Considerations between vertical and horizontal culture  

Using a vertical hanging culture system offers a series of advantages over horizontal culture 

(Table 3.2), but it also requires that plantlets attach to the hanging strips so they do not 

succumb to gravity and detach. To estimate possible productivity, we harvested 0.013 g FW 

biomass cm-2 of N70 strip, which was 65% of the yield obtained per cm2 on the N70 platform. 

This seeming disadvantage can be compensated by the larger potential culture surface area for 

the vertical configuration (Table 3.2). Vertical scaling also occupies less floor space, which is 

an advantage in reducing production cost. Advantages and disadvantages of each design 

orientation are summarized in Table 3.2. 

a b 
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Table 3.2 Comparison of two designs of reactor orientation options. 

Horizontal (45° angle) (Figure 1f) Vertical (Figure 1g) 

Easier to inoculate Need additional binding step  

One flat useable surface for cultures: total 

usable culture surface ~450 cm2 (based 

on current bag size) 

Multiple surfaces available via 6 × 30 cm 

strips hung; each strip has two sides: total 

usable culture surface ~2,880 cm2 (based 

on current bag size) 

Light intensity may vary down slope 

depending on source location. 

Light intensity may vary top down strip 

depending on source location. 

Tangled, twisted roots Linearly elongated roots 

Floor space occupied for a single reactor: 

668 cm2 

Floor space occupied for a single reactor: 

191 cm2 

Less uniform nutrient mist distribution on 

platform 

Uniform distribution of nutrient mist 

along the strip 

 
 

 Conclusions 

We showed here that a mist reactor using a disposable bag offers the potential for one step 

micropropagation from cells via embryogenesis to fully rooted plantlets. Using hanging mesh 

strips, three important results emerged from this study: embryos developed well within the 

mist environment of the reactor, development was uniform up and down the strip, and despite 

producing some considerable biomass, the young plantlets did not fall off the hanging strips. 

Vertical culture using the described attachment technology provides process advantages 

including use of less floor space and greater plantlet productivity per unit area. By controlling 

nutrient supply and aeration, embryo development in the mist reactor was improved and 
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equaled or exceeded that of controls, mainly by providing a more frequent feeding cycle. 

Together both the mist reactor and attachment technology may offer opportunities for at least 

partial automation of micropropagation. The ability to control all aspects of the culture 

environment in the mist reactor offers a good potential for combining the otherwise discrete 

process steps common to micropropagation resulting in a one-step process for producing high 

quality plants ready for field conditions. Together these results suggested this may be a 

reasonable propagation method.  
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Chapter 4  Comparing the mist bioreactor with 

traditional micropropagation of Artemisia annua 

 Introduction 

Plant tissue culture and its commercial application in micropropagation are of great 

importance in plant propagation. Currently, the most widely used micropropagation method 

is proliferation via axillary bud explants. Therefore, an in vitro culture procedure generally 

includes culture initiation, shoot proliferation, root development and finally acclimatization. 

Culture medium for each of these steps is different and thus explants need to be transferred 

from one medium to the next at each step. Traditional micropropagation relies on gelled 

medium and small containers requiring intensive labor during subculture and medium transfer.  

 

Automation of the in vitro propagation process in a bioreactor that uses liquid medium is 

considered labor and time efficient (Takayama and Akita 2006). Design of bioreactors for 

micropropagation, however, is challenging because plant tissues have diverse morphologies 

and at different development stages their demand on culture conditions varies. For example, 

production of protocorm-like bodies was better in submersion culture vs. temporary 

immersion culture (Gao, et al. 2014; Yang, et al. 2010). In contrast shoot proliferation from 

tissues was better in temporary immersion than in submersion culture (Gao, et al. 2014).  

 

Submersion culture can be problematic for shoot tissues and severe hyperhydricity often 

occurs as a result of continuous contact with liquid medium (Ziv 1991a), so ventilation is 
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another condition that needs dynamic control at different developmental stages. Shoot 

initiation requires little ventilation (Majada, et al. 1997; Mills et al. 2004; Nour and Thorpe 

1994). On the other hand, shoot proliferation is better with high ventilation (≥ 0.1 vvm) to 

minimize accumulation of volatiles like C2H4 (Heo, et al. 2001; Majada et al. 2000; Majada, 

et al. 2002; Ogasawara 2003; Santamaria et al. 2000a; Zobayed 2005). Thus, the mode of 

medium contact, irradiance, and headspace gas composition and ventilation are all key factors 

to be controlled for in vitro propagation to ensure high yield and quality of plantlets.  

 

A mist reactor provides independent and flexible control of nutrient mist feeding cycle and 

ventilation, and has the potential to be used for shooting, rooting, acclimatization, possibly 

combining all these steps together into a single step. Previously, plantlets of carnation, a plant 

prone to hyperhydricity, showed less hyperhydricity and greater ex vitro survival when 

acclimatized in an acoustic window mist reactor than in gelled medium (Correll, et al. 2001; 

Correll and Weathers 2001a). Using a mist reactor made of a disposable plastic bag with 

independent ventilation (Liu, et al. 2009a), healthy rooted somatic embryos were produced 

from carrot cells (Fei and Weathers 2014). These carrot plantlets grew on hanging strips of 

mesh inside the reactor. However, it was not known if plantlets could be similarly grown from 

leaf explant inoculum. 

 

The medicinally important plant Artemisia annua, which produces the current antimalarial 

drug, artemisinin, was used as an experimental plant. Clonal propagation of high yield plants 

through micropropagation is an attractive alternative for producing plants with uniform 
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chemical constituents. Studies on in vitro propagation of A. annua have mostly focused on 

growth hormone and medium composition in relation to artemisinin content (Davies et al. 

2009; Ferreira 2007; Liu et al. 2006; Liu, et al. 2003). Here A. annua was used as a model 

plant to study the effect of mist reactor conditions (misting cycle, ventilation, CO2 

concentration, irradiance, and relative humidity) on shooting, rooting and in vitro 

acclimatization. 

   Materials and Methods 

4.2.1 Plant materials and maintenance of culture  

The clonal SAM cultivar of A. annua L. (Nguyen et al. 2013) was maintained on gelled rooting 

medium: 20 g L-1 sucrose, 2.22 g L-1 Murashige & Skoog (MS) salts with vitamins (Murashige 

and Skoog 1962), and 5 g L-1 Agargellan TM, pH 5.8, and subcultured by nodal cuttings every 

month. 

 

4.2.2 Shoot induction in the mist reactor 

Using a scalpel scissors, shoots of 4-week-old in vitro A. annua were manually chopped into 

four types of inoculum: leaves (L), leaves + petiole (LP), nodes (N) and internodes (IN). Each 

nodal inoculum had one node. Reactor preparation and sterilization was as described in detail 

in Fei and Weathers (2014; Chapter 3, Figure 3.1a). Each reactor (5 L headspace) was 

inoculated with about 1g fresh weight containing at least 30 pieces of each type of inoculum 

and then cultured for 2 weeks with shooting medium: 30 g L-1 sucrose 4.43 g L-1 MS salts 

with vitamins, 0.25 µmol L-1 α-naphthaleneacetic acid (NAA), and 2.5 µmol L-1 N-6-
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benzyladenine (BA), pH 5.8 (Nguyen, et al. 2013). During shoot induction, different 

ventilations (V), CO2 concentrations (C), light intensities (I) misting cycles (M) and sucrose 

levels (S) were investigated (Table 4.1). The forced ventilation rate was described as vvm, 

which is defined as the number of volumetric exchanges of headspace gas per unit time (e.g., 

per minute) within the culture vessel. For example, at 0.1 vvm ventilation, 10 % of the 

headspace gas is renewed per minute. Regardless of misting cycle, the hourly volumetric 

nutrient medium delivery was maintained at 30 mL h-1. Prior to entry into reactors, ambient 

or CO2 enriched air was humidified by a Nafion tube (Perma Pure, MH-110-48F-4) filled with 

dH2O. The 1I light condition was set up using four overhead full spectrum fluorescent light 

bulbs (GE brand F40T12-SR), and the 3I (50 µmol m-2·s-1) light included four additional 

hanging fluorescent light bulbs vertically flanking both sides of the reactor (Figure 4.1A). To 

query osmotic potential, medium equivalent to the 3S medium contained 10.75 g L-1 mannitol 

(MNT) along with 10 g L-1 sucrose (1S). Controls on gelled medium (liquid medium 

supplemented with 5 g L-1 Agargellan TM, pH 5.8) were treated with the same ventilation, CO2 

level, and light intensity as their corresponding reactors (Figure 4.1B) 
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Figure 4.1 Mist reactor system and gelled medium controls. A, mist reactors with different 
light intensities. The two reactors on right were treated with 1I light and the one on the left 
was treated with 3I light. B, culture vessel used for gelled medium controls.  

 
Table 4.1 Reactor conditions for shooting study 

Condition Misting cycle 
(M) (min on/ 
min off) 

Ventilation 
(V) 
(vvm) 

CO2 

(C) (%) 
Light (I) 
(µmol m-2·s-

1) 

Sucrose 
(S) 
(g L-1) 

0V1C1I3S2M 0.5/29.5 0 0.04 15 30 
1V1C1I3S2M 0.5/29.5 0.1 0.04 15 30 
1V1C1I3S1M 0.75/59.25 0.1 0.04 15 30 
1V1C3I3S2M 0.5/29.5 0.1 0.04 15 30 
1V4C1I3S2M 0.5/29.5 0.1 0.16  15 30 
1V4C3I3S2M 0.5/29.5 0.1 0.16  50 30 
1V4C3I1S2M 0.5/29.5 0.1 0.16  50 10 
1V4C3I1S2M+
MNT 

0.5/29.5 0.1 0.16 50 10  

Ventilation (V) was 0 and 0.1 vvm for 0V and 1V, respectively. CO2 concentration (C) was 0.04% (v/v, ambient 
level) and 0.16% (v/v) for 1C and 4C, respectively. Light intensity (I) was 15 and 50 µmol m-2•s-1 for 1I and 3I, 
respectively. Sucrose level (S) was 3S and 1S for 30 g L-1 and 10 g L-1, respectively. Misting cycle (M) was 
0.75 min on/59.25 min off and 0.5 min on/29.5 min off for 1M and 2M, respectively. MNT: mannitol (10.75 g 

L-1). 

A 

B 
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4.2.3 Analysis of shoot growth, flavonoids and artemisinin 

New shoot growth was measured in terms of gain in % shoot FW, shooting percentage, 

number of shoot apical meristems (ShAM), number of new leaves and length of new shoots.  

% 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑭𝑭𝑭𝑭 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = (𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉− 𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)×𝟏𝟏𝟏𝟏𝟏𝟏
𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

            Eq (4.1) 

Shooting percentage was determined as  

% 𝒏𝒏𝒏𝒏𝒏𝒏 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = # 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏𝒏𝒏𝒏𝒏 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔×𝟏𝟏𝟏𝟏𝟏𝟏
# 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊  𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

                 Eq (4.2)  

 

Explants with new shoot development were also examined for hyperhydricity and the percent 

of shoots that were hyperhydric was arbitrarily scored for 6 features including swollen and 

glassy appearance, brittle texture, dark color, narrow and elongated shape, and curling edges. 

Hyperhydricity percentage was measured as:  

% 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 =
�𝟏𝟏𝟔𝟔(𝒂𝒂+𝟐𝟐𝟐𝟐+𝟑𝟑𝟑𝟑+𝟒𝟒𝟒𝟒+𝟓𝟓𝟓𝟓+𝟔𝟔𝟔𝟔)�×𝟏𝟏𝟏𝟏𝟏𝟏

(𝒂𝒂+𝒃𝒃+𝒄𝒄+𝒅𝒅+𝒆𝒆+𝒇𝒇)                     Eq (4.3) 

In Eq (4.3), a, b, c, d, e, f are the number of explants developing new shoots that showed 1, 2, 

3, 4, 5, and all 6 of the hyperhydric features, respectively. Hyperhydric leaves were also 

compared to normal leaves for their water content and number of glandular trichomes (see 

section 4.2.4). Artemisinin was measured using GC/MS according to (Weathers and Towler 

2012). Total flavonoids were measured using the AlCl3 method of (Arvouet-Grand et al. 1994) 

with quercetin as standard and flavonoid amount expressed as quercetin units. To measure 

water content, new shoots were first weighed for FW right after harvest, and then incubated 

at 60 °C to constant weight (DW). Water content was then determined as 
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% 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 = (𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕− 𝑫𝑫𝑫𝑫 𝒐𝒐𝒐𝒐 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒕𝒕𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)×𝟏𝟏𝟏𝟏𝟏𝟏
𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

                   Eq (4.4) 

4.2.4 Glandular trichome counts 

The 4th fully expanded leaf from the shoot apical meristem (ShAM) of each new shoot was 

used for counting glandular trichomes. Each leaf sample was sandwiched in water between 

two microscope slides. The adaxial and abaxial side of the sample was then counted for 

autofluorescent glandular trichomes under a 120× magnification and GFP 470 filtered UV 

light using a Zeiss brand, SteREO Discovery V12 microscope. The number of trichomes on 

each leaf sample was averaged from 6 different locations per leaf.  

 

4.2.5 Rooting of shoots in the mist reactor 
 

Table 4.2 Reactor conditions for rooting study 

Condition Misting 
cycle (M) 
(min on/ min 
off) 

# Mistings/h Ventilation 
(V) (vvm) 

CO2 

(C) 
(%) 

Light 
intensity (I)  
(µmol m-2·s-1) 

0V1C1I2M 0.5/29.5 2 0 0.04 15 
1V1C1I2M 0.5/29.5 2 0.1 0.04 15 
1V4C1I2M 0.5/29.5 2 0.1 0.16 15 
1V4C3I2M 0.5/29.5 2 0.1 0.16 50 
1V1C1I1M 0.75/59.25 1 0.1 0.04 15 
1V1C1I4M 0.25/14.75 4 0.1 0.04 15 

Ventilation (V) was 0 and 0.1 vvm for 0V and 1V, respectively. CO2 concentration (C) was 0.04% (v/v, ambient 
level) and 0.16% (v/v) for 1C and 4C, respectively. Light intensity (I) was 15 and 50 µmol m-2•s-1 for 1I and 3I, 
respectively. Misting cycle (M) was 0.75 min on/59.25 min off, 0.5 min on/29.5 min off and 0.25 min on/14.75 
min off for 1M, 2M and 4M, respectively.  

Single node cuttings from four-week-old A. annua were used as inoculum. Explants were 

cultured in rooting medium (20 g L-1 sucrose, 2.22 g L-1 MS salts with vitamins, pH 5.8) under 

different conditions for 12 days (Table 4.2). Regardless of misting cycle, the hourly volumetric 

nutrient delivery was maintained at 30 mL h-1. Ambient or CO2 enriched air was again 
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humidified by Nafion tube. Controls on gelled medium (liquid medium supplemented with 5 

g L-1 Agargellan TM, pH 5.8) were treated with the same ventilation, CO2 level, and light 

intensity as their corresponding reactors.  

 

After 12 days of culture in rooting medium, rooted plantlets were harvested and measured for % 

shoot FW gain (Eq 4.1), rooting percentage, total number and total length of primary roots per 

plant, total number and total length of branches per plant, and the maximum diameter of each 

primary root per plant. Rooting percentage was determined as  

% 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = # 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏𝒏𝒏𝒏𝒏 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓×𝟏𝟏𝟏𝟏𝟏𝟏
# 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

                   Eq (4.5) 

 

4.2.6 In vitro acclimatization in mist bioreactor 

Four-week-old rooted plantlets of A. annua grown in Magenta boxes were used in the 

acclimatization study and grown in rooting medium for 10 days under different misting cycles 

(M), ventilation (V) and relative humidity (RH) conditions (Table 4.3). Regardless of misting 

cycle, the hourly volumetric nutrient delivery was maintained at 30 mL h-1 for all reactors 

unless otherwise indicated (see Table 4.3). To study the effect of ventilation and RH, ambient 

air with different RH was passed into the bioreactor and gelled medium controls at 0.1 vvm. 

Fully humidified (100% RH) air was generated by passing ambient air through a dH2O filled 

Nafion tube (Perma Pure, MH-110-48F-4). Air with 52% RH was achieved by directly passing 

ambient air into the reactor. Low humidity air (11% RH) was generated by passing ambient 

air through a column (4.5 cm × 22 cm) filled with Driarite TM.  
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Table 4.3 Reactor conditions for in vitro acclimatization 

Condition Misting cycle (min 
on/ min off) 

Volumetric 
feed (mL h-1) 

Ventilation 
(vvm) 

Relative humidity 
(RH) 

0 vvm 0.5/29.5 30 0 >96 % 
100RH 0.5/29.5 30 0.1 100 % 
52RH 0.5.29.5 30 0.1 52 % 

52/11RH 0.5/29.5 30 0.1 52 % first 5 days and 
then 11% 

Stepped 
down 
feed 

0.5/29.5 (D 0-1) 
0.75/59.25 (D 2-4) 
0.75/119.25(D 5-7) 
0.75/239.25 (D 8-10) 

30 (D 0-1) 
22.5 (D 2-4) 
11.3 (D 5-7) 
5.6 (D 8-10) 

0.1 100 % 

Stepped 
cycle 

0.5/29.5 (D 0-1) 
1/59 (D 2-4) 
2/118 (D 5-7) 
4/236 (D 8-10) 

30 0.1 100 % first 5 days 
and then 11% 

D, day. All reactors and controls were grown under 1I light. 

Controls were treated with the same condition as their corresponding reactors. Each condition 

was done in triplicate with 10 plantlets per replicate. Imprints of the detached 3-6th fully 

expanded leaf were made using clear nail polish and stomatal function was measured as 

described by Correll and Weathers (2001a): open, partially open, closed (Figure 4.2). Closed 

stomata were deemed functional.  

 
 
 
 
 
 
 
 
Figure 4.2 Stomata status at open (A), partially open (B) and closed (C). Bar: 50 µm. 

 

Counts were made at 400× magnification at 5 positions on each sampled leaf, and 4 leaves 

were sampled from each plantlet. The average of these 20 counts was then taken to represent 

B A C 
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each plantlet, and the average of 10 plantlets was taken to represent each reactor. Closed 

stomata were deemed functional. Plantlets harvested from mist reactors and gelled medium 

controls were transplanted to soil:perlite (2:1 V/V) pots and ex vitro survival was measured 

after one week. 

 

4.2.7 Stem lignin assay 

Stems were stained for lignin using phloroglucinol (Speer 1987; Yeung 1998). Free-hand cross 

sectioned stem slices between 9th and 10th node were incubated in saturated (2 mol L-1) 

solution of phloroglucinol dissolved in 2 mol L-1 hydrochloric acid and then observed under a 

visible light microscope. Phloroglucinol-stained sections were photographed within 30 min; 

lignified cell walls stained red. 

 

4.2.8 Statistics 

All reactor experiments had three replicates. Data from all experiments was subjected to 

one-way ANOVA, and Duncan’s multiple range analysis by SPSS. 

 Results 

4.3.1 Shooting in mist bioreactor and gelled medium 
4.3.1.1 Comparison between the mist reactor and gelled medium controls 

Regardless of condition, reactors yielded greater fresh biomass than gelled medium controls 

(Table 4.4, Figure 4.3A). The mist reactor also yielded more shoot apical meristems, new 

leaves and longer shoots than controls (Table 4.5, Figure 4.3B-D). There was no significant 

difference in shooting percentage between plantlets grown in the mist reactor and controls in 
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most conditions. However, when misting frequency was once per hour (1M) and when there 

was CO2 enrichment (4C1I), reactor-grown explants had about 50% more new shoot 

emergence than controls (Figure 4.3E, Table 4.4). Hyperhydricity generally increased with 

more frequent misting (Figure 4.3F) unless CO2 and light intensity were increased (Table 4.4). 

Under the latter conditions plantlets in the mist reactor were hyperhydric similar to gelled 

medium controls (Table 4.4).  

 

4.3.1.2 Comparison among conditions 

Compared to the unventilated condition, 0 vvm (0V), 0.1 vvm ventilation significantly 

reduced hyperhydricity in reactors (Table 4.4). Biomass, new shoots and shoot length also 

increased in reactors that were ventilated (Table 4.4). When misting frequency was increased 

from once (1M) to twice an hour (2M), meristems, leaves and shooting percentage all 

decreased (Figure 4.3B, C and E), and plantlets were more hyperhydric (Figure 4.3F). There 

was no overall change in biomass due to alteration in misting frequency (Figure 4.3A).  

 

Light but not CO2 was the limiting factor for enhanced shoot proliferation (% new shoots). 

Increasing CO2 (4C) alone did not yield significant differences compared to conditions of low 

light and low CO2 (1C1I) (Table 4.4). Shooting percentage in the mist reactor increased 

significantly only after tripling the light intensity (3I) without CO2 enrichment (Table 4.4). 

Increasing both light (3I) and CO2 (4C) did not further increase shoot production (Table 4.4). 
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Table 4.4  Overall growth of new shoots during shooting in reactor and control 

Condition code Reactor  Gelled medium 

% shoot 
FW gain 

% new 
shoots 

% hyper- 
hydricity 

 % shoot 
FW gain 

% new 
shoots 

% hyper- 
hydricity 

0V1C1I3S 493.3 * a 18.8 a 49.2 * d  172.2 a 19.7 a 13.0 a,b 

1V1C1I3S 622.8 * a,b 20.6 a,b 36.2 * c  263.4 a,b 18.7 a 12.6 a,b 

1V1C3I3S 758.9 * b,c 32.6 c 29.2 * c  237.1 a,b 29.8 c 9.9 a,b 

1V4C1I3S 771.6 * b,c 24.9 * b 27.8 * b,c  273.6 a,b 16.5 a 8.3 a 

1V4C3I3S 1257.7 * d 31.7 c 14.8 a  376.1 b,c 26.9 b,c 7.8 a,b 

1V4C3I1S 1611.1 * e 40.7 d 32.3 * c  520.8 c 36.9 d 14.3 b 

1V4C3I1S+M
NT 

965.5 * c,d 27.2 b,c 21.9 * a,b  224.6 a,b 24.1 b 11.5 a,b 

Ventilation (V) was 0 and 0.1 vvm for 0V and 1V, respectively. CO2 concentration (C) was 0.04% (v/v, ambient level) and 

0.16% (v/v) for 1C and 4C, respectively. Light intensity (I) was 15 and 50 µmol m-2•s-1 for 1I and 3I, respectively. Sucrose 

level (S) was 3S and 1S for 30 g L-1 and 10 g L-1, respectively. Misting cycle was 0.5 min on/29.5 min off (2M) for light 

intensity, CO2 level and sucrose concentration studies. MNT: mannitol (10.75 g L-1). Letters compare measured factors 

among different conditions; * compares between reactor and the gelled medium control; p ≤ 0.05. 

 
Table 4.5 Growth of normal new shoots from single nodes during shooting 

Condition Reactor  Gelled medium 

# ShAM # New 
Leaves 

Shoot 
length 
(cm) 

 # ShAM # New 
Leaves 

Shoot 
length 
(cm) 

0V1C1I3S 2.2 * a 12.5 * a 1.0 a  1.4 a 9.0 a 1.0 b 

1V1C1I3S 2.3 * a 11.9 * a 1.2 a,b  1.5 a 9.2 a 1.1 b 

1V1C3I3S 3.1 * b 14.9 * a,b 1.6 * c  1.8 a,b 8.3 a 1.0 a,b 

1V4C1I3S 2.3 * a 15.2 * a,b 1.5 * c  1.6 a 9.6 a 1.1 b 

1V4C3I3S 7.5 * d 32.4 * d 1.4 * b,c  3.4 c 16.9 b 1.0 b 

1V4C3I1S 4.1 * c 22.0 * c 1.3 b,c  3.5 c 20.2 b    1.0 a,b 

1V4C3I1S+MNT 3.5 * b,c 18.9 * b,c 1.2 a,b  2.2 b 9.6 a 0.8 a 

Ventilation (V) was 0 and 0.1 vvm for 0V and 1V, respectively. CO2 concentration (C) was 0.04% (v/v, ambient level) and 

0.16% (v/v) for 1C and 4C, respectively. Light intensity (I) was 15 and 50 µmol m-2•s-1 for 1I and 3I, respectively. Sucrose 

level (S) was 3S and 1S for 30 g L-1 and 10 g L-1, respectively. Misting cycle was 0.5 min on/29.5 min off (2M) for light 

intensity, CO2 level and sucrose concentration studies. MNT: mannitol (10.75 g L-1). Letters compare measured factors 

among different conditions; * compares between reactor and the gelled medium control; p ≤ 0.05. 
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Figure 4.3 The effect of misting cycle on new shoot development. GM: gelled medium; 
MR: mist reactor. Two misting cycles: 2 mistings h-1 (2M, 0.5 min on/29.5 min off), 1 
misting h-1 (1M, 0.75 min on/59.25 min off ). A, % gain of FW; B, number of shoot apical 
meristems (ShAMs) on new shoots; C, number of new leaves; D, length of new shoots; E, 
over all shooting percentage; F, % hyperhydricity. Letters a and b compare between two 
reactor misting cycles; * compares between gelled medium and mist reactor, p ≤ 0.05. Other 
conditions for both reactor and gelled medium controls were: 0.1 vvm (1V), ambient air 
(1C), at 15 µmol m-2·s-1 (1I), 30 g L-1 sucrose (3S).  

 
 

0

200

400

600

800

1M 2M

%
 G

ai
n 

of
 F

W

GM
MR

* a* a

x x

A

0

1

2

3

4

5

6

1M 2M

# 
Sh

AM

GM
MR

* b

* a

x x

B

0

5

10

15

20

25

1M 2M

# 
N

ew
 le

af

GM
MR

* b

a
x x

C

0.0

0.5

1.0

1.5

2.0

1M 2M

N
ew

 sh
oo

t l
en

gt
h 

(c
m

)

GM
MR aa

x x

D

0
5

10
15
20
25
30
35
40

1M 2M

O
ve

ra
ll 

%
 n

ew
 sh

oo
ts

GM
MR

* b

ax x

E

0

10

20

30

40

50

1M 2M

%
 H

yp
er

hy
dr

ic
ity

GM
MR

a

* b

x
x

F

93 
 



 

Although shoot proliferation (% new shoots) did not increase with extra CO2, emergence of 

apical meristems (# ShAM) and new leaves (# new leaves) increased significantly when both 

CO2 and light were increased (Table 4.5). There was also significantly less hyperhydricity in 

reactor-grown plantlets but only when both extra CO2 and light were added (Table 4.4). 

Controls showed similar trends in response to light and CO2 (Table 4.4). 

When light and CO2 were increased, sucrose concentration also had significant effects on new 

shoot development in reactors. When sucrose was reduced from 30 g L-1 (3S) to 10 g L-1 (1S) 

in the medium, shoots grown in reactors had greater biomass and shooting percentage, but 

fewer shoot meristems (# ShAM) and leaves (# new leaves) (Table 4.4 and 4.5). There was 

also an increase in hyperhydricity from 14.8% to 32.2% (Table 4.4). Changes in shoot 

parameters seemed more pronounced in reactors than in gelled medium controls. The only 

significant difference for sucrose reduction in gelled medium was the increase in shoot 

proliferation (% new shoots) (Table 4.4). Shoot length was not affected by sucrose 

concentration either in reactors or gelled medium controls (Table 4.5).  

 

Since a major difference between medium with 30 g L-1 and 10 g L-1 sucrose is osmotic 

potential, it was hypothesized that the increase in hyperhydricity at the low sucrose 

concentration (10 g L-1, 1S) was the result of altered osmotic potential and could be reversed 

by using mannitol to restore osmotic potential. The addition of mannitol to 10 g L-1 sucrose 

medium significantly reduced hyperhydricity in the mist reactor to the same level as the 

comparable higher sucrose (30 g L-1, 3S) (Table 4.4). Although hyperhydricity of controls 
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with mannitol also decreased slightly, the change was not significant (Table 4.4). Biomass and 

emergence of new shoots (% new shoots), however, decreased significantly in both reactors 

and controls after addition of mannitol (Table 4.4), and explant type was particularly sensitive 

to mannitol (Table 4.6). Mannitol also seemed to affect other shoot parameters including 

proliferation of shoot meristems (# ShAM), new leaves (# new leaves) and shoot length in 

both reactors and controls (Table 4.5).   

4.3.1.3 Comparison between inoculum types on shoot proliferation 

Among all 4 types of inoculum explants, nodes (N) showed greatest shooting percentage 

(>80 %) regardless of culture conditions for both reactor and gelled controls (Table 4.6). 

Compared to nodal explants, those from leaves (L) and leaves with their petiole (LP) not only 

showed much lower % of new shoots under all conditions but also had different morphology 

from the axillary shoots emerging from nodal explants displaying compact clusters of 

adventitious micro-shoots (Figure 4.4).  

 

 

 

 

 

Figure 4.4 Morphology of an axillary shoot (A) and a cluster of adventitious micro-shoots (B) 
from A. annua. The unit of numbers on the ruler was cm in both A and B.  

 

A B 
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Light seemed to be the limiting factor for new shoot development from nodal and internodal 

explants (Table 4.6). The shooting percentage of leaf + petiole explants increased to the same 

level as that of internodal explants under the CO2 and light enriched condition with 30 g L-1 

of sucrose (Table 4.6, 1V4C3I3S). When sucrose was reduced to 10 g L-1 (1S), shoot 

regeneration from leaf explants increased (Table 4.6, 1V4C3I1S). Positing an osmotic effect, 

the addition of mannitol to the medium containing lower sucrose did not affect shoot 

regeneration from nodal, internodal or leaf + petiole explants, but significantly reduced shoot 

organogenesis of leaf explants (Table 4.6, 1V4C3I1S+MNT). 

Table 4.6 Shooting percentage of various inoculum explants during shoot production 
Condition % new shoots in reactor  % new shoots in gelled medium 

N IN L LP  N IN L LP 
0V1C1I3S 81.7 U 

a 
21.1 T a 1.8 R a 9.6* S a  86.4 T 

a 
16.4 S a 0.9 R a 0.8 R a 

1V1C1I3S 88.3 U 
a 

21.7 T a 2.6 R a,b 8.5* S a  88.6 T 
a 

20.6 S a 1.5 R a  1.9 R a 

1V1C3I3S 90.6 U 
b 

38.5* T b 4.2 R b,c 10.1S a,b  88.6 T 
a 

21.6 S a 2.2 R a,b 4.2 R a,b 

1V4C1I3S 83.7 T 
a 

29.4 S a,b 2.4 R a,b 13.8* S 
a,b 

 86.5 T 
a 

17.7 S a 1.2 R a 1.8 R a 

1V4C3I3S 92.6 T 
b 

36.7* S b 9.9 R c 27.4 R,S b  89.1 T 
a 

20.0 S a 5.1 R b 10.5 R b 

1V4C3I1S 91.8 T 
b 

38.9* S b 14.1 R c 16.7 R a,b  89.7 T 
a 

26.8 S a 16.4 R c 20.3 R,S 
b 

1V4C3I1S
+MNT 

94.5 T 
b 

30.4 S a,b 2.2 R a,b 18.5 S a,b  86.8 T 
a 

26.7 S a 3.5 R b 20.7 S b 

Ventilation was 0 and 0.1 vvm for 0V and 1V, respectively. CO2 concentration was 0.04% (v/v, ambient level) 
and 0.16% (v/v) for 1C and 4C, respectively. Light intensity was 15 and 50 µmol m-2•s-1 for 1I and 3I, 
respectively. Sucrose level was 3S and 1S for 30 g L-1 and 10 g L-1, respectively. Misting cycle was 0.5 min 
on/29.5 min off (2M) for light intensity, CO2 level and sucrose concentration studies. MNT: mannitol (10.75 g 
L-1). N: node, IN: internode, L: leaves, LP: leaves with petiole. Upper case letters (R,S,T,U) compare among 
different inocula, lower case letters (a,b,c,) compare among different conditions, * compares between reactor 

and control, p≤ 0.05. 

4.3.1.4 Comparison between hyperhydric and normal shoots 

Compared to normal shoots, hyperhydric shoots appeared to be larger in size with elongated 

swollen leaves that were dark green, thick, glassy, and brittle (Figure 4.5A). Besides the 
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morphological differences, hyperhydric shoots also had more water, fewer glandular 

trichomes, and a reduced content of artemisinin and total flavonoids (Figure 4.5B-F).  

                    
                 
 
 
                                           
                              
 
                                                                          
 

      
Figure 4.5 Comparison of normal and hyperhydric shoots grown in reactors that were air 
ventilated and with enhanced light (1V1C3I3S). A, picture of a typical normal shoot and a 
hyperhydric shoot; B, fluorescing glandular trichomes on normal leaf (adaxial side), bar:250 
µm; C, fluorescing glandular trichome (bright spots) from hyperhydric leaf (adaxial side), 
bar:250 µm; D, water content of normal and hyperhydric shoots, N=4, ± SE, p≤ 0.05; E, 
number of glandular trichomes on normal and hyperhydric leaves in a view of 1 mm2, N=6, 
± SE, p≤ 0.05; F, Content of artemisinin (AN) and total flavonoids (FLV) from normal and 
hyperhydric shoots; * compares normal shoot AN vs. hyperhydric shoot AN; # compares 
FLV in normal shoots vs. hyperhydric shoots, N=4, ± SE, p≤ 0.05 

 
 
 

4.3.2 Rooting in mist bioreactor and gelled medium 
4.3.2.1 Comparison between reactors and gelled medium controls 

Bioreactor-grown plantlets increased in shoot fresh weight more than controls (Table 4.7). The 

hyperhydricity of plantlets was about 10% or less in both reactor and controls except in the 
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unventilated (0 vvm) reactor which was about 16% (Table 4.7). When explants were misted 

once (1M) or twice (2M) per hour without addition of CO2 or light, emergence of new roots 

and primary root growth in reactor cultures was less than controls (Table 4.7).  

 

When extra light and CO2 were present, the primary root development in the reactor appeared 

to be better than that in controls (Table 4.7). When the misting frequency in the reactor 

increased to four times per hour (4M), primary root initiation and growth increased and 

seemed better than controls (Figure 4.6A-C). Under this misting cycle, root branch growth in 

the reactor was also better than controls (Figure 4.6D, E). Regardless of condition, primary 

roots that developed in reactors were thicker than in controls (Table 4.7). 

 

4.3.2.2 Comparison among conditions  

It appeared that shoot growth was not affected by various conditions during the rooting stage 

(Table 4.7). All ventilated reactors yielded less hyperhydricity than unventilated (0 vvm) and 

there was no difference in hyperhydricity among ventilated conditions (Table 4.7). Also, in 

both bioreactors and controls under the same ventilation and light conditions, hyperhydricity 

during rooting was less than during the shooting stage (Table 4.4 and 4.7).  
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When forced ventilation was introduced into the reactor, not only did hyperhydricity decrease, 

but the number and length of root branches also increased (Table 4.7). CO2 enrichment 

significantly increased all parameters on root development in the reactor but not in the control 

(Table 4.7). When both CO2 and light were increased, there was significant increase in root 

development and root branching in both reactor and gelled medium compared to low light and 

CO2 conditions (Table 4.7).  

 

In contrast to its effects on shoots, increasing the misting cycle significantly increased the 

number of primary roots, primary root length, number of root branches and branch length, and 

the ratio of branch length to primary root length (Figure 4.6). Misting cycle had no effect on 

primary root thickness (Appendix S3). 

 

Compared to primary roots, root branching seemed more sensitive and responsive to 

environmental changes. Both number and length of branches increased more than that of the 

primary root after added ventilation, increased CO2, and increased misting frequency (Table 

4.7). Greater branch growth was reflected in the increase in the branch: primary root ratio 

(Table 4.7, BR:PR). The total length of branches exceeded that of the primary roots with CO2 

and light enriched (4C3L) conditions in both reactor and gelled medium (Table 4.7).  

 

 

100 
 



 

 
Figure 4.6 The effect of misting cycle on root development. GM, gelled medium; MR, mist 
reactor; PR, primary roots; BR, branches; BR: PR, branch length: primary root length per 
plantlet. Three misting cycles: 1 misting h-1 (1M, 0.75 min on/59.25 min off), 2 mistings h-1 

(2M, 0.5 min on/29.5 min off), 4 mistings h-1 (4M, 0.25 min on/14.75 min off). A, rooting 
percentage; B, number of primary roots per plantlet; C, length of all primary roots per 
plantlet; D, number of branches per primary root; E, length of all branches per plantlet; F, 
ratio of all branches over all primary roots. Letters a and b compares between three misting 
cycles of reactor; * compares between gelled medium and mist reactor, p ≤ 0.05. Other 
conditions for both reactor and gelled medium controls were: 0.1 vvm (1V), ambient air 
(1C), at 15 µmol m-2·s-1 (1I), 20 g L-1 sucrose (2S). 
 
 
 
 
 

0

20

40

60

80

1M 2M 4M

%
 R

oo
te

d 
pl

an
tle

ts

GM MR

* a

b

* a

A

0

1

2

3

4

5

1M 2M 4M

# 
PR

/p
la

nt
le

t

GM MR

* a

b

* a

B

0

2

4

6

8

10

1M 2M 4M

PR
 le

ng
th

 (c
m

)

GM MR

* a

b

* a

C

0

5

10

15

20

25

1M 2M 4M

# 
BR

GM MR

a

b

a

D

0

1

2

3

4

5

6

1M 2M 4M

BR
 le

ng
th

 (c
m

) GM MR

b

b

a

E

0.0

0.2

0.4

0.6

0.8

1.0

1M 2M 4M

BR
:P

R

GM MR * b b

a

F

101 
 



 
4.3.3 Acclimatization in mist bioreactor and gelled medium  

During the acclimatization stage, the major goal is to stimulate development of functional 

stomata and well developed epicuticular wax so leaves do not lose water when transplanted 

to soil. Stomatal function is tightly regulated by ambient gases and water status, so ventilation, 

relative humidity (RH) and misting cycle were studied here for their effects on stomatal 

development and function.  

Immature stomata are unable to close in response to changes like low RH. When plantlets 

were ventilated, stomatal closure improved especially for cultures on gelled medium (Table 

4.8, Appendix S4). When RH was reduced, stomatal closure improved on both sides of the 

leaf for all plantlets in both reactors and gelled medium cultures and especially for the adaxial 

side of leaves in the reactor (Table 4.8). There was no significant difference in stomatal closure 

between a stepped or non-stepped reduction in hourly nutrient volume feed, suggesting 

misting cycle did not affect stomatal development (Table 4.8). Ex vitro survival was 100% for 

all conditions unless cultures were not ventilated (Table 4.8, Appendix S5).  

4.3.4 Stem fragility 

A high percentage (>90%) of plantlets that were grown in unventilated (0 vvm) reactors had 

fragile or broken stems (Figure 4.7A). This fragile stem response was not seen in plantlets 

grown in other reactor conditions. Since lignin is the main component of secondary walls of 

plant cells that provides the mechanical and structural strength for stems, cross sections of  

102 
 



 

 

 

 

Ta
bl

e 
4.

8 
 G

ro
w

th
, s

to
m

at
al

 fu
nc

tio
n 

an
d 

ex
 v

itr
o 

su
rv

iv
al

 o
f A

. a
nn

ua
 u

nd
er

 d
iff

er
en

t a
cc

lim
at

iz
at

io
n 

co
nd

iti
on

s 

G
el

le
d 

m
ed

iu
m

 
Ex

 v
itr

o 
su

rv
iv

al
 

(%
) 

84
 a

 

10
0 

a 

10
0 

a 

10
0 

a 

10
0 

a 

10
0 

a 

Ve
nt

ila
tio

n 
w

as
 0

.1
 v

vm
 fo

r a
ll 

co
nd

iti
on

s e
xc

ep
t w

ith
 0

 v
vm

, w
he

re
by

 th
er

e 
w

as
 n

o 
fo

rc
ed

 v
en

til
at

io
n.

 R
el

at
iv

e 
hu

m
id

ity
 (R

H
) w

as
 >

96
%

, 1
00

%
 a

nd
 5

2%
 fo

r 
0 

vv
m

, 1
00

R
H

 a
nd

 5
2R

H
, r

es
pe

ct
iv

el
y.

 T
he

 R
H

 c
on

di
tio

n 
w

as
 m

ai
nt

ai
ne

d 
at

 5
2%

 fo
r t

he
 fi

rs
t 5

 d
ay

s a
nd

 th
en

 a
t 1

1%
 fo

r t
he

 re
m

ai
ni

ng
 5

 d
ay

s f
or

 5
2/

11
R

H
. 

Th
e 

m
is

tin
g 

cy
cl

e 
fo

r 0
 v

vm
, 1

00
R

H
, 5

2R
H

 a
nd

 5
2/

11
R

H
 w

as
 0

.5
 m

in
 o

n/
29

.5
 m

in
 o

ff.
 In

 th
e 

st
ep

pe
d 

do
w

n 
fe

ed
 c

ul
tu

re
, t

he
 R

H
 w

as
 m

ai
nt

ai
ne

d 
at

 1
00

%
, a

nd
 

pl
an

tle
ts

 w
er

e 
m

is
te

d 
tw

ic
e 

ev
er

y 
ho

ur
 w

ith
 3

0 
m

L 
h-1

 m
ed

iu
m

 d
el

iv
er

y 
fo

r d
ay

 0
-1

, o
nc

e 
ev

er
y 

ho
ur

 w
ith

 2
2.

5 
m

L 
h-1

 m
ed

iu
m

 d
el

iv
er

y 
fo

r d
ay

 2
-4

, o
nc

e 
ev

er
y 

tw
o 

ho
ur

s w
ith

 1
1.

3 
m

L 
h-1

 m
ed

iu
m

 d
el

iv
er

y 
fo

r d
ay

 5
-7

 a
nd

 o
nc

e 
ev

er
y 

fo
ur

 h
ou

rs
 w

ith
 5

.6
 m

L 
h-1

 m
ed

iu
m

 d
el

iv
er

y 
fo

r d
ay

 8
-1

0,
 re

sp
ec

tiv
el

y.
 In

 st
ep

pe
d 

cy
cl

e 
cu

ltu
re

, t
he

 R
H

 w
as

 1
00

%
 fo

r t
he

 fi
rs

t 5
 d

ay
s a

nd
 th

en
 1

1%
 fo

r t
he

 re
m

ai
ni

ng
 5

 d
ay

s. 
Th

e 
m

is
tin

g 
cy

cl
e 

re
gi

m
en

 in
 st

ep
pe

d 
cy

cl
e 

w
as

 0
.5

 m
in

 o
n/

29
.5

 
m

in
 o

ff 
fo

r d
ay

 0
-1

, 1
 m

in
 o

n/
59

 m
in

 o
ff 

fo
r d

ay
 2

-4
, 2

 m
in

 o
n/

11
8 

m
in

 o
ff 

fo
r d

ay
 5

-7
, a

nd
 4

 m
in

 o
n/

23
6 

m
in

 o
ff 

fo
r d

ay
 8

-1
0,

 re
sp

ec
tiv

el
y.

 T
he

 h
ou

rly
 

vo
lu

m
et

ric
 m

ed
iu

m
 d

el
iv

er
y 

fo
r t

he
se

 c
yc

le
s w

as
 m

ai
nt

ai
ne

d 
at

 3
0 

m
L 

h-1
. L

ig
ht

 in
te

ns
ity

 fo
r a

ll 
co

nd
iti

on
s w

as
 1

I. 
Le

tte
rs

 c
om

pa
re

 a
ll 

co
nd

iti
on

s;
 *

 c
om

pa
re

s 
be

tw
ee

n 
re

ac
to

r a
nd

 g
el

le
d 

m
ed

iu
m

 c
on

tro
ls

; #
 c

om
pa

re
s %

 c
lo

se
d 

st
om

at
a 

be
tw

ee
n 

ad
ax

ia
l a

nd
 a

ba
xi

al
 si

de
 o

f l
ea

f f
or

 th
e 

sa
m

e 
co

nd
iti

on
,; 

p 
≤ 

0.
05

. 

%
 C

lo
se

d 
st

om
at

a 
 

A
ba

xi
al

 

5.
6 

a 

71
.8

 b
 

  8
9.

8 
c 

90
.1

c 

73
.1

 b
 

90
.8

 c
 

A
da

xi
al

 

7.
9 

a 

72
.2

 b
 

94
.5

 c
 

93
.4

 c
 

74
.8

 b
 

92
.8

 c
 

FW
 g

ai
n 

pe
r p

la
nt

le
t 

0.
13

 a
 

0.
21

 b
 

0.
23

 b
 

0.
20

 b
 

0.
21

 b
 

0.
20

 b
 

        

R
ea

ct
or

 
Ex

 v
itr

o 
su

rv
iv

al
 

(%
) 

90
 *

 a
 

10
0 

a 

10
0 

a 

10
0 

a 

10
0 

a 

10
0 

a 

%
 C

lo
se

d 
st

om
at

a 
 

A
ba

xi
al

 

71
.5

 *
 a

 

80
.3

 a
 

95
.8

 *
 b

 

94
.2

 b
 

78
.2

 a
 

94
.8

 b
 

A
da

xi
al

 

87
.1

 *
 #

 a
 

94
.9

 *
 #

 a
,b

 

98
.7

 *
 b

 

97
.8

 *
 b

 

93
.7

 *
 #

 a
,b

 

99
.1

 *
 b

 

FW
 g

ai
n 

pe
r 

pl
an

tle
t 

0.
22

 *
 a

 

0.
29

 a
 

0.
25

 a
 

0.
22

 a
 

0.
22

 a
 

0.
27

 a
 

C
on

di
tio

n 

0 
V

V
M

 

10
0 

R
H

 

52
 R

H
 

52
/1

1 
R

H
 

St
ep

pe
d 

do
w

n 
fe

ed
 

St
ep

pe
d 

cy
cl

e 

103 
 



 

stems from unventilated reactors, normal stems from reactors as well as from gelled medium 

controls were stained with phloroglucinol-HCl to assess lignin deposition. 

 
 
 
                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 Fragile stems from unventilated (0 vvm) bioreactors and lignin stained with 
phloroglucinol-HCl. A, fragile stem with roots developed from the broken site (circle) from a 
0 vvm bioreactor; B, lignin stain of free-hand cross section of stems from 0 vvm bioreactor, 
arrow indicates vascular bundles; C, lignin stain of free-hand cross section of stems from 
52RH bioreactor, arrow indicates vascular bundles; D, lignin stain of free-hand cross section 
of stems from 0 vvm gelled medium, arrow indicates vascular bundles; B,C, and D, bar: 250 
µm.  

Red stained tissues indicated lignin, typically around the vascular bundles arranged in a circle 

near the periphery of a dicot stem (arrows in Figure 4.7). Stems from the unventilated reactor 

lacked any apparent stain (Figure 4.7B) in the peripheral ring otherwise outside of the stained 

xylem (Figure 4.7C). In addition, the fragile stems appeared to have larger cortical cells with 

  

A 

B C 

D 
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less stain in their walls than in normal stems (Figure 4.7B-D). Together these results suggested 

stems from plantlets grown in unventilated reactors were poorly lignified. 

 

 Discussion 

4.4.1 Comparison between mist bioreactor and gelled medium 

Bioreactors are proposed to reduce labor cost and promote biomass yield in plant 

micropropagation (Adelberg and Fári 2010; Takayama and Akita 2006). However, liquid 

medium reactor cultures have a high rate of hyperhydricity in shoots (Ziv 1995b). To avoid 

continuous submersion in reactors, temporary immersion systems (TIS) were developed for 

periodic nutrient immersion and headspace gas exchange. Application of TIS for 

micropropagation has been reported for many species with better yields and plantlet quality 

compared to gelled medium (Berthouly and Etienne 2005; Hahn and Paek 2005; Watt 2012; 

Welander, et al. 2014; Yan, et al. 2010; Yan, et al. 2013). Compared to gelled medium controls, 

the gas-phase mist reactor also showed better biomass yield, shoot proliferation, and stomatal 

function in this study. Better shoot proliferation rate in reactor cultures has generally been 

ascribed to increased availability of cytokinins and other nutrients (Debergh 1983).  

 

Cytokinins, however, were also identified to induce hyperhydricity in both gelled and liquid 

medium (Debnath 2011; Tsay, et al. 2006; Ziv 1991a). This stimulating effect was 

concentration-dependent with hyperhydricity increasing with increasing cytokinin 

concentration (Ivanova and van Staden 2008; Ivanova and Van Staden 2011). In correlation 

105 
 



 

with these reports, there was a significant reduction in hyperhydricity when explants during 

the rooting stage were instead cultured in hormone-free medium under the same reactor 

conditions as those in the shooting stage. In addition, shoots in reactor cultures were more 

sensitive to cytokinin than in gelled medium and became more hyperhydric in this study. 

Similar results were also observed with Aloe polyphylla in stagnant liquid culture (Ivanova 

and Van Staden 2011) and berry crops in TIS culture (Debnath 2011).  

 

Rooting percentage measured the success of root induction. Similar to the results in this study, 

root initiation in plantain (Musa AAB) in a TIS was not superior to that in gelled medium 

(Roels et al. 2005). On the other hand, root induction of rose in a hydroponic culture vessel 

was better than in gelled medium, showing greater rooting percentage, root length and root 

numbers (Pati et al. 2005). Although this suggested that root induction may require continuous 

misting, an earlier hairy root study showed that hairy roots of A. annua barely grew in 

continuous mist (Towler et al. 2007). Nevertheless, root branching in the mist reactor with 

frequent misting (4M) was greater than in gelled medium.  

 

4.4.2 Demand on misting cycle was diverse during different propagation 
stages 

An appropriate nutrient feeding cycle is a major factor to ensure both growth and quality of 

explants in reactors. In the mist reactor, shoot proliferation was also better with less frequent 

misting. A number of studies of different species in TIS also recommended a short and sparse 

feeding frequency of 2-3 times a day with several minutes of immersion each time (Georgiev, 
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et al. 2014; Valdez-Tapia, et al. 2014; Watt 2012). Short and sparse feeding cycles not only 

maintained good shoot proliferation but also reduced hyperhydricity by providing a growth 

condition with less water stress (Valdez-Tapia, et al. 2014; Zhao, et al. 2012). Residual 

nutrients remaining on tissue surfaces after immersion were probably sufficient for shoot 

proliferation, and thus, reduced immersion frequency helped to decrease liquid availability of 

plant tissue in TIS without limiting nutrient availability or reducing relative humidity (Scherer, 

et al. 2013). Similarly, residual nutrients after each misting may also be adequate for shoots 

to grow well in a less frequent cycle. 

On the other hand, root development increased with more mistings per hour. Similar results 

were also observed with Dianthus (carnation) (Correll, et al. 2001) and Pseudostillaria 

(elephant ear) (Wang and Qi 2010). Compared to periodic feeding, root initiation also 

improved with continuous nutrient feeding at the root zone using a liquid-based medium 

(Afreen, et al. 2005; Jo, et al. 2008; Pati, et al. 2005; Wang, et al. 2013). High demand for 

nutrients during rooting was probably because cell division of the root meristem is 

carbohydrate-dependent (Van't Hof 1985). Root growth also needs O2 for production of ATP 

to provide energy during cell division (Lambers et al. 1996). Since the gas phase is continuous 

within the mist reactor, O2 transport to roots was not limited as in a liquid-based reactor (Curtis 

and Tuerk 2006). 
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Misting frequency did not affect hyperhydricity during the rooting stage. This was probably 

because rooting medium contained no phytohormones. Misting cycle also did not influence 

stomatal function or ex vitro survival of A. annua, suggesting this plant seems relatively 

resistant to hyperhydricity and easy to acclimatize. Carnation, on the other hand, is a 

hyperhydric sensitive species and in earlier mist reactor studies reduced misting frequency 

alleviated hyperhydricity during rooting and acclimatization (Correll, et al. 2001; Correll and 

Weathers 2001a). Thus repeating this study perhaps with a more challenging species may 

provide more information on the impact of reactor conditions on acclimatization. 

 

4.4.3 Forced ventilation is necessary in mist reactor 

Increasing ventilation benefits growth by increasing CO2 level and reducing RH as well as 

potentially toxic volatiles (i.e. C2H4) in the headspace of a culture container (Thongbai, et al. 

2010; Xiao, et al. 2003; Zobayed, et al. 2001a). As a result of these environmental changes, 

plantlets in vitro should have less hyperhydricity, better photosynthesis, better root 

development, improved stomatal function and less water loss during in vitro acclimatization 

(Chen et al. 2006a; Chen, et al. 2006b; Ivanova and Van Staden 2010; Majada, et al. 2001; 

Mills 2009; Tsay, et al. 2006; Zhao, et al. 2012).  

 

In small culture containers, improved in vitro growth can be sustained by using porous 

closures or gas permeable membranes on the closure (Chen, et al. 2006b; Fujiwara and Kozai 

1995; Mohamed and Alsadon 2010; Tsay, et al. 2006). By using these strategies, the gas 

exchange rate can be elevated from 0.04 times h-1 (0.00066 vvm) under non-ventilated 
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conditions to around 5 times h-1 (0.083 vvm) (Chen and Chen 2002; Cui, et al. 2000; Thongbai, 

et al. 2010). For reactors with several L of volume, however, these strategies are not sufficient 

to maintain an appropriate gas exchange rate and gas composition for in vitro growth (Xiao, 

et al. 2003). Indeed in a TIS, intermittent gas exchange between immersion cycles was not 

sufficient to control hyperhydricity, and continuous forced ventilation had to be implemented 

(Zhao, et al. 2012). In this study, ventilation was essential to three major in vitro stages, 

shooting, rooting and acclimatization, and 0.1 vvm (1V) was required to achieve an air flow 

of 600 mL min-1. 

 

While excess accumulation of C2H4 in the headspace from inadequate ventilation can be toxic 

to cultures (Jin Goh, et al. 1997; Kevers, et al. 1992; Neto, et al. 2009; Reis, et al. 2003), too 

little C2H4 as a result of excessive ventilation can also inhibit shoot development (Chatfield 

and Raizada 2008; Kevers, et al. 1992; Kumar et al. 1987; Majada, et al. 1997; Mills, et al. 

2004; Nour and Thorpe 1994; Tsay, et al. 2006; Zhao, et al. 2012). Moreover, increasing 

passive ventilation in gelled medium through use of membrane filters can lead to medium 

desiccation and growth therefore may become limited due to alteration of osmotic potential 

(Shim, et al. 2003; Yann, et al. 2010). Indeed, Majada et al. (1997) showed that shoot 

proliferation in liquid medium was better than in gelled medium even though both cultures 

were ventilated. An optimum ventilation rate for shoot proliferation also varies with species 

and cultivar, and thus has to be studied case by case (Majada, et al. 1997; Mills, et al. 2004; 

Zhao, et al. 2012). In this study, neither shooting percentage nor shoot proliferation rate was 
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reduced after ventilation with ambient air, suggesting the gas exchange rate was appropriate 

for A. annua. 

 

4.4.4 Added CO2 and light stimulated shoot and root growth 

CO2 and light are critical for photosynthesis and thus in vitro growth of plantlets. Growth of 

A. annua shoots and roots was stimulated with added CO2 and light, and similar results were 

also reported in previous studies on a variety of plants (Emam and Esfahan 2014; Fan et al. 

2013; Saldanha et al. 2013; Suthar et al. 2009; Vyas and Purohit 2003; Vyas and Purohit 2006).  

 

Increased shoot multiplication was probably due to elevated photosynthesis under added CO2 

and light (Kozai, et al. 1990; Mosaleeyanon, et al. 2004; Thongbai, et al. 2011). At the lower 

light intensity (1I, 15 µmol m-2·s-1) used in this study, increasing CO2 alone was not sufficient 

to stimulate photosynthesis and shoot proliferation until the light intensity was elevated to 50 

µmol m-2·s-1 (3I).  

 

Although light per se cannot stimulate root growth (Correll and Weathers 2001b; Jo, et al. 

2008; Mills 2009), increased photosynthesis under added CO2 and light may result in better 

root growth. Increased root growth may also occur by CO2 fixation via phosphoenolpyruvate 

carboxylase in roots especially under low light intensity (Bihzad and El-Shora 1996; Jeong, 

et al. 2006; Shin et al. 2013). CO2 enrichment in this study also increased root thickness and 

similar results were observed in Macadamia tetraphylla (Cha-um, et al. 2011), Cistus incanus 

(Mills 2009) and Pfaffia glomerata (Spreng.) (Saldanha, et al. 2014). The positive effect of 
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CO2 on root development may help explain the slight increase in rooting in unventilated 

reactors compared to ventilated reactors both at low light intensity because CO2 level under 

unventilated conditions may well have accumulated in the headspace. Interestingly, the 

stimulating effect of CO2 on root growth was only observed in plantlets grown in the mist 

reactor but not in the gelled controls. This was possibly due to restricted solubility of CO2 into 

the root zone submerged in gelled medium. Indeed root development has been shown to 

improve after switching plants from gelled to porous medium (Cha-um, et al. 2011; Saldanha, 

et al. 2014). Limited CO2 solubility in gelled medium may also explain reduced root thickness 

of plants grown therein compared to those grown in the mist reactor.  

 

4.4.5 Low sucrose reduced shoot multiplication and increased 
hyperhydricity 

The 3I light intensity of 50 µmol m-2·s-1 in this study falls into a common effective range for 

photomixtrophic propagation (Fujiwara and Kozai 1995). It was known that plants in vitro 

can shift from photomixtrophic to photoautotrophic growth when grown under gradually 

decreased exogenous sugar together with an increase in the headspace CO2 (Kozai 1991; 

Kozai 2010; Van Huylenbroeck and Debergh 1996). So the growth of A. annua shoots in the 

mist reactor was tested under low sucrose concentration with added CO2. 

 

Although low sucrose increased emergence of new shoots (% new shoots) overall and those 

from leaf explants, there was higher hyperhydricity rate in the mist reactor than the 3S 

condition (30 g L-1). Both results were probably from alteration in osmotic potential (Debergh 
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1983). When the osmotic potential was restored by mannitol, the emergence of new shoots 

overall decreased to the same level as for plants in 30 g L-1 sucrose; hyperhydricity was also 

reduced. Reduction in hyperhydricity with alteration in osmotic potential was also observed 

in other species (Kadota, et al. 2001; Mills 2009; Yadav, et al. 2003). 

 

Low sucrose also reduced the number of new shoots grown in the mist reactor. The sub-

optimal shoot multiplication under low sucrose was probably from insufficient nutrients from 

the medium and photosynthesis, suggesting the shoots needed more nutrients either from more 

exogenous sucrose or a higher rate of photosynthesis. On the other hand, shoot multiplication 

in gelled medium controls was not reduced in low sucrose. It is possible the low sucrose 

concentration was adequate for shoots in gelled medium but not sufficient for shoots in the 

mist reactor. Shoots in the mist reactor consumed more sucrose to develop greater number of 

new shoots and biomass than in the gelled medium controls. Indeed, elimination of sucrose in 

the medium around the light intensity of 50 µmol m-2·s-1 resulted in decreased shoot 

multiplication in a variety of plants including Wrightia tomentosa (Vyas and Purohit 2003), 

Feronia limonia (L.) Swingle (Vyas and Purohit 2006), Terminalia bellerica Roxb (Suthar, et 

al. 2009) and Chlorophytum borivilianum Sant. et Fernand (Joshi et al. 2009).  

 

4.4.6 Physio-morphological abnormalities of A. annua during in vitro 
culture  

The major physio-morphological abnormality observed in this study was hyperhydricity. 

Explants of A. annua with hyperhydric signs displayed the same characteristics observed in 
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other plant species (Dewir, et al. 2006b; Ziv 1991c). The onset of hyperhydricity is known to 

be triggered by excessive water accumulation in the apoplast (Gribble, et al. 1998; Kevers and 

Gaspar 1986; Rojas-Martinez et al. 2010). Water lodging then leads to hypoxia and oxidative 

stress (Rojas-Martinez, et al. 2010; Saher, et al. 2005c; van den Dries, et al. 2013), which 

induces abnormal physiological processes and ultimately hyperhydricity (Dewir, et al. 2006b; 

Fernandez-García, et al. 2008; Saher, et al. 2004; Sreedhar, et al. 2009; Wu, et al. 2009). 

Fragile stems observed in the unventilated reactors are also considered a sign of mild 

hyperhydricity. Stems from unventilated conditions have been shown to have excess water 

accumulation, characteristics of reduced lignification and mechanical support in the vascular 

tissue (Donnelly et al. 1985; Iarema et al. 2012; Jausoro et al. 2010; Majada, et al. 2000). As 

observed in this study and other reports, ventilation, water availability, CO2 and light 

conditions are important environmental factors that should be controlled during in vitro 

culture to minimize hyperhydricity (Casanova, et al. 2008; Ivanova and Van Staden 2010; 

Jausoro, et al. 2010; Majada, et al. 1997; Valdez-Tapia, et al. 2014; Zobayed, et al. 2000).  

 

Besides abnormal morphology, hyperhydric A. annua shoots also contained fewer glandular 

trichomes and less artemisinin and flavonoids than normal shoots. Artemisinin, an important 

antimalarial drug, is synthesized and stored in the glandular trichomes of A. annua (Duke et 

al. 1994). A decrease in trichome number is associated with reduced artemisinin content 

(Kapoor et al. 2007; Lommen et al. 2006; Nguyen et al. 2011). In this study, artemisinin 

decreased by 97%, while trichome numbers decreased 62.5%. Previously it was reported that 
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increased ventilation led to elevated trichome numbers in A. annua (Yann 2010) and Wigandia 

urens (Pérez-Estrada et al. 2000), suggesting the biosynthesis of secondary metabolites may 

be affected by culture conditions. Similar to the results in this study, flavonoid biosynthesis 

was also reduced in hyperhydric shoots of Scutellaria spp. (Tascan, et al. 2010). These 

findings suggested that trichomes as well as the biosynthesis of secondary metabolites were 

sensitive to environmental change, and maintaining an in vitro environment comparable to ex 

vitro conditions would benefit both the anatomy and secondary metabolite production of this 

species.  

 

 Conclusion 

The mist reactor was used to measure how culture environment affected shoot proliferation, 

rooting and acclimatization of A. annua with the aim towards using the mist reactor to simplify 

the labor intensive steps of micropropagation. Maintenance of an appropriate condition for 

each stage was important to in vitro propagation and secondary metabolite production. All of 

these different culture stages required adequate ventilation, CO2 enrichment (0.16%) and light 

(50 µmol m-2•s-1) for high quality growth. Aside from these common requirements, each stage 

had different demands on nutrient delivery and misting cycle. The best mist frequency for 

shoot proliferation and root development was once per hour (1M) and four times per hour 

(4M), respectively. While misting cycles during acclimatization did not affect stomatal 

function and ex vitro survival of A. annua, these parameters appeared better when ventilating 

with air at 52% RH. Plantlets grown under these conditions in the reactor had the least 
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hyperhydricity and produced more biomass yield than those in gelled medium controls. This 

study has shown the potential of the mist reactor to combine otherwise discreet steps in 

micropropagation into one step.  
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Chapter 5  Attachment of leaf tissue to poly-L-

lysine (PLL) coated substrates for use in 

micropropagation  
 

 Introduction 

Using plant cell, tissue and organ culture techniques, billions of commercially important 

plants are clonally produced annually through micropropagation (Singh and Shetty 2011). The 

traditional micropropagation process, which is based on non-scalable gelled medium, is labor 

intensive, requiring manual handling of a large number of single containers (Takayama and 

Akita 2006). To reduce labor, bioreactors are being developed to provide control of the in vitro 

microenvironment to secure the growth and physiological integrity of the plantlets 

(Steingroewer et al. 2013).  

 

Existing bioreactors for micropropagation can be classified into liquid-phase bioreactors (e.g. 

airlift and balloon type bubble bioreactors), temporary immersion systems (TIS; e.g. RITA® 

and Twin flask) and gas-phase bioreactors (e.g. nutrient mist bioreactor) (Steingroewer, et al. 

2013; Weathers, et al. 2010). In liquid-phase bioreactors, plant materials remain suspended in 

the culture medium. Although liquid suspension is ideal for culturing protocorm-like bodies 

and storage organs, shoots do not grow as well often developing physio- morphological 

abnormalities (i.e. hyperhydricity) caused by low oxygen and osmotic potential of the liquid 

medium (Afreen 2006; Dewir et al. 2014; Georgiev, et al. 2014; Yang, et al. 2010). TIS, on 
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the other hand, provide flexible nutrient feeding regimes with periodically altered gaseous 

growth environment. Thus, TISs have been widely used for micropropagation of economically 

important species (Berthouly and Etienne 2005; González 2005; Watt 2012).  

 

Traditionally, plant materials in TISs are horizontally placed on a supportive raft or net, 

creating a large footprint for each bioreactor. To save costly floor space, multi-tiered shelves 

have to be used in commercial production (Adelberg 2006; Adelberg and Fári 2010; Wilken, 

et al. 2014). In mist reactors, plant materials have thus far been horizontally placed to receive 

nutrient mist fed top down, which limits yield per footprint area. To maximize batch yield and 

also minimize footprint, a vertical “hanging garden” style of culture could prove useful as 

suggested by Fei and Weathers (2014). This method requires rapid and predictable attachment 

of plant materials onto vertically hanging substrates within a bioreactor. 

Surface attachment of plant materials has been primarily studied using plant cell cultures for 

production of secondary metabolites, bioconversion and biomanufacturing (Huang and 

McDonald 2012; Ruffoni et al. 2010; Tyler et al. 1995). Adhesion of plant cells to a surface 

is the result of interfacial tensions and electrostatics (Dicosmo et al. 1989), and is affected by 

hydrophobicity of substrates as well as pH and ionic strength of the liquid medium (Facchini 

et al. 1988b; Facchini, et al. 1989). Since plant cells have a net negative surface charge 

(Dicosmo, et al. 1989; Facchini et al. 1988a) and many substrates used for immobilization are 

also negatively charged, poly-cation coating of substrates has the potential for reducing 

repulsion and enhancing attachment between plant tissues and substrates. Using poly-L-lysine 

117 
 



 

(PLL) coated polypropylene and nylon as substrates, Fei and Weathers (2014) showed that 

pre-embryogenic carrot cells attached to vertically hung substrate strips and developed in situ 

into fully rooted embryos in a mist bioreactor. That study suggested a similar approach may 

work for culturing differentiated tissues (shoots and roots) via micropropagation. Although 

root tissues were shown to adhere to PLL-coated substrates via root hairs (Towler and 

Weathers 2003), it is unclear if shoot tissues can similarly bind. Using A. annua as a test 

species, attachment ability of leaf tissues to PLL-coated substrates was investigated along with 

the potential of using blenderized shoot tissues as inoculum for micropropagation. Also 

investigated was the feasibility of one step micropropagation that included shooting, rooting 

and acclimatization with tissue attaching to PLL-coated substrates hanging inside the mist 

reactor. 

 Materials and methods 

5.2.1 Plant materials for attachment experiments 

Rooted Artemisia annua L. (clone SAM) shoots were grown in Magenta boxes containing 50 

mL semi-solid hormone-free rooting medium (RTM): 20 g L-1 sucrose, 2.22 g L-1 Murashige 

& Skoog (MS) salts with vitamins, and 5 g L-1 Agargellan TM, pH 5.8 (Nguyen, et al. 2013). 

All cultures were grown at 25 °C and continuous irradiation at 50 µmol m-2·s-1 with cool white 

fluorescent bulbs (GE brand, F15T8-CW) unless otherwise specified. Subculture was every 4 

weeks by nodal cuttings. Leaf tissues of the 4-week-old cultures were used in attachment 

experiments. 
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5.2.2 Mist reactor 

Mist reactor preparation and set up was already detailed in Fei and Weathers (2014).The 

reactor briefly had a 7L disposable bag fitted with silicone tubing wrapped around the 

perimeter of a stainless steel mesh plate to 3D shape. The disposable bag also fitted around a 

Nalgene bottle neck to be screw capped with an OsmotekTM mister head. Tubing linked an air 

pump via a Nafion tube to the reactor chamber and is shown in Figure 3.1a. Separate tubing 

connected the culture medium reservoir to the mister head and another was between the 

culture bag and the reservoir.  

 

5.2.3 Preparation of substrates and PLL coating  

Pieces of polypropylene (PP) sheet and nylon mesh (70 µm; N70) were cut into 2×4 cm strips 

for binding experiments. PLL coating was done by soaking the PP sheet and N70 mesh in 

0.01 % (w/v) PLL (Sigma, P1274) solution for 0.5 h and then air dried (Fei and Weathers 2014; 

Towler and Weathers 2003). Binding experiments were done under non-sterile conditions for 

1-24 h. Initially bound tissues within 12 h were considered “retained” since it was uncertain 

if they would remain bound for longer time. Initially retained tissues were considered truly 

“attached” after they remained on substrates for at least 24 h.  

 
 

5.2.4 Retention of chopped leaf tissue by manual application  
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Leaf tissue of 4-week-old in vitro cultivated A. annua (section 5.2.1) was randomly chopped 

into pieces about 5 mm length and then incubated ± PLL onto PP sheeting or N70 mesh in 30 

g L-1 sucrose to maintain osmotic potential and avoid tissue desiccation. After incubation for 

1-6 h, the substrates were held vertically and washed 10 times from top to bottom each time 

with 0.3 mL dH2O. Percent tissues retained on substrates were determined as: 

 % 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 # 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑×𝟏𝟏𝟏𝟏𝟏𝟏
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 # 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝒔𝒔

                     Eq (5.1) 

5.2.5 Quick dip and retention of manually chopped vs. blenderized leaf 
tissue 

Small pieces of leaf tissue were produced either from manually chopped leaves as described 

in section 5.2.4 or blenderized by using a 4-blade blender (Hamilton Beach Commercial). The 

blender was filled with about 4 g of fresh leaf tissues and 200 mL of 30 g L-1 sucrose, and 

tissues blended for 30, one-second pulses, under low input power. The small pieces of tissue 

from manually chopped or blenderized leaves were then suspended in 30 g L-1 sucrose at 

various concentrations (25, 33, 50, 100 g L-1) in Magenta boxes; each suspension was 

incubated with PP sheet and N70 mesh ± PLL for 5-10 sec (quick dip). Then substrates were 

moved out of the tissue suspension, blotted dry, and measured for fresh weight (FW) of 

retained tissues.    

5.2.6 Attachment of manually chopped vs. blenderized leaf tissue after 
quick dip 

Initially retained tissues (section 5.2.5) were hung inside the mist bioreactor and sprayed with 

hormone-free rooting medium (RTM, 20 g L-1 sucrose and 2.22 g L-1 MS salts with vitamins, 
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pH 5.8) for 24 h at a misting cycle of 0.3 min on/2.7 min off (300 mL h-1). The % attachment 

was measured and defined as: 

 % 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑×𝟏𝟏𝟏𝟏𝟏𝟏
 𝑭𝑭𝑭𝑭 𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓  𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

            Eq (5.2) 

5.2.7 Quick dip and attachment of various sizes of blenderized leaf tissue 

Blenderized leaf tissue produced as described in section 5.2.5 was successively sieved through 

stainless steel screens of 1, 0.5, 0.35 and 0.15 mm to obtain four groups of tissues: 0.15-0.35 

mm, 0.35-0.5 mm, 0.5-1 mm and >1 mm. At a biomass concentration of 1g FW in 20 mL 30 

g L-1 sucrose, each size group was measured for instant retention on ± PLL N70 following the 

quick dip method (section 5.2.5). Initially retained tissues were then misted with rooting 

medium as described in section 5.2.6 for 24 h, and % attachment was measured (Eq 5.2).  

5.2.8 Shoot regeneration of blenderized leaf tissue  

Shoot tissues of different sizes generated from 30 pulses of blending (section 5.2.5) were 

cultured for 6 weeks on gelled shooting medium (SHM): 30 g L-1 sucrose, 4.43 g L-1 MS salts 

with vitamins, 0.25 µmol L-1 α-naphthaleneacetic acid (NAA), 2.5 µmol L-1 N-6-

benzyladenine (BA), and 5 g L-1 Agargellan TM, pH 5.8 (Nguyen, et al. 2013). All cultures 

were grown under 25 °C and continuous light at 50 µmol m-2 s-1. The shooting percentage of 

leaf tissues in each size group was then measured as follows: 

% 𝒏𝒏𝒏𝒏𝒏𝒏 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = # 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏𝒏𝒏𝒏𝒏 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔×𝟏𝟏𝟏𝟏𝟏𝟏
# 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒆𝒆𝒅𝒅 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

              Eq (5.3)   

Each of the four sizes of tissue was loaded in 3 wells in a 12-well plate with four replicate 

plates.   
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5.2.9 Optimization of shooting medium to reduce callus formation and 

enable root development 

To reduce callus formation and thus enable root development, shooting medium was 

optimized by altering plant growth regulators (PGRs) and MS salts. BA and NAA were 

proportionally reduced to 10%, 20%, 40%, 60% and 80% of the current concentration with 

either full or ½ strength MS salts (section 5.2.8, Table 5.1). Single nodal cuttings were 

inoculated into Magenta boxes filled with the different shooting media to induce shoots, and 

then to induce roots explants with new shoots were transferred onto hormone-free rooting 

medium (RTM, section 5.2.1) at day 7 and 14, respectively. New shoots that developed on 

explants from each tested shooting medium were recorded at the time of transfer and after 3 

weeks cultivation rooting percentage was calculated (Eq 5.4). Each tested shooting medium 

had 6 explants in each of three Magenta boxes. Rooting percentage was defined as:  

% 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = # 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ×100
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠

                        Eq (5.4)  

5.2.10 Addition of auxin into rooting medium to enhance root initiation 
after shoot proliferation  

To further improve rooting percentage, hormone-free RTM was optimized by testing two types 

of auxin: NAA and indole-3-butyric acid (IBA). Single nodal cuttings were first cultured for 

7 days on ½ strength shooting medium (SHM50: 30 g L-1 sucrose, 2.22 g L-1 MS salts with 

vitamins, 0.125 µmol L-1 NAA, 1.25 µmol L-1 BA, pH 5.8), and then transferred to Magenta 

boxes each filled with a different rooting medium (Table 5.1). Rooting percentage was 

measured after 3 weeks. Each rooting medium had 12 explants and the experiment was 

repeated three times. 
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Table 5.1 Various medium tested in optimization of shooting and rooting medium 

Tested 
medium 

Sucrose 
(g L-1) 

MS salts with 
vitamin 
(g L-1) 

BA  
(µmol L-1) 

NAA 
(µmol L-1) 

IBA  
(µmol L-1) 

SHM 30 4.43 2.5 0.25 0 
SHM10a 30 4.43 0.25 0.025 0 
SHM10b 30 2.22 0.25 0.025 0 
SHM20a 30 4.43 0.5 0.05 0 
SHM20b 30 2.22 0.5 0.05 0 
SHM40a 30 4.43 1.0 0.1 0  
SHM40b 30 2.22 1.0 0.1 0  
SHM60a 30 4.43 1.5 0.15 0 
SHM60b 30 2.22 1.5 0.15 0 
SHM80a 30 4.43 2.0 0.2 0 
SHM80b 30 2.22 2.0 0.2 0 
RTM 20 2.22 0 0 0 
RTM1x 20 2.22 0 0.125 0 
RTM1y 20 2.22 0 0.25 0 
RTM2x 20 2.22 0 0 2.5 
RTM2y 20 2.22 0 0 5 

SHM is the original shooting medium and served as the control for all tested shooting medium SHM10a,b-
SHM80a,b. SHM10-80 have 10%, 20%, 40%, 60%, and 80% of the BA and NAA levels in SHM, respectively. 
Lowercase letters a and b within each level of SHM has either full (a) or ½ (b) strength MS salts with vitamins. 
RTM is the original hormone-free rooting medium and served as the control for all tested rooting medium 
RTM1x,y-RTM2x,y. RTM1x,y was supplemented with NAA at two concentrations, and RTM2x,y was 
supplemented with IBA at two concentrations. 
 

5.2.11  One-step micropropagation of A. annua by attachment to PLL-
coated substrates 

Shoot tissues from 4-week-old cultures in hormone-free rooting medium (RTM, section 5.2.1) 

were manually chopped into single nodes and then suspended in 30 g L-1 sucrose solution at 

the ratio of 1 g FW per 20 mL. N70 and PP sheet were cut into 4×20 cm strips, and every two 

strips were connected by fish line (Tom Mann brand, CS-65). The strips were hot seamed 

using an impulse sealer every 3 cm lengthwise to create a zig-zag shape to facilitate tissue 

retention longitudinally along the hanging strips. The strips were then autoclaved and coated 
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with PLL as described in Fei and Weathers (2014). Air dried PLL-coated strips were 

subsequently soaked in a suspension of shoot tissues for 5 min prior to inoculation into the 

mist reactor and misted for 7 days with SHM50 (section 5.2.10) followed by misting for 

another 21 days with RTM1y (Table 5.1) at 50 µmol m-2·s-1 light intensity and 25 °C. Reactor 

ventilation was 0.1 vvm of 0.16% (v/v) CO2 enriched air. Unless otherwise specified, CO2 

enriched air was humidified using a Nafion tube (Perma Pure, MH-110-48F-4) connected with 

a 0.2 µm sterile filter prior to entry into the mist reactor. Gelled medium controls had the same 

ventilation and light conditions as the mist reactor. 

During the 7-day shooting stage, the mist cycle was 0.75 min on/59.25 min off with medium 

flow rate of 40 mL min-1 to deliver 30 mL h-1. After 7 days of shoot proliferation, RTM1y 

(Table 5.1) was switched into the feeding line to initiate root development. The misting cycle 

was 0.25 min on/14.75 min off during the first 12 days for root induction, and then switched 

to 0.5 min on/29.5 min off during the remaining 9 days of culture for acclimatization. 

Volumetric medium delivery was maintained at 30 mL h-1 during the 21 days of culture in 

RTM1y. Ventilation during acclimatization was 0.1 vvm of 0.16% (v/v) CO2 enriched air with 

about 52% relative humidity. 

Plantlets from mist reactor and gelled medium controls were measured for their shooting 

percentage (Eq 4.2), number of new shoots per plantlet (# shoot), rooting percentage (Eq 5.4), 

number of primary roots per plantlet (# roots), and hyperhydricity percentage (Eq 4.3). 

Detached 3-6th fully expanded leaves were sampled and imprints of their abaxial side were 
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made to measure stomatal function as described by (Correll and Weathers 2001b). Stomatal 

function was scored as open, partially open, closed (Figure 5.1). Closed stomata were deemed 

functional. Counts were made at 400× magnification at 5 positions on each sampled leaf, and 

2 leaves were sampled from each plantlet. The average of these 10 counts was then taken to 

represent each plantlet, and the average of 10 plantlets was taken to represent each reactor 

plantlet harvested from mist reactors and gelled medium controls were transplanted to 

soil:perlite (2:1 V/V) pots and ex vitro survival was measured after one week. 

5.2.12  Statistics  

All attachment experiments had four replicates. Medium adjustment and one-step 

micropropagation experiments had three replicates.  Data from all experiments was subjected 

to Students T test between ± PLL substrates, one-way ANOVA, and Duncan’s multiple range 

analysis by SPSS. 
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Figure 5.1 Stomata status at open (A), partially open (B) and closed (C). Bar: 50 µm. 

 

 Results and discussion 

5.3.1 Retention of manually chopped and applied leaf tissue  

It was initially uncertain if small pieces of leaf tissue could attach to PLL-coated strips. Using 

manually chopped and applied leaf pieces, there was a significant increase in retention 

percentage with PLL-coated PP sheets and N70 mesh compared to controls lacking PLL 

(Figure 5.2A). Regardless of PLL coating, leaf tissue retention rate was higher on N70 than 

on PP sheet (Figure 5.2A). Tissue binding kinetics showed a nearly linear increase in retention 

on both substrates as incubation time increased from 1 to 6 h (Figure 5.2B). This was different 

from the kinetics of cell binding, which showed a rapid interaction between cells and PLL 

(Davis et al. 2004; Fei and Weathers 2014).  

After 1 h of binding incubation, more than twice as many leaf tissues were retained on N70 

mesh than on PP sheets (Figure 5.2A). This was in contrast to the results using manually 

applied carrot cells (Fei and Weathers 2014).  

 

B A C 
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Figure 5.2 Retention of leaf tissue to substrates ± PLL. A, retention percentage of manually 
applied leaf tissue with 1 h incubation after 10 successive vertical washes; # compares +PLL 
vs. –PLL; * compares PP sheet vs. N70 mesh, N = 4, ± SE, p ≤ 0.05; B, kinetics of leaf piece 
retention Letters compare across different incubation times PP sheet (a, b, c) and N70 mesh 
(x, y, z), * compares PP sheet vs. N70 mesh, N = 4, ± SE, p ≤ 0.05; C, leaf tissue attached to 
+PLL substrate via filamentous trichome (arrow), bar: 250 µm.               
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Unlike spherical cells, differentiated tissues like leaves consist of complicated structures, so 

the retention of a piece of leaf tissue is a function of binding force of the structures interacting 

with the PLL-coated surface and the weight of the tissue piece. Microscopic observation 

showed that the A. annua leaf pieces were at least in part also attached to substrates via their 

filamentous trichomes (Figure 5.2C), which was similar to root attachment by root hairs to 

PLL-coated substrates (Towler and Weathers 2003). A. annua leaves have two types of 

trichomes: T-shaped filamentous and glandular (Duke et al., 1994). The T-shaped filamentous 

trichomes are long outgrowths on the leaf surface and give rise to a hairy appearance of leaves 

(Figure 5.2C). The higher tissue retention on N70 mesh than on PP sheet was thus probably 

because fine openings in the mesh structure further facilitated trichome anchorage.   

5.3.2 Quick dip retention vs. attachment: manually chopped vs. 
blenderized leaf tissue  

Since adherence of leaf tissue on PLL-coated substrates was deemed feasible, a “hanging 

garden” style of culture through quick dip inoculation was envisioned. Using manually 

chopped or blenderized leaf pieces, there was a significant increase of initially retained leaf 

FW with PLL-coated PP sheet and N70 mesh compared to controls lacking PLL (Table 5.2). 

Generally there was no difference in initially retained leaf FW between PP sheet and N70 

mesh for both chopping methods (Table 5.2). However, there was more initial retention of 

tissue pieces at higher tissue concentrations (100 and 50 g L-1) than at lower tissue 

concentrations (33 and 25 g L-1) regardless of chopping method or substrate type (Table 5.2). 

Quick dip tissue concentration, however, did not affect initial retention of manually chopped 
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tissues on PLL-coated N70 mesh (Table 5.2). Regardless of substrate type, PLL coating or 

tissue concentration, blenderized tissue showed significantly fewer initially retained tissues 

than manually chopped tissue (Table 5.2).  

Table 5.2 Quick dip retention of leaf tissue after 5-10 sec incubation 

Letters compare within columns for different biomass suspensions; # compares +PLL vs. –PLL; * compares 
manual chop vs. blender, N=4, p ≤ 0.05.  

Compared to controls lacking PLL, there was significantly more attachment of the initially 

retained tissues on PLL-coated substrates (Table 5.3). Most retained tissues on PLL-coated 

substrates remained attached after 24 h of misting regardless of substrate type or chopping 

method, suggesting the retained tissues were likely to remain on PLL-coated hanging strips 

during cultivation in a bioreactor (Table 5.3). For controls lacking PLL, attachment was 

greater on N70 mesh than on PP sheet, and tissues that were manually chopped also showed 

greater attachment than those from the blender (Table 5.3). The main difference between 

manually chopped and blenderized leaves was size, so variation in attachment was likely due 

to tissue size.  

Tissue 
Concentratio
n  
(g L-1) 

Manually chopped (mg FW)  Blenderized (mg FW) 
PP sheet N70  PP sheet N70 

−PL
L 

+PLL −PL
L 

+ PLL  −PL
L 

+ PLL −PLL + PLL 

100 Nd 316 b nd 197 a  nd 111 #* c nd 102 b c 
50 45 a 400 # b 58 a 330 # 

a 
 21* a 103 #* 

c 
25 * 

a 
126 #* 

c 
33 54 a 213 

#a,b 
46 a 316# a  28* a 51 #* b 32 a 74 #* b 

25 58 a 133 #a 57 a 196 # 
a 

 20* a 26 * a 19 * 
a 

36 * a 
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Table 5.3 Attachment of retained leaf tissue after 24 h in the mist reactor 

 Manually chopped (%) Blenderized (%) 
 −PLL + PLL −PLL + PLL 
PP sheet 37 a 87 # a 32 a 80 # a 
N70 mesh 85* b 97 # a 72 b 89 # a 

Letters compare between PP sheet and N70 mesh; # compares +PLL vs. –PLL; * compares manually chopped 
vs. blenderized, N=4, p ≤ 0.05. 

 

5.3.3 Quick dip, attachment and shoot regeneration of various sized shoot 
tissues   

To determine if the smaller size of blenderized leaf tissue correlated with its lower retention 

compared to manually chopped leaves, quick dip retention and attachment experiments were 

conducted using the four leaf sizes shown in Table 5.4. The tissue concentration for quick dip 

was 50 g FW L-1, and N70 was used as the binding substrate. As shown in Table 5.4, the 

retention FW on N70 + PLL was greatest in the >1 mm group, but was significantly reduced 

once the size decreased to < 0.5 mm. The finest pieces (0.15- 0.35 mm) showed lowest % 

attachment to N70 + PLL (Table 5.4).  

The blenderized leaf tissue was actually a mixture of the four sizes of tissues, so the initially 

retained FW of blenderized tissue was estimated by integrating the fraction of each size group. 

Using the numbers in Table 5.4, the calculated overall retained FW on PLL-coated N70 mesh 

was about 160 mg, which was very close to the experimental result (126 mg) under the same 

tissue concentration of 50 g FW L-1 during the quick dip (Table 5.2). It was posited that this 

reduced retention was likely the result of the smaller pieces having fewer intact filamentous 
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trichomes. The regeneration ability of leaf explants also progressively decreased as explant 

size decreased (Table 5.4), possibly due to mechanical damage during blending.   

Table 5.4 Adherence and shoot regeneration of various sizes of blenderized tissue 

Leaf 
tissue size 
(mm) 

% in 30 -
pulse 

mixture 

Initially retained tissue FW 
(mg) on N70 

% Attached, 24 hr post 
misting 

% new 
shoots 

−PLL  + PLL −PLL + PLL 
0.15-0.35  4 a 24 a 51 a 68 a 66 a 0.7 a 
0.35-0.5  4 a 30 a 50 a 82 a 89 b 2.8 b 
0.5-1  36 b 30 a 108 b 70 a 93 # b 11.3 c 
>1 56 c 47 b 216 c 83 a 96 # b 23.3 d 

To determine initially retained tissue, the tissue concentration for quick dip was 50 g FW L-1. Letters compare 
across various sizes; # compares +PLL vs. –PLL, N=4, p ≤ 0.05. 
 

5.3.4 Optimization of shooting and rooting medium for zero manual 
transfer between shoot proliferation and rooting stage 

The goal of one-step micropropagation in the mist reactor was to accomplish shoot 

proliferation, root development and in vitro acclimatization in one batch culture by shifting 

the nutrient medium and culture conditions. There would be no manual transfers. 

Unfortunately, the initial trials of one-step micropropagation in the mist reactor yielded 

callusing of shoot stems during the shoot proliferation stage and roots did not form unless the 

callus was excised prior to switching to the hormone-free rooting medium (RTM). Compact 

callus at the bottom of stems also inhibited root induction in Artemisia absinthium (Zia et al. 

2007). Others have shown that cytokinins (e.g. BA) in the medium generally inhibited root 

induction (Jarvis 1986) and having both BA and NAA in the medium induced callus formation 

on shoots (Jamaleddine et al. 2013; Sudha et al. 2012; Zia, et al. 2007). Root initials originate 

in stem but not callus tissue (Lane 1979), so root induction may be improved by reducing 
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callus formation during shoot proliferation. To reduce callus formation and improve root 

induction, the phytohormone and salt composition of shooting medium was investigated. In 

addition, the exposure time to different shooting media was investigated. 

As shown in Table 5.5, neither the strength of MS salts nor the incubation time for shoot 

proliferation affected the production of new shoots. Shoot proliferation remained constant as 

long as the phytohormones were ≥ 40% of the original concentration (Table 5.5).   

 
Table 5.5 Number of new shoots of A. annua upon direct transfer from shooting medium 

% of original  Full MS (SHM10-100a) ½ MS (SHM10-100b) 
PGR 
concentration 

1wk transfer 2 wk transfer 1wk transfer 2 wk transfer 

10 (SHM10) 1.3 x 1.4 x 1.2 x 1.2 x 
20 (SHM20) 1.8 x,y 1.7 x,y 1.9 y 1.7 x,y 
40 (SHM40) 2.2 y 2.0 y 2.1 y 2.1 y 
60 (SHM60) 2.2 y 2.2 y 2.3 y 2.1 y 
80 (SHM80) 2.3 y 2.3 y 2.4 y 2.2 y 
100 (SHM) 2.1 y 2.2 y 2.0 y 2.0 y 

PGR: plant growth regulator; SHM: shooting medium. SHM is the original shooting medium and served as the 
control for all tested shooting medium SHM10a,b-SHM80a,b. SHM10-80 have 10%, 20%, 40%, 60%, and 80% 
of the BA and NAA levels in SHM, respectively. Lowercase letters a and b within each level of SHM has either 
full (a) or ½ (b) strength MS salts with vitamins. Letters x and y compare across different hormone concentrations, 
N=3, p ≤ 0.05. 

On the other hand, none of the new shoots from full MS shooting medium had roots after 3 

weeks regardless of time of transfer (Table 5.6). Root development only happened with those 

explants previously cultured on ½ MS shooting medium containing phytohormones up to 60% 

of SHM when transferred on day 7 (Table 5.6). The majority of new shoots transferred on day 

14 had formed callus at the time of transfer and few roots were observed later on rooting 
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medium, suggesting the duration of exposure to BA and NAA during shoot proliferation also 

played a role in subsequent root induction. Taken together the results from Table 5.5 and 5.6, 

shooting time was adjusted to 7 days on ½ strength SHM in order to enhance root development 

without reducing shoot proliferation. The sucrose concentration of the adjusted shooting 

medium remained at 30 g L-1.  

Table 5.6 Rooting percentage of A. annua upon direct transfer from shooting medium 

% of original  Full MS (SHM10-100a, %) ½ MS (SHM10-100b, %) 
PGR 
concentration 

1wk transfer 2 wk transfer 1wk transfer 2 wk transfer 

10 (SHM10) 0 x 0 x 22.2 # * y 0 x 
20 (SHM20) 0 x 0 x 27.8 # * y 0 x 
40 (SHM40) 0 x 0 x 44.4 # * y 11.1 # y 
60 (SHM60) 0 x 0 x 33.4 # * y 16.7 # y 
80 (SHM80) 0 x 0 x 0 x 0 x 
100 (SHM100) 0 x 0 x 0 x 0 x 

PGR: plant growth regulator; SHM: shooting medium. SHM100 was the original shooting medium and served 
as the control for all tested shooting medium SHM10a,b-SHM80a,b. SHM10-80 have 10%, 20%, 40%, 60%, 
and 80% of the BA and NAA levels in SHM100, respectively. Lowercase letters a and b within each level of 
SHM has either full (a) or ½ (b) strength MS salts with vitamins. Letters x and y compare across different 
hormone concentrations, # compares between full and ½ MS and * compares between the time of transfer, N=3, 
p ≤ 0.05. 

To further improve rooting, NAA and IBA were tested in RTM. Both auxins were found to 

effectively induce root development in various cultivars of A. annua; NAA and IBA 

concentrations were selected based on prior studies (Alam and Abdin 2011; Gopinath et al. 

2014; Hailu et al. 2014; Han et al. 2005; Hong et al. 2009; Janarthanam et al. 2012; Lin et al. 

2011a; Sharma and Agrawal 2013). As indicated by Table 5.7, 0.25 µmol L-1 of NAA and both 

concentrations of IBA improved root initiation. There was no difference in root induction 

efficiency between the two IBA concentrations (Table 5.7).  
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Table 5.7 Rooting percentage of A. annua on different rooting medium 

Tested 
medium 

Auxin concentration 
(µmol L-1) 

Rooting percentage (%) 

RTM0 None 0 30.7 a 
RTM1x NAA 0.125 27.2 a 
RTM1y NAA 0.25 60.8 b 
RTM2x IBA 2.5 55.6 b 
RTM2y IBA 5 56.7 b 

Letters in column compare across different auxin concentrations, N=3, p ≤ 0.05. 
 

5.3.5 One-step micropropagation of A. annua by attachment to PLL-
coated substrates 

Propagation by attachment to PLL-coated strips was successfully achieved through somatic 

embryogenesis of carrot (Fei and Weathers 2014). When this concept was tested using nodal 

cutting inoculum followed by rooting, the majority of plantlets grew large and unfortunately 

fell off the strips when harvested 28 days after inoculation (Figure 5.3A). The adherent force 

between these large plantlets (Figure 5.3B) and PLL-coated strips was not adequate to retain 

their increased weight. The zig-zag design of strips marginally helped plantlet retention. In 

contrast, when inoculated with embryogenic cells, the binding force was strong enough and 

resulting plantlet weight was low enough to enable retention of rooted plantlets (Fei and 

Weathers 2014).  
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Figure 5.3 One-step micropropagation of A.annua in mist reactor by attachment to PLL-
coated strips. A: rooted plantlets harvested on PLL-coated polypropylene strip with zig-zag 
seam; B: rooted plantlets harvested from the mist reactor after one-step culture; C: rooted 
plantlets harvested from gelled medium control; D: representative photo of stomata on 
abaxial side of leaf harvested in mist reactor; E: representative photo of stomata on abaxial 
side of leaf harvested in gelled medium. Bars in D and E: 50 µm. 

Although the process still requires optimization, one-step culture in the mist reactor is feasible 

and plantlets showed better growth than in gelled medium controls (Figure 5.3B and C, Table 

5.8). Compared to gelled medium controls, better growth in the mist reactor was probably due 

to increased availability of nutrients in liquid medium as suggested by other reactor systems 

(Adelberg and Fári 2010). Regardless of similar stomatal developmental status (Figure 5.3D 

and E, Table 5.8), ex vitro survival from the mist reactor also appeared greater than from gelled 

medium controls (p=0.08). This was probably because plantlets from gelled medium were too 

small to survive transplant into soil, suggesting that in vitro culture duration on gelled medium 

needs to be longer than in the mist reactor.  

A B 

C 

D E 
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When considering bioreactors for shoot cultures, a TIS is frequently used because they yield 

high amounts of biomass with high quality (Adelberg 2006; Hahn and Paek 2005; Roels, et 

al. 2005; Roels et al. 2006; Welander, et al. 2014; Yan, et al. 2010; Yan, et al. 2013; Yang and 

Yeh 2008). Similar to a TIS, the mist reactor offers an alternate option for micropropagation 

as shown in this and prior studies (Correll, et al. 2001).  

Table 5.8 A. annua plantlets from one-step micropropagation in the mist reactor 

 Mist reactor  Gelled medium 
% new shoot 98 * 83.3 
# Shoots 6.8 * 2.9 
Shoot length (cm) 3.7 * 1.8 
% root 55.8 43.3 
# primary roots 3.7 * 2 
% hyperhydricity 16.3 16.7 
% closed stomata 93.7 96.4 
% ex vitro survival 89  65 
Estimated time in days 
from inoculum to soil-
ready plants 

28 45 

* indicates significant difference between the mist reactor and gelled medium controls, N=3, 
p ≤ 0.05 

Bioreactors usually save labor by increased culture scale and also by circumventing otherwise 

piecemeal handling in gelled medium (Alister, et al. 2005; Lorenzo, et al. 1998; Takayama 

and Akita 2006). In an estimate of labor time, one-step micropropagation in the mist reactor 

yielded nearly three times the plantlets with half the labor time compared to traditional 

methods (Appendix S6). By using more vertical space in the reactor, greater productivity 

should also be possible. 
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 Conclusions 

A. annua leaf tissues attached to PLL-coated polypropylene sheeting and nylon mesh via 

filamentous trichomes. Most of the initially retained tissue remained attached to the substrate 

after a 24 hr misting treatment in the mist reactor, suggesting the feasibility of a “hanging 

garden” style of culture. Although automation of leaf tissue preparation by blending is possible, 

the timing has to be carefully controlled to prevent over production of very fine tissue pieces 

<0.5 mm, which have a reduced capacity for both attachment capacity and shoot regeneration. 

These results show that if large enough, leaf explants will bind to PLL-coated materials and 

produce shoots and roots, thereby enabling development of alternative cultivation 

technologies for possible use in micropropagation. In a final test of one-step micropropagation 

through attachment to PLL-coated strips, single nodal tissues attached to PLL-coated strips 

and developed into acclimatized rooted plantlets ready for direct transplant into soil. This 

proof of concept study should aid automation of this labor intensive industrial process.  
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Chapter 6 Conclusions and future work 

 Conclusions 

Traditional micropropagation is extremely labor intensive. Automation of in vitro cultures in 

bioreactors offers great potential to save labor and meanwhile increase production efficiency. 

The artificial environment used for in vitro culture (light, relative humidity, CO2 etc) is critical 

for in vitro plantlet quality and ex vitro survival, and thus needs to be controlled. A mist reactor 

was used to study plant growth and development under various environmental conditions 

towards the production of healthy plantlets ready for soil transplant in one step from 

inoculation. In addition, a 3D type of cultivation via surface attachment of explants to 

vertically hanging strips inside the mist reactor was also investigated to maximize productivity 

with a minimal footprint. The major conclusions are: 

 The mist reactor using a disposable bag offered the potential for one-step 

micropropagation either from cells via embryogenesis or from nodal explants via shoot 

multiplication to fully rooted plantlets. The plantlets developed from nodal explants were 

also demonstrated ready for direct soil transplant when harvested from the mist reactor.  

 

 Using hanging strips, inoculum attached to poly-L-lysine (PLL) coated strips and 

developed in situ into rooted plantlets: 

− Embryogenic cells attached efficiently and the attachment was improved by 

eliminating ions in the incubation medium. 

− Embryo development was more or less uniform up and down the strip.  
138 

 



 

− Despite producing some considerable biomass, young plantlets developed from 

embryos did not fall off the hanging strips. 

− Manually chopped or blenderized shoot tissues attached to PLL-coated polypropylene 

or nylon via non glandular trichomes after substrates were immersed into an explant 

suspension. 

− Although nodal explants developed into fully rooted plantlets, the majority fell off the 

hanging strips by harvest due to their large size. 

 

 

 

 

 

 

 

 

Figure 6.1 One step micropropagation of A. annua from nodal cuttings in the mist reactor 

 

 Compared to gelled medium controls, plant development was better in the mist reactor in 

terms of somatic embryo development, shoot proliferation, stomatal function and biomass 

yield. 

 

Acclimatization 
Medium: rooting medium 
Misting cycle:  
30 sec on/30 min off 
Light: 50 µmol m-2·s-1 
RH: ~80 % 
CO2: 0.16 % (v/v) 
Ventilation: 0.1 vvm 

Rooting 
Medium: rooting medium 
Misting cycle:  
15 sec on/14.75 min off 
Light: 50 µmol m-2·s-1 
RH: > 90% 
CO2: 0.16 % (v/v) 
Ventilation: 0.1 vvm 

Shooting 
Medium: shooting medium 
Misting cycle:  
45 sec on/59.25 min off 
Light: 50 µmol m-2·s-1 
RH: > 90% 
CO2: 0.16 (v/v) 
Ventilation: 0.1 vvm 

Inoculum                Shoots                       Soil-ready plantlets 

 

Change medium and reactor conditions 

  
 

   
 
 

  
7 days                              12 days             9 days 
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 Hyperhydric shoots of A. annua not only appeared swollen, brittle and dark, they also had 

fewer glandular trichomes, artemisinin and flavonoids than normal shoots. 

 

 The headspace environment was critical for development of in vitro plants: 

− Increasing irradiance, ventilation and CO2 in the headspace improved somatic 

embryogenesis, shoot proliferation, root development, stomatal function and ex vitro 

survival.  

− With the above improvements in headspace conditions, hyperhydricity in the mist 

reactor was also reduced. 

 

 Mist feed rate had a significant effect on plant development: 

− Increasing misting frequency stimulated embryo development and root induction. 

− Decreasing misting frequency improved shoot multiplication and reduced 

hyperhydricity in the mist reactor. 

 

 To achieve one-step micropropagation from nodal explants to whole plants, culture 

medium and process were optimized by: 

− reducing by 50% the phytohormones and MS salts in the shooting medium,  

− reducing the culture time on shooting medium from 14  to 7 days, and  

− adding auxins to the rooting medium to improve root initiation. 

The ability to control all aspects of the culture environment in the mist reactor enabled 

combining the otherwise discrete process steps common to micropropagation resulting in a 
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one-step process for producing high quality plants ready for field conditions. Together with 

the surface attachment technology, the mist reactor offers an alternative labor-saving 

approach to traditional micropropagation. 

 

 Future work  

There are several aspects that need to be further investigated regarding implementing the 

one-step micropropagation with 3D growth into a production option. 

 

6.2.1 Improving tissue immobilization in mist bioreactor 

Although somatic embryos remained attached to PLL-coated substrates and developed into 

fully rooted plantlets, nodal explants developed quite large shoots that did not remain attached, 

succumbing to gravity. To address this, either smaller rooted plantlets should be grown by 

spending less time in the reactor, or current surface adhesion technology should be improved 

to provide a stronger adhesive force between plants and substrates.  

 

Current attachment technology mainly relies on electrical attraction between negatively 

charged plant tissues and positively charged substrates through the PLL-coating. When plant 

shoots grow well and large, the adhesive force may not be strong enough to counteract gravity. 

To increase adhesion, alternative attachment technology bearing different adhesion chemistry 

could be used. For example, large algae, e.g. Fucus serratus, produce a strong adhesive to 

anchor them to a variety of surfaces under the water. Shellfish like mussels, barnacles and 

oysters, also exude highly sticky proteins together with other inorganic compounds to help 
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them stay attached to rocks, boats and other objects in the water (Burkett et al. 2010; Sever et 

al. 2004; Silverman and Roberto 2007; Wilker 2010). Bio-adhesives that mimic the adhesive 

ability of large algae (Bitton and Bianco-Peled 2008) or shellfish (Meredith et al. 2014; Wilker 

2014; Zhong et al. 2014) could potentially be used to coat substrates possibly by improving 

plant tissue adhesion. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2 Proposed immobilization methods for micropropagation in the mist reactor. A, 
plantlets inside pockets on hanging strips; B, plantlets on a hanging spiral substrate; C, 
plantlets on designated positions where adhesives are loaded prior to inoculation. 

Physical entrapment can also be used to enhance plant tissue retention. For example, the 

polypropylene strips can be hot-seamed with pockets or small slashes to “catch” explants 

during inoculation by tissue immersion and then hold the inoculum until they develop into 

plants (Figure 6.2A). Plants can also grow on a spiral support hanging inside the mist reactor 
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mist in 

    
  

  
  

  

mist out 

 
 

 
 

B 

  

  

    

mist in 

mist out 
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(Figure 6.2B). Use of a spiral support provides each plant with a slight horizontal plane with 

a small angle, and thus plants may be better retained.   

 

6.2.2  Automation of other steps in micropropagation 

To warrant producing single nodes during explant preparation, shoot tissues were manually 

chopped. Although a 4-blade blender was also used to chop shoot tissues, the chopping was 

random and thus yielded a mix of a various sized inocula. A different mechanical chopping 

apparatus is thus needed to produce more uniform explants. For example, a food processor 

with multiple blades along the vertical axis should be tested to chop shoot tissue.  

 

Soil transplant can also be automated if plants grow at designated positions on adhesive 

surfaces and/or physical entrapments (Figure 6.2A, C).  

 

6.2.3  Exploring the use of the mist reactor for production of leafless 
structures and facilitating the screening of genetic modified plants 

In addition to somatic embryos and shoot tissues, the mist reactor is also a good candidate for 

production of leafless structures like bulblets, protocorm-like-bodies and microtubers possibly 

by inoculating into hanging mesh bags. Investigation of in vitro growth of these structures in 

the mist reactor could provide a device for controlling environments for mass production of 

healthy leafless structures. One-step protocols can then be established for such species.  

 

Because of its flexible control on growth conditions, the mist reactor can also be used to 

expedite the screening process after genetic modification. Genetically transformed explants 
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could be positioned on adhesive surfaces or pockets and then developed into plants 

subsequently subjected to screening analysis.  

 

The mist reactor has been shown to have the potential for one-step micropropagation from 

inoculum to fully acclimatized plants ready for soil transplant. The labor associated with 

shooting, rooting and acclimatization transfer steps can therefore be eliminated. The one-step 

culture method shown in this study should also be tested with a variety of other plant species.   
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Figure S1 Rooted somatic embryos of carrot grown under different ventilation and CO2 
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Table S2 Effect of misting cycle on shooting percentage of various inocula 

Condition % new shoots in reactor  % new shoots in gelled medium 

N IN L LP  N IN L LP 
0V1C1I3S2M 81.7 U 

a 
21.1 T 
a 

1.8 R a 9.6* S a  86.4 T 
a 

16.4 S a 0.9 R a 0.8 R a 

1V1C1I3S2M 88.3 U 
a 

21.7 T 
a 

2.6 R 
a,b 

8.5* S a  88.6 T 
a 

20.6 S a 1.5 R a  1.9 R a 

1V1C1I3S1M 86.6 T 
a 

28.2 S 
a,b 

5.4* R 
b,c 

6.1* R a  88.2 T 
a 

21.1 S a 1.2 R a 1.7 R a 

Ventilation (V) was 0 and 0.1 vvm for 0V and 1V, respectively. Misting cycle (M) was 0.75 min on/59.25 min 
off and 0.5 min on/29.5 min off for 1M and 2M, respectively. Light intensity (I) was 15 µmol m-2•s-1 (1I) and 
sucrose level (S) was 30 g L-1 (3S). Upper case letters (R,S,T,U) compare among different explants, lower case 

letters (a,b,c,) compare across different conditions, * compares between reactor and control, p ≤ 0.05. 
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Figure S4 Picture of abaxial side leaf stomata acclimatized under different conditions.  A, 0 
vvm reactor; B, 0 vvm gelled medium; C, RH100 reactor; D, RH 100 gelled medium; E, 
RH52 reactor; F, RH52 gelled medium; G, RH52/11 reactor; H, RH 52/11 gelled medium; I, 
stepped down feed reactor (RH100); J, stepped cycle reactor (RH100 for the first 5 days and 
then RH11). Bars in A-J: 50 µm. 
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Figure S5 Picture of one-week-old ex vitro plantlets after acclimatization under different 
conditions. A, 0 vvm reactor; B, 0 vvm gelled medium; C, RH100 reactor; D, RH 100 gelled 
medium; E, RH52 reactor; F, RH52 gelled medium; G, RH52/11 reactor; H, RH 52/11 
gelled medium; I, stepped down feed reactor (RH100); J, stepped cycle reactor (RH100 for 
the first 5 days and then RH11).  
  

B A D C 

E F 

G H 

I J 

191 
 



 
 Table S6 Comparison of operational time between the mist reactor and gelled medium  
 Mist reactor  (min) Gelled medium (min) 
Medium preparation 30 50 * 
Inoculation 20 30 
Shift from SHM to RTM 5 # 30 @ 
Removing cultures 5 20 
Vessel washing 5 5 
Total 65 135 
# harvested plantlets  43 15 

SHM: adjusted shooting medium (1/2 strength of PGRs and MS salt); RTM: rooting medium supplemented 
with NAA. *Gelled medium need aliquot and solidified in culture containers prior to inoculation. # Only the 
media supply line was switched and cultures remained in mist reactor. @ Cultures in SHM were transferred to 
RTM one by one in sterile hood.  
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