
Control-flow Integrity for Real-time Embedded Systems

by

Nicholas Brown

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2017

APPROVED:

Professor Robert J. Walls, Major Thesis Advisor

Professor Craig A. Shue, Thesis Reader

Professor Craig E. Wills, Head of Department



Abstract

As embedded systems become more connected and more ubiquitous in mission- and safety-critical

systems, embedded devices have become a high-value target for hackers and security researchers.

Attacks on real-time embedded systems software can put lives in danger and put our critical in-

frastructure at risk. Despite this, security techniques for embedded systems have not been widely

studied. Many existing software security techniques for general purpose computers rely on assump-

tions that do not hold in the embedded case. This thesis focuses on one such technique, control-flow

integrity (CFI), that has been vetted as an effective countermeasure against control-flow hijacking

attacks on general purpose computing systems. Without the process isolation and fine-grained

memory protections provided by a general purpose computer with a rich operating system, CFI

cannot provide any security guarantees. This thesis explores a way to use CFI on ARM Cortex-R

devices running minimal real-time operating systems. We provide techniques for protecting runtime

structures, isolating processes, and instrumenting compiled ARM binaries with CFI protection.
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Chapter 1

Introduction

Modern real-time embedded systems have countless applications, varying in complexity. There are

simple devices like thermostats or coffee makers, more complex systems like smartphone radios,

and highly complex health and safety critical systems like jet engine controllers or automotive

braking controllers. In safety critical systems especially, there is great risk when manufacturers

release faulty devices. Failures in these systems can cause injury, and the designers of the system

will be held liable [4]. Often these faults are in software and can be exploited by an intelligent

adversary [5,6].

The most pernicious type of attack allows an attacker to execute arbitrary code on a device.

Such attacks, commonly called control-flow hijacking, manipulate the execution of a program by

redirecting control-flow transfers to either attacker-supplied code (e.g., stack smashing [7]) or useful

code sequences already in the program (e.g., return-oriented programming [8]). State-of-the-art

defenses against control-flow hijacking are largely based on the concept of control-flow integrity

(CFI) [9]. Intuitively, CFI compares the behavior of a running program to a predefined model.

If the program’s behavior deviates from what is expected, an error is thrown. In particular, CFI

monitors control-flow transfers and only allows a transfer if it is accepted by a precomputed control-

flow graph (CFG) of the program. CFI is a subset of a larger category of security techniques called

memory safety. While full memory safety is possible, the performance overhead (nearly 200% in

some cases) makes it impractical for most applications [10,11]. CFI is an approach to memory safety

on a small subset of memory, namely code pointers, which allows for significantly lower overhead

as opposed to full memory safety.

While myriad CFI implementations exist for general-purpose systems (e.g., desktops and smart-

phones), real-time embedded systems present several unique challenges for CFI. First, many em-

bedded systems do not have the hardware or software support for task isolation. Such isolation

is common in general-purpose systems and relied upon by existing CFI solutions. Second, the

scheduler in a real-time operating system (RTOS) can interrupt any instruction and can return to

any arbitrary instruction. This makes the scheduler a high degree node in the CFG, which Carlini

et al. have shown severely weakens the effectiveness of CFI [12]. Third, the majority of existing

CFI solutions are for x86-based hardware, while embedded systems are commonly ARM-based, an
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architecture which has several challenges for CFI, such as multiple instruction sets and the lack of

a dedicated function return instruction. Finally, real-time embedded systems generally have lim-

ited resources and strict timing requirements, limiting the amount of storage available for runtime

structures required for CFI (e.g., shadow stacks). CFI instrumentation must adhere to the timing

constraints in place by the real-time system.

We propose a CFI scheme for real-time embedded systems that addresses these challenges and

prevents control-flow hijacking attacks. For our initial efforts, we focus on ARM-based systems run-

ning the FreeRTOS real-time operating system, but we anticipate that our system will be portable

to any RTOS running on an ARM microcontroller, since the majority of the implementation is de-

signed to be operating system agnostic. Existing approaches to CFI on embedded systems, such as

C-FLAT [13] and TrackOS [14], move away from the traditional CFI approach but introduce new

time-of-check to time-of-use vulnerabilities. Traditional approaches depend on process isolation

in the presence of multiple threads, but most embedded systems do not have this isolation. Our

work takes a more traditional approach to CFI, while adding the necessary protections to support

multiple threads without true isolation using virtual memory. The contributions of this work are:

• Protection mechanisms for runtime data structures used by CFI. We protect the

instrumentation required for CFI as well as the shadow stack, which is used to augment the

CFG at runtime.

• Binary instrumentation for ARM. We create a reference implementation for ARM-based

embedded systems running the FreeRTOS real-time operating system.

• Technique for process isolation on ARM systems without virtual memory. We

devise a low-overhead method for isolating critical parts of a process on ARM systems where

all processes run in the same address space.

• A binary patching implementation for ARM. We create a binary patching framework

that allows scripting modification of precompiled ARM binaries to add features like CFI.

1.1 Outline

The remainder of this thesis is formatted as follows. Chapter 2 contains background information

about ARM, CFI, and real-time operating systems. Chapter 3 describes our reference implementa-

tion for single-threaded, bare metal ARM systems. Chapter 4 describes the modifications made to

FreeRTOS to support our bare metal implementation across multiple processes in the same address

space. Chapter 5 evaluates the security and performance overhead of our CFI schemes. Finally,

Chapter 6 summarizes this work and concludes the thesis.
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Chapter 2

Background and Related Works

Before we can discuss the low-level details of control-flow integrity instrumentation on embedded

ARM processors, we discuss the relevant background and related works which this thesis builds

upon. We start with a brief overview of the embedded real-time ARM architecture, Cortex-R.

Then, we discuss control-flow integrity, its variants, and its limitations. Finally, we explore some of

the basic principles of real-time operating systems (RTOS), specifically FreeRTOS and the relevant

differences between FreeRTOS and general purpose operating system kernels like Linux.

2.1 ARM Architecture

The ARM architecture is unique in how flexible it is. There are ARM chips designed for general

purpose systems called the Application Profile (Cortex-A), high performance real-time systems

called the Real-time Profile (Cortex-R), and low-power embedded systems called the Microcontroller

Profile (Cortex-M). While all three of these profiles share a similar instruction set architecture (ISA),

the underlying hardware is different to support different requirements. Cortex-A systems are often

multi-core with high clock speeds, and they have all of the necessary hardware to efficiently run

general purpose operating systems. Cortex-R processors are generally single core (although the

more expensive models are multi-core), and they have special interrupt controllers and caching

mechanisms to support the low-latency required by real-time systems. Cortex-M processors are

single-core, with hardware designed for minimal power usage and security.

Table 2.1 highlights more of the differences between the different ARM lineups. In addition to

belonging to ARM Cortex-A/R/M, ARM processors can be refined further based on the version of

the architecture they support. At the time of this writing, modern ARM cores are either ARMv7

or ARMv8, with ARMv8 being widely adopted for Cortex-A models, while the ARMv8 versions

of Cortex-R and Cortex-M processors have been announced. ARMv8 for Cortex-R (abbreviated

ARMv8-R) introduces a new hypervisor mode that allows use of multiple real-time operating sys-

tems as well as efficient process isolation. While this feature could be highly beneficial for security

purposes, these processors have not been made available yet, the remainder of this paper will be fo-

cusing on the ARMv7-R architecture. When ARMv8-R becomes more widely available, we believe
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Architecture Bit-width Profile Features

ARMv7-A 32 Application Multiple cores, MMU, TrustZone
ARMv8-A 32/64 Application Multiple cores, 64-bit support, MMU, TrustZone,

hardware-accelerated cryptography
ARMv7-R 32 Real-time Single- or multi-core, tightly coupled caching, MPU,

real-time clock
ARMv8-R 32 Real-time Single- or multi-core, tightly coupled caching, MPU,

real-time clock, optional virtual memory, bare-metal
hypervisor mode

ARMv7-M 32 Microcontroller Single-core, low-power, Thumb2 ISA only, MPU
ARMv8-M 32 Microcontroller Single-core, low-power, Thumb2 ISA only, MPU,

TrustZone-M

Table 2.1: ARM processors and their features [2]

that the hypervisor mode will strengthen the security benefits this work provides (see Section 5.3.1

for more details).

Even after the release of ARMv8-R, the current ARMv7-R devices will still be in use. It would be

impractical and expensive for manufacturers to replace all existing ARMv7-R hardware. Firmware

updates, on devices that support them, are a much more practical way to add new features or fix

bugs.

2.1.1 ARM/Thumb/Thumb2 Instruction Sets

Unlike other common architectures, ARM chips can operate on several different instruction sets.

Most modern ARM cores support the ARM, Thumb, Thumb2, and ThumbEE ISAs. Some older

ARM cores also support the Jazelle DBX (Direct Bytecode eXectution), which provides hardware

support for executing Java bytecode. Additionally, ARM provides a standard interface for inter-

acting with coprocessors such as hardware floating point units and the ARM Memory Protection

Unit (MPU). Because our work exists mostly at the assembly language and machine code level, we

need an understanding of the low level details of the ARM instruction set.

All ARM devices have 16 32-bit registers (R0-R15) and two status registers. Of the 16 32-bit

registers, 4 have special purposes. R15 is reserved for use as the program counter (PC), R14 is the

link register (LR), R13 is the stack pointer (SP), and R12 is the intra-procedure-call scratch reg-

ister (IP). By convention, R0-R3 are used for function arguments, R4-R11 are used for temporary

variables, and R0 is used for function return values. Registers R0-R7 are called the Lo registers,

and R8-R15 are called the Hi registers. The Hi registers cannot be accessed by most 16-bit Thumb

instructions, but they can be accessed by 32-bit Thumb instructions. All registers can be accessed

from the ARM instruction set. The current program status register (CPSR) contains flags repre-

senting the current processing mode and status bits for conditional operations. The saved program

status register (SPSR) is used during exception handling to restore the CPSR upon returning to

normal processing.
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Mode Shared Registers Banked Registers

System & User R0-R15, CPSR None
FIQ R0-R7, CPSR R8-R15, SPSR

Supervisor R0-R12, CPSR R13-R14, SPSR
Abort R0-R12, CPSR R13-R14, SPSR
IRQ R0-R12, CPSR R13-R14, SPSR

Undefined R0-R12, CPSR R13-R14, SPSR

Table 2.2: Register sets for ARM processing modes [3]

The ARM Procedure Call Standard [15] dictates that ARM subroutines must preserve the

values of R4-R11 and LR. This means that if the subroutine calls any other subroutines using the

branch-and-link instruction, it must push LR to the stack before the subroutine call.

2.1.2 Processing Modes

ARM processors can have up to nine different processing modes. On Cortex-R processors, there

are only seven processing modes: User, System, Supervisor, Interrupt, Fast Interrupt, Abort, and

Undefined. User and System modes are normal processing modes, while the other five modes are

different types of exception states. In this section, we describe the main characteristics of these

modes. Many of the registers are shared between modes, but there are some exceptions where

the processing mode has its own banked registers that do not interfere with the registers in other

modes. The banked registers for each mode are shown in Table 2.2. Our work depends on various

ARM processing modes to perform operations at different privilege levels. Specifically, we use User,

System, Supervisor, and IRQ mode.

User and System mode are similar, except System mode runs in a privileged state, allowing it

to access regions of memory marked as privileged-only by the MPU. Unlike the other states, the

majority of processing should be performed in either User or System mode.

When an ARM processor boots, the first code that executes is the reset routine. In the reset

routine, the processor mode is set to Supervisor mode, which is a privileged mode that is designed

for use as kernel mode for an operating system. Additionally, supervisor mode is used when

handling a software interrupt (svc) instruction. This instruction can be used to implement system

calls that need elevated privileges. Supervisor mode, along with all of the other exception modes,

has a banked stack pointer register (SP svc), link register (LR svc), and saved program status

register (SPSR svc). These allow Supervisor mode to have its own stack, while also preventing

it from modifying the previous mode’s link register. The banked registers cannot be accessed by

other processing modes. The SPSR is used to restore the previous program status upon exiting the

exception state.

When external hardware generates an interrupt request, the processor will handle the interrupt

in either Interrupt or Fast Interrupt Mode. Like Supervisor mode, both interrupt modes have

banked SP, LR, and SPSR registers. The main difference between FIQ and IRQ modes is that FIQ
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Figure 2.1: Simplified memory map for RM46L852 processor [1]

mode also has its own banked R8-R12, which means the FIQ service routine can use these registers

for processing without saving them to the stack first. This allows FIQ requests to be handled much

faster, which has various uses for fast data transfers or other tasks that need low latency responses.

FIQ mode is also the only mode that can interrupt IRQ mode by default.

There are two kinds of aborts in ARM, prefetch aborts and data aborts. Prefetch aborts occur

when the processor attempts to execute an instruction after a failed instruction fetch. This will

occur when the processor tries to fetch an instruction from memory that is not executable, such as

peripheral registers or regions marked non-executable by the MPU. Data aborts occur when the

processor attempts to read or write data to memory that the memory system does not allow. In

particular, this would include an attempt to write to flash memory from the CPU or an attempt

to write to privileged memory from User Mode. In a general purpose operating system, an abort

would likely result in a segmentation fault. In an embedded context, the default action is to enter

an infinite loop or reset the CPU. Abort mode can be used in debugging, since the default handler

will allow the developer to view the register state, while LR abt will indicate which instruction

caused the abort.

The final mode that ARMv7-R processors can use is Undefined mode. This mode is entered

when the processor attempts to execute an opcode that it does not recognize. The intuition behind

this exception state is to allow developers to implement instructions entirely in software, albeit at

a high performance cost. For example, if a compiler does not support a certain coprocessor, the

Undefined exception could allow the programmer to still use that coprocessor in a generic way.
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2.1.3 Memory

All modern ARMv7 processors have a 32-bit address space. The layout of this memory is manufac-

turer and processor dependent, but in general, there are three important sections: non-volatile flash

memory, volatile RAM, and memory-mapped peripheral registers. Flash memory stores program

code and constants, and it may be used for non-volatile storage of data between reboots, although

special procedures are required to write to flash memory. RAM is used for all volatile storage and

may be used for executable code, if allowed by the Memory Protection Unit (MPU). The periph-

eral registers are used to configure various hardware on the chip, such as timers, analog-to-digital

converters, and direct memory access controllers. All of these regions of memory exist in the same

address space. Without protections, these regions could be exploited by an attacker to perform

arbitrary read and write operations.

The reference system used for this work is a Texas Instruments Hercules RM46L852, an ARM

Cortex-R4F processor. The full memory map for this processor is shown in Figure 2.1. We can see

that this processor has 1.25 MB of non-volatile program flash, 192 KB of RAM, and an additional

64 KB of flash for emulated EEPROM storage. These three sections of actual memory do not

fill up the entire 32-bit address space. Some of the additional sections include memory-mapped

peripherals, mirrored images of flash, and reserved sections that may be used internally by the

processor or not used at all.

Each of the sections of this address space has hardware limitations as to whether or not they can

be written, read, or executed. Some sections will cause aborts, while others may just have no effect

when trying to read or write. For more fine-grained memory permissions, most ARM Cortex-M

and Cortex-R processors come with a Memory Protection Unit (MPU). The MPU enables setting

up permissions for up to 12 regions of memory. For each region, there are three sets of permissions

to be set: user mode access, privileged mode access, and execute permissions. For example, a

region can be configured to be read-only for user mode, read and write for privileged mode, and

non-executable (in any mode). Our work depends heavily on the MPU to create some isolation

between privileged and non-privileged modes. MPU regions can be split into 8 subregions, where

each subregion can be selectively disabled or enabled. Additionally, the main regions can overlap;

the overlapped region will take on the permissions of the highest priority region. MPU violations

result in a data abort, allowing the processor to reset or perform some kind of error correction.

While not as powerful as a full memory management unit, the MPU can be used to set up some

separation between user mode and kernel mode, although it was designed more as a safety feature

than a security feature.

2.2 Control-Flow Integrity

Control-flow integrity (CFI) defends against control-flow hijacking attacks by ensuring that a given

program follows a precomputed model of execution, called a control-flow graph (CFG). The intuition

behind CFI is that if we are able to protect indirect control flow transfers, that is, any change in
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control flow computed at runtime, we prevent arbitrary code execution. Unlike other memory

safety techniques [10,11], CFI is fast and each CFI check runs in constant time. In the remainder

of this section, we discuss the intricacies of CFI, including the general implementation details and

existing variants of CFI.

2.2.1 Threat Model

CFI schemes attempt to prevent exploitation under a powerful attacker model. The attacker is

able to modify anything in writeable memory, including any data on the stack, heap, or in global

memory. The attacker cannot, however, modify any read-only memory. Specifically, the attacker

cannot modify program code, which is a common assumption, since most operating systems mark

the program code section as being only readable and executable. Additionally, for CFI to be secure,

an attacker must not be able to execute from any writeable memory.

The attacker’s goal is to subvert the expected control flow of a program by modifying code

pointers stored in memory or registers. A code pointer is any pointer that points to executable

code. A function pointer is a type of code pointer. By modifying a code pointer, the attacker is

modifying the target of an indirect branch instruction, which is any branch instruction where the

target is calculated at runtime, rather than being statically inserted by the compiler. In ARM, an

indirect branch is one of two kinds of instructions: (1) a branch instruction with a register operand,

or (2) any operation with the program counter (PC) register as the destination. These instructions

are enumerated in Table 2.3.

2.2.2 How CFI Works

All CFI schemes depend on two components: a control-flow graph (CFG) and binary instrumenta-

tion. Additionally, secure CFI schemes require a protected shadow call stack [12]. CFI implemen-

tations must accomplish three tasks:

1. From the CFG, extract a labeling scheme for all indirect jump targets.

2. At each indirect jump target in the binary, insert a label.

3. At each indirect jump instruction, insert instrumentation that ensures the jump target con-

tains the expected label.

Assume for now that we have a CFG (we will discuss generating the CFG later). The CFG

is a directed graph where the nodes represent basic blocks in a program, and the edges represent

legal control-flow transfers from one basic block to another. Most of the nodes will be the source

of one or two edges, since the majority of control-flow modifying instructions are direct calls or

conditional branches, which have one or two possible targets. However, when a basic block ends in

an indirect call or branch, there are often many possible targets for that control-flow transfer. The

CFG generation algorithm will hopefully have reduced the total number of possible targets for that

instruction. Each of the targets for that indirect branch are considered equal in the labeling scheme.
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Mnemonic Instruction Description

bx Rm Branch and exchange Branch to target address Rm, and exchange in-
struction set based on least significant bit (LSB)
of Rm. If LSB is set, switch to Thumb mode, else
switch to ARM mode

blx Rm Branch, link, and ex-
change

Branch to target address Rm, set link register, and
exchange instruction set based on LSB of Rm

ldm{mode} Rm{!},
reglist

Load multiple Load into registers in reglist, starting at address
in Rm. If Rm! is specified, write back the final
address into Rm. Mode specifies the addressing
order: ia (increment after), ib (increment before),
da (decrement after), db (decrement before). The
pseudo instruction ldmfd is for loading from a
full-descending stack. It is the same as ldmia.

pop reglist Pop from stack Same as ldmfd sp!, reglist

rfe Rn{!} Return from exception Pop PC and CPSR off of the stack pointer spec-
ified by Rn to return from an exception state. If
Rn! is specified, write back new stack top to Rn.

Table 2.3: Different indirect jump operations in ARM

bubblesort outer_loop inner_loop

return

lt

gt

checkswap

swap

Figure 2.2: Example CFG of a sorting function

In general, a unique label is selected for each set of targets that has the same set of sources. This

effectively results in a more permissive enforced CFG, but many CFI schemes take this approach

because it offers improved performance, allowing label checks to be performed in constant time.

For example, imagine a sorting function that takes as an argument a pointer to a function that

will perform the comparison between two elements. A possible CFG for this function is shown in

Figure 2.2. The inner loop will call either the lt or gt function. Since these two blocks have the

same source block, they would be given the same label for CFI instrumentation.

There are two goals to CFI instrumentation: (1) inserting label checks at all indirect control-
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flow transfers, and (2) labeling all possible indirect jump targets. To do this, every indirect jump

is replaced with a few assembly instructions that attempt to read a label from some constant offset

from the branch target address. The instrumentation then compares the label read from memory

with a hardcoded label. If the labels match, the instrumentation continues with the original branch.

If they do not match, then the code either jumps to some error handling code or exits, depending

on the use case. In the case of an embedded system, the crash would be a good opportunity to

safely shut down the system, preventing a control-flow violation from resulting in damage to an

entity in the physical world.

The labels for CFI instrumentation must be chosen carefully. If the label appears coincidentally

anywhere else in memory (except for a valid jump target), an attacker could circumvent CFI by

overwriting a code pointer with an address that is the correct offset from the location where the label

appears. Since an indirect jump may have multiple legal targets, this means that even a correct

stateless CFI implementation may allow jumps that were not intended by the programmer. We will

discuss this limitation further in Section 2.2.5. The other condition that each label must satisfy is

that it should be side-effect free. Since the label is stored in executable code, the instrumentation

should either ensure that the label is never executed, or it should be a side-effect free instruction.

In the original CFI implementation, the x86 prefetch instruction was used to encode the label [9].

Another indirect jump that CFI instrumentation needs to handle differently is function returns.

Unlike indirect calls, where there may be multiple targets, most functions should always return

to their callsite. With a few exceptions, return addresses are stored on the stack, and can be

overwritten by buffer overflows or other memory corruption techniques. To combat this, we instead

store return addresses in a separate shadow stack in protected memory. The shadow stack should

not be writeable except during the function prologue and epilogue. Unlike the other components

of CFI, the shadow stack is not static. It is a dynamic component that enhances the precision of

the CFG at runtime.

This section described the basic concepts behind implementing CFI. For a more concrete

implementation example for ARM processors, see Chapter 3.

2.2.3 CFI Variations

Since the original CFI publication in 2005, several variations of CFI have emerged. Some of

these variations trade security for speed, while others may forgo exploit prevention to increase the

probability of exploit detection.

The original CFI design can be described as forward-edge CFI with a shadow stack. Forward-

edge CFI refers to the instrumentation of indirect calls and branches to constrain the number of

possible targets. A purely forward-edge CFI approach would either ignore function returns (the

backward-edge), or it would treat each return like another indirect branch. In the former case, all

return address corruption attacks would be possible. In the latter case, an attacker would be able

to use a function called from multiple locations as a way to make the control-flow jump between the

various callsites of the function. The shadow stack ensures that functions return to their callsite,
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although this can degrade performance by adding a dynamic element to CFI.

Apart from choosing how to protect the backward-edge, another way that CFI implementations

can vary is in their control-flow graph. CFG generation in the presence of indirect branches is an

unsolved problem, since resolving indirect branches is believed to be as hard as pointer analysis.

As a result, CFGs used to create the labeling scheme for CFI are imprecise. Because of this, and

for performance reasons, some CFI approaches use a coarse-grained CFG. Instead of attempting

to resolve all indirect branches targets, a coarse-grained CFG may adopt a simple policy for branch

targets. For example, a coarse-grained policy for return instructions would be that the instruction

preceding the return address is a call instruction. For function calls, a coarse-grained policy could be

that the function at the target address matches the return type and argument types of the function

pointer. While coarse-grained CFGs are simpler to generate and can make instrumentation faster,

is has been shown that coarse-grained policies are not secure [12].

Fine-grained CFGs, by contrast, attempt to resolve indirect jumps to the smallest set of legal

jump targets. Due to the difficulty of pointer analysis, fine-grained approaches, we cannot construct

a fully-precise CFG. A fully-precise CFG is both complete and sound. For an individual node in

the CFG, a complete analysis will not include any branch targets that are not actually taken by the

program, and a sound analysis will always accept a legal branch target. In other words, completeness

refers to eliminating false positives, while soundness refers to eliminating false negatives. False

positives reduce security, while false negatives could break program functionality.

The CFG is a static component of CFI. Because it is precomputed and stateless, it makes CFI

instrumentation faster and more deterministic with good cache locality. Unfortunately, even if we

could create a fully-precise CFG, the overall precision of CFI could still be increased with knowledge

of program state. This is where dynamic elements like shadow stacks can be used to enhance the

security guarantees of CFI, at the cost of performance. While shadow stacks are a simple solution

to protect function returns, normal indirect branches with a large target set could be exploited to

branch to an unexpected location given the current program state. These kinds of branches are

called dispatchers and they could allow attackers to perform return-oriented programming (ROP)

attacks, where useful sequences of existing instructions are chained together by return instructions

and a maliciously crafted stack. Each sequence of instructions is called a gadget, and gadgets

are linked together in ROP chains to perform more complex computation. Some of the proposed

CFI schemes reduce the effectiveness of dispatchers by using more program context. For example,

some schemes record multiple control flow transfers, and periodically compare the resulting paths

against the CFG. While this can result in a more precise measurement of control flow, it can allow

an exploit to occur before detection, which may be undesirable depending on the application.

With all of these variations in mind, the theoretical golden standard of CFI is fully-precise CFI

with a shadow stack. If we were able to create a sound and complete CFG, this variation would

provide the best tradeoff between security and performance, since control flow cannot be exploited,

label checks and the shadow stack have low overhead compared to more dynamic approaches.
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Original CFI [9] binCFI [16] Modular CFI [17] MoCFI [18] KCoFI [19] C-FLAT [13] TrackOS [14]

Prevent Exploit Y Y Y Y Y N N
Detect Exploit Y Y Y Y Y Y Y
Forward-edge Inline Inline Inline Inline Inline Record Record
Backward-edge Shadow stack Inline Inline Inline Inline Record Record
Granularity Fine Fine Fine Fine Coarse Fine Fine
Static/Dynamic Both Static Static Both Static Dynamic Dynamic
Architecture x86 x86 x86 ARM x86 ARM AVR
AIR 99.13% [16] 98.86% [16] 99.99% [17] Unknown 98.18% [19] Unknown Unknown

Table 2.4: Different CFI implementations and their features

2.2.4 Existing CFI Implementations

All of the variations discussed in Section 2.2.3 have been used in one or more CFI implementations.

Table 2.4 highlights some of the CFI schemes relevant to this work and shows some of the defining

features.

The original CFI proposal is a fine-grained approach with a shadow stack. Much of the theory

behind CFI has not changed, and the original proposal remains one of the most secure and efficient

variants today. The reference implementation actually took more of a coarse-grained approach,

but the researchers identified that a more restrictive CFG would be more secure. This scheme was

originally developed for 32-bit Windows XP, and has since been adopted by Microsoft as a compiler

option called Control Flow Guard, which was introduced in Windows 8.1.

More recent CFI schemes are designed to work on precompiled binaries in the presence of

dynamic linking. One of these implementations, binCFI [16], achieves similar security to the original

CFI implementation without relying on relocation information from the compiler. One of the

important outcomes of that work was a new metric for describing the precision of the control-flow

graph: average indirect target reduction (AIR). The intuition behind the metric is that without

CFI, an indirect branch can target any instruction, and the CFG reduces the size of the target

set for each indirect branch. Equation 2.1 shows how AIR is calculated, where n is the number of

indirect branches, Tj is the set of calculated targets for indirect branch j, and S is the number of

possible targets in an unprotected program.

1
n

n

∑
j=1

(
1−
|Tj|
S

)
(2.1)

While AIR is not a perfect metric for evaluating CFI, it provides us with a quantitative mea-

surement that gives us a way to sanity check our implementation. Acceptable AIR values are

usually around 99% for a fine-grained practical implementation, while an extremely coarse-grained

implementation (such as limiting indirect branches to any valid instruction boundary), could see

an AIR of about 80%, depending on the architecture.

The majority of CFI schemes were developed for the x86 architecture. With mobile devices

becoming more ubiquitous, some security research efforts, including CFI research, moved towards

targeting the ARM architecture. Two of the first CFI schemes for ARM, MoCFI [18] and Control-
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flow Restrictor [20] were developed for Apple iOS devices. These CFI schemes identified and

overcame some of the challenges associated with developing a CFI scheme on an ARM-based system.

The main architectural challenges for CFI on ARM include:

• No dedicated return instruction

• Instructions can operate on the program counter

• Multiple instruction sets in a single binary

The original ARM CFI implementations only targeted iOS smartphones, but with the rise of the

Internet of Things, ARM devices with no operating systems became more relevant. These embedded

systems have qualities that make CFI a good potential hardening technique. For example, programs

running without an operating system have no dynamic linking, which simplifies CFG generation.

Additionally, some of the newer ARM Cortex-A and Cortex-M devices are shipping with a trusted

execution environment called TrustZone, which could be used for measurement and attestation.

Control Flow Attestation (C-FLAT) does exactly this; it leverages ARM TrustZone to implement

a CFI scheme designed for embedded systems without operating systems [13]. Unlike traditional

CFI, C-FLAT’s instrumentation does not perform jump target checking. Rather, it records control-

flow events, and periodically verifies the validity of each path from within a secure environment.

Unfortunately, this dynamic approach introduces time-of-use to time-of-check vulnerabilities. C-

FLAT will detect a control-flow violation, but it may not detect it until after malicious code has

executed.

As we move on to discuss CFI on real-time ARM systems in Chapters 3 and 4, we are most

interested in providing a better solution than C-FLAT and TrackOS, while taking a more traditional

CFI approach. These two systems sacrifice some important safety-oriented security qualities of

traditional CFI to avoid interfering with real-time functionality.

2.2.5 Limitations of CFI

As we have alluded to in previous sections, CFI is not a perfect defense against control-flow hijacking

attacks. There are some vulnerabilities that depend on the implementation details. Additionally,

recent research has shown that even against fully-precise CFI with a shadow stack, certain types

of gadgets are available and can be used to completely subvert CFI.

In coarse-grained CFI, few unique labels are used in the instrumentation, and a specific indirect

branch may have many incorrect targets in its target set. It is possible that the branch may only

have one or two intended targets, but the coarse-grained policy gave it ten targets. This means

that the majority of targets should not be legal, but an attacker would be able to execute the eight

or nine unintended targets in the target set. In fact, while coarse-grained policies do decrease the

number of possible ROP gadgets, a control-flow hijacking attack is still trivial.

Dynamic CFI implementations that rely on recording control-flow events suffer from a time-of-

use to time-of-check vulnerability. Because these systems only periodically attest that the control-

flow events followed the CFG, they can allow an exploit to occur before detecting it. If an attacker

13



exploits a buffer overflow, the system will record the return to the corrupted address, and then

continue executing. Only when it runs its verification task will it detect that an illegal control-flow

event occurred. By that point, however, the damage will have been done, since the exploit already

executed.

Even with fully-precise CFI with a shadow stack, programs can be vulnerable to control-flow

bending, a type of attack that includes a new exploitation technique called printf-oriented pro-

gramming [12]. In this kind of attack, the attacker must be able to corrupt the arguments to a

function like printf. It turns out that by controlling the arguments to a format string function,

an attacker can gain Turing-complete computation without ever violating the CFG. This kind of

vulnerability can be generalized as an argument-corruptible indirect call site (ACICS) gadget [21].

By being able to control the arguments to the function being called indirectly, it is possible for an

attacker to gain arbitrary execution, especially if the ACICS gadget allows a call to system or the

exec family of functions.

2.3 Real-Time Operating Systems

Often the main purpose of an embedded system is to monitor or control physical systems. For

example, an embedded system may be controlling an electric motor in an automobile or it could

be working alongside an application processor to provide some low-level communication protocol.

In these cases, certain procedures must be performed in real-time, meaning that after an event

occurs, the processor must perform the appropriate computation by a certain deadline. There are

two kinds of real-time systems, soft real-time and hard real-time, where the former can tolerate

missing some deadlines, while the latter cannot. In hard real-time systems, a missed deadline puts

the entire system into an unknown—and often unsafe— state. To facilitate writing software with

real-time requirements, embedded system designers often use a real-time operating system (RTOS).

Depending on the processor being used, RTOSs can vary greatly in their complexity. On more

powerful hardware, like ARM Cortex-A processors, real-time processing can be facilitated by using

Linux compiled with SCHED DEADLINE or SCHED RT, which replace Linux’s Completely Fair Scheduler

(CFS) with real-time schedulers. On processors designed for embedded use, like the Cortex-R4F

used for this work, the hardware often fails to meet the minimum requirements for Linux. For

reference, in 2014, a minimally configured Linux kernel still required at least 8 MB of program

flash and 1.6MB of RAM [22], which clearly will not work on our 1.25 MB of flash and 192 KB

of RAM. The alternative to real-time Linux is using an embedded RTOS such as FreeRTOS,

VxWorks, or µC/OS, which are designed to run on devices with storage space and memory on the

scale of kilobytes, rather than megabytes or gigabytes.

In an embedded RTOS, processes are referred to as tasks. Tasks are most similar to a system

service or daemon in a general purpose operating system; they generally do not exit and they

execute periodically, often sleeping until they are signalled to do some work. Depending on the

RTOS, there are different ways that the OS can schedule tasks. Often there is some flexibility
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in choosing the type of scheduling; the most significant option being choosing between preemptive

and nonpreemptive scheduling. In preemptive scheduling, the scheduler will run periodically during

a timer interrupt, allowing tasks to be switched out at any time. In nonpreemptive scheduling,

a task must willingly yield to the scheduler. The benefit of nonpreemptive scheduling is that it

makes it much easier to reason about the schedulability properties of the system. A real-time

system designer may use modeling software to prove that the system will not miss deadlines, and

it is much simpler to model the system if the scheduler only runs at deterministic points in the

application.

2.3.1 FreeRTOS

One of the most common real-time operating systems is FreeRTOS. Designed to be as minimal

as possible, this free and open source RTOS can fit in as small as 5 KB of program flash and can

fit in under 1 KB of RAM, depending on the features used [23]. FreeRTOS is highly portable,

with architecture specific ports existing for most major architectures. FreeRTOS, while minimal

in nature, provides a few rich features such as mutexes, semaphores, shared queues, and software

timers.

Tasks and Memory Layout

Tasks in FreeRTOS can be viewed as lightweight threads sharing the same address space and

heap, but separate stacks. The kernel views tasks as an array of circular doubly linked lists of

Task Control Blocks (TCBs), which each list containing all tasks of a certain priority. The TCB

for each task maintains information including the pointer to the top of its stack, priority, and

task state (ready, blocked, suspended). Optionally, this structure can include information about

synchronization objects (e.g. mutexes) in use by the task, or it could maintain tracing information,

if enabled.

At boot time, FreeRTOS only allocates a few global variables and a heap. When tasks are

created, the TCB and task stacks are allocated in the FreeRTOS heap, which is shared between all

tasks by default. Since the libc-provided alloc family of functions is not appropriate for real-time

use, FreeRTOS provides its own dynamic memory allocation scheme. While this dynamic allocation

can be used, static allocation is preferred since it is deterministic and does not require a critical

section to access the shared heap.

Porting

The majority of FreeRTOS is written in architecture independent C code, but each port to a new

architecture requires a few special files to be implemented. Since we will be discussing modifying

FreeRTOS in Chapter 4, we will briefly look at these files now. There are three files that are

required: portmacro.h, port.c, and portasm.S.
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The first file that the FreeRTOS core depends upon is a C header file called portmacro.h, which

creates the type abstractions and a few macros for architecture-specific actions like disabling and

enabling interrupts. The type abstractions include defining StackType t and BaseType t, which

represent the stack element type and word size, respectively. Additionally, this file defines some

constants like the stack growth direction and addresses of peripheral registers.

The second file is a C source file called port.c. This C file must define important procedures like

the stack initialization for a task, the real-time clock configuration, and the real-time tick interrupt.

Even within one type of processor like the Cortex-R4, different vendors may have different ways to

configure hardware peripherals.

The last file is portasm.S, which contains port-specific assembly code. Two of the most impor-

tant parts of this file (which we will be discussing modifying in Chapter 4) are the portSAVE CONTEXT

and portRESTORE CONTEXT assembly macros. The scheduler uses both of these macros to switch

context between tasks. Since this procedure requires modifying specific registers, it must be imple-

mented in assembly language rather than C.
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Chapter 3

Control-Flow Integrity on ARM Cortex-R

Before implementing a CFI scheme on an ARM-based real-time operating system, the logical first

step is creating a working CFI system on a bare metal ARM program. Since the existing ARM

implementations either require an operating system or are unable to handle both Thumb and ARM,

we implement our own instrumentation and shadow stack. The rest of this chapter outlines the

design goals, system model, threat model, and approach to our implementation. The evaluation of

our implementation is detailed in Chapter 5.

3.1 Design Goals

The main goal of any CFI scheme is to make it difficult or impossible for an attacker to achieve

arbitrary code execution. Our main design goal is to develop CFI instrumentation for the ARM

and Thumb2 instruction sets that restricts control flow to prevent arbitrary code execution. As

with previous work, we do not protect against arbitrary memory corruption vulnerabilities; rather

we focus on preventing the exploitation of code pointer corruption. Our system will focus on the

static label checks and runtime additions that CFI provides, rather than focusing on the CFG

generation aspect of CFI. While it is shown that a CFI scheme is only as secure as its CFG is

precise [12,16,21,24], we look to the literature for control flow graph generation [17,25,26], since

CFG generation is beyond the scope of this project.

Performance and resource utilization are important aspects for any security software, but they

are especially critical for embedded software. Performance overhead should be kept to a minimum,

but most importantly, performance overhead should be deterministic. Embedded devices often

have tight time constraints where guarantees about meeting these constraints are dependent on

deterministic, bounded execution time. On general purpose computers, resource utilization is often

overlooked; resources like disk space and RAM are abundant, so security software can often add

significant resource usage without much penalty. On embedded devices, however, limited code

storage and RAM means we need to take special care to minimize the additional code and runtime

memory requirements for CFI.

There have been various theoretical and practical attacks against fine-grained CFI, including
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Control Jujutsu [21] and Control-flow Bending [12]. While we recognize these attacks, we do not

attempt to prevent them. Due to differences in programming paradigms for embedded systems, we

believe that the likeliness of these attacks being possible on the majority of embedded devices is

low. We discuss this more in Section 5.3.1.

3.2 System Model

The system that we are targeting with this work is the ARM Cortex-R processor, unlike previous

work which targets the Cortex-A architecture [13,18,20]. The real-time features of the Cortex-R

mean that it does not have virtual memory, and all memory protections are limited to the MPU

hardware. Additionally, we assume that the application running on the processor can contain both

ARM and Thumb instructions, and apart from any initialization code, any processing outside of

an interrupt context is in User mode. Finally, as a requirement for CFI, at least two regions of the

MPU will be used to disable writing to executable code while also preventing execution of writeable

memory. The remaining regions can be used for any special memory protections required by CFI

(e.g. shadow stack).

3.3 Threat Model

We assume the normal threat model for CFI implementations. We assume a powerful attacker

model; without protections, the attacker can arbitrarily read and write to any memory at any time.

This means that to meet the minimum requirements for CFI, we first need to apply memory pro-

tections. After memory protections are applied, the attacker is still able to read and write arbitrary

memory at any time, but attempts to access to privileged-only memory from user mode will cause

the device to crash. Since there are only two privilege levels, any code running in privileged mode

must be critical to CFI and must not be vulnerable to memory corruption attacks. On general

purpose systems this would be near-impossible to verify since privileged (i.e kernel) code contains

millions of lines of code, but in embedded systems, these sections of code are generally small, man-

ually verifiable, and do not accept arbitrary external inputs. These sections are primarily used

for handling hardware interrupts. While we cannot entirely discount vulnerabilities in privileged

sections of code, it is much more likely that the bug causing the vulnerability would be fixed due

to faults occuring without any malicious intent.

3.4 Approach

As discussed in Section 2.2, CFI implementations have two major parts: CFG generation and binary

instrumentation. Since sound and precise CFG generation is believed to be undecideable [21], we

do not attempt to improve upon existing CFG generation algorithms such as those presented in [25,

26], and instead focus on the binary instrumentation aspect of CFI. Our binary instrumentation
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Figure 3.1: Overview of our CFI system

Figure 3.2: Overview of binary patching system

comprises two parts: static defenses and runtime defenses. The overview and workflow of this

system is shown in Figure 3.1.

3.4.1 Binary Instrumentation

One of the major design choices for this CFI implementation is the instrumentation type. There

are two options: modify the compiler and add instrumentation at compile time or patch the binary

after compilation. While the compiler-based approach would likely have better performance, the

patching approach is able to add CFI to a compiled binary without needing source code. One

benefit of being able to instrument a compiled binary is that we can retrofit security to an existing

device that may never receive updates. We chose the patching approach due to the vast numbers of

proprietary embedded systems that ship with precompiled firmware without source code available

for recompilation. An overview of our binary patcher is shown in Figure 3.2

To perform the binary instrumentation required for CFI, we use the binary patching approach.

In this approach, the main idea is to instrument instructions by replacing them with trampolines

to new code appended to the unused flash memory section. The naive version of this algorithm is

shown in Algorithm 1.

Unfortunately, real ARM machine code has some properties that make this patching more

difficult depending on the instructions being patched. There are two main cases where patching
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Algorithm 1: Patching algorithm
input : A binary B, Address to instrument Ai, target address At , instrumentation code I
output: Patched binary with added trampoline and instrumentation

1 instruction← B[Ai]; // Save binary instruction at instrumentation address
2 I← instruction + I; // Prepend saved instruction to instrumentation
3 B[Ai]← branch to At ; // Insert branch at instrumentation address
4 B[At ]← I; // Insert instrumentation at target address

becomes more complicated. The first is when the instruction being instrumented is a 16-bit Thumb

instruction. The branch address required by the trampoline procedure has to be 32-bits, since

ARM branches are PC-relative and we need to be able to encode a large offset to the unused flash

section. The second case is when the instrumented instruction contains a PC-relative operation,

since the new location of the instruction will have a different PC value.

To show how to handle these cases, we look to following toy example. Imagine we are trying

to instrument the foo() shown in Listing 3.1. We want to instrument the function prologue, the

indirect call, and the function epilogue. Looking at the disassembly of foo() when compiled in

Thumb mode, we identify the instructions we need to instrument, shown in Listing 3.2.

Listing 3.1: C function to instrument

1 int foo(int a, int b) {

2 int (*func[2])(int, int) = {add, sub};

3 static unsigned int i = 0;

4 return func[i++ % 2](a, b);

5 }

Listing 3.2: Selected portions of disassembly for foo() function

1 0x192: push {r4, r7, lr} #

2 0x194: sub sp, 20 # Function Prologue

3 0x196: add r7, sp, 0 #

4 ...

5 0x1e6: add r3, r3, r4 #

6 0x1e8: blx r3 # Indirect Call

7 ...

8 0x1f0: mov sp, r7 #

9 0x1f2: pop {r4, r7, pc} # Function Epilogue / Return

In the function prologue, CFI requires that we push the return address to the shadow stack as

well as embed a label according to the CFG. We need to replace 6 bytes of the function to encode

both a 32-bit branch and a 16-bit label, as shown in Listing 3.3. We branch to the code shown in

Listing 3.4, which modifies the original stack push operation to remove the link register from the
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Listing 3.3: Rewritten version of foo() function

1 0x192: b.w 0x13f60 # New prologue branches to CFI section

2

3 0x196: <label> # Insert label after branch

4 ...

5 0x1e6: bl 0x13f80 # Replace indirect call and previous instruction with

6 # branch to CFI section to do label checking

7 ...

8 0x1f0: b.w 0x13f98 # New epilogue branches to CFI section

register list, pushes the link register to the shadow stack, and returns to the instruction following

the label placed in the original function prologue.

Listing 3.4: Function prologue instrumentation

1 0x13f60: push {r4, r7} # Copy instructions from original prologue, but

2 0x13f62: sub sp, 20 # remove link register from the push register list

3 0x13f64: add r7, sp, 0

4 0x13f66: push {r0} # Push r0 since we will need it

5 0x13f68: mov r0, lr # Copy link register value into r0

6 0x13f6a: svc 0 # Call ss_push from supervisor mode (system call)

7 0x13f6c: pop {r0} # Restore r0 value

8 0x13f6e: b.w 0x198 # Branch back to original function, skipping over label

Listing 3.5: Indirect call instrumentation

1 0x13f80: add r3, r3, r4 # Copy instruction from before branch

2 0x13f82: push {r0, r1} # Push r0 and r1 since we will need them

3 0x13f84: ldrh r0, [r3, 3] # Load the label (halfword) from 3 bytes after branch target

4 0x13f86: movw r1, <label> # Load the expected label into r1

5 0x13f88: cmp r0, r1 # Compare r0 and r1

6 error:

7 0x13f8a: bne error # If not equal, enter infinite loop

8 0x13f8c: pop {r0, r1} # Restore r0 and r1

9 0x13d8e: bx r3 # Perform indirect jump

The indirect jump at address 0x1e8 in Listing 3.2 is a branch-link-and-exchange instruction with

a register operand. This is a 16-bit indirect call, so we replace it and the preceding instruction with

a direct branch-and-link operation. By using the branch-and-link operation, we ensure that the

return address is copied into the link register for use by the called function. In the instrumentation

code shown in Listing 3.5, we perform a label checking operation based on the target of the indirect

call. If the labels match, we continue with the indirect call, but if not, we enter an infinite loop.

The function epilogue needs to reverse the operations done by the function prologue. Namely,
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we need to restore registers pushed to the stack previously, and we need to restore the return

address from the shadow stack. To do this, we again replace the two 16-bit instructions with a

32-bit branch instruction. In the instrumentation shown in Listing 3.6, we start by popping the

return address off the shadow stack and moving it into the link register. We then modify the

original pop instruction to remove copying of the link register into the program counter (since we

removed pushing the link register in the prologue). Finally, we return using a branch-and-exchange

to the link register.

Listing 3.6: Function epilogue instrumentation

1 0x13f98: mov sp, r7 # Perform pre-return operation that we overwrote

2 0x13f9a: push {r0} # Push r0 so we can use it for return address

3 0x13f9c: svc 1 # Call ss_pop from supervisor mode (system call)

4 0x13f9e: mov lr, r0 # Copy return value from ss_pop to link register

5 0x13fa0: pop {r0} # Restore r0

6 0x13fa2: pop {r4, r7} # Perform original pop operation, without popping into pc

7 0x13fa4: bx lr # New return instruction

To implement this instrumentation, we use the Capstone1 disassembly engine, the pyelftools2

ELF file parser, and the Keystone3 assembler. Capstone provides a powerful disassembly and

instruction decomposition framework that makes it easy to identify the registers modified by any

instruction. We search the executable for indirect branches and instructions that indirectly modify

the program counter register (such as a load multiple operation where PC is a destination register).

After enumerating the instructions that need instrumentation, we follow the simple procedure

outlined in Algorithm 1 to generate the instrumentation. Finally, we use the Keystone assembler

to compile the instrumentation code to machine code, and write the patched code to the binary

file. We follow the same procedure for function prologues, epilogues, and indirect branch targets

until we have a fully instrumented binary.

At a high level, the resulting binary follows the format shown in Figure 3.3. The code being

instrumented is in the .text section, and the instrumentation goes into a new section called .cfi,

as shown in Figure 3.4. Both of these sections are stored in flash memory, and are not modifiable

at runtime.

3.4.2 Shadow Stack

To implement a shadow stack, there are only two main requirements: a block of free memory and

a way to protect this memory from unwanted access. On ARM Cortex-R, the best way to protect

this memory is to make it inaccessible from the User processing mode, but allow read and write

from the Supervisor mode. The procedure to perform shadow stack essentially requires creating a

1http://www.capstone-engine.org/
2https://github.com/eliben/pyelftools
3http://www.keystone-engine.org/
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Figure 3.3: Input and output of the binary patching
program

Figure 3.4: Connection between the new .text sec-
tion and the .cfi section

system call interface using the ARM Supervisor call (svc) instruction.

The Supervisor call instruction takes one operand, an immediate value representing the function

number. When it executes, the svc instruction triggers an interrupt on the processor. The handler

for this interrupt must determine the function number by reading the opcode of the software

interrupt instruction. The ARM assembly code function to do this is shown in Listing 3.7.

Listing 3.7: Supervisor call handler

1 do_syscall:

2 stmfd sp!, {r9,r10,r12,lr} # Store registers

3 mrs r9, spsr # Move SPSR into general purpose register

4 tst r9, 0x20 # Occurred in Thumb state

5 ldrneh r9, [lr, -2] # Yes: load halfword and

6 bicne r9, r9, 0xFF00 # extract function number field.

7 ldreq r9, [lr, -4] # No: load word and

8 biceq r9, r9, 0xFF000000 # extract function number field.

9 # r9 now contains SWI number

10 cmp r9, 2 # Range check

11 ldr r 10, table # Load address of table

12 ldrls pc, [r10, r9, lsl 2] # Jump to the appropriate routine.

13 b svc_out_of_range # Branch to error condition if number out of range

14

15 table:

16 .word jump_table

17

18 jump_table:

19 .word ss_push

20 .word ss_pop

The actual shadow stack implementation is simple. We declare an array of bytes, ensuring that

it is aligned to the size of an MPU region. For our reference implementation, we use a 256 byte

shadow stack. The C definition of the shadow stack is shown in Listing 3.8. Upon system startup,
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the MPU is configured to make the shadow stack readable and writeable by privileged code, and

not accessible at all by User mode code. Additionally, the shadow stack is set non-executable, like

the rest of RAM. Shadow stack operations require a system call to switch to Supervisor mode,

which is the mode for handling a software interrupt exception. Depending on the function required,

we either perform a simple stack push or stack pop operation, and return to user mode. The short

ARM assembly code functions for the shadow stack operations are shown in Listing 3.9.

Listing 3.8: Shadow stack type definition

1 typedef struct shadow_stack {

2 void *stack_top;

3 void *stack_base;

4 uint32_t size;

5 } shadow_stack;

6

7 volatile shadow_stack *current_ss;

Listing 3.9: Shadow stack operations

1 # Input: r0 containing value to push to shadow stack

2 # Returns: void

3 .type ss_push, %function

4 ss_push:

5 ldr r9, current_ss_const # Load current shadow stack pointer

6 ldr r10, [r9] # Load shadow stack top

7 stmfd r10!, {r0} # Push r0 to shadow stack

8 str r10, [r9] # Store new top of shadow stack

9 exit_syscall # Syscall exit macro

10

11 # Input: void

12 # Returns: value at top of shadow stack -> r0

13 .type ss_pop, %function

14 ss_pop:

15 ldr r9, current_ss_const # Load current shadow stack pointer

16 ldr r10, [r9] # Load shadow stack top

17 ldmfd r10!, {r0} # Pop from shadow stack to r0

18 str r10, [r9] # Store new shadow stack top

19 exit_syscall # Syscall exit macro

20

21 # Constant pointer reference to current_ss

22 current_ss_const .word current_ss
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Chapter 4

CFI Integration into FreeRTOS

With a working CFI implementation for bare-metal ARM processors, we change our focus to inte-

grating this instrumentation into an embedded application running FreeRTOS. With FreeRTOS,

we now have an added complication: multiple threads running in the same address space with no

isolation. The remainder of this chapter outlines the design goals, system model, threat model, and

approach for integrating CFI into FreeRTOS. The evaluation for this system will be discussed in

Chapter 5.

4.1 Design Goals

The design goals for CFI integration into the FreeRTOS operating system are essentially the same

as those discussed for the bare metal implementation in Section 3.1. The main difference between

the bare metal version and FreeRTOS is context switching and multithreading. This means that we

can no longer assume that CFI checks are atomic operations, introducing the possibility of a time-

of-check to time-of-use vulnerability. In the original bare metal implementation, CFI labels were

loaded from memory into registers, and the label checking operation never stored any critical data

in memory. Based on our threat model, this meant that an attacker could not tamper with the CFI

check itself. In the presence of context switching, however, registers with CFI critical information

(the two registers with labels and the register storing the branch target) could be stored in memory

at any point during the CFI check.

Given this new vulnerability, the main goal of this CFI implementation is to prevent the time-

of-check to time-of-use vulnerability by making CFI checks appear to be atomic. The easiest way

to do this is to disable interrupts during CFI checks, but the additional latency for real-time tasks

is undesirable. Instead, we leverage the limited available memory protections to ensure that saved

context is safe from corruption.
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4.2 System Model

Like the design goals for this system, the system model remains mostly unchanged from the bare

metal model in Section 3.2. The hardware remains the same, but we now assume that the software

contains a real-time operating system, adding multithreading with no address space isolation be-

tween threads. We are still working on an ARM Cortex-R processor with mixed ARM and Thumb2

instructions. In terms of privileged execution, we assume that tasks run in User mode, while the

scheduler runs in IRQ mode, one of the privileged modes.

4.3 Threat Model

The threat model for the FreeRTOS CFI implementation is the same as discussed in Section 3.3. The

attacker has arbitrary read and write access to the memory at any time. Now that context switching

is within the system model, this gives the attacker a powerful attack against the unchanged bare

metal implementation. As mentioned in Section 4.1, a time-of-check to time-of-use vulnerability in

CFI checks is now exploitable under this attacker model.

4.4 Approach

The challenge with integrating our single-threaded, bare metal ARM implementation into an RTOS

like FreeRTOS is that we now have multiple processes running in the same address space. Each

process, or task as they are called in FreeRTOS, has its own stack, but there is no isolation

preventing one task from writing to another task’s stack at runtime. There is a FreeRTOS port

that uses the MPU to prevent this, but it incurs a lot of overhead for context switching. The

FreeRTOS-MPU port essentially makes it so that when a task is running, it can only read and

write to its own stack. This makes it difficult to have shared resources between threads in common

multithreaded programming paradigms, like shared queues with producer and consumer threads.

We feel that this isolation scheme places too many restrictions on the way that FreeRTOS

tasks can behave, so we take a slightly more permissive approach to creating isolation. While our

approach will allow tasks to write to another task’s stack, it will not allow overwriting a task’s

saved context. The main intuition behind this is that forward-edge CFI and the shadow stack

will prevent any control-flow exploit from executing in every case except when a task has been

switched out during a CFI check. If this happens, the registers being used for the check will be

saved into unprotected memory, allowing a well-timed exploit to overwrite the memory containing

the CFI check registers. With this vulnerability, the attacker could overwrite the register containing

the label or the register containing the indirect branch target. This time-of-check to time-of-use

vulnerability is a common race condition in multithreaded programs, and the traditional CFI threat

model does not take this into account.

One solution would be to disable interrupts during the CFI checks, but there are two reasons

why this is not ideal. First, disabling interrupts and enabling interrupts both require an instruction.
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Making CFI checks have to execute two more instructions adds overhead and increases the space

required for instrumentation. The second reason is that any time interrupts are disabled, we are

introducing a new source of latency for real-time tasks. Even in non-preemptive systems (where

the scheduler only runs when a task willingly yields), other real-time sensitive hardware interrupts

could be negatively affected by disabling interrupts frequently.

As an alternative to disabling interrupts during every CFI check, we propose storing the saved

context in the task’s shadow stack, rather than on the unprotected regular stack. The scheduler

already runs in privileged mode with interrupts disabled, so we do not incur additional overhead

from the Supervisor call instruction. To do this, FreeRTOS needs to be modified to support multiple

shadow stacks, which means modifying the Task Control Block (TCB) structure, the task creation

procedure, and the scheduler.

4.4.1 Shadow Stacks

Before modifying FreeRTOS to add a shadow stack to each task, we need to statically allocate a

block of memory to use for the shadow stacks. The C definitions and declarations are shown in

Listing 4.1. By statically allocating the memory and aligning it to the size of a shadow stack, we

can more easily use the MPU to protect the region, since all regions must be aligned to the size of

the region. The shadow stack operations have not changed from those shown in Listing 3.9.

Listing 4.1: C type definition and declaration for multiple shadow stacks

1 static union {

2 struct {

3 StackType_t ss_data_arr[NUM_TASKS][SS_SIZE_WORDS];

4 shadow_stack ss_arr[NUM_TASKS];

5 } ss_data;

6 uint32_t words[SS_SIZE_WORDS * NUM_TASKS] __attribute__ ((aligned (SS_SIZE_BYTES * NUM_TASKS)));

7 } shadow_stack_data;

8

9 // For use by the FreeRTOS task creation procedure

10 StackType_t next_ss = 0;

11 StackType_t (*ss_data_arr)[SS_SIZE_WORDS] = shadow_stack_data.ss_data.ss_data_arr;

12 shadow_stack *ss_arr = shadow_stack_data.ss_data.ss_arr;

13

14 // For MPU initialization

15 const void *ss_data_block = (void*)&(shadow_stack_data);

16 const StackType_t ss_data_size = sizeof(shadow_stack_data);

17

18 // To keep track of the current shadow stack

19 volatile shadow_stack *current_ss;
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4.4.2 FreeRTOS Tasks

With a block of memory allocated for the shadow stacks, we need to modify the FreeRTOS task

creation procedure to assign a shadow stack to each task when it is created. To do this, we have

to modify the Task Control Block (TCB) structure to add a field for a shadow stack. The relevant

portions of the TCB defintion are shown in Listing 4.2.

With the data structure in place, we modify the functions that intiialize this structure, the

FreeRTOS function prvInitialiseNewTask and the port-specific FreeRTOS function pxPortIni-

tialiseStack. All that prvInitialiseNewTask has to do is assign the next available shadow stack

to the TCB of the newly created task. The port-specific pxPortInitialiseStack function is a bit

more complicated. When FreeRTOS creates a task, it sets up the stack such that the task appears

to have been switched out by the scheduler. This is an optimization that allows FreeRTOS to

simply use its restore context routine to start a task, rather than needing a special procedure.

For ARM devices, the stack initialization routine needs to emulate having pushed the relevant

registers to the stack, as well as a few variables that FreeRTOS depends upon for each task. We

modify this procedure to put all of the registers in the shadow stack, since we do not want any

saved context to be vulnerable to malicious modification.

Listing 4.2: FreeRTOS Task Control Block definition

1 typedef struct tskTaskControlBlock

2 {

3 volatile StackType_t *pxTopOfStack;

4 #if ( cfiUSE_SHADOW_STACK == 1)

5 shadow_stack *ss;

6 #endif

7 ...

8 } tskTCB;

9

10 typedef tskTCB TCB_t;

4.4.3 Context Switching

With support for shadow stacks added to task creation, the only part left is to modify the sched-

uler to use the shadow stack. Normally, the scheduler saves context for each task on the task’s

unprotected stack. Instead, the scheduler needs to save context to the protected shadow stack.

Most of the scheduler is written in ARM assembly, and the instruction set makes it easy to save

context to the unprotected stack. Normally, to save the register information to the stack from the

scheduler, only two instructions are needed: srs and push. The srs mnemonic is the store return

state instruction, which pushes the IRQ return address and the saved process state register to the

system or user mode stack (see Section 2.1.2 for more information regarding processing modes).

After saving the return state, the scheduler switches to system mode and pushes the rest of the
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registers to the stack. To modify this to use the shadow stack, we need to get the pointer to the top

of the shadow stack, and use this like the stack pointer. The full code for the context saving routine

is shown in Listing 4.3, and the full code for the context restoring routing is shown in Listing 4.4.

Listing 4.3: FreeRTOS save context routine with shadow stack

1 .macro portSAVE_CONTEXT:

2 dsb # Data synchronization barrier

3 isb # Instruction synchronization barrier

4 # Store registers in the shadow stack

5 push {r0, r1, r2} # Save temp registers

6 ldr r0, current_ss_const # Load location of current shadow stack into r0

7 ldr r0, [r0]

8 ldr r1, [r0] # Load shadow stack top into r1

9 mrs r2, spsr # Load saved process status register (SPSR) into r2

10 stmfd r1!, {r2} # Push SPSR to shadow stack

11 stmfd r1!, {lr} # Push LR to shadow stack

12 stmfd r1, {r3-r12, lr}ˆ # Push user/system mode registers onto shadow stack

13 sub r1, r1, 44 # Manually decrement shadow stack top

14 mov r3, r0 # Now that r3-r12 are saved, we can use r3 and r4

15 mov r4, r1 # to point to the shadow stack to finish saving context

16 pop {r0, r1, r2} # Restore temp registers

17 stmfd r4!, {r0-r2} # Push r0-r2 to the shadow stack

18 str r4, [r3] # Store the new top of shadow stack

19 # The rest of the context information is stored on the system mode stack

20 cps SYS_MODE # Switch to system mode

21 ldr r2, ulCriticalNestingConst # Load critical nesting count

22 ldr r1, [r2]

23 push {r1} # Store critical nesting count on system mode stack

24 ldr r2, ulPortTaskHasFPUContextConst

25 ldr r3, [r2]

26 cmp r3, 0 # Check if task uses floating point

27 fmrxne r1, fpscr # Get floating point status/control register, if used

28 vpushne {d0-d15} # Save floating point registers, if used

29 pushne {r1} # Save fpscr, if used

30 push {r3} # Save whether task has floating point context

31 ldr r0, pxCurrentTCBConst # Get location of stack pointer in TCB

32 ldr r1, [r0]

33 str sp, [r1] # Save new top of stack

34 .endm
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Listing 4.4: FreeRTOS restore context routine with shadow stack

1 .macro portRESTORE_CONTEXT:

2 # Restore context information from system mode stack

3 ldr r0, pxCurrentTCBConst # Get top of stack

4 ldr r1, [r0]

5 ldr sp, [r1] # Load task stack pointer

6 ldr r0, ulPortTaskHasFPUContextConst

7 pop {r1}

8 str r1, [r0]

9 cmp r1, 0 # Check if task uses floating point

10 popne {r0} # Restore floating point, if needed

11 vpopne {d0-d15} # Restore floating point registers, if needed

12 vmsrne fpscr, r0 # Restore fpscr, if needed

13 ldr r0, ulCriticalNestingConst

14 pop {r1}

15 str r1, [r0] # Restore the critical section nesting depth.

16 # Restore registers from the shadow stack

17 ldr r11, current_ss_const # Load current shadow stack

18 ldr r11, [r11]

19 ldr r12, [r11]

20 ldmfd r12!, {r0-r10} # Pop r0-r10 off shadow stack

21 push {r0, r1, r2} # Save r0-r2 for use as temporary values

22 mov r0, r11 # Copy shadow stack top and address

23 mov r1, r12 # into new temp registers

24 ldmfd r1!, {r11-r12, lr} # Restore the rest of the registers

25 add r2, r1, 8 # Get shadow stack top address +8

26 str r2, [r0] # Store new shadow stack top

27 mov r12, r1 # Copy previous shadow stack top to IP

28 pop {r0, r1, r2} # Restore temporary registers

29 dsb # Data synchronization barrier

30 isb # Instruction synchronization barrier

31 rfefd r12 # Return from exception using shadow stack

32 .endm # as stack pointer
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Chapter 5

Evaluation

As with any security technique, we expect a trade-off between performance and security, where

better security generally results in higher performance overhead. Our CFI implementation follows

this model. In this chapter, we first discuss the security of our instrumentation, showing that the

instrumentation will enforce CFI policy, even in the presence of a powerful attacker. Then, in two

parts, we discuss the performance overhead our CFI instrumentation introduces. Specifically, we

evaluate the raw overhead for bare metal ARM CFI using the CoreMark embedded CPU benchmark,

and we explore the potential adverse effects of latency in FreeRTOS after introducing CFI. Finally,

we end with a discussion of the limitations of our system, and we highlight some of the directions

that future work could take to improve this system.

5.1 Security Evaluation

Unfortunately, measuring the security benefits of a proposed CFI scheme is difficult to describe

quantitatively. Measurements that have been used in the past include ROP gadget reduction and

average indirect target reduction (AIR) [16]. While Carlini et al. have discussed how these measure-

ments are misleading, they provide no alternative quantitative measurement of the effectiveness of

a CFI system [12]. Additionally, these measurements try to quantify precision of CFG generation

alforithms, which was not a focus for our work. Instead of AIR, Carlini et al. propose a Basic

Exploitation Test (BET), where a minimal, representative program is written with a common vul-

nerability (such as a buffer overflow) to show that a CFI scheme prevents an attacker from achieving

a specific goal [12].

5.1.1 Basic Exploitation Test (BET)

When evaluating the security of CFI schemes, the quantitative measurements used in the literature

do not quantify security—they quantify the precision of the control-flow graph. Often the actual

instrumentation is overlooked; how do we know that the instrumentation itself is not exploitable?

To find out, we abstract away the CFG, and assume we have a labeling scheme that meets the
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assumptions for CFI. Then, we perform a Basic Exploitation Test (BET). Given a set of small,

vulnerable programs that cover the scenarios that our instrumentation is supposed to protect, we

examine the program from the attacker’s point of view. The threat model states that the attacker

can read or write arbitrary memory at any time. Realistically, the attacker can read or write

memory only when exploiting some memory corruption vulnerability, which means the memory

access will occur at the current privilege level. Given this realistic attacker model, we examine the

instrumentation to ensure two invariants:

1. At every forward-edge indirect branch, the only branch that can occur is a branch to a target

with the matching label.

2. Every function call returns to the instruction following the calling instruction.

Before examining the actual instrumentation, we look at the attacker’s capabilities with memory

protections in place. The ARM MPU ensures that memory is writeable or executable, but not both.

Additionally, the MPU makes the shadow stack accessible only to privileged mode execution. So,

the attacker can read or write to any address in RAM, unless access is privileged-only, in which

case the attacker needs to be able to exploit a memory corruption vulnerability while the processor

is in privileged mode. Interrupt handlers execute in privileged mode, which unfortunately means

that a vulnerable interrupt handler could subvert this CFI scheme. But, since interrupt handlers

in real-time systems are designed to be short and deterministic, we will assume that they cannot

read or write arbitrary memory during their execution. While this assumption may not hold true

for every case, we depend on it for the protection of user mode tasks.

Forward-edge Instrumentation Without Context Switching

Each forward-edge check has two parts: the source and destination instrumentation. The source

instrumentation replaces the indirect branch and its preceding instruction with a direct branch to

the correct location in the .cfi section. The general format of the indirect call instrumentation is

shown in Listing 5.1. In the .cfi section, the instrumentation starts with the preceding instruction,

fixing up addresses if necessary. From there, it saves the two registers required for the forward-edge

label check, loads the label from the source and destination into those registers, and compares

them. If the labels match, the two registers used for the check are restored and the indirect branch

is taken. Otherwise, the execution enters an infinite loop.

By inspecting each of the instructions used here, we can see that the critical part of the CFI

check is performed entirely in registers. The source label is hardcoded in a mov instruction, so that

cannot be modified. The target label is either in program code, or it is in RAM. If it is in program

code, it must be a legal target. If it is in RAM, the CFI check will allow the branch to be taken,

but the MPU will prevent the processor from executing the code at the target. There are three

possible outcomes from the label checking code: the branch is taken and execution continues, the

branch is taken and the MPU prevents execution, or execution enters an infinite loop. In any of

the three cases, the attacker cannot achieve arbitrary execution.
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Listing 5.1: General format of indirect call instrumentation

1 <previous_instruction>

2 push {r0, r1} # Save temporary registers

3 ldrh r0, [<target_reg>, <label_offset>] # Load label from target

4 movw r1, <label> # Move expected label into register

5 cmp r0, r1 # Compare target vs expected

6 error:

7 bne error # If label mismatch, infinite loop

8 pop {r0, r1} # Restore temporary registers

9 bx <target_reg> # Perform indirect branch

The destination is instrumented by replacing the first three instructions with a direct branch

to another location in the .cfi section and a label. The direct branch simply points to a copy of

the function prologue with the shadow stack code (which we will examine later in this section) and

a branch back to the instruction following the label. As long as the label is stored in unmodifiable

program code, there is no way to exploit the target instrumentation.

Forward-edge Instrumentation With Context Switching

The only time that the CFI checks can be tampered with is when context switching is possible. If

the scheduler interrupts the CFI check and puts CFI-critical registers into memory, our threat model

dictates that the attacker could use this as an opportunity to corrupt the CFI-critical registers.

When context is restored, the corrupted values will be loaded into the registers, potentially allowing

the attacker to bypass CFI. As stated in Section 4.4.3, we combat this by storing all saved context

in the shadow stack.

Since the scheduler runs with interrupts disabled, the scheduler operations are essentially atomic

operations. This means that there is no opportunity for an attacker to corrupt the context before

it gets pushed to the protected shadow stack. The other possible attack vector would be to change

the pointer to a task’s shadow stack. Luckily, it is easy enough to simply protect the entire Task

Control Block with another MPU region or just verify that the shadow stack pointer lies within

the protected region of memory.

Backward-edge Instrumentation With Shadow Stack

Like each forward-edge check, each backward-edge check also has two parts: function prologue and

function epilogue instrumentation. In ARM, we are not concerned with the backward-edge in leaf

functions, that is, functions at the end of a call tree that do not call any other functions. Leaf

functions do not push the return address to the stack; they keep the return address in LR and end

the function with a bx lr instruction. In non-leaf functions, however, the compiler will generate a

matching pair of push {<reglist>, lr} and pop {<reglist>, pc} instructions. These are the

functions that we need to instrument.
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Listing 5.2: Function prologue and epilogue instrumentation

1 # Prologue instrumentation

2 push {<reglist w/o lr>} # original push without LR

3 <next_instruction> # Instruction following the push, if overwritten by label

4 push {r0} # Push r0 since it will contain argument to ss_push

5 mov r0, lr # Copy link register value into r0

6 svc 0 # Call ss_push from supervisor mode (system call)

7 pop {r0} # Restore r0 value

8 b.w <original_function + 6> # Branch back to original function, skipping over label

9

10 # Epilogue instrumentation

11 <previous_instruction> # Perform pre-return operation that we overwrote

12 push {r0} # Push r0 so we can use it for return address

13 svc 1 # Call ss_pop from supervisor mode (system call)

14 mov lr, r0 # Copy return value from ss_pop to link register

15 pop {r0} # Restore r0

16 pop {<reglist w/o pc>} # Perform original pop operation, without popping into pc

17 bx lr # New return instruction

The instrumentation for non-leaf functions has a single goal—protect the return address by

saving LR in the shadow stack rather than the unprotected stack. The general form for the

instrumentation is shown in Listing 5.2. The software interrupt (svc) instruction changes the

processing mode from User to Supervisor mode, allowing us to modify the shadow stack. The

shadow stack code runs with interrupts disabled, so the shadow stack operation itself is assumed

to be atomic. All other calculation is performed in registers, so the attacker cannot modify LR

without a context switch. If a context switch occurs, we push all of the context to the shadow stack

anyways, so there is no time-of-check to time-of-use vulnerability.

5.2 Performance Impact

Like any CFI scheme, there is performance overhead associated with adding this instrumentation.

To measure the performance impact, we look at three different measurements. First, we use an

embedded system benchmark to determine the overhead associated with the bare metal instrumen-

tation. Second, we look at the additional latency added to FreeRTOS context switching by adding

the shadow stack. Finally, we analyze the resource requirements for this CFI scheme.

5.2.1 CPU Benchmarks

Since this CFI scheme is designed to work on embedded systems without a full operating system,

we are unable to measure overhead using the industry standard SPEC CPU2006 benchmark. To

measure the raw overhead associated with CFI checks on a realistic workload, we look to the

CoreMark embedded system benchmark [27]. This easily portable application runs on a variety
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Figure 5.1: CoreMark results with and without CFI. Default settings, 1000 iterations

of embedded architectures without an operating system. It performs various common embedded

tasks, like matrix manipulation, linked list manipulation, state machine operations, and cyclic

redundancy check (CRC) calculation.

On our TI RM46L852 evaluation board, we measured the CoreMark score both with and without

CFI. Without CFI, the recorded CoreMark score was 97.371, which is a reasonable score for that

hardware running in Thumb mode. With CFI, we recorded a score of 76.767, a decrease of about

21% compared to the non-CFI score. Additionally, we recorded an approximately 30% increase in

total execution time for the benchmark code. These results are shown graphically in Figure 5.1.

5.2.2 FreeRTOS Performance

When measuring the overhead due to CFI on FreeRTOS, using the embedded benchmark is not

enough. While the benchmark may give us a general amount of overhead for single-threaded

processing, we are more concerned with the multi-threaded performance. In particular, we need to

know CFI’s effect on latency. If we assume that we have a schedulable system where all deadlines

are met without CFI, how much latency must the tasks be able to tolerate for CFI not to break

the real-time guarantees?

First, we identify the sources of latency. CFI label checks and shadow stack operations increase

the worst-case runtime of a task. The new worst-case runtime scales linearly with the number of

indirect branches and non-leaf functions in the task. Shadow stack operations and the scheduler

operate with interrupts disabled. Any time that interrupts are disabled, the latency for handling
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Figure 5.2: Latency (in number of instructions) of CFI critical sections in FreeRTOS with two running tasks

interrupts and context switching is increased. If adding forward-edge CFI checks to a system does

not break the schedulability of the system, the only other sources of latency relate to the shadow

stack. Particularly, the shadow stack instrumentation and the new context switching operation

add latency of the system. The additional latency added by shadow stack operations is shown in

Figure 5.2. The latency added by ss push and ss pop is exactly 15 instructions. The exact runtime

for this depends on caching and instruction execution time, but this can vary from processor to

processor. In the scheduler, we add 20 instructions, which is not an unreasonable amount of

additional processing compared to the 567 instructions in the worst-case execution of the scheduler

with two tasks in the system. In general, the worst-case execution of the scheduler without CFI is

(167 + 188n) instructions, where n is the number of tasks in the system, excluding the idle task.

5.2.3 Additional Resource Use

Since this CFI scheme is designed to run on embedded systems with constrained resources, addi-

tional resource use is important to measure. Specifically, we report code storage size requirements,

RAM usage requirements, and hardware peripheral usage. In cases where our scheme may cause

an existing binary to exceed the limits provided by the hardware, more expensive hardware may

be necessary.

In its current state, our system requires an additional 10 bytes of storage per indirect branch

and 12 bytes per non-leaf function prologue and epilogue. While we cannot generalize the number

of non-leaf functions and indirect branches in any given program, the CoreMark benchmark (a 10
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KB binary) required 964 bytes of instrumentation code. This is just under a 10% increase in binary

size.

As for RAM usage, it depends on the system being instrumented. On bare metal systems, a

single shadow stack is required, which on our evaluation system, we used a shadow stack size of 256

bytes plus 12 bytes for the shadow stack structure—a total of 268 additional bytes of RAM for the

shadow stack. In FreeRTOS, however, we used a larger shadow stack, since context information is

stored on the stack. So we required 528 bytes per task, which encompassed a 512 bytes shadow

stack, 12 byte shadow stack structure, and 4 byte pointer to the shadow stack stored in each Task

Control Block.

Finally, our implementation depends on some additional resources. We need at least two MPU

regions to prevent execution from RAM and to protect the shadow stack. On our hardware, a

maximum of 12 regions could be configured, so our utilization was minimal. Also, we require two

supervisor calls out of a possible 256 available in Thumb mode.

5.3 Discussion

With these results, we can see that while this system appears to provide many security benefits at

the expense of moderate performance and low resource overhead, there are still some limitations

that should be addressed. The major limitation, inherent to CFI itself, is CFG generation. A

limitation specific to our work is our dependence on privileged execution, where we assume that all

privileged execution is secure.

5.3.1 Limitations

All security measures have limitations; this CFI scheme is no different. Some of the limitations

are inherent to CFI, while others are specific to this implementation. Limitations inherent to CFI

include CFG precision and the maximum security benefits of the static forward-edge checks. Our

implementation has some additional limitations, especially when concerned with processing modes

in ARM.

It is well-documented that CFI schemes can only be as secure as the CFG is precise [12,16,21,24].

There are two sources of imprecision: the difficulty of sound and complete CFG generation and

the labeling scheme extracted from the CFG. Sound and complete CFG generation is believed to

be undecidable [12,21], so to preserve functionality of programs, CFI schemes often use a more

permissive CFG, potentially allowing some unintended indirect branch targets. On top of the

inherent imprecision, the labeling scheme itself often introduces more imprecision for performance

reasons. To reduce overhead, most CFI schemes, including this one, assigns one label to an indirect

jump and its targets. Unfortunately, this means that if two sources share a target, they need to

use the same label. For example, if Source 1 can target A or B, and Source 2 can target B or C,

the labeling scheme would allow Source 1 to target C, even though that edge was clearly not in

the CFG. This imprecision can allow an attacker to achieve Turing-complete computation in the
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presence of certain instruction sequences [12,21]. We do not attempt to remove this imprecision,

but we do believe that due to smaller executable size and differences in programming techniques

for embedded systems, this imprecision is less likely to be exploitable.

One of the major limitations in our work is the dependence on ARM processing modes. Since

there are only two available privilege levels on ARM Cortex-R, we make a potentially unrealistic

assumption about privileged mode execution. We assume that all privileged execution cannot be

exploited. While good embedded software design will keep privileged sections short, deterministic,

and easily verifiable, there is no guarantee that all existing applications were built this way. If

there is a vulnerable privileged section of code, the attacker can modify the shadow stack, allowing

corruption of return addresses or CFI context, essentially rendering CFI useless. One way to

prevent this would be to prohibit all writes to the shadow stack except during privileged shadow

stack operations. To do this, we have to use ARM MPU coprocessor instructions to change the

shadow stack region permissions at the beginning and end of every shadow stack operation. This

would limit the shadow stack corruption attack surface, requiring the attacker to be able to execute

MPU instructions to disable the MPU before he can corrupt the shadow stack. However, this would

result in significant overhead, nearly doubling the amount of instructions needed for each shadow

stack operation. The new ARMv8-R architecture may have a better way to handle this vulnerability

with its bare metal hypervisor mode, but these processors are not widely available yet, and existing

systems with ARMv7-R processors will likely not be upgraded.

5.3.2 Future Work

Apart from addressing the limitations mentioned previously, there are some other directions that

future work could take. One of the major areas that this work and other CFI work could benefit from

is a better analysis of the security guarantees provided by CFI. Another possible topic for future

work is a more in-depth analysis of the effects of security measures like CFI on real-time systems.

Finally, the prototype system created for this work can likely be optimized for performance.

Previous work has suggested AIR [16], ROP gadget reduction [16], and the Basic Exploitation

Test (BET) [12] as ways to evaluate the security of CFI-based systems. Unfortunately, AIR and

ROP gadget reduction are misleading metrics, especially in the context of embedded systems where

it may only take one malicious indirect jump to cause catastrophic failure. The BET, while a good

sanity check for CFI instrumentation, is prone to human error and would be better if performed

by some formal analysis. Future work could focus on modeling CFI systems and proving their

correctness with formal methods, rather than human analysis.

In our evaluation, we briefly discussed CFI’s effect on the latency of real-time tasks. While this

analysis is helpful, it is limited in scope without real-life applications to test against. Unfortunately,

very few embedded applications are open source and freely available, so it is difficult to make

generalizations about our scheme’s effect on schedulability in real systems. Future work could

focus on modeling FreeRTOS with and without CFI, such that a more formal schedulability analysis

would be possible with easily tunable parameters.
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Our instrumentation required hand written ARM assembly code. While we focused on making

the instrumentation as fast as possible given the binary patching approach, there are likely some

optimizations that could be made within the scheduler, CFI checks, and shadow stack operations.

One of the most useful optimizations would be reserving registers for use only by CFI, preventing

the need to save registers needed for labels and the shadow stack. This approach may not be

possible with binary patching, but it is possible with a compiler-based CFI scheme.

Finally, the new ARMv8-R architecture adds a bare-metal hypervisor mode with a new privilege

level and faster MPU operations. Future ARM Cortex-R CFI implementations could take advantage

of this functionality to perform faster CFI checks with better guarantees on security, since the

hypervisor privilege level could be used exclusively for shadow stack operations, meaning we would

no longer have to assume that all privileged execution is secure.
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Chapter 6

Conclusion

In this thesis, we described a reference implementation for control-flow integrity on ARM systems.

In this implementation, we show how we can use hardware features of embedded ARM processors

to meet the various requirements for CFI, specifically the write-exclusive-or-execute assumption

and the protected shadow stack. To instrument ARM binaries, we created a binary patching tool

that can be used to retrofit CFI to precompiled binaries without needing source code. Finally,

we extended this implementation to the FreeRTOS real-time operating system, which introduces

multi-threading without process isolation. To prevent time-of-check to time-of-use vulnerabilities,

we modified the FreeRTOS operating system to isolate saved context from running threads. With

these modifications in place, we were able to apply the CFI technique to embedded applications

using real-time operating systems.

To the best of our knowledge, our instrumentation itself is secure against exploitation as long as

there is no privileged-mode code in the system that have memory corruption vulnerabilities. The

FreeRTOS shadow stack implementation provides enough process isolation for CFI assumptions to

met, and could even be used without CFI just to protect saved context from malicious corruption.

We found that our CFI scheme had moderate overhead on bare metal ARM benchmarks. In

the CoreMark embedded benchmark, we saw a 21% decrease in score, which corresponded to a

30% increase in execution time. Although we saw a moderate increase in execution time, we had a

minimal increase in program size, requiring just under 10% more code storage than the unprotected

binary. For FreeRTOS, we measured the new worst-case latency introduced by CFI. We found that

despite adding 20 instructions to the scheduler, the worst-case execution path in the scheduler was

already over 500 instructions long in a system running only two tasks.

While this work makes a significant step towards hardening real-time embedded systems, there

are many directions that future work could take. Beyond just optimizing our existing work, we

would like to have a way to use formal methods to prove correctness of CFI instrumentation, which

means we need a way to model CFI schemes and hardware architectures to show that the CFI

scheme maintains the expected invariants. Additionally, in the embedded systems space, we would

like to be able to model CFI in a way that allows us to perform a more formal schedulability

analysis for real-time tasks. Finally, the new ARMv8-R architecture provides promising features
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that could provide stronger guarantees for this system as well as other embedded system hardening

techniques.
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