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Abstract

A combined hardware and software platform for ambulatory seizure
onset detection is presented. The hardware is developed around com-
mercial off-the-shelf components, featuring ADS1299 analog front ends
for electroencephalography from Texas Instruments and a Broadcom
ARM11 microcontroller for algorithm execution. The onset detection
algorithm is a patient-specific support vector machine algorithm. It
outperforms a state-of-the-art detector on a reference data set, with
100% sensitivity, 3.4 second average onset detection latency, and on
average 1 false positive per 24 hours. The more comprehensive Eu-
ropean Epilepsy Database is then evaluated, which highlights several
real-world challenges for seizure onset detection, resulting in reduced
average sensitivity of 93.5%, 5 second average onset detection latency,
and 85.5% specificity. Algorithm enhancements to improve this re-

duced performance are proposed.
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1 Introduction

1.1 Problem Statement

Epilepsy is the third most common neurological disorder, after Alzheimer
disease and strokes. Approximately 1% of people worldwide have epilepsy
[29, 28, 12|. Of the epileptic population, 30% have pharmacologically in-
tractable epilepsy, which is epilepsy that is not responsive to two or more anti-
epileptic drugs [12]. Existing treatments for pharmacologically intractable
epilepsy include polypharmacy, ketogenic diet|31], deep-brain stimulation|4],
and seizure focus removal. Benchmarking the performance of seizure miti-
gation therapies is challenging because it is either dependent on a patient’s
ability to record seizure frequency|20] and severity or it requires spending
enough time in an epilepsy monitoring unit to establish both baseline and

mitigated frequencies and severities.

1.2 Objective

There is a clear and present need for a minimally invasive seizure alert system.
The electrographic onset of a seizure may precede the physiological onset
by as much as a minute [27]. Clinical onset is the onset of debilitating or
inhibiting clinical symptoms, such as convulsions, loss of bladder or bowel
control, or impairment of consciousness [7]. A practical electrographic onset
detector could alert a patient of an impending seizure, which could at least
enable the patient to enter a more safe environment. Basic activities, such
as climbing stairs, bathing, and crossing the street can present a safety risk
to people with epilepsy [37]. An alert of an impending seizure could provide
enough time for the patient to enter a safer state than their current state.
The goal is to develop an ambulatory seizure detection platform to aid in

epilepsy management and improve quality of life [2]. We are simultaneously



addressing both the hardware and the software challenges. We have devel-
oped an ambulatory electroencephalogram (EEG) monitoring system. We
have also developed an embedded patient-specific support vector machine
(SVM) seizure detection algorithm, based on the work in [29, 28|. This algo-
rithm is configured for real-time execution in an embedded environment, such
as on an ARM microprocessor. In our development, an ARMv6 architecture

processor has been used.

1.3 Layout of Thesis

First, background information on epilepsy, EEG, seizure detection, and SVM
classification will be presented. In part 3, the software design is presented,
and the design choices are discussed. In Part 4, the hardware design is pre-
sented and discussed. In part 5, results against a public database are derived
and compared to an industry-standard detector. Then, results against a new,
larger database are derived and discussed in detail. In part 6, we make some

conclusions about the system and proposals for future work.



2 Background

In this section, a brief overview of seizure detection algorithms is presented.
A variety of possible approaches to feature extraction and classification are
discussed. The approach used in this thesis is analyzed. Computational im-
plications of approaches in general and in the proposed approach specifically
are highlighted.

2.1 Seizure Detection Algorithms

Seizure detection algorithms as a whole are a class of algorithms whose ob-
jective is to detect seizure onset. This is distinct from seizure prediction.
Seizure detection can only occur after the start of seizure activity, while
seizure prediction aims to predict when a seizure will happen [24]. Seizure
detection determines that a seizure is happening. Typical seizure onset de-
tection is done with electroencephalographic signals, however work has been
done to augment or replace this data with other sensor sources, such as elec-
trocardiographic or actigraphic data [8, 18, 26, 27].

The generalized problem behind seizure detection, regardless of data
source, is binary classification: given the data currently available, is a seizure
occurring? This classification may be performed on just a current slice of
data, or it may be performed in the context of some quantity of historical
data. The classification cannot take into account future data for obvious

reasons.

2.1.1 EEG for Seizure Detection

EEG, or electroencephalography, is the process of measuring the electrical
signals that are indicative of brain activity. There are three main groups of
EEG signal measurements - intracranial EEG, where signals are measured

on the surface of the brain; scalp EEG, where signals are measured on the
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Figure 1: Two seizures from patient 1 of the CHBMIT database [15]. The
electrographic seizure onset is indicated by the vertical dashed black line.



surface of the scalp; and single-unit recordings, which measure the electro-
physiological responses of a single neuron. While a variety of brain activities
can be detected through EEG, the focus of this work is on detecting the
presence of epileptic seizures.

Epileptic seizures manifest in EEG as a sudden shift in the power spectral
density |29, 28]. The appearance of epileptic seizures in EEG is very patient-
dependent in terms of individual signal morphology as well as distribution
across the patient’s anatomy and consequently across multiple EEG chan-
nels. However, for a given patient, epilepsy signals are very consistent across
seizures, as shown in figure 1. A patient-specific detector trained on an indi-
vidual’s seizure history is an approach that been successfully demonstrated
in [29, 28|.

For the purposes of a noninvasive ambulatory monitoring device, scalp
EEG is the least invasive signal set. While intracranial signals demonstrate
high degrees of localization - specific signals are very limited in where they
can be measured on the geography of the brain - scalp EEG is much more
generalized. Similarly, intracranial EEG has high-frequency components,
while scalp EEG does not. The skull’s electrical impedance functions as
a low-pass filter, which limits both the high frequency components of EEG
and the high locality of the signals. In clinical applications, this limits the
ability of determining which region of the brain a signal originates from, but
for the our applications, it reduces the number of electrodes needed to fully
cover the anatomical signal space.

In terms of bandwidth, the signals of interest to seizure detection appear
in the 3-25 Hz band. The signal potentials at the scalp of these signals are

very small - typically less than 20 microvolts.



2.1.2 State of the Art Detection Algorithms

Current state of the art seizure detection algorithms can be separated into
two groups - patient-specific and patient-nonspecific. Patient-specific detec-
tors, such as the one implemented in this thesis, generally have superior
detection capabilities than nonspecific detectors [29, 28], but have the draw-
back of requiring a training dataset of the patient’s EEG, including seizure
EEG. This is most significantly a problem in patients whose seizures are
infrequent, particularly because provoked seizures, such as those triggered
by photo stimulation or hyperventilation, may by physiologically different
from a patient’s spontaneous epileptic seizures [36]. Patient-nonspecific al-
gorithms do not require any information about the patient under test, but
sacrifice detector performance.

In general, EEG-based epileptic seizure detection is composed of the fol-
lowing process: data acquisition, feature extraction, classification, and re-
sults. The variables in this system are the feature extraction technique and
the classification method. A multitude of possible feature extraction tech-
niques have been explored, including Fourier transform based, frequency do-
main, time-frequency based, wavelet based, and a wide variety of time domain
techniques have all been explored to varying degrees of success |36, 34, 33,
3, 32|. Similarly, a wide variety of classifiers have been evaluated, including
threshold, rules-based decisions, linear classifiers, artificial neural networks,
support vector machines, nearest-neighbor, quadratic analysis, logistic re-
gression, naive Bayes classifiers, decision trees, Gaussian mixture models,
and adaptive neurofuzzy inference systems [36, 32, 34, 33].

More generically, the desired goal is to take a set of input signals and
group them into two classifications. In this case, the classifications are epilep-
tic EEG and non-epileptic EEG. Perfect feature extraction will result in
highly separable features; epileptic EEG features will be very distinct from

non-epileptic features. From these highly separable features, a binary classi-



fier can then assign a label to unknown features: epileptic or non-epileptic.
This is the foundation of the epileptic seizure onset detector. Unfortunately,
epileptic and non-epileptic EEG tend to be less than perfectly separable.
EEG artifacts are a common source of separability impairment. These arti-
facts may either be a result of physiologic processes, such as muscle or ocular
artifacts, or a result of EEG recording procedures, such as electrode interface
artifacts [35, 10, 19, 16, 39]. These artifacts may contaminate non-epileptic
EEG with signals that may resemble epileptic EEG. Similarly, many patients
with epilepsy will exhibit inter-ictal spike, wave, and spike-wave complex sig-
nals, which are brief EEG signals that resemble seizure onset EEG but are
not indicative of seizure onset [36, 28, 29]. Being able to properly classify
artifacts and inter-ictal EEG is an important challenge for seizure detection
algorithms.

It is unlikely that the features extracted from a patient’s epileptic and
non-epileptic EEG will be perfectly separable. As a result, the classifier used
must be able to tolerate misclassification in some way. A single misclassified
feature doesn’t necessarily result in a false positive, though; a practical de-
fense against such a feature, which may be an inter-ictal non-epileptic event,
is to require some quorum of positive classifications to declare a seizure on-
set. Such a quorum, however, represents a tradeoff of detection latency for
improved detector specificity, as additional time needs to pass to gain the
additional features used to vote for a seizure onset.

Lastly, computational complexity must be accounted for. A feature ex-
traction technique that results in perfectly separable features, or a classifier
that results in perfect classification off of a minimum amount of data, is use-
less as a wearable therapy if it is too computationally complex to perform
on embedded hardware in the performance range of a smartphone. This is
further bounded in our case by the need of the system to be able to perform

detections online, meaning the feature extraction plus classification must



take less time than the time it takes to capture new data, and by the need
of the platform to be ambulatory, which puts a limit on how much electrical
power (and, consequentially, computational power) can be employed. Luck-
ily, the capabilities of embedded technology have skyrocketed in recent years,
partially thanks to the smartphone boom, which has driven a huge demand
for faster, lower-power embedded processors and smaller, more energy-dense
battery sources.

Here we develop an ambulatory real-time implementation of a detector us-
ing filterbank-derived energy-based features and Gaussian radial basis func-
tion support vector machine classifiers, which were shown to be a highly
successful method of seizure detection in [29, 28|. This algorithm is a patient-
specific detector. The primary disadvantage of patient-specific detectors, as
mentioned earlier, is the potential difficulty in collecting seizure EEG from a
patient. With our ambulatory solution, which includes EEG recording, col-
lecting seizure EEG from patients with rare spontaneous seizures becomes a
much simpler task than the traditional epilepsy monitoring unit approach.
As a result, our detection system will be able to enjoy the much higher per-

formance of a patient-specific detector.

2.2 Support Vector Machines for Seizure Detection

Support vector machines, or SVMs, are a class of supervised learning binary
classification algorithms originally developed by [5, 9]. In the most basic
formulation, the SVM is used to find a maximally separating linear deci-
sion hyperplane between two groups of data, such as in the two-dimensional

example in figure 2.



Figure 2: A maximally-separating hyperplane between two classes of data.
The points on the dashed lines are the support vectors. Cyc / Wikimedia
Commons / Public Domain



2.2.1 Formulation

The SVM as originally described in [5] provided only for hard margins; it does
not function on groups of data where no hyperplane can cleanly separate two
groups of data. In [9], a soft margin SVM is proposed, which allows for

misclassification of the training set. In this form, maximize (in «;):
- n 1
L{a) = a;— 52%0‘]’%%1@(%&) (1)
i=1 ij

n
with 0 < o; < C and ) a;y; = 0 where « are Lagrange multipliers, y;
i=1
are labels in {—1,1} corresponding to seizure and nonseizure training data
x;, and C is the cost parameter of misclassification. W, which can be seen

in figure 2, can be computed from these terms:
w = Zaiyixi (2)

2.2.2 Kernels

The original SVM formulation in [38] was strictly a linear classifier. In [5],
the modification for efficient nonlinear decision boundaries was introduced
with a kernel function, such as the nonlinear boundary in figure 3.

The purpose of the kernel is to serve as a function to project a data set
that is not linearly separable in its current space into a higher-dimensional
space where it is linearly separable. A contrived example of this can be seen
in figure 4. A two-dimensional data set, which is not linearly separable in the
two-dimensional problem space, has a kernel function applied which projects
the data into a three-dimensional kernel space, where the data is linearly
separable.

While there are a variety of kernels, such as a polynomial kernel or hy-

perbolic tangent kernel, the kernel successfully used for seizure detection is
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the common Gaussian radial basis function kernel [29, 28]:

k(xi,x;) = exp(—7[|%; — x4]|%) (3)

where v is the kernel parameter, where x; andx; are the input vectors. This

kernel, when plugged into (1), gives the formulation for a Gaussian radial

basis function support vector machine like the one used in this detector.
Finally, given some trained SVM classifier, a classification can be de-

scribed as:

f(p) = sign(Y_yicik(p,x;)) (4)

i=1
Where p is the feature vector being classified, x is the matrix of train-
ing vectors, y is the vector of training vector labels, and « is the Lagrange

multiplier.

2.2.3 Optimization

The important detail in all this math is that there are two sets of opti-
mizations that must be performed: the quadratic optimization of the SVM,
which determines which features are support vectors, and the optimization of
gamma and C, which will tune the detector’s performance. The quadratic op-
timization problem is heuristically solved by LIBSVM |[6], but the optimiza-
tion of gamma and C is not. Adjustments to gamma and C will impact the
detector’s sensitivity, which contributes to the percentage of seizures correctly
identified, and specificity, which contributes to false positive rate. There is
no one-size-fits-all optimization that can be applied to these parameters, as
an increase in sensitivity can result in a decrease in specificity. In some cases,
maximum sensitivity with little regard for specificity may be a desired out-

come; in other cases, a more balanced approach may be desirable. As a result,
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best-casey, C' is as low as possible (dark blue) on each map.

some fitness function f(v,C') does not exist and cannot be minimized. In or-
der to facilitate parameter selection, then, an operator is needed at training
time. A grid search of C' € {275 274, ... 21 215} o ¢ {2715 2-14 92 93}
as recommended in [21], is used to facilitate this process. In figures 5a and 5b,
heatmap visualizations of this process can be seen. For each pair of {C,~},
an SVM is trained and cross-validated; the results of the process are stored
in a matrix. These results can then be used to select parameters or visualize

detector performance across different parameter combinations.

2.2.4 Features

The features used in the Gaussian RBF SVM are composed of log-sum-
absolute energies of frequency bins of the source EEG. The input data in
this case is x,,,, a matrix where the m dimension is the number of EEG
channels used and the n dimension is the number of samples in the feature.
First, 7,,, is decimated into z, .. Then, 7 . is passed through a filter

bank, where it is divided into some number of frequency bins, z/ which

m,n,0’

is a matrix of dimensions {channels, samples,bins}. The feature matrix is

13



calculated from this as:

Ymn = hl(Zme,n,o,D (5)

Concatenating the columns in this feature matrix into a vector produces
the feature vector, Y,, where the p dimension is the number of features
(where the number of features is channels * bins). In the context of the
SVM formulation in (1):

X, € {Yp, Yyt Yysas o} (6)

Additionally, before these features should be used by the SVM classifier, they
should be scaled. While it is not frequently discussed in theoretical literature
surrounding the SVM, scaling is very important in practice; un-scaled feature
vectors may result in SVMs where subsets of the feature vector dominate the

solution only for numerical reasons. In order to scale the feature vectors:

M = {max(x;,), max(X;z), ..., max(x; ,) } (7)
m = {min(x; 1), min(x; 2), ..., min(x; ,) } (8)
Y= )

Which will scale the values in Y, to the range [0..1].

2.2.5 Computational Complexity

Two components of the above math are interesting for the computational
complexity of real-time seizure detection: classification decisions and feature

extraction. The computational complexity of SVM training is an interesting

14



subject thoroughly explored elsewhere, but in the context of online seizure
classification it is not particularly relevant because training can be performed
offline, with stored training results loaded at runtime by the classifier.

The SVM classification function is a sum of products of vectors, where
one of the vectors is the output of the kernel function. The kernel function is
an exponentiation of a multiplication of a constant and a squared sum. The
SVM classification function is linear with respect to the number of support
vectors, and it is linear with respect to the dimensions of the feature vectors.

The feature extraction consists of several FFTs and vector multiplications.
As a result, it is quasilinear with respect to the number of EEG channels or
samples, because an increase in either of these results in an increase in the
length of the FFTs performed, and FEFTs are O(nlogn). An increase in the
number of bins results in a linear increase in the number of FFTs performed,
but does not change the nature of the FFTs themselves, so it is linear.

The support vectors are the dominant factor in terms of the amount of
data that must be stored in order to perform classifications. It is difficult to
estimate the number of support vectors needed for classification due to the
nature of the SVM optimization algorithm; however, it is safe to assume as
many as a few thousand may be used. While this did not prove problem-
atic in our implementation, there is ongoing work in SVM data reduction
and approximation, which can reduce the number of support vectors needed
significantly, although with some classification performance hit [23, 25|. In
addition to the support vectors themselves, the scaling vectors M and m

must also be stored, along with the constant ~.

15



3 Software

In this section, the seizure detection algorithm implementation is described
in detail. The algorithm is a support vector machine (SVM) classifier, which
is a supervised learning binary classification algorithm. Our implementation
is based on [29, 28|. In this algorithm, the EEG data is processed into
frequency binned log-sum-absolute energies. Seizure and nonseizure data
in this feature space are not linearly separable; the feature space has no
linear boundary between seizure and nonseizure features. The traditional
support vector machine formulation assumes a linearly separable problem
set, but through the use of a kernel trick the feature vectors may be projected
into a higher-dimensional space in which they are linearly separable. This
higher-dimensional linear separation is equivalent to a nonlinear separation
in the original feature space. In this application, a Gaussian Radial Basis
Function kernel has been shown to be effective [29, 28|. The features used
here are constructed from three hertz-wide energy bins. Each signal in the
data set is filtered into eight frequency bins. The energy in each of these bins
is calculated and concatenated into a vector. The resulting feature vector has
(number of signals) * (number of frequency bins). EEG patients will typically
have around 20 signals with 8 frequency bins, for around 160 features. This
number will vary from patient to patient because it is dependent on the EEG
configuration.

The algorithm is evaluated with the CHB-MIT data set [15], which was
also used in [29, 28]. This makes it easier to benchmark our algorithm’s
performance against a reference implementation. The algorithm is then eval-

uated against the European Epilepsy Database [22].
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3.1 Feature Extraction

The feature extraction stage was developed as a standalone application in
C++ with the intent that the resulting feature data could be processed in a
variety of ways. Currently, this feature data may be fed into: the training and
cross-validation software, the embedded detection software, and MATLAB
through a custom plugin. C++ was the language of choice for almost all
of the software in this thesis because most of the software needs to be able
to run in an embedded system. In such an environment, something like the
Java Virtual Machine or an operating system represents a huge overhead in
both computational resources and power. Our C+-+ software can much more
easily be compiled for bare-metal operation, which will help produce a more
embedded system than may otherwise be possible.

Feature extraction is a many-layered process. At the outermost layer, a
set of EDF (European Data Format - the standard for storing EEG data)
files are processed. For each EDF file, the signals are windowed. For each
window, signal data is processed. For each signal chunk, a set of features are

generated and saved.

3.1.1 Patient Data Processing

The input data set for a given patient consists of a group of EDF or EDF-+
files. These files tend to individually contain around an hour of recorded EEG
data. Additionally, a metadata file will contain annotations about file start
and end times, seizure start and end times, and EEG channel configurations.
The first layer of the feature extraction application starts with this metadata
file. The application reads this file to determine the names of the input files
to use, as well as any seizure occurrences within those files. The program
opens an EDF file and passes that file and seizure timestamps on to the next

stage.

17
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Figure 6: Example of windowing EEG data for feature extraction. Data
segment from CHBMIT Database|15]

3.1.2 Individual EDF Processing

The EDF file from the first stage is opened and data parsing begins. The
number of samples is read, as well as the number of signals. Data struc-
tures are created based on these parameters. The matrix of feature vectors
for this file is allocated as a three-dimensional array, whose dimensions are
{(total number of windows to parse file),(signal number),(frequency bin)}.
The feature extractor stage is then prepared with some metadata and con-
figuration parameters, such as sampling frequency of the data and window
length. Now, the application begins sliding the window over the EDF file.
This generates blocks of signals that are two seconds long, with one second
of overlap between blocks. This windowing process can be seen in figure 6.

Each of these windows is sequentially processed by the feature extractor.

3.1.3 Feature Extractor

Finally, at the bottom layer, the signal processing takes place. This section
makes heavy use of the FFTW3 library [14]. First, the data is transformed
into the frequency domain with an FFT. A decimation filter is applied, and

the data is transformed back to the time domain, where decimation is com-
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pleted. This decimated data is then transformed back to the frequency do-
main, where a comb filter is applied. The data is converted back to the time
domain, and log-sum-absolute energies are calculated for each frequency bin.
These energies are returned to the higher-level code, where they are assem-

bled into a feature vector.

3.1.4 Output

Feature vectors are serialized to disk at the highest layer. This serialization
uses the Google Protocol Buffers|17]| format and library to store the data
in an easily-digested widely-supported binary format. The Protocol Buffers
project has native libraries for C++ and Java, with third party ports to
dozens of other languages and platforms. As a result, the feature vectors

generated here are highly portable with minimal custom storage code.

3.2 MATLAB Inspection and Validation

These features can now go several places. First, let’s consider the process of
validating our generated features in MATLAB. This process is very simple,
thanks to the power of Protocol Buffers[17]. While the original binary data
was serialized in C++, there exist libraries in nearly every major language
for serializing and deserializing the Protocol Buffer binary message format.
While there is a third-party version of the library for use in MATLAB, it was,
at the time of use, not up to date with the current Protocol Buffers library
version, so it did not work with our data. Luckily, Java/MATLAB inter-
operability is extremely simple, and Java is one of the officially-supported
languages of the Protocol Buffers project. A simple features-to-MATLAB
loader was built in Java around this library, and easily allows for feature
inspection and validation in MATLAB.
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3.3 Offline Training

The most significant use of these pre-calculated features is offline SVM train-
ing. Like the feature extraction stage, this stage was written in C+-+. While
the offline training should not take place on the embedded platform, the
entire cross-validation portion of the training procedure is identical to the
online detection process. Additionally, cross-platform cross-validation helps
validate program functionality. As a result, in the interest of code reuse
and library compatibility, the training software was developed in C+-+, even
though it will generally never run on the embedded platform. Several li-
braries are used in the training software to facilitate the process. Google’s
Protocol Buffers are used to read the precomputed feature data from disk
[17]. LIBSVM is used for SVM training and calculations [6].

The training process starts by supplying a file of pre-calculated features.
The data is loaded and separated into seizure and nonseizure chunks. Next,
the SVM parameter search space is generated. By default, the system per-
forms a grid search of C values [27-5, 27-4, 2°-3...2720] and gamma values
|2°-15, 27-14, 2°-13...2710], which is a larger version of the range from the
suggested range in the LIBSVM documentation [21]. In LIBSVM, C controls
the cost of misclassified training points, while gamma influences the width of
the Gaussian radial basis function kernel. For each parameter combination,
SVMs are trained using leave-one-out cross-validation. In this validation
scheme, the SVM is trained on all all seizure data except for the seizure
under cross-validation and a subset of the nonseizure data. The nonseizure
data subset was constructed by using one out of A nonseizure feature vectors.
This value A was fixed at 30 for the CHBMIT database, but was varied on
the European Epilepsy Database [22]. Not all of the nonseizure data is used
in training, because there are several orders of magnitude more nonseizure
data than seizure data. Supplying all of the nonseizure data could result in

over-training or mis-training, and would take significantly longer to process.
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Before this data is used for training, it must be normalized. The range of
values at each index of the feature vector should be on the range of [0...1] in
order to prevent indices with numerically prominent data from overpowering

numerically smaller indices. This scaling takes the form of

value — minimum
scaledV alue = - — (10)
Maximum — Minimum

Once this SVM is trained, the remaining block containing the seizure under
test and up to one hour of non-seizure data is run through the detector. The
known label and the SVM-predicted label are both logged to a results file.
This cross-validation scheme is repeated for each seizure in the data set, and
the entire training process is repeated for every possible combination of C and
gamma. After these results are analyzed, a human operator may select a (C,
gamma) pair that produces optimal results. There are currently no facilities
for automatic parameter selection, because the desired performance of the
detector is highly orthogonal - high sensitivity and lower latency generally
imply a higher false positive rate, so there is rarely a (C, gamma) that can
be considered "best" for any one patient. Should such a fitness function
exist, it would be reasonably straightforward to implement a greedy search
for optimality. SVM optimization is NP-hard, so it is not currently possible
to optimally solve for optimal parameters. In any case, if the user supplies
a desired (C, gamma) then the corresponding SVM will be saved to disk for

later use, such as in online detection.

3.4 Online Detection

The online detection stage is closely related to the feature extraction and
offline training processes. This process flow is laid out in figure 7. Currently,
the online functionality is simulated by reading the data from EDF files on

disk, due to an absence of sources of live EEG containing seizures. Hook-
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Figure 7: Embedded algorithm execution flow
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ing the software up to an incoming data stream from the analog front end
described in section 4 is a trivial adjustment.

First, features are extracted from the fresh data. This functions exactly
as described in the feature extraction section. In addition to serializing the
features to disk, however, the feature vectors are also immediately scaled and
classified. Storing feature vectors from online detection enables retrospective
performance evaluation and manual system adjustments if needed.

Classification is performed in a manner similar to the cross-validation
stage of the SVM training procedure. At startup, a SVM is loaded from
disk. As features are extracted, they are classified by this saved classifier.
SVM decisions are logged in the same format as the cross-validator’s output
in conjunction with live n out of m seizure declaration. This provides a fully
online seizure declaration system with the ability to perform retrospective

analysis to potentially improve performance.

3.5 Omnset Declaration

At this time, both the offline trainer and the online detector simply output
SVM classifier decisions. The SVM classifier outputs a 1 for feature vec-
tors classified as seizure and a -1 for feature vectors classified as nonseizure.
These individual flags could be used as declarations, but doing so leads to a
high false positive rate (as seen in figure 14 and figure 18 in section 5.1.2).
Instead, a results processor was written, which evaluates these classifications
separately from the classification generation. This separation of duties en-
ables a wide array of voting schemes to be evaluated without rerunning the
entire classification, which would take several hours per patient. The re-
sults processor fundamentally works by using an n out of m voting scheme
to declare seizure onsets. As it reads in classifications, the m most recent

classifications are stored. If the number of positive classifications is greater
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than or equal to n, a seizure onset is declared. This process repeats for each
classifier output.

These onset declarations could be compared directly against the expected
label (seizure, nonseizure) at the time of declaration and treated as either a
true positive or false positive if it matches or not. However, that approach
has some significant drawbacks. For the purposes of training, each seizure
is limited to a maximum of ten seconds of positive seizure onset labeling.
Additionally, these labels have been assigned by an epileptologist in a manner
that is not strictly quantitative - there is no consensus or objective definition
of what constitutes a seizure [13]. The labeled onsets assigned by two different
epileptologists can differ by multiple seconds. As a result, the labels used
for training may lag the true electrographic onset by multiple seconds. The
classifier may then trigger a detection closer to the true electrographic onset
than the labels are. If the detection is strong enough to be a declaration,
and that declaration is compared to a potentially mislabeled negative, then a
true positive detection may unintentionally be mistreated as a false positive.

A mechanism for allowing detections in a window around the labeled
onset is needed. This is handled by logging the past j declarations, which are
compared against the current label value. If any of the past j declarations
are positive when a series of positive labels get processed, the declaration
is stored as a true positive. If a positive declaration’s age exceeds j, a false
positive is stored.

Handling high latency detections is processed in a similar manner. The
time since the last positive label is stored. If a positive declaration is raised
while that time is less than some time k, a true positive is recorded. If time
greater than k has elapsed, then a false positive is recorded.

Finally, there is the issue that both true positive and strong false positive
events are likely to have a large number of positive classifications associated

with them. Raising several onset declarations in a short period of time does
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not make sense, whether it is during a seizure or not. To simplify this,
onset declarations are treated with a cooldown timer p. Once an onset is
declared (whether it is a true positive or a false positive), a timer is initiated;
during that timer window, no additional declarations will be raised, and all
declaration history windows will be initialized to empty once the timer has

expired.
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4 Hardware

In this section, the various hardware developed and used is described in detail.
There are two main embedded systems: the ambulatory recording platform
and the embedded seizure onset detecting hardware. These platforms were
developed and used in parallel; a future version combining the two into a

unified EEG recording and seizure onset detecting device is planned.

4.1 EEG Hardware

A highly integrated battery operated EEG recording platform was devel-
oped over several generations. The first generation of devices were focused
on exploring wirelessly powered minimally invasive implantable EEG sys-
tems. The goal form factor for these devices was a strip device that could
be inserted beneath the scalp through a small incision, combined with an

external wireless supply and data logging device.

4.1.1 First Generation

The first generation of EEG recording platform prototypes focused on the
TT ADS1298 analog front end. This family of devices all featured a single
ADS1298 in a variety of configurations. For more information about this

generation of hardware, see |11].

ADS1298 Evaluation Board The first board developed was a custom
evaluation board for the ADS1298. This board featured an ADS1298, an
MSP430, a serial port, power supply circuitry, and many breakout connec-
tions and test points. The purpose of this board was to evaluate the feasibility
of using the ADS1298 to record biosignals. For the sake of rapid testing, the

primary focus was on ECG signals because they are very easy for untrained
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individuals to identify. This project primarily focused on exploring the prob-
lem space and tackling the challenges of working with the ADS1298 family

of devices and their data results.

Wireless Board A related system was a wireless EEG recording platform,
which was developed to begin experimenting with wireless power systems.
The wireless board featured an ADS1298, an MSP430F2272, an antenna,
and some related wireless power hardware. The receiver board featured a
TT TRF7960A, an Actel Igloo Nano AGL250 FPGA, an MSP4302272, a
microSD card, and power supply systems. The ADS board was wirelessly
powered by the TRF7960A on the receiver board, and would load modulate
the power link to transmit data. The FPGA demodulated the data and man-
aged the wireless link. The MSP430 managed the FPGA, TRF7960A, and
serialized the data to the microSD card in a custom format. This project
primarily focused on improving the performance and reliability of the wire-
less power and data link. Preliminary EEG performance analysis was also

performed.

4.1.2 Second Generation

The second generation of devices currently features a complete prototype
logging platform based on the TI ADS1299. The device is pictured in figure
9; a configuration on a test patient with wet electrodes can be seen in figure
10. The ADS1299 is a higher power, lower noise version of the ADS1298. It
is pin-compatible with the ADS1298 in certain power supply configurations;
the ADS1298 operates off of a 3 volt AVCC while the ADS1299 requires a 5
volt AVCC. The current second generation platform has three ADS1299s, an
MSP430F5310, an Actel Igloo FPGA, and supporting components. Almost
all digital signals on the board are routed through the FPGA for maximum
flexibility. A block diagram of this design can be seen in figure 8. The original
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Figure 8: Block Diagram of Second Generation EEG Platform
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Figure 9: Second generation hardware platform

design intent was to embed a detection algorithm in the FPGA, with the
microcontroller providing the majority of platform management. However,
during the firmware design phase, these objectives changed significantly. In
the final firmware design, the FPGA manages the entire system. The FPGA
contains a state machine to write to the SD card in the same custom format
as the wireless board. It also contains a state machine for initializing all
three ADS1299s. The ADS1299 features an internal reference generator and
internal clock generator. In this application, it is desirable to have all three
ADS1299s using the same reference voltage and clock for optimal results, so
there is a master ADS1299 chip and two slave ADS1299 chips. The master is
configured to output its clock and reference, while the slaves are configured
to operate off of an external clock and reference. Similarly, the ADS1299
features a bias generator. This circuit is used to improve common-mode

rejection of the system by driving the body with the average of all input
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Figure 10: Device in use on the author
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channels. In th multi-device configuration, the master ADS1299 is configured
to generate this bias, while the slaves provide the averages of their channels
to the master. While the devices can be configured in a number ways to
reduce the number of I/O pins used for communications, all three ADS1299s
are configured as though they are on independent SPI buses with the FPGA.

While the only second-generation boards implemented thus far feature
the ADS1299, the board can also be used with the significantly lower-power
ADS1298 if an alternative power supply is populated.

4.2 Embedded Seizure Detection Environment

In the interest of parallel development, an ARM-based development kit was
used to facilitate embedded algorithm development. In the interest of mini-
mizing extraneous work, a raspberry pi was purchased. The raspberry pi is
an inexpensive DIY-oriented ARMv6 board. The processor on the board is a
BCM2835, which is an ARM11 processor with hardware floating point sup-
port from Broadcom. There are several distributions of Linux targeted to the
raspberry pi specifically, with extensive community support. Our software
compiles and executes on both PC and ARMv6. Precise power measure-
ments were not made during ARM11 execution, but the estimated power
consumption with the current ARM environment kit is approximately 400
milliwatts during algorithm execution [1]. While this conservative estimate is
relatively high for an embedded device, power optimization has not yet been
explored for this device. Lower-power devices, such as Silicon Labs/Energy
Micro EFM32 devices support a newer ARM instruction set at a significantly

lower power consumption point [30].
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5 Results

There are a few important performance metrics to consider for the purposes

of seizure onset detection:
1. Sensitivity: the ability to detect as many seizure onsets as possible.

2. Specificity: the ability to detect only true seizure onsets; a seizure

detector with low specificity will have a high false positive rate.

3. Latency: the time delay from the electroencephalographic onset of a
seizure to the detected onset of a seizure. For the purposes of evalu-
ation, electroencephalographic onsets used here are those assigned by

the epileptologist who annotated the EEG data sets.

The ideal detector exhibits perfect specificity - zero false positives, perfect
sensitivity - zero false negatives, and perfect latency - zero seconds of actual
onset to declared onset delay. These results are unlikely to be achieved
in a real detector. In a real detector, these three statistics are difficult to
optimize all at once. An increase in sensitivity (a reduction in false negative
rate) tends to come with the cost of a decrease in specificity, an increase in
detection latency, or both. An increase in specificity (a reduction in false
positive rate) tends to come with the cost of a decrease in sensitivity, an
increase in detection latency, or both. A decrease in detection latency tends
to come with reduced sensitivity, reduced specificity, or both.

Based on empirical observations, high-latency declarations, such as dec-
laration latencies greater than 10 seconds, are uncommon. If a seizure is
going to be detected reliably, it is detected quite early in the onset. Instead,
high sensitivity correlates strongly with reduced latency. Particularly, the
set of detectors with the highest degree of sensitivity display identical or

nearly-identical detection latencies for a given voting scheme. From this set
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of detectors, the detector with highest sensitivity, lowest latency, and lowest
false positive rate is selected.

First, the performance of the implementation described above will be
compared to that of the reference implementation in [28] with a few case
studies from the same data set. Then, detection results on new data will be

presented and analyzed.

5.1 Detector Performance

The performance of the detector implementation will first be benchmarked
against the results of the reference implementation in [28]|. After discussing
the differences in performance, detection results on previously unpublished
data will be presented and discussed. The results process has a few param-
eters of its own to keep in mind in addition to the SVM detector’s various
parameters.

As discussed in 3.5, there are several interesting parameters to control
the performance of the detector; m is the number of samples voting, n is
the number of votes to pass, j is the pre-onset detection window, k is the
post-offset detection window, and p is the cooldown timer duration. The
results presented below will use and discuss different combinations of n and
m, but the remaining parameters were fixed for all presented runs. Parameter

j was 120 seconds. Parameter k was 30 seconds. Parameter p was 160 seconds.

5.1.1 Reference Comparison

The reference implementation’s results were acquired against the PhysioNet
CHBMIT database |15]; this is a publicly-available database of over 600 hours
of EEG recordings containing 192 seizures across 23 subjects. From this
database, patients 1, 2, 3, 6, 7, 8, and 23 were selected for comparisons. This

selection was largely a function of which patients had EDF files that worked
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Figure 11: Percentage of seizures detected

with our loading library and did not have channel configuration adjustments
during the recording process, which would require additional preprocessing to
align the channels across all recordings. These 7 patients adequately establish
a baseline level of performance against the reference implementation, while
the additional results on new data further demonstrate the capabilities and
limitations of the design.

First, the percentage of detected seizures is displayed in figure 11. The
embedded implementation compares favorably to the reference implementation|28]
by detecting all of the seizures in the subset; the reference implementation
missed one. This is slightly better than the overall 96% detection rate estab-
lished in [28].

A comparison of false positives declared per 24 hours can be seen in 12.

The embedded implementation performs exceptionally well on average, with
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Figure 12: False positives per 24 hours

just one patient displaying any false positives at all. This outlier is displays
7 false positives per 24 hours, giving an average of 1 false positive per 24
hours.

Detection latencies, as seen in figure 13, are extremely competitive. The
reference implementation had an average detection latency of 3.39 seconds,
while the embedded implementation had an average detection latency of 3.54
seconds.

Our embedded detector implementation has demonstrated competitive
detection performance in the categories of sensitivity, specificity, and latency.
Our implementation accomplished superior sensitivity and specificity at the

cost of 0.15 seconds of detection latency.
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5.1.2 The European Epilepsy Database Results

The European Epilepsy Database is a pair of databases that can be licensed
by research organizations [22]. There are two databases of seizure data;
one database features intracranial recordings, while the other has surface
recordings. From the scalp database, 18 patients with 167 seizures in 2,682
hours of data were used. An additional 12 patients were not used at this
time due to time constraints. A notable difference between this data and the
CHBMIT data is the relative frequency of seizures. The European Epilepsy
Database has roughly 1 seizure per 16 hours of data, while the CHBMIT
database has roughly 1 seizure per 3 hours of data. The average recording
duration for each patient in the European Epilepsy Database is 150 hours,
while the average duration for each patient in the CHBMIT database is 26
hours.

One of the factors in the training process is the parameter A of the trainer.
As mentioned in 3.3, this decimation factor was a constant 30 for the CHB-
MIT database. However, in the European Epilepsy Database, there is over
5 times more non-seizure data for each seizure. Initial results with an A of
30 were mediocre, so varying this decimation factor was explored. First, the
results for a decimation factor of 750 are presented. This high decimation
factor sacrifices some overall performance for higher training speed, due to
the highly reduced dataset being handled. In general, however, this decima-
tion scheme is very likely to miss outliers in the nonseizure feature space, as
these outliers are statistically uncommon. All of the results presented here
will be with various decimation factors A, but it is hypothesized that a more
robust feature space reduction algorithm, such as those presented in [40, 41],
would improve detector performance and training time.

The ROC curve, or receiver operating characteristic curve, in figure 14
displays the tradeoff of sensitivity for specificity. Increased sensitivity results

in decreased specificity. A perfect detector would have a point in the top-left
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Figure 14: ROC curve of embedded implementation with A = 750 on the 18
patients selected from The European Epilepsy Database

38



corner - a true positive rate of 1 with a false positive rate of 0. The embedded
implementation does not achieve perfection, but does exhibit significantly
higher than random chance performance. The datapoints on the ROC curve
correspond to a variety of n out of m voting parameter combinations: 1 out
of 1, 2 out of 3, 3 out of 3, 2 out of 4, 3 out of 4, 4 out of 4, 2 out of 5,
3 out of 5, 4 out of 5, 5 out of 5, and 10 out of 10. The entry with the
lowest euclidean distance to the perfect detector is the 3 out of 4 scheme.
At this time, an optimal tradeoff of specificity for sensitivity has not been
established, so the euclidean distance will be used.

This detector achieved a detection rate, or sensitivity, of 93.5% and a
specificity of 85.5%. The average latency was 4.99 seconds. The average
false positives per hour was 3.80.

The sensitivity for each patient can be seen in figure 15. The false posi-
tives per hour for each patient can be seen in figure 16. The average detection
latency can be seen in 17. Compared to the CHBMIT results, these results
are generally lower. The average latency is 1.5 seconds higher, the sensitiv-
ity is 6.5% lower, and the false positives per hour are 95 times higher. The
changes in latency and sensitivity are acceptably small, but the false positive
rate is relatively poor. In the interest of improving it, the decimation rate A

of the trainer was changed from the relatively high value of 750 to 90.
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False Positives per Hour vs Patient Number
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Figure 16: False positives per hour of the A — 750, n — 3, m — 4 detector
on the 18 patients selected from The European Epilepsy Database
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Figure 17: Average detection latency of the A = 750, n = 3, m = 4 detector
on the 18 patients selected from The European Epilepsy Database
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Figure 18: ROC curve of embedded implementation with A = 90 on the 18
patients selected from The European Epilepsy Database

The A=750 results displayed strong sensitivity and latency, but weak
specificity. An A value relatively closer to the original value of 30 was sampled
next, because preliminary results collected with a wide variety of A values
indicated that a lower A value would yield higher specificity (but reduced
sensitivity) for a given voting parameter combination.

Unfortunately, the change in performance for a given voting parameter
combination does not shift the ROC curve in figure 18 as a whole. Instead,
the voting parameter combinations are shifted along approximately the orig-
inal curve, such that the overall performance is the same even though an
individual voting parameter combination’s performance has changed. The n
out of m voting parameter combinations used in this ROC curve were 1 out
of 1, 2 out of 3, 3 out of 3, 2 out of 4, 3 out of 4, 4 out of 4, 2 out of 5, 3 out
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Figure 19: Fraction of seizures detected by the A = 90, n = 2, m = 5 detector
on the 18 patients selected from The European Epilepsy Database

of 5, 4 out of 5, 5 out of 5, 2 out of 6, 3 out of 6, 2 out of 7, and 3 out of
7. using the same euclidean distance overall performance metric, a detector
with n = 2, m = 5 was selected for closer evaluation.

This detector achieved a sensitivity of 90.3% and a specificity of 87.7%.
The average latency was 6.24 seconds. The average false positives per hour
was 3.09.

The sensitivity for each patient can be seen in figure 19. The false posi-
tives per hour for each patient can be seen in figure 20. The average detection
latency can be seen in 21. Compared to the A = 750 results, these results
show a slight tradeoff of sensitivity and latency for improved specificity. Sen-
sitivity decreased by 2.2% and average latency increased by 1.25 seconds, but

there were 0.71 fewer false positives per hour.
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Figure 20: False positives per hour of the A = 90, n = 2, m = 5 detector on
the 18 patients selected from The European Epilepsy Database
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Figure 21: Average detection latency of the A — 90, n — 2, m — 5 detector
on the 18 patients selected from The European Epilepsy Database
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While the specificity is improved relative to the A = 750 detector, it is
still significantly worse than the CHBMIT specificity. At this time, it is hy-
pothesized that an alternative non-seizure feature pre-selection process could
improve specificity. Rather than use a somewhat arbitrary subset of the non-
seizure feature space, a growing neural gas, such as in [40, 41], could help
better express the non-seizure feature space. In the current implementation,
increasing A decreases the probability of selecting unusual non-seizure fea-
tures, such as muscle artifacts, mechanical interface artifacts, or inter-ictal
spikes, for the non-seizure training space. These features may then be easily

misclassified as seizures during the detection process.
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6 Conclusion

We have successfully developed and deployed an embedded ambulatory EEG
recording platform. We have also successfully developed and evaluated an
embedded seizure detection algorithm. This algorithm exceeds the baseline
performance of the design established in [29, 28] against the same patient
dataset. This algorithm also displays high sensitivity and low latency char-
acteristics against the significantly larger European Epilepsy Database, but
with reduced specificity relative to the CHBMIT database. It is hypothe-
sized that an improved non-seizure feature space selection algorithm would
improve this specificity.

In addition to enhancing the feature space selection of the classifier, there
are additional datasets to process. Additional data in the European Epilepsy
Database still needs to be evaluated, and there is another 20 patient database
coming from Boston Children’s Hospital. These datasets will be evaluated

with future revisions of the algorithm and system as a whole.
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