
Applying Causal Models to Dynamic Difficulty Adjustment
in Video Games

by

Jeffrey Peter Moffett

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

May 2010

APPROVED:

Professor Charles Rich, Thesis Advisor

Professor Joseph Beck, Thesis Advisor

Professor David Finkel, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

We have developed a causal model of how various aspects of a computer

game influence how much a player enjoys the experience, as well as how long

the player will play. This model is organized into three layers: a generic layer

that applies to any game, a refinement layer for a particular game genre, and

an instantiation layer for a specific game. Two experiments using different

games were performed to validate the model. The model was used to design

and implement a system and API for Dynamic Difficulty Adjustment(DDA).

This DDA system and API uses machine learning techniques to make changes

to a game in real time in the hopes of improving the experience of the user

and making them play longer. A final experiment is presented that shows the

effectiveness of the designed system.

2

Acknowledgments

I would like to begin be thanking both of my advisors, Joseph Beck and Charles

Rich. Both have been invaluable resources in their respective domains. Having two

advisors that come from such different backgrounds provided for some insightful

(albeit heated) discussions about how to proceed.

Under Joe’s tutelage, I feel that I should also be graduating with at least a minor

in statistics. I don’t know how he is able to come up with so many different analysis

ideas at once. I also think you single handedly made Excel a viable analysis tool for

me.

Chuck, you always seem to find the bright point in everything I do, even total

failures. You taught me that there is always something to learn from every expe-

rience. In two years, you transformed me from a undergraduate with no research

experience into a research paper crazy student. I honestly look at all my projects

now to see if I can bust a paper out of them.

Special thanks goes to my reader David Finkel. I wrote this thesis and even I

do not want to read it. Thank you for taking the time to analyze and critique my

research and writing skills.

Thanks is also due to by fellow Teaching Assistant and band members, Jeremy

Denham and Suvesh Pratapa. Graduate life would have been very boring without

all the crazy ideas that you two always came up with. I should really be writing my

thesis on Wiffle Hall. Can at least get a colloquium out of it.

Finally, I would like to thank the entire WPI Computer Science Department.

Thanks is due to the professors, secretaries, and Mike Voorhis for loaning me his

headphones (p.s. you are never getting them back!).

i

Contents

1 Introduction 1

1.1 Context of the Problem . 1

1.2 Problem Statement . 1

1.3 Application Domain . 2

1.3.1 Terminology . 2

1.4 Related Work . 2

1.4.1 EVE . 3

1.4.2 MDA . 3

1.4.3 GameFlow . 3

1.4.4 Heuristic Entertainment Value 4

2 Creating the Causal Model 4

2.1 Causal Model Definition . 4

2.2 Application to Video Games . 5

2.3 Levels of Causal Model . 8

2.3.1 First Level: Generic Model . 8

2.3.2 Second Level: Genre-Specific Model 11

2.3.3 Third Level: Game-Specific Model 11

3 Validating the Causal Model 13

3.1 Validation Study for Slime Volleyball 14

3.1.1 Experiment Design . 14

3.1.2 Experimental Results and Analysis 17

3.2 Further Model Validation . 18

3.2.1 Constraints on Game Choice 19

3.2.2 Selecting Appropriate Genre 20

ii

3.2.3 Number of Human Players . 23

3.2.4 Selected Game: Project Starfighter 23

3.2.5 Validation Study for Project Starfighter 25

4 Applying the Causal Model 29

4.1 Designing the Dynamic Difficulty Adjustment System 29

4.1.1 Converting Causal Models to Linear Regression Equations . . 30

4.1.2 Manipulating Factors . 34

4.1.3 Initializing the Model . 37

4.2 Applying GODMODE to Project Starfighter 39

5 Experimental Evaluation of DDA 40

5.1 Experimental Design . 40

5.2 Results . 42

5.2.1 Deriving Equation of Fun from Study Data 46

5.2.2 Analysis of Results by Gamer Type 47

5.2.3 Analysis of Results by Round 49

5.3 Analysis of DDA System Failures . 51

6 Conclusions 56

6.1 Future Work . 57

A Appendix 58

A.1 Example Input File for GODMODE. 58

A.2 Informed Consent Form For Studies 59

A.3 In-game Survey Questions for Project Starfighter 61

iii

List of Figures

1 Example Causal Model . 4

2 Screenshot from Slime Volleyball . 6

3 Initial Slime Volleyball Causal Model 9

4 Validated Causal Model for Slime Volleyball 17

5 Screenshot from Project Starfigher 23

6 Validated Causal Model for Project Starfighter 26

7 Flow of Data Between GODMODE and a Video Game 29

8 Example Causal Model . 30

9 Distribution of Perceived Fairness by Group 43

10 Average Fun for Various Perceived Fairness Values by Group 44

11 Average Round Time for Various Perceived Fairness Values by Group 44

12 Plotting Fun against Fair Using Study Data 47

13 Comparing Effect on Fun by Game Type 48

14 Comparing Effect on Round Time by Game Type 48

15 Comparing Effect on Perceived Fairness by Game Type 49

16 Comparing Effect on Fun by Round 49

17 Comparing Effect on Time by Round 50

18 Comparing Effect of Perceived Fairness by Round 51

19 Normalized Error on Game Metric Equations Over Time 53

20 Normalized Error on Performance Factor Equations Over Time 53

21 Analysis of Sign of Error on Performance Factor and Game Metric

Equations . 55

22 Survey Question on Gender of Participant 61

23 Survey Question on Fun of Round Presented to Participant 62

iv

24 Survey Question on Perceived Fairness of Round Presented to Par-

ticipant . 63

List of Tables

1 Participants in Slime Volleyball Study 15

2 Participants in Project Starfighter Study 24

3 Participants in GODMODE. Study 42

4 Average Values of GODMODE. Study by Group 45

5 Significance of Version Using Marginal Means on Fun and Round Time 46

v

1 Introduction

1.1 Context of the Problem

Recent work on applying machine learning and optimization techniques to com-

puter games, such as first-person shooters [HHSA08] and real-time strategy games

[UJG08], has assumed that the goal is to achieve the best possible AI performance.

In fact, game design books [AR07] warn against exactly this fallacy. The goal of

applying AI to games should be to improve the player’s experience. An opponent

that is overly dominant is not fun!

However, in order to use AI to balance a game (either dynamically or off line)

with respect to the experience of a player, we must need a formal mathematical

model of the factors that exist in video games. This formula can then be manipulated

to optimize the player’s experience in a video game. This is the primary motivation

for our research.

1.2 Problem Statement

The core problem of this thesis was to design and implement a model for optimizing

the player’s experience while playing a video game. To do this, some formal notation

which approximates “fun” needs to be quantified. If fun can be defined in terms

of a numerical equation, it can be optimized using well known machine learning

techniques.

The difficulty lies in converting fun into a numerical equation. Fun itself is

an abstract concept. In many situations it is difficult to qualitatively explain the

experience of a player, let alone define it quantitatively.

1

1.3 Application Domain

The domain this thesis concentrates on is video games. This applies to games created

for the computer, home consoles, as well as small media devices such as cell phones.

While video games exist on a wide array of platforms, similar terms are used in

most, if not all, video games.

1.3.1 Terminology

• Avatar: The character (or set of characters) in the game a human player

controls.

• Non-Player Character (NPC): All characters not controlled by a human player.

These characters are controlled by the inner logic of the video game.

• Environment: The physical representation of the game world. The environ-

ment defines how the avatar and NPC are able to navigate in the game. Ex-

amples of environmental factors include the physics in the game, the topo-

graphical layout of the world, as well as the current weather in the game.

• Spawn: When a new character is created and placed at a location in the en-

vironment. Both Avatar and NPC players can spawn. Avatar players usually

only spawn at the beginning of a round or after a death. Spawning is usually

controlled by the environment.

1.4 Related Work

There has been much research aimed at defining the abstract concept of fun in

mathematical terms.

2

1.4.1 EVE

EVE [Bur07] explains fun in terms of Bayesian information theory. It is comprised

of three components: Expectation, Violation, and Explanation. EVE argues that

a positive experience (fun) is produced when either a situation matches our expec-

tations or when a situation violates our expectations, but we have an explanation

for why the violation occurred. EVE has been applied to the analysis of gambling

games, music creation [Bur06] and computer games [Pis06].

1.4.2 MDA

MDA [Hun05] was designed as a way to understand how factors in a video game

interact. A game is decomposed into three components: mechanics, dynamics, and

aesthetics. The mechanics of the game are the low-level data structures and algo-

rithms. Dynamics are the run-time interactions between the user and the system.

Aesthetics are the emotional responses of the player while playing the game.

MDA has been used to create a game-monitoring system, called Hamlet, which

attempts to improve the player’s aesthetic experience in combat-based computer

games. The system dynamically estimates the player’s probability of dying based

on the experience of previous enemy encounters and intervenes to make the game

easier when needed. Initial results showed that Hamlet decreased the number of

player deaths while keeping its operation virtually undetected by the player.

1.4.3 GameFlow

The GameFlow model [SW05] provides a qualitative approach to evaluating player

enjoyment of computer games, using the well known concept of “flow” [Cs98] as the

starting point. Each of the eight elements of “flow” are mapped to typical game

elements. GameFlow also adds a ninth element, social interactions, which exists

3

in some games but is not included in the standard “flow” model. The GameFlow

model has been used to analyze player enjoyment in two real time strategy games,

Warcraft 3 and Lords of Everquest.

1.4.4 Heuristic Entertainment Value

Yannakakis and Hallam [YH07] developed a heuristic function to predict the level

of enjoyment in predator/prey games, such as Pac-Man. By extensively analyzing

this type of game, three elements were theorized to directly effect entertainment

value: challenge level, predator behavior diversity, and predator spatial diversity.

The heuristic function was validated by comparing user surveys of game sessions

with the values predicted by the heuristic function. Of the related work mentioned

above, this is the most similar to ours.

2 Creating the Causal Model

2.1 Causal Model Definition

Figure 1: Example Causal Model

A causal model [Coh95] is an directed acyclic graph (DAG) in which nodes

represent modeled quantities or factors and each edge indicates that the source

4

factor directly influences the target factor. Edges are also known as causal links.

Causal links can be assigned values that represent the strength of the association

between the factors they connect. Using a causal model allows complex relationships

to be visualized. Multiple factors can combine to effect a single factor. One factor,

on the other hand, can have influence on multiple factors.

In the example in Figure 1, factor A and B both have an effect on C. Changes in

either of these factors will have a direct, measurable effect on factor C. This model

also states that there is no relationship between factors A and B. Changing the value

of factor A does not affect factor B .

While placing a causal link between two factors represents an important relation-

ship between the factors, the lack of a causal link is more powerful. A causal model

built with a causal link between every pair of factors (i.e., a complete graph) will

perform as well or better than any model built with the same set of factors[Pea00].

Occam’s Razor states that the simplest answers should be preferred. Model selection

involves the removal of causal links at the price of some level of accuracy. Removing

a causal link is a powerful statement; this action strengthens the causal model by

lowering its complexity,this adhering to Occam’s Razor, while potentially decreasing

its accuracy.

2.2 Application to Video Games

Causal models are used to define a set of interactions between factors in a game.

These interactions can be broken down until they are defined as a set of manipu-

lated factors. These manipulated factors can then be independently manipulated to

achieve a controllable effect on fun.

Our causal model was designed using domain knowledge gathered from multiple

sources. The main source of domain knowledge came from an extensive literature

5

review. This review explored both publications on game design as well as current

research on Dynamic Difficulty Adjustment (DDA). The goal of DDA is to perform

changes to a game in real time in an effort to prevent a game from becoming too

easy or too challenging. DDA is based heavily on the previously discussed idea of

“flow”[Cs98]. Knowledge was also obtained from the advisors of this thesis, with

one advisor belonging to the Interactive Media and Game Development (IMGD) de-

partment at WPI. Finally, knowledge was obtained from previous experience playing

video games.

Figure 2: Screenshot from Slime Volleyball

The causal model was applied to the video game Slime Volleyball in parallel

with the model’s development. Slime Volleyball is an open source Java Applet

game originally created by Quin Pendragon for two players. It is a two-dimensional

volleyball game (see Figure 2) in which the player controls the creature (slime) on

one side of the net. Each creature can move laterally and jump to block and return

the ball. As in volleyball, you lose the point if the ball touches the ground on your

side of the net. A match ends when either side scores five points. When a version

of the model was proposed, we applied it to Slime Volleyball to verify that it fully

covered the factors in the game.

6

To create a causal model in the video game domain, some additional terms are

required:

• Game Metric: A factor that can be used to measure the quality of a character

relative to other characters in the game. Examples include score, kill/death

ratio, and time to complete a level. These values are calculated by the game.

• Performance Factor: A factor that can be used to measure the quality of a

character, regardless of the quality of the other characters. In Slime Volleyball,

the average distance to the ball is a performance factor since the character can

control where on the opponent’s side of the field the ball should be directed.

While the opponent is able to optimally position itself to return the ball, the

action undertaking is controlled completely by the character in possession of

the ball. Margin of victory is a game metric since scoring a point relies on the

offensive and defensive skill of both players. Similar to game metrics, these

values are calculated by the game.

• Manipulated Factor: A factor that can be directly influenced during the game.

While game metrics and performance factors are simply observed, manipulated

factors can be changed dynamically at run time. An important property of

manipulated factors is that they are independent of each other. Changing

one manipulated factor has no effect on the other manipulated factors. A

manipulated factor will have no incoming causal links in the model. The

manipulated factors are used to control the level of enjoyment the user is

having.

• Ambiance: The artistic, stylistic and aesthetic factors of the game. Ambiance

includes both visual and auditory aspects of a game.

7

• Perceived Fairness: Player’s belief in their chance to be victorious in the game.

Perceived Fairness can range from a player believing they have no chance to

win a game, regardless of their ability, to believing that they will win regardless

of the actions that they take in the game. Values for perceived fairness are

not obtained from the game, the player must define this value subjectively.

2.3 Levels of Causal Model

In all studies conducted for this thesis, fun will be measured by surveying the player

after a game. Fun could in principle be determined in other ways, such as direct

observation of the player by judges, amount of time played, or measurement of

biological signals.

The causal model developed can be abstracted at three levels. The levels are

shown in Figure 3. The generic level can be applied to all video games. The genre-

specific level further refines the model, utilizing knowledge inherent in various game

genres. Finally, the game-specific model can be used to directly map the model to

actual factors in a game.

2.3.1 First Level: Generic Model

The generic model covers both games in which the player plays only versus the envi-

ronment and games in which there is a nonplayer character (NPC) as an opponent.

The specific game we chose for initial validation of the model involves an NPC. For

a game without an NPC opponent, all the NPC-related nodes in the model should

simply be ignored.

The first factor directly influencing fun is the player. Players vary in a great

many ways, including, age, gender, and gaming experience. In applications of this

model, the player is not usually a factor that can be manipulated.

8

Figure 3: Initial Slime Volleyball Causal Model

The second factor directly influencing fun is the game ambiance. Even though

these aspects of a game undoubtedly affect how much fun it is to play, this is not

an area we explored in Slime Volleyball. Thus there are currently no nodes in the

model which directly influence ambiance.

The third factor directly influencing fun is the game metrics. A player who is

winning a game will have a different view of the amount of fun they are having as

opposed to a player that is losing.

The fourth factor directly influencing fun is perceived fairness. Players want to

believe that they have a chance of winning. It’s not fun to play a game in which

9

your opponents have an unfair advantage, or when you have an unfair advantage

over them. This factor can be seen as an extension on the concept of “flow” [Cs98].

Just as with ambiance, we were unsure about which factors would have a direct

influence on perceived fairness, so the node has not incoming links. To explore the

influence perceived fairness has in the game, players were asked to give a value to

this factor after playing (see appendix for the perceived fairness survey question).

Since game metrics are used to judge character performance, two of the direct

influences on game metrics are the avatar (character controlled by the player) per-

formance and the NPC performance. Also, in many cases, what matters most is not

the individual performances of the avatar and NPC, but their relative performance.

The difference in performance node was added to the model to reflect this influ-

ence. Difference in performance blurs the distinction between performance factors

and game metrics since it derives its value in relation to the performance of other

characters. Since the values come from character performance factors, the choice

was made to keep these factors in the performance node.

Since the player controls his/her avatar, there is an obvious direct influence from

the player to avatar performance. The performance of the avatar is also typically

influenced by a set of avatar abilities, the details of which depend on the game genre

and the specific game.

Symmetrically, the NPC performance is directly influenced by the NPC abilities.

Corresponding to the player’s control of the avatar, the NPC intelligence controls

and therefore directly influences NPC performance.

Finally, the environment node represents everything in the game world that is

not an avatar or NPC. In general, changes in the environment directly influence

both avatar and NPC performance.

10

2.3.2 Second Level: Genre-Specific Model

The genre-specific model refines the generic model with concepts and distinctions

related to a particular game genre, such as first-person shooters, real-time strategy

games, or sports games. The refinement process may include both adding additional

nodes and edges and expanding/splitting a single node into one or more nodes.

Different genres will require a different structure at this level.

Figure 3 shows the refinement of the generic model for the sports game genre.

For sports games, the avatar and NPC abilities nodes are each split into actions and

parameters. Actions are the fundamental vocabulary of interactions that a character

can have with the game world. Parameters constrain these actions. For example,

jumping is an action; how high you can jump is a parameter. In many sports

games, the avatar and NPC have the same actions, so that what is important is the

difference in their parameters. We have therefore added a difference in parameters

node with direct influences to both avatar and NPC performance.

2.3.3 Third Level: Game-Specific Model

The game-specific model is different than the generic model and the genre model.

In the game-specific model, we instantiate the abstract concepts in the generic or

genre model with one or more concrete quantities or factors in a specific game. Each

node may contain multiple factors. It is not required that each factor in a node be

included in this model. These factors are simply candidates for inclusion in the

model. The goal is to find a set of factors and causal links so that there is a path

from the manipulated factors to fun. Figure 3 illustrates all three levels of the causal

model for Slime Volleyball.

Starting on the left of the third level in Figure 3, we see three concrete game

metrics candidates: margin of victory (avatar score minus NPC score), absolute

11

margin of victory (absolute value of margin) and duration (how long the player

played the game before quitting).

For perceived fairness, there are also three concrete factors. These factors were

created by taking the player supplied value for perceived fairness and looking at it

in different ways. The first is the raw fairness value. This is the value provided

by the player. Players were asked how fair they believed the game was on a 0-9

scale (where 0 means computer had advantage, 5 was an even match, and 9 means

you had the advantage). The second factor for perceived fairness was the binned

fairness value. Here, the raw fairness value was grouped into bins (0-3, 4-6, 7-9).

This grouping focused on whether they player believed the game was fair, compared

with the raw fairness that was concerned with how fair the player believed the game

to be. The last factor for perceived fairness was deviation from fair. This value

was calculated by taking the absolute value of the raw fairness value minus five).

This factor was concerned with how far off from a fair game the player believed the

game was, regardless of whether the player had the advantage, or the NPCs had

the advantage.

Both the avatar and the NPCs in Slime Volleyball have the same set of actions,

namely jump, move left and move right. However, each has its own jump height

and lateral speed values.

The two candidates for both avatar and NPC performance factors were average

distance to ball (the distance a volley requires the opponent to move in order to

block and return it) and adjusted average distance to ball (average distance divided

by the opponents lateral speed, i.e., how much time the opponent has to block and

return the ball).

The only environment factor in Slime Volleyball is gravity. This controlled how

the ball would move after it was hit.

12

Finally, the NPC intelligence in Slime Volleyball varies over three AI defense

levels. At the lowest level, the NPC moves simply based on whether the ball is

behind it or in front of it. At the medium level, it also takes into account the

direction the ball is moving and whether it is falling or rising. At the high level, it

calculates the spot where the ball will land.

3 Validating the Causal Model

The causal model described above was validated in a series of experiments. In these

experiments, the strengths of the causal links in the model were evaluated using

various statistical techniques. A majority of the analysis was performed using one

of the following techniques.

• Correlation: Measures the relationship between two or more random variables.

Correlations are bounded between -1 and 1, with numbers farther from zero

implying a stronger relationship. Random variables with a causal relationship

will have a strong correlation if the relationship is linear. The converse does

not apply (i.e. correlation does not imply causality).

• Partial Correlation: Similar to correlation, partial correlation measures the

relationship between two or more random variables. The distinction is that

partial correlations allow for the effect of other random variables to be ac-

counted for before determining a value.

• Analysis of Variance (ANOVA): This is used to compare the effect of a popu-

lation that has been grouped in a particular way. ANOVA is used to determine

whether the variance in each group is similar to the population variance or that

the groups are statistically different from each other. ANOVA determines, for

13

example, if the different AI settings have a significant impact on how a NPC

performs during the game.

3.1 Validation Study for Slime Volleyball

3.1.1 Experiment Design

As a first step toward validating the causal model in Figure 3, we conducted a

study of 136 players of Slime Volleyball. The basic methodology of the study was

to vary the values of the manipulated factors in the model and to measure the

values at the other nodes. Validation of the model was based primarily on direct

and partial correlations. For example, our causal model posits that the partial

correlation between difference in performance and fun, adjusting for the influence

of game metrics, will be close to zero.

The top two layers of the causal model in Figure 3 have nine leaf nodes: player,

ambiance, perceived fairness, environment, NPC intelligence, avatar/NPC actions

and avatar/NPC parameters. In this study, the ambiance and avatar/NPC actions

were kept constant, and we decided to measure rather than try to control perceived

fairness, because we were unsure of its direct influences. This left us with five varying

leaf nodes: player, environment, NPC intelligence and avatar/NPC parameters.

In addition to validating the edges in the top two layers of the causal model, a

second goal of the study was to evaluate alternative instantiation candidates, both

for leaf and other nodes in the third Slime Volleyball-specific layer of the model.

For example, we wanted to determine whether both or either of jump height and

lateral speed were valid direct influences on NPC performance, and whether margin

of victory, absolute margin of victory or duration were valid game metrics in terms

of their direct influence on fun.

14

Slime Volleyball needed to be heavily modified to meet the needs of the study.

Among other things, we modified the game to be used by one player versus an

AI-controlled NPC. Additionally, a logging utility was implemented to record the

required data about a play session and store it in a useful format.

The game was made publicly available on a web page hosted on a WPI server.

Potential participants were solicited by word of mouth and via various mailing lists

and directed to the web page where, before participating, they had to read a brief

introduction explaining the game and the data collection procedure (see appendix).

After agreeing to participate, players were asked their age, gender and what type of

gamer they considered themselves to be. The breakdown of participants is shown

in Table 1.

Participants by Age
Frequency Percent

under 20 30 22.1
20 to 25 95 69.9
26 to 30 1 .7
31 plus 10 7.3

Participants by Gender
Frequency Percent

Female 46 33.8
Male 90 66.2

Participants by Gamer Type
Frequency Percent

Casual 58 42.6
Average 35 25.7
Hard Core 27 19.9
Unknown 16 11.8

Table 1: Participants in Slime Volleyball Study

After answering the three questions about themselves, participants were directed

to the game. Each participant was assigned one of 54 possible configurations of the

15

game (see below) according to a predetermined sequence based on order of login.

After each match (five points), the participant was asked the following two questions:

• How much fun was this match? (0-9)

• How fair was this match? (0-9 where 0 means computer had advantage, 5 was

an even match, and 9 means you had the advantage)

Participants were allowed to play as many matches as they wanted (cf. duration).

The 54 possible game configurations were determined as follows:

54 = AI ×GV × JH × LS

AI = 3 AI Levels

GV = 2 Gravity Levels

JH = 3 Jump Height Difference Between Players

LS = 3 Lateral Speed Difference Between Players

To reduce the total number of configurations, we did not use all possible combina-

tions of avatar and NPC jump height and lateral speed parameter values. Specifically,

we only used the avatar-NPC difference combinations high-low, medium-medium

and low-high for each parameter.

As the starting point of the analysis, we calculated correlation or partial corre-

lation between every pair of nodes in the top two layers of the causal model. We

used a simple correlation for node pairs with either a direct influence or no influ-

ence between them in the model. For nodes with a causal path between them, we

used a partial correlation, holding the intermediate nodes constant. For each node

with multiple candidate quantities in the third layer of the model, the appropriate

16

correlation was calculated using each candidate. In this way each candidate factor

could be individually considered for inclusion into the final, instantiated model.

Then, to consider an edge (direct influence) in the causal model to be validated,

we required that it account for at least 10 % of the variance (i.e., R2 ≥ 0.1, or R ≥

0.32). Given our sample size, this restriction is more stringent than P ≤ 0.05, so all

of the edges in our model are statistically reliable. To determine these values, tests

were performed using the statistical software package SPSS.

3.1.2 Experimental Results and Analysis

Figure 4: Validated Causal Model for Slime Volleyball

Figure 4 shows the result of applying the validation procedure described above.

The solid edges in this figure (except for the two marked with an asterisk) are the

17

validated edges from Figure 3, with the R values indicated. For nodes with mul-

tiple instantiation candidates (avatar/NPC performance) the average correlation is

reported. The five dotted edges in Figure 4 are influences in Figure 3 that were

not supported by this study. The two edges marked with an asterisk are direct

influences discovered in this study that were not in our original model. The direct

influence of the margin of victory game metric on perceived fairness is a preliminary,

and sensible, answer to our original uncertainty about the source of perceived fair-

ness. The direct influence of the player on NPC performance makes sense in Slime

Volleyball because a strong player will cause the NPC to make more mistakes. The

percentages reported within some nodes represents the fraction of the overall vari-

ance accounted for by the current model (using ANOVA). To avoid over-fitting, we

report the adjusted R2 (a statistical adjustment to penalize for model complexity)

value. For example, it appears that in Slime Volleyball, our model accounts for 35%

of the variance in fun.

Finally, it is interesting to note which candidate factors in the Slime Volleyball-

specific model turned out to be significant. For game metrics, only margin of victory

was significant; for perceived fairness, only the raw fairness number; for avatar/NPC

performance, only the adjusted average distance to ball ; and for avatar/NPC param-

eters, only the lateral speed. These factors can be used to manipulate the level of

enjoyment in the game.

3.2 Further Model Validation

While the results of the previous study generally supported the claims made in the

causal model, more work was needed before concluding that the model is an effective

representation of video game factor interactions. Questions remained about whether

the model could be applied to all video games, or even all games in a single genre.

18

To answer the remaining questions, the work previously conducted using Slime

Volleyball would need to be replicated using different video games. By developing

a causal model for other games and validating it in a scientific study, we can be

more confident in our claim that this model can be applied to most, if not all, video

games.

We also sought to expand upon our previous research by applying the causal

model dynamically during run-time. The model developed during the study can be

used as a basis for designing a dynamic adjustment system that will make changes

to the game at run-time. These changes will theoretically increase the amount of

fun the player is having while playing. It is also desirable for the changes to prolong

how long the player is enjoying the game and hopefully increase the amount of time

they play for.

Many factors were considered when choosing the next game to apply the model

to. Should the game be created for the study or should a previously developed

open-source game be modified? What genre should the game be? How complex

should the game be? These issues are expanded upon in the next sub-sections.

3.2.1 Constraints on Game Choice

The selected game would be required for the remainder of the thesis. Development

of the dynamic difficulty adjustment system could not begin without an initial study

that required the selected game. After determining a time frame for the rest of the

project, it was decided that a pre-existing game was the only viable choice. In

particular, the game needed to be open-source to allow for required changes to be

implemented, such as a log to record informations needed during the analysis.

The complexity of the game was also a concern. Slime Volleyball is a very

simple game. There are only two players. Each player only has three possible

19

actions (left,right,jump). Also, the only environmental factor is gravity. The next

game would need to surpass Slime Volleyball in complexity. A more complex game

would likely yield a robust model with a higher degree of interactions as well as a

larger set of factors that could be manipulated during run-time.

On the other hand, a high complexity game introduces other difficulties. There

was a limited set of participants (mostly WPI students) available for each study.

If the game were too complex, some interesting factor interactions would not be

adequately explored while others would never even be found. The search space of

potential models for the game needed to be small enough so that it could be explored

thoroughly during the study.

3.2.2 Selecting Appropriate Genre

In selecting the next game for analysis, all game genres [Gam10] were originally

considered. Upon analysis of each genre, certain advantages and disadvantages

of selecting a game from each emerged. Below is a list of the genres considered,

including the advantages and disadvantages associated with them. While not an

exhaustive list of genres, this list encompasses most of the major video game genres,

as well as some of the important sub-genres.

• First Person Shooter (FPS): In a First Person Shooter (FPS) game, the

player’s avatar is not in view. The camera is positioned in the first person

perspective of the avatar; the player sees what the avatar sees. Characters in

FPS games, both the avatar character and NPC, tend to have a robust set

of factors that can be manipulated, including speed, rate of fire, and jump

height. The physics of the game can be changed as well as the location and

frequency of when enemies appear, or spawn. FPS games typically require

strong reflexive skill since players are constantly firing at and avoiding fire

20

from opponents. Study participants without experience in this genre would

likely not be able to gain the reflexes required in the time this study allows.

• Platformer : Games of this genre are characterized as having a complex terrain

which the player must navigate through. An example of a platformer is Su-

per Mario Brothers. Platformer games provide an large set of environmental

factors which can be manipulated. The number of NPC factors, on the other

hand, tends to be minimal when compared to other genres. Many platform

games have almost no NPC cognitive factors at all, NPCs simply traverse the

screen in predetermined patterns.

• Racing : The racing genre encompasses both games that attempt to be real-

istic and well as highly stylized. The goal of racing games is to navigate a

predetermined course faster than your opponent. Depending on the level of

realism, racing games will have a large set of environmental factors which can

be manipulated, such as factors involving the course’s surface condition. Rac-

ing games,in particular those that attempt to mimic real life, tend to be hard

to control on a standard keyboard and mouse. They work best with a steering

wheel peripheral. This peripheral could not be obtained for this study.

• Role Playing Game (RPG): As the name implies, RPGs are games involve

games where the player controls a single avatar or a small band of charac-

ters. Throughout the game, players are allowed to “level up”, or customize

their characters with new abilities, weapons, or powers. RPG games tend to

progress very slowly, something that would not lend itself very well to this

study.

• Real-Time Strategy (RTS): In contrast with RPGs, RTS games usually have

the player control a large number of avatars at any time. However, rather

21

than directly controlling the avatars, the player acts as an omnipotent being,

directing the avatars to perform certain actions. Each avatar can have its own

set of factors to manipulate. While this can be seen as a benefit, having such

a large number of factors would significantly increase complexity of the causal

model and any dynamic difficulty adjustment system derived from it.

• Third Person shooter : This genre of shooter games differs from FPS games in

the player’s perspective. Players view the avatar at some distance away from

it. In this way, NPCs can be viewed from every angle around the avatar. These

shooter games share the same advantages as FPS games without requiring

strong reflexive skill. While top down and side scrolling shooters (two sub

genres of third person shooters) do tend to have factors for the avatar, NPC,

and environment that can be manipulated, the number of factors is usually

lower than that of FPS games.

• Fighting : Fighting games typically involve two opponents battling each other

until the other is incapacitated or disqualified by the game. There will be many

factors referring to the avatar and NPC that can be manipulated. There is

typically very little that can be done with factors pertaining to the environ-

ment. Fighting games tend to have a large “combo” system, where powerful

moves can be performed by pressing a pattern of buttons within a specified in-

terval. Study participants would not have the time to learn this combo system

during the time frame of the study.

• Puzzle: Puzzle games consist of a set of cognitive challenges for the player.

They tend to have neither an avatar, nor any NPCs. The environments in

puzzle games usually cannot be altered without making the solution impossible

or trivial.

22

3.2.3 Number of Human Players

A final consideration in choosing a game was the number of human players that

would play during a game session. Slime Volleyball was a single player game; only

a single human player was involved in the game at any time. Some games involve

multiple human players interacting with each other. While it would be interesting to

explore this subset of games, multiple human players introduce a level of uncertainty

in the model. The human players would interact with each other during the game.

Since human players can not be controlled directly, this could introduce a set of

interactions that could not be manipulated by an internal system. These interactions

would mask some of the causal relations we would be looking for in the study. The

choice was therefore made to choose a game involving only one human player at a

time.

3.2.4 Selected Game: Project Starfighter

Figure 5: Screenshot from Project Starfigher

23

After considering all the factors discussed above, Project Starfighter was chosen

as the next game to use to validate the causal model. Project Starfighter (see

Figure 5), is a two-dimensional shooter game, where the player pilots a spaceship in

space. The game is written in C++ by the company Parallel Realities, who released

the source to the public. The objective of the game is to fight off a never-ending set

of enemy ships. The piloted ship can move both vertically and horizontally. The

ship can also fire its weapon. This weapon is limited in the amount of ammunition

it has and can also be upgraded during the game. It is also a third person shooter,

a genre that appears to have a large set of positive traits and few negative traits.

Participants by Age
Frequency Percent

under 20 19 29.7
20 to 29 39 60.9
30 to 39 4 6.3
40 plus 2 3.1

Participants by Gender
Frequency Percent

Female 15 23.4
Male 49 76.6

Participants by Gamer Type
Frequency Percent

Casual 14 21.9
Average 31 48.4
Hard Core 18 28.1
Unknown 1 1.6

Table 2: Participants in Project Starfighter Study

A second study was performed in order to create a model for Project Starfighter.

The design of this study was similar to the one used previously for Slime volleyball.

The main difference was that Project Starfighter contained a unique set of factors to

explore. Analysis of the results were performed in the same manner as the previous

24

study.

Participants in the study played six rounds of Project Starfighter. The first round

lasts a minute and is used to let the player learn the controls. The five rounds that

follow present the player with a random configuration of the game. Each round lasts

for a maximum of five minutes. The player is allowed to end the round at any time.

Round time can thus be recorded and analyzed to determine the factors that effect

it, as well as the relationship that exists between this value and fun. It is theorized

that there will be a strong positive relation between persistence (round time) and

fun. At the end of each round, players are asked how much fun and how fair they

believed the game to be (see appendix for survey questions).

3.2.5 Validation Study for Project Starfighter

The model created in the study is shown in Figure 6. The solid lines represent causal

links that are supported by the model. The dashed lines represent possible causal

links that were not supported by the model. The factors between these links were

found to be highly correlated, even when partialing out other factors in the model.

Seven factors were found that could be directly manipulated to effect the amount

of fun in the model. Changing the values of these factors will change the values of

the performance and game metrics, which then in turn will effect the perceived

fairness as well as the amount of fun in the game. These factors are the values that

will be utilized at run-time to make adjustments to the game. The factors found to

have a manipulable effect on fun are:

• Avatar Weapon: The weapon that the player’s character is using. Three

weapon types are used in the study.

– Single Shot: Shoots a small laser directly in front of the avatar ship.

25

Figure 6: Validated Causal Model for Project Starfighter

– Triple Shot: Shoots the same laser as the single shot, except that there

are now three of them. One shoots directly in front of the player, while

the others shoot at an angle above and below the avatar ship.

– Homing Missile: When shot, this missile automatically finds an NPC ship

and adjusts its trajectory to guarantee a hit.

• NPC Artificial Intelligence(AI): The controlling logic for the NPC ships. Three

different AIs are used in the study.

26

– Offensive: NPCs with this AI tend to continually attack the avatar ship.

Their trajectory is adjusted so that they remain within a small distance

of the avatar ship at all time.

– Evasive: The opposite logic to an offensive AI, NPCs with this AI will

attempt to keep a large distance from them and the avatar ship. These

NPCs will occasionally attempt to attack the avatar ship, though usually

it is up to the avatar to seek out these NPCs.

– Defensive: A compromise between the offensive and evasive AI, the De-

fensive AI will attempt to navigate the NPC ship it is controlling so that

a small distance is kept from the avatar ship. This distance is much

smaller than the one used by the evasive AI. The defensive AI will also

attempt more frequent attacks on the avatar than the evasive AI.

• Avatar Shots To Kill : The number of hits an avatar ship can withstand before

it is destroyed.

• NPC shots To Kill : The number of hits an NPC ship can withstand before it

is destroyed.

• Maximum NPC On Screen: The number of NPC ships that can be spawned at

any time. NPC ships will always spawn until this number is reached. No new

NPC ships will be spawned after this number is reached until one is destroyed.

• NPC Ammo Drop Chance: When an NPC is destroyed, there is a chance

that it will drop ammo in space that the Avatar can then collect. This factor

controls the probability that this occurs.

• NPC Reload Rate: Controls how fast an NPC can fire its weapon.

27

While ambiance, perceived fairness, deviation from perceived fairness, and round

time all had an effect on fun, no game metric had a direct influence on fun. Round

time had a positive influence on fun. A player that played a round for longer viewed

the game as being more fun. Players also enjoyed when there were sounds playing

and when the enemy ships varied in size and color (values measured in the ambiance

node). Perceived fairness had a positive effect on fun while deviation from perceived

fairness had a negative effect. All the influence on fun from the game metrics is

directed through perceived fairness. No game metrics had a direct influence on the

deviation from perceived fairness.

Four game metrics had a direct effect on perceived fairness. Avatar deaths per

second had a negative effect on perceived fairness, while the rest had a positive effect.

The negative effect of avatar deaths per second is not surprising since a player may

perceive a game where they are constantly dying as too difficult and thus unfair.

The converse explanation can be used for the other three metrics.

There is a complex relationship between the game metrics and the four perfor-

mance factors that were found to have a strong causal effect on game metrics. The

manipulable factors NPC shots to kill and avatar shots to kill had direct effects

on certain game metrics, even when controlling for the contributing effects of the

performance factors.

Some causal links were found that conflicted with the causal model. The study

,however, supports a majority of the assumptions the causal model makes. While

the causal model has not been proven to apply to all video games, its value has been

shown to cross into multiple game genres.

Both studies, in general, supported the claims made by the causal model. Also,

both models supported placing a causal link between game metrics and perceived

fairness. Other causal links were not as well supported. The causal link between

28

player and fun was only found in the Slime Volleyball Study. NPC Intelligence was

found to have an effect on NPC performance in the Project Starfighter study. This

relationship is not found in the Slime Volleyball study. The number of new causal

links (ones not expected in the model) was larger in the Project Starfighter study.

This is likely due to the increased complexity of the game when compared with

Slime Vollyeball.

4 Applying the Causal Model

Utilizing the causal model developed for Project Starfighter, the design and imple-

mentation of a dynamic adjustment system is possible. The goal of this system is

to utilize the knowledge obtained from the model to modify factors in a way that

will positively influence fun.

4.1 Designing the Dynamic Difficulty Adjustment System

Figure 7: Flow of Data Between GODMODE and a Video Game

29

The resulting Dynamic Difficulty Adjustment system and Application Program-

ming Interface (API) developed is known as GODMODE (Games Observed Dynam-

ically to Manipulate Observed Difficulty Errors). The API is structured so it can

be placed into an existing game with minimal adjustment to the game’s code base.

A programmer simply needs to make calls to the three functions defined in the API

(see below). Using the API, the programmer provides GODMODE with an initial

model, read access to the game metrics and performance factors, and write access to

the manipulated factors. Figure 7 illustrates how data flows between GODMODE

and a video game. The programmer can then ask the API to update the model or

determine new values for the manipulated factors. The requested changes are then

performed and incorporated into the game automatically.

4.1.1 Converting Causal Models to Linear Regression Equations

Figure 8: Example Causal Model

To facilitate customization and optimization (discussed below) in the causal

model, each node in the model was converted into a linear regression equation. A

linear regression equation contains a set of variables, each with a coefficient express-

ing the influence a variable has on the equation. Each equation also has a constant

associated with it. This value is used to capture the influence of all possible factors

30

not included in the equation. These equations can be used separately to determine

an estimate for any node in the model. They can also be collapsed to generate a

equation for fun in terms on manipulated factors only.

Figure 8 is an example of a causal model. The factors X4−6 are manipulated

factors. In collapsing the model, the goal is to build an equation for X1 in relation

to these manipulated factors. Below are the steps to collapse the given model.

X1 = C2 ∗X2 + C3 ∗X3 + E1

X2 = C4 ∗X4 + C5a ∗X5 + E2

X3 = C5b ∗X5 + C6 ∗X6 + E3

Therefore

X1 = C2 ∗ C4 ∗X4 + (C2 ∗ C5a + C3 ∗ C5b) ∗X5

+ C3 ∗ C6 ∗X6 + C2 ∗ E2 + C3 ∗ E3 + E1

Where

Ci = Regression Coefficient

E = Regression Constant

This process can be expanded to a causal model of any size, yielding a single equation

where all the variables are manipulated factors.

The model built in the previous Project Starfigher study reflects the collective

input from every participant. This level of contribution was required to validate

causal links in the model. The strengths of each link, however, may vary between

groups of players, or between every player. A level of specialization was needed to

adapt the model to different players.

31

The simplest approach is to introduce stereotypes into the model [Ric79]. In

this approach, groups that have varying models (different set of causal links) are

identified. For Project Starfighter, potential stereotypes are the player’s gender,

age, and gamer type.

The main drawback with this approach is that each model needs to be generated

and validated using separate data sets. A small set of participants were available

for the study. Every participant would contribute exclusively to a single model

in the set. The strength of each model would be drastically reduced compared to

generating a single model using all participants.

Even if more participants could be obtained for a study, an even distribution

could not be guaranteed for each model. In the Slime Volleyball study, for example,

there were approximately twice as many males as there were females. A model built

using only male participants could be created utilizing more data than the female

model. The validity of the male causal model would be greater than the female

causal model. The expected result would be a system that adjusted the game better

for males than females.

A second approach is to build one model utilizing the data from all participants

in the study. This model is given to GODMODE and is used initially to adjust the

game during run-time. At specific intervals, the strength of each causal link in the

model is evaluated. Based on the current values of the nodes on either end of the

causal link, the coefficients in one of the linear regression equations representing a

causal link are updated. The strength of each causal link can be adjusted based

on the current game state, yielding a model that has been customized for a specific

player. This is the approach that GODMODE takes utilizing the delta rule. This

rule seeks to update the value for all the coefficients in the linear regression equations.

The model is updated by calling the updateModel() function from the API.

32

Linear regression equations are stored for every game metric and performance

factor in the model. Using these equations, any of these factors can be predicted.

GODMODE also has read access to the current actual value for each game metric

and performance factor. These two values can be used to determine the current

error ε for each performance factor and game metric in the model.

YPredicted = C1 ∗X1 + C2 ∗X2 + C3 ∗X3 + E

YActual = Current Value From Game

ε = YActual − YPredicted

With an error term for each regression equation in the model, the coefficients for

each equation can be updated. This is accomplished with the following equation:

Ci = Ci + δiεXi

Here, each coefficient is effected by both the error of the equation and the current

value of its corresponding independent variable. Manipulating the coefficients this

way allows for them to be weighted by the independent variable they correspond

to. If the independent variable is small, it is contributing little to the error. The

corresponding coefficient should not change much. If the independent variable is

large, it has a significant effect on the equation. The coefficient corresponding to

this variable should be manipulated accordingly.

The change in each coefficient is also effected by the δ value. This value (usually

very small) is used to control the amount each coefficient can change during a single

33

update. Multiplying by this value dampens the effect of both the equation error

and the value of the independent variable. Without the δ value, the changes to the

coefficients may be too large, causing the resulting equation to overcompensate for

the error. The equation will never never converge, it will instead “thrash” around,

alternatively increasing and decreasing the value of each coefficient.

4.1.2 Manipulating Factors

From a programmer’s point of view, the only step in generating new manipulated

factor values during run-time is to call the updateManipulatedFactors() function

from the GODMODE API. Invoking this function will result in the manipulated

factors given to GODMODE to be updated with values that maximize the model’s

estimate for fun.

Determining a mechanism to perform updates of the manipulated factors was

a key decision in designing GODMODE. A search of similar research yielded the

Simplex algorithm, a linear programming technique [Dey09]. This algorithm is

guaranteed to find the optimal minimization or maximization of a equation consist-

ing of a set of variables. Furthermore, inequalities can be introduced to restrict the

range of values that each variable can take. Consider the following example:

Y = C1 ∗X1 + C2 ∗X2

X1 ≤ R1

X2 ≤ R2

Here, Ri represents the maximum value that Xi can take. Since all changes

Simplex performs are positive, the effective range of values for Xi is 0 - Ri inclusive.

The value of Ri represents a step wise restriction imposed by the causal model (i.e.

34

Ri = Xi±maxchange). This value promotes small, incremental changes to the game

state. Also, the equation for Y can be represented by any of the linear regression

equations in the model.

Simplex will generate an optimal answer in a time linear to the number of vari-

ables if all variables are continuous. With discrete variables the problem, known as

mixed-integer programming, becomes NP-Hard. This is a major issue since solu-

tions are required during the run-time of the game. With computation time needed

for both graphics and game logic, few resources can be allocated to GODMODE to

perform the desired changes. This implementation is not suitable for equations with

more than a few variables as the computation time would grow exponentially.

The other difficulty with the simplex algorithm is that all changes made to

variables are positive. By adjusting the sign of the equation, changes can be made

to be positive or negative. Both possibilities, however, are never considered in

parallel. This restricts the search space of manipulated factor values that simplex

explores, essentially cutting it in half.

To overcome the efficiency issues with mixed-integer programming, we used hill

climbing for problems with integer variables. Hill climbing is a local search algorithm

that incrementally finds an optimal solution. For the purposes of GODMODE, hill

climbing begins by collapsing the model into a single equation for fun in terms of

manipulated factors. Hill climbing looks at each of these factors one at a time,

increasing or decreasing the current value by one. The change that minimizes the

deviation from the desired value for fun is chosen. This process iterates until no

change produces a smaller deviation on fun. The maximum change for each variable

is controlled by the same step-wise restriction used for Simplex.

Hill climbing addresses both problems associated with using the simplex algo-

rithm. First, hill climbing considers both negative and positive changes for each ma-

35

nipulated factor. Second, little computation is required to evaluate each state. While

hill climbing is not guaranteed to run in polynomial time, the time required is sig-

nificantly smaller than using simplex due to the smaller set of operations performed

on each step. While the simplex algorithm performs numerous matrix operations on

each step, hill climbing only performs a small set of additions and subtractions to

find a suitable solution. Also, the algorithm generally finds a local optimal solution

in a small number of iterations.

Y = C1 ∗X1 + C2 ∗X2 + C3 ∗X3

Step(X1) = 2

Step(X2) = 2

Step(X3) = 2

To illustrate, an equation for the variable Y is given that is composed of three

manipulated factors. Each factor can increase or decrease by a maximum of 2 (as

long as the change is still in the range defined for that factor). For each iteration

using this equation, seven equations are considered. The first is the equation as it

is, with no factors adjusted. Two equations are considered for each factor, one with

the factor increased by one, the other with the factor decreased by one, holding

the rest of the factors constant. The equation with the lowest deviation from the

desired value of Y is chosen and the factors are set to the corresponding values. This

process is repeated until no improvement in deviation from the desired value for Y

can be found.

The main drawback of using hill climbing is that it is prone to becoming stuck in

local optimal solutions, instead of finding the global optimal solution. This is a minor

36

issue since the hill climbing algorithm is invoked from GODMODE multiple times

during the game. Between invocations, the model will be updated, changing the

influence of each manipulated factor. These changes can affect the value for both the

global and local optimal solutions. Adjustments to the model between invocations

of the hill climbing algorithm allow it to get out of local optimal solutions.

4.1.3 Initializing the Model

GODMODE requires two pieces of information before it will be able to perform the

desired changes to a game during run-time. First, a causal model must be given to

the GODMODE. Read access to the game metrics and performance factors, as well

as write access to the manipulated factors, must also be permitted. Both steps are

performed by calling the instantiateModel() functions from the API. This functions

should only be called once during a game to set up the causal model.

The file given to GODMODE must be of a specific format (see appendix for

example input file). The file contains the coefficients for the linear regression equa-

tions built for fun, perceived fairness, game metrics, and performance factors. To

allow the model to be as general as possible, a coefficient for each factor in the lower

levels of the model is included. For example, the equation for game metrics has

a coefficient for each performance factor as well as each manipulated factor. The

resulting set of equations is sparse, contain many zero coefficients. A zero coefficient

corresponds to a factor that does not have a direct effect on the dependent variable.

GODMODE removes factors with zero coefficients when performing operations on

the model.

The file also contains strings describing the variables each coefficient represents.

The descriptive strings are included to ensure coefficients are entered in the appro-

priate order. These strings are ignored when GODMODE reads the file.

37

As well as including the coefficients for all equations in the model, the given

file must also include a set of restrictions for each of the manipulated factors. For

each manipulated factor, an initial, maximum, and minimum value is specified. The

maximum and minimum values specify a range of valid values for each manipulated

factor. The initial value is the value that each manipulated factor will be set to when

the initializeModel() function in invoked. Also included is a step-wise constraint on

each manipulated factor. This value specifies a maximum absolute value that each

factor can change during a single update. This promotes incremental changes that

will hopefully be invisible to the player.

Nominal factors can also be encoded into the model. A nominal factor (such

as avatar weapon) will include a variable for each possible value that it can take.

The minimum value for each variable must be zero, while the maximum must be

one. Also, the step-wise constraint must be one. In this way, variables representing

a nominal factor can either be on (one) or off (zero). Only one variable for each

nominal factor should initially be set to one.

GODMODE requires read access to the game metrics and performance factors.

It also requires write access to the manipulated factors. Game metrics and perfor-

mance factors are used to update the model. The manipulated factors are used to

dynamically make changes to the game. By storing the location all these variables,

GODMODE is able to operate with minimal interaction with the game. Changes

made to game metrics and performance factors are passively incorporated into the

model. Changes to the manipulated factors are likewise incorporated into the game

passively.

Currently, all factors in the model are required to be continuous. This choice

was made so that both discrete and continuous factors could be incorporated. The

game is required to facilitate the conversion of a continuous value if needed. For

38

example, Project Starfighter stores all of its manipulated factors as discrete values.

Write access to a set of matching continuous factors are given to GODMODE. When

these factors are updated, the game converts the continuous values it was given into

discrete values.

4.2 Applying GODMODE to Project Starfighter

When Project Starfighter is first run, it creates three sets containing the game met-

rics, performance factors, and the manipulated factors respectively. GODMODE

is given the appropriate read/write access to these sets using the initializeModel()

function from the API. Also passed to this function is the location of the file con-

taining the model. With this information, GODMODE has everything it needs from

Project Starfighter to create a model.

We decided that updates to the model and manipulated factors should occur in

predetermined intervals. Controlling when manipulated factors are updated prevents

changes from occurring rapidly and being noticed by the player. Model updates are

controlled to allow for a consistent amount of learning to occur throughout the game.

Project Starfighter updates the causal model by calling the updateModel() method

once every second. This time interval was chosen since one second is the smallest in-

terval that guarantees that every game metric and performance factor value would

be updated at least once. The updateManipulatedFactors() method is called ev-

ery fifteen seconds. This interval was chosen through a small series of experiments

where the game was played using different intervals of updateManipulatedFactors()

invocations. The intervals were qualitatively evaluated based on the ability of the

model to adjust to the player without the changes being obvious.

When updateManipulatedFactors() is invoked, some changes to the manipulated

factors do not occur instantaneously. This is done in an attempt to keep the ad-

39

justments transparent to the player. The logic that controls when changes occur is

located in the game code. If a new weapon is selected for the player, a power-up item

is created the next time an enemy ship is destroyed. When the player touches this

power-up, their current weapon is replaced with the one the power-up represented.

These power-ups lasts fifteen seconds to coincide with the manipulated factor update

interval. Also, updates to the number of shots it takes to kill the player’s avatar

occur only after the player dies.

Changes to the NPC characters only occur if the adjustment would make the

NPC easier to kill. This is performed in an effort to prevent the scenario where the

NPC characters have become too powerful for the player to kill. In this scenario,

adjustments to the NPC characters will instantly decrease their difficulty and al-

low the player to break out of this sub-optimal scenario. Adjustments that would

increase the difficulty of the NPC do not occur until a new NPC is spawned. If the

NPC is easy to kill, it will likely need to respawn quickly, allowing the changes to

occur.

5 Experimental Evaluation of DDA

5.1 Experimental Design

To test the effectiveness of the GODMODE, We conducted a second study with

Project Starfighter. Like the initial Project Starfighter study, participants start by

playing a one minute practice round of the game. They then play five rounds that

last a maximum of five minutes. Participants are allowed to end the round for any

reason at any time. At the end of each round, the user is asked how fun and fair

they believed the round to be. Demographic information on the participants age,

gender, and gamer type are also recorded.

40

For this study, two versions of Project Starfighter were created. The first version

of the game acted as the control for the study. Using the equations previously found

for fun in Project Starfighter, a set-up was found that predicted the highest possible

value for fun. The values for the manipulated factors were set to the values below:

Avatar Weapon = Homing Rockets

NPC AI = Offensive

NPC Shots To Kill = 1

Avatar Shots To Kill = 7

Maximum NPC On Screen = 8

NPC Ammo Drop Chance = 50

NPC Reload Time = 5

The control version of the game set the manipulated factors to these values. The

values used for each manipulated factor remain constant during the entire time a

player is playing. It is theorized that participants playing this version will quickly

grow tired of this static set-up. They will quickly become experienced with the game

and their perception of how fair the game is will increase towards the player having

a large advantage. As a result, both fun and round time should decrease.

The second version of the game begins identically to the first version. Partici-

pants in this experimental group begin with the same static set-up in the practice

round. After the practice round, however, the game utilizes GODMODE by period-

ically invoking the updateManipulatedFactors() and updateModel() functions from

the API. This allows changes in the manipulated factors to take place during run

time. Ideally, these changes will adapt to a player as they gain experience with the

game. The participants perceived fairness should remain close to the ideal value

41

throughout the entire play session. We believe that both fun and round time should

be significantly higher when compared to the control group.

We hypothesize that participants in the experimental group will play for longer

and believe the game to be more fun when compared with participants in the control

group. We also believe that the participants in the experimental group will perceive

the game to be fair. Participants in the control group, by comparison, will view the

game to be too easy, especially in the later rounds.

Participants by Age
Control Group Experimental Group

Frequency Percent Frequency Percent
under 20 0 0 under 20 1 3.6
20 to 29 26 96.3 20 to 29 26 92.8
30 to 39 0 0 30 to 39 1 3.6
40 plus 1 3.7 40 plus 0 0

Participants by Gender
Control Group Experimental Group

Frequency Percent Frequency Percent
Female 2 7.4 Female 4 14.3
Male 25 92.6 Male 24 85.7

Participants by Gamer Type
Control Experiment
Frequency Percent Frequency Percent

Casual 2 7.4 Casual 2 7.1
Average 19 70.4 Average 17 60.7
Hard Core 6 22.2 Hard Core 9 32.2

Table 3: Participants in GODMODE. Study

5.2 Results

Figure 9 displays the distribution of participant responses as it pertains to perceived

fairness. As hypothesized, a majority of responses from the control group believed

42

Figure 9: Distribution of Perceived Fairness by Group

that they had an advantage during the game (i.e. response higher than five). Sur-

prisingly, the experimental group consistently believed they were at a disadvantage

(i.e. response lower than a five) when playing the game. The hypothesis was that

the distribution of this variable would be approximately normal with an average

value of five.

Figures 10 and 11 summarize the impact perceived fairness had on fun and

round time for each group. The combined plots of both groups in Figure 10 support

previous results of an association between fun and deviation from fair. As the

value for perceived fairness deviates from the middle values, the value of fun rapidly

decreases. It should be noted that this association is not centered on the expected

middle value of five.

An initial analysis of the data yielded conflicting results with some of our hy-

pothesis. Participants in the control group consistently rated the game as being

43

Figure 10: Average Fun for Various Perceived Fairness Values by Group

Figure 11: Average Round Time for Various Perceived Fairness Values by Group

more fun when compared to the experimental group. Participants in the experi-

mental group, however, consistently played for a significantly longer amount of time

44

Analysis of Average Values
Group Time Fun Perceived Fairness Deviation From Fair Game
Control 218.76 5.53 6.96 2.10
Experimental 253.26 4.62 3.36 2.15

Table 4: Average Values of GODMODE. Study by Group

per round. By the final round, participants in the experimental group were playing

for an entire minute longer than in the control group.

There is also a significant difference in the perceived fairness value in each group.

The deviation from the ideal perceived fairness value of five is insignificant. Both

groups vary the same amount from the desired fair game, just in different directions.

The control group yielded a game that was too easy. The adjustments made in the

experimental group overcompensated for the performance of the player, creating a

game that was consistently too hard.

Looking at the demographic data listed in Table 3, some discrepancies between

groups emerge. These differences may have had an impact on the results of the study.

The larger percentage of hardcore gamer type participants in the experimental group

may have negatively affected the average value for fun. It may be the case that this

type of gamer would not have been satisfied with any changes made to the game.

To compensate for these difference, values were calculated for each factor using

the marginal means. Marginal mean is a statistical value that attempts to compen-

sate for differences in groups. In theory, the marginal mean would be the actual

average value for a factor if the distribution of participants in each group was iden-

tical.

The effect of analyzing fun and round time using marginal means can be seen

in Table 5. The impact of version on the amount of fun a player has becomes

very insignificant (p >> .05). While version’s effect on round time also loses its

45

Significance of Group Using Marginal Means
Factor Mean Square F-Value Significance (P-Value)
Fun 12.224 1.491 .310
Play Time 61457.649 6.886 .054

Table 5: Significance of Version Using Marginal Means on Fun and Round Time

significance (based on a 95% confidence level), the change is much smaller when

compared to fun. There is a higher probability that the positive effect on round time

produced by the experimental group was not a chance occurence when compared

with the effect the control group had on fun. In other words, it is very likely that the

experimental version of the game did indeed have a positive effect on round time. It

is less likely that the control version of the game had an equivalent impact on the

fun a player had.

5.2.1 Deriving Equation of Fun from Study Data

Both the control and experimental group’s perceived fairness vary from the desired

value by about the same amount. In theory, this equal deviation should yield the

same value for fun in each group. The control group, however, reported having a

larger amount of fun.

Using the data obtained from the initial Project Starfighter study, an equation

was derived using linear regression to calculate fun from perceived fairness as well

as the deviation from fair. The formula calculated is given below:

Fun = .31 ∗ Perceived Fairness− .582 ∗Deviation From Fair + 4.801

The dominating term in this equation is Deviation from Fair. As suspected, fun is

maximized at the expected perceived fairness value of five. Since perceived fairness

has an effect on fun, the equation is not symmetrical about the maximum value. The

46

Figure 12: Plotting Fun against Fair Using Study Data

rate at which fun decreases is slower for values larger than five when compared to

the rate for values smaller than five. This can be seen in Figure 12. The difference in

values for fun between groups makes sense since each is on one side of the equation.

5.2.2 Analysis of Results by Gamer Type

The demographic value with the largest variation between the two groups was gamer

type. The data was split by differing gamer type so that differences between the

groups could analyzed.

Figure 13 and Figure 14 summarize how fun and round time differed by gamer

type. Surprisingly, the hard core gamers did not report a difference in fun or round

time between the control and experimental group. This is especially surprising

since this gamer type had the largest difference in the perceived fairness between

the control and experimental set-ups (see Figure 15).

47

Figure 13: Comparing Effect on Fun by Game Type

Figure 14: Comparing Effect on Round Time by Game Type

48

Figure 15: Comparing Effect on Perceived Fairness by Game Type

5.2.3 Analysis of Results by Round

Figure 16: Comparing Effect on Fun by Round

Finally, the data was analyzed by round. The experimental group played for

49

Figure 17: Comparing Effect on Time by Round

a longer time during each round when compared to the experimental group. This

change increases in later rounds. The amount of time played in the experimental

group is approximately an extra minute when compared to the control group in the

last round.

In the first round, both groups reported the same value for fun. The control group

reported a significantly larger value for fun for rounds two through four compared

with the experimental group. A downward trend for the control group can be seen

in Figure 16. In contrast to the control group, the reported value for fun, although

lower than the control group, begins to level out and even begins to trend upwards

in the later rounds. By the final round, there is little distinction between the two

groups. If the experiment had been extended to more rounds, the experimental

group may have overtaken the control group in the reported value for fun.

Figure 18 displays the average value for perceived fairness in each round of the

game. The control group’s perceived fairness remained relatively consistent over all

four rounds. The value varies by about half a point. Between the first two rounds of

50

the experimental group, the value for perceived fairness drops significantly. After the

first round, however, the value for perceived fairness remains constant. It appears

that the GODMODE API was able to converge on a single value quickly. That

value, unfortunately, was not the target value.

Figure 18: Comparing Effect of Perceived Fairness by Round

The trends for average perceived fairness per round mirrors the trend for the

average fun per round. In the experimental group, the value for perceived fairness

initially decreases, but then plateaus and even begins to increase. It may be that

additional rounds would have allowed the value for perceived fairness to converge to

the desired value.

5.3 Analysis of DDA System Failures

The experimental setup of Project Starfighter was designed with a logging mech-

anism to capture the values in the model every time they were updated. These

data are used to analyze the equations in the model. Ideally, all the equations that

51

make up the model (fun, perceived fairness, game metrics, and performance factors)

should all converge over time, yielding the desired setup customized to the player.

Non convergence in any of these equations is an issue, since errors at the lower levels

of the model will propagate upwards.

Analysis began at the top of the model, with the equation for fun derived from

perceived fairness. The only time this equation can be validated is at the end of the

round, when the player enters their actual value for fun. The models estimate for

fun at the beginning and end of a round were compared with the actual value to

derive an error estimate. If the equation is correct, the error at the end of a round

should be less than at the beginning. Ideally, this error will converge to zero by the

later rounds.

No statistical significance was found between the error at the beginning and end

of a round. This could mean that the equation derived for fun is not complete.

There may be factors that were not considered, or the coefficients for the factors

included were incorrect. It is also possible that errors “lower” in the model had a

strong effect on the equation.

Analysis of the error on various performance factor and game metric equations

is visualized in Figures 19 and 20. These figures present the average error on each

equation every second during the game. Performance factor one (PF1) is the only

performance factor equation that seems to be converging. The error on the rest

of the equations remains large throughout the entire game. It is likely that this

discrepancy negatively affected the accuracy of the model and caused the decrease

in fun for the player. While it appears the error on performance factor two (PF2) is

relatively low, this can be explained by the large spike in error during certain times

in the game, skewing the normalized results.

The performance factor equations likely did not converge due to incorrect levels

52

Figure 19: Normalized Error on Game Metric Equations Over Time

Figure 20: Normalized Error on Performance Factor Equations Over Time

of adjustment for the coefficients in the equation. The change in the coefficients

after each update were not of the correct magnitude to account for the error in the

53

equation. The δ value for each factor in the equation may need to be adjusted to

control the rate of change for the coefficients.

The trend of non-convergence continues in the game metric equations. Only

game metric two (GM2) appears to be converging. The explanation for the error in

the game metric equations is more complex than in the performance factor equations.

Like the performance factors, the size of adjustments to the coefficients in the game

metric equations may be incorrect. The performance factors also have a direct

influence on the game metric equations. Errors in adjusting the performance factor

equations propagate upwards, negatively affecting the game metric equations.

On average, PF2 (average distance to the target) represented the largest actual

value in the model. While some values in the model were very small (< .01),

PF2 frequently had an actual value in the hundreds. Another approach to refine

the model would be to normalize the data before generating the linear regression

equations that make up the model. Doing so would reduce the effect of factors in the

causal model that are many orders of magnitude larger than other factors. Updates

to individual factors would be easier to control. This approach would likely prevent

large errors like the one in equation PF2 from surfacing.

While the magnitude of the error of an equation is important, the sign of the

error must also be taken into consideration. Ideally, the sign of the error should

be split relatively even between positive and negative, while the magnitude of the

error converges. If the updates to the coefficients (controlled by the δ values) in

the equation are too large, however, the equation will never converge. After each

update, the change in the coefficients will cause the equation to overcompensate for

the error. The magnitude of the error will remain approximately constant. This

process can repeat indefinitely in a process known as “thrashing”. A “thrashing”

equation does not converge. On the other hand, if the updates to the coefficients are

54

Figure 21: Analysis of Sign of Error on Performance Factor and Game Metric Equa-
tions

too small, the equation will not converge and the sign of the equation will remain

relatively constant (either positive or negative).

Figure 21 analyzes the amount of time the error of each performance factor and

game metric equation was either positive or negative. The δ values in GM1 and

55

GM3 likely are too large since the magnitude of the error remains large while the sign

of the error is split. The δ values in GM4 will likely need to be increased since the

magnitude of the error is large and the sign of the error is mostly negative. Looking

at the performance factor equations, the δ values in PF2 and PF3 will need to be

decreased for the same reasons discussed for the game metrics. The same reasoning

for increasing GM4 can be used to justify increasing the δ values in PF4.

6 Conclusions

We have shown that a causal model can be used to describe how factors in a video

game interact. Our causal model has been validated in two studies. These studies

can be easily repeated for any game to construct a causal model that can then be

used by game designers or as the basis of a dynamic difficulty adjustment system.

The model we developed expands upon previous work in the field, creating a

more detailed understanding of how factors in a game interact. We validated the

model by performing multiple studies. In doing so, we provided evidence to the

validity of the model as well as provide a template for further work in this field.

The GODMODE DDA system can be easily applied to an existing game, as well

as a game in development. By utilizing the three functions in the API, changes to

a game can be controlled by the game developer. The API can be utilized by an

existing code base with minimal changes.

When incorporating the GODMODE DDA system, Project Starfighter was shown

to increase the amount of time a player spent in the game when compared to a con-

trol group where the game remained static. There was no significant difference

between the groups when it pertains to the amount of fun a player had. Both

groups deviated significantly from the desired “fair” game.

56

6.1 Future Work

While the initial studies described in this thesis help to validate the proposed causal

model, more work is required before this causal model can be fully validated. The

studies presented need to be repeated for multiple games in different genres. Games

in a specific genre usually share similar traits. Looking at different genres allows for

a more robust and complete exploration of the video game design space.

Games involving multiple human players should also be explored. Both games

presented in this thesis involved only a single human player. Presenting multiple

human players into a game substantially increases the complexity of any difficulty

adjustment mechanism, as the actions of each player can not be controlled by the

system. Players will have a direct impact on each other, hindering the impact of

factors that the system can manipulate. Also, an equation for fun will need to

be optimized for all players at the same time. It has been shown that different

player traits (especially gamer type) have an important impact on how a game

is perceived. Adapting to these different player traits at the same time will be

difficult. Optimization may likely result in some players increasing their enjoyment

of the game, while at the same time decreasing fun for other players.

As stated previously, the process for manipulating factors is different depending

on if the set of factors are all discrete, continuous, or mixed. Currently, GODMODE.

assumes that all the factors are discrete and will always use hill climbing to optimize

the function for fun. All three algorithms for updating manipulated factors will need

to be implemented to complete the API. A mechanism for choosing the appropriate

control at run time will also need to be implemented.

57

A Appendix

A.1 Example Input File for GODMODE.

Godmode data.txt

11

4

4

Score Sec Kill Death Kill Sec Death Sec Ammo Sec Avg Dist NPC Shots Sec

Targets Sec W1 W2 W3 A1 A2 A3 NPC Shots Avatar Shots Max NPC

NPC Collect NPC Reload Const

Fair .01 .038 .332 -14.438 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.834

Ammo Sec Avg Dist NPC Shots SEc Targets Sec W1 W2 W3 A1

A2 A3 NPC Shots Avatar Shots Max NPC NPC Collect NPC Reload Constant

Score Sec 11.841 -.011 0 3.066 0 0 0 0 0 0 -5.46 2.538 0 0 0 -1.046

Kill Death 14.639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.828

Avatar Kills .086 0 0 .034 0 0 0 0 0 0 -.048 0 0 0 0 .192

Avatar Death 0 -.00002634 .023 0 0 0 0 0 0 0 0 -0.008 0 0 0 .076

W1 W2 W3 A1 A2 A3 NPC Shots Avatar Shots

Max NPC NPC Collect NPC Reload Const

Ammo Sec 0 0 0 0 0 0 0 0 0 .008 0 .033

NPC AVG dist 0 0 0 -25.435 -38.851 .001 0 -8.674 8.345 0 0 312.262

NPC Shots sec .418 -.566 .001 0 0 0 0 0 .163 0 -.028 1.037

Targets Sec 0 0 0 0 0 0 0 0 .323 0 0 .098

Initial 1 0 0 1 0 0 3 5 5 20 20

Constraints 1 1 1 1 1 1 1 1 1 1 1

Maximum 1 1 1 1 1 1 10 20 20 100 30

58

Minimum 0 0 0 0 0 0 1 1 2 10 1

A.2 Informed Consent Form For Studies

Informed Consent Agreement for Participation in a Research Study

Investigator: Jeffrey Moffett

Contact Information: jeffmoffett@wpi.edu

Title of Research Study: Towards a Causal Model of Dynamic Game Bal-

ancing

Sponsor: Computer Science Department

Introduction (recommended) You are being asked to participate in a research

study. Before you agree, however, you must be fully informed about the purpose of

the study, the procedures to be followed, and any benefits, risks or discomfort that

you may experience as a result of your participation. This form presents information

about the study so that you may make a fully informed decision regarding your

participation.

Purpose of the study: To collect data necessary to construct a model of an

average video game player. This model will be used as the basis for a Dynamic

Difficulty Adjustment System.

Procedures to be followed: You will play the game “Project Starfighter” for

duration of between 10 and 30 minutes. Initially, survey information about your

age, gender, and experience with video games will be collected. You will play a

round of the game, pressing the Escape (‘esc’) key when you are no longer enjoying

the game. Upon completing the round, you will be asked to rate how fair and fun

you thought the round was. This will continue for 5 rounds of the game.

Risks to study participants: There are no foreseeable risks to participating

Benefits to research participants and others: The data collected here will

59

be used to build a system that improves upon previous efforts at game balancing. If

successful, the study conducted here would provide a template for others to improve

the level of enjoyment everyone receives while playing video games.

Record keeping and confidentiality: No identifying information will be kept

about you. All information will be stored on a single computer located at WPI. The

data will only be used for the specific purposes listed above. There is no danger of

being identified as a participant if the data was to be stolen or divulged.

Compensation or treatment in the event of injury: “You do not give up

any of your legal rights by signing this statement.”

For more information about this research or about the rights of research partic-

ipants, or in case of research-related injury, contact:

Jeffrey Moffett (Email: Jeffmoffett@wpi.edu)

IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu)

and the University Compliance Officer (Michael J. Curley, Tel. 508-831-6919, Email:

mjcurley@wpi.edu).

Your participation in this research is voluntary. Your refusal to participate will

not result in any penalty to you or any loss of benefits to which you may otherwise be

entitled. You may decide to stop participating in the research at any time without

penalty or loss of other benefits. The project investigators retain the right to cancel

or postpone the experimental procedures at any time they see fit.

By signing below, you acknowledge that you have been informed about and

consent to be a participant in the study described above. Make sure that your

questions are answered to your satisfaction before signing. You are entitled to retain

a copy of this consent agreement.

Study Participant Signature

Date:

60

Study Participant Name (Please print)

Date:

Signature of Person who explained this study

A.3 In-game Survey Questions for Project Starfighter

Figure 22: Survey Question on Gender of Participant

61

Figure 23: Survey Question on Fun of Round Presented to Participant

62

Figure 24: Survey Question on Perceived Fairness of Round Presented to Participant

63

References

[AR07] Ernest Adams and Andrew Rollings. Game Design and Development:
Fundamentals of Game Design. Pearson Prentice Hall, Upper Saddle
River, New Jersey, 2007.

[Bur06] Kevin Burns. In Bayesian Beauty: On the ART of EVE and the Act of
Enjoyment, CIG-06, Boston,Massachusetts, JUL 2006. AAAI Workshop.

[Bur07] Kevin Burns. EVE’s Entropy: A Formal Gauge of Fun in Games, vol-
ume 71 of Advanced Intelligent Paradigms in Computer Games. Springer,
2007.

[Coh95] P. Cohen. Empirical Methods in Artificial Intelligence. MIT Press, 1995.

[Cs98] M. Cskszentmihlyi. Finding Flow: The Psychology of Engagement With
Everyday Life. New York,New York, 1998.

[Dey09] Tamal Dey. Simplex algorithm, April 2009.
http://www.cse.ohio-state.edu/ tamaldey/course/794/simplex.pdf.

[Gam10] Moby Games. Genre definitions, March 2010.
http://www.mobygames.com/glossary/genres.

[HHSA08] A. Hefny, A. Hatem, M. Shalaby, and A. Atiya. In Cerberus: Applying
Supervised and Reinforcement Learning Techniques to Capture the Flag
Games, Fourth Artificial Intelligence and Interactive Digital Entertain-
ment Conference, Stanford,California, 2008. AIIDE.

[Hun05] R. Hunicke. The case for dynamic difficulty adjustment in games. ACE
’05. New york, New York, 2005.

[Pea00] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, New York, New York, 2000.

[Pis06] Paulo Piselli. Relating cognitive models of computer games to user evalua-
tions of entertainment. Master’s thesis. Worcester Polytechnic institutel,
Worcester, Massachusetts, 2006.

[Ric79] Elaine Rich. User modeling via stereotypes, 1979.

[SW05] P. Sweetser and P. Wyeth. GameFlow: A Model for Evaluating Player
Enjoyment in Games. 2005.

[UJG08] P. Ulam, J. Jones, and A. Goel. In Combining Model-Based Meta-
Reasoning and Reinforcement Learning For Adapting Game-Playing
Agents, Fourth Artificial Intelligence and Interactive Digital Entertain-
ment Conference, Stanford,California, 2008. AIIDE.

64

[YH07] G.N. Yannakakis and J. Hallam. Towards Optimizing Entertainment in
Computer Games. Applied Artificial Intelligence. 2007.

65

