
Open-Source IC Design for Post-Quantum
Cryptography

Alexander Demirs, Bruce Huynh, Matthew Wong
March 3rd, 2023

This report represents the work of one or more WPI undergraduate students submitted to the
faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on the web without editorial or peer review.

1

Abstract
The development and research into quantum computers endanger the security of current

cryptographic algorithms. To prepare for this, the National Institute of Standards and Technology
(NIST) has created a competition to develop post-quantum cryptography algorithms.
Post-quantum cryptography lends itself to algorithms that are resistant to attacks by quantum
computers. In this project, our team analyzes the final round of NIST algorithm submissions and
selects the CRYSTALS-Dilithium algorithm to attempt an ASIC design implementation. We
discuss the mathematics behind CRYSTALS-Dilithium and the design decisions of available
FPGA implementations. Specifically, we focus on the Decomposer module of the design, which
optimizes the output that the number theoretic transform (NTT) block to send to other modules.
Small changes made to the register sizes of the Decomposer module result in a critical path
196% smaller and a 40.12% size reduction. Additionally, synthesis scripts are used to optimize
our design further for area or speed; our new design is tested against the original design to verify
the correctness of the optimizations. Other optimizations and recommendations are suggested at
the end of the report to assist future scholars in exploring post-quantum ASIC design or the
CRYSTALS-Dilithium algorithm.

2

Table of Contents
Abstract 1
I. Introduction 3

A. What is Post-Quantum Cryptography? 3
B. NIST Competition 5
C. Our Goals 6

II. Analyzing NIST Options 7
A. Available Submissions 7
B. Our Criteria 10
C. CRYSTALS-Dilithium 10

III. CRYSTALS-Dilithium 11
A. Dilithium Key Generation 11
B. Digital Signature Generation 12
C. Digital Signature Verification 13

IV. Focusing Our Scope 14
A. Analyzing Higher-Level Code 14
B. VHDL to Verilog Conversion 14
C. FPGA vs ASIC design 16
D. Hardware Module Analysis 17

V. Decomposer Module 20
A. Connection To Larger Architecture 20
B. Purpose 20
C. Architecture and Layout 21
D. Optimization 22
E. Testing 26

VI. Difficulties and Recommendations 28
A. Scope of Knowledge Required 28
B. Tools 28
C. Recommendation 29

VII. Acknowledgments 30
VIII. References 31

Appendix A: NIST Cryptographic Algorithms 33
Appendix B: Function List 40
Appendix C: RTL Modules and Functions in Files 49
Appendix D: Decomposer Unit Port Diagram 51
Appendix E: Coeff Decomposer Block Diagram 52
Appendix F: Coeff Decomposer Testbench 53

3

I. Introduction

A. What is Post-Quantum Cryptography?

Throughout human history, secure and private data and communication have been central
to information systems and are prone to adversarial interactions. In ancient times, cryptology was
essentially synonymous with cryptography, which is the study of plaintext, ciphertext,
encryption, and decryption. However, contemporary cryptology is based on algorithms and
heavily involves mathematics, as the cryptanalytic difficulty determines the strength of the
algorithm. The cornerstone of cryptographic security is the idea of “computational hardness”.
Advances in computing technology cause the algorithms to be constantly reevaluated and
reworked as cryptanalysis becomes increasingly more efficient. Most contemporary algorithms
are theoretically breakable; however, they are computationally secure, because computers
currently cannot break them in a practical timeframe.
The two worldwide, most commonly-used asymmetric cryptographic algorithms are
Rivest-Shamir-Adleman (RSA) cryptography and Elliptic Curve Cryptography (ECC).

Fig. 1. Rivest-Shamir-Adleman (RSA) Cryptography [1]

RSA utilizes a large integer factoring problem consisting of two large prime integers
(private keys) and a public key integer [2]. People can use the public key to encrypt new
messages; however, only people who know the value of the private keys can decrypt messages.
There are currently no existing algorithms for quickly factoring the product of the two large
primes, but as computers advance, this will inevitably change.

4

Fig. 2. Elliptic Curve Cryptography [3]

ECC uses elliptic curves and the discrete logarithm connecting to a publicly known base
point value [2]. There is currently no timely and practical way to solve this problem with modern
technology. Governments, institutions, and businesses that control vital global structures rely on
these kinds of cryptography when dealing with sensitive/private data. Any electronic
infrastructure over the internet or between institutions will eventually need a revamped form of
cryptography when technology advances far enough to break the current cryptographic
standards.

Modern-day research into quantum mechanics has allowed scientists and engineers to
create quantum computers. Quantum computers are an evolved version of the modern computer
that exploits quantum mechanics to improve their processes. Instead of using the traditionary
binary bits of 1’s and 0’s, quantum computers use “qubits”.

Fig. 3. Bits vs Qubits [4]
Qubits function similarly to common binary bits, but they allow for superposition states,

which allow the qubit to be in both states at the same time. Simultaneous state superposition is a

5

central element of quantum computing [5]. In addition, qubits can become entangled, linking two
qubits together in a state of matching superposition (qubit pairing) [4].

These computers will be magnitudes more efficient than current computers and would
consequently be able to perform algorithmic processes many times faster. Security issues arise
from these powerful quantum computers being able to break through modern cryptographic
algorithms. Asymmetric cryptography, algorithms that employ public-private keys, will be made
obsolete by the development of quantum computers. These algorithms protect governments,
institutions, and vital global infrastructure. The current cryptographic standards that apply
integer factorization, discrete logarithm, and the elliptic-curve discrete logarithm will indubitably
break under attack by quantum computers. According to the Department of Homeland Security, a
real risk involves malicious parties gathering sensitive intelligence or data encrypted by today’s
standards and later decrypting it using future quantum computers [6]. Some engineers predict
that quantum computers will be able to break all the currently available public key schemes in
approximately the next twenty years [7]. Consequently, researchers are studying and testing the
capabilities of post-quantum cryptography.

Post-Quantum Cryptography is the research, development, and application of
cryptographic algorithms secure against cryptanalytic attacks by quantum computers. For
example, Shor’s Algorithm is a post-quantum algorithm that can solve the integer factorization
problem in polynomial time [8]. This endangers anything protected by RSA and any encryption
based on integer prime factorization. To combat the development of stronger decryption tools,
cryptographic standards must remain secure; a designation of this is named NP-hardness.
NP-hardness is a classification of problem difficulty that has computational complexity higher
than the capability of a “nondeterministic Turing machine in polynomial time” [9]. Some
examples of cryptography that have a higher level of complexity (quantum-resistant) are
symmetric algorithm, hash-based, lattice-based, multivariate, code-based, supersingular elliptic
curve isogeny, and symmetric key quantum-resistant cryptography. Each of these styles contains
a complex mathematical problem that quantum computers are unable to solve in a realistic
amount of time.

In a post-quantum computing world, global security depends on cryptographic primitives
being quantum resistant. Although quantum technology provides us with newfound computing
power and unlocks doors to global technological advancement, quantum computing raises many
security issues that must be addressed. To prepare for this, the National Institute of Standards and
Technology (NIST) has initiated a competition that looks for public-key cryptographic
algorithms that will be able to withstand attacks from quantum computers.

B. NIST Competition

In early 2017, the National Institute of Standards and Technology (NIST) released a “Call
for Proposals” for researchers and institutions to submit potential algorithms. The National
Institute of Standards and Technology and the Department of Homeland Security are still
working together to facilitate research into information security in the coming age of quantum
computing. For this reason, the NIST has run many rounds of the “Post-Quantum Cryptography
Standardization” competition. Teams consisting of researchers strive to create better
quantum-resistant public-key cryptographic algorithms in preparation of future developments in
quantum computing. Each of the three complete rounds of submissions since 2017 has laid the
foundation for the next round’s submissions. Since the beginning of the competition, many

6

groups have merged and/or broken up depending on the analysis and reception of the algorithm
in their submissions.

For some of the algorithms, the baseline mathematics has been proven unable to prevent
quantum computers from decrypting. Because quantum computing is still in development, some
current submissions may probably be phased out of the competition. The NIST anticipates the
final round of submissions will end in 2024. Whichever post-quantum cryptographic scheme
remains after the last round of submissions will replace many current cryptographies. The
expected result will be an overhaul of all current cryptographic standards. For the current
iteration of public key cryptography, it took about twenty years to implement onto critical
infrastructure. This is why NIST pushes to create post-quantum cryptographic algorithms before
the widespread use of quantum computers.

C. Our Goals

These algorithms are highly complex and deeply researched. Almost all of the algorithms
are performed in software or on a Field-Programmable Gate Array (FPGA). Our team aimed to
implement a post-quantum cryptographic algorithm on an Application-Specific Integrated Chip
(ASIC) and additionally optimize it for the ASIC environment. We planned to analyze the
constraints, timings, or memory/storage of the chip to optimize for size. The study of the
algorithm along with the design process of an ASIC implementation of the entire algorithm was
too difficult for our team, so the scope of the project was reconsidered. After researching and
dissecting the algorithm for months, we decided to focus on optimizing the hardware
implementation for a specific module. By reducing the complexity of the project, the feasibility
of the open-source hardware implementation greatly increased.

7

II. Analyzing NIST Options

A. Available Submissions

Initially, our team selected our algorithm from the round 3 submissions of the
competition. These algorithms included: Classic McEliece, CRYSTALS-KYBER, NTRU,
SABER, CRYSTALS-Dilithium, FALCON, and Rainbow. Our team studied each of these
algorithms and created a table (Appendix A) that contains a summary of each of them and links
to any resources or documentation.

Classic McEliece [10] is a public-key cryptosystem employing a random binary Goppa
code. It is designed for one-wayness against chosen plaintext attack security.

Crystals-Kyber [11] applies indistinguishability under chosen ciphertext attack/adaptive
chosen ciphertext attack key encapsulation mechanism (KEM). This algorithm applies a
Learning with errors encryption.

A different algorithm by NTRU or Number Theory Research Unit (originally known as
Number Theorists ‘R’ Us) uses a partially correct probabilistic public-key encryption scheme
[12]. It is a lattice-based alternative to RSA and elliptic curve cryptography, but unlike
pre-quantum schemes, it is resistant to attacks by Shor’s algorithm.

SABER is a “Mod-LWR”-based KEM that contains a version of the Fujisaki-Okamoto
transform [13]. The name “ModLWR” stands for a module learning-with-rounding problem.

Crystals-Dilithium is a lattice-based digital signature algorithm that uses the “Fiat-Shamir
with Aborts” approach [14]. It is known to be extremely strong against chosen message attacks.

Fast Fourier Lattice-based compact signatures over NTRU (FALCON) is a post-quantum
signature scheme that applies the hash-and-sign techniques using NTRU-style lattices. FALCON
is based on lattice-based signature schemes and short integer solution problems (SIS) over
NTRU lattices. It yields higher security, compactness, speed, scalability, and RAM usage [15].

Rainbow is one of the algorithms in the multivariate public key cryptosystems. It
employs the Oil-Vinegar signature scheme, which applies multivariate quadratic systems and
algebraic geometry. Rainbow provides small signatures and efficient signature generation and
verification via simple operations over small finite fields. It is quantum-resistant and NP-hard
because quantum computers do not have an advantage over normal computers when solving
multivariate systems of equations [16] [17].

Table 1 below is an abbreviated version of the table in Appendix A.

Table I
Summary of NIST Round 3 Submission Algorithms

Post-Quantum Cryptography Algorithms

Classic McEliece [10]

● Uses a public-key cryptosystem with a random binary Goppa code
○ Ciphertext with errors are sometimes used

● Private-key decodes ciphertext and identifies/removes errors
● Algorithm also known as a KEM (Key Encapsulation Method)
● Designed for OW-CPA security (One-Wayness Against Chosen Plaintext Attack)

CRYSTALS-KYBER [11]

8

● Uses two cryptographic primitives (overlaps with CRYSTALS-Dilithium):
● Kyber, which uses IND-CCA2 (Indistinguishability under chosen ciphertext

attack/adaptive chosen ciphertext attack) - also a KEM
● Uses LWE encryption (Learning With Errors)
● Dilithium, a strongly EUF-CMA-secure digital signature algorithm (Existential

Unforgeability under Chosen Message Attack)
● Module lattices can withstand quantum attacks
● The only operations required for all security levels are variants of Keccak

NTRU - Number Theory Research Unit [12]

● NTRU originally described as “partially correct probabilistic public key encryption
scheme (partially correct PPKE)” but can be made deterministic and perfectly correct

● KEM by Hoffstein, Pipher, Silverman
● Lattice based alternative to RSA and elliptic curve cryptography
● Only feasible attack is lattice-based attack → system of equations in an attempt to

solve for any chosen polynomial
● Quantum variants of sieve algorithms studied
● Improvements rely on unit-cost superposition queries to classical memory (QRAM),

the best claimed operation count is 2(0.265...+o(1))·b

SABER [13]

● Lattice based, designed to offer better resistance to quantum computers
● Built on the hardness of the “Module learning with rounding problem” (Mod-LWR)
● Saber.PKE to Saber.KEM using a version of Fujisaki-Okamoto transform (no idea what

this is)
● LWR reduces the randomness required (½) the amount of LWE-based schemes,

reduces bandwidth
● Module structure provides flexibility by reusing one core component for multiple

security levels
○ Parameters: n, L → degree 256 of the polynomial ring

■ Rank L of the module (determines the dimension of the lattice problem)
■ Dimension of lattice increase -> better security, less correctness

○ q,p,T → moduli powers of 2 → 2xq
■ Higher the parameter, lower security, higher correctness

● Security in the Quantum Random Oracle Model
○ Limited to encryption scheme and KEM, no signature scheme included

CRYSTALS-Dilithium [14]

Key Generation:
- Begin with a number, , and integers). Generate a matrix with entries in𝑞 (𝑘, 𝑙 𝑘 × 𝑙

the previously described field, . is defined by some formula, and the degree of the𝐹 𝑞
polynomial in the maximal ideal is . We then sample random “secret” key𝑛 : = 256

9

vectors, , and the key is generated according to the rule . So(𝑠
1
, 𝑠

2
) : 𝑡 = 𝐴𝑠

1
+ 𝑠

2
𝑡

is an affine combination.

Signing Procedure:
- The signing algorithm generates a masking vector of polynomials with coefficients less

than a given and a challenge is created as the hash of the message and where isγ 𝑤 𝑤
computed after some operations from the masking vector and is then further
algebraically manipulated.

Verification:
- Verifier computes in the higher-order bits and accepts if all of the coefficients of the𝑤'

vector-part are less than a certain .γ − β

Implementations:
- Has a documented implementation on Intel Core-i7 6600U (Skylake) CPU.
- Furthermore, there is a C reference implementation, located on a GitHub repository

FALCON [15]

● Fast-Fourier Lattice-based algorithm.
● Similar to Crystals-Dilithium
● True Gaussian Sampling for negligible leakage
● NTRU lattices allow for short signatures and public keys
● O(n log n)
● uses 30 kilobytes of ram
● Falcon, submitted to NIST Post-Quantum Cryptography Project in 2017, is based on

lattice-based signature schemes and short integer solution problem (SIS) over NTRU
lattices.

● It offers high security, compactness, speed, scalability, and RAM economy.

Rainbow [16] [17]

Background:
- Based on the Unbalanced Oil and Vinegar scheme (UOV)
- Uses random multivariate quadratic systems
- Rainbow, designed in 2004, is based on multivariate quadratic systems and algebraic

geometry. It was selected as one of the three NIST Post-quantum signature finalists in
2020 and offers very small signatures and efficient signature generation and
verification through the use of simple operations over small finite fields.

- Rainbow offers very small signatures.
- efficient signature generation and verification

After in-depth research into each of these algorithms, our team created criteria to evaluate
which cryptographic algorithm would be best for this project.

10

B. Our Criteria

Our team analyzed each of the cryptographic algorithms and scored them against a rubric
based on the amount/quality of documentation, available code, ease of understanding, and ease
of implementation. Documentation was our primary scoring criterion for the selection of a
cryptographic algorithm. For a successful open-source study or hardware implementation, there
must exist a solid foundation of research and source material. In addition, available code was the
second heaviest criterion. For our team to feasibly study or plan a successful hardware
implementation, a strong codebase would support any of the well-documented algorithms. Code
was weighted less than documentation, as the only thing required was essentially the port and
block diagrams. Furthermore, we weighed the ease of understanding and ease of implementation
equally when comparing the cryptographic algorithms. Many algorithms were eliminated due to
their lack of a hardware model either in Verilog or VHDL, and others were factored out due to
the large size of their existing or possible implementations. Algorithm simplicity and
implementation theoretical simplicity were also considered when selecting the algorithms to
eliminate.

C. CRYSTALS-Dilithium

After much deliberation, our team decided to select CRYSTALS-Dilithium, as there is a
large amount of available documentation, the algorithm is Lattice-based (which simplifies
familiarization), and there are FPGA implementations available to reference. Particularly, the
CRYSTALS-Dilithium NIST submission report was the foundational material for our
understanding of the cryptographic algorithm. The report presents the algorithm as a digital
signature scheme proven “secure under chosen message attacks based on the hardness of lattice
problems over module lattices” [14]. As our project is geared toward an open-source
implementation, we frequently reference publications and research projects from other
institutions. The primarily referenced external project is “High-Performance Hardware
Implementation of CRYSTALS-Dilithium” by Luke Beckwith, Duc Tri Nguyen, and Professor
Kris Gaj of George Mason University. The team at George Mason University (GMU) produced a
hardware implementation design for the NIST Round 3 post-quantum digital signature algorithm.
The project consists of a combined architecture with key and signature generation, signature
verification, and security-level runtime options [18]. GMU’s design is the lowest latency,
small-area FPGA hardware implementation of CRYSTALS-Dilithium. Our project tightens its
scope of design, focusing on optimizing the decomposer unit from the FPGA project for our
open-source ASIC design.

11

III. CRYSTALS-Dilithium
The CRYSTALS-Dilithium scheme is a post-quantum cryptographic algorithm submitted

to the NIST challenge and was designed with four primary goals: a simple implementation,
conservative parameters, minimal key and signature size, and modularity. CRYSTALS-Dilithium
implements a lattice-based scheme that evaluates the shortest vector in a modular space [14].

The Shortest Vector Problem (SVP) is a widely-used problem in the field of lattice
cryptography. The SVP asks for the shortest non-zero vector in a lattice, where the length of a
vector is defined by a chosen norm.

Fig. 4. Shortest Vector Problem [20]

The SVP is parametrized, where the underlying hardness is based on finding the shortest
vector with the standard not smaller than the chosen parameter. Lattices are structures that
consist of a set of vectors in a modular multidimensional space that is closed under addition and
scalar multiplication. Lattices are defined by their basis, which is a set of linearly independent
vectors that span the entire lattice. The SVP is an NP-hard problem, it is computationally
infeasible to find the exact solution in polynomial time for large inputs. This makes SVP a useful
tool for cryptography, as finding the solution to SVP would allow an attacker to break several
lattice-based cryptographic systems.

A. Dilithium Key Generation

The key generation algorithm in the given system is used to create a public key and a
secret key. It begins by generating a k × L matrix A, where each entry is a polynomial in a
specific polynomial ring,

Rq = Z[X]/<Xn + 1>.

This ring has specific parameters: a prime, q = 223 - 213 + 1 and n = 256.

Next, the algorithm generates two secret key vectors, s1 and s2, where each coefficient of
these vectors is a small element from the polynomial ring Rqwith small coefficients. Finally, the
public key is calculated as the sum of the product of matrix A and vector s1, and vector s2

t = A*s1 + s2.

12

All the mathematical operations in this system are done using the polynomial ring Rq.

Fig. 5. Key generation algorithm steps [18]

B. Digital Signature Generation

Signing algorithms are used to create signatures for messages [21]. This signing
algorithm starts by generating a masking vector of polynomials y with coefficients that are less
than a certain value (γ1). This value is specifically chosen to be large enough that the signature
does not disclose the secret key (so the signing process is secure), but small enough that the
signature cannot be easily forged. The algorithm then calculates an Ay and a W1 as “high order”
bits of the vector coefficient. Each coefficient in Ay can be expressed as

w = w1 * 2y2 + w0 where |w0| ≤ y2.

A challenge C is then the result of the hash of the message and of W1, which results in a
polynomial in the ring Rq that contains exactly 60 ±1’s and has the rest of its values equal to 0.
The distribution is the direct result of the small norm of C and the domain size of D > 2256. Then,
the first potential signature is calculated as z = y + cs1.

However, z is withheld from the output at this stage, because the secret key would be
vulnerable to extrapolation at this point. Rejection sampling is then used to prevent the
dependence of z on the secret key. A parameter B is defined as the maximum number of
coefficients of Csi. This causes B to ≤ 60n. Coefficients larger than γ1 - B in z are rejected and
cause us to restart the signing procedure.

Additionally, the coefficient of the low-order bits of Az − ct also cannot be larger than γ2 −
β. These verifications ensure the accuracy and security of the signature. The signing procedure
continues to loop until both of these parameters are fulfilled, which is estimated to take an
average of four to seven times.

13

Fig. 6. Signature generation steps [18]

C. Digital Signature Verification

The verification of the signature takes place in the form of a computation of W’1 as the
high-order bits of Az-ct. Then, it verifies that all the coefficients of z are smaller than γ1 - B and C
is a hash of the message and W’1. This verification functions properly because

HighBits(Ay, 2γ2) = HighBits(Ay - css, 2γ2).

For a signature to be valid, it must have

||LowBits||(Ay- cs2, 2γ2)|| infinity< γ2 - B.

And since coefficients of cs2 are smaller than B, the addition of Cs2 does not add any carries and
does not increase any low-order bit to a magnitude equal to or greater than γ2.

Fig. 7. Signature verification steps [18]

14

IV. Focusing Our Scope

Our team found that the complexity of the project was very high, so we spent a lot of
time deciding how to optimize or implement the CRYSTALS-Dilithium algorithm. We iterated
through many ideas such as creating the design in a higher-level language to understand the
architecture, converting the entire FPGA design, converting the polyarithmetic block to VHDL
and then Verilog, and then finally finding a suitable block to convert.

A. Analyzing Higher-Level Code

When analyzing how to approach this algorithm, our team decided to analyze the
higher-level code available in GMU’s FPGA implementation. The researchers at GMU provided
a hardware implementation in mostly Verilog and some VHDL, and they included software
implementation in C++ that performed the same mathematic operations. By first analyzing the
C++ code, we obtained a more fundamental and complete understanding of the overall
architecture than we would have if we had analyzed only the Verilog code. We mapped all of the
inputs and outputs and studied the intricacies of the functions. We then created a table containing
all of the functions to reference them later. This table is available in Appendix B.

Initially, we considered creating our own high-level C/C++ implementation from the
high-level reference implementation so that we could eventually create our own Verilog
implementation. However, we realized that an implementation of the whole algorithm would be
extremely difficult, so we pivoted the focus of our project.

B. VHDL to Verilog Conversion

When deciding how to change the design, our team focused our efforts on analyzing and
converting the Keccak module. Keccak is currently the most secure hashing SHA-3 algorithm
and sponge function, winning the 2012 NIST competition for the SHA-3 Cryptographic Hash
Algorithm Competition [22]. To calculate the hashing value, first, determine the length of the
message and add padding to it. The padding starts and ends with a '1' bit, and the rest of the bits
in between are '0's. Then, the padded message is divided into n blocks, each with a length of r.
The value of r depends on the hash length that was chosen. After that, a modulo operation is
performed on the first padding block (P₀), which initially is all '0's. Subsequently, the focus shifts
to the 24 rounds of the hash function, which consist of five functions: θ, ρ, π, χ, and ι. These
rounds are repeated n times in the “absorb” function until reaching the “squeeze” function. The
desired length of the output hash is determined at the beginning, so it is possible to extract that
exact number of bits from the final value to obtain the complete hash [23] [24].

15

Fig. 8. Keccak algorithm high-level block diagram [23]

The designers at George Mason University created the FPGA design with Xilinx Vivado
to target Xilinx FPGA boards. This allowed them to utilize both Verilog and VHDL in their
design. The polyarithmetic modules in their design consisted of solely VHDL files. In an
interview with Luke Beckwith of the GMU team, he stated that his decision was made because
VHDL supported multidimensional arrays while Verilog did not. This posed a large issue for us
at the time, as we could not integrate both of the languages into our ASIC design. We tried to
convert the VHDL files into Verilog manually; however, since Verilog does not support
multidimensional arrays, we lost the main functionality of the original files.

To overcome this, we used a tool called Design Compiler shell (DC shell) by Synopsys.
This tool would allow us to convert the VHDL into a Verilog netlist with its standard cell library
and combine that netlist with the rest of the Verilog modules. These standard cells contained
Verilog descriptions of basic components such as gates (an example of this is in Fig. 9), and they
had predefined physical properties like timing and power.

module AND2 (

16

input A,
input B,
output Z
);

assign Z = A & B;

endmodule

Fig. 9. AND gate

The Keccak modules were broken down into components like Fig. 9 were combined into
a single file containing over 60,000 lines. Using that file, we were able to derive the area in the
DC shell. This was when we reached a complication in our methodology. Creating a netlist for
the VHDL components allowed us to run the whole design in purely Verilog, but when
optimizing and testing, it would be extremely difficult. We could not debug or modify any of the
converted code, as each module was broken down into smaller components. In addition, we
could not easily study and comprehend the converted code. After this, we reevaluated our goals
and searched for a module that would be feasible to work with.

C. FPGA vs ASIC design

One of the goals of this project was to convert a digital design originally made for an
FPGA into a digital design created for an ASIC. In most undergraduate classes, students work
with FPGAs due to their relatively low cost of entry and less need to optimize the design. One
main benefit of working with an FPGA is that it is reconfigurable, allowing students trial and
error with debugging their projects. On the contrary, an ASIC is not reconfigurable, and once it is
fabricated, it cannot be changed. This means much more time is spent on the verification and
optimization of the ASIC design.

Another large difference is how FPGAs and ASICs synthesize code. FPGAs turn a
register transfer level (RTL) design into lookup tables (LUTs), which are combinational
components that receive inputs and generate the corresponding outputs. Inside the LUTs is a
truth table generated from the design that performs boolean logic to get the desired outputs.
These LUTs allow a user to easily configure their design at the cost of consuming a greater
amount of area. When an FPGA designer synthesizes their RTL design, the design gets
transformed into a series of LUTs that handle combinational logic and sequential logic flip-flops.
This design structure makes it ideal for prototyping and implementations that will potentially
require many changes over time. For instance, the development of a hardware implementation of
a cryptography algorithm will potentially change throughout the competition. This is the reason
why the GMU team decided to go with an FPGA approach [18].

ASICs use standard cells from the same libraries to create their designs. These
predesigned cells range from components such as gates and flip-flops to multiplexers,
non-logical cells, and more [25]. These cells have known area, delay, and power consumption
which is great for a designer looking to make an optimized design. When an ASIC designer
synthesizes their RTL design, the design gets transformed into these cells, and a netlist of all the
cells is created. Since these cells are predefined, they offer known information and are easier to
optimize at the cost of less flexibility. Moreover, an ASIC does not have to endure the bloat of an

17

FPGA through its inflexible design. An FPGA must onboard a variety of hardware components
and unused registers while ASIC features only specifically required parts. This means an
equivalent ASIC will have a much smaller size, and consequently, this lends itself to reduced
power consumption. Once a design is established, there is no option for future spontaneous
editing and modifications.

There are many other design considerations when comparing ASICs and FPGAs. ASIC
designs tend to use many clocks while FPGA designs usually feature fewer clocks [19]. This
means that ASIC designers have to be wary of clock domain crossing in their designs. Latches
are sometimes used in ASIC designs but should not be used in FPGA designs. This is because
ASICs can be clocked at higher speeds and FPGAs use LUTs and flip-flops as their components.
ASIC designs have more flexibility for sequentially combining gates and components together
while FPGA designs prefer pipeline stages because of long latency.

A conversion of the FPGA implementation to an ASIC would have noticeable benefits
such as efficient optimization of size and power. We studied the GMU team’s FPGA
implementation to find a suitable module to convert to an ASIC design.

D. Hardware Module Analysis

The implementation consists of eight modules, each interwoven with the memory and
interconnected (Fig. 10). The modular design of GMU’s FPGA implementation [18] makes it
easier to understand and potentially convert it to an ASIC design. The implementation does key
and signature generation with signature verification. This design uses limited DSP usage
(multiplication only) because look-up tables (LUTs) are applicable for more basic arithmetic. In
Fig. 10, the hardware implementation design for CRYSTALS-Dilithium is shown. Each of the
modules is implemented to perform the cryptographic algorithm with minimal latency.

18

Fig. 10. Block Diagram Architecture of CRYSTALS-Dilithium [18]

The Polynomial Arithmetic unit executes standard polynomial addition, subtraction,
multiplication, and Number Theoretic Transform (NTT) operations. It increases the speed of the
polynomial multiplications. The design that GMU uses contains Barrett reductions and employs
butterfly units for standard arithmetic. Within the “PolyArith” unit, there are four butterfly units
that carry out simple arithmetic, Gentlemen-Sandle, and Cooley-Tukey operations. Using those
four butterfly units in tandem, the design can handle four coefficients simultaneously, performing
NTT in two layers each time the memory is accessed. To make sure the four coefficients are
correctly pipelined, the design implements a module that contains a 4x4 matrix transposer.

In addition to the FIFO, the PolyArith unit contains an address resolver unit. It uses two
64x6 ROMs with LUTs so that the RAM can correctly map the address without changes when
executing simple arithmetic or overwrite operations. This negates the need for shuffling and
re-ordering, saving memory. The PolyArith module stores the two polynomial vectors within
three BRAM units. Furthermore, GMU’s design utilizes Keccak units; they are used for sampling
and hashing matrixes.

Another few modules used in this design to simplify its operation are the decomposer,
encoder, decoder, sample, and use/make hint units. Within the signature generation portion, the
vector derived from the secret key and the message hash is decomposed. The high and low bits
are split into two polynomial vectors and then mapped to coefficients. A Fisher-Yates shuffle
[26] is applied to a polynomial to sample out a lower-length polynomial. This design, within a

19

key generation, requires the creation of a hint value that helps the verification portion recover
missing bits. MakeHint and UseHint are applied in conjunction with the sampling units to
recreate the value of the originally sampled polynomial. Once the hint is found, the resulting
polynomial is encoded, comparing it with the original value before sampling to verify it.

After analysis of all of the modules, our team decided to tighten the scope of the project
to the decomposer module. This module is simpler and contains more straightforward elements
that allow for a straightforward and more in-depth study of one of the key parts of the algorithm.

20

V. Decomposer Module

A. Connection To Larger Architecture

The decomposer performs the separation of high-bits and low-bits and is frequently used
in the digital signature verification of the algorithm. It allows us to save space in memory by
extracting the important bits, but the missing data can be recovered as well. The MakeHint
module uses the high-bits from the decomposer output, and the UseHint module directly uses the
decomposer module for both high and low bits. UseHint runs the decompose function and
compares it to the hint to verify the signature.

The decomposer module gets its data inputs from RAM2, which is the output from the
PolyArith1 module that contains the NTT operation. UseHint pulls the value directly from the
output of the decomposer. The decomposer output values are also stored in the RAM for usage in
MakeHint to prepare that information for when the state changes. (Refer to Fig. 10)

B. Purpose

The decomposer unit requires the high-order bits of a given element in Zq. The
implementation of CRYSTALS-Dilithium utilizes a specific algorithm to perform this extraction,
referred to as Decompose [14]. Given an element r in Zq, decomposeq writes r in the form:

r = r1a + r0, where a is chosen so that ka = (q - 1) for some positive integer k.

Here, r1 represents the high-order bits of r, and r0 represents the low-order bits of r. This
decomposition gives

r1 = (r - r0)/a, with r0 = r mod a.

However, if r - r0 = q - 1, such that r1a = (q - 1) => r1 = k, then we round

r1 = 0 and r0 = r0 - 1.

This is done to prevent the high-order bits from changing by more than 1.

Fig. 11. Decompose, MakeHint, UseHint algorithms [14]

21

C. Architecture and Layout

The Decomposer unit runs four instances of the coeff_decomposer module, allowing
it to calculate the 96-bit value coeff_w in 24-bit chunks. Within these coeff_decomposer units
is a decomp_map1 unit which performs the calculation for the high-bits. The
coeff_decomposer module then uses the high-bits from the decomp_map1 to retrieve the
low-bits. Each of these modules runs simultaneously to increase speed and efficiency.

Fig. 12. Port diagram of the decomposer unit

22

Fig. 13. Block diagram of the coeff_decomposer unit

The coeff_decomposer can be divided into a few core components: the local
parameter registers, the looping data buffer, and the coeff_map.

D. Optimization

Optimizing this module was quite challenging, as we needed to modify the architecture in
such a way that it would still perform the same function and match the exact same timing in the
larger architecture. We analyzed possible changes to the block and found that the register sizes
can be truncated to save area. In the coeff_decomposer module, there are six buffers that have
a signed-bit length of 56. The maximum value that these buffers can take is 26 bits (1 extra bit
for a signed bit). This maximum number of bits was calculated as the largest output of the
decomposer map shifted 19 bits to the right. Maximum values for the buffer were also tested
through our testbench (Appendix F), which resulted in a maximum of 26 bits.

The current size of the decomposer is quite large at over 80,000 μm2. If we target the
coeff_decomposer modules, we can reduce the size drastically since there are four of them in
the decomposer unit. To view the area of the chip, we used Yosys [27], an open-source software
that allows us to calculate and view the area of our design. For this design, we specifically used
the Skywater 130nm standard cell library. To view timing, we used a software called OpenSTA
and ran our design under a 100 MHZ clock (10,000 ps period). Here are all the variations of the
decomposer module:

23

Table II
Table of our designs and their characteristics

Critical Path (ps) Area (μm2) Number of Cells (sky130)
Regular Design 9280 81665.824 10209
Optimized Design 4720 48906.9056 5795
Speed-Centered
Optimized Design 3200 54563.5808 6214

Area-Centered
Optimized Design 3280 56816.992 9102

We see results that are nearly half the area of the original decomposer unit, specifically
59.88% smaller for the optimized design. We can verify that this is valid by noticing the changed
number of cells. This means that the tool we are using does not automatically truncate unused
bits. For the critical path, the optimization decreased the critical path by 196% of the original
amount and increased the slack by 730% of the original slack.

Yosys has a library of scripts that can be used to optimize for specifically speed or area.
We modified these scripts for our design and documented their results. Interestingly enough, the
speed-centered optimized design requires smaller area than the area-centered optimized design.
They are also both faster than the optimized design but are both larger in area. It is also
interesting to note that the number of standard cells is much higher in the area-centered design
compared to both the optimized and speed-centered designs.

Fig. 14. Area (μm2) vs Critical Path (ps) using Skywater 130nm cells

24

When looking at the tradeoffs on the chart, we want to be close to (0,0) as possible, as we
want the lowest critical path as well as the smallest area. The Pareto optimal designs would be
the regular optimized design if we wanted a faster decomposer or the speed-centered design, as
both are points on the Pareto optimal set [28]. Compared to the regular design, the
speed-centered optimized design has a 290% smaller critical path. The speed-centered optimized
design is overall better than the area-centered optimized design; therefore, the area-centered
optimized design should not be considered, as it is pareto suboptimal.

Other optimizations could be made if the larger architecture is changed as well. For
example, the buffer registers a1_1 and a1_2 only exist to delay the output by two additional
clock cycles. They do not serve any purpose besides that.

To show the layout of the decomposer module, we used the OpenROAD software, which
is an open-source electronic design automation (EDA) tool. This tool also helped us see the chip
layout, the critical path, and other timing information.

Fig. 15. Chip layout of the decomposer module

25

Fig. 16. Chip layout of the decomposer module with just standard cells

Fig 17. The critical path of the decomposer module

26

From viewing the chip through the OpenROAD GUI, we can find more information
about the critical path and the timing of other paths. Our main observation was that the update to
the register sizes slightly increased the slack in many other paths, leading to a large change in the
overall slack. It still seems that the critical path in both the original and optimized design is the
path from ready_i to ready_o. However, it is not considered slow: it still has over 5000 ps of
slack.

With further inspection, this path traces to the decomp_map1 module and gets values in
and out of the map. This module is essentially a very large priority encoder which would
translate to a very large LUT. The largest bit is taken and assigned to the value of the high-bit
output. These values are stored in the two registers, one 17-bit register and one 45-bit register for
security level 0 and security level 1 respectively. By doing the calculation instead of the priority
encoder, we can save even more area and increase our overall slack further.

E. Testing

When testing the decomposer, out team tested all possible settings. This included when
the ready signals were on/off and the different security levels. Changing the security level on the
decomposer allows for larger outputs and more precision between inputs. In terms of main
inputs, we included the same data with multiple security levels to test the effects of security level
alongside values that will test the outputs of the maximum and minimum inputs. Furthermore,
we displayed the results in the console log with transaction numbers to make reading easier,
since the correct output would print four cycles after the input first appears. It is also important to
note that most of the tests were performed on a single coeff_decomposer module, as the
higher-level decomposer unit simply combines four coeff_decomposer modules.

always @(di) begin
$display("transaction input [%d]", transaction_num1);
$display("di = %d", di);
transaction_num1 = transaction_num1 + 1;

end

always @(doa or dob) begin
if (transaction_num1 >= 4) begin

$display("transaction output [%d]", transaction_num2);
$display("doa = %d, dob = %d", doa, dob);
transaction_num2 = transaction_num2 + 1;

end
end

Fig. 18. Monitoring code for the coeff_decomposer module

27

Fig. 19. Waveform of the coeff_decomposer module

Fig. 20. and 21. Transactions in the coeff_decomposer

In addition to the deterministic tests, we tested random values at set intervals within the
bounds of the decomposer. We made sure to test both security levels to get code coverage.

sec_lvl = SEC_LVL_0;
repeat(10) #20 di = $urandom_range(0, 8118529);
sec_lvl = SEC_LVL_2;
repeat(10) #20 di = $urandom_range(0, 8285185);

Fig. 22. Random range input variables

28

VI. Difficulties and Recommendations

Our team faced many difficulties over the course of this project, and we have
recommendations for other students who want to attempt a continuation of this project or a
related project that deals with cryptography and ASIC design.

A. Scope of Knowledge Required

The most challenging part of this Major Qualifying Project was the breadth of advanced
background knowledge required to successfully achieve our original design goals. Our original
goals required a much deeper knowledge of digital design, ASIC design, advanced mathematics,
and cryptography. Our team had individual members who were proficient in each of these
individual fields, but not a single member had sufficient experience in every field. We were able
to mitigate some of our individual inexperience by working closely as a team and dividing tasks.
However, there were limits to our ability to do this. With how interconnected the project was, it
became apparent that our group simply did not have enough combined experience. Two-thirds of
the way through the project, a team member split from the project to work on a required adjacent
project for a separate degree. This impacted our functionality substantially, as our team size
shrunk to three people.

Two core issues that prevented us from making more progress were our lack of
understanding of post-quantum cryptography, something that requires several graduate-level
courses to be able to understand, and our lack of experience in ASIC design, another
graduate-course-exclusive topic.

Another challenge emerged from our incomplete understanding of the topic. When we
attempted to reevaluate our scope, we were unaware of the course knowledge we lacked. While
our scope kept on tightening, we repeatedly reached the conclusion that we were still being too
ambitious in our goals. By the time we quantified our limits and settled on a more manageable
scope, we had spent months generating data and studying material that was no longer directly
usable in our current endeavor.

B. Tools

Another obstacle we faced was the usage of tools. As mentioned previously, knowledge
of ASIC design was needed for this course, and one of our members took the relevant class
concurrently with the MQP. However, this made it difficult to teach the other members who had
only taken the prerequisite FPGA courses. There were many tools that needed to be installed,
and the installation process was lengthy, time-consuming, and confusing. This led to copious
time spent trying to set up virtual environments and several weeks attempting to learn the
workings of each of the tools.

The field of ASIC development is less popular when compared to FPGA design within
computer science and software engineering. Due to the lack of online information, each issue we
encountered with each tool cost us substantial amounts of precious project time. This made us
rely on software manuals and repeatedly attempt working with the systems until success. This
was especially prevalent for the DC shell and OpenROAD GUI, where both had many errors that
were only solved by trial and error. The OpenROAD GUI for the decomposer was only available
near the end of the project, so we were not able to do as much layout research as we had desired.

29

C. Recommendation

Our recommendations fall into two categories: who should attempt this project and what
background information is needed to be successful and technical recommendations for future
implementation.

Firstly, we believe that it is extremely important to have a sufficient in-depth background
in graduate-level electrical and computer engineering classes. Whether future groups attempt to
continue optimizing the GMU hardware implementation or attempt to implement a custom
design, we recommend both knowledge of post-quantum cryptography alongside ASIC design
and optimization.

If an undergraduate student team begins the project without strong fundamentals, they
may reach a similar conclusion to us. We tried to learn as the project progressed, but met the
issue of confused redirection. Similarly to us, other undergraduate teams may not know when to
refocus the main objective of the project.

A math background is also recommended. Having a team member with a strong
mathematics knowledge base working with us for a portion of the project greatly benefitted our
understanding of the cryptography scheme.

As for technical advice, we recommend attempting to optimize the decomp_map1
module. In our discussion with the GMU team, they explained that their FPGA implementation
has inefficiencies that could be solved with ASIC hardware implementation (Section IV.C). We
recommend taking the Decomposer Map module and performing the calculations instead of
using a priority encoder.

If a group wants to implement or optimize another block, we recommend something with
more documentation such as the NTT block or the butterfly block as those are well-researched
and well-documented blocks that groups have studied in the past.

30

VII. Acknowledgments

Our team would like to express our thanks and gratitude to Professor Patrick Schaumont
for all his support and guidance throughout this project. We would also like to thank Professor
Herman Servatius for all his help in the mathematical aspects of this project. This project would
not be possible without the help of both of our advising professors.

Finally, we would like to thank Brandon Voci for his contributions to this project’s
cryptography understanding and mathematical analysis.

31

VIII. References
[1] R. Abid et al., “An optimised homomorphic CRT-RSA algorithm for secure and efficient

communication,” Personal and Ubiquitous Computing. Springer Science and Business
Media LLC, Sep. 01, 2021. doi: 10.1007/s00779-021-01607-3.

[2] “What is cryptography or a cryptographic algorithm?,” What is cryptography or a
Cryptographic Algorithm? | DigiCert FAQ. [Online]. Available:
https://www.digicert.com/support/resources/faq/cryptography/what-is-cryptography-or-a-
cryptographic-algorithm.

[3] VMWare, “What is Elliptic Curve Cryptography? Definition & FAQs,” Avi Networks.
https://avinetworks.com/glossary/elliptic-curve-cryptography/

[4] S. S. Gill et al., “Quantum computing: A taxonomy, systematic review and future directions,”
Software: Practice and Experience, vol. 52, no. 1. Wiley, pp. 66–114, Oct. 07, 2021. doi:
10.1002/spe.3039.

[5] B. Schumacher, “Quantum coding,” Physical Review A, vol. 51, no. 4, pp. 2738–2747, 1995.
[6] “Post-quantum cryptography,” Post-Quantum Cryptography | Homeland Security. [Online].

Available: https://www.dhs.gov/quantum.
[7] I. T. L. Computer Security Division, “Post-Quantum Cryptography Standardization -

Post-Quantum Cryptography | CSRC | CSRC,” CSRC | NIST, Jan. 03, 2017.
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-sta
ndardization

[8] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring,"
Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
NM, USA, 1994, pp. 124-134, doi: 10.1109/SFCS.1994.365700.

[9] P. E. Black, “NP-hard,” Algorithms and Theory of Computation Handbook, 05-Jan-2021.
[Online]. Available: https://xlinux.nist.gov/dads/HTML/nphard.html.

[10] M. R. Albrecht et al., “Classic McEliece: conservative code-based cryptography”, 2022.
[Online]. Available: https://classic.mceliece.org/nist/mceliece-submission-20221023.pdf

[11] A. Avanzi et al., “CRYSTALS-Kyber Algorithm Specifications And Supporting
Documentation (version 3.02)”, 2021. [Online]. Available:
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

[12] C. Chen et al., “NTRU Algorithm Specifications And Supporting Documentation”, 2019.
[Online]. Available: https://ntru.org/f/ntru-20190330.pdf

[13] J-P. D’Anvers, A. K. S. S. Roy, F. Vercauteren, “Saber: Module-LWR based key exchange,
CPA-secure encryption and CCA-secure KEM”, 2018. [Online]. Available:
https://eprint.iacr.org/2018/230.pdf

[14] S. Bai et al., “CRYSTALS-Dilithium Algorithm Specifications and Supporting
Documentation (Version 3.1)”, 2021. [Online]. Available:
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf

[15] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G.
Seiler, S. Whyte, and Z. Zhang, “Falcon Fast-Fourier Lattice-based Compact Signatures
over NTRU,” Falcon, 17-Nov-2017. [Online]. Available: https://falcon-sign.info/

[16] J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt, and B.-Y. Yang, “Rainbow The 2nd NIST
Standardization Conference for Post-Quantum Cryptosystems,” PQCRainbow. [Online].
Available:

https://www.digicert.com/support/resources/faq/cryptography/what-is-cryptography-or-a-cryptographic-algorithm
https://www.digicert.com/support/resources/faq/cryptography/what-is-cryptography-or-a-cryptographic-algorithm
https://avinetworks.com/glossary/elliptic-curve-cryptography/
https://www.dhs.gov/quantum
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://xlinux.nist.gov/dads/HTML/nphard.html
https://classic.mceliece.org/nist/mceliece-submission-20221023.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://ntru.org/f/ntru-20190330.pdf
https://eprint.iacr.org/2018/230.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/

32

https://csrc.nist.gov/CSRC/media/Presentations/rainbow-round-2-presentation/images-me
dia/rainbow-ding.pdf.

[17] M.-shing Chen, J. Ding, M. Kannwischer, J. Patarin, A. Petzoldt, D. Schmidt, and B.-Y.
Yang, “Pqcrainbow One of the Three NIST Post-quantum Signature Finalists,”
PQCRainbow. [Online]. Available: https://www.pqcrainbow.org/.

[18] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-Performance Hardware Implementation of
CRYSTALS-Dilithium,” 2021 International Conference on Field-Programmable
Technology (ICFPT), Dec. 2021, doi: 10.1109/icfpt52863.2021.9609917.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9609917&isnumber=960969
8

[19] C. Maxfield, “FPGA vs. ASIC Designs,” in FPGAs: Instant access, Amsterdam:
Elsevier/Newnes, 2008, pp. 1–2.

[20] Utimaco, “What is lattice-based cryptography?,” What is Lattice-based Cryptography?
[Online].https://utimaco.com/products/technologies/post-quantum-cryptography/what-latt
ice-based-cryptography.

[21] A. Hartshorn, S. Weber, N. Qiao, & H. Leon Liu, “Number Theoretic Transform (NTT)
FPGA Accelerator”, Worcester Polytechnic Institute, 2020. [Online]. Available:
https://digital.wpi.edu/pdfviewer/p2676z164

[22] Bertoni, Daemen, J., Peeters, M., & Van Assche, G, “Keccak,” Advances in Cryptology –
EUROCRYPT 2013, 313–314. https://doi.org/10.1007/978-3-642-38348-9_19

[23] P. Luo, Y. Fei, X. Fang, A. A. Ding, M. Leeser and D. R. Kaeli, "Power analysis attack on
hardware implementation of MAC-Keccak on FPGAs," 2014 International Conference
on ReConFigurable Computing and FPGAs (ReConFig14), Cancun, Mexico, 2014, pp.
1-7, doi: 10.1109/ReConFig.2014.7032549.

[24] A. Anand, “Breaking down : Sha-3 algorithm,” Medium, 13-Jan-2020. [Online]. Available:
https://infosecwriteups.com/breaking-down-sha-3-algorithm-70fe25e125b6.

[25] Team VLSI, “Standard Cell Library for ASIC design”, 2020. [Online]. Available:
https://teamvlsi.com/2020/08/standard-cell-library-in-asic-design.html

[26] F. Panca Juniawan, H. Arie Pradana, Laurentinus, and D. Yuny Sylfania, “Performance
Comparison of Linear Congruent Method and Fisher-Yates Shuffle for Data
Randomization,” Journal of Physics: Conference Series, vol. 1196. IOP Publishing, p.
012035, Mar. 2019. doi: 10.1088/1742-6596/1196/1/012035.

[27] C. Wolf, “Yosys Open SYnthesis Suite”. [Online]. Available: https://yosyshq.net/yosys/
[28] J. S. Arora, “Multi-objective Optimum Design Concepts and Methods,” Introduction to

Optimum Design. Elsevier, pp. 771–794, 2017. doi:
10.1016/b978-0-12-800806-5.00018-4.

https://csrc.nist.gov/CSRC/media/Presentations/rainbow-round-2-presentation/images-media/rainbow-ding.pdf
https://csrc.nist.gov/CSRC/media/Presentations/rainbow-round-2-presentation/images-media/rainbow-ding.pdf
https://www.pqcrainbow.org/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9609917&isnumber=9609698
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9609917&isnumber=9609698
https://utimaco.com/products/technologies/post-quantum-cryptography/what-lattice-based-cryptography
https://utimaco.com/products/technologies/post-quantum-cryptography/what-lattice-based-cryptography
https://digital.wpi.edu/pdfviewer/p2676z164
https://doi.org/10.1007/978-3-642-38348-9_19
https://infosecwriteups.com/breaking-down-sha-3-algorithm-70fe25e125b6
https://teamvlsi.com/2020/08/standard-cell-library-in-asic-design.html
https://yosyshq.net/yosys/

33

Appendix A: NIST Cryptographic Algorithms

Classic McEliece Documentation: Mid Ease of
Understanding: Easy

Ease of Digital
Design: Easy

Notes:
- Uses a public-key cryptosystem

- Public-key uses a random binary Goppa code
- A Goppa code is a polynomial g(x) of degree t over a finite field GF(2^{m})

with no repeated roots, and a sequence {L_{1},...,L_{n}} of n distinct elements
from GF(2^{m}) that are not roots of g.

- Ciphertext with errors are used as well
- Private-key decodes the ciphertext and identifies and removes errors
- First introduced in 1978 so it is quite old

- Still holds up (prequantum) now despite that
- Algorithm also known as a KEM (Key Encapsulation Method)
- Designed for OW-CPA security (One Wayness Against Chosen Plaintext Attack)
- Decoding equation:

- Uses square root

-
- Roots are used for correcting errors

Documentation/Code notes:
- Has a lot of references on website
- Has 22 page paper that includes the math and a block diagram
- Includes the code
- Encoding Verilog code looks simple @ first glance
- Looks like the keys are generated in Python
- Decryption is a bit harder (of course) and uses a lot of row multiplication and vectors
- Code has comments!

https://classic.mceliece.org/index.html
https://eprint.iacr.org/2017/1180
https://classic.mceliece.org/nist/mceliece-20201010.pdf

https://classic.mceliece.org/index.html
https://eprint.iacr.org/2017/1180
https://classic.mceliece.org/nist/mceliece-20201010.pdf

34

CRYSTALS-KYBER Documentation: Mid Ease of
Understanding: Easy

Ease of Digital
Design: Hard

Notes:
- Uses two cryptographic primitives:

- Kyber, which uses IND-CCA2 (Indistinguishability under chosen ciphertext
attack/adaptive chosen ciphertext attack) which is also a KEM

- Uses LWE encryption (Learning With Errors)
- Dilithium, a strongly EUF-CMA-secure digital signature algorithm (Existential

Unforgeability under Chosen Message Attack)
- Both use module lattices and can withstand quantum attacks
- The only operations required for Kyber and Dilithium for all security levels are

variants of Keccak, additions/multiplications in Zq for a fixed q, and the NTT
(number theoretic transform) for the ring Zq[X]/(X^256+1)

- Easy to understand and looks not terrible to implement
- We would have to learn two algorithms but since they both use module lattices

it will be a bit easier
- Code is in C

Notes on C code:
- Split into many functions for easier understanding

- These split functions have mostly simple operations
- Contains 17 .c files
- Has IEEE hardware implementation (2021)

NTRU
(1996)

Documentation: High Ease of
Understanding:
Mid-hard

Ease of Digital
Design: Hard

Notes:
- Open source public key
- NTRU originally described as “partially correct probabilistic public key encryption

scheme (partially correct PPKE)” but can be made deterministic and perfectly correct
- KEM by Hoffstein, Pipher, Silverman
- Lattice based alternative to RSA and elliptic curve cryptography

- (based on shortest vector problem in a lattice)
- Quantum computers are not known to be able to break shortest vector problem

- Two algos for different uses:
- NTRUEncrypt → encryption
- NTRUSign → digital signature

- Math:

- Based on the truncated polynomial ring:
- Convolution multiplication and all polynomials have integer coefficients

w/ N-1 being the highest degree

35

- Parameters: N, q, p
- Polynomial arithmetic modulo → ciphertext is private key and public key,

receiver uses their own private key to decrypt. But all of the keys are
polynomials

- Security:
- Only feasible attack is lattice-based attack → system of equations in an attempt

to solve for any chosen polynomial
- Needs a matrix of size NxN ; if N is less than 100, NTRU can be broken, but if

N is of larger magnitude, it takes years for computers to solve. So, if N is way
bigger, (impossible)

- Quantum variants of sieve algorithms studied
- Improvements rely on unit-cost superposition queries to classical memory

(QRAM), the best claimed operation count is 2(0.265...+o(1))·b
- (NTRU people say that quantum advancements don’t really benefit the

way that this algorithm is attacked) → but it might in the future
- Advantages:

- Correct, well studied, flexible, simple, fast, compact, patent free.
- Limitations:

- Not best in speed, compactness, or security, but is really good in all categories
- Similar to all lattice based cryptosystems, the optimal parameters are limited by

non-asymptotic behavior of new algos for SVP
- There are extra structures in the NTRU system that are excess, and people may

construe this to be a limitation (stuff can be eliminated but it will make it less
correct and compact)

https://ntru.org/f/ntru-20190330.pdf
^ this one is the main documentation file from the NTRU group
https://ntru.org/talks/20190823_nist_round2.pdf
https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1880&context=honors_research_
projects

SABER: Documentation: Mid Ease of
Understanding: Mid

Ease of Digital
Design: Mid-Hard

Notes:
- Mod -LWR based KEM

- Lattice based , designed to offer better resistance to quantum computers
- Relies on the hardness of the:

- Module learning with rounding problem: Mod-LWR
- Saber.PKE to Saber.KEM using a version of Fujisaki-Okamoto transform (no

idea what this is)
- Integer moduli are powers of 2 to prevent modular reduction and rejection sampling
- LWR reduces the randomness required (½) the amount of LWE based schemes, reduces

https://ntru.org/f/ntru-20190330.pdf
https://ntru.org/talks/20190823_nist_round2.pdf
https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1880&context=honors_research_projects
https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1880&context=honors_research_projects

36

bandwidth
- Module structure provides flexibility by reusing one core component for multiple

security levels

- Ring:
- Parameters: n, L → degree 256 of the polynomial ring

- Rank L of the module (determines the dimension of the lattice problem)
- Dimension of lattice increase -> better security, less correctness

- q,p,T → moduli powers of 2 → 2xq
- Higher the parameter, lower security, higher correctness

- Security in the Quantum Random Oracle Model
- See theorem 6.5 page 20 of saberspecround3.pdf

- Advantages:
- No modular reduction (since all moduli are power of 2)
- Modular structure is flexible: to change security, change module to higher rank

one for better security
- Less pseudorandomness required bc of the use of Mod-LWR (½)
- Scaling and rounding simplified bc power of 2 mod p,q,T
- Low bandwidth bc of Mod-LWR
- Generic polynomial multiplication → implementation ease
- No full multiplications: random element in Rq x small element from Bu →

circular shifts and additions
- Good for anonymous communication → constant time over different pub key
- Efficient masking

- Limitations:
- Use of 2-power moduli makes NTT-like polynomial multiplication not natively

supported.
- Limited to encryption scheme and KEM, no signature scheme included

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
^main website
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
^documentation by SABER designers
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/acc
epted-papers/ribeiro-saber-pq-key-pqc2021.pdf

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/ribeiro-saber-pq-key-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/ribeiro-saber-pq-key-pqc2021.pdf

37

CRYSTALS-DILIT
HIUM:

Documentation: High Ease of
Understanding: Mid

Ease of Digital
Design: Mid

Background:
Lattices:

- Lattice over (Geometric Interpretation): Set of linearly independent points in𝑅𝑛 𝑅𝑛

that is also a free abelian (commutative) group and spans . In other words, a lattice𝑅𝑛

can be constructed from a basis of , by taking linear combinations with integral𝑅𝑛

coefficients.

That is: where is a basis forΛ : = {
𝑖=1

𝑛

∑ 𝑎
𝑖
𝑣

𝑖
 | 𝑎

𝑖
∈ 𝑍 } {𝑣

𝑖
} 𝑅𝑛

- In many cryptographic schemes, a “hard” problem involves finding “short” vectors in
lattices: for a Lattice over “short” can be defined in terms of the usual 2-norm on𝑅𝑛

: or in terms of inf-norm (this is the norm used in𝑅𝑛 𝑣
1

2 + 𝑣
2

2 + ... 𝑚𝑎𝑥{| 𝑣
𝑖
|}

the Dilithium scheme).
- Recall that is a vector space over a field. Analogously, we can also construct𝑅𝑛

lattices on modules over rings. The Dilithium scheme utilizes such modular lattices in
the signature process.

Polynomial Rings & Constructing Fields:
- Let denote the integers modulo . Then is the ring of polynomials with entries𝑍

𝑞
𝑞 𝑍

𝑞
[𝑋]

in . By choosing a maximal ideal, and obtaining the quotient ring𝑍
𝑞

< 𝑋𝑛 + 1 >

generated. By we receive a field, , wherein the usual arithmetic𝑍
𝑞
[𝑋] / < 𝑋𝑛 + 1 > 𝐹

operations (+, -, x, /) are well-defined.
- Dilithium scheme constructs matrices with entries in 𝐹 : = 𝑍

𝑞
[𝑋] / < 𝑋𝑛 + 1 >

and the key space is simply .𝐺𝐿(𝑛, 𝐹) = 𝐺𝐿(𝑛, 𝑍
𝑞
[𝑋] / < 𝑋𝑛 + 1 >)

Mechanics:
Key Generation:

- Begin with a number, , and integers). Generate a matrix with entries in𝑞 (𝑘, 𝑙 𝑘 × 𝑙
the previously described field, . is defined by some formula, and the degree of the𝐹 𝑞
polynomial in the maximal ideal is . We then sample random “secret” key𝑛 : = 256
vectors, , and the key is generated according to the rule . So(𝑠

1
, 𝑠

2
) 𝑡 = 𝐴𝑠

1
+ 𝑠

2
𝑡

is an affine combination.

Signing Procedure:
- Signing algorithm generates a masking vector of polynomials with coefficients less

than a given an challenge is created as the hash of the message and where isγ 𝑤 𝑤
computed after some operations from the masking vector and is then further

38

algebraically manipulated.

Verification:
- Verifier computes in the higher-order bits and accepts if all of the coefficients of the𝑤'

vector-part are less than a certain .γ − β

Implementations:
- Has a documented implementation on Intel Core-i7 6600U (Skylake) CPU.
- Furthermore, there is a C reference implementation, located on a GitHub repository

More on the Mathematical Background for Dilithium:
Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures |
SpringerLink https://link.springer.com/chapter/10.1007/978-3-642-10366-7_35
Official Specifications Document & Supporting Documentation :
CRYSTALS-Dilithium (pq-crystals.org)
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
GitHub Repository:
GitHub - pq-crystals/dilithium

FALCON: Documentation:
Mid-high

Ease of
Understanding: Mid

Ease of Digital
Design: Hard

Notes:
- Fast-Fourier Lattice-based algorithm.
- Similar to Crystals-Dilithium
- True internal Gausian Sampling for negligible leakage
- NTRU latices allow for short signatures and public keys

- O(n log n)
- uses less than 30 kilobyes of ram, over 100x better than old NTRUsign
- Falcon, submitted to NIST Post-Quantum Cryptography Project in 2017, is based on

lattice-based signature schemes and short integer solution problem (SIS) over NTRU
lattices.

- It offers high security, compactness, speed, scalability, and RAM economy.
- efficient signature generation and verification

Rainbow: Documentation:
Mid-high

Ease of
Understanding: Mid

Ease of Digital
Design: Hard

Notes:

Background:
- Based off of the Unbalanced Oil and Vinegar scheme (UOV)
- Uses random multivariate quadratic systems

https://link.springer.com/chapter/10.1007/978-3-642-10366-7_35
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_35
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://github.com/pq-crystals/dilithium

39

- Rainbow, designed in 2004, is based on multivariate quadratic systems and algebraic
geometry. It was selected as one of the three NIST Post-quantum signature finalists in
2020 and offers very small signatures and efficient signature generation and
verification through the use of simple operations over small finite fields.

- Rainbow offering very small signatures.
- efficient signature generation and verification

Mechanics:
- Constructed from an inveratble quadratic map

- Inverable linear maps

- Public key: P = S o F o T
- Private key: S, F, T can be used to invert the public key

Signature Generation:
- Given a document

- The hash H finds
- Compute recursively
- Signature is

Signature Verification
- Given
- Calculate
- If the signature is true

40

Appendix B: Function List

Function: Input(s): Output(s): Description:

address_encoder_decoder.cpp

unsigned
resolve_address

- enumerated type
mapping (
NATURAL,
AFTER_NTT,
AFTER_INVNTT

)
- unsigned int
address

- unsigned int ram_i Based on the values
of MAPPING(
NATURAL,
AFTER_NTT,
AFTER_INVNTT
), it has case
statements to
compute the next
address

void resolve_twiddle - unsigned int tw_i[4]
- unsigned int *last
- unsigned
tw_base_i[4]
- const int k
- const int s
- enum OPERATION
mode

- void, but changed
the values of:

unsigned intl1, l2, l3,
l4
unsigned l1_base,
l2_base, l3_base,
l4_base

unsigned int tw_i[3:0]
and tw_i_base[3:0].

Enumerated type
OPERATION (
FORWARD_NTT_
MODE,
INVERSE_NTT_
MODE, MUL_MODE
) determine what
operation is
performed through if
else statements.
Based on the value of
k and s, tw_base_i
and tw_base_i are
assigned with the
values of l1 - l4 and
l1base - l4_base

address_encoder_decoder.h

unsigned
resolve_address

- enumerated type
mapping (
NATURAL,
AFTER_NTT,
AFTER_INVNTT

)
- unsigned int
address

- unsigned int ram_i Header file

void resolve_twiddle - unsigned int tw_i[4]
- unsigned int *last
- unsigned
tw_base_i[4]
- const int k
- const int s

- void, but changed
the values of:

unsigned intl1, l2, l3,
l4
unsigned l1_base,

Header file

41

- enum OPERATION
mode

l2_base, l3_base,
l4_base

unsigned int tw_i[3:0]
and tw_i_base[3:0].

butterfly_unit.h

void butterfly - template
<typename T2,
typename T>
- enumerated type
OPERATION mode
- T *bj
- T *bjlen
- const T zeta
- const T aj
- const T ajlen

- void, but changes
the value of aj1 - aj4,
ajlen1 - ajlen4, and bj
and bjlen.

Depending on the
operation mode, it
performs operations
on the values of aj1 -
aj4, ajlen1 - ajlen4,
and bj and bjlen.
These variables are
of type T but I have
yet to find the
definition for T.

void buttefly_circuit - template
<typename T2,
typename T>
- T data_out[4]
- const T data_in[4]
- const T w[4]
- enum OPERATION
mode

- void, but changes
the value of
data_out[1] -
data_out[4]. Also
instantiates butterfly
variable/class
depending on mode.

A pipelined process
with debug
statements that set T
(variable/class I’m not
sure). Instantiates
these butterfly
classes (?). data_out
depends on the
mode.

config.h

struct BRAM - template
<typename T>
- T
coeffs[BRAM_DEPT][
4]

- struct definition BRAM_DEPT = 64
4 arrays of 64 bits of
class/type T

enum OPERATION - FORWARD_NTT_
MODE
- INVERSE_NTT_
MODE
- MUL_MODE

- struct definition Modes that help other
functions know what
operation the system
is currently
performing

enum MAPPING - NATURAL
- AFTER_NTT
- AFTER_INVNTT

- struct definition Modes that help other
functions know where
the system is
currently operating

typedef BRAM<int32_t> bram

42

BRAM<data_t> bram;

fifo.h

(int32_t) data_t FIFO - (int32_t) data_t
fifo[DEPT]
- (int32_t) const
data_t new_value

- (int32_t) data_t out Sets data_out to
fifo[DEPT - 1] and
then does a for loop
to set fifo[i] to fifo[i-1]

void PIPO - template <int DEPT,
typename T>
- T w_out[4]
- T fifo[DEPT][DEPT]
- const T w_in[4]

- void but changes
value of w_out and
fifo

Sets w_out[i] =
fifo[DEPT - 1][i] and
fifo[0][i] = w_in[i].
Also performs two
nested for loops with
decrementing i and
incrementing j: fifo[i][j]
= fifo[i - 1][j];

T FIFO_PISO - template <int DEPT,
typename T>
- T fifo[DEPT]
- const bool piso_en
- const T line[4]
- const T new_value

- T out Sets out to fifo[DEPT
- 1] and also does
work on the rest of
the fifo. First
performs a for loop
for the size of DEPT -
1 to 4:
fifo[i] = fifo[i - 1]
Then manually
changes the values
of fifo and line based
on array value (i.e.
fifo[3] = line[0]) if
piso_en is enabled.
Otherwise, the fifo is
pushed like a fifo and
a new value is
inserted in fifo[0]

void read_fifo - template
<typename T>
- T data_out[4]
- const unsigned
count
- const T
fifo_a[DEPT_A]
- const T
fifo_b[DEPT_B]
- const T
fifo_c[DEPT_C],
- const T

- void but changes
the value of data_out
as well as ta, tb, tc, td

Case statement
depends on the value
of count and bitwise
AND of 3. ta - td will
be set depending on
the value being 0 - 3.
Finally, data_out[0 -
3] will be assigned by
the values of ta - td.

43

fifo_d[DEPT_D]

void read_write_fifo - template
<typename T>
- enum OPERATION
mode
- T data_out[4],
- const T data_in[4]
- const T
new_value[4]
- T fifo_a[DEPT_A]
- T fifo_b[DEPT_B]
- T fifo_c[DEPT_C]
- T fifo_d[DEPT_D]
- const unsigned
count

- void, but changes
the value of
a_piso_en -
d_piso_en, fd - fa,
and data_out[0 - 3]

Case statement
depends on the value
of count and bitwise
AND of 3. Having a
value of 0 will enable
write to fifo D, 1
equates to enabling
write to fifo C, etc.
Performs compound
ANDing on the fifo
write enable variables
depending on mode.
fd - fa is set
depending on the
values of
FIFO_PISO.
data_out[0 - 3] = fd -
fa if the mode is
forward and read_fifo
is call if the mode is
something else.

ram_util.cpp

read_ram data_t data_out[4],
const bram *ram,
const unsigned ram_i

-void Changes values of
data_out[0-3] to the
values of
ram->coeffs[ram_i][0-
3]

write_ram bram *ram, const
unsigned ram_i,
const data_t
data_in[4]

-void Changes the values
of
ram->coeffs[ram_i][0-
3] to data_out[0-3]

read_twiddle data_t data_out[4],
enum OPERATION
mode, const
unsigned tw_i[4]

-void Sets data_out[0-3] to
zetas_barrett{i1-4] or
to -zetas_barrett{i1-4]
based on wether
OPERATION mode is
imputed as
Forward_NTT_MOD
E or
INVERSE_NTT_MO
DE

44

ram_util.h

read_ram data_t data_out[4],
const bram *ram,
const unsigned ram_i

void instantiation

write_ram bram *ram, const
unsigned ram_i,
const data_t
data_in[4]

Void instantiation

read_twiddle data_t data_out[4],
enum OPERATION
mode, const
unsigned tw_i[4])

void instantiation

util.cpp

print_reshaped_array bram *ram, int bound,
const char *string

void Prints the array
modded array using
the read_ram
function and a nested
for loop

print_index_reshaped
_array

bram *ram, int index void Prints the index of the
modded array

reshape bram *ram, const
data_t
in[DILITHIUM_N]

void

compare_array data_t *a, data_t *b,
int bound

Int 0 or 1 Returns 1 if the
arrays are not the
same returns 0
otherwise

compare_bram_array bram *ram, data_t
array[DILITHIUM_N],
const char *string,
enum MAPPING
mapping, int print_out

Int 0 or 1 if error

util.h

print_array T *a, int bound, const
char *string

void Prints the input array
a within a given
bound

print_reshaped_array bram *ram, int bound,
const char *string

void instantiation

45

print_index_reshaped
_array

bram *ram, int index void instantiation

reshape bram *ram, const
data_t
in[DILITHIUM_N]

void instantiation

compare_array data_t *a, data_t *b,
int bound

int instantiation

compare_bram_array bram *ram, data_t
array[DILITHIUM_N],
const char *string,
enum MAPPING
mapping, int print_out

int instantiation

ntt2x2.h (h file) - header instantiation

update_indexes unsigned tw_i[4],
const unsigned
tw_base_i[4],
const unsigned s,
Enum OPERATION
mode

void Instantiation for same
func in ntt2x2.cpp

ntt2x2_fwdntt bram *ram, enum
OPERATION mode,
enum MAPPING
mapping

void instantiation

ntt2x2_mul bram *ram, const
bram *mul_ram,
enum MAPPING
mapping

void instantiation

ntt2x2_invntt bram *ram, enum
OPERATION mode,
enum MAPPING
mapping

void instantiation

ntt2x2.cpp

MAX typename T: a, b typename T Returns the larger
value a or b
-Uses inline
conditional (a<b)? b:a
-Option to use the
comp() function to
compare ‘a’ and ‘b’

46

update_indexes unsigned tw_i[4],
const unsigned
tw_base_i[4],
const unsigned s,
Enum OPERATION
mode

void Changes
index/memory
addresses

ntt2x2_mul.cpp (multiply)

ntt2x2_mul bram *ram, const
bram *mul_ram,
enum MAPPING
mapping

void Point-wise
multiplication
Read address,
calculate, write back

ntt2x2_fwdntt.cpp (forward ntt)

ntt2x2_fwdntt bram *ram, enum
OPERATION mode,
enum MAPPING
mapping

void Forward NTT for 256,
uses FIFO, temp
“twiddle”, implements
butterfly circuit()

ntt2x2_invntt.cpp (inverse ntt)

ntt2x2_invntt bram *ram, enum
OPERATION mode,
enum MAPPING
mapping

void Inverse NTT,
implements fwdntt
pattern, rolling FIFO
index, iterates on
conditional to roll
FIFO and extract
data

ntt2x2_test.cpp (testbench file - compares all ret values with reference code tbench results)

ntt2x2_NTT data_t
r_gold[DILITHIUM_N]

int ret Load data into
BRAM, complete
fwdntt, prints array
from
compare_bram_array

ntt2x2_MUL data_t
r_mul[DILITHIUM_N],
data_t
test_ram[DILITHIUM
_N]

int ret ntt2x2_mul test

polymul data_t
a[DILITHIUM_N],
data_t
b[DILITHIUM_N]

int ret Test hardware
multiplication for mul
function; uses the |=
“or” operand for the
ret value

47

reference_code Function(s):

Function: Input(s): Output(s): Description:

ref_ntt.cpp

ntt() a: Array of size
DILITHIUM_N in
data_t

Returns void but
modifies input array

Performs NTT
transform on input
array. All operations
are modulo
DILITHIUM_Q.

pointwise_barrett() c: Array of size
DILITHIUM_N in
data_t
a, b: Constant arrays
of same size in
data_t

Returns void but
modifies input array

Iterative scheme for
pointwise
multiplication of a, b
arrays, modulo value
of DILITHIUM_Q.
Resultant array
stored in c.

invntt() a: Array of size
DILITHIUM_N in
data_t

Returns void Performs inverse
NTT transform on
input array.

ref_ntt2x2.cpp

ntt2x2_ref() a: Array of size
DILITHIUM_N in
data_t

Returns void but
modifies input array

Performs 2x2 NTT; i.e
matrix formulation of
NTT

invntt2x2_ref() a: Array of size
DILITHIUM_N in
data_T

Returns void but
modifies input array

2x2 inverse NTT
using matrix
formulation of NTT.

ref_test_ntt2x2.cpp

compare_array() *a: Pointer to test
array in data_t
*a_gold: Pointer to
test array in data_t

Returns an integer:
0: Indicates arrays
are incongruent
modulo
DILITHIUM_Q
1: Indicates arrays
are NOT congruent
modulo
DILITHIUM_Q

Verifies whether two
arrays (assumed of
same length) are
congruent modulo
DILITHIUM_Q.
Iterates through the
length of the arrays
and, at each index,
check if the
difference modulo
DILITHIUM_Q is 0.

main() Void input Returns an integer:
1: Successful
0: Unsuccessful

Instantiate two
separate arrays: a,
a_gold. Initialize with

48

identical data modulo
DILITHIUM_Q
generated from
rand().
Perform forward NTT
using ntt() on one
and ntt2x2_ref() on
another. Compare
resulting arrays.
Repeat for inverse
NTT.

consts.cpp

Contains an array called zetas_barrett that is referenced in file: [ram_until.cpp]

49

Appendix C: RTL Modules and Functions in Files

Block: Files(s):

Keccak

keccak_top.vhd
- keccak_control.vhd

- sr_reg.vhd
- keccak_datapath.vhd

- keccak_bytepad.vhd
- sipo.vhd
- regn.vhd
- keccak_cons.vhd
- keccak_round.vhd
- countern.vhd
- piso.vhd

- keccak_pkg.vhd
keccak_fsm1.vhd

- sr_reg.vhd
- countern.vhd

keccak_fsm2.vhd
- countern.vhd
- sr_reg.vhd

sha_fsm3.vhd
sha3_pkg.vhd

PolyArith

operation_module.v
- address_unit.v

- address_resolver.v
- Twiddle_resolver.v

- dual_port_rom.v
- butterfly2x2.v

- Butterfly.v
- Barret_8380417.v

- ntt_pipo.v
- ntt_fifo.v

- ntt_fifo_piso.v

Decomposer
decomposer_unit.v
coeff_decomposer.v

- decomp_map1.v

Encoder
encoder.v

- zero_strip.v
- uncenter_coeff.v

Decoder decoder.v

MakeHint makehint.v

UseHint usehint.v

50

Sample

gen_a_ext.v (SampleA)
gen_c.v (SampleC)
gen_s.v (SampleS)
expandmask_ext.v (SampleY)

sampler_a_ext.v
- rejection_a.v

sampler_y_ext.v
- rejection_y.v

sampler_s_ext.v
- rejection_s.v

51

Appendix D: Decomposer Unit Port Diagram

52

Appendix E: Coeff Decomposer Block Diagram

53

Appendix F: Coeff Decomposer Testbench

`timescale 1 ns/1 ps // time-unit = 1 ns, precision = 1 ps

module coeff_decomposer_tb;

reg rst;
reg clk;
reg valid_i;
reg ready_o;

reg [2:0] sec_lvl;
reg [23:0] di;
wire [23:0] doa;
wire [23:0] dob;
wire valid_o;
wire ready_i;

parameter SEC_LVL_0 = 3'b000;
parameter SEC_LVL_2 = 3'b010;

parameter OUTPUT_W = 4;
parameter COEFF_W = 24;

integer transaction_num1 = 0;
integer transaction_num2 = 2;

coeff_decomposer CDTB(
.rst(rst),
.clk(clk),
.sec_lvl(sec_lvl),
.valid_i(valid_i),
.ready_o(ready_o),
.di(di),
.doa(doa),
.dob(dob),
.valid_o(valid_o),
.ready_i(ready_i)

);

initial begin
$dumpfile("cdtb.vcd");
$dumpvars(0,coeff_decomposer_tb);
di = 24'b0;
rst = 1'b1;
clk = 1'b0;
sec_lvl = SEC_LVL_0;

54

#55
rst = 1'b0;

valid_i = 1'b0; //testing with off
ready_o = 1'b0;
#100
di = 24'd2312250; // 4
#20
di = 24'd2500010; // 5
#20
di = 24'd5000020; // 10
#20
di = 24'd8022100; // 15

#100 //all set to 0s
valid_i = 1'b1; //both on
ready_o = 1'b1;
#20
di = 24'd2312250; // 4
#20
di = 24'd2500010; // 5
#20
di = 24'd5000020; // 10
#20
di = 24'd8022100; // 15
#20
sec_lvl = SEC_LVL_2; // Changing security levels

di = 24'd2312250; // 12
#20
di = 24'd2500010; // 13
#20
di = 24'd5000020; // 26
#20
di = 24'd8022100; // 42
#20
di = 24'b0;
#20
di = 24'd8194721; // 43
#20

di = 24'd9000000; // 0
#20
di = 24'd10000; // 1
#20
di = 24'd16777215; // largest input value
sec_lvl = SEC_LVL_0;
repeat(10) #20 di = $urandom_range(0, 8118529);
sec_lvl = SEC_LVL_2;

55

repeat(10) #20 di = $urandom_range(0, 8285185);
#1000
$finish;

end

always #5 clk = !clk;

always @(di) begin
$display("transaction input [id: %d]", transaction_num1);
$display("di = %d", di);
transaction_num1 = transaction_num1 + 1;

end

always @(doa or dob) begin
if (transaction_num1 >= 4) begin

$display("transaction output [id: %d]", transaction_num2);
$display("doa = %d, dob = %d", doa, dob);
transaction_num2 = transaction_num2 + 1;

end
end

endmodule

