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1 Abstract

Hybrid ionic compounds have many potential applications such as in fuel cells
or other power sources. This paper covers a study of a system of elliptic partial
differential equations and their boundary conditions relating to conductivity of
hybrid ionic compounds. It begins with a problem definition which considers the
implications of the work function difference within the material. The geometries
created assume uniformity in the background material and within the placed
particles. All relevant calculations were completed using COMSOL Multiphysics
primarily consisting of potential diagrams and current magnitudes. The primary
goal of this project was finding optimal arrangements of particles within the
background material.
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2 Introduction

Nanoionics is a scientific field of study with many potential applications. This
paper focuses on hybrid ionic compounds, a part of nanoionics which examines
composites of a bulk material with particles of a different material within it.
These have many potential applications such as solid oxide fuel cells (Kim,
Virkar, Fung, Mehta, & Singhalb, 1999) as they can greatly increase the overall
conductivity of the material.

Conductivity is a measure of how easy it is for electrons to move in a given
space. One way to determine conductivity is through the work function. The
work function of a material is the minimum energy needed to move an electron
from its surface to a point in a vacuum directly outside the surface, defined as
W = −eφ−EF where e is charge of an electron, φ electrostatic potential in the
vacuum, and EF Fermi level in the material (Wikipedia, 2016). By applying
voltage to the material, one directly controls EF thus φ can be rewritten as
φ = V − W

e where V = EF /e. Note that, for a material with lower or even zero
conductivity, less work is required to move an electron off of its surface. The
work function, rather than being dependent on the bulk material, is actually
dependent on the surface material and the properties of said surface.

Figure 1: A sample hybrid ionic compound with three particles

For hybrid ionic compounds, substances which contain particles of zero con-
ductivity but are otherwise uniform, the work function is not constant. These
are made using special materials of differing work functions. For instance,
Pt/SrZr0.9Y0.1O3−α can be used with various volumes of platinum to create
one such compound (Matsumoto, Furya, Okada, & Tanji, 1999). As an example,
compare the conductivity in the bulk of this material to the area surrounding a
single particle (Figure 2). In the area around this non-conducting particle, con-
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ductivity increases from the background conductivity to a maximum of σb∗e−u0

at the particle’s surface. In other words, due to the differences in work func-
tions between the particle and the bulk material, overall conductivity around
the particle increases, and these areas are called Space Charge Layers. Fur-
thermore, there exist arrangements of particles where the overall conductivity of
the material will increase by creating a path of increased conductivity through
the material. This project seeks to find these arrangements and how they are
affected by the intrinsic properties of the materials used.

Figure 2: An example compound with a single particle. The scale on the right
shows the conductivity for various regions. Conductivity at the surface of the
particle (u0) is 2.3

To better examine these compounds, this paper contains a study on a partic-
ular system of partial differential equations, which are derived from electrostat-
ics and Poisson’s equation given by ∆u = ∇2u = uxx + uyy = f (Hackbusch,
1987). Additionally, Laplace’s equation is formed by setting f = 0. It is clear
that these equations are elliptic since uxx+ uyy = uxx+ uyy+ 0 ∗ uxy thus the
discriminant < 0. These equations only depend on spacial dimensions and not
time, and thus study steady state problems. The Poisson’s equation examined
in this paper, however, is nonlinear and is written as ∆u = ∇2u = f(u, x, y).
For this problem, the minimum principle applies which states that if u and its
first and second derivatives are continuous in the closure of the domain, u is
continuous on the boundary of the domain, and ∆u ≤ 0, then u achieves its
minimum on the boundary (Logan, 1994). This is a significant result as it allows
the solution of the problem to be bounded.

Because of this principle, a solution to this problem is expected. The next
section will detail the formation of said problem, as laid out in ”PoissonBoltz-
mann model of space charge layer effects on conductivity in randomly dis-
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tributed nanoionic composites” (Fish et al., 2012). Next how the computations
were calculated will be discussed. Finally, the results and future suggestions
will be given.
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3 Problem Definition

For this paper, it is assumed that conductivity is proportional to the charge
carrier concentration: σ

σb
= X

Xb
where the subscript b denotes the value in the

bulk of the material, far away from the particles. Furthermore, X is proportional
to e−

E
kT where E is the energy, k Boltzmann’s constant, and T temperature as

given by Boltzmann distribution (Wikipedia, 2016). Simplifying this, X
Xb

=

e−
zFY
RT where z = 1 is the charge of a charge carrier, F Faraday’s constant, Y

the local potential relative to the bulk potential, and R the real gas constant.
Thus we can write σ

σb
= e−u where u = FY

RT is the dimensionless potential.
To better describe the potential, note that ∇ · Ef = ρ

ε where Ef is the
electric field, ρ is the free charge density, and ε electrical permitivity, which is
assumed to be constant. Additionally u can be rewritten as u = Ψ−Ψb where
Ψ is the electrostatic potential and Ψb the potential in the bulk material, which
is constant. And since Ef = −∇Ψ, this can be rewritten as ∆u = − F

εRT ρ.
As the bulk material is electrically neutral, ρ can be described using Xb as
ρ = FXb(

X
Xb
− 1). Substituting, this becomes ρ = FXb(e

−u − 1) and thus

∆u = 1
2λ2 (1 − e−u) where λ is the Debye length of the material. The Debye

length of this material is given by λ = εRT
2F 2[X]b

. This is a constant intrinsic

to the material, independent of the particles, and “is the measure of a charge
carrier’s net electrostatic effect in solution, and how far those electrostatic effects
persist”(Wikipedia, 2016). In the context of this problem, with a very large
Debye length, a single inserted particle would change the conductivity of the
entire domain, even if it was quite small.

The domain for the problem (Ω) is a unit cell with a number of particles
contained within its bounds. Here, the unit cell is a rectangle with equal sides
(ie a square) with constant σ0. For the calculations, σ is scaled by σb, or in other
words, the obtained values of σ correspond to σb = 1. Additionally, within the
particles the conductivity is 0. It is assumed that this arrangement within the
cell is repeated in a grid-like pattern many times in every direction. Therefore,
potential (u) is continuous and differentiable, or periodic, across the boundaries
of the cell.

To examine how effective a given geometry is at conducting, it is necessary
to examine voltage (V ). V is assumed to satisfy ∇ · (σ∇(V )) = 0 where σ is
defined by e−u where u is calculated from the first equation. As this is linear,
V can be defined to be 0 at y = 0, and 1 at y = 1. Summarizing, the equations
and boundary conditions are as follows:

PDE:

∆u =
1

2λ2
(1− e−u) on Ω (1)

∇ · (σ∇(V )) = 0 on Ω (2)
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BC:

u is periodic across x = 0 and x = 1

u is periodic across y = 0 and y = 1

u = u0 on the inner boundary

V is periodic across x = 0 and x = 1

V (x, 0) = 0

V (x, 1) = 1

These equations are independent of time. Since u is periodic across the
boundaries, it and its derivatives must be continuous on Ω and 0 ≥ 1 − e−u ≥
1 − eu0 so (1) must have a unique solution. And because V is linear with σ
calculated from (1), (2) has a unique solution as well.

The simplest case was considered first: a single circular particle inscribed in
the center of the cell with u0 = −2.3. After choosing the radius of the circle
(R) and the value of (λ), the following line integral was calculated on the top
boundary: ∫ a

b

−udV
dy

(3)

By evaluating this, the current through the material can be calculated and
the thus effective conductivity can be inferred. From this, reasonable ranges of
λ can be found as λ too small or too large are not worth studying.

Next, five particles were used with R = .05 and the arrangement of them
within the square was varied (Figure 3). This allows for a more thorough anal-
ysis of the effects of these particles to the background material and how their
effects blend with one another in the arrangements. The same line integral was
calculated to find the best possible variation of particles for selected λ and u0
values. Finding the optimal arrangements can be used in potential applications
of these kinds of compounds.
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Figure 3: Arrangements of particles for the five particle calculations. The first
two place all 5 along the center line of the cell, horizontally and vertically. The
third places all the particle close to the center of the cell. The last 3 place the
particle in two lines of varying distances, each being .1, .2, and .25 away from
the center line respectively.
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4 Computations

COMSOL Multiphysics 5.0 was used for the calculations. From the Model
Wizard, two Poisson equations were created and the solver set to stationary.
For the geometry, a square with sides of length 1 was created with its bottom
left corner at the origin. Next the circles were formed which represented the
particles and were placed appropriately in the square. Finally, a difference
between the square and the circles formed the final domain of the problem. The
boundary conditions were set up as usual, with the periodic conditions specified
as continutity and Dirichlet conditions for u0 and the non-periodic conditions of
V . The default solver was used for the computations (note that for COMSOL
5.0 a nonlinear solver is assumed for nonlinear problems).

11



5 Results

For the single particle simulations, the following table summarizes the results:

R/λ .25 7 14 20
.0001 1.2897 9.2537 9.7772 9.8761
.001 1.4679 9.5237 9.8506 9.9099
.01 1.8239 9.5857 9.7588 9.7892
.05 1.8239 9.5857 9.7588 9.7892
.1 2.1683 9.2608 9.3318 9.3496
.15 2.4543 8.5735 8.6365 8.6473
.2 2.6562 7.6977 7.7357 7.7422
.25 2.7424 6.671 6.693 6.6967
.3 2.6978 5.5577 5.5697 5.5717

Table 1: Table summarizing the result of the single particle iterations. The
left-hand side, R, is the radius of the particle. The top, λ is the Debye length of
the material. The values of the table are the result of the line integral discussed
in Section 2 to find effective current.

Holding λ constant and varying R gives some interesting results. As R is
increased, the current increases before decreasing to 0. As expected, e2.3 ≈ 9.97
is an upper bound of this table. As λ is increased, the amount the current
increases from R = .0001 to its maximum value is greatly diminished. For
instance, at λ = 20, the current increases by < 0.1 from R = .0001 to R = .001.
As λ is lowered, the amount the potential increases is greatly lowered. This is
because, as λ is increased, the space charge layer the particle produces is very
large to begin with, and if λ is small, the SCL is very small (view the heat graphs
for a visual of the field). Increasing the value of R when λ is large will only lower
overall conductivity due to this. Therefore, for each Debye length there is some
optimal particle radius which depends on the Debye length of the material. For
the λ presented here and for the selected R values, R = .25, .01, .001, .001 are
optimal. Finally, as the effects of large λ are extreme, they will not be examined
further as they are not realistic in their effects.
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Figure 4: Particle effectiveness for different λ. The λ values from top right to
bottom left are .25, 7, 14, 20. R = .05 is fixed. The color scaling on all of these is
the same. This shows that when λ is large, a single particle completely changes
the conductivity of the cell to be closer to u0.

For the five particle iteration, the following figure shows which alignment of
the particles is the optimal one.

Figure 5: Optimal arrangements for a given u0 and λ.The left axis is u0 and
the top λ. Each section represents a different arrangement as indicated by
the key.The sections between the mono-colored areas indicate areas where one
arrangement or another may be optimal.

It is clear that, in general, for small λ a straight line configuration is most
effective and for larger λ having a wide spacing of the particles is most effective.
However there is a clear divide between them where different spacings of particles
become most effective.

Where the straight line configuration is optimal, the effectiveness of an indi-
vidual particle is quite small (Figure 6). Therefore, grouping the particles closer
results in the best conductivity, even if the particles do cause much interference
along the meridian of the cell. Having the particles further apart results in a
lower overall conductivity since the material lacks a path of increased conduc-
tivity for charge to follow. In the areas where spacing the particles far apart is
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optimal, the effectiveness of an individual particle is comparatively large. Be-
cause of this, spacing the particles reduces the interference they cause on one
another and creates a pathway of increased conductivity through the material.

Figure 6: Comparing two different optimal arrangements. The one of the left
has ineffective particles so it is necessary to group them close to be effective.
On the right, the particles are effective enough to create a larger SCL so they
must be spaced further apart.

Between these two large areas, both close spacings and divided spacings are
optimal. This area is both dependent on ψ0 and on λ creating the diagonal
seen. Take ψ0 = 2.3. Taking λ from .05 to .1 results in a close spacing, but
not a straight line, to be most optimal. This is because while each individual
particle has a relatively small effect on the conductivity, it is large enough now
to where moving the particles apart will reduce the interference they cause
while increasing conductivity. Setting ψ0 = −4 results in a larger spacing being
optimal between the straight line and the furthest spacing. At this point the
particles have an even larger effect, so it is necessary to move them further apart
to avoid interference and maximize conductivity.
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6 Conclusion

In summary, for small λ generally a vertical line arrangement is optimal, and for
large lambda, a far spacing of two lines is optimal. For a given λ of a material,
there is an optimal radius for the particles to gain maximum conductivity in
area immediately surrounding the particle. Using COMSOL Multiphysics, these
arrangements and radii have been found for different λ in a two-dimensional
case. For future studies, three-dimensional cases should be studied perhaps
beginning with the three-dimensional equivalents of the arrangements in this
paper. Additionally, a more analytical approach for the solution is suggested,
taking the partial differential equations along with the boundary equations and
proving that a solution must exist. Finally, taking these results and creating
the compound with the arrangements would allow for a complete analysis of the
effectiveness of these compounds.
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