
On the Constructions of Certain Fractal Mixtures

by

Haodong Liang

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Applied Mathematics

by

May 2009

APPROVED:

Professor Umberto Mosco, Thesis Advisor

Professor Bogdan M. Vernescu, Head of Department



Abstract

The purpose of this paper is to construct sets, measures and energy forms of certain

mixed nested fractals which are spatially homogeneous but not strictly self-similar.

We start with the constructions of regular nested fractals, such as Sierpiński gaskets

in Rn and Koch curves in R2, by employing the iterated map system. Then we

show that under the open set condition, the unique invariant (self-similar) measure

consists with the normalized Hausdorff measure ristricted on the invariant set. The

energy forms construced on regular Sierpinski gaskets and Koch curves is also proved

to be a closed form. Next, we use the similar idea, by extending the iterated maps

system into a general case, to construct the mixture sets, as well as measures and

energy forms. It can be seen that the elements so constructed will not have any

strict self-similarity, but them indeed satisfy some weak self-similar properties.
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Chapter 1

Introduction

A fractal is by definition a set for which the Hausdorff dimension strictly exceeds

the topological dimension, i.e., a set with non-integral Hausdorff dimension, given

by Benoit Mandelbrot in his book [17]. Such sets, when they have the additional

property of being strictly self-similar, have been used to to model various physical

phenomena. Meanwhile, in [16], Lindstrom was able to describe a family of fractals,

called by him nested fractals, to be a good mathematical model for what physicists

call finitely ramified fractals, which are self-similar bodies that can be disconnected

by a finite number of cuts. For example, the Sierpiński gasket and the Koch curve

are two particular nested fractals that will be mainly dicussed in this paper. For

very regular self-simillar fractals, it is possible to construct the unique invariant set

K and invariant Hausdorff measure µ on K based on the contraction principle in

complete metric spaces. Those notions have been studied in a general framework

by Hutchinson [11]. Moreover, the Dirichlet form for the regular Sierpiński gasket

has been introduced in Fukushima-Shima [9] as a basis to formulate the spectral

analysis for the gasket.

However, in the mathematical physics literature, the main interest is not in regu-
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lar fractals, but in irregular objects which are believed to exhibit “fractal” properties.

We call this kind of structures by “irregular fratals” or “fractal mixtures”. Sets of

this type, and their diffusions, have been studied recently by Barlow-Hambly [1].

The main focus of this thesis will be on constructing the sets, measures and energy

forms that are not strictly self-similar. Results obtained in this paper are used to

prepare for the future study and research. We will not consider the case of non

nested fractals, such as the Sierpiński carpet, because it asks for employing quite

different techniques. The paper is organized as follows: In the next chapter, I will

begin by recalling the contraction principle in a metric space. After introducing

contractive maps and the completeness of Hausdorff metric space of compact sets,

the proof of the existence and uniqueness of invariant sets is given, based on which

certain fractal sets will be constructed in following chapters. I use Chapter 3 to de-

scribe the properties of contractive similitudes in Euclidean space, as well as those of

invariant sets. In addition, it is necessary to talk about the Hausdorff dimension of

such invariant sets under given contractive similitudes satisfying the open set condi-

tion. In order to help with understanding, basic concepts of Hausdorff measure are

also given. Chapter 4 is devoted to developing theories of invariant measures, which

are proved by the contraction principle. Some properties of such measure will be

shown. In particular, the invariant measure consists with the Hausdorff measure un-

der the open set condition. Examples in fractals, such as the Koch curve, Sierpiński

gasket and carpet, are shown including pictures in Chapter 5. Then, in Chapter 6,

the reader is first introduced to the iterated map system. Energy forms on certain

regular fractals are constructed later. Furthermore, we can show that such energy

form is bilinear, closed, and also satisfies the Markov property. That is to say this

energy form is a Dirichlet form. It doesn’t enter the scene of any fractal mixtures

until Chapter 7. I extend the iterated map system to a general case which depends
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on a given positive integer sequence. Once the new system has been explained, we

will use the similar idea that was developed in the previous chapters to construct

the sets, measures and energy forms on irregular Sierpiński gaskets. Finally, we will

list some future works in the last chapter.

Complete proofs of the main results will be presented. For some of the more

difficult results, only the easiest non-trivial case of the proof (such as the case of

two dimensions) is included here, with a reference to the complete proof in a more

advanced text.
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Chapter 2

Contractions

2.1 Contraction Principle

Let (X, d) be a complete metric space. We say limn→∞ xn = x for x, xn ∈ X, if

d (xn, x)→ 0 in R as n→∞.

A map f : X → X is said to be a contraction, if there exists 0 < r < 1 such that

d(f(x), f(y)) ≤ rd(x, y)

for every x, y ∈ X. The smallest one of such constant r is given by

r = sup
x 6=y

d(f(x), f(y))

d(x, y)
,

and is called the Lipschitz constant of f , denoted by Lip(f).

Notice a contraction map is continuous. For notational purposes we define fn(x),

x ∈ X for n ≥ 0 inductively by f 0(x) = x and fn+1(x) = f(fn(x)).

One important result is known as Banach’s contraction principle followed.

Theorem 2.1.1. Let (X, d) be a complete metric space and f : X → X be a con-
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traction. Then f has a unique fixed point p ∈ X such that f(p) = p. Furthermore,

for any x ∈ X we have

lim
n→∞

fn(x) = p

with

d(fn(x), p) ≤ rn

1− r
d(x, f(x)).

Proof. We first show uniqueness. Suppose there exist x, y ∈ X with f(x) = x,

f(y) = y. Then

rd(x, y) ≤ d(x, y) = d(f(x), f(y)) ≤ rd(x, y).

Therefore d(x, y) = 0, which implies x = y.

To show existence, we first show that {fn(x)} is a Cauchy sequence. Since

d(fn(x), fn+1(x)) ≤ rd(fn−1(x), fn(x)) ≤ · · · ≤ rnd(x, f(x)),

thus for every ε > 0, we can find an N ∈ R large enough such that for all m > n > N ,

we have

d(fn(x), fm(x)) ≤d(fn(x), fn+1(x)) + d(fn+1(x), fn+2(x))

+ · · ·+ d(fm−1(x), fm(x))

≤rnd(x, f(x)) + · · ·+ rm−1d(x, f(x))

≤rnd(x, f(x))(1 + r + r2 + · · · )

=
rn

1− r
d(x, f(x)) ≤ rN

1− r
d(x, f(x)) < ε.

This shows that {fn(x)} is a Cauchy sequence. Since X is complete, there exists
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a p ∈ X such that limn→∞ f
n(x) = p. Moreover the continuity of f yields

p = lim
n→∞

fn+1(x) = lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)) = f(p).

Thus p is a fixed point of f . Finally we have

lim
m→∞

d(fn(x), fm(x)) = d(fn(x), p) ≤ rn

1− r
d(x, f(x)).

2.2 Metric Space of Compact Sets

Let (X, d) be a complete metric space. If x ∈ X,K ⊂ X, then define the distance

between x and K by

d(x,K) = inf {d(x, y) : y ∈ K} . (2.1)

For ε > 0, define the ε-neighbourhood of K by

Kε = {x ∈ X : d(x,K) < ε} . (2.2)

Let B be the class of non-empty closed bounded subsets of X, C be the class of

non-empty compact subsets of X.

Definition 2.2.1. Hausdorff metric δ on C is defined by

δ(A,B) = sup {d(x,B), d(y, A) : x ∈ A, y ∈ B} . (2.3)

Theorem 2.2.1. (C, δ) is a complete metric space under Hausdorff metric.

6



The proof of this theorem is not trivil, for details, see reference [2] or [14].

We list some elementary properties to be used in the following sections. Let

f : X → X, and fi : X → X for i = 1, . . . , N . Denote Ai = fi(A) for A ⊂ X. Then

for A ⊂ X,B ⊂ X

(i) δ(f(A), f(B)) ≤ Lip(f)δ(A,B),

(ii) δ(
⋃N
i=1Ai,

⋃N
i=1Bi) ≤ supi=1,...,N δ(Ai, Bi).

2.3 Invariant Sets

Let (X, d) be a complete metric space. ψi : X → X for i = 1, . . . , N are contraction

maps with

d(ψi(x), ψi(y)) ≤ rid(x, y)

where 0 < ri < 1 for i = 1, . . . , N . We assume that ri = Lip(ψi).

Define a set-to-set map Ψ by

Ψ(A) :=
N⋃
i=1

ψi(A), A ⊂ X (2.4)

where ψi(A) = {ψi(a) : a ∈ A}. Denote n-time iterated map Ψ ◦ · · · ◦Ψ by Ψn.

Notice that each ψi is considered as a set-to-set map, and Ψ is also a set-to-set

map imaging the subset A ⊂ X into the subset Ψ(A) ⊂ X. We now study the map

Ψ on the space (C, δ). We first show some properties of the set Ψ(B) and the map

B 7−→ Ψ(B) when B ∈ C.

Lemma 2.3.1. Ψ is a contraction map on C in the Hausdorff metric.
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Proof. By the properties listed in Section 2.2, we have

δ (Ψ(A),Ψ(B)) = δ

(
N⋃
i=1

ψi(A),
N⋃
i=1

ψi(B)

)

≤ max
1≤i≤N

δ (ψi(A), ψi(B)) ≤ max
1≤i≤N

{ri} δ(A,B).

Let r = max1≤i≤N {ri}. Then 0 < r < 1 and δ (Ψ(A),Ψ(B)) ≤ rδ(A,B).

Lemma 2.3.2. Let B ∈ C. Then Ψ(B) ∈ C.

Proof. Since we have proven Ψ is a contration map on (C, δ), that Ψ is a continuous

map. Moreover, a continuous image of a compact set is compact. Review that C is

a class of non-empty compact subsets of X. Therefore, Ψ(B) ∈ C when B ∈ C.

Similar to the definition of a fixed point in Section 2.1, we give a definition of an

invariant set under a set-to-set contraction map.

Definition 2.3.1. The set K ⊂ X is invariant with respect to Ψ, if

K = Ψ(K) =
N⋃
i=1

ψi(K). (2.5)

Furthermore, a theorem showing the existence and uniqueness of an invariant

set is given.

Theorem 2.3.1. There is a unique non-empty compact set K ∈ C which is invari-

ant with respect to Ψ. Moreover, for an arbitrary non-empty compact set A ∈ C,

Ψp(A)→ K as p→∞ in the Hausdorff metric.

Proof. Since (C, δ) is a complete space in Hausdorff metric, from Lemma 2.3.1 we

know Ψ : C → C is contraction. Then by the contraction principle, there exists a

unique fixed point K ∈ C such that Ψ(K) =
⋃N
i=1 ψi(K) = K, i.e. K is invariant

with respect to Ψ. In addition, for any A ∈ C, we have limp→∞Ψp(A) = K.
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2.4 Properties of Invariant Sets

Continue the notations in Section 2.3. Denote ψi1,...,ip = ψi1 ◦· · ·◦ψip , and by si1,...,ip ,

the fixed points of ψi1,...,ip . For arbitrary A ⊂ X, denote ψi1,...,ip(A) = Ai1,...,ip .

Notice that Ψp(A) =
⋃
i1,...,ip

Ai1,...,ip where for every set of indeces i1, . . . , ip ∈

{1, . . . , N}. If A is bounded, then diam(Ai1,...,ip) ≤ ri1 · · · · · ripdiam(A) → 0 as

p→∞.

By î1, . . . , îp, we mean the infinite sequence i1, . . . , ip, i1, . . . , ip . . . i1, . . . , ip . . ..

Property 2.4.1. Let K be the compact invariant set of Ψ. Then

1. Ki1...ip =
⋃N
ip+1=1Ki1...ip,ip+1.

2. K ⊃ Ki1 ⊃ · · · ⊃ Ki1...ip ⊃ · · · , and
⋂∞
p=1Ki1...ip is a singleton whose member

is denoted as ki1...ip.... K is the union of these singletons.

3. ψj1...jq(ki1...ip...) = kj1...jqi1...ip....

4. kî1...̂ip = si1...ip,and in particular si1...ip ∈ K.

Also ki1...ip... = limp→∞ si1...ip, and in particular, this limit exists.

5. K is the closure of the set of fixed points of ψi1...ip.

6. The coordinate map π : C(N) → K given by π(α) = kα is a continuous map

onto K.

7. If A is a non-empty bounded set, then d(Ai1...ip , ki1...ip...) → 0 uniformly as

p→∞.

Proof. 1. Since

K =
N⋃
i=1

ψi(K) =
⋃
i,j

ψi(ψj(K)) =
⋃
i,j

ψij(K) =
⋃
i,j

Kij,
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then

K =
⋃
i1...,ip

Ki1...,ip .

Similarly,

Ki1...,ip = ψi1...,ip(K) = ψi1...,ip

 N⋃
ip+1=1

ψip+1(K)


=

N⋃
ip+1=1

ψi1,...,ip+1(K) =
N⋃

ip+1=1

Ki1,...,ipip+1 .

2. From 1, we have K ⊃ Ki1 ⊃ · · · ⊃ Ki1...ip ⊃ · · · . Since diam(Ki1,...,ip)→ 0 as

p→∞, that
⋂∞
p=1 Ki1,...,ip is a singelton, whose unique member is denoted by

ki1,...,ip.... Since K =
⋃
i1...,ip

Ki1...,ip , that K is the union of ki1,...,ip....

3. Since ψj1,...,jq(Ki1,...,ip) = Kj1,...,jqi1,...,ip , then we have

ψj1,...,jq(ki1,...,ip...) = ψj1,...,jq

∞⋂
p=1

Ki1,...,ip

=
∞⋂
p=1

Kj1,...,jqi1,...,ip = kj1,...,jqi1,...,ip....

4. By the above ψi1,...,ip(kî1,...,̂ip) = kî1,...,̂ip , it follows kî1,...,̂ip is the unique fixed

point si1,...,ip of ψi1,...,ip , which implies both si1,...,ip , ki1,...,ip... ∈ Ki1,...,ip . Since

lim
p→∞

diam(Ki1,...,ip) = 0,

thus limp→∞ si1,...,ip = ki1,...,ip....

5. From 2 and 4, we get 5 immediately.

6. Suppose α =< α1 . . . αp . . . >∈ C(N) and ε > 0. Then π(α) = kα1...αp...,and

so there is a q such that Kα1...αq ⊂ {x ∈ K : d(x, ψ(α)) < ε}. Since Kα1...αq is
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the image of the open set {β : βi = αi, if i ≤ q}, it follows π is continuous.

7. Suppose A ⊂ X is non-empty bounded set. Then

d(Ai1,...,ip , ki1,...,ip...) =d(ψi1,...,ip(A), ψi1,...,ip(kip+1...))

≤ri1 · · · · · ripd(A, kip+1)

≤ri1 · · · · · rip sup {d(a, b) : a ∈ A, b ∈ K}

≤constant
(

max
1≤i≤N

ri

)p
→0

as p→∞.

2.5 Similitudes in Metric Space

Let (X, d) be a complete metric space.

Definition 2.5.1. A map f : X → X is called a similitude if d(f(x), f(y)) =

rd(x, y), ∀x, y ∈ X and some fixed r ∈ R. Moreover, f : X → X is said to be a

contractive similitude if r ∈ (0, 1).

Notice that from the definition we know that a contractive similitude f is also a

contraction map with Lip(f) = r. Therefore, there exists a fixed point p in X such

that f(p) = p.

The notion of similitudes (contractive similitudes) can be given in any arbitrary

metric space. However, we are interested in a particular case where the metric space

is Rn with Euclidean distance d. Relative properties of invariant sets in Euclidean

space will be given in the following chapter.
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Chapter 3

Similarities

3.1 Similitudes in Euclidean Space

Let (X, d) be a complete metric space. In this section, we only consider the case

that X = Rn and the Euclidean distance d.

Denote

µr : Rn → Rn be the homothety µr(x) = rx, r ≥ 0,

τb : Rn → Rn be the translation τb(x) = x− b.

Proposition 3.1.1. f : Rn → Rn is a similitude iff f = µr ◦ τb ◦ O for some

homothety µr, translation τb and orthonormal transformation O.

Proof. (⇐) is obvious.

(⇒) Let f be a similitude with Lip(f) = r. Set g(x) = r−1(f(x) − f(0)), then

f(x) = µr◦τ−r−1S(0)◦g. Need to prove g is orthonormal transformation, i.e. preserve
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the inner product and linear. Since

(g(x), g(y)) =(r−1(f(x)− f(0)), r−1(f(y)− f(0)))

=r−2(f(x)− f(0), f(y)− f(0))

=
r−2

2

[
||f(x)− f(0)||2 + ||f(y)− f(0)||2 − ||f(x)− f(y)||2

]
=
r−2

2

[
(d(f(x), f(0)))2 + (d(f(y), f(0)))2 − (d(f(x), f(y)))2

]
=
r−2

2

[
r2(d(x, 0))2 + r2(d(y, 0))2 − r2(d(x, y))2

]
=

1

2

[
(d(x, 0))2 + (d(y, 0))2 − (d(x, y))2

]
=

1

2

[
||x||2 + ||y||2 − ||x− y||2

]
=(x, y),

it follows g preserves inner products.

Let {ei : 1 < i < N} be an orthonormal basis for Rn. Then {g(ei) : 1 < i < N}

is also an orthonormal basis. Hence

g(x) =
N∑
i=1

(g(x), g(ei))g(ei) =
N∑
i=1

(x, ei)g(ei).

It follows g is linear. Therefore g is an orthonormal transformation.

Remark 3.1.1. If ψi : Rn → Rn for i = 1, . . . , N are contractive similitudes with

Lipschitz constants ri. Then for A ⊂ Rn, Ψ(A) :=
⋃N
i=1 ψi(A) is a contractive

similitude in (C, δ), where C is the class of non-empty compact subsets of Rn and δ

is the Hausdorff metric on C. Moreover, there exists a unique compact invariant set

K ∈ C such that Ψ(K) = K.

Now we are interested in the dimension of the invariant set K of Ψ. Before

showing the Euclidean properties of K, we give some notions of Hausdorff dimension
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and Hausdorf measures in the following sections.

3.2 Hausdorff Measures

Now we introduce certain “lower dimensional” measures on Rn, which allow us to

measure certain “very small” subsets of Rn. These are the Hausdorff measures H k,

defined in terms of the diameters of various efficient coverings. The idea is that A is

an “k-dimensional subset” of Rn if 0 < H k(A) <∞, even if A is very complicated

geometrically, such as in the case of fractals.

Definition 3.2.1. Let A ⊂ Rn, 0 ≤ k <∞, 0 < ε ≤ ∞. Set

H k
ε (A) = inf

{
∞∑
i=1

α(k)2−k(diamCi)
k : A ⊂

∞⋃
i=1

Ci, diamCi ≤ ε

}
(3.1)

where

α(k) =
πk/2

Γ
(
k
2

+ 1
) ,

with Γ(t) =
∫∞

0
e−xxt−1dx, (0 < t <∞) be the gamma function.

Define

H k(A) = lim
ε→0

H k
ε (A) = sup

ε>0
H k

ε (A). (3.2)

We call H k the k-dimensional Hausdorff measure on Rn, for A ⊂ Rn.

Remark 3.2.1. H k will not always be finite on bounded sets. In fact, we have

H k(A) ∈ [0,∞].

By the definition of Hausdorff measure, we can easily prove that: If f : Rn →

Rn is Lipschiz, i.e., Lip(f) < ∞, then H k(f(A)) ≤ (Lip(f))kH k(A). If f is a

similitude, then f#H k := H k ◦ f−1 = (Lip(f))−kH k.
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Let L n be the n-dimensional Lebesgue measure on Rn. Observe that

L n(B(x, r)) = α(n)rn

for all balls B(x, r) ⊂ Rn. We will see later that if k is an integer, H k agrees with

ordinary “k-dimensional surface area” on nice sets.

We now show some results of the Hausdorff measure without proof. Although

these results will not be used in this paper, they play an important role in the

research of Hausdorff measures. Moreover, they will be helpful for us to understand

the relative theory of Hausdorff measures.

• H k is a Borel regular measure (0 ≤ k <∞).

• n-dimensional Lebesgue measure and n-dimensional Hausdorff measure agree

on Rn, i.e. H n = L n on Rn.

• Let f : Rn → Rm be Lipschitz and one-to-one, n ≤ m. Then for each L n-

measurable subset A ⊂ Rn,

H n(f(A)) =

∫
A

J(f)dL n,

where J(f) is the Jacobian of f .

For more details and proof, see reference [4].

Example 3.2.1 (Surface area of a graph). Assume g : Rn → R is Lipschitz and

define f : Rn → Rn+1 by

f(x) = (x, g(x)).
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For each open set U ⊂ Rn, define the graph of g over U by

G = G(g, U) = {(x, g(x)) : x ∈ U} ⊂ Rn+1.

Then

H n(G) = “surface area” of G =

∫
U

J(f)dx.

3.3 Hausdorff Dimension

Before defining the Hausdorff dimension of a subset of Rn, we first show a lemma

to help with understanding the following concepts.

Lemma 3.3.1. Let A ⊂ Rn and 0 ≤ k < t <∞.

(i) If H k(A) <∞, then H t(A) = 0,

(ii) If H t(A) > 0, then H k(A) = +∞.

Proof. Suppose H k(A) < ∞ and ε > 0. Then there exist sets {Ci}∞i=1 such that

diamCi ≤ ε, A ⊂
⋃∞
i=1Ci and

∞∑
i=1

α(k)2−k (diamCi)
k ≤H k

ε (A) + 1 ≤H k(A) + 1.

Then

H t
ε (A) ≤

∞∑
i=1

α(t)2−t (diamCi)
t

=
α(t)

α(k)
2k−t

∞∑
i=1

α(k)2−k (diamCi)
k (diamCi)

t−k

≤ α(t)

α(k)
2k−tεt−k(H k(A) + 1).

Send ε → 0 to conclude H t(A) = 0. We proved assertion (i). Assertion (ii)
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follows from (i) at once.

Definition 3.3.1. The Hausdorff dimension of a subset A ⊂ Rn is defined to be

dH = dH (A) = inf
{

0 ≤ k <∞ : H k(A) = 0
}
. (3.3)

Notice that, by Lemma 3.3.1, H t(A) = 0 for all t > dH and H t(A) = +∞ for

all t < dH .

3.4 Euclidean Properties of Invariant Sets

Continue the notations in Section 2.4 and 3.1. Let (X, d) be Rn with Euclidean

metric. Denote by K the unique compact invariant set of Ψ. For convenience, we

set dH = dH (K).

Let γ(t) =
∑N

i=1 r
t
i . Then γ(0) = N and γ(t) ↘ 0 as t → ∞. Hence there is a

unique dS ∈ R such that
∑N

i=1 r
dS
i = 1.

Definition 3.4.1. dS is said to be the similarity dimension of {ψ1, . . . , ψN}, if∑N
i=1 r

dS
i = 1.

Now our main objective is to prove that the similarity dimension dS equals to

the Hausdorff dimension dH of K under certain condition.

Proposition 3.4.1. Let K be the unique compact invariant set of Ψ, then we have

H dS (K) < +∞ and so dH ≤ dS .

Proof. By Property 2.4.1 1, we know K =
⋃
i1,...,ip

Ki1...ip and

∑
i1,...,ip

(diamKi1...ip)
dS =

∑
i1,...,ip

rdS
i1
· · · · · rdS

ip
(diamK)dS = (diamK)dS .
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Since

diamKi1,...,ip ≤
(

max
1≤i≤N

{ri}
)p

diamK → 0

as p→∞. By the definition of Hausdorff measure, we have

H dS (K) ≤ α(dS )2−dS (diamK)dS <∞.

It follows that dH ≤ dS .

We next prove dH ≥ dS . Before showing that, we define an important concep-

tion called open set condition.

Definition 3.4.2 (Open Set Condition). {ψ1, . . . , ψN} satisfies the open set condi-

tion (o.s.c.) if there exists a non-empty open set O such that

(i)
⋃N
i=1 ψiO ⊂ O,

(ii) ψiO ∩ ψjO = ∅ if i 6= j.

Definition 3.4.3. The lower (upper) k-dimensional density of A ⊂ X at points

x ∈ X is defined respectively by

θk∗(A, x) = lim
r→0

inf
H k(A ∩B(x, r))

α(k)rk
(3.4)

θ∗k(A, x) = lim
r→0

sup
H k(A ∩B(x, r))

α(k)rk
(3.5)

Likewise, for a measure µ on X, we define

θk∗(µ, x) = lim
r→0

inf
µ(B(x, r))

α(k)rk
(3.6)

θ∗k(µ, x) = lim
r→0

sup
µ(B(x, r))

α(k)rk
(3.7)
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Thus we get θk∗(A, x) = θk∗(H
kbA, x).

The upper density turns out to be more important than the lower density. The

main results we will use are

(i) θ∗k(µ, x) ≥ λ,∀x ∈ A⇒H k(A) ≤ λ−1µ(A),

(ii) θ∗k(µ, x) ≤ λ,∀x ∈ A⇒H k(A) ≥ 2−kλ−1µ(A).

for µ ∈M. M is the set of Borel regular measures having bounded support and

finite mass, i.e. M(µ) = µ(X) <∞. For a reference see [6].

If 0 < µ(A) <∞ and 0 < θ∗k(µ, x) <∞, then we have 0 < H k(K) <∞.

Lemma 3.4.1. Suppose 0 < c1 < c2 < ∞ and 0 < ρ < ∞. Let {Ui} be a family

of disjoint open sets in Rn. Suppose each Ui contains a ball of radius ρc1 and is

contained in a ball of ρc2. Then at most (1 + 2c2)nc−n1 of the Ūi meet B(0, ρ).

Proof. Suppose Ū1, . . . , Ūk meet B(0, ρ). Then each of Ū1, . . . , Ūk is a subset of

B(0, (1 + 2c2)ρ). Summing the volumes of the k corresponding disjoint spheres of

radius ρc1, we have

kαnρ
ncn1 ≤ αn(1 + 2c2)nρn,

and hence k ≤ (1 + 2c2)nc−n1 .

Now we show an important theorem which gives us the value of the Hausdorff

dimension of K.

Theorem 3.4.1. Suppose {ψ1, . . . , ψN} satisfies the o.s.c., then 0 < H dS (K) <∞.

In particular dH = dS .

Proof. Let µ be the invariant measure of T in Section 4.2. Denote O the open set

asserted to exist by the o.s.c.. First prove that there exists constants κ1, κ2 such

that

0 < κ1 ≤ θdS
∗ (µ, k) ≤ θ∗dS (µ, k) ≤ κ2 <∞
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for all k ∈ K.

Note that

µ(Ki1,...,ip) ≥ (H S (K))−1H S bKi1,...,ip(Ki1,...,ip)

= rdS
i1
· · · · · rdS

ip
µ(ψ−1

i1,...,ip
Ki1,...,ip) = rdS

i1
· · · · · rdS

ip
µ(K) = rdS

i1
· · · · · rdS

ip
.

Let k = ki1,...,ip... and consider the ball B(k, ρ). Choose the least ρ such that

Ki1,...,ip ⊂ B(k, ρ). Then we have ri1 · · · · · rip(diamK) ≥ ρr1 (recall r1 ≤ · · · ≤ rN).

Thus

µB(k, ρ)

α(dS )ρdS
≥
µ(Ki1,...,ip)

α(dS )ρdS
≥
rdS
i1
· · · · · rdS

ip

α(dS )ρdS
≥ rdS

1

α(dS )(diamK)dS

Hence θdS
∗ (µ, k) ≥ rdS

1 α−1(dS )(diamK)−dS for k ∈ K.

Suppose O contains a ball of radius c1 and is contained in a ball of radius c2.

For each sequence j1 . . . jq . . . select the least q such that r1ρ ≤ rj1 · · · · · rjq ≤ ρ.

Let I be the set of < j1 . . . jq > thus selected. Thus
{
Oj1...jq :< j1 . . . jq >∈ I

}
is

a collection of disjoint open sets. Moreover, each such Oj1...jq contains a ball of

radius rj1 · · · · · rjqc1 and hence of radius r1c1ρ, and is contained in a ball of radius

rj1 · · · · · rjqc2 and hence of radius ρc2. It follows from Lemma 3.4.1 that at most

(1 + 2c2)n(r1c1)−n of the Ōj1...jq meet B(k, ρ). Hence at most (1 + 2c2)n(r1c1)−n of

the Kj1...jq meet B(k, ρ). Then

µ(B(k, ρ))

α(dS )ρdS
≤ (1 + 2c2)n

rn1 c
n
1

· ρdS

α(dS )ρdS
=

(1 + 2c2)n

α(dS )rn1 c
n
1

It follows θ∗dS (µ, k) ≤ (1 + 2c2)n(α(dS )rn1 c
n
1 )−1.

If we let κ1 = rdS
1 α−1(dS )(diamK)−dS , κ2 = (1 + 2c2)n(α(dS )rn1 c

n
1 )−1, then we

have

0 < κ1 ≤ θdS
∗ (µ, x) ≤ θ∗dS (µ, k) ≤ κ2 <∞.
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Now use the results of k-dimentional density of µ at point k, we have

0 < H dS (K) <∞

which implies dS = dH .

Corollary 3.4.1. Suppose {ψ1, . . . , ψN} satisfies the o.s.c.. If ri = r = 1
α

for

i = 1, . . . , N , then dH (K) = logN
logα

.

Now we know the Hausdorff dimension of the invariant set with respect to

{ψ1, . . . , ψN} under the open set condition. Does there exist a measure so-called

an “invariant measure” with respect to {ψ1, . . . , ψN}? What are the similarity

properties of this measure? In the following chapter, we will show the existence

of this special invariant measure which equals the normalized Hausdorff measure

H dS restricted on K.
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Chapter 4

Invariant Measures

In this chapter, similar to the theory of the invariant set, we will show relative def-

initions and properties of the invariant measure with respect to a set of contractive

similitudes in a complete metric space. The main tool we are using is the contrac-

tion principle which has already been shown in Section 2.1. Before giving out the

definition of invariant measures, we first aim to show the completeness of the metric

space of Borel regular measures.

4.1 Metric Space of Borel Regular Measures

Let (X, d) be a complete metric space.

Definition 4.1.1. A measure µ on X is said to be Borel regular iff all Borel sets are

measurable and for each A ⊂ X there exists a Borel set B ⊃ A with µ(A) = µ(B).

We define the support of µ to be the closed set

sptµ = X\
⋃
{A : A open, µ(A) = 0} .

For A ⊂ X,E ⊂ X, µbA(E) = µ(A ∩ E).
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Define mass of µ by M(µ) = µ(X). M is the set of Borel regular measures

having bounded support and finite mass.

Set

M1 = {µ ∈M : M(µ) = 1} ,

BC(X) = {φ : X → R : φ is continuous and bounded on bounded subset} .

For µ ∈ M, φ ∈ BC(X), define µ(φ) =
∫
φdµ. Then we say µn ⇀ µ as n → ∞

iff µn(φ)→ µ(φ) for all φ ∈ BC(X).

We introduce a metric L on M1 to enable a following theorem to hold.

Definition 4.1.2. For µ, ν ∈M1, the L metric is defined by

L(µ, ν) = sup {|µ(φ)− ν(φ)| : φ : X → R, Lipφ ≤ 1} . (4.1)

Notice that φ ∈ BC in the definition. We can check L is a metric by verifying

L(µ, ν) < +∞, the only part that is not straightforward. Suppose sptµ ∪ sptν ⊂

B(a, r) = {x ∈ X : d(x, a) < r}, then for Lipφ ≤ 1

|µ(φ)− ν(φ)| = |µ(φ− φ(a) + φ(a))− ν(φ− φ(a) + φ(a))|

= |µ(φ− φ(a))− ν(φ− φ(a))| ≤ µ(r) + ν(r) = 2r < +∞.

Theorem 4.1.1. M1 is a complete space under the L metric.

Proof. Let E be a bounded subset of X. {µ1, µ2, . . . , µn, . . .} is a sequence of ele-

ments in M1 with sptµn ⊂ E for every n such that L(µn, µm) → 0 as n,m → ∞.

We will construct a measure µ ∈M1 such that L(µn, µ)→ 0 as n→∞.
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Let φ ∈ BC(X) and φ is not a constant on E. Then for every ε < 0, we have

|
∫
φdµm −

∫
φdµn| = |

∫
E

φdµm −
∫
E

φdµn| ≤ ε

Therefore
∫
φdµn converges to some f(φ) ∈ R as n → ∞. Notice that if φ = c on

E with c a constant, then f(φ) = c. f(φ) is a linear functional of φ ∈ BC. Since

|
∫
φdµn| ≤ ||φ||∞ for every n, that |f(φ)| ≤ ||φ||∞ for every φ ∈ BC(X). By Riesz’s

theorem, there exists a µ on X, such that

f(φ) =

∫
φdµ

for every φ ∈ BC(X). Moreover,

|
∫
φdµn −

∫
φdµ| → 0

as n→∞. Since
∫
φdµn = 0 whenever φ 6≡ 0 on X/E for every n, that sptµ ⊂ E,

which means sptµ is bounded. By choosing φ = 1 on E, we have

µ(X) =

∫
φdµ = lim

n→∞

∫
φdµn = lim

n→∞

∫
E

φdµn = lim
n→∞

µn(X) = 1.

Thus µ ∈M1 and L(µn, µ)→ 0 as n→∞.

4.2 Invariant Measures

Let (X, d) be a complete metric space. {ψ1, . . . , ψN} is a set of contractive similitudes

in X with Lip(ψi) = ri for i = 1 . . . N .

Let m = {m1, . . . ,mN} be a family of positive constants with mi ∈ (0, 1) for

i = 1, . . . , N such that
∑N

i=1 mi = 1.
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If f : X → X is continuous and sends bounded sets to bounded sets, in particular

f is a contraction map, then for every µ ∈ M1, we have f#µ = µ ◦ f−1 ∈ M1. We

also define f#µ(φ) = µ(φ ◦ f) for φ ∈ BC(X).

For µ ∈ M1, define T (µ) =
∑N

i=1miψi#µ =
∑N

i=1miµ ◦ ψ−1
i . Then we can see

that T = (T ;m1, . . . ,mN) is a map of spaceM1 into itself. Denote n-time iterated

map T ◦ · · · ◦ T by T n.

Definition 4.2.1. µ is an invariant measure of T , if

µ = T (µ) =
N∑
i=1

miµ ◦ ψ−1
i . (4.2)

Notice that for every φ ∈ BC(X), if µ is an invariant measure of T , then µ(φ) =∫
φdµ =

∑N
i=1 mi

∫
φ ◦ ψidµ.

Lemma 4.2.1. For any m = {m1, . . . ,mN}, T : M1 →M1 is a contraction map

in the L metric.

Proof. To establish the contraction of T , suppose Lipφ ≤ 1 and r = max1≤i≤N {ri}.

Then for µ, ν ∈M1,

T (µ)(φ)− T (ν)(φ) =
N∑
i=1

(miψi#µ)(φ)−
N∑
i=1

(miψi#ν)(φ)

=
N∑
i=1

(mi(µ(φ ◦ ψi)− ν(φ ◦ ψi))

=
N∑
i=1

mir(µ(r−1φ ◦ ψi)− ν(r−1φ ◦ ψi))

≤
N∑
i=1

mirL(µ, ν) = rL(µ, ν)

So L(T (µ), T (ν)) ≤ rL(µ, ν) with r < 1.
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Theorem 4.2.1. For every m = {m1, . . . ,mN}, there exists a unique µ ∈M1 such

that T (µ) = µ. For any ν ∈M1, T p(ν)→ µ as p→∞ in the L metric.

Proof. Since (M1, L) is a complete metric space. From Lemma 4.2.1, we know

T :M1 →M1 is contraction. Therefore, by the conraction principle in Section 2.1,

there exists a unique fixed point µ ∈ M1 such that T (µ) = µ, which means µ is

an invariant measure of T for a certain m = {m1, . . . ,mN}. Furthermore, for any

ν ∈M1, T p(ν)→ µ as p→∞ in the L metric, which means L (T p(ν), µ)→ 0 in R

as p→∞.

Now our objective is to prove that by choosing a special m = {m1, . . . ,mN}, the

invariant measure µ of T equals a Hausdorff measure.

4.3 Invariant Measures as Hausdoff Measures

Continue notations in Section 4.2. K denotes the invariant set of Ψ

Recall now
∑N

i=1 r
dS
i = 1. Let mi = rdS

i , then
∑N

i=1mi = 1 and mi ∈ (0, 1) for

i = 1, . . . , N .

Now we present an important theorem of invariant measures under the o.s.c..

Notice that we can apply the properties in Section 3.4.

Theorem 4.3.1. Suppose {ψ1, . . . , ψN} satisfies the o.s.c.. If we choose m =

{m1, . . . ,mN} by setting mi = rdS
i , then the unique invariant measure of T is

µ0 = (H dS (K))−1H dS bK.

Proof. Denote O the open set asserted to exist by the o.s.c.. By Property 2.4.1 7,

we have Ki ⊂ Ōi. Since Oi ∩Oj = ∅ if i 6= j, that Ki ∩Kj = ∅ for i 6= j. Therefore
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H dS (Ki ∩Kj) = 0 for i 6= j and so

H dS bK =
N∑
i=1

H dS bKi =
N∑
i=1

H dS bψi(K),

Notice that for E ⊂ X,

(H dS bψi(K))(E) =H dS (ψi(K) ∩ E) = H dS (ψi(K ∩ ψ−1
i (E)))

=rdS
i H dS (K ∩ ψ−1

i (E)) = rdS
i (H dS bK)(ψ−1

i (E))

=rdS
i ψi#(H dS bK)(E)

Hence

H dS bK =
N∑
i=1

rdS
i ψi#(H dS bK),

Let µ0 = (H dS (K))−1H dS bK, it follows that µ0 =
∑N

i=1 r
dS
i ψi#(µ0), and

M(µ0) = 1. Therefore µ0 = T (µ0). By uniquesness, we have µ0 is the invariant

measure of T .
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Chapter 5

Examples in Fractals

In this chapter, we will show three particular fractal examples, which are the Koch

curve, the Sierpiński gasket and the Sierpiński carpet. Recall some notations:

Let (RD, d) be the D-dimensional Euclidean space with Euclidean distance d,

where D ≥ 1 is an integer.

ψi : RD → RD for i = 1, . . . , N are contractive similitudes with Lip(ψi) = 1
α

where α > 1.

For any A ⊂ RD, define Ψ(A) :=
⋃N
i=1 ψi(A). For more details of iteration of

maps, see Section 6.1.

5.1 The Koch Curve

Consider D = 2, N = 4. For arbitrary α ∈ (2, 4], the Koch curve in R2 is defined in

the following manner:

Let z0, z1 ∈ R2 and I be the unit segement joining z0 and z1. Let Ii for i = 1, . . . , 4

be the segments of length 1/3 joining: z0 to z2; z2 to z3; z3 to z4; z4 to z1, respectively.

See Fig. 5.1.
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Figure 5.1: Koch graph

For instance, if z0 = (0, 0) and z1 = (1, 0), then

z2 = (1/3, 0), z3 = (1/2,
√

3/6), z4 = (2/3, 0).

Consider 4 contractive similitudes {ψ1, ψ2, ψ3, ψ4} in R2:

ψ1(z) =
z

α
, ψ2(z) =

z

α
eiθ +

1

α

ψ3(z) =
z

α
e−iθ +

1

2
+
i sin(θ)

α
, ψ4(z) =

z + α− 1

α

where θ = cos−1
(
α
2
− 1
)

and z ∈ C. They map I onto Ii preserving orientation. We

can easily see that Lip(ψi) = 1
α

for i = 1, . . . , 4.

We put Γ = {z0, z1} and V0 = Γ,

Vn = Ψn(Γ), n ≥ 0.

Then the Koch curve K is the compact set

K = cl

(
∞⋃
n=0

Vn

)
.
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In the case that z0 = (0, 0), z1 = (1, 0) and z3 = (1/2,
√

3/6), let O be the open

triangle with vertices z0, z1 and z3. Then we can check that {ψ1, ψ2, ψ3, ψ4} satisfies

the o.s.c. such that
4⋃
i=1

ψi(O) ⊂ O

and

ψi(O) ∩ ψj(O) = ∅, if i 6= j.

Therefore, we can apply Corollary 3.4.1 to get the Hausdorff dimension of the Koch

curve is dH (K) = logN
logα

.

In the following, we will show the constructions of the Koch curve under different

values of α.

(i) α = 2.01, N = 4. dH (K) = log 4
log 2.01

≈ 1.98.

Figure 5.2: Koch iterations α = 2.01
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(ii) α = 3, N = 4. dH (K) = log 4
log 3
≈ 1.26.

Figure 5.3: Koch iterations α = 3

(iii) α = 3.9, N = 4. dH (K) = log 4
log 3.9

≈ 1.02.

Figure 5.4: Koch iterations α = 3.9
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5.2 The Sierpiński Gasket

Consider D ≥ 2, α = 2 and N = D + 1. Let z1, . . . , zN ∈ RD and |zi − zj| = 1 for

i 6= j. {ψ1, . . . , ψN} is a family of contractive similitudes

ψi(z) = zi +
1

α
(z − zi), i = 1, . . . , N

with Lip(ψi) = 1
α

.

We put Γ = {z1, . . . , zN} and V0 = Γ,

Vn = Ψn(Γ), n ≥ 0.

Then the Sierpiński gasket of RD is

K = cl

(
∞⋃
n=0

Vn

)
.

Note that each Vn is obtained from Vn−1 by adding the midpoints to every pair of

vertices belonging to the same triangle ψi|(n−1)(Γ) of size 2−(n−1) in Vn−1. Moreover,

Γ ⊂ Ψ(Γ). So the sequence V0, V1, . . . , Vn, . . . is monotone increasing. See Fig.5.5.

Since when D = 2, α = 2 and N = 3, thus Γ = {z1, z2, z3}. Let O be the open

triangle with vertices z1, z2 and z3. Then we can check that {ψ1, ψ2, ψ3} satisfies the

o.s.c.. Hence, by applying Corollary 3.4.1, we have dH (K) = log 3
log 2
≈ 1.59.

Now we can perform a similar construction. Let D = 2, α = 3 and N = 6. The

6 contractive similitudes carry the unit triangle of vertices Γ into each one of the 6

“upward facing” triangles obtained by deleting the 3 “downward facing” triangles.

See Fig.5.6. Constructing the increasing sequence V0, V1, . . . , Vn, . . . as in the dyadic

case leads to K = cl (
⋃∞
n=0 Vn). Such a K is also a Sierpiński gasket in RD, D = 2.

By choosing the same open set O as in dyadic case, the Hausdorff dimension of the

32



triadic Sierpiński gasket is dH (K) = log 6
log 3
≈ 1.63.

Figure 5.5: Sierpiński gasket α = 2

Figure 5.6: Sierpiński gasket α = 3

In fact, we can construct a whole family of Sierpiński curves for integers α ≥ 2

in R2, by choosing N = α(α + 1)/2 contractive similitudes which map the unit

triangle into N “upward facing” triangles of side α−1. Similar constructions can be

proceeded in RD for D ≥ 2.
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5.3 The Sierpiński Carpet

Consider D = 2, N = 8 and α = 3. Let Γ = {z1, z2, z3, z4} be a set of 4 vertices of a

square in RD. {ψ1, . . . , ψ8} is a family of contractive similitudes with Lip(ψi) = 1
α

which carry the square of vertices Γ into each one of the N smaller subsquares ob-

tainded by deleting the central subsquare. Note that V0, V1, . . . , Vn, . . . is monotone

increasing. See Fig. 5.7.

Figure 5.7: Sierpiński carpet

We put V0 = Γ and

Vn = Ψn(Γ), n ≥ 0.
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Then we obtain the Sierpiński carpet

K = cl

(
∞⋃
n=0

Vn

)
.

Let O be the open square of vertices z1, z2, z3, z4. We can check that {ψ1, . . . , ψ8}

satisfies the o.s.c.. Hence, by Corrollary 3.4.1, we get the Hausdorff dimension of

the Sierpiński carpet is dH (K) = log 8
log 3
≈ 1.89.

Similar constructions can be carried out in RD, D ≥ 2.
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Chapter 6

Energy Forms on Self-similar

Fractals

In this chapter, our objective is to construct an energy form E[u] on some fractals

K, such as the Koch curve and the Sierpiński gasket, which will take the place of

the classical Dirichlet integral

E[u] =

∫
K

|∇u|2dx

without making use of the notion of ∇u.

We will only show the construction of energy forms on so-called nested fractals

(cf. [16]), which is also called the by the physicists finitely ramified fractals : that

is, it can be disconnected by removing finitely many points. The proofs in this

chapter relied very heavily on the fact that the Sierpiński gasket and Koch curve

are nested fractals. By contrast, the Sierpiński carpet is not a nested fractal. Thus

it is required to employ quietly different techniques.
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6.1 Iteration of Maps

Before constructing the energy form, we first give some general notations that will

be used.

Let ψ = {ψ1, . . . , ψN} , N ≥ 1 be a family of N maps ψi : RD → RD. By Ψ

we denote the set-to-set mapping

Ψ(E) =
N⋃
i=1

ψi(E), E ⊂ RD, (6.1)

and by ϕn for n ∈ N, the composed set-to-set mapping in RD

ϕn = Ψ ◦ · · · ◦Ψ︸ ︷︷ ︸
n

(6.2)

with ϕ0 = Id.

Let Γ be a non-empty compact subset of RD such that

Γ ⊂ Ψ(Γ). (6.3)

Then define the invariant fractal as

K = cl

(
∞⋃
n=0

ϕn(Γ)

)
. (6.4)

Now Set

W = ⊗∞i=1 {1, . . . , N}

to be the set of all sequences of integers w = (w1, w2, . . .) with 1 ≤ wi ≤ N .

Wn = ⊗ni=1 {1, . . . , N}
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to be the set of all finite sequences of integers w|n = (w1, w2, . . . , wn) with 1 ≤ wi ≤

N , 1 ≤ i ≤ n. For w ∈ W and n ∈ N, we set

ψw|n = ψw1 ◦ · · · ◦ ψwn

The subsets

Kw|n = ψw|n(K)

of K are called n-complexes and the sets

Γw|n = ψw|n(Γ)

are called n-cells.

For E ⊂ RD, we have

ϕn(E) =
⋃

w∈Wn

ψw|n(E).

Therefore, if we set V0 = Γ and

Vn = ϕn(V0), n ≥ 1,

then

K = cl

(
∞⋃
n=0

Vn

)
.

For n ≥ 1, we have the decompositions of Vn into n-cells

Vn =
⋃

w|n∈Wn

Γw|n
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and of K into n-complexes

K =
⋃

w|n∈Wn

Kw|n.

Remark 6.1.1. If Γ is chosen to be a subset of the set of all fixed points of the

maps ψi, then the sets Vn = ϕn(Γ), n ≥ 0 form a monotone increasing sequence of

subsets of RD.

Now we give the definition of essential fixed points. Let {z1, . . . , zN} be the set of

fixed points of ψ = {ψ1, . . . , ψN}. If p ∈ {z1, . . . , zN}, there exists q ∈ {z1, . . . , zN},

q 6= p, and ψi(p) = ψj(q), i 6= j, then p is called an essential fixed point of ψ.

Essential fixed points are important because they tell us how the different parts of

the fractal are put together; inessential fixed points serve no such purpose.

6.2 Energy Forms on Sierpiński Gasket

We consider the “dyadic” Sierpiński gasket K in RD, D ≥ 2, with α = 2 and

N = D + 1. Recall notations in Section 5.2:

ψ = {ψ1, . . . , ψN} is a family of similitudes of K. Let Γ = {z0, . . . , zD} be the

set of vertices of an equilateral unit simplex in RD, where Γ is a subset of the set of

all fixed points of maps ψi, for i = 1...N . Then

V0 = Γ ⊂ V1 = Ψ(Γ) ⊂ · · · ⊂ Vn = Ψn(Γ) ⊂ · · ·

V ∞ =
∞⋃
n=0

Vn, K = cl(V ∞).

For arbitrary u : V ∞ → R, we define

E0[u] =
1

2

∑
ξ,η∈Γ

|u(ξ)− u(η)|2, (6.5)
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and

E1[u] = ρ
N∑
i=1

E0[u ◦ ψi], (6.6)

where ρ is a renormalization factor of the energy form to be determined later. Then

we have

E2[u] =ρ
N∑
i=1

E1[u ◦ ψi]

=ρ2

N∑
w1=1

N∑
w2=1

E0[u ◦ ψw1 ◦ ψw2 ]

=ρ2
∑

w|2∈W2

E0[u ◦ ψw|2],

so for n ≥ 1

En[u] = ρn
∑

w|n∈Wn

E0[u ◦ ψw|n], (6.7)

or more explicitly,

En[u] = ρn
∑

w|n∈Wn

1

2

∑
ξ,η∈Γ

|u(ψw|n(ξ))− u(ψw|n(η))|2. (6.8)

Now come back to ρ > 0, which is chosen according to the Gauss variational

principle stated as

min
u|(V1−V0)

E1[u] = E0[u]. (6.9)
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For instance, when D = 2, we denote the values of u on Γ by

u(z0) = A, u(z1) = B, u(z2) = C,

and on V1 − V0 by

u

(
z0 + z1

2

)
= c, u

(
z1 + z2

2

)
= a, u

(
z2 + z0

2

)
= b.

Lemma 6.2.1. Let A,B,C be real constants. Then

min
a,b,c

(|A− c|2 + |c− b|2 + |b− A|2

+|c−B|2 + |B − a|2 + |a− c|2

+|b− a|2 + |a− C|2 + |C − b|2)

=
3

5

{
|A−B|2 + |B − C|2 + |C − A|2

}
.

The minimizing ā, b̄, c̄ are

ā =
A+ 2B + 2C

5
, b̄ =

2A+B + 2C

5
, c̄ =

2A+ 2B + C

5
. (6.10)

By Lemma 6.2.1, we have

ρ =
5

3
.

It can be seen that, in order to calculate ρ, it is sufficient to apply this princi-

ple only between E0[u] and E1[u], which requies solving a quadratic minimization

problem. In the general case D ≥ 1, by solving a linear systerm of equations, the
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value of ρ determined by the Gauss variational principle is

ρ =
N + 2

N
=
D + 3

D + 1
. (6.11)

For details, see Rammal [24], Fukushima-Shima [9]. In fact, there is another way to

determine the value of ρ, which is based on decimation(cf. [20]).

Note that only the restrictions u = u|Vn of u to Vn enters the expression En[u]

and

E0[u|V0] ≤ E1[u|V1] ≤ · · · ≤ En[u|Vn] ≤ · · · . (6.12)

We now define the form

E[u] = sup
n≥0

En[u|Vn] (6.13)

on the domain

D∞E =

{
u : V ∞ → R : sup

n≥0
En[u|Vn] < +∞

}
(6.14)

Note that the equality of 6.12 holds everywhere if ū is the function obtained by

starting with ū|V0 = {A,B,C} and extending ū from V0 to V1, by defining ū(p) at

each dyadic p ∈ V1 − V0 to be the “average values”

{
A+ 2B + 2C

5
,
2A+B + 2C

5
,
2A+ 2B + C

5

}
.

Do the same extension from Vn−1 to Vn, by defining ū at each new dyadic point,

which belongs to the same triangle with vertices Γw|n−1, to be the “average values”

of ū at Γw|n−1(cf. [28]). We say that such a ū on V ∞ is the harmonic extension of
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u|V0, which keeps energy stationary. Hence, D∞E 6= ∅, as it contains the harmonic

extension of u|V0.

The following estimate shows that each u ∈ D∞E admits a unique continuous

extension to K = cl(V ∞).

Lemma 6.2.2. There exists a constant c such that for every u : V ∞ → R and for

arbitrary p and q in V ∞, the following estimate holds:

|u(p)− u(q)| ≤ c
√

sup
n≥0

En[u|Vn]|p− q|βEucl (6.15)

where

βEucl =
1

2

log ρ

logα
=

1

2

log((D + 3)/(D + 1))

log 2
. (6.16)

We will use the following properties of the Sierpiński gasket to prove the lemma.

For the proof of these properties, see reference [21].

Property 6.2.1. (1) There exists a γ > 0 such that Ki|m ∩ Kj|m = ∅ implies

dist(Ki|m, Kj|m) ≥ γα−m for every m, (2) If i|m 6= j|m, then Ki|m ∩Kj|m = Γi|m ∩

Γj|m.

Proof. (Lemma 6.2.2)

Let p, q ∈ V ∞ ⊂ K. Since K =
⋃
i|m∈Wm

Ki|m, thus p ∈ Ki|m and q ∈ Kj|m for

some i|m, j|m ∈ Wm.

Assume that |p− q| < γ ≤ 1. Then ∃m ≥ 0 such that

γα−(m+1) ≤ |p− q| ≤ γα−m (6.17)

So dist(Ki|m, Kj|m) ≤ |p−q| < γα−m, which implies Ki|m∩Kj|m 6= ∅ by property

(1). Then, by property (2), we have Γi|m ∩ Γj|m 6= ∅. Thus ∃a ∈ Γi|m ∩ Γj|m such
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that

a = ψi|m(ξ) = ψj|m(η) (6.18)

where ξ, η ∈ Γ.

Consider n ≥ m. There exists the smallest n ≥ m such that p, q ∈ Vn. Then

p = ψi|n(ξ̄) and q = ψj|n(η̄) where ξ̄, η̄ ∈ Γ.

Now we need to construct a chain of points connecting p to q “from two sides”.

Start with

p = ψi|n(ξ̄) = ψi1...imim+1...in(ξ̄) =: xn

Let

xn−1 = ψi|n−1(ξ̄) = ψi1...imim+1...in−1(ξ̄)

xn−k = ψi|n−k(ξ̄)

where 0 ≤ k ≤ n−m. Now we have points xn, xn−1, ..., xm. Then insert point a by

defining xm−1 := a = ψi|m(ξ).

Doing the same starting with yn = q. Let yn−k = ψj|n−k(η̄) where 0 ≤ k ≤ n−m.

Insert ym−1 = a = ψj|m(η).

We have constructed a chain:

p = xn, xn−1, ..., xm, xm−1 = a = ym−1, ym, ..., yn = q.

with a property that two consecutive points in the chain belong to the same cell.

Check for k = 0. Let ξ̄ be the fixed point of ψi0 , so xn−1 = ψi1...in−1i0(ξ̄). If

i0 = in, then xn = xn−1. If i0 6= in, then ψin(ξ̄) = ψi0(
¯̄ξ) for some ¯̄ξ ∈ Γ. So

xn = ψi1...in(ξ̄) = ψi1...in−1i0(
¯̄ξ). Therefore xn, xn−1 ∈ Γi1...in−1i0 .
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Now we start to estimate |u(p)−u(q)|. By the chain constructed above, we have

|u(p)− u(q)|2 ≤
n−m∑
k=0

2n−m+1
[
|u(xn−k)− u(xn−k−1)|2 + |u(yn−k)− u(yn−k−1)|2

]
.

Since ξ̄ = ψi0(ξ̄) with ψin−k(ξ̄) = ψi0(
¯̄ξ), that

|u(xn−k)− u(xn−k−1)|2 = |u
(
ψi|n−k−1ψin−k(ξ̄)

)
− u

(
ψi|n−k−1ψi0(ξ̄)

)
|2

= |u
(
ψi|n−k−1ψi0(

¯̄ξ)
)
− u

(
ψi|n−k−1ψi0(ξ̄)

)
|2

≤
∑
i|n−k

|u
(
ψi|n−k(

¯̄ξ)
)
− u

(
ψi|n−k(ξ̄)

)
|2

≤
∑
i|n−k

{
1

2

∑
ξ′,η′

|u
(
ψi|n−k(ξ

′)
)
− u

(
ψi|n−k(η

′)
)
|2
}

Multiply both sides by ρn−k to obtain

ρn−k|u(xn−k)− u(xn−k−1)|2 ≤ En−k[u].

Clearly, the same result holds for terms with y. So we get

|u(p)− u(q)|2 ≤ 2n−m+2

n−m∑
k=0

ρk−nEn−k[u]

≤ 2n−m+2ρ−nEn[u]
n−m∑
k=0

ρk

= 2n−m+2ρ−nEn[u]
ρn−m+1 − 1

ρ− 1

≤ 4 · 2n−m

ρ− 1
En[u]ρ1−m
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Since ρ1−m = α(1−m)(logα ρ). Let β = log ρ
2 logα

, and by equation 6.17, we have

|u(p)− u(q)|2 ≤ 4α4β

γ2β(ρ− 1)
2n−mEn[u]|p− q|2β

Finally we have

|u(p)− u(q)| ≤ c
√

sup
n≥0

En[u]|p− q|β.

From the estimate in Lemma 6.2.2, we know that u is uniformly continuous on

V ∞. As K = cl(V ∞), we have the following corollary.

Corollary 6.2.1. Every function u ∈ D∞E can be uniquely extended to a continuous

function on K.

We continue to denote the extension by u and define the energy form

E[u] = lim
n→∞

En[u] (6.19)

on the domain

DE =

{
u ∈ C(K) : sup

n≥0
En[u|Vn] < +∞

}
. (6.20)

Moreover, for every u ∈ DE, the estimate in Lemma 6.2.2 will hold, by which

we find that DE ⊂ C0,βEucl(K).

Lemma 6.2.3. DE is complete under the norm

||u||DE = (||u||2L2(K,µ) + E[u])1/2 (6.21)
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Proof. Choose a Cauchy sequence {un} in DE such that

||un − um||DE =
(
||un − um||2L2(K,µ) + E[un − um]

)1/2

→ 0

for n,m→∞. Then we have

||un − um||2L2(K,µ) → 0

E[un − um]→ 0.

Thus we have ||un||L2(K,µ) ≤ C1 and E[un] ≤ C2, because Cauchy sequences are

bounded.

First we show that un(x) is uniformly bounded on K.

For any x, y ∈ K, we have

|un(x)| ≤ |un(x)− un(y)|+ |un(y)|

≤ c
√
E[un]|x− y|β + |un(y)|

≤ cC2diam(K)β + |un(y)|

≤ cC2 + |un(y)|

where c, C2 are constant. As µ(K) =
∫
K
dµ = 1, integrating on both sides in µ(dy)

gives

|un(x)| ≤ cC2 +

∫
K

|un(y)|dµ(y)
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By Schwarz inequality,

|un(x)| ≤ cC2 + µ(K)1/2

(∫
K

|un(y)|2dµ(y)

)1/2

≤ cC2 + C
1/2
1

where C1 is constant.

Additionally, it can be proved that the functions un(x) are equicontinuous, since

for any x, y ∈ K, we have

|un(x)− un(y)| ≤ c
√
E[un]|x− y|β ≤ cC2diam(K)β ≤ cC2.

Hence, {un(x)} is uniformly bounded and equicontinuous on K. By Ascoli-Arzelá

theorem, there exists a subsequence {unk} of {un} and u ∈ C(K) such that

||unk − u||∞ → 0

for k →∞. It follows that u ∈ L2(K,µ) as C(K) ⊂ L2(K,µ), and

||un − u||L2(K,µ) → 0 (6.22)

for n→∞.

Now we want to prove that u ∈ DE, and E[un − u]→ 0 as n→∞.

Since Ek[un − u] is a finite sum, that for a fixed n, we have

Ek[un − u] = lim
m→∞

Ek[un − um] ≤ lim
m→∞

E[un − um].

48



Let k →∞, then

E[un − u] ≤ lim
m→∞

E[un − um]

lim sup
n→∞

E[un − u] ≤ lim
n,m→∞

E[un − um] = 0

which implies

lim
n→∞

E[un − u] = 0.

Therefore, we proved that there is a u ∈ DE such that

||un − u||DE =
(
||un − u||2L2(K,µ) + E[un − u]

)1/2

→ 0

for n→∞, i.e., the completeness of DE.

Lemma 6.2.4. DE is dense in C(K).

For the proof, see reference [22].

Now we define the space H1(K) to be the completion of DE in the norm

||u||H1 = (||u||2L2(K,µ) + E[u])1/2

and extend E[u] to the completed space H1(K).

We obtain the bilinear form E(u, v) with domain H1(K) by

E(u, v) =
1

2
{E[u+ v]− E[u]− E[v]} =

1

4
{E[u+ v]− E[u− v]} , u, v ∈ H1(K)

i.e., replace the quadratic term |u(ψw|n(ξ)) − u(ψw|n(η))|2 by the bilinear term

(u(ψw|n(ξ))− u(ψw|n(η)))(v(ψw|n(ξ))− v(ψw|n(η))) in the definition of En[u] and

E(u, v) = sup
n≥0

En(u|Vn, v|Vn) = lim
n→∞

En(u|Vn, v|Vn). (6.23)
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so that E(u, v) is a closed, symmetric bilinear form with dense domain H1(K) in

L2(K,µ).

The space H1
0 (K) is the space of all functions u ∈ H1(K) such that u|Γ = 0. By

the representation theory of closed symmetric billinear forms (see F.2), there exists

a self-adjoint operator ∆, defined with domain D∆ dense in H1
0 (K), such that

E(u, v) = −
∫
K

(∆u)vdµ (6.24)

for every u ∈ D∆ and v ∈ H1
0 (K).

6.3 Energy Forms on Koch Curve

We first show a lemma in the following elementary minimization problems, which

will play an important role in the construction of energy form on Koch curve.

Lemma 6.3.1. Let A,B be real constants. Then

min
a,b,c

{
|A− a|2 + |a− c|2 + |c− b|2 + |b−B|2

}
=

1

4
|A−B|2.

The minimizing ā, b̄, c̄ are given by

ā =
3A+B

4
, b̄ =

A+ 3B

4
, c̄ =

A+B

2
.

Let D = 2, α = 3, N = 4. {ψ1, . . . , ψ4} is a family of contractive similitudes. In

complex notation, z = x1 + ix2:

ψ1(z) =
z

3
, ψ2(z) =

z

3
ei
π
3 +

1

3
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ψ3(z) =
z

3
e−i

π
3 +

1

2
+ i

√
3

6
, ψ4(z) =

z

3
+

2

3
.

Let z0 = (0, 0), z1 = (1, 0). Put Γ = {z0, z1} and

Vn = Ψn(Γ), n ≥ 0.

with V0 = Γ and V ∞ =
⋃∞
n=0 Vn. Then the Koch curve is the compact set

K = cl (V ∞) .

For arbitrary u : V ∞ → R, we define

E0[u] =
1

2

∑
ξ,η∈Γ

|u(ξ)− u(η)|2,

and for n ≥ 1

En[u] = ρn
∑

w|n∈Wn

E0[u ◦ ψw|n],

where ρ > 0 is chosen according to the Gauss variational principle:

min
u|(V1−V0)

E1[u] = E0[u].

If we denote the values of u on V0 = Γ by

u(z0) = A, u(z1) = B

and the values of u on V1 − V0 by

u(z2) = a, u(z3) = c, u(z4) = b,
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then by Lemma 6.3.1, we find that

min
u|(V1−V0)

E1[u] = ρ
1

4
E0[u]

Therefore the variational principle uniquely determines the value

ρ = 4.

Similar to the construction on Sierpiński gaskets, we define the form

E[u] = sup
n≥0

En[u|Vn]

on the domain

D∞E =

{
u : V ∞ → R : sup

n≥0
En[u|Vn] < +∞

}
where D∞E 6= ∅. We can also get a similar estimate as been shown in Lemma 6.2.2.

Lemma 6.3.2. There exists a constant c such that for every u : V ∞ → R and for

arbitrary p and q in V ∞, the following estimate holds:

|u(p)− u(q)| ≤ c
√

sup
n≥0

En[u|Vn]|p− q|β

where

β =
1

2

log ρ

logα
=

1

2

log 4

log 3
.

Now extend the energy form E[u] onto the domain

DE =

{
u ∈ C(K) : E[u] = sup

n≥0
En[u|Vn] < +∞

}
.

Furthermore, define the space H1(K) to be the completion of DE in the norm
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||u||H1 and extend E[u] to the completed space H1(K).

Then we obtain a closed symmetric bilinear form E(u, v) with dense domain

H1(K) in L2(K,µ). By the representation theory, there exists a self-adjoint operator

∆, defined with domain D∆ dense in H1
0 (K), such that

E(u, v) = −
∫
K

(∆u)vdµ

for every u ∈ D∆ and v ∈ H1
0 (K).

Remark 6.3.1. Notice a special case that, when we choose α = 4, the Koch curve

becomes a segment, such as the interval [0, 1]. The relative energy form becomes a

“dyadic” energy.
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Chapter 7

Fractal Mixtures

In this chapter, unlike those described so far, we will investigate more general models

which can be seen as mixtures of self-similar fractals. They are constructed by

the general iterated maps system. Furthermore, after showing some asymptotic

properties, we will look at how to construct the volume measures and energy forms

on certain fractal mixtures, such as irregular Sierpiński gaskets.

7.1 General Iteration of Maps

Let A be a finite set of integers a ≥ 2. For a ∈ A, let

ψ(a) =
{
ψ

(a)
1 , . . . , ψ

(a)
Na

}

be a family of Na ≥ 2 contractive similitudes in RD. Denote Ψ(a) as a set-to-set

mapping in RD such that

Ψ(a)(E) =
Na⋃
i=1

ψ
(a)
i (E), E ⊂ RD

54



Let Ξ = AN be the set of sequence ξ = (ξ1, ξ2, . . .) in A. For n ∈ N, denote ϕ
(ξ)
n

as a set-to-set mapping in RD such that

ϕ(ξ)
n = Ψ(ξ1) ◦ · · · ◦Ψ(ξn)

with ϕ
(ξ)
0 = Id.

Let Γ be a nonempty compact subset of RD, Γ ⊂ Ψ(a)(Γ), then the fractal K(ξ)

associated with ξ is defined by

K(ξ) = cl

(
∞⋃
n=0

ϕ(ξ)
n (Γ)

)

Define the left shift operator θ on Ξ: θξ = (ξ2, ξ3, . . .) for ξ = (ξ1, ξ2, . . .). The

family
{
ϕ

(ξ)
n

}
ξ∈Ξ

has the property

ϕ(ξ)
n = ϕ(ξ)

m ◦ ϕ
(θmξ)
n−m

for n ≥ m ≥ 1.

Note that the set K(ξ) is not in general invariant, but the family
{
K(ξ)

}
ξ∈Ξ

does

satisfy the property

K(ξ) = ϕ(ξ)
n

(
K(θnξ)

)
, ξ ∈ Ξ, n ∈ N.

For ξ ∈ Ξ, let

W (ξ) = ⊗∞i=1 {1, . . . , Nξi}

be the set of all sequences of integers w = (w1, w2, . . .) with 1 ≤ wi ≤ Nξi

W (ξ)
n = ⊗ni=1 {1, . . . , Nξi}
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be the set of all finite sequences of integers w|n = (w1, w2, . . . , wn) with 1 ≤ wi ≤

Nξi , 1 ≤ i ≤ n.

For w ∈ W (ξ) and n ∈ N, we set

ψ
(ξ)
w|n = ψ(ξ1)

w1
◦ · · · ◦ ψ(ξn)

wn

The sets

K
(ξ)
w|n = ψ

(ξ)
w|n
(
K(θnξ)

)
are called n-complexes, and the sets

Γ
(ξ)
w|n = ψ

(ξ)
w|n(Γ)

are called n-cells.

Then for E ⊂ RD,

ϕ(ξ)
n (E) =

⋃
w|n∈Wn

ψ
(ξ)
w|n(E).

Therefore, if we set V0 = Γ and

V (ξ)
n = ϕ(ξ)

n (V0), n ≥ 1,

then

K(ξ) = cl

(
∞⋃
n=0

V (ξ)
n

)
.

For n ≥ 1, we have the decompositions of V
(ξ)
n into n-cells

V (ξ)
n =

⋃
w|n∈W (ξ)

n

Γ
(ξ)
w|n
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and of K(ξ) into n-complexes

K(ξ) =
⋃

w|n∈W (ξ)
n

K
(ξ)
w|n.

Example 7.1.1 (Irregular Sierpiński gasket). Consider D = 2 and A = {2, 3}.

Then we have Na = 3 if a = 2, while Na = 6 if a = 3. For a fixed finite sequence

ξ = (2, 3, 2, 3), we have

For ξ = (3, 2, 3, 2), we have
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From the example above, we can see that the set K(ξ) obviously depends on the

specific sequence ξ.

7.2 Construction of Irregular Sierpiński Gaskets

In this section, we simply show how to construct the set of irregular Sierpiński

gaskets (i.e. mixtures of Sierpiński gaskets) based on the general iteration of maps.

Let Γ = {z0, z1, z2} be the set of an equilateral unit simplex in RD. Let A be a

finite set of integers a ≥ 2.

For example, when D = 2, Γ =
{

(0, 0), (1, 0), (1/2,
√

3/2)
}

and A = 2, 3.

For a ∈ A, we set αa = a. Consider contractive similitudes

ψ(a) =
{
ψ

(a)
1 , . . . , ψ

(a)
Na

}

where

ψ(a)(x) = b
(a)
i + α−1

(a)(x− b
(a)
i ), x ∈ RD,

for i = 1, . . . , Na, which carry the simplex into each one of the Na “upward facing”

smaller simplices obtained by decomposing the simplex into αDa equilateral simplices

of side α−1
a . In fact, for every a ∈ A, Γ is the set of the essential fixed points of the

family ψ(a). Also note that every family ψ(a), a ∈ A, satisfies the open set condition.

For ξ ∈ Ξ = AN, let V
(ξ)

0 = Γ, then

V
(ξ)

0 = Γ ⊂ V
(ξ)

1 = ϕ
(ξ)
1 (Γ) ⊂ · · · ⊂ V (ξ)

n = ϕ(ξ)
n (Γ) ⊂ · · · ,

Denote V (ξ) =
⋃∞
n=0 V

(ξ)
n . Finally we get the irregular Sierpiński gasket K(ξ) as

K(ξ) = cl
(
V (ξ)

)
.
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7.3 Asymptotic Properties

Consider the mixtures of Sierpiński gasket. Given a family of contractive similitudes

ψ(a) =
{
ψ

(a)
1 , ψ

(a)
2 , . . . ψ

(a)
Na

}
in RD, there exists a constant αa ∈ (1,∞) such that

|ψ(a)
i (x)− ψ(a)

i (y)| = α−1
a |x− y|, x, y ∈ RD,

for every i = 1, . . . , Na Assume that they satisfy the so-called open set condition.

Then for a ∈ A there exists a unique compact invariant set Ka = Ψ(a)(Ka), and an

invariant Hausdorff measure

µa(·) =
Na∑
i=1

N−1
a µa((ψ

(a))−1(·)),

and an invariant energy form

Ea(u, v) =
Na∑
i=1

ρaEa(u ◦ ψ(a), v ◦ ψ(a)), u, v ∈ DEa .

The constants

αa, Na, ρa, a ∈ A,

are the basic scaling factors for length, volume, and energy on the fractal Ka.

For a fixed sequence ξ ∈ Ξ = AN, the mixtures of Sierpiński gasket K(ξ) is now

constructed by the maps Ψ(a) associated with ψ(a), a ∈ A, as described in the first

section.

We set α(ξ)(0) = N (ξ)(0) = ρ(ξ)(0) = 1 and for n ≥ 1,

α(ξ)(n) =
i=1∏
n

αξi , N (ξ)(n) =
n∏
i=1

Nξi , ρ(ξ)(n) =
n∏
i=1

ρξi ; (7.1)
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moreover,

δ(ξ)(n) =
1

2

log(N (ξ)(n)ρ(ξ)(n))

logα(ξ)(n)
(7.2)

and

ν(ξ)(n) = 2
logN (ξ)(n)

log(N (ξ)(n)ρ(ξ)(n))
. (7.3)

The parameter δ(ξ)(n) is the one that restores the “Einstein ralation”

N (ξ)(n)ρ(ξ)(n) = α(ξ)(n)2δ(ξ)(n). (7.4)

Remark 7.3.1. Two quantities above: δ(ξ)(n) and ν(ξ)(n), will play the role of an

effective index of the ramification existing in our fractal at the nth length scale and

the intrinsic homogeneous dimension of K(ξ) respectively.

Definition 7.3.1. For ξ ∈ Ξ and n ≥ 1, we define the frequency of each a ∈ A in

ξ by

h(ξ)
a (n) =

1

n

n∑
h=1

1{ξi=a}. (7.5)

In addition, h
(ξ)
a (n) also gives the frequency with which the family ψ(a) occurs up to

step n of the iteration.

Assume that for ξ ∈ Ξ, there exists constants pa ≥ 0, a ∈ A, with
∑

a∈A pa, such

that

h(ξ)
a (n)→ pa as n→∞ for each a ∈ A, (7.6)

|h(ξ)
a (n)− pa| ≤

c

n
, n ≥ 1, a ∈ A, (7.7)
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where c is a constant.

We set

α(ξ) =
∏
a∈A

αpaa , N (ξ) =
∏
a∈A

Npa
a , ρ(ξ) =

∏
a∈A

ρpaa . (7.8)

By the assumption of asymptotic condition above, we have

(
α(ξ)(n)

)1/n
=
∏
a∈A

αh
(ξ)
a (n)
a → α(ξ),

(
N (ξ)(n)

)1/n
=
∏
a∈A

Nh
(ξ)
a (n)

a → N (ξ),

(
ρ(ξ)(n)

)1/n
=
∏
a∈A

ρh
(ξ)
a (n)
a → ρ(ξ),

as n→∞. Moreover, set

δ =
1

2

∑
a pa log(Naρa)∑
a pa logαa

(7.9)

ν = 2

∑
a pa logαa∑

a pa log(Naρa)
(7.10)

Then as n→∞

δ(ξ)(n)→ δ, ν(ξ)(n)→ ν.

7.4 Construction of Measures

We will freely use the notations given in the previous sections. Following Chapter

4, we proceed by describing the volume measure µ(ξ) on K(ξ). Although µ(ξ) here is

not strictly invariant, we are able to show some similar properties, like those given
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in section 4.2.

Consider the complete metric space (M1, L), the definition of which is first given

in section 4.1. Let ξ = (ξ1, ξ2, . . .) ∈ Ξ = AN. For µ ∈M1, we set

T (ξj)(µ) =

Nξj∑
i=1

1

Nξj

µ ◦ (ψ
(ξj)
i )−1, for j ≥ 1 (7.11)

T (ξ)
n (µ) = T (ξ1) ◦ T (ξ2) ◦ · · · ◦ T (ξn)(µ) (7.12)

for n ≥ 1, with T (ξ)
0 (µ) = µ. By Lemma 4.2.1, we have

L(T (ξj)(µ), T (ξj)(ν)) ≤ N−1
ξj
L(µ, ν), µ, ν ∈M1, (7.13)

which implies T (ξj) is a contraction map on M1. Hence, T (ξ)
n is also a contraction

map. Now we denote

T (ξ)(µ) = lim
n→∞

T (ξ)
n (µ) (7.14)

for µ ∈M1.

Theorem 7.4.1. Fix ξ ∈ Ξ, for any µ ∈ M1, there exists a unique measure µ(ξ) ∈

M1 such that T (ξ)(µ) = µ(ξ).
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Proof. We first show that
{
T (ξ)
n (µ)

}
is a Cauchy sequence for a fixed ξ. Since

L(T (ξ)
n (µ), T (ξ)

n+1(µ)) ≤ N−1
ξ1
L(T (θξ)

n−1 (µ), T (θξ)
n (µ))

≤ N−1
ξ1
N−1
ξ2
L(T (θ2ξ)

n−2 (µ), T (θ2ξ)
n−1 (µ))

≤ · · ·

≤ (N (ξ)(n))−1L(T (θnξ)
0 (µ), T (θnξ)

1 (µ))

= (N (ξ)(n))−1L(µ, T (θnξ)
1 (µ)).

Suppose m > n. Then we have

L(T (ξ)
n (µ), T (ξ)

m (µ)) ≤L(T (ξ)
n (µ), T (ξ)

n+1(µ)) + L(T (ξ)
n+1(µ), T (ξ)

n+2(µ))

+ · · ·+ L(T (ξ)
m−1(µ), T (ξ)

m (µ))

≤(N (ξ)(n))−1L(µ, T (θnξ)
1 (µ)) + (N (ξ)(n+ 1))−1L(µ, T (θn+1ξ)

1 (µ))

+ · · ·+ (N (ξ)(m− 1))−1L(µ, T (θm−1ξ)
1 (µ))

Let

M = max
a∈A

L(µ, T (a)(µ))

then

L(T (ξ)
n (µ), T (ξ)

m (µ)) ≤
[
(N (ξ)(n))−1 + (N (ξ)(n+ 1))−1 + · · ·+ (N (ξ)(m− 1))−1

]
M.

Let m,n→∞, then we get

L(T (ξ)
n (µ), T (ξ)

m (µ))→ 0.

Therefore,
{
T (ξ)
n (µ)

}
is Cauchy. On the other hand, we know the space (M1, L) is
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complete. Thus there exists a unique µ(ξ) ∈M1 such that

lim
n→∞

T (ξ)
n (µ) = µ(ξ),

i.e.,

T (ξ)(µ) = µ(ξ).

For all w ∈ W , n ≥ 0, the measure µ(ξ) is defined to be the unique Radon

measure on K(ξ) such that

µ(ξ)(K
(ξ)
w|n) = N (ξ)(n)−1. (7.15)

Obviously, we have

µ(ξ)(K(ξ)) = N (ξ)(0)−1 = 1. (7.16)

Furthermore, it is not difficult to see that the family of measures
{
µ(ξ)
}
ξ∈Ξ

satisfies the relation

µ(ξ)(K
(ξ)
w|n) =

∑
w|n∈Wn

N (ξ)(n)−1µ(θnξ)(ψ−1
w|n(K

(ξ)
w|n)), (7.17)
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for n ≥ 1. In fact, for n = 0, we have

∑
w|n∈Wn

N (ξ)(n)−1µ(θnξ)(ψ−1
w|n(K(ξ))) =

∑
w|n∈Wn

N (ξ)(n)−1µ(θnξ)(K(θnξ))

=
∑

w|n∈Wn

N (ξ)(n)−1

= N (ξ)(n)N (ξ)(n)−1

= 1 = µ(ξ)(K(ξ)).

For n > 0, let n = n0 be fixed, then we have

∑
w|n∈Wn

N (ξ)(n)−1µ(θnξ)(ψ−1
w|n(K(ξ)

n0
)) = N (ξ)(n0)−1µ(θn0ξ)(ψ−1

w|n0
(K(ξ)

n0
))

= N (ξ)(n0)−1µ(θn0ξ)(K(θn0ξ)
n0

)

= N (ξ)(n0)−1

= µ(ξ)(K(ξ)
n0

).

By the properties shown above, we can also write

∫
K(ξ)

fdµ(ξ) =
∑

w|n∈Wn

N (ξ)(n)−1

∫
K(θnξ)

f ◦ ψw|ndµ(θnξ). (7.18)

for every function f ∈ L1(K(ξ), µ(ξ)).

7.5 Energy Forms on Irregular Sierpiński Gaskets

In presenting the construction of the energy form E(ξ), we proceed in the same way

based on the Gauss principle, as in Section 6.2 (See also [8]).

Continue the notations in Section 7.2 and 7.3. To simplify the notation, we omit
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reference to ξ in quantities depending on ξ.

Take a function u : V (ξ) → R. Recall that we should write u|V0, u|V1 . . . for the

restriction of u to V0, V1 . . .. However, we simply write u in all cases for convenience.

Now we proceed the similar process in the case of regular Sierpiński gasket.

Define

E0(u, u) =
1

2

∑
x,y∈Γ

|u(x)− u(y)|2. (7.19)

Set

En(u, u) = ρ(n)
∑

w|n∈Wn

E0(u ◦ ψw|n, u ◦ ψw|n). (7.20)

Then we can write

En(u, u) = ρ(n)
∑

w|n∈Wn

1

2

∑
x,y∈Γ

|u(ψw|n(x))− u(ψw|n(y))|2 (7.21)

The choice of ρ(n) above ensures that En satisfies the Gauss principle

min
u|(Vn−Vn−1)

En(u, u) = En−1(u, u).

Recall the process in the case of regular Sierpiński gaskets. We only need to apply the

principle between E0[u] and E1[u] to find ρ, which is then used in each construction

step from En−1[u] to En[u]. Now we use the same idea. Note that ρa only depends

on a ∈ A. Therefore, we can apply different ρξn in each step from En−1[u] to En[u].

Hence we have

E0(u, u) ≤ E1(u, u) ≤ · · · ≤ En(u, u).

66



Now define the form

E(u, u) = sup
n≥0

En(u, u) (7.22)

with domain

D
(ξ)
E =

{
u : V (ξ) → R : sup

n≥0
En(u, u) < +∞

}
. (7.23)

Similar to Lemma 6.2.2, the following estimate allows extending each u ∈ D(ξ)
E

to K = cl
(
V (ξ)

)
.

Lemma 7.5.1. There exists a constant c such that for every u : V (ξ) → R and for

arbitrary p and q in V (ξ), the following estimate holds:

|u(p)− u(q)| ≤ c
√

sup
n≥0

En[u|Vn]|p− q|β (7.24)

where β = log ρ
2 logα

with ρ = mina∈A {ρa} and α = maxa∈A {αa}.

Notice that if there is only one ρ, which means we go back to the regular

Sierpiński gasket case, then the estimate above will reduce to the one shown in

Section 6.2.

We will use the following properties of the irregular Sierpiński gasket.

Property 7.5.1. (1) There exists a γ > 0 such that Ki|m ∩ Kj|m = ∅ implies

dist(Ki|m, Kj|m) ≥ γα−1(m) for every m, (2) If i|m 6= j|m, then Ki|m ∩ Kj|m =

Γi|m ∩ Γj|m.

Proof. (Lemma 7.5.1) Let p, q ∈ V (ξ) ⊂ K. Since K =
⋃
w|m∈Wm

Kw|m, thus p ∈

Ki|m and q ∈ Kj|m for some i|m, j|m ∈ Wm.
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Assume that |p− q| < γ ≤ 1. Denote α = maxa∈A αa. Then ∃m ≥ 0 such that

γα−(m+1) ≤ γα−1(m+ 1) ≤ |p− q| ≤ γα−1(m) (7.25)

So dist(Ki|m, Kj|m) ≤ |p−q| < γα−1(m), which implies Ki|m∩Kj|m 6= ∅ by property

(1). Then, by property (2), we have Γi|m ∩ Γj|m 6= ∅. Thus ∃a ∈ Γi|m ∩ Γj|m such

that

a = ψi|m(x) = ψj|m(y) (7.26)

where x, y ∈ Γ.

Consider n ≥ m. There exists the smallest n ≥ m such that p, q ∈ Vn. Then

p = ψi|n(x̄) and q = ψj|n(ȳ) where x̄, ȳ ∈ Γ.

Now we need to construct a chain of points connecting p to q “from two sides”.

Start with

p = ψi|n(x̄) = ψ
(ξ1)
i1
◦ · · · ◦ ψ(ξm)

im
◦ ψ(ξm+1)

im+1
◦ · · · ◦ ψ(ξn)

in
(ξ̄) =: xn

Let

xn−1 = ψi|n−1(x̄) = ψ
(ξ1)
i1
◦ · · · ◦ ψ(ξm)

im
◦ ψ(ξm+1)

im+1
◦ · · · ◦ ψ(ξn−1)

in−1
(x̄)

xn−k = ψi|n−k(x̄) = ψ
(ξ1)
i1
◦ · · · ◦ ψ(ξn−k)

in−k
(x̄)

where 0 ≤ k ≤ n−m. Now we have points xn, xn−1, ..., xm. Then insert point a by

defining xm−1 := a = ψi|m(x). For convenience, we denote

ψ
(ξ1)
i1
◦ · · · ◦ ψ(ξm)

im
◦ ψ(ξm+1)

im+1
◦ · · · ◦ ψ(ξn)

in
= ψi1...imim+1...in .
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Doing the same starting with yn = q. Let yn−k = ψj|n−k(ȳ) where 0 ≤ k ≤ n −m.

Insert ym−1 = a = ψj|m(y).

We have constructed a chain:

p = xn, xn−1, ..., xm, xm−1 = a = ym−1, ym, ..., yn = q.

with a property that two consecutive points in the chain belong to the same cell.

Check for k = 0. Let x̄ be the fixed point of ψ
(ξn)
i0

, so xn−1 = ψi1...in−1i0(x̄). If

i0 = in, then xn = xn−1. If i0 6= in, then ψ
(ξn)
in

(x̄) = ψ
(ξn)
i0

(¯̄x) for some ¯̄x ∈ Γ. So

xn = ψi1...in(ξ̄) = ψi1...in−1i0(
¯̄ξ). Therefore xn, xn−1 ∈ Γi1...in−1i0 .

Now we start to estimate |u(p)−u(q)|. By the chain constructed above, we have

|u(p)− u(q)|2 ≤
n−m∑
k=0

2n−m+1
[
|u(xn−k)− u(xn−k−1)|2 + |u(yn−k)− u(yn−k−1)|2

]
.

Since x̄ = ψ
(ξn−k)
i0

(x̄) with ψin−k(x̄) = ψ
(ξn−k)
i0

(¯̄x), that

|u(xn−k)− u(xn−k−1)|2 = |u
(
ψi|n−k−1ψin−k(x̄)

)
− u

(
ψi|n−k−1ψ

(ξn−k)
i0

(x̄)
)
|2

= |u
(
ψi|n−k−1ψ

(ξn−k)
i0

(¯̄x)
)
− u

(
ψi|n−k−1ψ

(ξn−k)
i0

(x̄)
)
|2

≤
∑
i|n−k

|u
(
ψi|n−k(¯̄x)

)
− u

(
ψi|n−k(x̄)

)
|2

≤
∑
i|n−k

{
1

2

∑
x′,y′

|u
(
ψi|n−k(x

′)
)
− u

(
ψi|n−k(y

′)
)
|2
}

Multiply both sides by ρ(n− k) to obtain

ρ(n− k)|u(xn−k)− u(xn−k−1)|2 ≤ En−k[u].
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Clearly, the same result holds for terms with y. So we get

|u(p)− u(q)|2 ≤ 2n−m+2

n−m∑
k=0

ρ−1(n− k)En−k[u].

Now let

ρ = min
a∈A

ρa.

Then we have

|u(p)− u(q)|2 ≤ 2n−m+2En[u]
n−m∑
k=0

ρk−n

= 2n−m+2ρ−nEn[u]
ρn−m+1 − 1

ρ− 1

≤ 4 · 2n−m

ρ− 1
En[u]ρ1−m

Since ρ1−m = α(1−m) logα ρ. Let β = log ρ
2 logα

, and by equation 7.25, we have

|u(p)− u(q)|2 ≤ 4α4β

γ2β(ρ− 1)
2n−mEn[u]|p− q|2β

Finally we have

|u(p)− u(q)| ≤ c
√

sup
n≥0

En[u]|p− q|β.

Corollary 7.5.1. Every function u ∈ D(ξ)
E can be uniquely extended to a continuous

function on K.

We continue to denote the extension by u and define the energy form

E[u] = lim
n→∞

En[u] (7.27)
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on the domain

DE =

{
u ∈ C(K) : sup

n≥0
En[u|Vn] < +∞

}
. (7.28)

Moreover, for every u ∈ DE, the estimate in Lemma 7.5.1 will hold, by which

we find that DE ⊂ C0,β(K).
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Chapter 8

Future Work

Following the investigations described in this thesis, a number of future works could

be taken up:

• We have constructed the irregular Sierpiński gasket by general iteration of

contractive similitudes. Then we want to reverse this process through the

deconstruction by some proper metric, which will lead to relative inequlity

theory, such as Poincaré inequalities, capacity inequalities and Harnack in-

equalities.

• Spectral analysis on certain fractal mixtures. For instance, describe the eigen-

values of the Laplacian on the irregular Sierpiński gasket, which will be pro-

ceeded by constructing the discrete Laplacian on pre-gasket and studying the

limit of their eigenvalues. Moreover, discuss the relationship between the

Laplacian and the self-adjoint operator associated with the energy form.

• Optimal control problem on fractal mixtures. One direction of this research is

to find the optimal sequence ξ, based on which the cost function will obtain its

extreme value over mixed fractal-type domains. Another interesting direction
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is said to be optimal fractal-type domains in an environment, in which some

financial principles will also be employed.
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Appendix A

Metric Spaces

Definition A.0.1 (Metric Space). A metric space is a pair (X, d), where X is a

set and d : X ×X → R+ ∪ {0} is a metric (distance function) on X such that for

all x, y, z ∈ X we have:

1. d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ d(x, z) + d(z, y).

Definition A.0.2 (Convergence of a sequence). A sequence (xn) in a metric space

(X, d) is said to be convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0.

i.e., for every ε > 0, there exists an N ∈ Z+ such that

d(x, xn) < ε

for all n > N .

74



Definition A.0.3 (Cauchy sequence). A sequence (xn) in a metric space (X, d) is

said to be Cauchy if for every ε > 0, there exists an N ∈ Z+ such that

d(xm, xn) < ε

for every m,n > N .

Definition A.0.4 (Completeness). A metric space X = (X, d) is said to be complete

if every Cauchy sequence in X converges.

Notice that every convergent sequence is Cauchy.

Definition A.0.5 (Isometric spaces). Let X = (X, d) and X̃ = (X̃, d̃) be metric

spaces. Then:

(i) A mapping f : X → X̃ is said to be isometric or an isometry if f preserves

distances, that is, for all x, y ∈ X, we have

d(x, y) = d̃(f(x), f(y)).

(ii) The space X is said to be isometric with the space X̃ if there exists a

bijective isometry of X onto X̃. The spaces X and X̃ are called isometric spaces.

Theorem A.0.1 (Completion). For a metric space X = (X, d), there exists a

complete metric space X̂ = (X̂, d̂) which has a subspace that is isometric with X and

is dense in X̂. This space X̂ is unique up to isometry, and is called the completion

of X.

For more information, see reference [13].
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Appendix B

Compactness

Definition B.0.6 (Compact). A metrix space X is said to be compact if every open

covering of X has a finite subcollection which also covers X.

Definition B.0.7 (Sequentially compact). A space X is said to be sequentially

compact if every sequence from X contains a convergent subsequence.

Definition B.0.8 (Bolzano-Weierstrass property). A space X is said to have the

Bolzano-Weierstrass property if every infinite sequence in X has at least on cluster

point.

Theorem B.0.2 (Borel-Lebesgue). Let X be a metric space. Then the following

are equivalent:

(i) X is compact.

(ii) X has the Bolzano-Weierstrass property.

(iii) X is sequentially compact.

Theorem B.0.3 (Heine-Borel Theorem). Every closed and bounded subset of real

numbers is compact.
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Proposition B.0.1. A closed subset of a compact space is compact. A compact

subset of a metric space is closed and bounded.

Proposition B.0.2. The continuous image of a compact set is compact.

Remark B.0.1. Notice that if a metric space (X, d) is not Rn, a bounded closed

subset of X may be not compact. One example is L2 space. {sin(nx)} is a set of

functions with n ∈ N and x ∈ [−π, π]. Then {sin(nx)} is bounded closed subset

of L2, but it is not compact. Since || sin(nx) − sin(mx)||p =
√

2π for n 6= m, that

nothing other than constant sequence from {sin(nx)} will be Cauchy and convergent.

Hence, not compact.

For more information, see reference [13], [26].
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Appendix C

Borel Measures

Definition C.0.9 (Hausdorff space). X is a Hausdorff space if the follwing is true:

If p, q ∈ X and p 6= q, then p has a neighborhood U and q has a neighborhood V

such that U ∩ V = ∅.

Definition C.0.10 (Locally compact). X is locally compact if every point in X has

a neighborhood whose closure is compact.

Theorem C.0.4 (Riesz representation theorem). Let X be a locally compact Haus-

dorff space, and let Λ be a positive linear functional on Cc(X). Then there exists a

σ-algebra M in X which contains all Borel sets in X, and a unique positive measure

µ on M which represents Λ in the sense that

1. Λf =
∫
X
fdµ for every f ∈ Cc(X),

2. µ(K) <∞ for every compact set K ⊂ X,

3. For every E ∈ M, we have

µ(E) = inf {µ(V ) : E ⊂ V, V open} .
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4. The relation

µ(E) = sup {µ(K) : K ⊂ E,K compact}

holds for every open set E, and for every E ∈ M with µ(E) <∞.

5. If E ∈ M, A ⊂ E, and µ(E) = 0, then A ∈ M.

Definition C.0.11 (Borel measure). A measure µ defined on the σ-algebra of all

Borel sets in a locally compact Hausdorff space X is called a Borel measure on X.

Definition C.0.12 (Regular). A Borel set E ⊂ X is outer regular or inner regular,

respectively, if E has property 3 and 4 of Theorem C.0.4. If every Borel set in X is

both outer and inner regular, µ is called regular.

For more informations, see reference [27].

79



Appendix D

Hilbert Space

D.1 Properties of Hilbert Space

Hilbert Space H has the following five properties:

1. H is linear

2. Scalar Products (u, v),∀u, v, w ∈ H, a ∈ R

• (au, v) = a(u, v)

• (u+ v, w) = (u,w) + (v, w)

• (u, v) = (v, u)

• (u, u) > 0 if u 6= 0

• (u, u)1/2 = ||u||

3. H is infinite dimensional

4. H is complete

5. H is separable
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D.2 Convergence in Hilbert Space

Definition D.2.1 (Strong Convergence). the sequence {un} ⊂ H converges to u if

lim ||un − u|| = 0

Definition D.2.2 (Weak Convergence). If given {un}, these exists a fixed element

u s.t. (un, v)→ (u, v),∀v ∈ H, then {un} is weakly convergent.

Definition D.2.3 (Weak Cauchy). A sequence {un} of elements of H with the

property that ∀ρ ∈ H, the sequence of real numbers {(ρ, un)} is a Cauchy sequence.

Definition D.2.4 (Weak Compact). A subset A of H s.t. every infinite sequence

of elements of A contains a sub-sequence that is weakly convergent to an element in

A.

Theorem D.2.1. Strong Convergence implies Weak Convergence

Theorem D.2.2. In finite dimensional spaces, there is no distinction between strong

and weak convergence.

D.3 Completely Continuous Operators

Definition D.3.1. An operator F in H is call continuous if Fun → u, whenever

un → u

Definition D.3.2. The operator F is completely continuous if every weakly conver-

gent sequence is transformed into a strongly convergent sequence.

D.4 Eigenvalues

Let F be any self-adjoint, positive-definite, completely continuous operator.
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Definition D.4.1. A real number λ, for which the equation Fu − λu = 0 has a

nontrivial solution u, is called an eigenvalue of F with corresponding eigenvector u.

Theorem D.4.1. IF F is a self-adjoint, positive-definite, completely continuous

operator with domain H, then the set of all eigenvalues λi of F , arranged in non-

increasing order, is an infinite sequence of positive numbers converging to zero,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · → 0

For more informations, see reference [10], [13].
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Appendix E

Sobolev Space

E.1 Weak Derivatives

Definition E.1.1 (Weak Derivatives). Suppose u, v ∈ L1
loc(U), and α = (α1, ..., αn)

is a multiindex. We say that v is the αth-weak partial derivative of u, written

Dαu = v,

provided ∫
U

uDαφdx = (−1)|α|
∫
U

vφdx

for all test functions φ ∈ C∞c (U), where |α| = α1 + α2 + · · ·+ αn.

Lemma E.1.1 (Uniqueness of weak derivatives). A weak αth-partial derivative of

u, if it exists, is uniquely defined up to a set a measure zero.
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E.2 Sobolev Space W k,p

Definition E.2.1. The Sobolev space

W k,p(U)

consists of all locally summable functions u : U → R such that for each multiindex

α ≤ k,Dαu exists in the weak sense and belongs to Lp(U).

Definition E.2.2. If u ∈ W k,p(U), we define its norm to be

||u||Wk,p(U) :=


(∑

|α|≤k
∫
U
|Dαu|pdx

)1/p

(1 ≤ p <∞)∑
|α|≤k ess supU |Dαu| (p =∞).

Theorem E.2.1. For each k = 1, 2, ... and 1 ≤ p ≤ ∞, the Sobolev space W k,p(U)

is a Banach space.

Remark E.2.1. If p = 2, we usually write

Hk(U) = W k,2(U) (k = 0, 1, ...).

E.3 Sobolev Space H1(Ω)

Definition E.3.1. Let Ω be a nonempty, open subset of Rn. H1(Ω) consists of

functions f ∈ L2(Ω) such that there exists a sequence {fn} ⊂ C1(Ω̄) with {∇fn}

Cauchy in L2(Ω), and fn converging to f in L2(Ω).

Lemma E.3.1. If f ∈ H1(Ω), then f has a weak derivative ∇ ∈ L2(Ω).
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Lemma E.3.2. H1(Ω) is a Hilbert space when equipped with the inner product

(f, g)H1(Ω) :=

∫
Ω

fgdx+

∫
Ω

∇f · ∇gdx.

Let I := (a, b) ⊂ R and consider an important theorem of H1(I) which does not

always hold for general domain Ω ⊂ Rn.

Theorem E.3.1. H1(I) ⊂ C(I), i.e., for every f ∈ H1(I), there exists g ∈ C(I)

with f = g a.e..

For more, see reference [3],[23].
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Appendix F

Dirichlet Forms

F.1 Self-adjoint Operator

Definition F.1.1 (Hilbert adjoint operator). Let T : H1 → H2 be a bounded linear

operator, where H1 and H2 are Hilbert spaces. Then T ∗ : H2 → H1 is an adjoint

operator of T if for every x ∈ H1 and y ∈ H2

(Tx, y) = (x, T ∗y).

Theorem F.1.1. T ∗ of T exists, is unique, and is a bounded linear operator with

norm ||T ∗|| = ||T ||.

Definition F.1.2 (Self-adjoint operator). A bounded linear operator T : H → H

on a Hilbert space H is said to be self-adjoint if T ∗ = T .

F.2 Closed Forms

Let H be a Hilbert space with inner product (·, ·).
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Definition F.2.1 (Symmetric form). A non-negative definite symmetric billinear

form densely defined on H is called a symmetric form on H.

Definition F.2.2 (Closed form). A symmetric form f is closed in H if its domain

D[f ] is complete under the inner product f(u, v) + (u, v) for u, v ∈ H.

Theorem F.2.1. A symmetric form f is closed if and only if there exists a non-

negative self-adjoint operator Λ in the closure D[f ] in H, with domain D[Λ] ⊂

D[
√

Λ] = D[f ] such that f(u, v) = (
√

Λu,
√

Λv) for every u, v ∈ D[f ]. Moreover,

f(u, v) = (Λu, v) for every u ∈ D[Λ], v ∈ D[f ].

F.3 Markovian Forms

Let X be a locally compact separable Hausdorff space, and m be a positive Radon

measure on X such that supp[m] = X.

Definition F.3.1. A form f on L2(X,m) is called Markovian if it satisfies the

following conditions

(i)For each ε > 0, there exists a ηε : R→ [−ε, 1 + ε], with ηε(t) = t for t ∈ [0, 1]

and 0 ≤ ηε(t
′)− ηε(t) ≤ t′ − t for every t′ < t.

(ii)If u ∈ D[f ], then ηε ◦ u ∈ D[f ] and f(ηε ◦ u, ηε ◦ u) ≤ f(u, u).

Proposition F.3.1. A closed form f on L2(X,m) is Markovian if and only if the

following condition is satisfied:

If u ∈ D[f ], v = (0 ∨ u) ∧ 1, then v ∈ D[f ] and f(v, v) ≤ f(u, u) where

(0 ∨ u) ∧ 1 = inf {sup {u, 0} , 1}.
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F.4 Dirichlet Forms

Definition F.4.1. A Dirichlet form is by definition a symmetric form on L2(X,m)

which is not only Markovian but also closed.

Theorem F.4.1 (Beurling-Deny representation formular). Any regular Dirichlet

form f on L2(X,m) can be expressed for u, v ∈ D[f ] ∩ C0(X) as

f(u, v) = f c(u, v) +

∫
X×X−d

(u(x)−u(y))(v(x)− v(y))J(dx, dy) +

∫
X

u(x)v(x)k(dx).

Here f c is a symmetric form with domain D[f c] = D[f ] ∩ C0(X) and satisfies

the following condition:

f c(u, v) = 0

for u ∈ D[f c] and v ∈ ϑ(u), where

ϑ(u) = {v ∈ D[f c] : v is constant on a neighborhood of supp[u]} .

For more informations, see reference [7], [18].
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[2] Edgar, Gerald A., Measure,Topology, and Fractal Geometry, Springer-Verlag,
New York, 1990.

[3] Evans, L.C., Partial Differential Equations, Graduate Studies in Math., Volume
19, 1997.

[4] Evans, L.C. and Gariepy, R.F., Measure Theory and Fine Properties of Func-
tions, CRC Press, 1992.

[5] Falconer, K., Fractal Geometry, Mathmatical Foundations and Applications,
2nd edition, John Wiley & Sons, Ltd., 2003.

[6] Federer, H., Geometric Measure Theory, Springer-Verlag, New York, 1969.

[7] Fukushima, M., Dirichlet Forms and Markov Processes, Noth-Holland Math.
Library, Vol.23, North-Holland and Kodanshan, Amsterdam, 1980.

[8] Fukushima, M., Dirichlet forms, diffusion processes and spectral dimensions for
nested fractals, In: Albeverio, Fenstad, Holden and Linstrom(eds.): Ideas and
Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge
Univ. Press, Cambridge, 151-161, 1992.

[9] Fukushima,M., Shima,T., On a spectral analysis for the Sierpiński gasket, Po-
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