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Abstract 

 

Dynamic models driven by judgment and decision-making from behavioral and 

experimental economics better capture how people make decisions compared to classical 

models based on delay time constants and multiplier effects or table functions. The 

underlying assumptions on table functions are sometimes challenging to justify. 

Behavioral economists elect to use discrete-time modeling with difference equations.  

In system dynamics, we build models with the concept of continuous-time and do it on a 

discrete machine, i.e., a digital computer, and this requires approximating the time unfolding 

continuously with discrete time steps. This leads to confusion in the system dynamics 

community on how to properly model discrete-time features in continuous-time models. Even 

though system dynamicists commonly use continuous-time models with differential 

equations, discrete-time models are consistent with system dynamics. This issue is important 

in system dynamics in general and particularly in bringing behavioral economics models with 

richer, more realistic human decision-making structures and empirically verified with human 

decision subjects into system dynamics modeling. We first clarify this issue to the system 

dynamic community. Also, we do this to make sure by replicating correctly behavioral 

economics models and structures into system dynamics modeling and looking at the issue of 

discrete-time and continuous-time in a manner that satisfies both behavioral economists and 

system dynamicists, and we preserve the results published in the behavioral economics 

literature.  

We developed a formal, teachable method of bringing behavioral economics into system 

dynamics. We applied and validated this method using a macro model, the Samuelson 

multiplier-accelerator model, a micro model, the Cobweb model, and the behavioral 

economics model, the quasi-hyperbolic discounting model. We also applied this method in 

two chapters of this dissertation. First, to improve an existing model and paper published in 

2019 in the system dynamics review journal and second, to revisit and explore two well-

known lifecycle models. We replicated Brumberg’s and Modigliani’s lifecycle hypothesis in 

system dynamics and built Shefrin’s and Thaler’s behavioral lifecycle hypothesis from the 

description given in their paper. We also tested a couple of predictions provided by Shefrin 

and Thaler in their behavioral lifecycle hypothesis paper.  
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Chapter 1 Introduction 

 

 

In today's interconnected and dynamic world, understanding and managing complex 

systems is crucial for tackling a wide range of challenges. Traditional economic models 

have long relied on the assumption of rationality, assuming that individuals make 

decisions based on logical reasoning, self-interest, and utility maximization. However, 

extensive research has shown that human behavior is far more intricate and nuanced 

than this simplified view suggests.  

Behavioral economics, a field that combines psychology and economics, offers valuable 

insights into how individuals actually make decisions, considering cognitive biases, social 

influences, and emotional factors. 

Simultaneously, system dynamics provides a powerful framework for analyzing the 

behavior of complex systems over time. By considering the interconnections, feedback 

loops, and dynamics among various components, system dynamics allows us to 

comprehend the behavior of these systems in a holistic and comprehensive manner. It 

enables us to examine how changes in one part of the system can ripple through via a 

network of interacting feedback loops and impact the entire system. It also allow us to 

identify unintended consequences of the system.  

Dynamic models driven by judgment and decision-making from behavioral and 

experimental economics capture better how people make decisions than classical models 

based on delay time constants and multiplier effects or table functions. The underlying 

assumptions on table functions in system dynamics are challenging to justify from a 

behavioral standpoint. Behavioral economists elect to use discrete-time modeling with 

difference equations. In system dynamics, we build models with the concept of 

continuous-time. We do it on a discrete machine, i.e., a digital computer, and this requires 

approximating the time unfolding continuously with discrete-time steps. This leads to 

confusion in the system dynamics community on how to model discrete-time features in 

continuous-time models properly. Even though system dynamicists commonly use 

continuous-time models with differential equations, discrete-time models are consistent 

with system dynamics. This issue is important in system dynamics in general and 
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particularly in bringing behavioral economics models with richer, more realistic human 

decision-making structures and empirically verified with human decision subjects into 

system dynamics modeling. We do this to ensure that by replicating behavioral 

economics models and structures correctly into system dynamics modeling and looking 

at the issue of discrete-time and continuous-time in a manner that satisfies both 

behavioral economists and system dynamicists, we preserve the results published in the 

behavioral economics literature. 

This integration combines the rich insights of behavioral economics and the analytical 

tools of system dynamics, fostering a more accurate and realistic understanding of the 

behavior of complex systems. Moreover, it offers a multidimensional perspective on 

decision-making and system behavior. 

This dissertation is organized into three interrelated chapters in sequence.  

The first chapter presents a formal, repeatable, and teachable method to bring 

behavioral economics into system dynamics. We will first clarify the issue of discrete-

time versus continuous-time modeling and how it matters for policy change. We will also 

present a discrete-time molecule with stock and flow structure to build discrete-time 

models in system dynamics without using a dt (i.e., solution interval) of 1. We called this 

molecule cornerstone for building discrete-time models in System Dynamics. It can be 

applied beyond the economics domain. The discrete-time molecule can be used to build, 

for example, healthcare, manufacturing, finance, business strategy, environmental 

models, etc. The second molecule or generic structure we developed replicates the quasi-

hyperbolic discounting or present-bias in System Dynamics. We successfully applied 

these molecules in this dissertation's second and third chapters.  

The second chapter explores and analyzes some modeling problems in the paper 

published in the System Dynamics Review 2019 titled “Building a Bridge to behavioral 

economics: countervailing cognitive biases in lifetime saving decisions.” (Bahaddin et al. 

2019). Each problem will be examined, and a proposed solution with a new model based 

on best practices in system dynamics modeling will be given. Finally, we will explore 

from the corrected model the three cognitive biases in lifetime savings and how two of 

them interact and eventually cancel out, as described in Bahaddin et al.’s paper. The 

experiments will be run first on the corrected feedback-poor model, and in the next step, 
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the fixed model will be extended to a feedback-rich version. 

The third chapter is an application of the results previous first two chapters. This chapter 

will compare and contrast two lifetime saving models developed by Nobel laureates 

Franco Modigliani and Richard Thaler. Modigliani's Standard Lifecycle Hypothesis (LCH) 

and Thaler's Behavioral Lifecycle Hypothesis (BLC) are two influential theories in the 

field of economics that attempt to explain how individuals manage their consumption 

and savings over their lifetime. We will test a couple of predictions made by Shefrin and 

Thaler in their BLC paper using the system dynamics methodology and tools. 
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Chapter 2 Behavioral Economics and 

System Dynamics: Toward an 

Integrative Approach 

2.1 Introduction  

This chapter aims to present a formal, repeatable, and teachable method to bring 

behavioral economics into system dynamics. We will first explore, analyze, understand, and as 

such, be conversant with the proper way of using discrete or continuous-time, judgment, and 

decision-making in dynamic modeling. Then, we will clarify their differences, under which 

circumstances to apply one instead of the other or a combination of both, and the fact that 

choosing one approach instead of the other impacts policy change. We argue that dynamic 

models driven by guiding principles on when and how to use discrete-time (Pidd, 1992) or 

continuous-time (Forrester, 1961) or a mix of both (Kalecki, 1935) and judgment and 

decision-making, from experimental and behavioral economics, capture better how people 

make decisions than classical models based on delay time constants and multiplier effects or 

table functions. According to Veblen, every economic analysis should include human behavior. 

To illustrate our purpose, we will explore how to incorporate discrete-time structures into 

continuous-time models and standalone discrete-time models in system dynamics in a 

manner that satisfies both behavioral economists and system dynamicists and preserve the 

results from the behavioral economic literature. 

The plan of this chapter is as follows. The second section defines the two modeling 

techniques. The third section presents a historical background of discrete-time and 

continuous-time modeling. The fourth section presents the issue and debate about these two 

modeling techniques. It also gives an overview of how discrete-time and continuous-time 

modeling are used and what their differences are in the field of economics, system dynamics, 

engineering, and computer science. The fifth section provides a sweeping overview of 

different discretization techniques used in continuous-time modeling to approximate the time 

unfolding continuously in discrete-time steps. In the sixth section, we present a formal, 

teachable, and repeatable method based on the mean value theorem on how to convert a 

discrete-time into continuous-time. We will apply this technique, along with a generic 

structure presented in this chapter to build a discrete-time model in system dynamics with a 
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solution interval of less than 1 to build three well-known models: the Samuelson-Hicks’ 

multiplier-accelerator macro model, the Cobweb micro model, and the present-bias 

behavioral economics model in system dynamics. We do this to make sure, first, we can 

faithfully reproduce discrete-time economic models, particularly behavioral economics 

models in system dynamics, in a manner that satisfies both economics and system 

dynamicists and, second, compare and contrast the converted continuous-time model with its 

original discrete-time version and whether or not this has an impact for policy changes. The 

seventh section presents when to use discrete-time modeling, continuous-time modeling, or a 

mix of both. The final section concludes and lays out further research and directions. 

 

2.2 Discrete-time and continuous-time modeling 

There are two types of people in the modeling world: those who prefer continuous-time 

models and those who prefer discrete-time models. But in reality, both are necessary to 

understand complex systems fully. 

A discrete-time system is a system for which the state, input, and output variables are 

defined only for discrete moments in time. 

Discrete time models are convenient for matching a model to time series data recorded at 

regular intervals. For example, they are also very useful in running computerized lab 

experiments in the economics field. Moreover, they are usually the most intuitive to 

understand of all forms of dynamic models. Historically, economists usually built models with 

a two-stage approach (e.g., now and later).  

These models assume a stepwise mode of execution. At any particular time instant, the 

model is in a specific state and defines how this state changes and what the state will be at the 

next time. The time unit between states is chosen and takes an integer value, e.g., one day, one 

month, or one year. The system is assumed to change only at each discrete time tick. 

One of the main characteristics of discrete-time models is that the system’s behavior 

between the time intervals is not captured and has no influence or causal relation with the 

system. So, to represent the system's behavior over time between two discrete-times t and 

t+1, modelers usually take the value of t as constant and move it to t+1, and at t+1, they 

replace it with the value of t+1. In other words, the system is assumed to be in a steady state 

or in equilibrium between every discrete time interval.  
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A continuous system is one in which the state variables change continuously with respect to 

time. With the continuous-time model, we do not specify the next state directly but use a 

derivative function to specify the rate of change of the state variables. At any particular time 

instant on the time axis, given a state and an input value, we only know the rate of change of 

that state. From this information, the state at any point in the future has to be computed at 

each solution interval time. 

 

2.3 Discrete-time or continuous-time modeling: a historical 

perspective 

Traditionally, in dynamic modeling, particularly in economic modeling, we have discrete-

time and continuous-time modeling, which is either linear or nonlinear. These models can 

either be simulated and run on an analog or digital computer and can be either linear or 

nonlinear. Linear systems are simple and have an analytical solution. However, they are not 

robust, and their behaviors are sensitive to their parameter values, whereas nonlinear 

systems are more robust, and their behavior are less sensitive to their parameter values. So, 

in dynamic modeling, it is important to understand these three concepts and how they can 

adequately be used together: 1. discrete-time vs. continuous-time, 2. linear vs. nonlinear, and 

3. analog computer vs digital computer. 

When early dynamic economic modeling was developed, there were no computers. For 

example, Harrod was writing his “An Essay in dynamic economics” in 1936 before the digital 

computers. The first commercial computer was developed by the German Konrad Zuse in 

1942 and MIT introduced the first digital computer with magnetic-core memory and real-time 

graphics with the Whirlwind project in 1955 under the direction of Jay Forrester. Forrester, 

the system dynamics inventor, also patented the magnetic core memory used in digital 

computers. The goal of the Whirlwind project, funded by the US Navy, was to create a 

computer to drive a high-quality real-time aircraft flight simulator to train their pilots. In the 

early stage of the project, the Whirlwind team started by building a large analog computer to 

continuously update the aircraft dashboard simulator from the pilot’s control inputs. 

However, they soon realized the limitations of using the analog computer to run continuous-

time simulations. They found out the analog computer was inflexible, slow to solve their 

problems. Also, they required more capacity by adding more parts to the machine while 
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increasing the costs to operate the computer. So, they decided to switch to a more flexible 

digital computer solution that allows more simulation accuracy. This project demonstrated 

that continuous-time modeling can be done on a discrete-time machine. The step time of the 

model is discrete but the model is continuous. The stepping of the model approximates the 

underlying continuous model’s flow of something, e.g., people, products, etc. The limitation of 

modeling continuous-time on a digital, discrete machine is on the ceiling between integration 

error when the step time or solution interval is big or round-off error when the solution 

interval is small, as we cannot make the solution interval infinitesimally small. 

Continuous-time models and discrete-time models are different mathematical models with 

other mathematical properties. For example, discrete-time models use difference equations, 

whereas continuous-time models use differential equations.  

Discrete time models are usually the most intuitive to understand of all forms of dynamic 

models. These models assume a stepwise mode of execution. At any particular time instant, 

the model is in a particular state and defines how it changes and what the state will be at the 

next time. The behavior mode between two states is assumed to be in equilibrium or a resting 

state. The time unit between states is chosen and takes an integer value, e.g., one day, one 

month or one year. Discrete-time notation is convenient for matching a model to time series 

data recorded at regular intervals. It is also very useful in running computerized lab 

experiments in economics for example.  

With continuous-time model, we do not specify the next state directly but use a derivative 

function to specify the rate of change of the state variables. At any particular time instant on 

the time axis, given a state and an input value, we only know the state's rate of change. From 

this information, the state at any point in the future has to be computed. Hence, to build a 

discrete-time model using system dynamics method based on a continuous-time approach, it 

is important to understand how to properly use the solution interval in the model. The 

solution interval is the length of time interval at which the simulation software solves the 

model equations and calculates the values of all variables. Forrester presented in great detail 

how to properly select the solution interval with a dynamic system model in appendix D of his 

seminal Industrial Dynamics book (Forrester 1961). In our models, we will follow the 

Forrester approach and the rule of thumb he proposed in this book. 

The second important point is building confidence in these models, particularly discrete-

time models. Contrary to discrete-time models, methods and guidelines for testing 
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continuous-time models have been extensively studied in the system dynamics field. One 

common mistake inexperienced modelers make in building discrete-time models using 

system dynamics is setting the solution interval and fixing it to one. Testing a model's 

robustness by halving the solution interval in discrete-time models is not easy, and by in large 

important time delays are buried in the solution interval (Low, 1976, Keen, 2021). 

Nevertheless, discrete-time models are very useful to test and build confidence in a model. To 

reject a model using calibration techniques should be based first and foremost on robust 

models. 

Laibson, in his paper titled: “Hyperbolic discount functions, undersaving, and savings policy, 

1996”, p.8, described how the discrete quasi-hyperbolic function graph is created. He stated 

that: “ The points of the discrete-time quasi-hyperbolic function have been connected to 

generate the smooth curve in Figure 1.1”. Based on these findings, we will attempt to show 

how to properly model each of these modeling concepts in system dynamics.  Laibson, later, in 

this seminal paper titled” “Golden Eggs and Hyperbolic Discounting” felt that a continuous-

time version could solve one of the limitations of his golden eggs model. He concluded his 

paper by stating: “A second problem associated with the model is the anomalous prediction 

that consumers will always face a binding self-imposed liquidity constraint. For example, the 

golden eggs model predicts that after making their consumption choice, consumers should 

have no liquid funds left in their bank accounts. This prediction contradicts many consumers’ 

experiences. However, this problem can be readily addressed by introducing a precautionary 

savings motive for holding liquidity. For example, consider a continuous-time analog of the 

golden eggs model and assume that instantaneous liquidity needs arrive with some hazard 

rate. Then in equilibrium the consumer will only rarely completely exhaust her liquidity”. This 

shows some interest from behavioral economists on continuous-time modeling. 

 

2.4 Discrete time versus Continuous time in different fields 

2.4.1. Discrete time versus continuous-time in Economics 

Traditionally, in dynamic modeling and particularly in economic modeling (Hicks, 

Laibson, Samuelson, etc.), we use discrete-time modeling, why? What are the advantages of 

using discrete-time modeling? Romanchuk (Romanchuk, 2017) argued in favor of modeling in 
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discrete-time not only because economic data are available in discrete-time but also because 

of its simplicity. On the other hand, system dynamicists and other economists (Allen, 

Bergstrom, Gandolfo, Goodwin, Harrod, Forrester, Keen,  Koopmans, Phillips, Radzicki, Tustin, 

etc.) use continuous-time modeling. What are the motivations of this group to elect modeling 

in continuous-time over discrete-time? Forrester, the founder of system dynamics, argued 

that feedback systems should be formulated continuously since real systems are continuous. 

Other scholars such as R. G. D. Allen and Baumol focused on the solutions of differential and 

difference equations. They also compared and contrasted discrete-time and continuous-time 

techniques. 

In his book Mathematical Economics (Allen, 1966), Allen started by analyzing, comparing, 

and contrasting the Cobweb model, which relates to a market of a single good, using both the 

discrete-time and the continuous-time techniques. One of the main differences of these two 

techniques using the Cobweb model, for example, is the interpretation of the sellers' and 

buyers’ decisions. In analyzing the discrete-time, difference equations models, the concepts of 

ex-ante and the ex-post are fundamental. The ext ante is the expected or planned output, while 

the ex-post is the actual or realized output. In the Cobweb model, for example, the sellers, 

based on the ex-post of the previous period, decide how much to sell and expect the price to 

be the previous price, Pt-1, which they bring forward the supply St, while the buyers, when 

they discover the price, Pt, in the current period, decide how much to buy. The transition from 

ex-ante to ex post and the relationship between the variables must be specified in the 

discrete-time model. In the continuous-time however, the ex-ante and ex-post feature 

becomes irrelevant as the decisions and price adjustments occur continuously. Another 

difference is in the solution of the two techniques. For example, the discrete-time version of 

the Cobweb model involves a power function ct, whereas its continuous-time version involves 

an exponential function ect. In solving the differential equations, the approach is first to find 

the general solution and then derive the specific solution which corresponds to the initial 

conditions. With the difference equations, the process is reversed. In this later case, we first 

find a particular discrete-time solution and then obtain the general solution, which is more 

difficult to derive than the differential equations with the continuous-time model. Moreover, 

Allan showed that the difference equations can have discrete or continuous solutions. As 

opposed to Forrester, who recommended starting with the continuous solution, Allen 

recommended starting with the discrete solution not because they can be easily solved but 
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also because they are sufficient for a wide variety of economic problems. The intuition behind 

continuous solution of a difference equation is that the series of the discrete-time delay also 

called the “series of the equally-spaced values” by Allen, can start from any value, for example, 

½ instead of 1, and varied continuously. In general, both the difference and the differential 

equations can be solved using the Laplace transform. 

Like Allan, Baumol also looked at the differences between discrete-time and continuous-

time, focusing on the methods of solving the difference and differential equations. With the 

first-order difference equations, Baumol proceeds with a trial and error method by trying 

different formulas to see if they satisfy the difference equation and the initial conditions. This 

method, similar to an algorithm, runs step by step to find the solution of the difference 

equation. Regarding the higher order difference equations, he uses the classical method of the 

characteristic equation, also called the “reduced equation” by Samuelson.  

Baumol approach to analyzing and comparing the discrete-time and continuous-time is 

similar to Allen. When describing the oscillatory movements for both discrete-time and 

continuous-time systems, he showed that the real numbers system is insufficient. In many 

cases, the solution has complex roots. The sign of real part of the complex number and the 

sign of the real number of the roots can be used to determine the oscillatory (or not) behavior 

of both the discrete-time and continuous-time systems. Baumol provides a qualitative 

analysis with a summary of the behavior oscillatory modes of both the difference and 

differential equations from the cases of nature of the roots (Baumol, 1970). For example, in 

the difference equation case, the system generates oscillations when the roots are real and 

negative. However, in the differential equation case, the system generates no oscillations. 

Baumol compared these two techniques on Harrod’s model. In the difference equation case, 

Harrod’s model is  in the form of 𝑦𝑡 = 
𝑣

𝑣−𝑠
∗ 𝑦𝑡−1 , where v is the capital-output ratio, and s is 

the marginal propensity to save. Both s and v are positive. When s is greater than v, we can see 

that the output will oscillate from a negative to a positive value in one year and then from a 

positive to a negative value in the following year. This is a peculiar or “queer” case, as the 

output should always be positive. In the differential equation case, Harrod’s model is in the 

form of  
𝜕𝑦

𝜕𝑡
= (

𝑠

𝑣
) ∗ 𝑦, which has an analytical solution that is 𝑦𝑡 = 𝑦0ⅇ

(
𝑠

𝑣
)𝑡

. However, we can 

see that as both s and v are positive, the output will generate an exponential growth behavior 

and the peculiar case in the difference equation disappears. 
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We will compare these two modeling approaches using the well-known Samuelson’s 

linear multiplier-accelerator model. This model will be built both in discrete-time and 

continuous-time using system dynamics methodology, tools and techniques. When comparing 

these models, we will extend our analysis and explore the implications of these two 

techniques regarding policy change. Next, we will shed some light on when it is the most 

appropriate to use discrete-time and when to use continuous-time or both with the mixed 

differential-difference equations modeling (Kalecki, 1935). For example, Forrester in very 

early in system dynamics development in  Industrial Dynamics, and later, Sterman in Business 

Dynamics in 2000 described when to use continuous-time modeling. Also, Gandolfo in 

(Gandolfo, 1997) provided a list of arguments grouped in eight categories in favor of 

continuous-time modeling. We will look at the view of these authors and others who favor 

using the discrete-time technique, such as (Romanchuk, 2017). 

In behavioral economics, where discrete-time is commonly used, we see some interests in 

modeling in continuous-time (Laibson, 1997). 

2.4.2. Discrete time versus continuous-time in system dynamics 

In system dynamics, we commonly model in continuous-time, and differential equation is 

the basic mathematical operator. Many authors in the system dynamics field have looked at 

the issue of discrete-time vs. continuous-time modeling. Forrester, in the very early in system 

dynamics development in  Industrial Dynamics and, later, Sterman in Business Dynamics in 

2000, described when to use continuous-time modeling. Forrester suggested always starting 

modeling in continuous-time and testing the model; when there is a solid reason to add 

discreteness, a discrete-time structure can be added. Regarding the choice of the solution 

interval, Forrester suggested that in any model, the solution interval should be less than half 

of the shortest first-order delay in the system (Forrester, 1971). Low, in 1976, criticized and 

identified a couple of issues from Samuelson’s  discrete-time linear multiplier-accelerator and 

proposed a solution from a system dynamics perspective.  The first issue, from a system 

dynamics point of view, is the assumption that there is only one delay time which is the model 

time. Any other delay is embedded in the model time. In the Samuelson’s multiplier-

accelerator model, the model time is in years but the consumption time and the investment 

time should have different time delay. Consumption should be specified in weeks or months, 

and investment in years. The second issue highlighted by Low is that there is no distinction 
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between stocks and flows in a discrete-time model’s variables. Discrete-time models generally 

do not specify stock and flow structures (Sterman, 2000, p. 798). Low reconstructed 

Samuelson-Hicks’ model in system dynamics with DYNAMO and showed that the original 

multiplier-accelerator model fails to conserve important physical flows such as investment. 

According to Low, the non-conservation of stuff in Samuelson-Hicks’ discrete-time model 

reveals other problems. More specifically, the material and behavioral time constants and 

information smoothing delays are buried in the solution interval of the original model. In such 

situations, testing the model for robustness by halving the solution interval may generate 

inconsistent behaviors. However, we believe Low’s solution to fix Samuelson-Hicks’ model 

has some issues. Low’s Samuelson-Hicks version in System Dynamics has been published in 

two books (Legasto, Forrester, and Lyneis, 1980, p. 107) and (Randers, 1980, p.76). He used 

the “information smoothing delays” formulation to model the discrete-time structure in 

Samuelson-Hicks’ model in system dynamics. Unfortunately, low didn’t provide the resulting 

behavior of his discrete-time model. In our view, Low’s Samuelson-Hicks’ discrete-time model 

does not faithfully represent the original model with the correct time shape behavior. We 

have a better solution that we will present in this chapter. 

Barlas et al. also looked at this issue and built a supply chain model in discrete-time using 

System Dynamics. In (Barlas, 2011) on p. 2, they point out that by choosing a solution interval, 

dt, of 1, we can build a discrete-time version of the model:  

“For consistency with models and policies in the inventory literature, time is 

modeled discrete (DT=1 time period). This makes the model time-discrete that 

is necessary to represent standard ordering policies like Order-up-to-S and (s, 

S), as will be described below. Another policy analyzed, the anchor-and-adjust 

ordering rule typically used in system dynamics models, is normally time-

continuous. As will be explained below, in the assumed parameter settings, it 

was possible to represent the anchor-and-adjust ordering rule with D=1 as 

well, without causing any erroneous dynamics.” 

This is similar to the Low approach of modeling discrete-time in system dynamics. 

Bahaddin et al. (Bahaddin, 2019) also build a discrete-time using a solution interval of 1 time 

period. In the second chapter of this dissertation, we will analyze and fix this issue and other 

issues we found in Bahaddin’s model. Other authors in the system dynamics field (Ossimitz et 

al., 2008), also compared the two approaches. Ossimitz et al. argued that system dynamics is 
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compatible with both discrete-time and continuous-time. Even though continuous-time is at 

the core of system dynamics modeling, they pointed out some disadvantages of continuous-

time. One of them, they argued, is that with continuous-time, in some situations, it is possible 

to eliminate the structural difference between points in time related to stocks and time-

interval related to flows by making the time-interval infinitesimally short. They concluded 

their paper:  

“We see the conflict between a continuous and a discrete concept of time 

right in the core of SD methodology. By addressing it explicitly and making 

both concepts of time clear to SD learners might help them to understand 

better both system dynamics and the world. “ 

Sterman addressed the issue raised above by Ossimitz et al. in their concluding remarks in 

the article published in the system dynamics Review journal, marking the 60th anniversary of 

the field (Sterman, 2018).  

“System dynamics models can be implemented using a variety of different 

simulation architectures. These vary in their representation of time 

(continuous or discrete), state variables (continuous or discrete), and 

uncertainty (stochastic or deterministic). Ordinary differential equations, 

stochastic differential equations, discrete event simulations, agent-based 

models and dynamic network models are common computational 

architectures offering different choices on these dimensions.” 

He reminded us of what Jay wrote about his view on the continuous and discrete concept of 

time.  

“… in formulating a model of an industrial operation, we suggest that the 

system be treated, at least initially, on the basis of continuous flows and 

interactions of the variables. Discreteness of events is entirely compatible with 

the concept of  information-feedback systems … As a starting point, the 

dynamics of the continuous-flow model are usually easier to understand and 

should be explored before complications of discontinuities and noise are 

added” (Forrester, 1961, pp. 64-65). 

 Sterman also emphasizes the importance of the quantitative approach and the use of 

analytical methods in building empirically grounded models. 
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We do not see a conflict, per se, between the continuous and discrete concepts of time. 

Knowing when and how to properly build empirically grounded models in line with what the 

scholars in the system dynamics field laid out as best practices and recommendations is very 

important. 

2.4.3. Discrete time versus continuous-time in Engineering and Computer Science 

Engineers also use both discrete-time and continuous-time. They often convert signals, not 

the model itself, from discrete-time to continuous-time and vice-versa. And the general 

approach to continuous-time signal processing takes the form of cascading operations 

(Mayhan, 1984). The signal is converted into discrete-time, processed on a digital computer, 

and then reconstructed back into continuous-time from the processed digital representation. 

The theoretical basis of this approach lies in the Sampling Theorem (Oppenheim and Willsky, 

1997). The Sampling Theorem, a fundamental concept in signal processing and 

communications, states that for a given analog continuous-time signal, there is a minimum 

rate at which the signal must be sampled to avoid information loss when it is reconstructed 

from its digital samples. It is a mathematical framework for converting an analog continuous-

time signal into a digital discrete-time signal. The signal conversion between these two 

representations involves using mathematical techniques such as the Z-transform, Laplace 

transform or the Fourier Transform. The Z-transform is used for discrete-time signals, the 

Laplace transform for continuous-time and discrete-time signals, and the Fourier transform 

for continuous-time signals. For example, the Fourier transform is widely used in radio 

frequency communication systems, wireless communication with autonomous vehicles, 

image processing, and control systems. The choice of the technique depends on the specific 

application and the desired outcome. Each representation has its advantages and 

disadvantages. Discrete-time signals are more suitable for representing digital signals which 

can be sampled and processed on a computer. Since they can have a finite number of values, 

they can be processed more precisely than continuous-time signals. 

Furthermore, as they can be sampled at regular intervals, the data rate can be reduced and 

the signal processing can be simplified. However, sampling a continuous-time can result in 

loss of information as a discrete-time signal approximates the continuous-time signal. 

Continuous time signals, on the other hand, capture more precisely the dynamic of the 
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underlying physical systems. However, compared to discrete-time signals, continuous-time 

signals are more susceptible to noise and interferences. 

To enable and implement these signal processing techniques and conversions from one 

representation to the other, MATLAB, a software package widely used in engineering and 

computer science, provides a method via the built-in function “d2c” for converting a discrete-

time system model to continuous-time, using either zero-order hold (zoh), first-order hold 

(foh) or bilinear (Tustin) approximation methods.  This is useful for performing stability or 

frequency response analyses on a continuous-time model. MATLAB also offers a convenient 

way to convert a continuous-time model to a discrete-time model via the built-in function 

“c2d”. This is necessary for simulating and analyzing digital control systems using digital 

technology. In addition to MATLAB, Python, one of the most popular programming languages 

in data science and machine learning, offers a built-in function similar to the MATLAB “c2d” 

called “cont2discrete”. It is possible to call and use MATLAB, Python, or other programming 

language functions from system dynamics (Dungan, 2016), (Hesan et al, 2014), PySD. 

However, this later approach might be cumbersome for non-programmers building system 

dynamics models.  

Since we focus more on the models and model conversions than the signals and signal 

conversions, we will not discuss the mathematical and computer science techniques applied 

to signals analysis and conversions in this dissertation. 

 

2.5 Discretization of continuous-time models 

Discretization is a numerical method commonly used by a digital machine or computer to 

approximate solutions to differential equations by dividing the continuous domain into a 

finite number of discrete points. This technique is used in system dynamics. It is a process 

used in numerical analysis of converting continuous values from a model or a function into a 

discrete, finite set of values to approximate the behavior of a system overtime. 

There are several types of discretization methods for differential equations. Some of the 

most commonly used are: 

Forward difference: this method approximates the derivative at a point using the function 

values at the current point and the next point in the discretized domain. The Euler method is a 
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forward difference discretization method for approximating the solution of a first-order 

ordinary differential equation (ODE). 

Backward difference: this method approximates the derivative at a point using the function 

values at the current point and the previous point in the discretized domain. 

Central difference: this method approximates the derivative at a point using the function 

values at the current point and both the previous and next points in the discretized domain. 

Upwind difference: this method approximates the derivative at a point using the function 

value at the current point and the value at the nearest upwind (i.e., in the flow direction). 

Downwind difference: this method approximates the derivative at a point using the function 

value at the current point and the value at the nearest point downwind (i.e., opposite to the 

direction of the flow). 

Crank-Nicolson method: this method combines the forward and backward difference 

methods based on the trapezoidal rule and gives a second-order approximation of the 

derivative. It provides a good balance between accuracy and computational efficiency. 

Tarasov exact discretization method: this method is a numerical technique that allows for 

the accurate and efficient solution of differential equations by discretizing the differential 

operators to preserve the exactness of the underlying equations. The main feature of this 

method is that it uses the power-law memory technique. This technique is called power-law 

memory because the method describes the relationship between the solution interval and the 

memory of the system. This method ensures that the discrete solution is exact and avoids 

errors arising from other discretization methods, such as Euler's method. Tarasov exact 

discretization method has been applied in the study of nonlinear economic models and has 

shown how it can be used to obtain exact solutions and numerical approximations of these 

models. In (Tarasova, Tarasov, 2016, 2017), the authors applied the exact discretization 

method with power-law memory to discretize the continuous-time Harrod-Domar’s  model, 

allowing for more accurate simulations of the dynamics model. Their approach highlights the 

importance of precise discretization techniques for obtaining reliable simulation results. 

Therefore, we recommend implementing this discretization method in system dynamics 

software packages. 

There are also many other variations and extensions of the basic methods described above, 

such as the Runge-Kutta and Adams-Bashforth methods, which can provide higher order 

accuracy and produce more accurate approximations than Euler’s. The Euler discretization 
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error depends on the size of the solution interval. The smaller the solution interval in the 

Euler method, the smaller the error; the larger the solution interval, the more computing 

power is required. The choice of which method to use depends on the problem, the type of 

models being analyzed, the specific properties of the differential equation, and the desired 

balance between accuracy and computational efficiency. Different discretization methods are 

available in most system dynamics software packages. Euler's and the Runge-Kutta methods 

are the most used techniques in system dynamics modeling. 

 

2.6 Comparing discrete-time and continuous-time 

In this section, we will compare and contrast the two modeling techniques using a macro 

model, Samuelson’s multiplier-accelerator model, a micro model, the cobweb model, and a 

behavioral economic model, the quasi-hyperbolic discounting. 

Before reproducing, comparing, and contrasting the three models in the two techniques, we 

will first build and describe the discrete-time molecule that will use in building the three 

models in discrete-time.  

2.6.1. Discrete time molecule 

The discrete-time molecule can be used to build any discrete-time model in system 

dynamics. The molecule must be used with the Euler integration method. A molecule like this 

is very important in bringing behavioral economics structures into system dynamics. An 

example of this is demonstrated in the section below with the quasi-hyperbolic discount 

model.  

Below are the five equations of the molecule: 

1. Initial_Lagged_var1_t-1 = 0 

2. Lagged var1 t–1 = Initial_Lagged_var1_t-1 

3. Chge in Lagged var1 t -1  = ( IF TIME = INT(TIME) THEN (var_1 - Lagged_var1_t-1)/DT ELSE 0 ) 

4. Lagged var2 t –1 = DELAY(Lagged_var1_t-1,  1 ,  Lagged_var1_t-1) 

5. var2 t  = ( IF TIME = INT(TIME) THEN Lagged_var1_t-1 ELSE Lagged_var2_t-1 ) 

The INT(input) returns the integer value of the input. This is similar to Sterman and Oliva’s 

Pick function (Sterman, 1984), (Oliva, 1995) or the SAMPLE function in DYNAMO system 
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dynamics programming language. The stock “Lagged var1 t–1” and flow “Chge in Lagged var1 

t -1” create the lag of the variable var1 in discrete-time which is different than the information 

smoothing formulation Low used in (Legasto, Forrester, and Lyneis, 1980, p. 107) and 

(Randers, 1980, p.76).   

 

Fig.2.1. Discrete-time molecule 

 

2.6.2. Converting a discrete-time model into a continuous-time model 

In (Goodman, 1989, p. 21), a conversion example from discrete-time to continuous-time 

is given using the DYNAMO, the first system dynamics simulation programming language. 

To convert a discrete-time model to its continuous-time version, Goodman replaces DT or 

Δt, the time interval in the discrete-time to dt, i.e., the solution interval in the continuous-

time version. This solution is not generalizable and challenging, particularly on second-

order difference equations. Our solution is similar but different. We offer a generic and 

repeatable solution to convert a discrete-time model into continuous-time. This solution 

is based on the discrete-time mean value theorem. The discrete-time mean value 

theorem extends the mean value theorem for continuous functions to the discrete case, 

where the function is defined only at discrete points in time. It is used to derive formulas 

for approximating the derivative of a function using its values at discrete-time points. The 

discrete-time mean value theorem states that for any function f(t) that is defined and 

continuous over the interval [t- 𝛥𝑡, t] and differentiable over the open interval  (t- 𝛥𝑡, t), 

there exists a point c within  (t- 𝛥𝑡, t) such that: 
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f(t) - f(t- Δt) = f'(c)* Δt  

where f'(c) is the average rate of change of the function over the interval [t- Δt, t]. 

 

f(t) − f(t− Δt) 

 Δt
=  f′(c)   

Taking the limit as Δt →0, and keeping in mind that c ∈ [t − Δt, t], one gets 

lim
Δt→0

f(t)−f(t−Δt)

Δt
= lim

Δt→0
f ′(c)  

 

lim
Δt→0

f  ′(c) = f  ′(t)  

f  ′(t) =
ⅆf(t)

ⅆt
  

In the conversion process, we will replace to the limit 
f(t)−f(t−Δt)

Δt
 by 

ⅆf(t)

ⅆt
  to create the 

continuous-time equation. For example, when Δt = 1, we will replace the expression  

f(t) - f(t- 1) = f ’t  by 
ⅆf(t)

ⅆt
  and the expression [ f(t) - f(t- 1) ] – [ f(t-1) – f(t-2) ] = f ’t – f ’t-1 

= f ’’t   in the discrete-time equation will be replaced by 
ⅆ2f(t)

ⅆt2    

It is convenient to write the equation with the highest derivative on the right-hand side 

to build the system dynamics from the continuous-time equation converted from the 

discrete-time equations.  

2.6.3. Samuelson Multiplier-Accelerator Model in Discrete-time 

In this section, we will reproduce in system dynamics the Samuelson linear Multiplier-

Accelerator model initially developed in discrete-time by Paul Samuelson in the mid-30s. 

One of the discrete-time versions will be built using an infinite order delay (IOD)  (Radzicki, 

2019), and the other version will be based on the new discrete-time generic structure or 

molecule presented in this chapter. Using the previous method, we will also convert the 

discrete-time model into a continuous-time model.  

The Samuelson Multiplier-Accelerator model explains how changes in investment can 

affect the level of output and income in an economy over time. The model is based on two 

key ideas: the multiplier effect and the accelerator effect. The multiplier effect, on the one 

hand, refers to the notion that an initial increase in investment can lead to a much more 

significant increase in output and income in the economy. However, the multiplier alone 
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cannot adequately explain the cyclical and cumulative nature of the economic 

fluctuations. The accelerator effect, on the other hand, refers to the idea that changes in 

the level of investment can lead to changes in the output and income growth rate over 

time. The interaction between the multiplier and accelerator gives rise to cyclical 

movements in economic activity. The equations of Samuelson’s multiplier-accelerator 

model are defined as follows: 

Yt = gt + Ct + It            (1) 

Ct = α Yt-1          (2) 

0 < α < 1 ; α is the average propensity to consume.    

It = β (Ct – Ct-1)          (3) 

β is the acceleration coefficient which is the same as the “relation” in Hansen 

terminology. 

gt = 1           (4) 

Substituting Ct in It 

It = α β (Yt-1 – Yt-2)         (5) 

Rewriting equation (1) with (2) and (5), we have 

Yt = 1 + α Yt-1 + α β Yt-1 – α β Yt-2       (6) 

Yt = 1 + α (1 + β) Yt-1 – α β Yt-2        (7) 

The model below has three sub-models, one continuous-time, and two discrete-time sub-

models.  

Model 1 (the discrete-time molecule presented in this chapter) and model 2 (Radzicki, 

2019) generate precisely the same behavior. The main difference between these two 

models is that model 1 presents a stock-flow structure explicitly showing major and 

minor feedback loops. Model 1 uses a similar but different approach than the Sterman 

and Oliva’s Pick function (Sterman, 1984), (Oliva, 1995) to create the discrete-time 

behavior. This Pick function extracts every data point available from time series data to 

calculate summary statistics for historical fit. In model 1, we use the built-in function 

INTEGER in Vensim and INTEG in Stella, available in system dynamics software 

packages and programming languages. Model 1 must run with the Euler method. With 
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the INTEG or INTEGER function, we extract discrete-time values from the system 

dynamics model.  Model 2 (Radzicki, 2019), much more straightforward, has implicit 

stocks, the infinite order delay. Model 2 works both with Euler and Runge Kutta 

methods. With model2, we do not see the stock flow structure which is important in 

system dynamics modeling. With model1, we use the molecule to see the stock flow 

structure, the lags, the minor and major loops.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Discrete-time model 1 

 

 

 

 

 

 

 

 

Fig. 2.3. Discrete-time model 2 
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Fig. 2.4. Samuelson’s MA (Samuelson, 1939)  and its discrete-time rendition in system dynamics 

2.6.4. Samuelson Multiplier-Accelerator Model in Continuous-time 

We will start with the discrete-time model and convert it following the conversion 

process described in the previous section on converting a discrete-time model into a 

continuous-time model. 

The solution of the discrete-time Samuelson Multiplier-Accelerator model (Samuelson, 

1936, p76) is: 

𝐘𝐭 =  1 + α(1 + β)  𝐘𝐭−𝟏 −  𝛂𝛃 𝐘𝐭−𝟐       (8) 

Yt  =  1 + α [(1 + β)  Yt−1 −  β  Yt−2]  

Yt  =  1 + α [ Yt−1 + β Yt−1 −  β Yt−2 ] 

Yt  =  1 + α [ Yt−1 + β (Yt−1 −    Yt−2)] 

Yt  =  1 + α [ Yt−1 +  β (Yt −   Yt−1 ) − β (Yt −   Yt−1 ) + β (Yt−1 −    Yt−2)] 

Yt =  1 + α [Yt−1 +  β (Yt −   Yt−1 ) − β ((Yt −   Yt−1) − (Yt−1 −    Yt−2))];  Y′t =Yt −   Yt−1 

Yt  =  1 + α [Yt−1 +  β Y′t  − β ((Y′t −   Y′t−1)] 

Yt  =  1 + α Yt−1 +  αβ Y′t  − α β ((Y′t −   Y′t−1)] 

Yt  =  1 + α Yt −  α Yt + α Yt−1 +  αβ Y′t  − α β (Y′t −   Y′t−1)];  Y′′t =  Y′t −   Y′t−1 

Yt  =  1 + α Yt −  α(Yt - Yt−1) +  αβ Y′t  − α β Y′′t  

Yt  - α Yt =  1  −  αY′t  +  αβ Y′t  − α β Y′′t 

(1 – α) Yt =  1 − αY′t  +  αβ Y′t  − α β Y′′t 
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(1 – α) Yt =  1 + α(β − 1) Y′t  −  α β Y′′t 

α β Y′′t =  1 +  (α − 1) Yt + α(β − 1) Y′t 

Y′′t  =
1

α β 
+   

(α − 1)

α β
 Yt  +  

(β−1)

 β
  Y′t        (9) 

Applying the results from section the conversion procedure and mean value theorem, 

and taking the limit as the solution interval approaches zero, we have: 

ⅆ2Y(t)

ⅆt2
=

1

α β 
+  

(α − 1)

α β
 Y(t)  + 

(β−1)

 β
  

ⅆY(t)

ⅆt
      (10) 

ⅆY(t)

ⅆt
= X(t) 

ⅆ2Y(t)

ⅆt2
=

ⅆX(t)

ⅆt
 

  

From equation (2), we have 

Ct = α Yt-1 

Ct = α (Yt  − Yt + Yt-1) 

Ct = α (Yt  − (Yt − Yt-1));  Y ’t = Yt − Yt-1 

Ct = α (Yt  − Y ’t ) 

C(t) = α (Y(t) - 
ⅆY(t)

ⅆt
 )         (11) 

From equation (5), we have : 

It = α β (Yt-1 – Yt-2) 

It = α β ( (Yt − Yt-1 ) − ( (Yt− Yt-1 ) – (Yt-1 − Yt-2) ) ) 

It = α β ( Y’t  − ( Y’t− Y’t-1 ) ), taking the limit as the solution interval approaches to zero, 

I(t) = α β (  
ⅆY(t)

ⅆt
   −  

ⅆ2Y(t)

ⅆt2   )        (12) 

 

The system dynamics translation of equation (10) is shown in Fig. 2.6. 
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Fig. 2.6. Samuelson’s MA model converted in continuous-time 

 

 

 

Fig. 2.7. Discrete-time vs. continuous-time, α = 0.5,  β = 0.8 

Depending on the parameter’s values, the continuous-time and the discrete-time 

Samuelson’s multiplier-accelerator model can generate different behaviors. For 

example, Samuelson’s multiplier-accelerator continuous-time model generates a new 

region when the incremental Capital Output Ration beta =1 as compared to the discrete-

time version. For example, the graphs below in Fig. 2.8 are the results with alpha  = 0.5 
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and beta = 1 in discrete and continuous-time. In this region, the continuous-time model 

generates sustained oscillations whatever the policy change, for example, by increasing 

government spending. In contrast, with the discrete-time model, the system will reach 

equilibrium from year 13. 

   

 

 

 

 

 

 

Fig. 2.8. Discrete-time vs. continuous-time, α = 0.5,  β = 1 

 

 

2.6.5. Cobweb Model in Discrete-time 

The Cobweb model is the second model to compare the two modeling methods. The 

cobweb model is a dynamic microeconomic model that describes the behavior of prices 

and quantities in a market where there is a time delay between the adjustment of supply 

and demand. The suppliers decide how much to sell at ex-post based on the previous 

price and bring it forward to the market in the next period. The buyers, in ex-post, in the 

current period, when they discover the price, decide how much to buy. The transition 

between the two periods has to be specified, generally one time lag. 

The equations of the classical cobweb model in the discrete-time model are as follows 

(R.G. Allen, 1965, p.4) 

Dt = a + b ∗ Pt 

St = c + ⅆ ∗ Pt−1 

pt = g ∗ pt−1 

pt = Pt −  Pe ;  Pe is the equilibrium price 
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g =
ⅆ

c
 

The solution of this model is: 

pt = p0 ∗ gt or  

Pt = Pe + (P0 – Pe) ∗  gt 

 

We used the extended Cobweb model described in (R.G.D. Allen, 1965, pp. 13-14) and 

built it into system dynamics. This model introduces a price expectation on the supply 

side as 

𝑃𝑡−1 − 𝜌𝛥𝑃𝑡−2 ; where  0 < 𝜌 ≤ 1,  𝛥𝑃𝑡−2 is the price increase from period t-2,  

𝛥𝑃𝑡−2 =  𝑃𝑡−1 − 𝑃𝑡−2 

The equations of the extended model are as follows (R.G. Allen, 1965, p. 14, equation 

4): 

pt =   c (1 – 𝜌) pt−1 +  cρ pt−2          (13) 

pt = Pt – Pe 
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Fig. 2.9. Cobweb model in discrete-time 
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Fig. 2.10. Cobweb model outputs in discrete-time 

 

2.6.6. Cobweb Model in Continuous-time 

Interestingly, equation (13) is similar to Samuelson’s multiplier-accelerator discrete-

time second-order linear equation (8), Yt = 1 + α (1 + β)  Yt−1 −  αβ Yt−2  where β =

 − ρ , α = g = 
ⅆ

c
 (the supply curve and the demand curve ratio) and excluding 

government spending from the equation. The continuous-time solution from the 

discrete-time version of Samuelson’s multiplier-accelerator is:  

ⅆ2Y(t)

ⅆt2
=

1

α β 
+   

(α –  1)

α β
 Y(t)  +  

(β − 1)

 β
  

ⅆY(t)

ⅆt
 

Substituting β by −  ρ  anⅆ  α by g, we have: 

ⅆ2p(t)

ⅆt2 =   
(1−g)

g ρ
 p(t)  +  

(ρ+1)

 ρ
  

ⅆp(t)

ⅆt
       (14) 
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Fig. 2.11. Cobweb model in continuous-time 

 

The continuous-time version of this Cobweb model converted from the discrete-time 

version generates a different and inconsistent behavior from the same input parameters 

as in its original discrete-time version. The continuous-time version will have an impact 

on policy change. In this case, we will reject this continuous version and build a new 

one, empirically grounded, from scratch following the system dynamics standard 

method. 

One of the limitations of both discrete-time models, Samuelson’s multiplier-accelerator 

and the Cobweb, but discrete-time in general, is they do not have explicit stock, e.g., 

inventory of goods in the case of the Cobweb model. And in reality, for the Cobweb 

model, for example, it takes time to produce the goods. As the goods are made, they 

enter the stock and backlog before being shipped and sold to the market. 

Other variations of the Cobweb model incorporate stock of goods (R.G.D Allen, 1965, 
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pp. 15-19). However, even though the discrete-time version and the converted versions 

of these models specify the stock of goods (R.G.D. Allen, 1965, pp. 15-19), they do not 

explicitly model the stock or inventory of goods as done in system dynamics. 

 

2.6.7. Quasi-hyperbolic discount model 

This section will describe and build the third model based on the behavioral economics 

literature related to intertemporal choice. We will look at the present-bias model, the 

quasi-hyperbolic discount model. The quasi-hyperbolic discount model is a concept in 

behavioral economics that seeks to explain how people make decisions about rewards 

available at different points in time in the future. Unlike the standard exponential 

discounting model that assumes people are rational and discount future rewards at a 

constant rate, the quasi-hyperbolic discount model proposes that people use two 

different discount rates: a "present-biased" rate for short-term rewards and a "future-

biased" rate for long-term rewards. The present-biased rate reflects the higher value 

people place on instant gratification. The future-biased rate reflects the greater 

willingness to wait for delayed gratification and to receive larger rewards later. This 

means that people tend to prefer smaller rewards that are available immediately over 

larger rewards that will be available later. However, as the delay between the decision 

and the reward increases, people become more patient, and their discount rate shifts to 

the future-biased rate. The quasi-hyperbolic discount model has been used to explain a 

wide range of phenomena, such as procrastination, addiction, and savings behavior  

This model can be used as a molecule in a larger system dynamics structure to model 

intertemporal problems such as retirement lifecycle with a utility function and budget 

constraints specified. We will show how to faithfully reproduce the present-bias in 

system dynamics both in discrete-time and continuous-time. 

The quasi-hyperbolic discount model (Laibson, 1997) is described as follows:  

 Quasi − hyperbolic ⅆiscount (t) = {
1 , t = 0

βδt, t > 0
 , 0< β, δ <= 1     (15) 

“Note that the quasi-hyperbolic discount function is a discrete-time function with 
values {1, βδ, βδ2, βδ3, …}”, (Laibson, 1997, p. 450). 

The parameter 𝛿, which is the same as in the exponential discounting model, called the 
standard discount factor captures the long-run and time-consistent discounting, 
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whereas the parameter 𝛽, called the present bias factor captures the short-term 
impatience and time inconsistency discounting. When the beta factor is equal to 1, the 
present bias model is the same as the exponential discounting model.  

The system dynamics representation of equation (15) is shown in Fig. 2.13. To test and 
validate our model, we compare it with the exact analytical solution of the quasi-
hyperbolic function and ensure it replicates the behavioral economics literature results. 

Fig.1.12. below shows the behavior modes of the three discounting functions from the 
behavioral economics literature (Laibson, 1997, p.450).  

 
 

Fig. 2.12. Discount Functions, (Laibson, 1997, p. 450) 

 

Notice the function ⅆiscountt= a0  ∗  δt where a0 = 1 is the solution of the function 

ⅆiscountt  = δ ∗ ⅆiscountt−1 

These discounting functions can be reproduced with system dynamics tools using a 

solution interval of less than 1 as shown in Fig. 1.16. 
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Fig. 2.13. Quasi-hyperbolic discount model in discrete-time 

 

Here is an example of how to use the discrete-time version of the quasi-hyperbolic discount 

model can be used: 

The agent has an exogenous stream of income in N+1 periods Y0 , Y1 , , … ,  YN 

She can consume in each period Ct , save St = Yt – Ct, and earn a fixed interest r on her 

savings. 

Her instantaneous utility is: 

u(Ct) = ln(Ct) 

max
c0,c1,…,cN

U = ln(C0) + ∑ β ∗ δt ∗ ln(Ct)N
t=0  

s.t. budget constraint: 

∑
Ct

(1+r)t
N
t=0  = ∑

Yt

(1+r)t
N
t=0  
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2.6.8. Converting the discrete-time present-bias model into continuous-time 

In this section, we will convert the expression δt, t > 0 in equation (15) from discrete-

time to continuous-time. Let f(t) =  δt . 

f(t − 1) =  δt−1  

f(t − 1) =  δtδ−1  

f(t − 1) =  f(t)δ−1  

f(t) =  δf(t − 1)  

f(t) =   δf(t) −   δf(t) +  δf(t − 1)  

f(t) =  δf(t) − δ (f(t) − f(t − 1))   

f(t) −  δf(t) =  δf(t) − δ (f(t) − f(t − 1))   

− δ (f(t) − f(t − 1)) = (1 −  δ) f(t)  

δ (f(t) − f(t − 1)) = (δ − 1) f(t)  

f(t) − f(t − 1) =  −
(1− δ)

δ
 f(t) ; replacing f(t) − f(t − 1) by 

ⅆf(t)

ⅆt
 , we have 

ⅆf(t)

ⅆt
=  − 

(1− δ)

δ
 f(t)         (16) 

ⅆf(t)

ⅆt
=  − 𝜌 f(t) ; where 𝜌 = 

(1− δ)

δ
  is the discount rate    (17) 

f(t) =  e−ρt           (18) 

The continuous-time version of the converted discrete-time quasi-hyperbolic is: 

Converteⅆ Quasi − Hyperbolic Discount = {
1 , t = 0
β f(t), t > 0

 ,  0 <β, δ <= 1   (19) 

  

The system dynamics representation of equation (18) is shown in Fig. 1.14. below. The 

variable Initial Converted Exponential Discount f ( t )  is equal to 1.  
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Fig. 2.14. Quasi-hyperbolic discounting model in continuous-time 

converted from a discrete-time version 

 

We can see in Table. 1.1., that the behavior of this formulation is very close to the 

discrete-time version. However, at some points in time, the values of the quasi-hyperbolic 

discount functions of the discrete-time and converted continuous-time are slightly 

different. Therefore, a better formulation will be to first rewrite the delta discount 

function in continuous-time with the best match to its original discrete-time version. 

ln(δt) = ln(δ 𝑡)  

eln(δt) = eln(δ 𝑡) = 1 * eln(δ 𝑡)   

Let  g ( t ) = eln(δ t)          (20) 

Equation (20) is the exact analytical solution of   
ⅆg(t)

ⅆt
=  ln(δ 𝑡) g(t)   (21) 

The new continuous-time version of the discrete-time quasi-hyperbolic model is as 

follows: 

Quasi − Hyperbolic Discount = {
1 , t = 0
β g(t), t > 0

 , 0 < β, δ <= 1, g(t) = ln(δ 𝑡) g(t)  (22) 

 
The system dynamics representation of equation (22) is shown in Fig. 1.15 below, and 

the behavior mode is shown in Fig. 1.16.  
 

The individual has an exogenous stream of income in N+1 periods Y0 , Y1 , , … ,  YN 

She can consume in each period Ct , save St = Yt – Ct, and earn a fixed interest r on her savings 

in each period. 
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Her instantaneous utility is: 

u(Ct) = ln(Ct) 

max
c0,c1,…,cN

U =  ln(C0) +  ∫ β ∗ eln(δ)t ∗ ln(Ct)
𝑁

𝑡=0
  or  

max
c0,c1,…,cN

U =  ln(C0) +  ∫ β ∗ e−ρt ∗ ln(Ct)
𝑁

𝑡=0
   

s.t. budget constraint: 

∫   
Ct

(1+r)t 
N

t=0

 = ∫   
Yt

(1+r)t 
N

t=0

 

 

We correctly reproduced the quasi-hyperbolic model (Laibson, 1997, p. 450) in system 

dynamics continuous-time and discrete-time with a solution interval of less than 1. 

 

 
Fig. 2.15. Quasi-hyperbolic model in continuous-time 
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Time Quasi-Hyperbolic 

Discount Discrete-
time 

Quasi-Hyperbolic  
Discount Continuous-time 

Converted Quasi-
Hyperbolic Discount 

0 1.000 1.000 1.000 

1 1.000 1.000 1.000 

2 0.588 0.588 0.564 

3 0.582 0.582 0.547 

4 0.576 0.576 0.530 

5 0.571 0.571 0.514 

6 0.565 0.565 0.498 

7 0.559 0.559 0.483 

8 0.554 0.554 0.468 

9 0.548 0.548 0.454 

10 0.543 0.543 0.440 

 
Table. 2.1. Exponential discount functions comparison 

 
 

 

 
 

Fig. 2.16. Replication of discounting functions 
in discrete-time and continuous-time with a solution interval less than 1 
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The quasi-hyperbolic system dynamics molecule, either discrete or continuous-time, can be 

used in a larger system dynamics model to model intertemporal problems. 

 

2.7 When to use discrete-time and when to use continuous-time 

modeling 

Discrete-time is more appropriate for solving operational and tactical issues and where 

events occur in discrete-time (Lane and Morecroft). Discrete-time is also very useful in 

gaming, where the decisions are taken at discrete-time intervals and synchronously in the 

case of a multiplayer game. In reality and quite often, individuals make decisions at different 

points in time based on multiple sources of information at hand, for example, when 

comparing the current state and the desired state of the system to take corrective actions, and 

those decisions can be influenced by each individual’s perception, expectations and biases. A 

good example is the financial market, where decisions at the aggregate level are made in 

continuous-time. Therefore, continuous-time modeling is more appropriate, particularly in 

strategic decision situations where judgment, perception, and expectation play a major role. 

Nature integrates. Modeling problems from a system perspective using the continuous-time 

approach with stocks and flows, feedback loops, and time delay, enriched with behavioral 

economics structures, better captures how individuals make decisions and provide more 

insights to make better recommendations. Discreteness exists in systems. When building 

differential-difference models or a mixed of continuous-time and discrete-time models, 

always start with the continuous-time approach and then add discreteness when justified 

(Forrester, 1961, p.66):  

“When a  model has progressed to a point where such refinements are 

justified, and there is reason to believe that discreteness are has significant 

influence on system behavior discontinuous variables should be explored to 

determine their effect on the model”.  

The choice of the modeling approach should always come after the problem definition and 

the specification of the underlying assumptions. 
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2.8 Discussion and future research 

In this chapter, we presented a formal, teachable, and repeatable method of bringing 

decision-making structures from behavioral economics into system dynamics in a 

manner that is acceptable to both system dynamicists and economists and preserves the 

results from the behavioral economics literature. 

When building models using system dynamics and deciding which tools to use, 

whether discrete-time or continuous-time, we recommend starting with the problem 

definition and specifying the underlying assumptions, then, choose the modeling 

technique, discrete-time or continuous-time, which better matches the problem's 

underlying assumptions. The resulting model can be either fully discrete or fully 

continuous or mixed of discrete and continuous, i.e., with differential-difference 

equations. For a mix of discrete-time and continuous-time models, we suggest following 

Forrester’s recommendation to always start with continuous-time, test the model and 

when the continuous-time model is robust enough, then add the discrete-time 

structures. It is crucial to remember that during the conversion process from discrete-

time to continuous-time, the model's assumptions can implicitly change (not always) 

due to the differences in nature of the two types of equations, i.e., the difference and 

differential equations. There are situations where the converted continuous-time model 

matches its discrete-time original version without impacting policy change. However, 

these are exceptional situations. 

Some future areas of research about this topic would be (1) to define a method how 

for selecting a discretization technique for a specific model, (2) to analyze in detail and 

study the possibility of implementing Tarasov’s discretization with power-law memory 

technique into system dynamics software packages, (3) to compare and contrast the two 

continuous-time quasi-hyperbolic discount models presented in this chapter in terms of 

best fit with real data, (4) to develop more behavioral economics structures such as 

prospect theory, social preferences models in system dynamics using the method 

presented in this chapter or an extended version of this method and (5) to build an 

automated tool integrated into system dynamics software packages which convert 

discrete-time models into continuous-time using the method and the process described 

in this chapter. 
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“The two most powerful warriors are patience and time.” - Leo Tolstoy 

"Don't save what is left after spending; spend what is left after saving." - Warren Buffett 

 

 

Chapter 3 Improving a bridge: Dynamic 

Inconsistency and Self-

Control in Lifetime Saving 

3.1 Introduction 

The goal of this chapter is to explore and analyze a couple of modeling problems found in 

the paper published in the SDR (System Dynamics Review) 2019, titled “Building a bridge to 

behavioral economics: countervailing cognitive biases in lifetime saving decisions” and 

propose a solution based on best practices in system dynamics. 

First, we applaud the Bahaddin et al. attempt and contribution to bringing behavioral 

economics into system dynamics. The behavioral economics literature presents a feedback-

poor view of lifetime savings, whereas system dynamics offers a feedback-rich view in 

dynamic modeling. Developing a catalog of empirically grounded behavioral economics 

molecules and instructions for their proper use is very important. Most important economic 

choices are made over time and affect later decisions, most often, inheritably made in the face 

of fundamental uncertainty. Classical economic theory assumes that individuals are rational 

and their choices are driven by utility maximization. When individuals are faced with 

decisions that involve uncertainty, experiments have shown that people have difficulties and 

often seem to deviate systematically from making rational choices to maximize their utility. 

Their economic choices and decisions are usually ill-informed and influenced by cognitive 

biases and non-economics factors such as emotions. The emerging field of behavioral 

economics, which combines psychology and economics, has yielded important insights into 

people's choices. Behavioral economics studies the effects of psychological, cognitive, 

emotional, cultural, and social factors on the economic decisions of individuals. In other 

words, it uses psychology to understand theories of production, theories of the firm, 

household behavior, and institutions. 

The Bahaddin and al. research areas of interest are to understand better the effects of 
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interacting biased and how they cancel out. “The theorical problem of interest in our research 

centers on the countervailing cognitive biases, a less understood area of theory which 

hypothesizes that two competing cognitive biases can interact or even cancel out each other.” 

(Bahaddin et al. 2019). Their paper analyzes the optimal trade-offs between spending and 

saving for retirement using system dynamics modeling. The first model (feedback-poor) 

reproduces the theoretical lifetime utility results from the behavioral economics literature. 

The second one (feedback-poor) adds two cognitive biases that partially cancel each other out 

in a counterintuitive manner. The third model (feedback-rich) modifies the first to show how 

to replace an economic optimization calculation with a decision-making heuristic based on 

information feedback. 

We found a couple of modeling problems in their paper. Firstly, the formulation of the Last 

consumption variable in the model used as first-order control and to drain out everything left 

in the Wealth stock is sensitive to the solution interval. Secondly, Labor Income is modeled as 

a stock. In our view, it should be flow. Thirdly, the models presented by the authors are 

overall sensitive to the solution interval, and they choose a solution interval of 1. This is 

probably due to the authors’ perceived need for discrete-time modeling. But there is a better 

way to create discrete-time molecules in system dynamics with proper time shapes and 

insensitive to the solution interval. Fourthly, their models' formulation of the exponential 

discounting function is sensitive to the solution interval. We have a correction to this 

problem. Lastly, the authors present an outdated discounting model and do not explain why 

they chose it. Moreover, they cite but do not use a more recent discounting model, the quasi-

hyperbolic, that is standard in the behavioral economics literature. We will develop a system 

dynamics molecule or generic structure for this model. 

The plan of this chapter is as follows. The first section presents an improvement to the 

model presented in the SDR paper by describing the problems. Then, we offer a solution to 

each of them with a proper way to build the behavioral economics model using the system 

dynamics approach with best practices (Forrester, 1971). The second section presents the 

life-cycle model from their paper with an introduction to the present-bias hyperbolic 

discounting model. In the third section, we will run some experiments and explore 

countervailing biases on the feedback-poor version of the model. In the fourth section, we will 

follow the authors’ approach and extend our model to the feedback-rich version. The final 

section lays out further research and directions. 
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3.2 Improving Bahaddin et al.’s model 

In Fig. 3.1, we highlighted areas in the authors’ model where we found problems. Each 

of them will be looked at in detail, and a solution will be given. 

 

 

Fig. 3.1. Mapping identified problems in the authors’ model 

 

Last Consumption and first-order control 

The first problem is related to the first-order control in the Wealth stock. The Last 

consumption auxiliary variable in their model captures the fact that the individual will 

not save for the time after T+1. In the last period T, she will consume everything that is 

left. The equations in their models are as follows: 

Last consumption = IF THEN ELSE( Time > (FINAL TIME - TIME STEP / 2) - 1, "Labor Income 

(Y)" + Wealth Return + "Wealth (W')" / TIME STEP , 0) ~$/year 

Current Consumption = (min (Unconstrained Consumption,  "Wealth (W')" / TIME STEP )) * 

(Death Switch) + Last Consumption ~$/year 

Death Switch = 1+STEP(-1, FINAL TIME-1) ~dimentionless 

TIME STEP = 1 ~year 

Consumption increases when the solution interval (i.e., the TIME STEP in the 

equation) is smaller than 1. How the solution interval is used in Consumption and Last 
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Consumption shows that these equations are sensitive to the solution interval. 

Therefore, the individuals will have different utility depending on the value of the 

solution interval. Therefore, we conclude that the model is not stable.  

To fix this problem, we propose replacing Last consumption with an outflow and 

renaming Consumption as Current consumption. The Current consumption flow and the 

new Last Consumption flow are exclusive and separated by the variable Death Time. 

Current Consumption equals zero from a year before Death Time. Last Consumption flow 

turns on and drains out everything left in the Wealth stock from the last year at time T. 

The new equations are as follows: 

Current Consumption = IF THEN ELSE(Time <= Death Time - 1, ("Discrete Current Consumption 

( DCC )" ) , 0) ~$/year 

Last Consumption = IF THEN ELSE(Time = Death Time - TIME STEP, "Wealth ( W )" / TIME 

STEP, 0) ~$/year 

Death time = FINAL TIME  ~year 

TIME STEP = 0.0078125 ~year 

 

Labor Income equation 

The second problem we identified in the authors’ model is how income is modeled. 

The authors' model has two income-related equations: Labor Income Y modeled as 

stock and Income modeled as flow. One of the model assumptions is that individuals 

have a fixed income till the age of 58, the retirement age. As the amount is constant, the 

growth rate G should be 0 instead of 1 defined in the authors’ model. Even though in 

the authors’ paper, Labor Income (Y) modeled as stock captures that behavior, we 

recommend modeling income as flow to follow a stock-flow consistency approach 

(Godley, Lavoie 2012) with a STEP function to switch Labor Income (Y) to 0 from the 

retirement age at 58. The new Labor Income (Y) flow equation is as follows: 

Labor Income (Y) = Normal Labor Income (Y) * (1 + Income Growth Rate (G)) * (1 - Retirement 

Switch) / Time to Chg Labor Income (Y) ~$/year 

Normal Labor Income (Y) = 1000 ~$ 

Income Growth Rate (G) = 0 ~fraction 
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Retirement Switch = STEP (1, Retirement Time + TIME STEP) ~dimentionless 

Retirement Time = 58 ~years 

Time to Chg Labor Income (Y) = 1 ~year 

 

Solution interval 

The third problem we identified in the authors’ model is related to the value of the 

solution interval used in the model. The solution interval, also called time step is the 

length of time interval at which the simulation software solves the model equations 

and calculates the values of all variables. Any change in the model takes at least a time 

period equal to the solution interval to occur. 

The value of the model solution interval in the authors’ paper is set to 1. In system 

dynamics modeling, we generally chose the value of solution interval smaller than 1. A 

solution interval of 1 deviates from the traditional system dynamics paradigm. The first 

test we did was to modify the solution interval's value to check the model's robustness. 

This shows that model in the authors’ paper is sensitive to solution interval, indicating 

a possible integration error. We conclude that the model is not robust enough. 

Understanding the concept and the mechanics of the solution interval used in system 

dynamics modeling is important in building robust system dynamics models. Having a 

solution interval too large leads to an integration error; therefore, we suggest choosing 

a small solution interval. On the other hand, having a solution interval too small 

generates a round-off error (Radzicki, 2019). It is important to find a tradeoff between 

these two extremes. How, then, smaller the solution interval should be? The smaller the 

solution interval, the more calculations the computer needs to do, the more time it 

takes to do the computations, and the larger the results files generated by the 

simulation will be. With modern-day computers and computing power, this is no longer 

an issue. 

Nevertheless, modelers should be aware of the tradeoff between the size of the 

solution interval and the processing time/storage requirements. Therefore, the second 

question we might ask is if there is any rule of thumb for choosing the solution interval. 

The answer to this question depends on the time constant in the model. 
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If the model contains higher order delays, for example, third order delay (resp. n-th 

order delay), the smallest time constant is one-third (resp. 1/n) of the total delay time. 

A simulation model where the solution interval exceeds the time constant produces 

incorrect results. The solution interval should be a fraction less than half of the shortest 

delay existing in the system (Forrester, 1971). 

A robust model should have a solution interval that is insensitive to the behavior 

generated by the model. Therefore, when simulating a model and ensuring it is not 

sensitive to solution interval, it is always recommended to repeatedly cut the solution 

interval in half and check that the behavior generated by the model is caused by its 

structure rather than an error from the change in the solution interval. 

 

Exponential discounting function formulation 

The fourth problem we found in the authors’ paper is related to the formulation of the 

exponential discounting or discounted utility function formulation used in the model. 

The exponential discounting function (Samuelson, 1936), is defined as follows:  

𝐸𝑥𝑝𝑜𝑛ⅇ𝑛𝑡𝑖𝑎𝑙 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 (𝑡) = {
1 , 𝑡 = 0

𝛿𝑡 , 𝑡 > 0
     (1) 

0<= 𝛿<=1, where 𝛿 is the discount factor 

The equations in the authors’ paper related to the exponential discount function are 

defined as follows: 

Discount Factor over Time = INTEG (Discount Factor Rate, 1), ~ dimentionless 

Discount Factor Rate = (("Discount Factor (δ)"-1) * Discount Factor over Time)/TIME STEP, ~ 

dimentionless/year 

"Discount Factor (δ)" = 0.99, ~fraction 

Initial Discount Factor over Time = 1, ~dimentionless 

Since the Discount Factor over Time equation depends on the solution interval (i.e.  

TIME STEP), this formulation generates a different behavior when the solution interval 

is less than 1. When the solution interval is smaller than 1, the Discount Factor over 

Time,  δ,  becomes steeper. To illustrate that, we did a test to compare and contrast the 

exponential discounting model in their paper with the exact analytical solution of 𝛿𝑡 
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Exponential Discounting
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Discount Factor over Time

represented in equation (1) with a solution interval equal to 0.0625. As illustrated in 

Fig. 2.2, the simulation results show a significant discrepancy between the two models. 

 

 

Fig.3.2. Exponential 

discounting discrepancy 

between the authors’ 

model  and the exact 

analytical solution when 

the solution interval is 

changed from 1 to 0.0625 

 

 

 

To fix this problem, we will use the discrete-time molecule developed in chapter one 

Since 𝛿 ≤  1, a better and “natural” formulation would be to model “Chg in Exponential 

Discounting” as an outflow since Exponential Discounting generates an exponential 

decay behavior. 

As illustrated in Fig. 3.3., the system dynamics model formulation matches exactly the 

exact analytical solution, 𝛿𝑡 , whatever the value of the solution interval is smaller than 

1. This new discounting model is insensitive to the solution interval.  

Any subsequent analysis and policy recommendations are questionable if there is a 

discrepancy between a model formulation and its mathematical representation. 
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Fig. 3.3. Exponential 

discounting model and 

exact analytical 

solution 

 

 

 

 

 

Quasi-hyperbolic discounting 

The fifth and last problem is related to the type of discounting model used, the exponential 

discounting or discounted utility (DU) model. Their paper doesn’t explain the choice of this 

model as opposed to the other and more recent forms of discounting models, such as present-

bias (Laibson, 1997) even though it is referenced in the same paper (Bahaddin et al., 2019, 

pp.190, 191), mentioned in (Bahaddin et al., 2017) and largely documented in the behavioral 

economics literature. 

Almost all current choices have future consequences which involve a certain degree of 

uncertainty and an intertemporal tradeoff and are influenced by cognitive biases. There are 

generally two types of intertemporal choices: 

• Choices involving investment, such as consumption versus saving and its impact on 

retirement, building a new plan, and equipment, have immediate costs and delayed 

benefits characterize these choices. 

• Immediate benefits and delayed costs characterize choices involving temptation, such as 

addiction, and procrastination. 

The exponential discounting model has a constant discounting factor, meaning that the 

preference of today's self versus future self is discounted at the same rate and constant over 

time. The main feature of this model is that it preserves time or dynamic consistency. This 

means that the trade-offs between receiving rewards today and receiving them with a delay 

are independent of when that delay occurs. In other words, an agent with a time consistency 

preference does not change her mind in the future since her perception of the future is 

precisely the same as she planned it would be. Unfortunately, experiments widely 

documented in the behavioral economics literature have shown that agents often seem to 

Exponential Discounting
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deviate systematically from the implications of the exponential, time-consistent discounting 

model. 

Evidence from psychology has shown that agents tend to put more psychological weight on 

short-term horizon tradeoffs at the expense of their long-term interests. For example, a 

person would prefer a candy today to two candies tomorrow, but she would prefer two 

candies in 101 days to one in 100 days. But 100 days from now, she would ostensibly again 

choose one candy immediately instead of two the next day. Her oneself will change again, 

and she will act impatiently. The tradeoffs between today and tomorrow are treated more 

impatiently than between 100 days and 101 days. For the long horizon, agents tend to be 

more patient. The rate at which agents discount future rewards declines as the length of the 

delay increases. That is, they have a preference for smaller sooner rewards and larger later 

rewards (Loewenstein et al. Prelec, 1992, Frederick et al., 2002). This model is called time 

inconsistent instead of the time consistent exponential discounting model. 

First used by Phelps and al. 1968 and later by Laibson 1997, the quasi-hyperbolic discount 

function is a discrete-time function expressed as a set of values {1, βδ, βδ2, βδ3, …}. It is a 

time-inconsistent discounting model, also called the present-bias model. 

Laibson noted that “the discrete-time quasi-hyperbolic function has been connected to 

generate the smooth curve” [32, p. 8]. In the first chapter of this dissertation, we will develop 

the quasi-hyperbolic model in discrete and continuous-time in system dynamics. In this 

chapter, we will use the discrete. 

 𝑄𝑢𝑎𝑠𝑖 − ℎ𝑦𝑝ⅇ𝑟𝑏𝑜𝑙𝑖𝑐 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (𝑡) = {
1 , 𝑡 = 0

𝛽𝛿𝑡 , 𝑡 > 0
 , 0< 𝛽, 𝛿 <= 1  (2) 

The parameter 𝛿, which is the same as in the exponential discounting model, called the 

standard discount factor captures the long-run and time-consistent discounting. In contrast, 

the parameter 𝛽, called the present bias factor, captures the short-term impatience and time 

inconsistency discounting. When the beta factor equals 1, the present-bias model is the same 

as the exponential discounting model. 

The system dynamics representation of equation (2) is shown in Fig. 3.6. To test and 

validate our model, we compare it with the exact analytical solution of the quasi-hyperbolic 

function and ensure it replicates the behavioral economics literature results. 

Fig. 3.4. below shows the behavior of the three discounting functions from the behavioral 
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Fig. 3. 4. Discount Functions 

 

These discounting functions can be reproduced with system dynamics tools using a 

solution interval of 1, as shown in Fig. 3.5. But as discussed earlier, the proper way to 

represent these functions in system dynamics is to use a solution interval of less than 1. 

 

 

Fig. 3.5. Replication 

of discounting 

functions with a 

solution interval 

equal to 1 

 

 

 

 

 

 

 

We will reuse the system dynamics quasi-hyperbolic molecule developed in chapter 

one. This chapter will use the discrete-time version since Bahaddin’s model is in 

discrete-time. 
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Fig. 3.6. Discrete 

time quasi-

hyperbolic 

discounting molecule 

with solution 

interval less than 1,  

β = 0.6, δ = 0.97  

 

 

 

 

 

3.3 Lifetime savings and utility model 

In this section, we will use the system dynamics tool to replicate the lifetime savings or 

life-cycle model described in the authors’ paper but apply the solutions to the problems 

discussed in the previous sections. We will start with the feedback-poor view model and 

portray the lifetime utility model. 

Irvin Fisher introduced the lifetime savings model, which Franco Modigliani later 

proposed. It is an economic concept analyzing individual consumption and saving behavior. 

The economic agents aim to maximize their consumption and savings from the time they 

enter the labor market. The model assumes that individuals have a constant income 

throughout their lifetime. Bahaddin et al. used Modigliani’s life-cycle model, also called the 

standard life-cycle hypothesis, LCH, with the standard Constant Relative Risk Aversion 

(CRRA) utility function, u(𝐶𝑡).  

 

u (Ct) = {
 
Ct

1−ρ

1−ρ
 ,    if ρ <  1

ln (Ct) , if ρ =  1
 

 

The individual will not save at time T+1 and will consume everything left before she dies. 

Therefore, we will use the quasi-hyperbolic function (Laibson, 1997) instead of the 

exponential discounting function described in the previous sections.  

Quasi-Hyperbolic discounting in discrete-time
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In this model, the individual starts with an initial wealth (W0). She receives at each period 

the same amount of labor income (Yt) and interest on income at interest (r). She chooses to 

consume an amount of (Ct) at each period to maximize their utility subject to their income 

and wealth. A key assumption in the model is the following:  

 

Yt = Yt+1                         (3) 

Wt+1 = (1+r) * (Wt   + Yt  - Ct )     (4) 

 

max
ct,ct+1 ,...,cT 

U = u(c1) + β ∑ δtu(ct)T
t=1     (5) 

 

s.t. budget constraint: 

∑ Ct
N
t=0  = ∑ Wt

N
t=0  

 

β= 0.6, δ = 0.97, r = 0.05 

0≤ β ≤ 1, 0 ≤ δ ≤ 1 

 

The lifetime saving model in system dynamics is shown in Fig. 3.7. 

We will use the Powell optimization  algorithm in the Vensim software package to optimize 

the lifetime utility U. The variable being optimized in the model is the Optimal Lifetime 

Utility, and the optimization parameters are Optimal Growth Rate and Initial Optimal 

Consumption Growth. 

We run optimization runs with the discrete-time quasi-hyperbolic discounting function. As 

a base case, we will use β = 1 for the optimization to have a baseline to compare our model 

with Bahaddin’s model. 

The optimal values found with β = 1,  r = 0.05 and ρ = 0.67 are: 

Optimization with the discrete-time quasi-hyperbolic function: 

Initial Optimal Consumption = 235.543 

Optimal Consumption Growth Rate = 0.0595243 

Our Optimal Consumption Growth Rate is the same as in Bahaddin’s model. However, their Initial 

Optimal Consumption is different than ours. Their Initial Optimal Consumption is 259.1 versus 

235.54. 

The lifetime utility can be optimized using the Euler equation in the behavioral economic 
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literature. This is similar to the approach used in Bahaddin’s paper (Bahaddin, 2019) 

(
Ct+1

Ct
)

ρ
= (1 + r) ∗ δ * [C′t+1 ∗ (β − 1) + 1]  (Laibson, 1996)   (7) 

where C′
t+1 is the marginal propensity to consume 

When 𝛽 =  1, the Euler equation becomes:  

(
Ct+1

Ct
)

ρ
= (1 + r) ∗ δ         (8) 

To gain confidence in our model, we will compare the simulation results with the outcome 

from the Euler equation using Eq. 9. We follow the same approach as in Bahaddin’s paper.  

(
Ct+1

Ct
)

ρ
= (1 + r) ∗ δ =  (1 + 0.05)  ∗  0.99 = 1.03950   (9) 

The consumption ratio from the simulation is given by:  

(
Ct+1

Ct
)

simulation

ρ
=  (1 + Ψ)ρ        (10) 

𝛹 is the optimal consumption growth rate in the model 

(
Ct+1

Ct
)

simulation

ρ
=  (1 + 0.0595248)0.67 = 1.0394999   (11) 

 

Eq. 9 and 11 show the consumption ratio from the Euler equation matches its 

corresponding value from the simulation. This result gives more confidence in our model. 

This result is in line with Bahaddin’s optimal model. The present-bias do not influence these 

parameters and optimization since β = 1 in this case. 
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Behavior of wealth and consumption, β = 0.6
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Fig. 3.7. The lifetime savings with quasi-hyperbolic discounting model 
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Fig. 3.8. Optimal behavior of wealth, consumption, and real lifetime utility, 

 δ =  0.99 , β = 1 (left graphs), β = 0.6 (right graphs) 

 

 

 

As shown in Fig.3.8, The optimal lifetime utility of present-biased or time 

inconsistency individuals (β = 0.6), is 39.4% lower than time consistent individuals (β = 

1). In addition, consumption (resp. wealth) of time-inconsistent individuals is  2.6% 

(resp. 3.6%) lower than of time-consistent, unbiased individuals. 

 

3.4 Feedback-poor countervailing biases model 

In this section, we use the feedback-poor model introduced in Fig. 3.7 to explore the 

implications and effects of three biases on individuals’ utility: the misperception of interest 

rate (r), the coefficient of relative risk aversion (𝜌), and the present-bias (β). First, we run a 

few experiments to look at the utility of an induvial who believes that the interest rate (r) and 

the coefficient of relative risk aversion (𝜌) are 20 percent higher than their actual values and 

impatient with a present bias (β) equal to 0.6. 

We ran a few simulations from the actual values to better understand how these biases 

interact and compared them with the optimal behavior discussed in previous sections. The 

first simulation, optimization scenario #2 from Table 2.1, captures the overconfidence bias 

of individuals who believe the interest rate (r) is higher than 20% of their actual values. The 

second simulation, optimization scenario #3, captures the misperception of risk of 

individuals with a coefficient of relative risk aversion (𝜌) of 20 percent higher than their 

actual values. Finally, the third simulation, optimization scenario #3, shows the 

countervailing biases between the interest rate (r) and misperception of risk of individuals 

with and the coefficient of relative risk aversion (𝜌). We also did sensitivity analysis to find 
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the combination of the parameter range of the interest rate (r) and the coefficient of relative 

risk aversion (𝜌) where the optimal lifetime can be found. 

The introduction of the present-bias in the model has s significant impact on the lifetime 

utility. In the optimized scenario #4 in Table. 2.1, the Bahaddin’ s model with the classical 

exponential discounting produced a normalized lifetime utility of 0.97 versus 0.54 from our 

model with the present-bias, quasi-hyperbolic discounting. 

 
  

 
 
 
 

 
Fig. 3.9. Actual, 
optimal and biased 
behavior of a time 
inconsistent 
individuals who 
misperceive r and 𝜌 
to be both 20% 
higher than their 
actual values and a 
present-biased β = 
0.6. 
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  Bahaddin et al. (β = 1)   Bah et al. (β = 1) Bah et al. (β = 0.6) 

Optimized Scenario 
Normalized 

Consumption 
Growth 

Normalized 
Lifetime 

Utility 
  

Normalized 
Consumption 

Growth 

Normalized 
Lifetime 

Utility 

Normalized 
Consumption 

Growth 

Normalized 
Lifetime 

Utility 

                

1: The individual is 
unbiased 

1.0000 1.0000   1.0000 1.0000 - - 

                
2: The individual 
misperceives r to be 20% 
higher than its real value 

1.2530 0.9698   1.2537 0.9090 1.2311 0.5505 

                
3: The individual 
misperceives ρ to be 20% 
higher than its real value 

0.8292 0.9968   0.8293 0.9969 0.8050 0.6034 

                
4: The individual 
misperceives ρ to be 
24.3% higher and r to be 
20% higher than their 
real values 

1.0013 (*) 0.9702   1.0013 (*) 0.8980 0.9778 0.5441 

                
5: The individual 
misperceives ρ to be 
21.7% higher and r to be 
20% higher than their 
real values 

1.0233 0.9703   1.0234 0.8985 0.9999 (*) 0.5444 

                
6: The individual 
misperceives ρ to be 10% 
higher and r to be 20% 
higher than their real 
values 

1.1353 0.9720   1.1360 0.9084 1.1125 0.5798 

                

 
(*) Consumption growth rate where the two biases called out 

Table 3.1. Normalized final lifetime utility for an unbiased individual compared to ten optimized scenarios with 
varying perceptual biases 

 

 

3.5 Feedback-rich lifetime saving model 

The feedback-rich model is an example where the two fields of behavioral economics 

and system dynamics are bridged together. The difference between the feedback-poor 

optimal model and the feedback-rich heuristic model is how consumption is derived. In 

the heuristic model, the individuals consider savings after a minimum consumption 

level from different spending categories, such as the cost of rent, car loan, etc., is met 

(Stone, 1954, Achury et al., 2012, Chetty and Szeidl, 2016). Bahaddin et al. incorporated 

this concept as a  Minimum Consumption exogenous variable in their heuristic, 

feedback-rich model. The authors’ heuristic model is derived from their feedback-poor 

optimal model. Therefore, the problems identified in this chapter's previous sections are 
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also present in their heuristic model, such as the use of a solution internal of 1, the 

formulation of the income equation and discount function, etc. Our model is based on 

Bahaddin’s work but integrates the solutions discussed in the previous sections in this 

chapter. 

The heuristic model captures three loops. The new Minimum Consumption variable is the 

source of the two new loops. The first loop R1, also in the optimal feedback-poor model, 

is a first-order positive or reinforcing feedback loop that generates new wealth with an 

annual interest rate of 5%. The second loop B1 is a negative or balancing loop. As income 

rises, the Risk-Adjusted Consumption, the total income minus the minimum income, also 

increases. As Risk-Adjusted Consumption rises, the Current Consumption rises, and the 

stock of Wealth depletes, closing the negative feedback loop. The third loop R2 or the 

second positive feedback loop, is driven by the table function, which captures the theory 

of savings in the variable Effect of Coefficient of Relative Risk Aversion. When the total 

income to Minimum Consumption ratio is less than 1, the individual will not save. As the 

ratio of savings fraction increases above 1, the individual will save a larger and larger 

fraction of Risk-Adjusted Savings. The new model and the simulation results are shown in 

Fig. 3.10. 

Consumption in the heuristic model is higher in the beginning than in the feedback-

poor optimal model and is nearly constant until retirement time, when it starts to 

decline.  Moreover, as illustrated in Fig. 3.10, the heuristic endogenous model does not 

produce an optimal solution like the feedback-poor model. By comparison, consumption 

in the optimal model rises exponentially till death time. The heuristic model seems more 

realistic than the feedback-poor optimal model. 
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Fig. 3.10. Feedback-rich version of a simple heuristic consumption model 

 
 

 

 

 

 

     

 

 
 

 
 
 

 
 

 
 
 
 
 
 

 
 
 

 

Fig. 3.11. Feedback-poor optimal model and feedback-rich heuristic model behavior modes 
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3.6 Discussion and future research 

In this chapter, we identified some modeling problems found in Bahaddin et al. paper 

published in the System Dynamics Review 2019 titled “Building a bridge to behavioral 

economics: countervailing cognitive biases in lifetime saving decisions”. We offered 

solutions to these problems using best practices in system dynamics. We have also 

demonstrated that our models are consistent with those developed in the behavioral 

literature. Moreover, this chapter shows the importance of model testing to build 

confidence in system dynamics models and ensure the models respond plausibly under 

extreme conditions set on the parameter values and policies (Homer, 1993). One of the 

first tests we recommend is to ensure the model is not sensitive to the solution interval. 

We also extended the model incorporating a quasi-hyperbolic discounting or present-

bias model and developed this model as a generic structure or molecule.  

As other areas of research, we suggest (1) investigating the use of cumulate prospect 

theory (Kahneman et al. 1979), which overcome the Allais paradox and replace the 

expected utility formulation in both models, the countervailing bias and the heuristic 

model (2) analyze present-bias individuals separately as sophisticated and naïve and 

(3) run surveys or use statistical techniques to estimate the biased parameters in both 

models. We also suggest (4) exploring and analyzing the heuristic model replacing the 

standard lifecycle model based on Modigliani’s theory with Shefrin and Thaler’s 

behavioral lifecycle model (BLC. Shefrin and Thaler have criticized Modigliani’s life-

cycle hypothesis model (LCH) (Shefrin, Thaler, 1988). They extended and enriched the 

LCH model with behavioral components. The main difference between the two theories 

is that the BLC considers the psychological and social factors influencing people's 

spending and saving behavior. 

In contrast, Modigliani's LCH model assumes that people are rational and make 

decisions in their best interest based on their lifetime income and consumption goals. 

Thaler and Shefrin added three main components to the BLC model: self-control, 

mental accounting, and framing. BLC assumes that households treat components of 

their wealth as nonfungible. 
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Chapter 4 Revisiting Modigliani’s and 

Thaler s Life-Cycle 

Hypothesis Models 

4.1 Introduction 

This third chapter is an application of the first two chapters. We will revisit, compare and 

contrast two life time saving models developed by two Nobel laureates, Franco Modigliani, 

and Richard Thaler. Modigliani's Standard Lifecycle Hypothesis (LCH) and Thaler's Behavioral 

Lifecycle Hypothesis (BLC) are two influential theories in the field of economics that attempt 

to explain how individuals manage their consumption and savings throughout their lifetime. 

While both views share some assumptions about individuals’ consumption and saving over 

time, they differ in treating several key factors, such as the role of psychological biases and 

the importance of income fungibility. In recent years, there has been a growing interest in 

revisiting these models and exploring their assumptions and limitations. By reviewing these 

models, we can better understand the complex interplay between economic factors and 

psychological biases that shape individual consumption behavior. In this exploration, we will 

reproduce the LCH model and build a simple BLC model from (Shefrin and Thaler, 1981 and 

1988) in system dynamics. We will discuss their similarities and differences and how they 

have influenced our understanding of individual consumption and saving lifetime behavior in 

economics.  

System Dynamics is an interdisciplinary methodology and field of study that focuses on 

understanding and managing the behavior of complex systems over time. Jay W. Forrester 

developed it at MIT in the early 50s, and has since been widely applied in various domains, 

including business, engineering, public policy, environmental management, and social 

sciences. System dynamics allows for the representation of feedback loops, time delays, 

nonlinearities, soft variables, etc., which are critical in understanding how individual 

behaviors and decisions interact over time. It is a method, technique, and tool which helps 

identify unintended consequences and leverage points in complex systems. System dynamics 

can help decision-makers define better policies and redesign better and more robust systems. 

The standard lifecycle hypothesis model developed in the early 1950s is one of the most 

used models to explain an individual's consumption behavior over their lifetime. This model 
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considers a set of factors such the age, income, consumption, and budget constraints. This 

model's primary assumption is that consumers seeking to maximize their utility throughout 

their lifetime are rational and forward planning. Modigliani’s life-cycle theory has been 

criticized by behavioral economists (Shefrin, Thaler, 1988). Thaler and Shefrin suggest that 

many people may lack the self-control to reduce spending now and save more for the future. 

Therefore, they extended Modigliani’s model with behavioral components. One of the main 

differences between the two theories is that the BLC considers the psychological and social 

factors that influence people's spending and saving behavior. 

In contrast, Modigliani's LCH model assumes that people are rational and make decisions 

in their best interest based on their lifetime income and consumption goals. Shefrin and 

Thaler added three main components to the BLC model: self-control, mental accounting, and 

framing. According to the BLC model, self-control is a key determinant of an individual's 

financial success over their lifetime. It refers to an individual's ability to regulate behavior, 

resist instant gratification, and make choices that align with long-term goals. Mental 

accounting refers to the way individuals categorize and allocate their financial resources. The 

mental accounting component suggests that individuals do not necessarily treat all money as 

equivalent and may assign different values and priorities to various sources or uses of money. 

The third component, framing, refers to how individuals perceive and interpret information 

based on the context in which it is presented, and how the information is presented can 

influence an individual's decision-making.  

The plan of this chapter is as follows. In the second section, we will reproduce 

Modigliani’s Standard LCH model in system dynamics. We will first start by building a simple 

model of the lifecycle to give an intuition of the key concepts of individuals' consumption and 

saving behavior over their lifetime. We will then extend this model, adding the key 

assumptions of Modigliani’s and Brumberg’s Standard Lifecycle Hypothesis model. Finally, we 

will run the model to ensure we reproduce the same results as in the economics literature. In 

the third section, we will build a simple BLC model based on Shefrin’s and Thaler’s 

description (Shefrin and Thaler, 1988) in system dynamics. Before building the BLC model in 

System Dynamics, we will explore and explain the key behavioral components Thaler and 

Shefrin incorporated into their model. We will then present the model's assumptions and 

explain how we will build each behavioral component in system dynamics. In the fourth 

section, we will run the model to test two of Shefrin’s and Thaler’s predictions from their 
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paper.  The final section lays out further research and directions. 

 

4.2 Modigliani’s life-cycle hypothesis model  

Modigliani’s and Brumberg’s lifecycle hypothesis paper was first published (Kurihara, 

1952) and then in Modigliani’s collected papers book in 2005. This chapter presents a theory 

of lifetime saving and consumption. The theory of consumption is not new. Many other 

influential authors have studied and published about consumption in economics. Some of the 

most notable include:  

John Maynard Keynes is widely regarded as one of the most influential economists of the 

20th century, and his work on consumption and saving is particularly influential. In his 1936 

book "The General Theory of Employment, Interest and Money", Keynes argued that 

consumption and saving decisions are driven by a combination of current income, 

expectations of future income,  psychology and uncertainty. In this book, he stated:  

“The fundamental psychological law, upon which we are entitled to depend 

with great confidence both a priori from our knowledge of human nature and 

from the detailed facts of experience, is that men are disposed, as a rule and on 

the average, to increase their consumption as their income increases, but not 

by as much as the increase in their income.” 

Milton Friedman (Friedman, 1957), another Nobel laureate in 1985, is best known for his 

work on the permanent income hypothesis of consumption, which argues that individuals aim 

to maintain a stable level of consumption over time based on their expected long-term 

income. 

James Tobin (Tobin, 1958), another Nobel laureate in 1981, developed a portfolio theory of 

investment, which has important implications for consumption decisions. Tobin argued that 

individuals balance expected returns and risks of different investments when making 

consumption and saving decisions. His theory emphasizes the role of financial market 

conditions and investment behavior in influencing consumption decisions. 

Recently, two contemporary economists, Robert Hall, and Gregory Mankiw, made important 

contributions to the study of consumption in macroeconomics. They have developed models 

of consumption that incorporate features such as liquidity constraints, habit formation,  and 

the role of expectations in driving consumption decisions.  
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The life-cycle consumption theory states that individuals save during their working time, 

when they receive income to fund their retirement and dis-save later during their retirement 

time. The model assumes that individuals may be more likely to treat their income or assets 

as a single, interchangeable pool of resources. In other words, they treat their income and 

wealth as fungible. 

More specifically, the model assumes that individuals 

• plan their consumption and saving decisions according to a fixed lifespan 

• expect to live another T years when they enter the job market 

• maintain the same level of consumption and wish to have the smoothest possible 

path of consumption throughout their lifetime 

• retire R years from the time they enter the job market 

• expect to earn a fixed income Y per year 

• have a wealth, W, coming from their income and from which they use for their 

consumption 

• expect neither to receive nor a desire to leave an inheritance  

• have rational expectations about their future income and consumption, and they use 

this information to make consumption and saving decisions 

 

The lifecycle hypothesis predicts wealth accumulation follows a “hump-shaped” behavior 

that is low at the beginning of adulthood called the dependency phase, peaks at the 

retirement age, called the maturity phase, and then declines in old age during retirement.  

The model below in Fig. 4.1. is a simple model of lifecycle, which gives an intuition of the key 

concepts of consumption, saving, and wealth of individuals’  lifetime behavior. This model 

assumes a fixed amount of income accumulating to generate wealth, which the individual 

consumes. The consumption C, depends on wealth W, income Y, retirement year R, and 

lifespan T.  

𝐶 =
𝑊+𝑅𝑌

𝑇
    (1) 

𝐶 =
1

𝑇
  W+  

𝑅

𝑇
 Y    (2) 

Subject to budget constraints: 

Total Income = Total Consumption + Total Saving. 
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To model individuals’ rational behavior, we use the exponential discounting function. 

However, psychology, empirical, and behavioral economics studies (Anslie, 1975), (Thaler, 

1981), (Laibson, 1997) and others have rejected the exponential discounting formulation and 

replaced it with the hyperbolic and quasi-hyperbolic discounting function. 

 

Fig. 4.1. Simple Life-cycle hypothesis model 
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Fig. 4.2. Wealth and Saving and Dis-Saving 

 

We build a new version of the standard lifecycle hypothesis by changing the consumption 

function from the previous model. We ran the model and optimized the lifetime utility from 

the two marginal propensities, alpha, and beta, using the Powell built-in function in Vensim 

system dynamics software. The marginal propensity to consume out of income, alpha, out of 

income represents the fraction of an additional unit of income that individuals choose to 

consume and measures the responsiveness of consumption to changes in income. The second 

parameter, beta, is the marginal propensity to consume out of wealth, representing the 

fraction of additional wealth that individuals choose to consume. Individuals also take into 

account their accumulated wealth when making consumption decisions. 
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Fig. 4.3. Standard Life-cycle hypothesis model 

 

 

 

 

 

 

 

   

 

Fig. 4.4. Wealth and Saving and Dis-Saving 



 

66 

 

 

Fig. 4.5. Budget constraints 

 

In this model, wealth and consumption follow a similar behavior pattern as described in Fig. 

4.4. The consumption increases at a decreasing rate during the dependence stage and peaks at 

retirement age. At retirement age, as income drops to zero, consumption plummets and 

decreases at an increasing rate during retirement. 

 

4.3 Thaler’s behavioral life-cycle hypothesis model  

Thaler's BLC (Behavioral Life-Cycle) model, like the LCH model, also explains how 

individuals save and invest over their lifetime. The BLC model critiques and extends 

Modigliani’s LCH model, considering individuals may not always make rational decisions due 

to behavioral biases and heuristics. The model includes three key concepts: self-control, 

mental accounting, and framing. This section will describe these three components and how 

we will model them in system dynamics. 

 

Self-control (Thaler, 1981) (Laibson et al., 1998) refers to an individual's ability to resist 

immediate gratification in favor of long-term goals. In the BLC model, individuals with high 

self-control are more likely to save and invest for their future, while those with low self-

control may struggle to resist temptation and prioritize long-term goals. Shefrin and Thaler 

cited Ainslie's contributions to self-control. Ainslie  (Anslie, 1975) introduced the concept of 

hyperbolic discounting and argued that this could explain the tendency for individuals to 

value immediate rewards more than future rewards. Psychology has shown that individuals 
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tend to value immediate rewards more than future rewards at the expense of their long-term 

interests. Lowenstein, Laibson, Thaler, and others in behavioral economics have built on these 

early researchers' work and developed new insights and approaches to understanding self-

control and its implications for decision-making. One of the most well-known and common 

models of this cognitive bias in the behavioral economics literature is present-bias or quasi-

hyperbolic discounting (Laibson, 1997). In the first chapter of this dissertation, we developed 

a quasi-hyperbolic discounting molecule in system dynamics based on Laibson's work 

(Laibson, 1997). We applied this molecule to the lifecycle model in the second chapter of this 

dissertation. In this third chapter, we will reuse this molecule to implement the self-control 

component in the BLC model. 

 

Mental Accounting (Thaler, 1985): the standard LCH model assumes fungibility. This means 

all money is treated the same, regardless of source. In the LCH theory, individuals treat their 

assets as a single resource used for consumption. However, empirical results from behavioral 

economics have shown that individuals process various components of wealth and assign 

specific labels or mental accounts to different parts of their wealth where certain accounts are 

more tempting than others. Mental accounting is how individuals categorize and allocate their 

financial resources into different "accounts" based on subjective criteria such as income 

source or the funds' intended use. The BLC model suggests that individuals may be more 

likely to spend money from one account (such as a discretionary spending account) than from 

another (such as a retirement account), even if the money is functionally equivalent. To 

illustrate this, Shefrin and Thaler conducted a small survey of MBA students at Santa Clara 

University. The survey consists of three scenarios, where they were asked how much they 

expect their consumption to rise. 

Scenario 1: you’ve been given a special bonus at work, for which you will receive $200 a 

month for twelve months. 

Scenario 2: you’ve been given a special bonus at work for which you will receive a lump sum 

of $2400.  

Scenario 3: you’ve been told that a distant relative has left you a small inheritance which has 

been an after-tax value of $2400, but you will not receive the money for five years. 

In these three scenarios, the individual wealth will increase by the same amount of $2400. 

According to the fungibility principle, the use of this extra money should not be influenced by 
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where it comes from. It turns out that the result of this survey rejects the fungibility principle 

and supports the differential MPC hypothesis. The survey results show that the annual 

median MPC for scenario1, 2, and 3 are resp. $1200, $785, and $0. So, we can think of 

individuals keep in mind three mental accounts of a current income account, a discretionary 

or asset account, and a future income account. The current income account is for day-to-day 

spending such as groceries, rent, etc. The discretionary or asset account is for saving and 

investing that can be used for college for fees or for a down payment to buy a house. The 

future income account is for future spending after retirement, for example. 

We extended and added two account stocks in the LCH model described in the previous 

section to model mental accounting in system dynamics. We follow the same approach as 

Shefrin and Thaler. We added two new accounts in our model, a Discretionary Saving account 

and the Pension Saving account. Shefrin and Thaler used a 10% MPC out of Income for these 

two accounts, with 4% MPC out of Income allocated to the Discretionary Saving account and 

6% MPC to the Pension Saving account. The remaining 10% of the Income will go to the 

current account, Wealth, which will be used for everyday consumption. We will use the same 

parameter estimates as Shefrin and Thaler for these accounts. The individuals cannot 

consume from Pension Saving during the dependency phase. At retirement age, the full 

amount accumulated on the Pension Saving account will be transferred to the Wealth account, 

and the Pension Contributions will be shut off. Unlike Pension Saving, individuals can use the 

Discretionary Saving during the dependency phase, for example, a down payment to buy a 

house. 

 

 

Framing (Kahneman and Tversky, 1984), the third component of the BLC, refers to how 

information is presented, and can influence an individual's perception and decision-making. 

In the BLC model, individuals may be more likely to save and invest when information is 

framed positively (such as emphasizing the potential gains) rather than negatively (such as 

highlighting the potential losses). In the context of the BLC, framing plays an important role in 

shaping individual financial behavior and can have important implications for financial 

decision-making over an individual's lifetime. For example, how retirement savings options 

are presented to individuals can influence how much they choose to save for retirement. By 

framing retirement savings as a percentage of income rather than a fixed dollar amount, 
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individuals may be more likely to save more for retirement, as the percentage frame 

highlights the importance of saving a consistent proportion of income over time. Mental 

accounting is another example of framing.  Shefrin and Thaler stated that” “The decomposition 

of wealth into mental accounts constitutes an example of framing” (Shefrin, 1988, p.615). 

 

In our model, the pension account builds up during the dependency phase, and no fund is 

transferred to the Wealth account till the retirement year at time 58. At year 58, the full 

amount in the Pension account is transferred to the Wealth account. Regarding the 

Discretionary account, we transferred 70% to the Wealth account at year 45, and at 

retirement age at time 58, the full remaining amount in the Discretionary Saving account is 

transferred to the Wealth account.  

 

Fig. 4.6. A Simple Behavioral lifecycle model 
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Fig. 4.7. Wealth, consumption, and budget constraints 

 

4.4 Thaler’s predictions on the behavioral life-cycle hypothesis 

model 

This section will discuss and test two of Shefrin’s and Thaler’s predictions using the system 

dynamics version of the BLC model we developed in this chapter. 

 

Prediction 3: “In the absence of sufficiently large Social Security and pension programs, 

retirement consumption will be less than preretirement consumption.” 

This prediction suggests that in the absence of adequate Social Security and pension 

programs, people will consume less in retirement than before retirement. In other words, in 

the absence of Social Security and private pensions, consumption in old age relative to 

lifetime consumption would be significantly lower. Retired households often face the 

challenge of sustainable consumption levels experienced early in retirement due to 

inadequate savings. Older people respond to this shortfall by gradually reducing real 

consumption over time. This is because they will have to rely on their own savings and 

investments, which may not be sufficient to maintain their pre-retirement standard of living. 

As a result, they will need to reduce their consumption. This prediction is based on the idea 

that people tend to save less than they should for retirement and, therefore, may not have 

enough resources to support their desired consumption levels in retirement. It highlights the 
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importance of having adequate retirement savings programs to ensure that individuals can 

maintain their standard of living in retirement. 

We didn’t incorporate a social security structure in our model. This is beyond the scope of 

this chapter. However, we did include a simplified version of a pension program within the 

mental accounting structure as described in (Shefrin and Thaler, 1988). We did two runs with 

the model to test this prediction. One run with a pension program, we called optimal, and 

another run without a pension program. The model's results in Fig. 4.8 show that Shefrin and 

Thaler prediction three is verified. 

 

 

Fig. 4.8. 

Prediction 3 

simulation 

results 

 

 

 

 

  

 

 

 

 

 

 

Prediction 4. “The saving rate increases with permanent income.”  

The idea is that as people earn more, they can meet their current needs and wants while 

saving for the future. Shefrin and Thaler argued that the marginal cost of exercising willpower 

decreases as permanent income increases. In other words, saving becomes relatively easier 

for individuals with higher income levels. They argue that saving is a luxury for people with 

low incomes, indicating that the ability to save is influenced by income and consumption 

levels. As a person's income increases over the long run, they tend to save a more significant 

proportion of their income. Therefore, as permanent income increases, the target level of 
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consumption also increases, leading to a rise in saving to achieve the desired level of 

consumption in the future. This prediction implies that individuals with higher permanent 

income will have a higher saving rate than those with lower permanent income, ceteris 

paribus. 

The authors also discussed the proportionality principle, which refers to the idea that 

consumption is proportional to permanent income, regardless of the income level. According 

to this principle, individuals would maintain a consistent saving rate irrespective of income. 

However, the authors rejected the proportionality principle and proposed an alternative 

based on this prediction. The rejection of the proportionality principle mentioned by Shefrin 

and Thaler is supported by Ervin Fischer (Fischer, 1930) and later with empirical evidence 

presented by Thomas Mayer (Mayer, 1972) and further studies conducted by Diamond and 

Hausman in 1984. The conclusion is that the proportionality hypothesis, which suggests a 

direct proportionality between income and saving, is invalidated. 

 

Prediction 5. “Holding wealth constant, consumption tracks income.”  

This prediction suggests that when for a given level of wealth, changes in consumption will 

closely follow changes in income. Individuals tend to spend more when they earn more, even 

if their overall level of wealth remains the same. This prediction is based on the idea that 

individuals are motivated by current income rather than total wealth when making 

consumption decisions. Therefore, as their income increases, they tend to spend more on 

consumption, even if overall wealth remains constant. This prediction highlights the 

importance of income fluctuations in affecting consumption decisions. It implies that 

individuals will likely adjust their consumption patterns based on income changes rather than 

overall wealth. This is consistent with the idea that consumption is driven by the relative 

income of the individual, which is a key assumption in the standard economic models of 

consumption. 

We run two simulations, one with the base case and the second one where we increase the 

Labor Income (Y) by 30% from year 40. The results of the simulations are shown in Fig. 4.9. 

Our model confirms Shefrin’s and Thaler’s prediction 5. 
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Fig. 4.9. Prediction 5 simulation results 

 
 

4.5 Discussion and future research 

In this chapter, we reproduced and presented Brumberg’s and Modigliani’s Life Cycle 

Hypothesis (LCH) and built a simple BLC model from Shefrin’s and Thaler’s paper 

(Shefrin and Thaler, 1988) in system dynamics. Then, we focused more on the BCL 

model and tested two of Shefrin’s and Thaler’s predictions with our version of the BLC 

model. Our BLC model validates the two predictions, 3 and 5, we tested. These two 

models share some common assumptions.  

Firstly, both models assume that individuals plan for their consumption and savings 

over their lifetime. Modigliani's LCH model assumes that individuals plan their 

consumption and savings over their lifetime to maintain a constant living level. On the 

other hand, Shefrin and Thaler's BLC model assumes that individuals plan their 

consumption and savings over their lifetime to achieve specific financial goals. 

Secondly, both models assume that individuals face uncertainty in their income and 

investment returns over their lifetime. Modigliani's LCH model assumes that individuals 

face uncertain income streams and investment returns, which they try to smooth out 

over their lifetime. Shefrin and Thaler's BLC model assumes that individuals face 

uncertain investment returns, which they try to mitigate by using mental accounting 

and other behavioral strategies. 

However, they also have some key differences. For example, Modigliani's LCH model 

assumes that individuals have rational expectations and behave optimally given their 
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information and preferences. On the other hand, Shefrin’s and Thaler's BLC model 

incorporates behavioral factors such as self-control, mental accounting, and framing, 

which can lead to deviations from optimal behavior and the classical lifecycle model. 

In addition, Modigliani's LCH model assumes that all individuals have the same time 

preferences, income profiles, and investment opportunities. Shefrin and Thaler's BLC 

model recognizes that individuals prefer immediate gratification and have self-control 

problems and other behavioral biases when saving for the future. They may also have 

different financial goals and risk attitudes, which can influence their saving and 

investment decisions. 

The value of building such models, particularly the BLC model in system dynamics, is 

many folds. Firstly, this model can be incorporated into a larger system dynamics model 

to explore the impact of different interventions or management strategies and facilitates 

the evaluation of policy options on the behavior of the lifecycle system over time with 

what-if scenarios analysis. For example, a policy might involve increasing funding for 

social security or new pension programs. Secondly, we can run Monte Carlo simulations 

on this model to test for the robustness of Shefrin’s and Thaler’s predictions. This can 

help study the model's resilience in the face of behavioral biases and shocks, which is 

very difficult to do without a simulation model like system dynamics. Thirdly, this model 

can be embedded into a game that can be used in lab experiments in experimental 

economics settings. Finally, this approach will help policymakers assess the 

effectiveness and unintended consequences of interventions designed to address 

behavioral biases and promote desired economic outcomes. By combining the insights 

of behavioral economics with the system-level perspective of system dynamics, 

researchers and policymakers can gain a deeper understanding of the complexities of 

economic behavior and develop more robust and effective interventions to promote 

desirable economic outcomes. 

Some future areas of research to investigate this topic would be (1) testing the other 

Shefrin’s and Thaler’s predictions, (2) Incorporate the BLC model and analyzing the 

effect of habit formation (Caroll, Overland, and Weil, 2000) with a path dependence 

where the utility of today’s consumption depends on past consumptions and (3) revisit 

the model presented in chapter 2 of this dissertation and look at under which 
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circumstances the cognitive biases of risk aversion and overconfidence cancel out under 

BLC model assumptions and lastly (4), use prospect theory (Kahneman and Tversky, 

1979) in the BLC model in combination with the above-proposed areas or research. 
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Chapter 5 Conclusion 

 

 

 

In this research, we developed, tested, and applied a formal, repeatable, and teachable 

method to bring behavioral economics into system dynamics that satisfies both 

behavioral economics and system dynamics. 

On the one hand, behavioral economists elect to model in discrete-time. On the other 

hand, system dynamicists commonly model in continuous-time. Discrete time models 

are consistent with system dynamics. However, there’s still confusion in the system 

dynamics community on how to correctly model discrete-time features in system 

dynamics. We clarified this issue of discrete-time versus continuous-time modeling and 

how it matters for policy change. We showed that the choice between a discrete-time 

model and its converted version in continuous-time matters under the same 

assumptions for policy change. We tested this using a concrete example with the 

Samuelson multiplier-accelerator model. We also developed a new discrete-time 

molecule with stock and flow structure to build discrete-time models in system 

dynamics without using a dt (i.e., solution interval) of 1. This molecule is the 

cornerstone for building discrete-time models in system dynamics. This molecule can be 

applied beyond the economics domain. The discrete-time molecule can be used to build, 

for example, healthcare, manufacturing, finance, environmental, and organizational 

change discrete-time models or embedded in a mix and larger differential-difference 

equation models. The second molecule or generic structure we developed replicates the 

quasi-hyperbolic discounting or present-bias in system dynamics. We successfully 

applied these molecules in this dissertation's second and third chapters. We also 

developed a formal method based on Goodman’s approach (Goodman, 1980), which we 

generalized, to convert discrete-time models into continuous-time. In chapter one, we 

used this method to compare and contrast the three models we replicated and 

converted them from discrete-time to continuous-time. The last two chapters apply the 

technique and results described in the first chapter. 

 

One of the key benefits of integrating behavioral economics into system dynamics is 



 

77 

 

the recognition that human decision-making is not solely driven by rationality (Sterman, 

2000), (Simon, 1972), self-interest, and utility maximization. Behavioral economics 

brings to light the cognitive biases, social influences, and emotional factors that impact 

decision-making processes. By incorporating these behavioral aspects into system 

dynamics models, we can create more accurate representations of real-world systems 

where human behavior plays a crucial role. Furthermore, this integration enables us to 

explore the feedback loops between individual behavior and the dynamical system. It 

illuminates how the decisions and actions of individuals within a system can 

reverberate through feedback loops, influencing the system's overall behavior. By 

understanding these interactions, we can identify potential unintended consequences 

and leverage points where interventions and policy changes can significantly impact 

system outcomes. By incorporating behavioral factors, we can better anticipate and 

simulate the effects of individual choices on the system as a whole, providing more 

robust insights into long-term system behavior. 

 

Integrating behavioral economics into system dynamics has broad applicability in 

various fields. Some notable areas of application include: 

Experimental Economics: Experimental Economics labs provide controlled 

environments where researchers can design and conduct experiments to observe and 

analyze human behavior in economic decision-making scenarios. For example, a study 

to conduct an Experimental Economics lab that aims to understand the dynamics of 

market behavior and price formation. To study these dynamics, researchers can design 

an experiment where participants engage in a simulated market environment and are 

given a set of assets to trade, and their task is to determine the value and trading price 

of these assets. By incorporating behavioral economics principles, researchers can 

introduce realistic factors such as risk aversion and decision-making under uncertainty 

into the experiment. Additionally, system dynamics modeling can be employed to 

capture the interactions and feedback loops between individual behavior and market 

outcomes. Therefore, researchers can develop system dynamics models that simulate 

the dynamics of price formation, market supply and demand, market pressures, 

exogenous shocks, and the impact of individual trading decisions on market stability. 

During the experiment, participants' behaviors and trading decisions are recorded, and 
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the data is analyzed to understand how individual behavior and market dynamics are 

interconnected. The data is then used to ground and refine the system dynamics models, 

incorporating insights from behavioral economics to improve the accuracy and realism 

of the model. 

Gaming: integrating behavioral economics into system dynamics can have direct 

implications not only for the gaming industry itself but also on individual and group 

learning experiences. By considering player decision-making, social influences, and the 

complex dynamical system within games, this integrated approach enhances the game 

design, player engagement, and the overall gaming experience and learning. It helps 

understand player behavior, identify new biases, and create personalized gaming 

experiences. 

Environmental sustainability: behavioral economics integrated into system dynamics 

can contribute to addressing environmental challenges and develop interventions that 

promote sustainable behaviors and mitigate environmental degradation. It helps 

understand human behavior and decision-making about environmental issues like 

resource consumption, waste management, and climate change. 

 

Integrating behavioral economics into system dynamics open up exciting avenues for 

further research and exploration. Some areas of additional investigation include: 

Decision-making under uncertainty: investigating the interplay between behavioral 

biases and decision-making processes in the face of fundamental uncertainty with 

prospect theory within system dynamics models can enhance our understanding of how 

individuals make choices in complex and uncertain environments. In addition to 

previous studies in this area, this research can shed light on risk perceptions, 

information processing, and decision-making strategies under varying levels of 

uncertainty. 

Multi-agent systems and multi-method simulation: exploring the dynamics of multi-

agent systems, where individuals or entities are embedded with cognitive biases, 

interact, and influence each other's behaviors, is an area of growing interest. This can be 

modeled by integrating behavioral economics into a multi-method approach to gain 

insights into emergent behaviors, cooperation, competition, and the formation of 

complex social structures. 
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Dynamics of social norms: understanding the dynamics of social norms and their 

influence on individual behavior using insights from the combination of behavioral 

economics and system dynamics is an area that can benefit from further research. 

Examining how social norms evolve, spread, and interact with behavioral factors can 

provide insights into collective behaviors, cultural shifts, and the emergence of new 

norms. This area of research can be combined with multi-agent systems using a multi-

method simulation approach. 

Technological applications: exploring the application of behavioral economics and 

system dynamics in emerging technological fields, such as artificial intelligence, the 

internet of things, smart systems, and autonomous decision-making, for example, 

autonomous driving cars, can provide insights into human-machine interactions and the 

ethical implications of these technologies. 

 

Supplementary materials: the models and source codes presented in this dissertation 

are available for download from the WPI eProjects website. 
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