
 

   



 

Abstract 
The project presents the conceptual design of plume generation and detection systems for ground 

experiments with sensing robots. The plume generation system provides controlled carbon dioxide 

concentration profiles and consists of a pressurized tank, a pressure regulator, a flow meter, and a nozzle 

placed on a stand. The carbon dioxide plume is modeled with the 3d advection diffusion equation and 

numerical simulations provide the required release rates at the nozzle exit. Nozzle dimensions are 

estimated using 1d isentropic nozzle theory. The plume detection system consists of three carbon dioxide 

sensors placed on a horizontal arm that can be repositioned vertically on a stand. Structural analysis is 

performed for the plume generation and detection stands in order to minimum deflections. 
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Chapter 1: Introduction 
The detection of an accidental or intentional gas release in the atmosphere from a ground or aerial source 

is a crucial step in suppression of adverse effects. Unmanned aerial vehicles  (UAVs) equipped with 

sensors  can be useful in this pursuit as they have the ability to track and map a plume through the use of 

sensors without guidance from a human operator.  A large research effort at WPI has been devoted to the 

use of UAVs for the estimation of plumes from moving aerial or ground sources as shown in Figure 1 

(Demetriou, Gatsonis and Court, 2014; Gatsonis, Demetriou, and Egorova, 2013). In order to test and 

verify the approach, a ground-based experiment is designed using autonomous terrain vehicles (ATVs) 

operating in a closed environment with a controlled gas release as shown in Figure 2. The goal of this 

MQP group involves the design of experimental setups for plume generation and plume detection. The 

plume generation system can be used in future experiments as shown in Figure 3.  The goal of a second 

MQP group (MAD1501) is to configure existing terrain robotic vehicles for use in future plume 

experiments. 

 

Figure 1: Use of UAV’s for Plume Estimation [Demetriou et al.2014 

 

 

Figure 2. Plume Generation and Detection Experiment. 
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Figure 3: Use of ATVs for concept demonstration. 

1.1 Background and Literature Review 
There have been a number of experiments done in which an autonomous vehicle has made use of gaseous 

sensors to track the source of a gas release. The most relevant experiments are reviewed below, in 

chronological order. Though the group is focused on the plume generation system aspect of the project, 

the literature review takes into account all aspects of the experimental setup so as to provide a full 

overview of the objectives. 

The team of Nakamoto et al. (1999) explored the use of a mobile robot equipped with a sensing system 

comprised of four tin oxide gas sensors and a wind-direction sensor to determine the location of an odor 

source. The wind-direction sensor consists of “four thermistor-type anemometric sensors”, where the 

variation in response from each sensor determines the wind direction. An algorithm used to control the 

robot makes use of both the wind direction and the concentration gradient of the odor plume, so that the 

robot can stay inside the plume and make its way to the odor source. To minimize unknown variables, the 

experiment was conducted in a clean room with constant, known wind direction of approximately 30 cm/s 

from two sources. The odor source for this experiment was ethanol, chosen “for experimental simplicity”, 

though the paper specifies that the strategies employed in this experiment can be applied to other 

gas/sensor combinations. The ethanol source is a nozzle 22 cm above the ground released at a rate of 75 

mL/min, which the robot was able to locate in about 10 minutes at a speed of 1 cm/sec when released 

approximately 2-3 m from the source. Experiments in which the concentration of ethanol was lowered or 

the speed of the robot was increased both led to failure by the robot to locate the source, though the 

application of a Kalman filter led to increased success rates. 
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In the paper by Ishida et al. (2001), the problem approached is that of the slow recovery time of the 

gaseous sensors and consequential slow speed of the robot’s tracking. The robot used in this experiment 

was equipped with 8 gaseous sensors, which, though they had high sensitivity and fast response time, 

required almost 30 seconds for their readings to return to normal after being removed from the gas source. 

Because of this, the speed that the robot can travel is highly restricted to a few meters per second and 

applications to systems involving faster-moving vehicles will require a new approach for the gaseous 

sensors. Faster sensors, such as quartz crystal microbalance sensors, give a lower sensitivity reading than 

that of a slower semiconductor gas sensor. The conclusions drawn include the fact that there is no sensor 

that is best for every situation and that there still remains a lot of work to be done regarding plume 

mapping and tracking. 

The experiment by Hayes et al. (2002) makes use of a Moorebot in a 6.7 by 6.7 meter arena with an odor 

plume generated by a 23 square cm pan of hot water. The plume is dispersed by an array of 5 fans 30 cm 

in diameter. The Moorebot, along with gas and wind direction sensors, is also equipped with proximity 

sensors. The gas sensors employed are carbon-doped polymer sensors, which offer “a good combination 

of ease of transduction, reversibility, reproducibility, tunability, ease of production, robustness across 

environments, miniaturization, and speed.” The sensor has a very fast response time of less than 1/10th of 

a second. The wind sensor is a Shibaura F6201-1 air flow sensor with the ability to read wind flow as low 

as .05 m/s. To provide unidirectional sensitivity, the wind sensor is encased in a class tube. Because of 

this, multiple movements are required for the detection of wind direction. Simulations are done using the 

Webots kinematic simulator, both with a study area the same as the experimental area and one 10 times 

larger to verify accurate plume performance parameters. The conclusions section of this paper highlights 

the difficulty of obtaining real, applicable data from experimental runs due to the limited area available 

for testing. As in the last paper reviewed, the writers also expressed the importance of choosing gaseous 

plume materials and gas sensors that are the most appropriate for the given task, as there is no one option 

that is best for all situations. 

Though paired with visual aids, an experiment by Martinez et al. (2002) uses artificial olfaction to 

navigate to the source of a gaseous ethanol plume and can provide insight on the plume parameters and 

sensors required. The sensor array on the robot makes use of two arrays, one on each side of the Koala 

robot, comprised of ten TGS Figaro gas sensors on each side. The sensors are grouped into five different 

types to attempt to compensate for the “lack of selectivity and sensitivity” of the currently available 

commercially available gas sensors. Despite the use of vision, the gas sensors are the primary method of 

gas source localization, while the use of vision is for use before the robot enters the plume. 
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The team of Gatsonis et al. (2013) explores the use of a dynamic grid adaptation scheme for estimating 

the concentration of a gaseous plume by a mobile gas sensor. The paper highlights the importance of a 

good control signal to the UAV in order to maximize the performance of the tracking and estimation 

system; in this case, the UAV is a fixed wing aircraft with concentration sensors and build in navigation 

capabilities. The equations that guide the SAV take into account parameters like the eddy diffusivities, 

wind velocities, spatial distribution, and gas release rate.  The use of a dynamic grid proved to be the most 

effective tracking method for a released gas, with improved estimation error and results.  

Demetriou et al. (2014) also works with methods for the location and tracking of a gas release. The 

method uses a gas dispersion model based on the advection-diffusion PDE, with ambient wind and eddy 

diffusivity. The paper also highlights the importance of the state estimator on the outcome of the UAV 

guidance, as the state estimator is used in the spatial repositioning of the UAV. The primary feature of the 

presented approach is the combination of estimation with CFD methods. 

1.2 Objectives and Approach 
The goal of this MQP group involves the design of a plume generation system and a plume detection 

system to be used in experiments as shown in Figure 3.  The goal of the second MQP group (MAD1501) 

is to implement the ATVs that are to be used in the estimation process.  

 The objectives and approach are: 

• Investigate possible gas sources and select the gas to be used in the experiments, based on health 

risks, availability, and cost. 

• Estimate the release rate of a gas source system using a CFD model based on advection-diffusion 

equation.  

• Design a plume generation system that includes the gas tank, pressure regulator, a flow controller, 

a nozzle stand, and a nozzle. The plume generation system requires the vertical re-positioning of 

the nozzle. 

• Estimate nozzle dimensions using 1-d isentropic nozzle expansion theory. 

• Design a plume detection system for three CO2 sensors that can be positioned inside the plume 

and allow vertical repositioning of the sensor-arm. 

• Create the plume detection system design and perform structural analysis to estimate the 

deflections using SolidWorks (SolidWorks).  

• Identify specific parts for each component of both the probe stand and plume generation system 

for future construction.  
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Chapter 2: Design of Plume Generation and Detection Systems 
This chapter presents the design of the plume experiment, including the process for choosing the gas and 

the method for simulating plume profiles. 

2.1 Overall Considerations 
One of the objectives of this project is to design experimental setups used in plume detection experiments 

as shown in Figure 2. The gas release tests will be conducted in an experimental area of appropriate size  

to allow future experiments to be conducted with the addition of ATV as shown in Figure 3.  The plume 

generation system shown in Figure 4 must generate plumes with measurable concentrations without 

reaching a limit that could be dangerous to human health.   

 

Figure 4: Gas Release Schematic 

In order to ensure there will be adequate room for a plume to develop, a test area of about five meters by 

five meters has been chosen.  For validation of the plume parameters, a plume detection system will be 

designed carrying three Cozir sensors as shown in Figure 5.  Future experiments will utilize the Kephera 

IV robot equipped with four Cozir CO2 gas sensors as the ATV in order to track and map the plume. The 

technical Specifications of the Khepera IV are below in Table 1 and the technical specifications of the 

Cozir CO2 sensor are in Table 2.   

 

Figure 5: Plume Generation System Schematic 
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Khepera IV Specifications 
Elements Technical Information 

Processor Linux core running on a 800MHz ARM Cortex-A8 Processor with C64x 
Fixed Point DSP core and additional microcontroller for peripherals 
management 

RAM 512 MB 
Flash 512 MB plus additional 4GB for data 
Motion 2 DC brushed motors with incremental encoders (roughly 147 pulses per mm 

of robot motion) and gearbox 
Speed Max 1m/s in openloop and 0.8m/s with Factory default PID speed controller 

Min 0.003m/s with Factory default PID speed controller 
Sensors 8 Infra-red proximity and ambient light sensors with up to 25cm range,  

4 Infra-red ground proximity sensors for line following applications and fall 
avoidance,  
5 Ultrasonic sensors with range 25cm to 2 meters,  
3-axis accelerometer and 3-axis gyroscope  

Audio 2x embedded microphones 
1x 0.7W speaker (400-20’000Hz) 

Video Integrated color camera (752×480 pixels, 30FPS) 
LED 3 programmable RGB LED on top of the robot 
AC adapter power 9V @ 2.5A 
Autonomy Approximately 5 hours. 

Additional turrets will reduce battery life. 
Battery Embedded battery, 7.4V Lithium Polymer, 3400mAh 
Docking Ready for docking (Power input and I2C communication) 
Communications 1x USB 2.0 host (500mA), 1x USB 2.0 device, 802.11 b/g WiFi, Bluetooth 

2.0 EDR 
Extension Bus Expansion modules can be added to the robot using the KB-250 bus. 
Size Diameter: 140 mm 

Height: 58 mm 
Weight 540g 
Max. payload Approx. 2000 g 
Ground clearance 4 mm. Use only on hard and flat surfaces 
Turn radius 0cm 
Operating temperature 0-40°C 
Development Environment for 
Autonomous Application 

GNU C/C++ compiler, for native on-board applications. 

Table 1: Khepera IV Specifications (k-team.com).  

 

COZIR Sensor Specifications  

Sensing Method: NDIR with Gold-plated optics 
Sample Method: Diffusion / Flow with Tube adaptor 
Measurement Range: 0-5% 
Accuracy: ±70 ppm ± 5% of reading 
Response Time Filter: 4 secs to 2 mins (user configurable) refreshed 2x/sec. 

Table 2: COZIR Sensor Specifications (co2meter.com) 

2.2 Gas Selection 
Several different gases shown in Table 3 were evaluated according to four different criteria: safety, cost, 

ease of acquisition, and ease of refill. Safety considerations included flammability and asphyxiation 
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hazard levels.  Cost includes the initial cost of the equipment, shipping costs, and gas.  Ease of acquisition 

refers to how difficult it is to acquire the gas and any specialized parts necessary for its use, and ease of 

refill is how difficult it is to refill the purchased containers.  Because Carbon Dioxide (CO2) met all of our 

criteria, it was chosen as the best gas for our system.  It is not flammable and is not considered toxic until 

one is exposed to 5,000 parts per million (ppm) for more than eight hours (Cdc.gov). CO2  also has a low 

initial equipment cost and low refill cost. In addition, CO2 is the easiest for the group to refill because of 

the close vicinity of refill stations.   

 Argon Nitrogen Ethanol CO2 

Safety X X  X 

Cost  X  X 

Ease of 

Acquisition 

X X X X 

Ease of Refill    X 

Table 3: Comparison of Gases  

2.3 Estimates of Plume Profiles 
In order to obtain estimates of the necessary release flow rate and duration for the plume, simulations 

were performed for conditions anticipated in the experiments.   The code simulates in 3D the diffusion 

process from a source  modeled via the advection-diffusion equation (Arya, 1999) 

 

𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕2

+
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𝜕𝜕𝜕𝜕2
� (2.1) 

 

In the above Equation 2.1, 𝑐𝑐(𝑡𝑡, 𝑋𝑋, 𝑌𝑌) is the concentration of the contaminant. The variables (𝑢𝑢, 𝑣𝑣, 𝑤𝑤) 

denote the constant uniform velocity of the background wind and D is the molecular diffusivity. The 

model has been implemented in a simulation code using a finite-difference scheme [Demetriou et al, 

2013; Gatsonis et al, 2013].  

The simulation code has a simple user interface. The input variables include the full simulation time, the 

release time, the chamber dimensions, and the wind speed in the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧-directions. The source release 

rate, the starting source location, and the choice between continuous or interrupted flow can also be 

changed. After the simulations are run, the output data is plotted using Tecplot 360 (Tecplot). Three 
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macros are used to plot the data in forms useful for the design of the experimental setup. After data is 

imported to Tecplot, the graphs generated are as shown in Figure 6, Figure 7, and Figure 8. 

 
Figure 6: Example Distance Concentrations Plot 

The plot in Figure 6 shows the gas concentration in parts per million over the simulation time in four 

locations away from the source release point. As shown in the graph legend, the lines are represented 

from 0.5 meters to 2 meters away from the source release point. The X-axis shows the time in seconds of 

the simulation from the start of the experiment to the end, while the Y-axis shows the concentration of the 

plume in parts per million. 

 
Figure 7: Example Line Concentrations Plot 

The second type of plot, shown in Figure 7, shows the profile of the plume concentration in the vertical 

cross section of the center line of the Y-axis where the source release point is located. The X-axis portrays 

the distance in meters of the X-axis of the chamber. The Y-axis portrays the plume concentration in parts 

per million.  
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Figure 8: Example Contour Concentrations Plot 

The final graph Figure 8, shows a contour plot of the horizontal cross section at the Z-direction 

measurement of the source release point at the end of the simulation. The different colored circles 

represent the different levels of concentration of the plume in parts per million as described by the legend 

at the right of the figure. The X and Y-axis portray the dimensions of the chamber in meters of their 

respective axis.   

 

Figure 9: Sample of Video Simulations 

Also possible are video simulations of the plume. In video simulations, the chamber is shown in the X-Y-

Z axis. The plume outline is shown with different colored bubbles which represent the concentrations of 

the plume from 5 parts per million up to 30,000 parts per million. A sample still of a video simulation is 

shown in Figure 9. 
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Simulation Results 
A series of simulations were performed using input parameters shown in Table 4. 

Table 4: Data on Simulation Runs. 

The results for simulation 1 are shown in Figure 10, Figure 11, and Figure 12. 

 
Figure 10: Simulation 1 Distance Concentrations Plot 

 
Figure 11: Simulation 1 Line Concentrations Plot 

Simulation 

Number 

Flow Rate 

(milligrams/second) 

Simulation Time 

(seconds) 

Wind Speed 

(meters/second) 

Continuous 

Flow? 

1 100  600 No wind Yes 

2 100 600 (0.5, 0, 0) Yes 

3 250 600 No wind Yes 

4 250 600 (0.5, 0, 0) Yes 

5 500 600 No wind Yes 

6 500 600 (0.5, 0 , 0) Yes 
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Figure 12: Simulation 1 Contour Concentrations Plot 

The graphs for simulation 1 show that the concentration at the release point will be around 4400 ppm. 

Due to the effects of molecular diffusion, the concentration quickly drops to 900 ppm 0.5 meters away 

from that point. Without wind, the plume slowly continues to expand only having a diameter of 5 meters 

after the full 10 minute simulation.  

Results for simulation 2 are shown in Figure 13, Figure 14, and Figure 15. The concentration at the 

release point hovers around 800 ppm and drops to 720 ppm 0.5 meters away.   

 
Figure 13: Simulation 2 Distance Concentrations Plot 
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Figure 14: Simulation 2 Line Concentrations Plot 

 
Figure 15: Simulation 2 Contour Concentrations Plot 

 
The graphs for simulation 3 are shown in Figure 16, Figure 17, and Figure 18. The concentration at the 

release is around 11,000 ppm and falls to around 2,300 ppm 0.5 meters away by the end of the simulation. 
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Figure 16: Simulation 3 Distance Concentrations Plot 

 

Figure 17: Simulation 3 Line Concentrations Plot 

 

Figure 18: Simulation 3 Contour Concentrations Plot 
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The graphs for simulation 4 are shown in Figure 19, Figure 20, and Figure 21. The concentration at 

the release point is a little over 2,000 ppm while the concentration 0.5 meters away quickly goes 

to 1850 ppm and stays there for the duration of the simulation. 

 

Figure 19: Simulation 4 Distance Concentrations Plot 

 

Figure 20: Simulation 4 Line Concentrations Plot 

 

Figure 21: Simulation 4 Contour Concentrations Plot 
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The graphs for simulation 5 are shown in Figure 22, Figure 23, and Figure 24. The concentration at 

the release point is 20,200 ppm while the concentration 0.5 meters away drops to 4,500 ppm. 

Then 2 meters from the source the concentration falls even lower to around 500 ppm.  

 

Figure 22: Simulation 5 Distance Concentration Plot 

 

Figure 23: Simulation 5 Line Concentrations Plot 

 

Figure 24: Simulation 5 Contour Concentrations Plot 
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The graphs for simulation 6 are shown in Figure 25, Figure 26, and Figure 27. The concentration at 

the release point is around 4,000 ppm and 0.5 meters away there is a constant concentration of 

3,700 ppm. 

 

Figure 25: Simulation 6 Distance Concentrations Plot 

 

Figure 26: Simulation 6 Line Concentrations Plot 

 

Figure 27: Simulation 6 Contour Concentrations Plot 
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Considering the results of the simulations several trends emerge. For a simulation with no wind the 

concentration at a fixed distance from the release tend to continuously increase over the duration of the 

simulation. When there is wind incorporated into the simulation the concentration quickly reaches a limit 

and stay at that concentration over the rest of the experiment. With no wind, the concentration at the 

release point is drastically higher than the concentrations of the trials that included wind. 

The simulations provided parameters that result in plumes with concentrations safe enough for humans to 

be exposed to. With the use of the graphs generated in Tecplot, it is found that for a continuous gas 

release with no wind, flow rates between 100 and 500 milligrams per second (mg/s) are the best option 

for the experiment. With these conditions, the gas concentration directly at the release point is around 

20,000 ppm and the concentration between 0.5 and 1 meter away from the source does not exceed 5,000 

parts per million. The sensor fitted to the SAV will easily be able to detect the concentrations of carbon 

dioxide up to 2.0 meters from the source release point.  

2.4 Design of the Plume Generation System 
The source for the gaseous plume is a five-pound canister of carbon dioxide (CO2) pressurized to 

approximately 700 pounds per square inch (psi). Since the pressure inside the canister decreases as the 

CO2 is released, a pressure regulator is incorporated to keep the release pressure at a known, constant 

value.  After the pressure has been decreased to approximately 100 psi it is passed through a flow meter to 

ensure that we are releasing the exact amount of CO2 needed to produce a plume with specified 

parameters. Paired with the flowmeter will be a power supply readout so that the flowrate out of the 

system can be confirmed. After the flow meter there is a remotely controlled solenoid valve that allows 

the gas release to be terminated after a set amount of time.  The final stage is a gas diffusing nozzle that 

will ensure the released gas diffuses uniformly around the nozzle instead of ejecting in a single direction 

at a supersonic velocity.  Our diffusing nozzle will be located on a platform that will be able to extend or 

retract vertically.  The full setup of the plume generation system is shown in Figure 28. 
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Figure 28: SolidWorks Model of the Nozzle Stand 

In order to ensure that the system remains stable while in use, a static stability analysis was performed in 

SolidWorks, the results of which are shown in Figure 29. Though the displacement has been magnified in 

SolidWorks, it is confirmed that the maximum displacement of the stand is on the order of one millimeter 

and the system will remain stable. 

 

Figure 29: Nozzle Stand Displacement 
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Modeling for Nozzle 
The primary requirement for the exit nozzle is to ensure that the flow stays subsonic; therefore, the first 

calculation done was to find the maximum exit pressure to keep the flow below a mach number of one 

using the isentropic flow relation 

𝑝𝑝
𝑝𝑝𝑡𝑡

= �1 +
𝛾𝛾 − 1

2
𝑀𝑀2�

− 𝛾𝛾
𝛾𝛾−1

 (2.2) 

where 𝑝𝑝 and 𝑝𝑝𝑡𝑡 are the atmospheric and nozzle pressures, respectively, 𝛾𝛾 is the known specific heat 

constant for CO2 of 1.28, and 𝑀𝑀 is taken to be 1, the maximum exit mach number. Solving through for 𝑝𝑝𝑡𝑡 

gives us the maximum pressure at the exit to keep the flow subsonic. 

In order to determine the required area ratio of the release nozzle, a Matlab code was created using the 

mass flowrate equation and isentropic flow relations. As previously discussed, the experiment requires a 

plume with a stationary source; therefore, the smallest possible velocity is needed at the nozzle. Using the 

previously specified mass flowrates and other known parameters, calculations were done to balance 

pressure, exit area ratio, and exit velocity.  

2.5 Design of Plume Detection System 
In order to test the validity of our plume model, the group also designed plume detection system to 

measure the concentration of the generated plume at various distances and heights. The probe stand of the 

plume generation system must have the ability to move three gas sensors in the x, y, and z directions, in 

order to test gas concentration in any area of the plume. The most efficient way to create a probe stand 

with translational abilities is to use t-slots, as shown in Figure 30. 

 

Figure 30: T-Slot (http://www.parts-recycling.com/) 

The mounting of three gas sensors on sliders along a horizontal beam of t-slot will allow for horizontal 

translation, while the mounting of the horizontal beam on a vertical beam of t-slot will allow for vertical 

translation. In order to ensure that all distance measurement is precise, proximity sensors will be 
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incorporated into the assembly to take readings of the x, y, and z positions of the sensors. The full setup is 

shown in Figure 31. 

 

 

Figure 31. Plume Detection Setup 

As was done with the diffuser stand, a stability analysis was also performed for the sensor stand to ensure 

that the horizontal bar on which the sensors are located has a displacement of no more than one millimeter 

for maximum plume accuracy. The results of the test are shown in Figure 32 and verify that the 

displacement is minimal.  

 

Figure 32: Plume detection system displacement 
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Chapter 3: Experiment Realization  
This chapter explores the equipment chosen for the experiment, their features and functions, and the 

assembly of the system.  

3.1 Plume Generation System 
As outlined in Section 2.3, the plume generation system contains a CO2 tank to act as the gas source, a 

pressure regulator to maintain constant pressure out of the tank, a flowmeter to guarantee we are 

producing the desired plume, a power supply readout to verify the flowrate, a solenoid valve to remotely 

turn the system on or off, and a diffuser to release the gas and create the plume uniformly. Here we 

examine the pressure regulator and flowmeter and the specific product that was chosen for our assembly. 

McMaster-Carr Pressure Regulator 
A pressure regulator works by using a pressure adjustment handle connected to a needle valve that 

controls how much gas passes through.  A two stage regulator has two of these needle valves which 

decrease the pressure in two stages.  The output pressure for a two stage regulator can be set and does not 

depend on the input pressure.  In addition a two stage regulator has safety valves in case of over 

pressurization.  We chose a two stage regulator because we need a regulator that will constantly provide a 

desired output pressure even with a changing input pressure from the CO2 tank (Alspecialtygases.com). 

The pressure regulator the group chose is a two stage McMaster-Carr standard duty gas regulator for 

carbon dioxide, shown in Figure 33. 

 

Figure 33: McMaster-Carr Two Stage Pressure Regulator (http://http://www.mcmaster.com/) 
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MKS Type 1179A Flow Meter 
In order to keep the mass of CO2 gas emitted constant, the group decided to use the MKS Type 1179A 

Mass-Flo controller, shown in Figure 34 below. The mass flow controller uses a thermal sensor in order 

to keep the mass of gas released constant (Mksinst.com). The thermal sensor uses the principles behind 

convective heat transfer in order to achieve this. The mass flow controller is comprised of two sensors.  

One sensor measures the temperature of the gas while the second sensor is heated.  There is a change of 

temperature as the heated sensor is cooled by the action of molecules flowing past it and by measuring the 

amount of electricity necessary to keep the heated sensor at a certain temperature it is possible to measure 

and regulate the amount of mass flowing through it. This particular model has a 1% Full Scale and 1% 

reading accuracy (Sage Metering).  

 

Figure 34: MKS Type 1179A Flow Meter (http://www.mksinst.com/) 

In order to operate the MKS 1179A flow meter the experiment requires the addition of the MKS PR 4000 

Digital Power Supply and Readout.  The PR 4000 is vital because it allows for the flow meter to connect 

and be operated by a computer.  The PR 4000 allows LABVIEW code to run in order to manage the 

amount of flow being released (Mksinst.com).   

In order to run the software LABVIEW drivers must be downloaded from the website below: 

http://www.pspfeifer.de/Produkte/LabVIEW_Treiber/Downloads/downloads.html 

These drivers contain the necessary LABVIEW code for successful operation of the MKS 1179A and the 

PR 4000. 

3.2 Plume Detection System 
The plume detection system, as outlined in Section 2.4, is a system created with the intention of being 

able to measure the concentration of the plume at very precise locations. It involves a probe stand with 

three gas sensors, the specifics of which are discussed below. 
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Cozir Gas Sensors 
To measure CO2 levels our group chose the COZIR Ambient 5K CO2 sensor.  The sensor can measure 

CO2 levels between 0-5000 parts per million with an accuracy of plus or minus 50 ppm.  It takes two 

measurements a second and is based off of NDIR (NonDispersive InfraRed) technology (COZIR). The 

NDIR system is composed of a tube that contains an infrared light on one end that is pointing towards a 

detector on the other end with an optical filter in front of it. The filter blocks all wavelengths of light 

except for those that CO2 absorbs. By measuring the difference in emitted light and received light the 

concentrations can be accurately determined (Co2meter.com). The gas sensor is shown in Figure 35. 

 

Figure 35: Cozir Gas Sensor (http://www.co2meter.com) 
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Chapter 4: Conclusions and Recommendations for Future Work 
Detection of a release from a ground or aerial source is a crucial step in suppression of adverse effects. 

Unmanned aerial vehicles (UAVs) equipped with sensors can be useful in the detection of an accidental 

or intentional gas release in the atmosphere. (Demetriou, Gatsonis and Court, 2014; Gatsonis, Demetriou, 

and Egorova, 2013). In order to test and verify the approach, a ground-based experiment is envisioned 

using autonomous terrain vehicles (ATVs) operating in a closed environment with a controlled gas release 

as shown in Figure 3. The goal of this MQP group is to design of experimental setups including a plume 

generation system and a plume detection system. The plume generation system will allow the creation of 

plumes with known parameters that can be tracked and mapped by an autonomous terrain vehicle (ATV) 

as shown in Figure 2. The plume detection system will be used in verification of the plumes by the plume 

generation system.  

4.1 Conclusions 
This section contains recommendations by the group on the various components of the plume dispersal 

system. 

Plume Parameters 
The project reviewed several possible plume materials, taking into consideration factors like availability, 

safety, and cost. Carbon Dioxide was determined to be the most appropriate gas for this experiment and 

should be used. After running simulations based on the 3d advection diffusion equation, it was 

determined that a continuous 0.005 kg/second release will provide an optimal plume with good 

measurability that stays below the hazardous levels for humans.  

Plume Generation System and Components 
The finished design for the plume generation system is presented in Section 3.1. All necessary stability 

tests have been performed to ensure that the stand will remain stable during use. A McMaster-Carr 

Pressure Regulator and MKS Type 1179A Flow Meter have been identified by the group as the pressure 

regulator and flowmeter that should be used in construction. Other components for construction are also 

identified in Chapter 3. 

Plume Detection System and Components 
The finished design for the plume detection system is presented in Section 3.2. Cozir gas sensors have 

been chosen as the most appropriate gas sensor for this application, and stability analyses has been 

performed on the sensor stand to ensure that the vertical deflection of the sensors is no more than 1 

millimeter. 
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4.2 Recommendations for Future Work 
The next steps in the experiment design include the fabrication and testing of the designed plume 

generation and detection system. Integration and testing will allow experiments to be conducted.  
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