
Exploiting Vulnerabilities in Homomorphic Encryption with Weak
Randomness

by

Leonard (Pi) Fisher

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Mathematical Sciences

by

April 2016

APPROVED:

Dr. William Martin, Major Advisor

Homomorphic Encryption Page 1

Abstract

Suppose I give you a massively overdetermined yet consistent sys-
tem of linear equations Ax = b over a finite ring, but I change a few of
the values of b before showing it to you. Can you still solve for x? This
is called the Learning With Errors problem, and it was introduced by
Regev in 2009, who showed that it is hard on average. Today it is
used in many homomorphic encryption schemes. Such schemes allow
anyone to run computations on encrypted data without being able
to learn what the data are. In this paper, I look at ways to exploit
poor randomness in Learning With Errors. For extremely sparse noise
models, I give polynomial-time solutions to the Learning With Errors
problem.

1 Introduction

Cryptography is everywhere. From the military’s secrets to hospital records
to online purchases. Without cryptography, the only way to keep a secret
would be to meet up in person when you wanted to let someone in on it.
Imagine if everyone had to visit the bank each time they wanted to buy
something from Amazon, and it’s clear that we need encryption.

Just because something is encrypted, however, doesn’t mean it’s secure.
Early encryption relied on the fact that most people couldn’t read, and it was
pretty successful at the time. The Roman Empire would encrypt messages
by replacing each letter with one a few letters later in the alphabet, and the
recipient would need to know how far each letter was shifted. For example,
“encrypt” could be written as “gpetarv”, with each letter replaced with the
letter two spots after it (and saying that ‘a’ comes after ‘z’).

Nowadays, there are free, online tools that will take a message encrypted that
way and quickly break the encryption [dCo16]. Modern encryption methods
rely on problems that are thought to be too hard for computers to solve in
a useful amount of time (e.g. hundreds of CPU years). Preferably, security
would be based on problems classified as “NP-hard”, which are the hardest
problems for computers to solve.

Homomorphic Encryption Page 2

Factoring huge numbers is a well-studied hard problem, but quantum com-
puters would be able to do that. So far, quantum computers probably have
not been made. If they have been made, only the people who have them
know, and they don’t want to tell anyone yet. New encryption methods not
only need to be hard for normal computers to beat, but also need to be able
to safe against attacks using quantum computers. In August of 2015, the
NSA announced that it would be transitioning all its encrypted systems to
use methods that are quantum resistant [Sch15].

While all of this is going on, people want to be able to do more and more
with cryptography. One popular topic today is homomorphic encryption,
where everyone is able to perform computations on encrypted data, but only
someone with the password is able to see the results of the computations
[GSW13]. A lot of people are getting worried about how much personal
information big companies such as Google and Facebook have, but they use
all that information in order to deliver relevant advertisements to us [Rep12].
Netflix keeps track of what movies all its users have seen, and how much they
liked those movies. It would be impossible to suggest a movie to someone
without any information on what they like. But wait, maybe a service can!
There are homomorphic encryption methods that would allow Netflix to do
everything it currently does except see the information themselves. When
you watch a movie and rate it, that information would be encrypted before it
went to Netflix. Then, their computers would use this encrypted information
to pick a movie you might like, but even this would be encrypted, and they
wouldn’t be able to see what movie they were recommending. Then the
recommendation gets to you and is decrypted so you can watch the movie.

Technology for homomorphic encryption hasn’t yet advanced to that level,
but it is being used in some smaller applications where not as many com-
putations need to be performed on each number. Some banks have started
using it for verification [Gau16]. Something that might not be far away is us-
ing homomorphic encryption when you enter your credit card number online.
Currently, most companies store your credit card number when you make a
purchase, and they give the number to the credit card company when they
charge you. With homomorphic encryption, they wouldn’t need to know
your number in order to do this.

One thing that is important for many encryption schemes is the ability to

Homomorphic Encryption Page 3

generate random numbers [3SC05]. While random number generators are
needed for a wide variety of applications, often they are not made very well.
It is very difficult for a computer to come up with random numbers. When
it does come up with random numbers, the numbers it comes up with are
usually similar to a weighted die, where each number can come up, but
some are far more likely. In September of 2013, a study was done in which
researchers looked at RSA keys to see how secure they are [Ber+13]. The
security of RSA is based on it being difficult to factor large numbers. Each
RSA key is the product of two large primes. Unfortunately, if someone knows
that two RSA keys share a prime, it is easy to factor both. This study found
that, out of around two million keys, 103 shared a prime with another key,
and they were able to factor those 103 keys. That may not seem like a lot,
but it would be astounding if even two of the 2,000,000 keys shared a factor
if the primes were truly random. Even though breaking RSA is supposed to
be a hard problem, it’s suddenly very easy to solve when it isn’t implemented
very well.

Several important homomorphic encryption methods are based on a prob-
lem called Learning With Errors, or LWE. In LWE, you’re given a bunch
of equations, but a small percentage of them are wrong. That is, there ex-
ists a unique “secret vector” which satisfies the vast majority of the given
equations, but no vector can satisfy every equation. If you have the secret
vector, it’s easy to verify that it satisfies most of the equations. However, if
you don’t have the key, it’s very difficult to figure out which equations are
wrong. It’s been proven that finding the secret vector for LWE is an NP-hard
problem, but only when it’s implemented well. For several examples of how
a random number generator can be bad, this paper shows ways to solve the
LWE problem with a reasonable amount of computation.

2 NP-Completeness

When given a problem, it is helpful to know how hard it will be to solve the
problem. When computers solve problems, we want to know about how long
it will take the computer to solve the problem. Specifically, if a computer
can solve all problems of a certain type, we want to know how long it will

Homomorphic Encryption Page 4

take as a function of how big the input is. This is the subject known as
computational complexity [Pap94]. For example, the larger two numbers
are, the longer it takes to compute their product.

Because computers are being used to solve bigger and bigger problems every
year, we want to look at how these functions behave as the size of the input
approaches infinity. To help with this, we like to compare things to known
functions, like x2 or ex. One way to compare functions is with Landau
notation. We write f(n) = O(g(n)), or “f(n) is Big-Oh of g(n)” to mean
that, as x gets very big, f(n) is no bigger than some constant times g(n).
More formally, f(n) = O(g(n)) if and only if there exist positive constants c
and N such that, for all n > N , f(n) ≤ cg(n).

Some problems, such as computing products, are not very difficult for a
computer to solve. In 1965, Jack Edmonds said that an algorithm is quick
for a computer if it can be done in polynomial time [Edm65]. That is, if
f(n) is how long it takes the computer in the worst case to perform a given
algorithm with an input size of n, the algorithm is “quick” for the computer
to perform if there exists some k such that f(n) = O(nk). These algorithms
are said to be performed in polynomial time. Computing the sum or product
of two numbers can be done in polynomial time.

To make things more formal, we talk just about decision problems. For
example, given an ordered triplet (a, b, T), decide if the product ab is greater
than the threshold T . The set of decision problems for which there exists a
polynomial time algorithm to solve is called P [Pap94]. Clearly, the above
decision problem is in P.

Some decisions can be made quickly if a hint is provided. Consider the
factoring problem: given an ordered pair (n, T), decide if n has a factor k
such that 1 < k < T . If I give you the pair (12319, 100), and if I give you
hint of 97, you can quickly check that 1 < 97 < 100 and that 12319

97
is an

integer, so you can quickly give a YES answer. NP is the set of decision
problems for which an algorithm exists such that, when the answer is YES,
said algorithm can find the answer in polynomial time, provided that it is
given a small hint. When we say the hint is small, we mean that the size of
the hint we need to give the algorithm is polynomial in terms of the size of
the problem.

Homomorphic Encryption Page 5

Notice that every problem in P is also in NP. I can multiply two numbers
with a quick algorithm, and I could change that algorithm to let you give
me a hint and then ignore the hint. Then the algorithm can get a small hint
and solve the problem quickly.

A similar set of problems is coNP. coNP is the set of decision problems for
which an algorithm exists such that, when the answer is NO, said algorithm
can find the answer in polynomial time, provided that it is given a small hint.
Factoring is also in coNP. If I give you the ordered pair (12319, 50), and if
I give you the hint 97, 127, you can quickly check that 97 and 127 are each
prime, 97 · 127 = 12319, and 50 is less than each of 97 and 127.

For encryption, problems that are in both NP and coNP are very nice. When
someone gives you their guess as to the answer, it’s easy to decide if they
are correct or if they are incorrect. Unfortunately, most problems that are
known to be in both NP and coNP are also known to be in P, and being in
P is bad for security. If I encrypt something and tell you that the password
is the product of 97 and 127, you can very quickly figure out my password.
However, factoring is a problem in both NP and coNP, and it is not yet
known if it is in P. If I tell you that my password is the prime factors of
12, 319, it takes a lot more effort for you to find my password, but it’s easy
for a computer to check if the password you give it is correct (by multiplying
the numbers together and testing if they are prime).

It is currently not known if there are any problems in NP but not in P.
There is a set of problems called NP-complete problems. These are, in some
sense, the hardest problems in NP. A problem X is in NP-complete if, for
every problem Y in NP, there is a way to, with a quick algorithm, convert a
problem from Y to a problem from X, such that solving X quickly will give
a quick solution to Y . Thus, finding a quick solution to any NP-complete
problem would be a proof that P=NP.

Proving from scratch that a problem is in NP-complete is very difficult.
Luckily, Richard Karp did this in 1972 [Kar72]. Once you have one NP-
complete problem A, proving that another NP problem B is NP-complete is
only as difficult as proving that A can be modified into B. That is, showing
that a solution to B can be used to solve A.

Homomorphic Encryption Page 6

One of Karp’s original 21 NP-complete problems is Satisfiability, or SAT.
In SAT, there is a list of variables x1, . . . , xn that each can be either TRUE
or FALSE. There are also literals x1,¬x1, . . . , xn,¬xn. Clauses are of the
form (`1 ∨ · · · ∨ `k) where each `i is a literal. A clause is satisfied by a
TRUE/FALSE assignment to x1, . . . , xn if at least one of its literals is true
under that assignment. A SAT problem is a Boolean formula which is a
conjunction of clauses, C1 ∧ · · · ∧Cm. A SAT problem can be solved if there
is an assignment of TRUE and FALSE to the variables such that each clause
is satisfied. Note that such an assignment, if provided, is easy to confirm as
a solution. For example, (x1 ∨ x2) ∧ (¬x1 ∨ x2) is solved with x1 = FALSE,
x2 = TRUE. x2 satisfies the first clause, and either of x1 and x2 will satisfy
the second clause. This is a very small example, but it will come up again.

3 3D-Matching

Another problem in NP is 3D-Matching. Given three sets of equal size
V1, V2, V3, and a set of ordered triples E ⊆ V1 × V2 × V3, does there ex-
ist a subset M ⊆ E such that |M | = |V1| and, for any e, e′ ∈ M with
e = (v1, v2, v3) and e′ = (v′1, v

′
2, v
′
3), and for any 1 ≤ i ≤ 3, no entries of e

and e′ match unless e = e′. If you are familiar with bipartite matching, you
might see how this can be thought of as an extension of that problem into
a higher dimension: V1 ∪ V2 ∪ V3 is a partition of vertices, and E is a set
of hyperedges, where each hyperedge connects a vertex from each set. Note
that a given subset M can quickly be confirmed as a solution to the problem,
so this problem is in NP.

To prove that 3D-matching is NP-complete, we will look at a way to convert
any SAT problem into a 3D-Matching problem. We will use (x1∨x2)∧(¬x1∨
x2) as an example throughout the construction.

Consider an arbitrary Boolean expression of the form C1 ∧ · · · ∧ Cm. Let n
and m be the numbers of variables and clauses, respectively. In our (tiny)
example, n = m = 2. In general, these will not necessarily be equal. For
each of the n variables, we create 4m vertices. For xi, we get the vertices
Ti,1, . . . , Ti,m, Fi,1, . . . , Fi,m, Li,1, . . . , Li,m, and Ri,1, . . . , Ri,m. The T and F

Homomorphic Encryption Page 7

vertices will be used to indicate a truth assignment to xi. The L and R
vertices exist to require certain elements of E to be included in M . We call
them left and right because we will have several vertices that come in pairs.
The second subscript for the T and F vertices is used to indicate a clause to
which those vertices belong. The T and F vertices all belong to V1. The L
vertices belong to V2. The R vertices belong to V3.

Now we write down some elements of E. For each 1 ≤ i ≤ n, and for each
1 ≤ j ≤ m, E has triples (Ti,j, Li,j, Ri,j) and (Fi,j, Li,j+1, Ri,j). Note that the
second subscripts are thought of modulo m, so Li,m+1 = Li,1. Below, we see
these vertices and hyperedges for our tiny example. We will refer to each of
those subhypergraphs (with 4m vertices and 2m hyperedges) as “gadgets”.

x1 T1,1

F1,1

T1,2

F1,2

L1,1

R1,1L1,2

R1,2

x2 T2,1

F2,1

T2,2

F2,2

L2,1

R2,1L2,2

R2,2

While the “T” and “F” vertices will be included in more hyperedges, the
“L” and “R” vertices are in only these and no other hyperedges. Thus, any
matching which solves this problem will use half of the hyperedges from each
of these gadgets. For each xi, either all the Ti,j vertices or all the Fi,j vertices
will be left available after those hyperedges are chosen. For example, if we
wanted to pick some of the above hyperedges to indicate x1 = FALSE and
x2 = TRUE, we would select the red hyperedges in the following picture.

Homomorphic Encryption Page 8

x1 T1,1

F1,1

T1,2

F1,2

L1,1

R1,1L1,2

R1,2

x2 T2,1

F2,1

T2,2

F2,2

L2,1

R2,1L2,2

R2,2

Next, for each clause Cj, we introduce two vertices, CL,j and CR,j. These
two vertices only exist in hyperedges with each other. For each literal xi in
the clause, we make a hyperedge (Ti,j, CL,j, CR,j). For each literal ¬xi in the
clause, we make a hyperedge (Fi,j, CL,j, CR,j). Below see these vertices and
hyperedges for our example. Note that the diagram below doesn’t include all
of the vertices and hyperedges from before, as including them would make
the picture difficult to understand.

T1,1 F1,1 T2,1 F2,1 T1,2 F1,2 T2,2 F2,2

CL,1 CR,1 CL,2 CR,2

x1 ∨ x2 ¬x1 ∨ x2

In this, we see that satisfying the clause Cj turns into the problem of fitting
vertices CL,j and CR,j into some hyperedge of our matching.

At this point, we’re almost finished with our diagram. However, we are
required to have three sets of equal size. V1, which contains all the “T”

Homomorphic Encryption Page 9

and “F” vertices, has 2mn elements. The sets V1 and V2, which respectively
contain the “L” and “R” vertices, each have size mn+m. Each of those sets
needs an additional mn−m auxiliary vertices.

Grouping these auxiliary vertices by clause, we name them AL,i,k and AR,i,k,
where 1 ≤ k ≤ n − 1. Then we create a huge number of new hyperedges.
For each 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ n− 1, we make two hyperedges
(Ti,j, AL,i,k, AR,i,k) and (Fi,j, AL,i,k, AR,i,k). Note that AL,i,k and AR,i,k are
always together. To see why we make these hyperedges, realise that every
vertex needs to be in exactly one of the hyperedges in the matching. Of the
“T” and “F” vertices, half will be included by hyperedges which show a truth
assignment. After this, each variable has one vertex devoted to each clause.
Satisfying a clause in the SAT problem is equivalent to selecting a hyperedge
of one of these two types in the 3D-Matching problem.

Now, each clause has n − 1 more vertices devoted to it than is included in
hyperedges. With these auxiliary vertices, we can include the rest of the
vertices. For each clause, there are n− 1 pairs of auxiliary vertices. Each of
these pairs is matched to each “T” and “F” vertex for that clause. Thus, after
some of the “T” and “F” vertices are includes by the truth assignment and
the clause satisfaction, the rest will be able to be matched by the auxiliary
vertices. The picture below shows the “T”, “F”, and “A” vertices for our
example, along with hyperedges. Because our example is so small, the only
value for k is 1.

T1,1 F1,1 T2,1 F2,1 T1,2 F1,2 T2,2 F2,2

AL,1,1AR,1,1 AL,2,1AR,2,1

The next five diagrams each have all the vertices. The first diagram has only
the hyperedges which show truth assignment. The second diagram has only
the hyperedges that show satisfying the clauses. The third diagram has only

Homomorphic Encryption Page 10

the auxiliary hyperedges. The fourth diagram has a subset of hyperedges
that solves the 3D-Matching problem. The last one has every hyperedge,
and those in the matching are red. The last one is included mostly for
completeness’s sake. If you can’t understand what’s going on in it, don’t
worry.

T1,1F1,1

T1,2 F1,2

L1,1

R1,1

L1,2

R1,2

T2,1F2,1

T2,2 F2,2

L2,1

R2,1

L2,2

R2,2

CL,1 CR,1

CL,2 CR,2

AL,1,1AR,1,1

AL,2,1AR,2,1

Homomorphic Encryption Page 11

T1,1F1,1

T1,2 F1,2

L1,1

R1,1

L1,2

R1,2

T2,1F2,1

T2,2 F2,2

L2,1

R2,1

L2,2

R2,2

CL,1 CR,1

CL,2 CR,2

AL,1,1AR,1,1

AL,2,1AR,2,1

T1,1F1,1

T1,2 F1,2

L1,1

R1,1

L1,2

R1,2

T2,1F2,1

T2,2 F2,2

L2,1

R2,1

L2,2

R2,2

CL,1 CR,1

CL,2 CR,2

AL,1,1AR,1,1

AL,2,1AR,2,1

Homomorphic Encryption Page 12

T1,1F1,1

T1,2 F1,2

L1,1

R1,1

L1,2

R1,2

T2,1F2,1

T2,2 F2,2

L2,1

R2,1

L2,2

R2,2

CL,1 CR,1

CL,2 CR,2

AL,1,1AR,1,1

AL,2,1AR,2,1

T1,1F1,1

T1,2 F1,2

L1,1

R1,1

L1,2

R1,2

T2,1F2,1

T2,2 F2,2

L2,1

R2,1

L2,2

R2,2

CL,1 CR,1

CL,2 CR,2

AL,1,1AR,1,1

AL,2,1AR,2,1

Now that we have this construction, we need to prove two things. First, we

Homomorphic Encryption Page 13

need to show that the size of the 3D-Matching problem isn’t too big. In order
to show this is NP-complete, we want to show that a SAT problem can be
turned into a 3D-Matching problem in polynomial time. Second, we need to
show that these are the same problem. That is, one can be solved exactly
when the other can be solved.

3.1 Conversion in Polynomial Time

This is a simple counting argument. With n variables and m clauses, we can
compute how many vertices and hyperedges our hypergraph will have.

As for the “T” and “F” vertices, each of the n variables brings one of each
for each of the m clauses. That makes mn “T” vertices and mn “F” vertices.
The “L” and “R” vertices are counted the same way, and there are mn of
each. For each clause Ci, there are two vertices, Ci,L and Ci,R. This makes
another 2m vertices. Lastly, we have the “A” vertices. Earlier we counted
mn−m each of “AL” and “AR”, for a total of 2mn− 2m auxiliary vertices.
Now compute how many vertices are in each of the Vi sets. V1 has all the
“T” and “F” vertices, so |V1| = 2mn. V2 has all the “L”, “CL”, and “AL”
vertices. Thus, |V2| = (mn) + (m) + (mn − m) = 2mn. Similarly, V3 has
the corresponding Right vertices, so |V3| = 2mn. In total, there are 6mn
vertices, and that is quadratic in terms of the input.

Now we count the hyperedges. For the gadgets which let us show truth
assignments, we make 2m hyperedges for each variable, or 2mn hyperedges.
Clauses are a bit harder to count, since clauses can have any positive number
of literals in them. However, if there are n variables, each clause has no more
than n literals in it. Each clause gets a hyperedge for each literal in the clause,
so this is no more than mn hyperedges in total. Lastly we have the auxiliary
vertices and the hyperedges they are in. There are mn−m pairs of auxiliary
vertices. These are split by clause into m groups of n−1 pairs. Each pair is in
two hyperedges for each variable. That makes m

(
(n−1)(2n)

)
hyperedges. In

total, that’s no more than 2mn+mn+2mn(n−1) = 2mn2+mn hyperedges.
That’s no more than cubic in the input, so we can create the 3D-Matching
problem quickly.

Homomorphic Encryption Page 14

3.2 Equivalent Solutions

In order for this construction to prove that 3D-Matching is NP-complete,
it remains to be shown that the constructed 3D-Matching problem has a
solution exactly when the original SAT problem has a solution.

First, assume that the original SAT problem has a solution. Consider one
truth assignment that solves the original SAT problem. For each variable
xi, select a set of hyperedges based on xi’s assignment. If xi is TRUE,
select the hyperedges {Fi,j, Li,j+1, Ri,j} for every j. If xi is FALSE, select the
hyperedges {Ti,j, Li,j, Ri,j} for every j. This will include each “L” and “R”
vertex in a hyperedge.

For each clause Cj, there is at least one variable xi whose assignment satisfies
Cj. If xi is TRUE, select the hyperedge {Ti,j, CL,j, CR,j}. Otherwise, select
the hyperedge {Fi,j, CL,j, CR,j}.

Of the “T” and “F” vertices whose second subscript is j, so far n + 1 of 2n
are included in selected hyperedges. Each of those remaining vertices are in
hyperedges with pairs (AL,j,k, AR,j,k), where k ranges from 1 to n−1. Finding
a matching for those vertices is equivalent to a bipartite matching problem
where one of the partitions is the same “T” and “F” vertices and the other
partition is new vertices Aj,k. This would be a complete bipartite graph with
equal sized partitions, so there exists a matching for it. Thus, all the “T”
and “F” vertices get matched. Since each of the three sets of vertex sets
has the same cardinality, each vertex gets matched. Thus, the constructed
3D-Matching problem has a solution. �

Now assume that the constructed 3D-Matching problem has a solution. For
each variable xi, there are only two ways to match all the vertices Li,j and
Ri,j, and these correspond to truth assignments as described earlier. Thus,
we have a truth assignment for each xi.

For each clause Cj, consider the vertices CL,j and CR,j. These are included
in a hyperedge in the matching. They only appear in hyperedges with each
other, and the other vertex in these hyperedges corresponds to one of the
literals in Cj. The third vertex in the hyperedge containing CL,j and CR,j

Homomorphic Encryption Page 15

is either Ti,j or Fi,j, for some i. If it is Ti,j, Cj is satisfied by xi, and our
truth assignment assigns TRUE to xi. If it is Fi,j, Cj is satisfied by ¬xi, and
our truth assignment assigns FALSE to xi. Either way, our truth assignment
satisfies Cj. Thus, our truth assignment satisfies every clause, so the original
SAT problem has a solution. Now we have our requirement that the con-
structed 3D-Matching problem has a solution exactly when the original SAT
problem has a solution. �

So 3D-Matching is another NP-complete problem.

4 Learning With Errors

The Learning With Errors problem was first discussed in a paper by Regev
in 2005 [Reg05]. Let n and q be positive integers. Let χ be a probability
distribution on Zq. Let s be a secret vector chosen uniformly at random from
Zn
q . We want to look at pairs of random vectors a and numbers b which are

sometimes equal to 〈a, s〉. More formally, define a new distribution, Ls,χ as
giving samples of the form (a, 〈a, s〉 + ε), where a is sampled uniformly at
random from Zn

q and ε is sampled from χ. This distribution is the starting
point for Learning With Errors. Define a new distribution, LDs,χ as giving
samples from Ls,χ with probability 0.5 and as giving samples uniformly at
random from Zn

q × Zq with probability 0.5. With the distributions Ls,χ and
LDs,χ, we have two problems.

Search LWE: Given an oracle that can produce samples from Ls,χ, find the
vector s.
Decision LWE: Given an oracle that can produce samples from LDs,χ, de-
termine for each sample if it came from Ls,χ.

In this paper, we will only discuss Search LWE, but Decision LWE was
included for completeness. Typically, q is assumed to have a size that is
polynomial in n. Also, χ is usually assumed to be a discrete Gaussian over
Z with a mean of 0 and a known variance.

In order to show that Search LWE is NP-complete, we will first introduce a

Homomorphic Encryption Page 16

problem known as Coset Weight:

Given a matrix A, a vector y, and a positive integer w, does there exist a
vector x such that Ax = y and x has no more than w non-zero entries?

To show that a solution to Coset Weight will solve 3D-Matching, construct
the matrix A as follows [BMT78]. For each vertex in the hypergraph, A has a
row. Every column of A has 3 ones and everything else zero, where the ones
correspond to the three vertices in a hyperedge. w is one-third the number
of vertices, and y is the all ones vector. Finding a solution to this system is
easy using Gaussian elimination over Z2, but it is much more difficult when
we put a limit on the number of non-zero entries of x. The matrix for the
above example has 24 rows and 20 columns. It is given below.

Homomorphic Encryption Page 17

T1,1
F1,1

T1,2
F1,2

T2,1
F2,1

T2,2
F2,2

L1,1

L1,2

L2,1

L2,2

CL,1
CL,2
AL,1,1
AL,2,1
R1,1

R1,2

R2,1

R2,2

CR,1
CR,2
AR,1,1
AR,2,1

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

xT =

[
1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 0

]
Finally, we want to show that a solution to LWE solves this. Given a Coset
Weight problem, construct an LWE problem as follows:

A
A
...
A
I

x ≈

y
y
...
y
0

Homomorphic Encryption Page 18

Lastly, say that at most w rows are allowed to not be solved by x. With
w+ 1 copies of A and y, we require Ax = y. With Ix ≈ 0, we allow no more
than w entries of x to not be 0. It is left to the reader to confirm that both
of these reductions can be done in polynomial time.

At this time, we believe there is no (non-trivial) distribution χ for which
Search LWE is known to not be NP-hard. The hardness of LWE was studied
by Regev in 2009 by reductions to lattice-based problems. The hardness of
these problems was in turn studied by Aharonov and Regev in 2005 [AR05].
The current best attack on general instances of LWE is exponential, and was
designed by Blum, Kalai, and Wasserman [Avr03; Alb+12]. In this paper,
we will consider a slightly different version of Search LWE (which henceforth
will be abbreviated to LWE). In real life, when someone tries to generate
random samples from a distribution, they often fail. It is very hard to get
truly random data, so people settle for pseudo-random data. Because of
this, we will allow ourselves the assumption that samples from χ are not
independent, or χ is flawed in some other way (e.g. sparse). Thus, instead
of looking at m samples from Ls,χ, we instead look at a matrix A sampled
uniformly from Zm×n

q and a vector b = As + e, where e is sampled from
some distribution χ on Zm

q . But we no longer assume the entries of e will be
independent.

5 LWE with Zero Errors

Henceforth, we will assume that q is a prime, so Zq is a finite field, Fq.
Suppose we were given an instance of LWE where χ always produces 0.
Samples from this instance of LWE are of the form (a, 〈a, s〉), where a is
uniformly sampled from Fnq . If this is known to be the case, it is trivial to
solve for s. Gaussian elimination performed modulo q, applied to the matrix
[A|b], will find the solution s for As = b. The only time this doesn’t work is if
A doesn’t have full column rank, but this happens with minuscule probability
(discussed later). Unfortunately, this method doesn’t directly extend itself
to later problems, so we introduce a new method.

Homomorphic Encryption Page 19

6 LWE with Exactly One Error

We will next consider an instance of LWE in which the matrix A is m×n and
s is n× 1 for fixed m and n. Rather than each ε being chosen independently
from a distribution χ, an error vector e is formed by choosing a row i0
uniformly at random and choosing a non-zero field element ε uniformly at
random, and letting ei be 0 when i 6= i0 and ε when i = i0. Rather than being
given samples of the form (a, 〈a, s〉 + ε), we are given A and b = As + e. In
this simplified version of the problem, we will consider a polynomial way to
find s. Because the entries of e are not chosen independently, we will not be
able to use an arbitrary number of rows—we will have to work with exactly
m rows.

Since A has n columns, we will consider various subsystems of A with n rows.
For a set S = {s1, s2, . . . , sn} of row indices, define

AS =

as1,1 as1,2 · · · as1,n
as2,1 as2,2 · · · as2,n

...
...

. . .
...

asn,1 asn,2 · · · asn,n

 , bS =

bs1
bs2
...
bsn

 .
Similarly define [A|b]S and eS. Reducing [A|b]S over Fq will find any and all
solutions to the equation ASx = bS, where x may or may not be equal to
s. From Linear Algebra, we can view this subsystem as n hyperplanes in
Fnq . The intersection of the n hyperplanes is the set of all solutions to this
subsystem. These n hyperplanes will either intersect nowhere, in which case
we call the system inconsistent; in multiple points, in which case we call the
system underdetermined; or at a unique point x.

Lemma 1 The vector s is a solution to [A|b]S if and only if i0 6∈ S.

Proof: Because b = As + e, bS = ASs + eS. If S 3 i0, eS 6= 0, so ASs 6= bS.
Similarly, if i0 6∈ S, eS = 0, and bS = ASs+ 0. �

Lemma 2 If a subsystem [A|b]S is inconsistent, i0 ∈ S.

Homomorphic Encryption Page 20

Proof: Since the system is inconsistent, s is not a solution, so Lemma 1 says
that i0 ∈ S. �

Lemma 3 If two subsystems [A|b]S and [A|b]R each have unique solutions x
and y, respectively, and if x 6= y, then i0 ∈ (S ∪R).

Proof: Note that s solves every unperturbed row of [A|b]. At least one of x
and y is not equal to s, so assume that s 6= x. Because all rows of S share
a unique solution other than s, at least one of those rows is not solved by s,
so i0 ∈ S. If we instead assume that s 6= y, then i0 ∈ R.

Lemma 4 If two subsystems [A|b]S and [A|b]R share a unique solution x,
then

i0 ∈ (S ∩R) ∪ S ∪R.

Proof: Consider first the case where x = s. In this case, since s solves both
subsystems, no row in either subsystem is perturbed (by Lemma 1), and
i0 ∈ S ∪R. Now consider the case where x 6= s. Since the solution to each
subsystem is unique, s solves neither subsystem, so each subsystem contains
a row not satisfied by s. Since only one row is not satisfied by s, it must be
the same row in each subsystem that is not satisfied, and i0 ∈ (S ∩R).

6.1 Polynomial Solution to One Error Case

If we examine every square subsystem, that’s sufficient to find s. As long as
m > n, there will be a square subsystem that is unperturbed. The probability
that such a system will have full rank is discussed later, but for now we just
care that, for reasonable values of q (at least 1000), the chances of a square
matrix not having full rank are close to zero. Furthermore, we only need one
of these matrices to have a unique solution.

As long as the number of systems to solve is polynomial in terms of the
input, this is a polynomial solution (though it’s really inefficient). Consider

Homomorphic Encryption Page 21

the case when n is fixed and m is allowed to grow. The number of matrices
to examine is (mn).

(mn) =
m(m− 1) · · · (m− n+ 1)

n!
<

1

n!
mn

Because n is constant, this is polynomially bounded.

This result doesn’t depend too heavily on there being a single error. If we
replace the requirement of m > n with a requirement on the number of errors
k such that k ≤ m − n, we will still be guaranteed to have an unperturbed
system. However, even though this is polynomial, we still want to make it
better.

7 Seven Rows

The Fano plane is a 3-regular hypergraph with 7 vertices and 7 hyperedges.
For now, all hyperedges are unordered triplets of vertices. Furthermore, every
pair of vertices shares a unique hyperedge, and every pair of hyperedges has
a unique intersection. For the following labelling of the Fano plane, the seven
hyperedges are {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {1, 5, 6}, {2, 6, 7}, and
{1, 3, 7}.

1

2 3

4

5

6
7

In the case when A has 7 rows and 3 columns, we will only look at 7 subsys-
tems to determine s and e. To find our 7 subsystems of [A|b], we will identify

Homomorphic Encryption Page 22

each row of [A|b] with a vertex in the Fano plane. Each hyperedge now cor-
responds to a set of three rows of [A|b], so each hyperedge S is a subsystem
[A|b]S. Below, see an example of a system over Z5 and subsystems given by
two of the hyperedges in the Fano plane.

[A|b] =

4 1 4 0
1 2 3 4
3 4 2 3
0 4 1 2
2 1 1 1
3 2 2 4
0 1 4 3

[A|b]{1,2,4}=

4 1 4 0
1 2 3 4
0 4 1 2

[A|b]{4,5,7}=

0 4 1 2
2 1 1 1
0 1 4 3

Using this identification, each hyperedge has a (possibly empty) set of solu-
tion vectors. Since the Fano plane is a hypergraph, we can colour its hyper-
edges. The colours we will use correspond to possible solution sets to our
subsystems: no solutions, multiple solutions, and unique solutions. Specifi-
cally, the set of colours is F3 ∪

{
{}, “underdetermined”

}
. If a hyperedge is

an inconsistent subsystem of [A|b], it is given the colour {}. If a hyperedge
is an underdetermined system, it is given the colour “underdetermined”. If
a hyperedge is a system with a unique solution x, it is given the colour x. In
this paper, red will be used for {}, blue will be used for “underdetermined”,
and every other colour will represent a vector.

Lemma 5 If there is a unique vector x such that Ax − b has a single non-
zero entry, then i0 is determined from the seven subsystems constructed from
the Fano plane and Lemmas 2 through 4

Proof: There are only two colourings (up to graph isomorphism) in which
it is unclear at which position the error is. They are:

Homomorphic Encryption Page 23

1

2 3

4

5

6
7

1

2 3

4

5

6
7

Recall the rule where two systems each with distinct unique solutions implies
that the error is in a row included by at least one of the systems. As orange
and pink are both signifying a unique solution, pairs of those lines show that
the error in each picture is in either position 2 or position 3. Let x be the
solution denoted by orange lines and let y be the solution denoted by pink
lines. Aside from Row 5, each other row is in a system accepting x and a
system accepting y. Since Rows 1 and 6 are not multiples of each other,
and since they both accept solutions x and y, their intersection is the line
passing through x and y. Since the system {1, 5, 6} is underdetermined in
each picture, Row 5 must also be satisfied by everything on that line. Thus,
every row except for Row 2 is satisfied by y, and every row except for Row 3
is satisfied by x. So Ax−b = (0, 0, p, 0, 0, 0, 0) and Ay−b = (0, q, 0, 0, 0, 0, 0).
In both of these cases, there are two solutions that solve As + e = b, where
e has exactly one non-zero entry.

8 Probability is a Thing

Because some matrices will not have unique solutions, and this attack hinges
on finding a unique solution, we want to determine how likely it is that a
matrix we try to solve will have a unique solution.

Suppose we are working over the field Fq, and we have a matrix A with n
columns. Recall that each row of A is chosen uniformly from the vectors in
Fnq .

Proposition 1 The size of a k-dimensional subspace of Fnq is qk.

Homomorphic Encryption Page 24

Proof: Let S ⊆ Fnq be a k-dimensional subspace. Let a basis {w1, w2, . . . , wk}
for S be given. Every vector w ∈ S can be uniquely represented as a linear
combination of the basis vectors: w = α1w1 + α2w2 + · · · + αkwk. Each αi
is chosen from {0, 1, . . . , q − 1}, and each vector α = (α1, α2, . . . , αk) ∈ Zk

q

uniquely determines a vector w ∈ S. Thus, there are
∣∣Zk

q

∣∣ = qk linear
combinations of the basis vectors, so |S| = qk. �

A k×n matrix A chosen over Fq has rank-k when the set of k row vectors of A
form a linearly independent set. So the problem of finding a rank-k matrix
A is the same as the problem of finding a k-tuple of linearly independent
vectors.

Lemma 6 The number of k-tuples (v1, v2, . . . , vk) of linearly independent
vectors in Fnq is given by

(qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1) = q(
k
2)

k−1∏
r=0

(qn−r − 1)

Proof: We will show this by induction. First consider k = 1. There are
qn vectors in Fnq . With the exception of the zero vector, the set containing
a single vector from Fnq is a linearly independent set. So there are qn − 1
one-tuples of linearly independent vectors.

Now assume that, for some k, the number of k-tuples of linearly independent
vectors from Fnq is (qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1). To construct a
(k + 1)-tuple of independent vectors, begin with a k-tuple (v1, v2, . . . , vk).
This set is a basis for a k-dimensional vector space, so there are qk choices
for the vector vk+1 that, when added to this set, will produce a linearly
dependent set. Thus, there are qn− qk choices for vk+1 that can be added to
this set to form a linearly independent set of size k+1. Multiplying these, we
see that there are (qn−1)(qn−q)(qn−q2) · · · (qn−qk−1)(qn−qk) (k+1)-tuples
of linearly independent vectors from Fnq . �

Using this, we can count the number of invertible matrices over Fq. An n×n
matrix with rows v1 through vn can be viewed as the n-tuple (v1, v2, . . . , vn)

Homomorphic Encryption Page 25

of vectors from Fnq , and it’s invertible when that n-tuple is a linearly inde-

pendent set. Thus, there are q(
n
2)
∏n−1

r=0 (qn−r − 1) invertible n × n matrices.
The total number of n × n matrices is qn·n, as each of the n2 entries of the
matrix has q possible values. Thus, we can divide to find the probability that
an n× n matrix sampled uniformly at random from Fn×nq is invertible:

q(
n
2)
∏n−1

r=0 (qn−r − 1)

qn·n
=
q

n(n−1)
2

∏n−1
r=0 (qn−r − 1)

qn·n
=

1

q
1
2
(n2+n)

n−1∏
r=0

(
qn−r − 1

)
.

In the 3× 3 case, we get a probability of

1

q6

2∏
r=0

(
q3−r − 1

)
=

1

q6
(q3 − 1)(q2 − 1)(q − 1) = 1− 1

q
− 1

q2
+

1

q4
+

1

q5
− 1

q6

which, for large values of q, is very close to 1− 1
q
. For q at least 2, it’s between

1− 2
q

and 1− 1
q
.

Next we want to look at the probability that an m×n matrix with m ≥ n has
rank n. This is simply the probability that the n column vectors (sampled
uniformly from Fmq) are linearly independent. The number of ways to have

those vectors be independent is given earlier as q(
n
2)
∏n−1

r=0 (qm−r−1), and the
number of m× n matrices is qmn. So the probability is

q
1
2
(n2+n)

qmn

n−1∏
r=0

(
qm−r − 1

)
=
q

1
2
(n+1)

qm

n−1∏
r=0

(
qm−r − 1

)
.

From that, we can get an upper bound of the probability that, with m rows,
there is no invertible submatrix by subtracting it from 1.

Using the method described above for solving LWE with 1 error, the approx-
imation above gives us a requirement on q for us to be able to succeed with
high probability. We’ll compute for the case when A has 7 rows.

With 7 rows, we look at seven 3×3 matrices, 3 of which include the row with
an error. There are four unperturbed matrices. If at least one of those four
is invertible, the vector x that solves that subsystem of Ax = b will solve
6 equations out of 7 and will thus solve the LWE instance. So we want to

Homomorphic Encryption Page 26

compute the probability that at least one of those four matrices is invertible.
Because every pair of rows appears in only one matrix, the probabilities for
each of the matrices being invertible are independent. The chance for a
certain matrix to not be invertible is between 1

q
and 2

q
, so the chance for

all four to not be invertible is between 1
q4

and 16
q4

. Thus, the chance that at

least one is invertible is between 1− 16
q4

and 1− 1
q4

. If we want to guarantee
that the method will work with probability at least 0.999, we simply solve
1 − 16

q4
≥ 0.999 for q. Since q has to be a positive integer, this means that

q > 11 will guarantee that at least one unperturbed matrix is invertible
with probability 0.999. The requirement on q grows very slowly, especially
considering that most primes chosen in real life applications are well over
1000, and the chance of being able to solve the instance when q > 1000 is
about 0.999999999984.

Suppose we have an LWE instance with an m × n matrix A with entries
chosen from Fq, and suppose up to k entries of b are perturbed by noise. One
attack would be to pick n rows from [A|b] at random and try so solve for s.
If a unique solution x to the system is found, test how many rows of [A|b] are
solved by x. If at least m− k rows are satisfied by x, terminate and produce
x; otherwise repeat by picking a new set of n rows. This is a randomised
method very similar to the t-design approach earlier. The t-design approach
requires having a design to use with a small enough minimum blocking set,
so this method can be used when a suitable design isn’t available. What
follows is a computation that such a randomly chosen system will have s as
a unique solution.

The probability that the system has a unique solution has been shown above
and is simply 1

q
1
2 (n2+n)

∏n−1
r=0 (qn−r − 1). Next we want to find the probability

that none of the k perturbed rows are in our n. At worst, there will be k
rows with error, so we’ll continue by assuming that. There are (m−kn) ways to
choose rows that are error-free, and (mn) total ways to choose n rows. Dividing

gives the probability of the system being error-free as (m−k)!(m−n)!
m!(m−n−k)! . Thus, the

probability that the randomly chosen subsystem has s as a unique solution
is no worse than

(m− k)!(m− n)!

m!(m− n− k)!q
1
2
(n2+n)

n−1∏
r=0

(
qn−r − 1

)
.

Homomorphic Encryption Page 27

Solving for this with m = 7, n = 3, and k = 1, we get a probability of
4(x−1)(x2−1)(x3−1)

7x6
. When q = 11, which is when the combinatorial approach

has a probability of 0.999 to succeed, this is about 0.5148. If we look at
slightly more realistic numbers, with m = 1000, n = 100, k = 10, and
q = 1000, we get a probability of about 0.3466. If we assume that each
attempt done this way has indenpendent probability of success, this means
we’d need to look at three or four systems, on average, in order to find s.

9 Periodic Noise

Another way the noise might be poorly implemented is if it is periodic. One
way people generated random numbers is with a linear shift feedback register.
When implemented reasonably well, the period is long enough to thwart our
attacks. However, if we assume it is implemented poorly, we have a much
better chance.

If we know that the cryptosystem is implemented with a randomly seeded
LSFR with 50 bits, we know that the noise will have a period that is a
factor of 250 − 1. A good seed will create noise with a period of 250 − 1, but
250−1 = 3 ·11 ·31 ·251 ·601 ·1801 ·4051. Of its 128 factors, 19 are smaller than
one thousand, 55 are smaller than one million, and 99 are smaller than one
billion. So even though the worst case for us is a period over one quadrillion,
there are lots of cases that are much better for us.

If we think we know the period of the noise is τ , then we can collect samples
(ai, bi) until the we have collected (n + 1)τ samples. For each 1 ≤ i ≤ τ ,
define the set Si = {i, i+ τ, . . . , i+ nτ}.

If the period of the noise is τ , as we guess, then for all rows indexed by Si,
the following equation is true for some constant ki: As + 1ki = b. Using

block matrices, this turns into
[
A 1

]
Si

[
s
k

]
= bSi

. This is something we

can solve with Gaussian elimination![
A 1

]
Si

is a square matrix, so it is invertible with high probability. Though

Homomorphic Encryption Page 28

the entries aren’t all chosen at random, this is still true, which can be seen
by considering the columns of ASi

to be chosen at random after the other
column. This matrix actually have a (slightly) higher chance of being in-
vertible than a random matrix, because we know our first column is not
the zero vector. With even higher probability, there exists an i such that[
A 1

]
Si

is invertible. Solving one of the invertible systems, we get a guess
x for the secret vector, along with a guess for ki. To see if x = s, compute
h = Ax− b. If the vast majority of the entries of h are zero, then x = s with
high probability. Otherwise, our guess that the period is τ is incorrect.

By iterating through guesses for τ , we can break systems with periodic noise
when the period isn’t sufficiently long.

10 Burst Noise

Another way bad noise can be generated is as a burst. That is, the noise is 0
except in some small window. More formally, given m samples (ai, bi), there
exist integers ti < tf such that, for i 6∈ [ti, tf], 〈ai, s〉 = b. Typically, there
would be many such windows, but for now we’ll assume a single burst.

For 1 ≤ h ≤ m and working with indices cyclically in Zm, define Sh =
{h, h + 1, . . . , h + n − 1}. Let t = tf − ti. We now have m square matrices
ASh

, and m − n − t of them will avoid the rows where the noise is not 0.
Again, the chances that at least one of these matrices is invertible is very
high. After solving a system to achieve a unique solution x, we again test
it against the full system [A|b] to see if the vast majority of the rows agree
with x.

10.1 Combinations of Noise Models

Now that we have some attacks on a couple of weak noise models, we can
look at ways to attack systems which use a combination of them.

Homomorphic Encryption Page 29

Suppose that very sparse noise is added to periodic noise. Rather than

assuming that the systems
[
A 1

]
Si

[
s
k

]
= bSi

have no noise, we can

collect more samples (adding them to the sets Si as appropriate) until we
can apply the random method described in the probability section on the

systems
[
A 1

]
Si

[
s
k

]
≈ bSi

.

If burst noise and periodic noise are combined, as long as the period τ is long
enough in comparison to the window size t+ 1, the same approach as above
will work. Once the correct period has been guessed, Si has very few rows
from the window of the burst, so the noise is very sparse.

If there are multiple bursts, the same approach as for a single burst will still
work, as long as the space between bursts is at least n.

References

[3SC05] Donald E. Eastlake 3rd, Jeffrey I. Schiller, and Steve Crocker.
Randomness Requirements for Security. 2005. url: http://tools.
ietf.org/html/rfc4086.

[Alb+12] Martin R. Albrecht et al. On the Complexity of the BKW Al-
gorithm on LWE. Cryptology ePrint Archive, Report 2012/636.
http://eprint.iacr.org/. 2012.

[AR05] Dorit Aharonov and Oded Regev. “Lattice problems in NP ∩
coNP”. In: J. ACM 52.5 (2005), 749–765 (electronic). issn: 0004-
5411. doi: 10.1145/1089023.1089025. url: http://dx.doi.
org/10.1145/1089023.1089025.

[Avr03] Hal Wasserman Avrim Blum Adam Kalai. “Noise-tolerant learn-
ing, the parity problem, and the statistical query model”. In:
Journal of the ACM 50.4 (2003), pp. 506–519. doi: http://

dx.doi.org/10.1145/792538.792543.

http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086
http://eprint.iacr.org/
http://dx.doi.org/10.1145/1089023.1089025
http://dx.doi.org/10.1145/1089023.1089025
http://dx.doi.org/10.1145/1089023.1089025
http://dx.doi.org/http://dx.doi.org/10.1145/792538.792543
http://dx.doi.org/http://dx.doi.org/10.1145/792538.792543

Homomorphic Encryption Page 30

[Ber+13] Daniel J. Bernstein et al. Factoring RSA keys from certified smart
cards: Coppersmith in the wild. Cryptology ePrint Archive, Re-
port 2013/599. http://eprint.iacr.org/. 2013.

[BMT78] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent
intractability of certain coding problems (Corresp.)” In: IEEE
Transactions on Information Theory 24.3 (May 1978), pp. 384–
386. issn: 0018-9448. doi: 10.1109/TIT.1978.1055873.

[dCo16] dCode. Caesar Cipher. Caesar code shift - Decoder, encoder, de-
crypt, encrypt. 2016. url: http://www.dcode.fr/caesar-

cipher.

[Edm65] Jack Edmonds. “Paths, Trees, and Flowers”. In: Canadian Jour-
nal of Mathematics 17 (1965), pp. 449–467. doi: http://dx.
doi.org/10.4153/CJM-1965-045-4.

[Gau16] Gautham. Homomorphic Encryption and Smart Contracts for
Privacy and Transparency. 2016. url: http://www.newsbtc.
com / 2016 / 04 / 17 / homomorphic - encryption - and - smart -

contracts-for-privacy-and-transparency/.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic En-
cryption from Learning with Errors: Conceptually-Simpler, Asymp-
totically-Faster, Attribute-Based. Cryptology ePrint Archive, Re-
port 2013/340. http://eprint.iacr.org/. 2013.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”.
In: New York: Plenum (1972), pp. 85–103.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley Longman, 1994. isbn: 978-0201530827.

[Reg05] Oded Regev. “On Lattices, Learning with Errors, Random Lin-
ear Codes, and Cryptography”. In: STOC ’05. Baltimore, MD,
USA: ACM, 2005, pp. 84–93. isbn: 1-58113-960-8. doi: 10.1145/
1060590 . 1060603. url: http : / / doi . acm . org / 10 . 1145 /

1060590.1060603.

[Rep12] Consumer Reports. Facebook & your privacy. Who sees the data
you share on the biggest social network? 2012. url: http://www.
consumerreports.org/cro/magazine/2012/06/facebook-

your-privacy/index.htm.

http://eprint.iacr.org/
http://dx.doi.org/10.1109/TIT.1978.1055873
http://www.dcode.fr/caesar-cipher
http://www.dcode.fr/caesar-cipher
http://dx.doi.org/http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/http://dx.doi.org/10.4153/CJM-1965-045-4
http://www.newsbtc.com/2016/04/17/homomorphic-encryption-and-smart-contracts-for-privacy-and-transparency/
http://www.newsbtc.com/2016/04/17/homomorphic-encryption-and-smart-contracts-for-privacy-and-transparency/
http://www.newsbtc.com/2016/04/17/homomorphic-encryption-and-smart-contracts-for-privacy-and-transparency/
http://eprint.iacr.org/
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm
http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm
http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm

Homomorphic Encryption Page 31

[Sch15] Bruce Schneier. NSA Plans for a Post-Quantum World. 2015.
url: https://www.schneier.com/blog/archives/2015/08/
nsa_plans_for_a.html.

https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html

	Introduction
	NP-Completeness
	3D-Matching
	Conversion in Polynomial Time
	Equivalent Solutions

	Learning With Errors
	LWE with Zero Errors
	LWE with Exactly One Error
	Polynomial Solution to One Error Case

	Seven Rows
	Probability is a Thing
	Periodic Noise
	Burst Noise
	Combinations of Noise Models

