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     Abstract 

This project aimed at understanding the variability in gene expression of Pseudomonas 

putida between laboratory and simulated liquid soil conditions. P. putida was grown in LB 

media and solubilized extract of soil organic material (SESOM) with either log phase or 

stationary growth. RNA-Seq analysis was employed to understand gene expression changes 

under the different growth conditions. The analysis revealed that most variation occurs between 

changes in medium, suggesting that growth medium components strongly influence gene 

expression patterns. Ultimately, we aim to unravel the genetic adaptations crucial for 

understanding P. putida’s survival in the soil environment, advancing scientific understanding 

and practical applications for engineered organisms in the soil. 
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1. Introduction 

1.1 SynBio Organisms and GEMs   
Synthetic biology is a dynamic and multidisciplinary field that encompasses the 

deliberate modification of genetic material within a diverse range of organisms, spanning from 

viruses and bacteria to plants and animals (Benner, 2005). This innovative technology, which has 

evolved over several decades, exerts a profound influence across various sectors of life, 

including medicine, agriculture, manufacturing, and environmental conservation (Cameron, 

2014). The exceptional versatility of synthetic biology, combined with the ongoing advances in 

DNA sequencing, genome editing, and artificial intelligence, positions it as a pivotal driver of 

innovation, heralding sustainable solutions and playing an instrumental role in shaping the future 

of biotechnology (Cameron, 2014).  

Genetically engineered microbes (GEMs) are central figures in the realm of synthetic 

biology due to their remarkable attributes, including short generation times, adaptability, and 

predictable behavior (Pant, 2020). GEMs have made invaluable contributions to medicine, 

yielding breakthroughs such as the production of therapeutic proteins and life-saving vaccines 

(Liu, 2022). Furthermore, GEMs have increasingly become the focus of attention in recent years, 

as they demonstrate significant potential in an array of soil-related applications, encompassing 

biosensing to detect environmental contaminants, bioremediation to mitigate the impact of 

pollutants, and pathogen control to safeguard public health (Rock, 2021). These applications 

underscore the pivotal role of GEMs as versatile tools for addressing complex challenges, 

exemplifying their significance in the realm of synthetic biology and beyond.   

Despite the growing utilization of genetically engineered microbes, substantial challenges 

persist in their application. The regulatory landscape is difficult to control but pivotal in the 

progress of these microbes (Ezezika, 2010). For instance, a microbe engineered to degrade the 

toxic defoliant Agent Orange faced approval challenges, as researchers struggled to guarantee 

that its capacity to break down harmful chemicals would not be transferred to nearby pathogenic 

bacteria (Ezezika, 2010).  

An additional challenge with GEMs is that they may thrive in one environment while 

exhibiting limitations or unforeseen behaviors in another, underscoring the complexity of 

biological systems (Stirling, 2020). A GEM may exhibit anticipated behavior in controlled 

laboratory conditions, but its performance in a natural environment, such as a soil microbiome, 
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can deviate from expectations (Stirling, 2020). This deviation could affect the GEM's ability to 

execute its intended functions and potentially result in undesired consequences, including 

horizontal gene transfer and disruption of the natural microbiome (Rock, 2021). These variations 

in performance raise the need for further research and refinement to ensure the predictability and 

reliability of GEMs across a range of conditions. 

  

1.2 Our Model GEM Strain  

 

 

Figure 1: SEM photograph of Pseudomonas Putida. Adapted from LIBRARY, D. K. M. P. (n.d.) Retrieved April 5, 

2024. 

 

1.2.1 Pseudomonas Putida and SynBio   

Pseudomonas putida (P. putida), a member of the extensive Pseudomonas genus, stands 

out as a Gram-negative bacterium with remarkable ubiquity across diverse ecosystems (Volke et 

al., 2020). P. putida is frequently encountered among plants, waters, and within soils, 

particularly those contaminated with various pollutants (Volke et al., 2020). Although P. putida 

is often found in environments that would be challenging for many microbes, such as oxidative 

stress and exposure to toxic substances, the bacterium showcases its remarkable adaptability. P. 

putida has been found to transform industrial byproducts such as plastics, oils, food waste, and 

agricultural residues into valuable products. (Son et al., 2023). Notably, this bacterium also 

exhibits undemanding nutritional requirements, ensuring its survival and proliferation, and is 
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easy to culture (Weimer et al., 2020). This ability has made P. putida of high interest for issues 

such as waste management or climate change (Son et al., 2023).  

The journey of exploring the potential of P. putida has its roots in the 1960s, and over the 

past six decades, our understanding of this microbe has grown significantly (Nakazawa, 2002). 

Despite these advancements, numerous aspects of P. putida’s biology remain vaguely 

understood. While many attribute the bacterium's impressive stress tolerance to its cyclic-core 

metabolism and Gram-negative characteristics, the precise underlying properties enabling this 

resilience are yet to be fully unveiled (Weimer et al., 2020). A prominent challenge in the realm 

of metabolic engineering and synthetic biology with P. putida is unraveling the intricate 

metabolic and regulatory networks governing this bacterium (Weimer et al., 2020). However, the 

known attributes of P. putida, such as its adaptability and robustness, have unequivocally 

established it as a top-tier candidate for genetic engineering and microbiological research (Volke 

et al., 2020).  

  

1.3 The P. putida Project   

1.3.1 Project History    

The presence of undiscovered landmines presents a significant and perilous risk, as they 

are difficult to detect due to most being buried or camouflage (Garmendia, 2008). To address this 

pressing issue, members of the Farny lab at WPI have embarked on a project to detect these 

buried landmines using a long-distance bacterial signaling system with P. putida. The hopes 

were that this engineered strain of P. putida would have the capability to traverse the soil, 

forming associations with fungal hyphae, and initiate a response upon detecting the presence of 

TNT buried as deep as a meter underground (Garmendia, 2008). Upon detection, the signaling 

cascade within P. putida would trigger the emission of a fluorescent signal on the surface, 

serving as a visible indicator of potential landmine locations (Garmendia, 2008). However, it was 

found that the technology has demonstrated signal propagation over only 8 cm. 

While this innovative approach holds immense promise for landmine detection, it has 

encountered a challenge regarding the variability in P. putida's gene expression patterns between 

laboratory conditions and its natural soil habitat for the Farny Lab. To determine the cause and 

levels of gene expression change in P. putida the team employed a liquid soil extract known as 

Solubilized Extract of Soil Organic Material (SESOM) to faithfully replicate the metabolic 
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conditions of the soil (Brözel, 2009). The team also generated comprehensive transcriptomic 

datasets from P. putida cultivated in both exponential and stationary phases, comparing growth 

in LB medium to that in SESOM (Voltmer, 2023). 

 

1.3.2 Next Generation Sequencing   

High-throughput, next-generation sequencing (NGS) technologies have revolutionized 

genome research by generating vast amounts of sequence data quickly (Xu, 2014). The 

versatility and potency of NGS make it an essential tool across a wide range of biological 

sciences, transforming scientific research in numerous fields (Xu, 2014). RNA-seq analysis is an 

essential part of next generation sequencing.  

Introduced in 2008, RNA sequencing (RNA-seq) has gained widespread adoption over 

the past decade due to decreasing costs and the proliferation of shared-resource sequencing cores 

in research institutions (Koch, 2018). RNA-seq serves various downstream analysis objectives, 

some being, transcript discovery, genome annotation, exploration of gene regulation 

mechanisms, and differential gene expression, which will be the focus of this project (Griffith, 

2015). The source material for such analysis may include in vitro cultured cells, homogenized 

whole tissues, or sorted cell populations (Koch, 2018).  

 The growing popularity of RNA-seq has created an increasing demand for 

bioinformatics expertise and computational resources (Griffith, 2015). To accurately analyze and 

process large datasets, bench scientists must grasp the bioinformatics principles and limitations 

associated with the intricate RNA-seq analysis process (Koch, 2018). While RNA-seq analysis 

can unveil valuable insights, it presents a departure from conventional analyses, providing a 

massive dataset that requires extensive examination for meaningful interpretation (Koch, 2018). 

 

1.3.3 Project Goals and Objectives  

To gain insights into the impact of growth environment on gene expression, this project 

conducted comprehensive RNA-seq analyses of P. putida datasets cultivated in LB and SESOM 

media, encompassing both log phase and stationary phase growth. The primary objective was to 

discern patterns in gene expression dynamics, determining the genetic adaptations crucial for P. 

putida's resilience and efficacy within diverse soil environments. In addition to differential 

RNA-seq analysis, the most significantly upregulated and downregulated genes were compared 
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to identify prevailing trends. Furthermore, Gene Ontology analysis was employed to investigate 

common pathways governing the metabolic shift necessary for survival in soil ecosystems. By 

examining gene expression variations, this study may not only advance fundamental scientific 

understanding but also may pave the way for practical applications. Specifically, the insights 

gained can inform the development of more robust GEMs optimized for gene expression in soil 

conditions. Such models hold promise for enhancing our ability to predict and engineer microbial 

behavior in soil environments, contributing to sustainable environmental management. 
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2. Methodology 

 

                               Figure 2: Flowchart of the RNA-Seq Analysis Pipeline used for this project. 

2.1 Raw Sequence Data 

2.1.1 P. putida Sample Collection 

P. putida cultures were cultivated in two distinct media, LB and SESOM. Subsequently, 

bacterial lysis was employed to extract total RNA from the samples. Following RNA extraction, 

purification steps were implemented to eliminate genomic DNA (gDNA). PCR (Polymerase 

Chain Reaction) was then applied to amplify specific RNA regions of interest. The amplified 

RNA samples were subjected to gel electrophoresis, a technique used to separate and visualize 

nucleic acids based on size, allowing for the assessment of RNA integrity and purity. 

Additionally, polyadenylation, the process of adding poly(A) tails to RNA molecules, was 

carried out to enhance the stability and quality of the RNA samples (Voltmer, 2023). 
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2.1.2 P. putida Data Sets and Shell Scripts 

The RNA-Seq analysis essential for this project relied on the Illumina P. putida datasets 

meticulously collected by Stokley Voltmer, a member of the Farny lab and the soil project. 

Stokley described that library preparations and sequencing were conducted by Azenta Life 

Sciences on the HiSeq platform, resulting in the generation of fastq files. FastQC was 

subsequently applied to assess the quality of these files. The output from FastQC informed the 

use of Cutadapt to clean up the fastq files, resulting in quality-controlled reads (Voltmer, 2023).  

The RNA-Seq pipeline for this project employed High-Performance Computing 

resources at WPI, utilizing batch processing through Slurm (Griffith et al., 2015). Specifically, 

the Linux cluster within Slurm facilitated computational tasks (Linux Clustering | SIOS, n.d.). 

Utilizing Slurm as the batch manager enabled the creation of tailored shell scripts for each 

pipeline step. These scripts facilitated efficient batch job submissions and encapsulated essential 

input parameters for each tool. 

2.2 RawDataQC 

Before proceeding with downstream analysis, the quality of raw sequencing data was 

assessed using FastQC, a widely used tool for evaluating the quality of high-throughput 

sequencing data. FastQC provides detailed information on various quality metrics, including per-

base sequence quality scores, sequence length distribution, GC content, and presence of 

sequencing adapters or contaminants (FastQC, n.d.).  

The input files used for FastQC were the fastq.gz files created from the P. putida sample 

collection mentioned previously in section 2.1.2. The shell script ran for FastQC contained 

variables for the run path and results path, where run path contained the fastq files and results 

path was the directory where the FastQC results would go. A for loop was created to run through 

each file in the run path and run FastQC on each. 

Upon completion of the FastQC analysis, comprehensive reports were generated for each 

sample some being the per base sequence quality, per sequence quality scores, quality score 

distribution, and sequence length distribution. These reports served as valuable insights for 

subsequent data preprocessing steps. 
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2.3 Trimming 

Raw sequencing reads often contain low-quality bases and adapter sequences that can 

affect downstream analysis. Therefore, trimming of raw reads is important in ensuring that read 

mapping and assembly is accurate. Trimming was performed using Trimmomatic, a tool 

designed to remove sequencing adapters and trim low-quality bases from reads (Bolger et al., 

2014).  

Trimming was conducted on each pair of input FASTQ files within the specified 

directory. An adapter file called TruSeq3-PE.fa was used to notify Trimmomatic on what adapter 

sequences should be removed from the files. The Trimmomatic parameters were set as follows: a 

sliding window size of 4 bases with an average quality threshold of 15, ensuring the removal of 

low-quality bases from the ends of reads. Additionally, a minimum quality score of 3 was 

applied for both the beginning and end of the reads. Any bases with a quality score below this 

threshold were trimmed. The minimum length of the trimmed reads was set to 36 bases to ensure 

data quality. 

The script facilitated automated processing of paired-end RNA-Seq data, providing an 

efficient and reproducible method for quality control and preprocessing. This approach ensured 

the removal of low-quality bases and adapter sequences, thereby enhancing the accuracy and 

reliability of downstream analyses, such as alignment and differential expression analysis.  

 

2.4 Read Alignment 

2.4.1 STAR Indexing 

Effective alignment is crucial for accurately mapping sequencing reads to a reference 

genome. To achieve this, a specific indexing process called STAR Indexing was employed 

(Piper, 2017). This index was generated utilizing both the genomic FASTA (fna) file and the 

gene annotation file (gtf) of the KT2440 strain of P. putida, ensuring alignment compatibility. 

The indexing process was initiated with the STAR command, specifying the --runMode 

genomeGenerate option to indicate the genome indexing mode. The script required the genome 

FASTA file and the gene annotation file, along with additional parameters such as --

sjdbOverhang to specify the length of spliced alignments and --runThreadN to allocate 

computational threads. Specifically, the --sjdbOverhang parameter was set to 49, corresponding 
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to the maximum spliced alignment overhang. Finally, the --quantMode GeneCounts option was 

used to enable the generation of gene-level expression counts during the indexing process. 

This comprehensive indexing procedure facilitated the creation of a STAR index tailored 

to the reference genome and gene annotation, ensuring accurate alignment and quantification of 

RNA-Seq data in subsequent analyses. The resulting index files were stored in the designated 

directory to use in downstream transcriptome analysis pipelines. 

 

2.4.2 STAR Alignment 

Alignment of trimmed reads to the reference genome of P. putida was conducted using 

the STAR aligner (v2.7.9a). The script locates the trimmed FASTQ files in a specified directory 

and initiates a loop to process each file individually. For each iteration, the STAR aligner was 

invoked with specific parameters for alignment. The --genomeDir option specified the directory 

containing the pre-built STAR index for the reference genome. The --readFilesIn option 

provided the path to the current trimmed FASTQ file being processed.  

Additionally, various other options were set to configure the alignment process, including 

specifying the output file prefix, setting the maximum number of multiple alignments per read to 

one (--outFilterMultimapNmax), defining the output format (--outSAMtype), and setting the 

threading options to two (--runThreadN) (Piper, 2017). During the execution of the loop, a 

counter variable was incremented for each iteration, ensuring unique identifiers for the output 

files. This facilitated the organization and identification of alignment results for each sample. 

The alignment process generated aligned read files in the Sequence Alignment/Map 

(SAM) format, which were subsequently converted to the Binary Alignment/Map (BAM) format 

for further analysis (Freeman, 2016). Overall, this script enabled the efficient alignment of 

trimmed RNA-Seq reads to the reference genome using the STAR aligner, producing aligned 

BAM files ready for downstream analysis and interpretation. 

 

2.5 Quantification  

2.5.1 Sambamba 

Quantification of gene expression levels was performed using Sambamba. Sambamba is 

utilized to filter aligned reads based on their mapping quality scores, enabling the removal of 
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low-quality reads and improving the accuracy of downstream analyses in the RNA-seq pipeline 

(Tarasov et al., 2015). To execute the MAPQreads filtering step as part of the RNA-seq pipeline, 

the directory containing the aligned BAM files generated from the previous STAR alignment 

was identified. Subsequently, and output directory was created to store the filtered BAM files, 

each preserving reads with MAPQ scores surpassing a predefined threshold of 20. The script 

iterated over each BAM file, applying the built-in filtering criteria of the sambamba tool, 

effectively removing reads with suboptimal mapping quality. This process optimizes the quality 

of the RNA-seq data by retaining only the most reliable alignments, thereby facilitating more 

accurate gene expression quantification and enhancing the overall robustness of downstream 

analyses. 

 

2.5.2 FeatureCounts 

FeatureCounts was employed to count the number of reads mapping to each gene in the 

reference genome. This quantification step provided a measure of gene expression abundance, 

which served as input for the subsequent differential gene expression analysis. The program 

featureCounts version 2.0.1 was utilized for read summarization, a crucial process in RNA-seq 

data analysis for quantifying gene expression levels (Liao et al., 2014). The specific command 

used was "featureCounts", where the "-a" flag specified the input annotation file containing 

genomic feature information, in this case, the KT2440_110_modified.gtf file. The "-o" flag 

indicated the output file name, designated as "counts.txt". By executing this command, 

featureCounts processed the aligned reads and assigned them to genomic features, ultimately 

generating a summary file containing the counts of reads mapped to each feature. 

2.6 Differential Gene Expression 

2.6.1 Calculating Differential Gene Expression 

Differential gene expression analysis was conducted using the DeSeq2 package in the R 

programming environment. DeSeq2 is used for detecting differentially expressed genes between 

different experimental conditions, considering factors such as biological variability and 

sequencing depth (Piper, 2017). Input data for DeSeq2 analysis included the raw read counts 

obtained from FeatureCounts and experimental metadata specifying the experimental conditions 

for each sample (e.g., LB vs. SESOM medium, stationary vs. log growth phase). Each DGE tool 

has their own methods for modeling read counts and estimating fold change values. DESeq2 uses 
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sample-wise size factor for nomarlization, Cox-Reid approximate conditional inference with a 

focus of maximum individual dispersion estimate, negative binomial for the assumed 

distribution, low false positives, support for multifaceted experiments, no detection of 

differential isoforms, and a runtime of 3-5 replicates (Dundar, 2015). 

First, a design formula was defined to model the experimental conditions, where each 

condition is represented as a separate group. Next, pairwise comparisons of interest were 

specified using contrast vectors, enabling comparison between different sample groups. 

Subsequently, a DESeqDataSet object was created from the count matrix (readcounts) and 

sample information, adhering to the design formula specified earlier. The DESeq analysis was 

then performed using the DESeq function, which estimated size factors and dispersions and fitted 

a negative binomial model to the count data. The logfold threshold for the DESeq2 analysis was 

1 where upregulated genes were larger than 1 and downregulated genes were less than -1. The 

DESeq2 analysis would consider any data that had a p-value of less than 0.05.  

Following the DESeq analysis, differential expression contrasts were conducted for each 

pairwise comparison of interest using the results function. This step allowed for the identification 

of genes that were differentially expressed between the specified sample groups. Finally, 

summary statistics were generated for each contrast, providing insights into the magnitude and 

significance of differential expression for the respective comparisons. Overall, this workflow in 

DESeq2 enables comprehensive differential expression analysis of RNA-seq data, facilitating the 

identification of genes associated with specific experimental conditions or biological 

phenomena. 

 

2.6.2 Visualizations 

2.6.2.1 Venn Diagrams 

To visualize the transcriptional responses of Pseudomonas putida to different growth 

conditions, significant genes were identified from the RNA-seq comparisons based on adjusted 

p-values and log fold changes. Upregulated genes, defined as those with a padj < 0.05 and 

log2FoldChange > 1.0, were extracted from each comparison. Similarly, downregulated genes, 

meeting the criteria of padj < 0.05 and log2FoldChange < -1.0, were identified for the same 

comparisons. Venn diagrams were then generated using the R package VennDiagram to 

visualize the overlap of significant genes across the different growth conditions. Separate 
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diagrams were created for upregulated and downregulated genes, each illustrating the shared and 

unique gene sets among the pairwise comparisons. The category names in the Venn diagrams 

corresponded to the specific growth conditions being compared.  

2.6.2.2 Volcano Plots 

For each pairwise comparison of conditions defined in the contrasts, contrast analysis 

was performed using the DESeq2 package in R. This analysis generated contrast-specific results, 

capturing differential gene expression between conditions. Subsequently, thresholds for 

significance were established, with a false discovery rate (padj) threshold set at 0.05 and a log2 

fold change (log2FC) threshold set at 1. Genes meeting these criteria were categorized as 

exhibiting high expression, while others were categorized as showing low expression. Volcano 

plots, visual representations of differential expression, were then generated using the ggplot2 

package. These plots depict log2 fold changes on the x-axis and the negative logarithm of 

adjusted p-values on the y-axis, with significant genes highlighted in color. Dashed lines indicate 

the significance thresholds for padj and log2FC. Each volcano plot was saved as a PNG file, with 

the filename corresponding to the specific contrast being analyzed. This approach allowed for the 

comprehensive visualization of differential gene expression patterns across the various 

conditions under investigation. 

2.6.2.3 Heatmaps  

The first heatmap focuses on visualizing the expression levels of the top 20 highly 

expressed genes across different experimental conditions. These genes were identified by 

ordering them based on their mean expression levels across all samples, with the highest 

expressing genes selected for visualization. The heatmap was generated using the pheatmap 

package in R, which allowed for the creation of a graphical representation where rows represent 

genes and columns represent individual samples. To maintain the specific order of genes and 

samples, clustering of both rows and columns was disabled. Additionally, sample annotations 

such as experimental conditions and size factors were included as column annotations to provide 

contextual information about each sample. 

The second heatmap visualizes the pairwise distances between samples based on their 

gene expression profiles. To prepare the data for visualization, the raw count data from the 

DESeq2 object (dds1) underwent variance-stabilizing transformation (VST) and regularized log 

transformation (rlog) to normalize the gene expression values and mitigate technical noise. The 

transformed expression values were then used to compute the pairwise distances between 
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samples using the Euclidean distance metric. The resulting sample distance matrix, which 

quantifies the similarity or dissimilarity between each pair of samples, was visualized as a 

heatmap using the pheatmap package. Clustering of both rows and columns in the heatmap was 

performed based on the sample distance matrix to reveal any inherent patterns or groupings 

within the data. 

2.6.2.4 PCA Plot 

In this study, PCA was performed on the variance-stabilized transformed (VST) data 

obtained from the DESeq2 object (dds1). The plotPCA function from the DESeq2 package was 

utilized to generate a PCA plot, where each sample is represented as a point in a two-

dimensional space defined by the first two principal components (PC1 and PC2). To facilitate the 

interpretation of the PCA plot, additional information about the experimental conditions and size 

factors associated with each sample was incorporated. The intgroup parameter was specified to 

indicate which experimental factors should be included as grouping variables, enabling the 

visualization of sample clustering based on these factors. Additionally, the returnData parameter 

was set to TRUE to return the PCA data, including the coordinates of each sample in the 

principal component space. 

Subsequently, a scatter plot was created using the ggplot2 package to visualize the PCA 

results. Each sample was plotted based on its coordinates in the PC1 and PC2 dimensions, with 

points colored according to their respective experimental conditions. The axes of the PCA plot 

were labeled with the percentage of variance explained by each principal component, providing 

insight into the contribution of each component to the overall variance in the data. By examining 

the distribution of samples in the PCA plot, patterns of similarity or dissimilarity between 

samples can be discerned, aiding in the identification of potential clusters or trends in the data. 

2.6.2.5 GO Term Analysis 

The custom P. putida Org package was created to facilitate gene ontology (GO) term 

analysis specifically tailored for Pseudomonas putida KT2440. The necessary R packages 

including clusterProfiler, AnnotationDbi, tidyr, dplyr, and AnnotationForge were loaded to 

support the analysis. The first step involved identifying housekeeping genes and sigma factor 

genes relevant to P. putida KT2440. The presence of eight housekeeping genes, including 

"argS", "gyrB", "ileS", "nuoC", "ppsA", "recA", "rpoB", and "rpoD", was confirmed in the gene 

annotation file obtained from a previous study (Ogura K. et al, 2019). Additionally, sigma factor 



   
 

  19 
 

genes, encompassing "rpoD", "rpoS", "fliA", "rpoH", "rpoE", and "rpoN", along with ECF 

family RNA polymerase sigma factors, were extracted from the annotation file. Subsequently, a 

list of genes of interest, required for GO term analysis, was compiled. 

The next step involved preparing a data frame containing gene ID information using the 

Pseudomonas putida KT2440 gene annotation CSV file. This file was processed to extract 

relevant columns including gene ID, locus tag, and product name. Duplicate entries and rows 

with missing information were removed to ensure data integrity. Moreover, chromosome 

information was extracted to provide additional context for gene analysis. Another CSV file 

containing GO annotations was imported and filtered to obtain GO terms associated with the 

genes of interest. The resulting data frame was refined to include columns for gene ID, GO 

accession, and GO evidence code. 

Finally, the custom P. putida Org package was generated using the makeOrgPackage 

function from the AnnotationForge package. This function utilized the processed gene 

information and GO annotations to create an Org package tailored for P. putida KT2440. The 

package was assigned a version number, taxonomic identifiers, and taxonomic classification 

parameters. Additionally, the package was configured with contact information for maintenance 

and authorship. Following package creation, the install.packages function was used to install the 

generated Org package locally for subsequent use in GO term analysis. 

For the contrasts, upregulated genes and downregulated genes, determined by a p-value 

of less than 0.05 and a log fold threshold of 1, were subjected to GO analysis to elucidate their 

functional roles. The P. putida KT2440 gene annotation CSV file was imported and processed to 

create an annotation data frame. Subsequently, upregulated/downregulated genes specific to the 

contrasts were filtered from the annotation data frame based on their gene IDs. The resulting 

subset of genes was further refined to extract locus tags, which served as identifiers for GO 

analysis.  

The enrichGO function from the clusterProfiler package was employed to perform GO 

analysis on the genes. This function utilized the gene locus tags along with the P. putida KT2440 

organism database (org.Pputida.eg.db) to retrieve GO annotations. Gene symbols were specified 

as the key type for gene mapping, and the analysis focused on biological process ontology. To 

control multiple testing, the Benjamini-Hochberg method was applied with a significance 

threshold set at 1 for both raw and adjusted p-values. 
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The results of the GO analysis for the upregulated/downregulated genes in the contrasts 

were obtained and inspected. This included significant enriched GO terms, along with associated 

statistical measures such as p-values, adjusted p-values, and gene counts. The top enriched GO 

terms were extracted and visualized as a data frame for further interpretation and the creation of 

pie charts. 

To generate pie charts illustrating the GO term analysis results for the upregulated and 

downregulated genes of each contrast, a GO_data data frame was constructed. This data frame 

includes columns for the GO term ID, description, and gene ratio. The gene ratio represents the 

ratio of genes associated with each GO term that were differentially expressed over the total 

number of genes analyzed. The gene ratio was split into numerator and denominator components 

using the strsplit function, and then converted into numeric values. Subsequently, the proportions 

of differentially expressed genes for each GO term were calculated by dividing the numerator by 

the denominator. Labels were created to display both the GO term description and the gene ratio 

on the pie chart slices. Finally, a pie chart was generated using the pie function, with the 

proportions as input data and the labels displaying the GO term descriptions and gene ratios. This 

approach facilitated the visualization of the distribution of differentially expressed genes across 

various biological processes associated with the GO terms analyzed in the contrasts. 

  



   
 

  21 
 

3. Results 

In the following sections of the report, the samples will be referenced as follows: P. 

putida grown in LB medium during the log phase of growth will be denoted as LBL, while 

samples from LB medium during the stationary growth phase will be labeled as LBS. Similarly, 

samples cultivated in SESOM medium during the log growth phase will be referred to as SL, and 

those from SESOM medium during the stationary growth phase will be represented by SS.   

 

3.1 Differential Gene Expression Analysis 

 To identify genes whose expression levels significantly change between the different 

conditions or sample groups, four DESeq2 reports were generated and formatted into one table 

(Table 1). After running DESeq2 analysis, significance was determined by a p-value less than 

0.05, and a log fold change threshold of 1 was used to measure upregulation or downregulation. 

The differential expression analysis across all four contrasts yielded insightful findings regarding 

the gene expression dynamics of P. putida￼ 

In the comparison between LBS and LBL, 406 genes exhibited upregulation while 221 

genes showed downregulation, out of the total 4455 genes analyzed (Table 1). Similarly, the 

contrast between SS and LBS conditions revealed 18 upregulated genes, 34 downregulated 

genes, (Table 1). Likewise, the comparison between SS and SL demonstrated 42 upregulated 

genes, and 388 downregulated genes (Table 1). Lastly, the contrast between SL and LBL 

unveiled 84 upregulated genes and 346 downregulated genes, providing further insights into the 

molecular responses of P. putida to variations in growth medium and phase (Table 1).  

The most upregulated genes can be found in the LBS vs LBL contrast, where the most 

downregulated genes can be found in the SS vs SL contrast. The contrast with the least 

differentially expressed genes is the SS vs LBS, most likely due to the stationary growth phases 

causing lower activity than log growth phase. A notable variation is seen in the SL vs LBL 

contrast where 84 genes upregulated when going from SL to LBL and 346 are downregulated. 

This means that those 346 genes are upregulated in SL demonstrating the impact that growth 

media has on variation. 
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Table 1: DESeq2 results for all four contrasts demonstrating the amount of upregulated or downregulated 

genes, the total amount of genes in the sample, and the percent of upregulated genes downregulated genes in the 

sample. 

 

3.2 Visualizing Differential Gene Expression for Contrasts 

To represent and further understand the differential gene expression for each contrast four 

volcano plots were created. The significance threshold for the data was a p-adjusted value of 

below 0.05 and a log change threshold of 1. Along the x-axis, the log2-transformed fold change 

in gene expression is depicted. Genes positioned to the right of the plot demonstrate upregulated 

genes, while those on the left exhibit downregulated genes. On the y-axis, the negative log10-

transformed adjusted p-value is represented, indicating the level of statistical significance 

associated with each gene. Points positioned higher on the y-axis indicate greater statistical 

significance. Each point on the plot corresponds to a specific gene, with its position determined 

by both its fold change and adjusted p-value. Red points denote genes that exhibit significant 

differential expression, characterized by substantial fold changes. Conversely, blue points 

represent genes that fail to meet significant criteria or demonstrate low fold changes. 

In Figures 3 and 4 volcano plots are depicted for contrasts of the same medium but different 

growth rate. In Figure 3, the volcano plot illustrates the comparison between LBS and LBL 

conditions. Red points scatter across both sides of the plot, indicating genes with varied 

expression levels. Notably, these points are generally evenly distributed, with slightly more red 

points on the right side of the plot than the left. Meanwhile, blue points, signifying genes with 

expression or low fold changes, are positioned lower on the plot compared to the red points. 

Since P. putida’s gene expression levels remained fairly constant amongst both LB samples, this 

suggests that growth rate does not have much of an impact on variation, and growth medium 

may have more of an impact.  Figure 4 illustrates the comparison between SS and SL conditions. 

A notable observation is the abundance of red points clustered predominantly on the left side of 
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the plot, indicating a higher prevalence of downregulated genes in SS compared to SL. 

Meanwhile, the blue points, appear to be noticeably lower on the plot compared to the red points.  

Figures 5 and 6 portray the volcano plots for contrasts of differing mediums. Figure 6 depicts 

the comparison between SL and LBL conditions. A greater abundance of red points is observed 

on the left side of the plot, indicating a higher number of downregulated genes compared to 

upregulated ones. Similarly to Figures 3 and 4, the blue points in Figure 6 also appear lower than 

the red points, denoting their lower statistical significance or minimal fold changes. This 

suggests P. putida may prefer SL conditions over LBL conditions, showing the impact of growth 

media. In Figure 5 the SS vs LBS contrast is shown but differs slightly in appearance from the 

others. In this plot there are significantly fewer red points than in the other contrasts, the number 

of blue points may surpass the amount of red. The red points on the plot exhibit a relatively even 

distribution, with a slightly greater concentration observed on the left side. This is 

understandable that gene expression is low for both samples in the context of the data since 

growth tends to slow down or stop completely in stationary growth. 

 

Figure 3: LBS vs LBL volcano plot 
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Figure 4: SS vs SL volcano plot 

 

 

Figure 5: SS vs LBS volcano plot 
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                                                               Figure 6: SL vs LBL. volcano plot 

 

 

3.3 Assessing Data Quality and Sample Similarity  

3.3.1 Data Quality and Sample Similarity with Heatmaps 

To observe overall data quality and sample similarity two heatmaps were created and 

utilized expression levels or sample-sample relationships. The heatmap shown in Figure 7 

provides a graphical representation of the expression levels of the top 20 genes, in terms of their 

mean expression levels, across the different conditions. Each row in the heatmap represents a 

gene, while each column corresponds to a sample. Each condition has three sample replicates; 

however, six samples are shown for each condition due to the paired end analysis described in 

the Methods section of this report. The color intensity in the heatmap indicates the relative 

expression level of each gene across the samples, with higher expression levels depicted in 

darker shades and lower expression levels in lighter shades (Figure 7). The heatmap reveals 

similar patterns of gene expression across the sample replicates, which demonstrates that the data 

is good quality and is being interpreted in the way that would be expected. The highest gene 

expression levels are found in LBL, SL, and SS replicates. This suggests a preference for these 
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conditions for P. putida growth and should be considered when cultivating the bacteria for future 

manipulation. (Figure 7). 

 

 

Figure 7: Heatmap of top 20 genes for the samples. Three sample replicates were collected for each condition, but 

six points appear for each due to the paired end analysis ran on the data.  

 

In the heatmap shown in Figure 8, the Euclidean distance of samples is represented where 

the blue color depicts high similarity or closeness between samples, while lighter colors such as 

white or light blue indicate greater dissimilarity or distance. Therefore, if a cell in the heatmap is 

blue, it suggests that the corresponding samples are similar or closely related based. In this 

heatmap, sample replicates are not labeled with their pair end numbering as they are in Figure 7. 

However, each paired end replicate should be next to its pair within the condition for this 

heatmap they are just not labeled as such. With this considered, as expected sample replicates of 

the conditions have the closest clustering as observed in this heatmap by the dark blue shade 

shared by each replicate within the samples. This highlights that the data is good quality due to 

the sample replicates showing expected similarity.  
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Figure 8: Euclidean distance heatmap for sample-sample relationships. Three sample replicates were collected for 

each condition, but six points appear for each due to the paired end analysis ran on the data. 

 

3.3.2 Data Quality and Sample Similarity with PCA Plot 

To observe data variability and overall quality one PCA plot was created for the samples. 

(Figure 9). PC1, which accounts for 76% of the total variance, represents the primary axis of 

variation in the data. This suggests that the largest source of variation among the samples is 

captured along PC1. Furthermore, PC2, capturing an additional 7% of the variance, represents a 

secondary axis of variation. While PC2 explains a smaller proportion of the total variance 

compared to PC1, it still contributes significantly to the overall structure of the data. SL and SS 

appear to the far right of PC1 axis clustering close to one another between -5 and 5 of the PC2 

axis. Whereas LBS and LBL are to the left of the PC1 axis and are far apart where LBL 

clustering is close to -10 on the PC2 axis and LBS clustering is close to 10 on the PC2 axis. 

These plot results suggest that the data is good quality due to the high variability within the data 

set but low variability within sample replicates demonstrated by the close clustering of the 

replicates. This separation between LB samples and SESOM samples also highlights the impact 

of growth medium on variation over growth phase.  
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Figure 9: PCA Plot of variance after DESeq2 analysis. Three sample replicates were collected for each condition, 

but six points appear for each due to the paired end analysis ran on the data. 

 

3.4 Intersection Analysis of Upregulated and Downregulated Genes 

 To visualize and understand the commonality between the upregulated genes and 

downregulated genes of the contrasts, two Venn diagrams were generated containing the 

upregulated genes for all four contrasts, and the downregulated genes for all contrasts. The first 

Venn diagram illustrates the intersection of upregulated genes (Figure 10), while the second 

diagram depicts the overlap of downregulated genes (Figure 11). 

In the Venn diagram representing upregulated genes, it was observed that 497 genes were 

upregulated in the LBS vs LBL contrast, 39 in SS vs SL, 112 in SL vs LBL, and 19 in SS vs LBS 

(Figure 10). Notably, regions where contrasts overlap without shared genes are represented as 

zero, indicating exclusive upregulation in specific comparisons. Of interest are the gene overlaps 

revealed in the diagram. Notable findings include 56 genes shared between SS vs SL and SL vs 

LBL, as well as 28 genes shared between LBS vs LBL and SS vs LBS (Figure 10). The 56 

shared genes amongst SS vs SL and SL vs LBL reveal genes that are upregulated in the log 

phase compared to stationary phase regardless of the growth medium. The overlap between LBS 

vs LBL and SS vs LBS indicates shared genes affected by LB medium compared to soil 

stationary phase.  

In the Venn diagram depicting downregulated genes, a total of 312 genes exhibited 

downregulation in the LBS vs LBL contrast, while 94 genes showed decreased expression in SS 
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vs SL, 78 in SL vs LBL, and 28 in SS vs LBS (Figure 11). An intriguing observation arises from 

the overlap between SS vs SL and SL vs LBL, where 377 downregulated genes were shared. 

This substantial overlap may suggest common regulatory pathways or biological processes 

affected by the transition from soil stationary phase to LB stationary phase. Additionally, 

noteworthy overlaps include 32 genes shared between SS vs SL and SS vs LBS which represents 

connections between soil stationary phase and LB stationary phase, distinct from the LB soil 

medium, as well as 28 downregulated genes shared between LBS vs LBL and SS vs LBS 

demonstrating genes that are affected by LB medium compared to SS (Figure 11). 

 

                              

Figure 10: Venn diagram of upregulated genes amongst contrasts 
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Figure 11: Venn diagram of downregulated genes amongst contrasts  

 

 

3.5 Biological Processes of Samples 

GO enrichment analysis was used to understand the biological processes of the 

differentially expressed genes amongst the contrasts, revealing common pathways or 

functionally related genes. The results of GO enrichment analysis provided the ID for the 

GO term, description of the biological process, gene ratio of my input list, Bg ratio of my 

dataset, p-value, p-adjusted value, qvalue, and the geneID. Utilizing the enriched Gene 

Ontology terms obtained from the analysis, visually informative pie charts were generated. 

Each pie chart represents the GO terms associated with either upregulation or 

downregulation in a specific contrast, providing a depiction of the enriched biological 

processes. In total, eight pie charts were generated, illustrating the GO terms for both 

upregulated and downregulated genes across each contrast. 

For the LBS vs LBL contrast, Figures 12 and 13 illustrate the GO terms for upregulated 

and downregulated genes, respectively. Similarly, Figures 14 and 15 depict the GO terms for 

SL vs LBL contrast, while Figures 16 and 17 represent the GO terms for upregulated and 

downregulated genes in SS vs LBS. Finally, Figures 18 and 19 visualize the GO terms for 
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upregulated and downregulated genes in SS vs SL. Each pie chart encapsulates six GO 

terms, each segment labeled with the specific GO term description and its corresponding 

gene ratio. It's important to note that while all pie charts contain six GO terms, the specific 

terms vary between contrasts. 

GO terms in Figure 12 reveal biological processes enhanced in the log phase independent 

of the LB media. GO terms found in Figure 13 reveal biological processes that are 

suppressed in P. putida in the log phase independent of LB media. GO terms found in Figure 

14 reveal genes that are enhanced in going from SESOM to LB independent of the growth 

phase. Whereas GO terms found in Figure 15 reveal genes that are suppressed going from 

SESOM to LB independent of the growth phase. GO terms found in Figure 16 reveal genes 

that are enhanced going from SESOM to LB regardless of the growth phase. Whereas Figure 

17 shows genes that are suppressed going from SESOM to LB regardless of the growth 

phase. Lastly GO terms found in Figure 18 reveal genes that are activated going from 

stationary to log phase growth independent of the media. Whereas Figure 19 reveals genes 

that are suppressed going from stationary to log phase growth independent of the media. 

The GO term analyses revealed distinct biological processes influenced by growth phase 

and media type in P. putida. Upregulated genes in the LBS vs LBL comparison (Figure 12) 

highlighted processes enhanced during log phase growth, irrespective of the LB medium, 

while downregulated genes (Figure 13) indicated suppressed processes during this phase. In 

contrast, genes upregulated in the transition from SESOM to LB media (Figure 14) 

suggested adaptations specific to LB, while downregulated genes (Figures 15) indicated 

suppressed functions under LB conditions. Figure 16 reveals genes that are enhanced going 

from SESOM to LB regardless of the growth phase. Whereas Figure 17 shows genes that are 

suppressed going from SESOM to LB regardless of the growth phase. Furthermore, 

comparison between stationary and log phase growth (Figures 18 and 19) revealed activated 

and suppressed genes independent of media type. These findings can be used to further 

understand the biological processes of P. putida in the varied growth conditions. 
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Figure 12: GO terms pie chart for upregulated genes for LBS vs LBL 

 

 

 

Figure 13: GO terms pie chart for downregulated genes for LBS vs LBL. 
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Figure 14: GO terms pie chart for upregulated genes for SL vs LBL. 

 

 

 

Figure 15: GO terms pie chart for downregulated genes for SL vs LBL. 
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Figure 16: GO terms pie chart for downregulated genes for SS vs LBS. 

 

 

 

Figure 17: GO terms pie chart for upregulated genes for SS vs LBS.. 
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Figure 18: GO terms pie chart for downregulated genes for SS vs SL. 

 

 

Figure 19: GO terms pie chart for upregulated genes for SS vs SL. 
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4. Discussion 

4.1 Impact of Growth Media and Growth Phase on Gene Expression 

Variation 

The analysis of differential gene expression across varying growth conditions provided 

valuable insight into the impact of growth media and growth phase on P. putida. Both growth 

media and growth phase altered gene expression amongst conditions. When examining the 

volcano plots and venn diagrams we see instances of gene expression changing due to change in 

media. For instance, in Figure 6 we see the impact of changing from SL to LBL and the large 

number of downregulated genes in comparison to the number of upregulated genes. Similarly in 

Figure 10 and Figure 11 when looking at contrasts SL vs LBL and SS vs LBS there is evident 

gene variation amongst contrasts due to the change in media. Growth phase also creates variation 

in gene expression as seen in Figure 4, 10, and 11. In Figure 4 the volcano plot of SS vs SL 

shows significantly more downregulated genes showing the impact of growth phase on gene 

expression. In Figure 10 and 11 the venn diagrams show the impact of growth phase between the 

contrasts LBS vs LBL and SS vs SL. However, while both environmental conditions are 

important to P. putida persistence and gene expression behavior, the condition which has the 

most impact on variability is the type of growth media.  

When looking at the PCA plot which measures variance (Figure 9) there is a distinct 

separation between LB samples and SESOM samples. This highlights the impact of growth 

medium on variation as the media used has more of an impact on variation than growth phase. 

An additional example of this is when looking at Figure 7 which displays the Euclidian distance 

between samples. When analyzing this heatmap the samples that show the most similarity are the 

sample replicates and the samples which have differing growth phases but the same media. This 

means that what begins to make the samples the most different is the change in media. When 

looking at the volcano plot of SL vs LBL we once again see that the impact of change in media is 

a lot more impactful than change in growth phase where we have many more downregulated 

genes than upregulated genes (Figure 6). However this volcano plot also reveals an interesting 

takeaway, that when P. putida is grown at the optimal growth phase for microbial growth, there 

are more enhanced genes in SESOM vs LB. This preference may reflect the physiological 

adaptation of P. putida to the soil environment, where nutrient availability and growth conditions 

differ from laboratory settings. Similarly, the contrast of SS vs LBS conditions seen in Table 1, 



   
 

  37 
 

although fewer differentially expressed genes than the other contrasts most likely due to the 

stationary growth phase creating reduced metabolic activity, a similar pattern was observed 

where there were more downregulated genes than upregulated. This means that there were more 

upregulated genes in SS than LBS. Overall this makes sense since the SESOM mimics the 

natural habitat of P. putida so there being better gene expression would almost be expected. This 

is a great point to consider when cultivating P. putida for future genetic engineering and 

cultivation.  

Further exploration of the overlapping gene sets in the Venn diagrams (Figure 10 and 11) 

provided additional insights into common regulatory pathways and biological processes affected 

by the transition between growth conditions and phases. Notably, the substantial overlap between 

SS vs SL and SL vs LBL contrasts suggests shared regulatory mechanisms or biological 

responses associated with the transition from soil stationary phase to LB stationary phase. 

Similarly, the overlap between LBS vs LBL and SS vs LBS contrasts highlights genes affected 

by LB medium compared to soil stationary phase, emphasizing the influence of growth media on 

gene expression dynamics. 

The GO term analysis results also shed light on the biological processes of P. putida in its 

preferred growth media and growth phase. This can be seen in Figure 13 where the six GO terms 

that were downregulated in LBL are actually upregulated in SL. Examining these GO terms can 

relay potential processes necessary for P. putida survival. For the GO terms, for example the 

phosphorelay signal transduction and intracellular signal transduction, these processes may be 

important for the bacteria to adapt to its soil environment which may be filled with other 

microbes, harsh pollutants, and other living organisms.  

Overall, these findings underscore the intricate interplay between growth media, growth 

phase, and gene expression regulation in Pseudomonas putida, shedding light on the adaptive 

strategies employed by this bacterium in response to environmental changes. The comprehensive 

analysis of gene expression dynamics provides a foundation for further investigations into the 

molecular mechanisms governing P. putida physiology and its potential applications in 

bioremediation and environmental monitoring. 
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 4.2 Recommendations and Conclusions 

Based on the findings of this study, several recommendations and conclusions can be 

drawn regarding gene expression dynamics and future research directions. Firstly, the most 

dramatic changes in gene expression were observed in the transition from SL to LBL conditions, 

where a substantial difference in the number of upregulated and downregulated genes was 

evident. This highlights the significant impact of growth media transitions on Pseudomonas 

putida gene regulation and suggests the need for further investigation into the underlying 

molecular mechanisms driving these changes. Additionally, the use of pairwise comparisons for 

Venn diagrams may provide a more focused and informative analysis compared to the inclusion 

of all four contrasts in a single diagram. This approach would allow for a clearer interpretation of 

overlapping gene sets and facilitate the identification of common regulatory pathways or 

biological processes shared between specific contrasts. 

While this study primarily focused on genes exhibiting significant changes in expression 

levels, future research should also consider genes that remain relatively constant across different 

growth conditions and phases. Analyzing genes with stable expression patterns can provide 

valuable insights into core metabolic processes and regulatory networks essential for P. putida 

survival and adaptation. 

Furthermore, the evaluation of Gene Ontology (GO) terms for each contrast should be 

given more attention in future studies. GO enrichment analysis provides valuable information 

about the biological processes, molecular functions, and cellular components associated with 

differentially expressed genes. A more comprehensive analysis of GO terms can enhance our 

understanding of the functional implications of gene expression changes and help identify key 

biological pathways influenced by growth conditions and phase transitions. 

In conclusion, this study sheds light on the dynamic nature of Pseudomonas putida gene 

expression in response to varying growth conditions and phases. The findings underscore the 

importance of growth media and growth phase transitions in shaping gene regulation dynamics 

and highlight avenues for future research aimed at elucidating the molecular mechanisms 

underlying these changes. By considering the recommendations outlined above, future studies 

can further advance our understanding of P. putida physiology and its potential applications in 

bioremediation and environmental monitoring. 
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