
Virtual Conference with Augmented Technology

Weizhe Wang and Mingxiao Zhao

Advisor:

Professor Xinming Huang

A Major Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for
the Degree of Bachelor of Science in
Electrical and Computer Engineering

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree

requirement. WPI routinely publishes these reports on its website without editorial or peer review. For

more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Abstract
This report introduces a software-based system that aims to improve the overall quality of the user experience

(QoE) on existing online conference meeting platforms, such as Zoom or Teams. The objective of the system

is to explore methods to increase immersion and comfort in virtual meetings while mitigating the negative

effects of prolonged use, commonly referred to as "Zoom fatigue." The proposed solution consists of five

functional modules: Multiple Target Windows Merging and Alignment, Background Removal, Vision Angle

Tilting by Head Orientation, Auto Display Resizing, and Boundary Warning. Importantly, the system does

not require additional hardware or virtual reality tools, as a standard built-in or USB webcam is sufficient.

The software aims to balance the cost and convenience for users while enhancing their overall experience.

This report provides technical details of the proposed approach, which offers a cost-effective, user-friendly,

and accessible solution for online video conferencing and meetings. Additionally, a software interface is

designed for users to evaluate this new online meeting experience and provide feedback.

1

Acknowledgements

We would like to express our deepest gratitude to:

WPI for this opportunity

Professor Xinming Huang for valuable guidance and support

WPI Funds for financial support

William Appleyard for supplies

Friends and peer students for fantastic ideas and suggestions

Coffee and Tea for energy

2

Table of Contents

1 Introduction 7
1.1 Online Meetings . 7

1.2 Shortcomings and Limitations in Online Meetings . 7

1.3 Proposed Solutions . 7

2 Background 9
2.1 Current Online Meetings . 9

2.2 Head/Face Tracking . 10

2.2.1 Infrared Projection & Capture . 10

2.2.2 Shape Matching . 11

2.2.3 Face Mesh . 12

2.3 Body Tracking . 13

2.3.1 MediaPipe Pose . 13

2.3.2 Depth Camera with Inertial Sensor . 14

2.4 Background Removal/Subtraction . 15

2.5 Networking . 16

2.5.1 Transmission Control Protocol . 16

2.5.2 User Datagram Protocol . 17

2.6 Image Augmentation . 18

2.7 Line Detection . 20

2.7.1 Hough Transform . 20

2.7.2 Convolution-Based Method . 21

2.7.3 Canny Edge Detector . 22

2.8 Limitations & Potential . 23

3 Technical Design 24
3.1 Multiple Target Window Merging and Alignment . 24

3.2 Background Removal and Foreground Alignment . 30

3.3 Vision Angle Tilting by Head Orientation . 33

3.4 Auto Display Resizing . 36

3.5 Boundary Warning . 39

4 Demo & Presentation 41
4.1 Working Stages . 41

4.2 Graphical User Interface design . 42

4.2.1 Main Window . 42

4.2.2 Calibration Window . 43

3

5 Conclusion & Future Development 44

6 Appendix. A: Conceptual Graph of 3D Display Mode 48

7 Appendix. B: Github Repo 48

4

List of Figures
1 The Display Interface of Zoom Conference . 9

2 Face ID Infrared Dot Projector . 10

3 Head Detection for People Counter . 11

4 MediaPipe Face Mesh Solution Rendering . 12

5 Pose Landmarks Sample [1] . 13

6 Typical Background Subtraction Process . 15

7 OpenCV Background Subtraction Example [2] . 15

8 TCP Handshake . 16

9 TCP Header . 17

10 UDP Protocol [3] . 17

11 Original Image without Processing . 18

12 Image after Blurring Process . 19

13 Image after Sharpening Process . 19

14 Example: Finding line at (0.925, 9.6) by Hough Transform 20

15 a) Horizontal b) Vertical c) Oblique + 45 degree d) Oblique - 45 degree 21

16 Example: Convolution-based Detector Finding Horizontal Line 21

17 Canny Edge Detection Processing Stages . 22

18 Zoom Display Mode . 24

19 WMA Display Mode . 25

20 Edge Detection Block Diagram . 26

21 Effect on Each Processing stage . 26

22 Detected Lines with Validity Check . 29

23 The virtual table edge (green line) . 31

24 Flowchart of image processing and alignment . 31

25 Parsing the user’s camera feed by the edge of table . 32

26 VTHO Applied to Sample Target Window: Look Left . 33

27 VTHO Applied to Sample Target Window: Look Forward 34

28 VTHO Applied to Sample Target Window: Look Right . 34

29 ADR Block Diagram . 36

30 ADR Face Detection and Adjustment: Zoom-In Example 37

31 ADR Face Detection and Adjustment: Zoom-out Example 37

32 Boundary Warning Block Diagram . 39

33 Boundary Warning When Head is Close to the Right Edge 40

34 Boundary Warning When Head is Outside camera’s FOV 40

35 Working Stages . 41

36 Working Stages . 42

37 Calibration Window . 43

5

38 3D Display Mode Conceptual Graph . 48

Listings
1 Image Sharpening Example . 27

2 Lines Detection & Drawing Example . 28

3 VTHO Debouncing Algorithm . 35

4 ADR Adjustment Example . 38

6

1 Introduction

1.1 Online Meetings

The emergence of the Covid-19 pandemic in late 2019 prompted a significant shift in the working and

learning models of organizations and schools worldwide. As a result, virtual meetings have become an

essential tool to maintain societal stability. This is evident from the exponential increase in the number

of participants on online meeting platforms such as Zoom, which reported over 300 million daily meeting

participants by April 2020 [4]. Tencent Meeting, one of China’s biggest online meeting platforms, reported

over 200 million active users and held 4 billion meetings in 2020 [5]. The widespread adoption of virtual

meetings has made theses platforms essential for many people, with other online meetings applications such

as Google Meet and Microsoft Teams also experiencing a significant surge in active users. Notably, the

continued use of virtual meetings is projected to remain high until 2024, even after the pandemic [6]. Given

the growing importance of virtual meetings, it is crucial to explore and improve the user experience to ensure

that the potential benefits of this mode of communication are fully realized.

1.2 Shortcomings and Limitations in Online Meetings

Online meetings have become indispensable tools for people to communicate, share files, and make presen-

tations from remote locations. However, the increased reliance on virtual meetings has presented challenges

for many users, some of whom report feeling mentally and/or physically exhausted from long hours of video

conferencing. This phenomenon, commonly referred to as "Zoom Fatigue," can be attributed to several fac-

tors, including prolonged periods of direct eye gaze. Unlike in-person group meetings where the direct

mutual gaze is limited, video conferences require all participants to stare at the users on the screen, leading

to increased attentional demands and energy depletion [7]. Moreover, the varying sizes of framed heads and

image jumping can be disconcerting, as participants struggle to focus on multiple faces in small boxes that

shift positions during discussion. Early research suggests that larger head images activate the sympathetic

nervous system associated with the fight-or-flight response, adding to the cognitive load experienced by

online meeting participants [8]. Additionally, from a User Interaction perspective, many users find online

meetings to be user-friendly but not immersive or engaging.

1.3 Proposed Solutions

We designed 5 main functions that should ease the adverse effects mentioned in Section 1.2 with the inten-

tion of creating a better experience for online meeting users.

• The first function is Multiple Target Windows Merging and Alignment. Windows Merging and Align-

ment (WMA) is designed to merge and align all visual streams of other participants into a single vir-

tual meeting space with the aim of providing users with a more immersive and engaging experience.

Displaying all participants in a single virtual meeting space has many advantages. For example, this

approach enables all participants to be visually co-present in a shared digital space, replicating a face-

7

to-face meeting environment. The integration of WMA also provides users with a more natural and

psychologically closer experience that is intended to lessen the cognitive burden on users. By render-

ing a unified visual interface with less clutter and reduced image jumping, this feature optimizes the

user experience and creates a more efficient and engaging virtual environment.

• The second function of our proposed system is Background Removal. This function allows users to

customize their virtual background, something which has been implemented in many existing online

meeting platforms. However, we aim to introduce this function in a different way. Our system will

provide a proper virtual background to the merged window, giving the impression that all participants

are sitting in the same meeting room. Users can choose a background that is more natural, such as

a conference room from their organization. Alternatively, a blurry background is set as the default

option. By providing a realistic and natural setting, the function of Background Removal aims to

increase the immersive experience of online meetings, allowing users to better focus on the content

and reducing the cognitive load.

• The third function is Vision Angle Tilting by Head Orientation (VTHO). Given the aforementioned

limitation, presenting all participants’ faces simultaneously in a single window is not a feasible ap-

proach when the number of participants exceeds four, as it will result in reduced face sizes. Conse-

quently, only two to three participants can be exhibited at a time. The user can maneuver between

participants by slightly turning their head towards the left or right. To simulate this functionality,

directional sounds can be implemented to create the impression of sounds emanating from either side.

Following the sound cues, the user can naturally turn their head in the corresponding direction to

observe the participant. To ensure optimal user experience, it is advisable to maintain proportional

alignment between the head tilting angles and the display adjustments, instead of perfect equivalence.

• The fourth function is Auto Display Resizing (ADR). As explicated in Section 1.2, the presentation of

images with different sizes may induce disorientation and additional cognitive exertion for the users,

leading to fatigue. The ADR feature is designed to address this issue by dynamically resizing the

images of individual participants on the screen, ensuring that all individuals are presented at a com-

parable size.

• The fifth function is Boundary Warning. While this feature may not directly influence user experience,

it is instrumental to the processing of the user’s image from the perspective of other participants. The

Boundary Warning feature functions by generating an alert signal when the user’s head movements

cause them to deviate or move outside the general field of view. The signal is represented by the

appearance of red lines at the edge(s) of the display window, thereby enabling the user to discern the

direction of their deviation. The purpose of this function is to promote and ensure an enhanced user

experience for all meeting participants.

8

2 Background
This chapter provides background information on the working principle of online meetings, methods of head

& body tracking, and methods of background removal. These concepts are referenced and built upon in our

designs.

2.1 Current Online Meetings

Online meetings, virtual meetings, and video conferences are just different names of the same thing that are

used for people to communicate from different locations. The basic working principle of online meetings

is simple. From each user, the camera captures the image (real-time video is just a sequence of images)

and sends this information to other ends. In this way, each user end will have images of all the meeting

participants, and each image will be displayed in a small box. The user will see all the boxes arranged

together including the one showing him/herself. The final display output would look like a grid frame.

Figure 1: The Display Interface of Zoom Conference

Other common functions include file upload and download, screen share, auto-displaying box switch, and so

on. Usually, in a lecture or information session, people will see one big box display the one who is currently

speaking and many small boxes display other participants. The image shown in the big box will switch as

different people speak. In a group discussion or regular meeting, people prefer to use the grid diagram mode

as shown in Figure 1.

Some online meeting platforms provide services of background blur, virtual background, special effects,

and cartoon avatars. These functions conduct image processing and generate new output images to display.

To succeed in these functions, it will require more advanced technologies including object recognition and

head/body tracking.

9

2.2 Head/Face Tracking

Head (face) tracking is a widely recognized and valuable technique with numerous applications. Its utility

is evident in various domains, including identity verification, people enumeration, video conferencing, and

specialized simulations such as the Microsoft Flight Simulator. Several distinct methodologies of head track-

ing exist, each tailored to optimize the performance of the critical features associated with their respective

applications.

2.2.1 Infrared Projection & Capture

Facial recognition represents the predominant means by which individuals engage with face tracking in their

everyday lives. This technology finds widespread application in smartphones for functions such as unlocking

screens, effecting payment transactions, and populating passwords automatically. Head tracking for these

purposes centers on the acquisition and analysis of detailed information relating to facial characteristics.

Infrared dot projection and analysis typically exhibit strong performance in this regard, exemplified by

Apple Inc.’s Face ID. The hardware of the Face ID system consists of two main modules: a dot projector to

project a grid of infrared dots onto users’ faces, and an infrared camera to read the pattern [9].

Figure 2: Face ID Infrared Dot Projector

Following the projection phase, the camera will capture an infrared image to generate a 3D facial map,

which is then compared with the user’s registered model for authentication purposes. Successful completion

of the comparison process results in user authentication. The grid used in the projection process incorporates

over 30,000 infrared dots, thereby ensuring the requisite level of accuracy for Face ID authentication, even

for users wearing glasses. According to Apple Inc., the accuracy of Face ID is 1,000,000:1 [10]. Similar

10

technologies are used for many other purposes such as attendance records and gate/door access for buildings.

2.2.2 Shape Matching

Head tracking can be applied to people counting. The people-counting system is usually used for video

surveillance, statistical analysis of people accessing an area, and security tasks. It performs count distinction

between the input and output numbers of people moving through the region of interest (ROI). The head

tracking in the people counting system does not detect heads based on facial features. It sets a camera at

a high-altitude position and captures the image information from the top view. The detection is based on

finding people’s heads through pre-processed image correlation with circular patterns while tracking is based

on a Kalman filter to determine the trajectory of the head candidates [11]. The updated people counters in

the target ROI are then calculated based on the direction of the trajectories.

Figure 3: Head Detection for People Counter

As depicted in Figure 3, the technique utilized here involves the identification of heads through shape
matching. While this approach performs admirably in the context of approximate people enumeration, with

accuracies ranging between 87% and 98%, it does not capture any additional information related to head

size or facial characteristics. The exclusive emphasis on head shapes and movement patterns ensures that

the system remains both stable and cost-effective.

11

2.2.3 Face Mesh

Real-time image processing applications, such as video conferences, rely on face tracking to enable func-

tions like beautification and cartoon avatar creation. These features require information regarding the size,

shape, and facial characteristics of the user’s face to generate the corresponding processed images. A widely

recognized approach entails the identification and extraction of facial landmarks using machine learning

(ML) algorithms trained on datasets, resulting in the creation of a face mesh. This technique offers real-time

performance without the need for a specialized depth sensor [8].

Figure 4: MediaPipe Face Mesh Solution Rendering

Face Mesh approach leverages facial features to achieve real-time face recognition and tracking. This

technique employs a well-established machine learning pipeline consisting of two real-time deep neural

network models, which work in tandem to accurately regress 3D face surfaces.

Unlike other methods, the face mesh solution is solely based on computer vision and a pre-trained model,

thus eliminating the need for additional equipment like infrared projectors or depth cameras. As well as

providing face position tracking, the face mesh also supplies information on facial shape, facing angle,

facial expression, and other parameters.

12

2.3 Body Tracking

2.3.1 MediaPipe Pose

The utilization of body tracking is ubiquitous across various domains such as sports, health monitoring,

video surveillance, video conferencing, and interactive projects. In the realm of computer vision, body

tracking methods are akin to that of Face Mesh, as exemplified by MediaPipe Pose - a prominent machine

learning-based approach that offers high-precision tracking of body poses [1]. This method involves the

inference of 33 distinct 3D landmarks across the entire body, as depicted in the figure below.

Figure 5: Pose Landmarks Sample [1]

From a theoretical perspective, the method based on landmark detection can be applied to face detection, as

it encompasses 11 face landmarks within the landmark group. Nonetheless, this approach fails to provide

the level of precision required for most computer vision projects involving faces.

Advanced techniques typically rely on depth or LiDAR cameras to attain high accuracy and good real-time

performance, especially in cases where the body is in non-frontal poses or partial visual occlusions.

13

2.3.2 Depth Camera with Inertial Sensor

A tracking method utilizing a depth camera and inertial sensors worn by the user has been introduced, as

it can offer several benefits over other tracking methods [12]. Drawing on prior tracking techniques, it

combines a generative tracker and a discriminative tracker to obtain the closest poses in a database. The

additional sensors enable the development of a new inertial-based pose retrieval and an adapted late fusion

step to calculate the final body pose.

One of the advantages of this method is its ability to maintain tracking in challenging body positions or when

the body is partially obstructed. This is particularly useful in scenarios such as sports training, physical

therapy, or rehabilitation exercises, where the user’s body is often in non-frontal or complex poses. With a

database of 50,000 poses, the accuracy, and overall performance are satisfactory [12]. Nonetheless, there

are some limitations to this method. The requirement for a depth camera and inertial sensors restricts its use

to specific environments and applications, and the cost of these sensors may also be a concern. Additionally,

the accuracy of the method heavily depends on the quality of the database used for pose retrieval, which

may require a considerable amount of data collection and preprocessing efforts.

14

2.4 Background Removal/Subtraction

The removal of background elements is a fundamental technique in video analysis, particularly in video

surveillance. The concept of background removal/subtraction refers to a range of video processing methods

that aim to differentiate between the foreground and background in a video sequence through the application

of a background model [13]. The conventional approach involves evaluating the images based on three

attributes, namely, foreground detection, background maintenance, and post-processing.

Figure 6: Typical Background Subtraction Process

The technique involves setting a threshold to check foreground pixels, followed by the separation of such

pixels from the image. This is typically followed by a series of image processing steps to interpolate and

predict the missing approximate pixels via regression [14]. While this method delivers high accuracy in

detecting moving objects when the camera remains in a fixed location, it encounters some challenges in

distinguishing the stationary foreground from the background.

Figure 7: OpenCV Background Subtraction Example [2]

15

2.5 Networking

Online video conferencing has become an essential tool in today’s interconnected world. Network protocols

such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) emerged to transfer

packets of audio and video data across the internet. Both TCP and UDP protocols are widely used trans-

port layer protocols that deliver data over an IP network, but the difference between TCP and UDP data

transporting mechanisms characterizes them with advantages and disadvantages under different scenarios.

2.5.1 Transmission Control Protocol

TCP was developed in the early 1970s as a reliable protocol for transmitting data over the network. The

protocol of TCP focuses on preventing potential data loss or errors during transmission by establishing a

bidirectional connection between the sender and receiver. As shown in Figure 8 [3], each time the sender

sends a packet to the receiver, the receiver returns a message back to the sender acknowledging the reception

of the packet.

Figure 8: TCP Handshake

The TCP protocol encapsulates a header at the beginning of each TCP segment(packet). The TCP header

carries important information about the data being transmitted. This information is stored followed by the

structure shown in Figure 9 [15]. Specifically, the sequence number identifies the first byte of the TCP

segment, and acknowledgment number records the number of the next data byte the receiver is prepared

to accept [16].

16

Figure 9: TCP Header

The nature of the TCP protocol determines its advantage in reliability and transmission quality. On the other

hand, the TCP handshake exposes its limitation of time efficiency when processing high-volume data under

a strict time constraint.

2.5.2 User Datagram Protocol

The UDP protocol was developed in the 1980s for low latency and fast communication. As an alternative to

TCP, UDP protocol does not require a handshake for every transmission between sender and receiver. This

feature reduced the header size and the delivery time of each packet. As a trade-off, the receiver sacrificed

the ability to check the data integrity, and the sender will never know if the packet has ever been delivered

(see Figure 10). Without modification, the UDP protocol lacks reliability when handling sensitive data.

Figure 10: UDP Protocol [3]

17

2.6 Image Augmentation

Image Augmentation is a significant key factor in image processing. With Image Kernel, the grey-scale

images can be sharpened, blurred, outlined, embossed, and so on [17]. An image can be read as a matrix

where each element represents a pixel of the image. The value of each element is between 0 and 255,

referring to the brightness. The image kernel itself is a small matrix to apply these processing effects. Take

a 3 x 3 kernel as an example. It influences a group of pixels in the range of 3 x 3 and repeats this step

for all the pixels. The entries of the kernel matrix will be the corresponding coefficients of the pixels’

brightness values. The sum of nine products indicates the new brightness value for a pixel after processing.

For instance, if an image needs to be blurred, the brightness of pixels should be lowered at a different scale.

The center pixel should be a bit brighter than the border ones. Thus, a Blur Kernel should look like:
0.0625 0.125 0.0625

0.125 0.25 0.125

0.0625 0.125 0.0625

.

If an image needs to be sharpened, we will want the contrast of the adjacent pixels to be clearer. The center

pixel’s brightness should be enhanced while the border faded. A Sharpen Kernel should look like:
0 −1 0

−1 5 −1

0 −1 0

.

The following figures show a simple comparison.

(a) Original Kernel (b) Original Image

Figure 11: Original Image without Processing

18

(a) Blur Kernel (b) Blurred Image

Figure 12: Image after Blurring Process

(a) Sharpen Kernel (b) Sharpened Image

Figure 13: Image after Sharpening Process

There are more effects that could be applied with the proper arrangement of the image kernel. Images after

processing could have clearer features for analysis. Image processing works efficiently in many areas includ-

ing image enhancement, pictorial pattern recognition, and the efficient coding of pictures for transmission

or storage [18].

19

2.7 Line Detection

Line Detection is an algorithm that takes multiple edge points and finds all the lines on where these edge

points lie [19]. It is widely used in image processing. When images are to be used for different analyses

such as object recognition or object positioning, it is important to reduce the amount of unrelated data in

images while preserving the target data and structural information. Currently, there are three main solutions

for line detection: the Hough Transform, the Convolution-based Techniques, and the Canny Edge Detector.

2.7.1 Hough Transform

Hough Transform is a straight line detector and the output is a parametric description of the lines in an

image such as

r = xcos(θ)+ ysin(θ).

That means for Hough Transform, the lines in images are described in Polar Coordinate. In general, we

can define a set of lines that goes through point (x0,y0) as

r0 = x0cos(θ)+ y0sin(θ),

so each pair (r0,θ) represents each line that passes the point. For a given (x0,y0), we can plot a set of lines

that goes through it in a plane θ − r, and we will get a sinusoid curve. Repeating this operation for all the

points in an image will generate multiple curves. If two curves of different points intersect, then both points

belong to the same straight line [20][21]. For instance, drawing the plot for (x, y) points (8, 6), (4, 9), and

(12, 3), we will have:

Figure 14: Example: Finding line at (0.925, 9.6) by Hough Transform

20

As the three curves intersect at (0.925, 9.6), they are in the same line. Thus, in general, the Hough Transform

method detects lines by finding the intersection between curves. With more intersections, the output line has

more points on it. We can set a threshold for the minimum number of intersections to narrow down the valid

candidates of lines. The Hough Transform method is a classic plane computer vision algorithm that grants

high flexibility.

2.7.2 Convolution-Based Method

In a convolution-based method, the line detector consists of a convolution mask tuned to detect the presence

of lines of a particular width and an orientation (n,θ) [22]. The following are four example kernels:

Figure 15: a) Horizontal b) Vertical c) Oblique + 45 degree d) Oblique - 45 degree

The masks will run over the image, and if a mask is overlaid on the image, multiply the coincident values

and sum all the results. The output will then be the convolved image. For example, [23]

Figure 16: Example: Convolution-based Detector Finding Horizontal Line

Convolution-based line detector is a feasible method but tends to have negative performance when finding

dark lines against a light background.

21

2.7.3 Canny Edge Detector

There are more methods that also can perform line detection. One is the Canny Edge Detector with assist

of the Gaussian Filter method.

Canny Edge Detector is usually used to take a normal grey-scaled image and output a lined black-and-

white image. The basic working principle can be summarized as (1) finding the intensity gradients of

the image, (2) applying gradient magnitude thresholding or lower bound cut-off suppression to get rid of

spurious response to edge detection, (3) applying a double threshold to determine potential edges, and (4)

track edge by hysteresis [24]. Some research groups realized the enhancement of Canny detection by scale

multiplication [25]. The Canny Edge Detection is a multi-stage method as shown in the figure below. [26]

Figure 17: Canny Edge Detection Processing Stages

As mentioned in Figure 17 above, the image was processed with a Gaussian filter in one of the stages. The

Gaussian filter is used to filter out noises of the images so that the Line Detection will not be affected.

To smooth an image, the Gaussian kernel is convolved with the image. Thus, basically, the Gaussian Fil-

ter method is also a kind of convolution-based method. The equation for a Gaussian filter kernel of size

(2k+1)×(2k+1) is given by:

Hi j =
1

2πσ2 exp(−(i−(k+1))2+(j−(k+1))2

2σ2);1 ≤ I, j ≤ (2k+1).

The Gaussian Filter can also be customized for the horizontal and vertical scales to better match the pro-

cessing purposes. It is widely used for image processing and augmentation. Although Gaussian Filter itself

does not work as a line detector, it could assist and enhance most of the line/edge detectors.

22

2.8 Limitations & Potential

Current models of online meeting platforms have several limitations and untapped potential. For instance,

head (face) tracking solutions are currently only used for specific visual effects such as beautifying or

avatars. However, this approach provides additional information about the detected face, including the

facing angle, absolute position, and size of the face, which could be used for a wide range of applications.

In this study, we leverage this information on the facing angle and size of the face to develop the VTHO

function and ADR function and use the information on absolute position to establish the boundary warning

section.

Moreover, the existing background removal functions available in most online meeting platforms are often

insufficient. Typically, users opt for background removal and replace it with a virtual background, but the

recognition of the human body at the contour is frequently unstable. Although the background subtraction

method is highly accurate in analyzing a single image, its performance deteriorates in real-time conditions.

In real-time conditions, both the environment and the foreground pixels are constantly changing, and the

background subtraction method takes a relatively long time to process. Additionally, it performs poorly in

adapting to artificial lighting environments. Indoor lighting environments primarily depend on artificial light

sources, which change at specific frequencies. Therefore, it is challenging for the background subtraction

method to recognize background pixels with rapid and repetitive changes.

Our proposed designs aim to address these issues and unlock the potential for the further development of

online meeting platforms.

23

3 Technical Design
This chapter elucidates the operational principles, functional details, and essential insights regarding the

five technical design sections. Our objective is to develop software solutions that are accessible to all online

meeting users, without requiring additional equipment such as AR/VR headsets or depth/LiDAR cameras.

The majority of the designs are based on established or currently utilized technologies or concepts, with

pertinent background information being presented in the preceding chapter. Further details can be found in

Section 2.

3.1 Multiple Target Window Merging and Alignment

The conventional display mode of online meetings involves rendering participants in small, separate boxes

that are then arranged in a grid format. However, the Multiple Target Window Merging & Alignment

(WMA) function seeks to merge and align these individual display windows to create a more lifelike and

authentic meeting environment. This function mitigates the cognitive demands placed on users and reduces

the likelihood of "Zoom Fatigue."

Figure 18: Zoom Display Mode

24

Figure 19: WMA Display Mode

Figure 19 depicts the outcomes of the merging and basic alignment function, whereby the challenge of

disparate table colors is addressed by segmenting the table pixels and assigning a uniform RGB value.

Further details pertaining to this approach are expounded upon in Section 3.2. Compared with Figure 18,

WMA only displays the target participants but not the main user, which aims to intimate the reality.

To accomplish the merging function, the raw images undergo a series of processing steps, which involve

determining the absolute position of the lower edge of the human body for each input image, stitching the

images together, and aligning the y-axis position of the human figures.

If applicable, the absolute position of the lower edge of the human body is critical in identifying the table.

Since our design lacks depth or LiDAR cameras, it solely relies on 2D computer vision. The approach

involves selecting several appropriate straight lines in the image and determining which line should be

designated as the table edge. As illustrated in the block diagram, the process involves four distinct stages of

image processing.

To capture the details of the table, we set the camera vertical, which can also simulate the conference

situation with a smartphone camera. These four processing stages depend on pure 2D computer vision

algorithms. The step-by-step processed effect after each stage is shown in Figure 20.

25

Figure 20: Edge Detection Block Diagram

Figure 21: Effect on Each Processing stage

The purpose of the cropping stage is to reduce the scope of the processing area, as the table edge is expected

to appear at the bottom of the image. This step is intended to increase processing efficiency by reducing the

amount of data that needs to be analyzed. Specifically, the Region of Interest is defined as the lower half of

the image.

26

The sharpening stage serves to accentuate and approximate line-like features in the image. In this project,

the programming language employed is Python, and the filter2D() method is utilized for image sharpening.

This method, also referred to as Image Augmentation by Image Kernel, is introduced in Section 2.6. The

filter2D() method accepts several parameters, three of which are particularly significant. The "source" pa-

rameter corresponds to the unprocessed input image, "ddepth" designates the expected integer value of the

output image’s depth (default/non-change = -1), and "kernel" denotes the matrix employed to implement the

desired process. [22].

1 import cv2
2 import numpy as np
3 #Read an image here
4 #Crop the image here
5 kernel = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
6 emboss = cv2.filter2D(src = cropped_image , ddepth = -1, kernel)
7 cv2.imshow("Sharpening", emboss)
8

Listing 1: Image Sharpening Example

The above is an example of a sharpening process. We input the pre-cropped image, set a kernel as

−2 −1 0

−1 1 1

0 1 2

,

and display the output image of this stage. A series of images with effect after each stage can be found in

Figure 21.

The Blur & Grey Scale stage is a further processing step after sharpening. The Gaussian Blur method is

employed to blur the image, with more emphasis on the horizontal direction, as the table edge is expected to

be closer to a horizontal line. The horizontal lines should be more distinguishable after this step, simplifying

the line checking in the subsequent stage. As the stage after this step only accepts grey-scaled images as

input, the image is converted into greyscale in this stage. The objective of this series of processing is to

identify the table edge or lower human body edge, and hence, the color of the image does not affect the

result.

The subsequent stage in the processing pipeline is the Canny stage, which takes as input the grey-scaled

image output from the previous stage. The purpose of this stage is to apply the Canny Edge Detection method

in order to identify suitable edge candidates. This method is a multi-stage algorithm that involves performing

Noise Reduction, Intensity Gradient Finding, Non-maximum Suppression, and Hysteresis Thresholding

[27].

27

The figure depicting the outcome of the Canny Edge Detection method is presented in the sub-figure located

at the middle right bottom of Figure 21. The application of appropriate thresholds in this stage results in the

image containing only straight lines (edges) rather than color blocks. This image serves as the input for the

final stage of edge detection.

The detection method is the Hough Line Transform method. The variables of this method include but are

not limited to the minimum and maximum lengths of target lines, the minimum gap between lines, and an

array to store the information of detected lines.

1 import cv2
2 as import numpy as np
3 # An cropped input image being blurred here
4

5 edged = cv2.Canny(blurred , threshold1 =10, threshold2 =50) #Canny Process
6 linesP = cv2.HoughLinesP(edged , 1, np.pi / 180,
7 threshold =15, lines=np.array ([]),
8 minLineLength =30, maxLineGap =3) #Hough Transform

Detect
9

10 if linesP is not None: # Draw and Display the lines
11 for i in range(0, len(linesP)):
12 l = linesP[i][0]
13 cv.line(cdstP , (l[0], l[1]), (l[2], l[3]), (0,0 ,255), 3, cv.LINE_AA)
14 cv.imshow("Detected Lines", cdstP)
15

Listing 2: Lines Detection & Drawing Example

However, the basic application of edge detection, as described above, may not be sufficient. Despite the

horizontal Gaussian blur applied in the previous stage, some vertical lines may still be present in the resulting

image. To address this issue, certain conditions are applied to filter out undesired lines.

28

Figure 22: Detected Lines with Validity Check

As illustrated in Figure 22, a color-coded scheme is employed to differentiate between different types of

lines detected by the Hough Line Transform method. The Red lines are eliminated as they fail to satisfy the

slope check criteria. All Yellow lines passing the slope check are considered valid candidates. However, a

subset of these lines may appear in an inappropriate location. Therefore, we group the valid candidates with

similar Y-axis values and slope values. Once a certain group of elements reaches a reasonable number, they

are labeled as Blue lines, which indicates that they are selected candidates for approximating the table edge.

Based on the Blue lines, we derive an approximation of the table edge and mark it with a Green line. This

approach enables us to detect the table edge despite obstructions such as the arm shown in Figure 22.

With the aforementioned processing steps, we obtain the absolute position of the human body, which allows

us to conduct window merging and alignment.

29

3.2 Background Removal and Foreground Alignment

The core algorithm underlying the WMA in Figure 19 consists of two primary components: background

removal in the designated area and foreground alignment based on the given edge location.

For background removal, we evaluated multiple approaches to identify an optimal real-time solution, lever-

aging OpenCV and Image Segmentation methods. While exploring options, we first considered the back-

ground subtraction algorithm from the standard subtraction to MOG2. Although this method exhibited good

accuracy in distinguishing foreground and background objects and boasted outstanding real-time perfor-

mance, it demonstrated low stability in real-time conditions, which could easily be influenced by camera

exposure or unstable lighting environments. Next, we explored foreground extraction using the stereo/depth

camera. However, the accuracy of depth output from stereo vision cameras, such as the ZED Camera, suf-

fered from the light condition in the user’s room, resulting in low stability when separating the user from the

background. Overall, its performance in real-time conditions was even worse than background subtraction.

Therefore, we instead opted for the image segmentation solution provided by MediaPipe, which offered

fairly stable and real-time capability.

The primary challenge in optimizing the user’s visual experience lies in combining each individual camera

feed into one virtual environment since the most critical criterion to measure the user experience is how

well each user is aligned with the other. The virtual environment consists of two primary components: the

background and the conference table. Ideally, the real-world table of each conference participant should

align with the virtual conference table. To achieve this, the program required the relative edge location for

each meeting participant and the ratio to scale it to the coordinate of the background canvas. To facilitate

access to this data while processing each client’s camera feed, we developed a data structure that attaches the

table edge location and the alignment information with each video frame. When the video stitching program

ran, it could easily fetch the alignment and scale parameters from this data structure. After obtaining the

alignment parameters for each user’s camera feed, the program could offset each user’s foreground vertically

to match the alignment line, which was the virtual table edge in the background shown in Figure 23.

30

Figure 23: The virtual table edge (green line)

Figure 24: Flowchart of image processing and alignment

In the program, we implemented both foreground alignment and background removal in the stackIMG

function. This function accepts five input parameters: a dictionary data structure to hold a collection of

video frames from each user’s camera, a background image for the virtual background, the required shape

to fit the camera feed into the background canvas, and the horizontal spacing between each user, the distance

from the user camera’s boundary to the margin of the background canvas. The function can utilize these

parameters to allocate each user’s camera to their designated space on the background canvas. A flowchart

in Figure 24 illustrates the image alignment and background removal procedures behind this function; at

the beginning of the flowchart, the program fetches each meeting participant’s frame object from the input

31

dictionary. This object is a data structure that includes the current frame of the participant’s camera feed

and the edge location, information that is critical for the program to alter the foreground’s vertical location.

After this process, the program will separate the foreground image by the edge into two pieces. As shown

in Figure 25, The upper piece(blue) is above the table edge, and the lower part(green) is below the edge.

The background removal program only processes the upper part, removing the participant’s background.

On the other hand, the lower part remains unchanged, retaining the portrait. After the background removal

is completed, these two parts are stitched together and placed on the designated area on the background

canvas.

Figure 25: Parsing the user’s camera feed by the edge of table

32

3.3 Vision Angle Tilting by Head Orientation

The Vision Tilting by Head Orientation (VTHO) method is based on the face mesh algorithm provided by

MediaPipe. The face mesh function can detect face landmarks and calculate the head pose angle. By taking

the nose as the center, the head pose angle (x, y) can be utilized to adjust the display window, similar to

the action of a scrollbar in the event of multiple meeting participants. During the calibration stage, the user

can set the initial head pose position to zero. During the meeting, the user can turn their head slightly to

the left or right to shift their focus towards a specific participant. To create a more natural user experience,

vertical vision tilting is enabled for a slight change in the angle. The angle of the head tilting and the

corresponding vision-changing angle are in an appropriate ratio since the screen’s width and length are

limited, and excessive head movement can be awkward. The ratio can be easily adjusted within the program

code.

The following three figures show the effects of VTHO. As the user looks left, forward, and right, he will see

the left part, middle part, and right part of the target display.

Figure 26: VTHO Applied to Sample Target Window: Look Left

33

Figure 27: VTHO Applied to Sample Target Window: Look Forward

Figure 28: VTHO Applied to Sample Target Window: Look Right

34

The proposed method for achieving VTHO involves the allocation of pixels for the head posing angle, as well

as the display of the selected area. However, a direct linkage between the head pose angle and the display

area proportionally may result in "jumping" problems where the displayed image changes too rapidly when

the speed of turning the head is high. In turn, this can cause the display image to appear unstable and bounce

continuously.

To address this issue, the proposed method incorporates a debouncing algorithm to render the field of view

more natural. Specifically, the method dynamically records a list of head-tilting angles (with a standard of

10 elements) and returns the average value for allocation. The list continually discards the earliest data when

recording a new one to maintain the ten-element list and ensure that the average change is not excessively

large. As a result, the proposed method can enhance the fluency of display during vision changes.

1 import cv2
2 import mediapipe as mp
3 import numpy as np
4

5 if len(self.tilt_buffer) >= hist:
6 # pop the first element of the buffer when buffer > 10
7 del self.tilt_buffer [0]
8 self.tilt_buffer.append(head_dir)
9

10 loc_tilt_buffer = self.tilt_buffer
11 stb_tilt = np.mean(loc_tilt_buffer , axis =0)
12 stb_x , stb_y = stb_tilt
13 # calculate the ratio of head tilt to image rolling
14 tilt_y_step = (y_center - halfFOV_w) / headbound_R
15 # calculate the ratio of head tilt to image rolling
16 tilt_x_step = (x_center - halfFOV_h) / headbound_U
17

Listing 3: VTHO Debouncing Algorithm

As illustrated in the provided sample code, in the event that the number of recorded elements is less than the

pre-determined size, the list continues to record data. Once the list size meets the pre-set size, the earliest

element is discarded while a new one is recorded. This debouncing method functions by recording head-

tilting data and computing an average value that governs display changes. The resulting change will be more

natural and smooth before applying the debouncing algorithm.

35

3.4 Auto Display Resizing

The previous study indicates that the different sizes of face images in an online meeting can increase the

user’s brain activity costs and thus make "Zoom Fatigue" more severe [7].

The Auto Display Resizing function aims to reduce the brain activity requirement by decreasing the differ-

ences in sizes between each displayed face of other meeting participants. The basic logic is to detect the

size of each face, set a proper range of size as standard, compare the detected size and the standard range,

and adjust the displayed image based on the result of the comparison.

Figure 29: ADR Block Diagram

36

Upon detection of the face, the Auto Display Resizing function exclusively requires size information of the

face, thereby obviating the need for the Face Mesh method. The ADR function relies on a lightweight model

featuring merely six facial landmarks, thereby ensuring high-speed and cost-effective processing conditions

[28].

Figure 30: ADR Face Detection and Adjustment: Zoom-In Example

Figure 31: ADR Face Detection and Adjustment: Zoom-out Example

37

As shown in Figure 30 and Figure 31, the face frame strictly captures the Face but not the head. We do not

capture the whole head so the size will not be influenced by the length or width of the head. A previous

study published the average face width is to be 128.4±10.1 millimeters [29]. This data is considered to be

more constant than the head width value.

After the face size detection and the comparison, the ADR will adjust the image by zooming out or in at an

appropriate scale. The ADR function can be used in real-time conditions, automatically and dynamically

adjusting the images.

1 import cv2
2 import mediapipe as mp
3 import numpy as np
4

5 auto_rsz = AutoResize () #Resize function defined somewhere else
6 h, w, c = image.shape
7 ratio , bound_warni = auto_rsz.bound_n_resize(image , 170)
8 adjust_w = round(w * ratio)
9 adjust_h = round(h * ratio)

10 new_shape = (adjust_w , adjust_h)
11 if ratio > 1:
12 rsz_image = cv2.resize(image , new_shape ,
13 interpolation=cv2.INTER_LINEAR)
14 ah , aw = rsz_image.shape [:2]
15 dn = round(ah * 0.5 + h * 0.5)
16 up = round(ah * 0.5 - h * 0.5)
17 lt = round(aw * 0.5 - w * 0.5)
18 rt = round(aw * 0.5 + w * 0.5)
19 rsz_image = rsz_image[up:dn, lt:rt]
20 else:
21 rsz_image = cv2.resize(image , new_shape ,
22 interpolation=cv2.INTER_AREA)
23

24

Listing 4: ADR Adjustment Example

Above is an example of a basic working model under certain scaling conditions. The conditions can be

simply modified from the user’s end.

Activating this function might result in the continuous changing of the target figure(s) if the target partici-

pant(s) keep moving during the meeting, which could cause an unnatural experience. Therefore, the ADR

should be turned on and off easily by users during the meeting so that it will only be used to calibrate the

image when needed.

38

3.5 Boundary Warning

Boundary Warning is not a function that directly improves the Quality of User Experience of online meetings

but contributes to guaranteeing the validity of lasting image processing performance. When the user is in

the middle of an online meeting using our applications, he/she will have a window displaying all other

participants sitting side by side. However, not like the common display mode that most online meeting

platforms are currently using, the users of our application will not see himself/herself in the window. We

designed the display mode this way to enhance the realistic level since people in in-person can only see

others as well. The problem is the user does not know if he/she is always in a proper position where the

camera can capture the human figure or the required information since the user does not have a self-display

window. The boundary warning function is designed to solve this problem while not influencing the QoE.

Face/head tracking is used for the development of this function too. The face-tracking method we used gath-

ers information including the absolute position of the face/head. This information will be used to determine

if the head is in a proper position so that the image can still be processed correctly.

Figure 32: Boundary Warning Block Diagram

39

The determinative conditions for the position check are the distances between the head frame and the edges

of the processing area. If the distance between the head frame and a certain edge is too close, the boundary

warning function will be activated and displays a red line on the corresponding edge as shown in Figure 33.

This function can also work when the head frame is too close to multiple edges, for example in the corner

of the camera capturing area.

When the head frame crosses the edge(s) or when the head tracking method can no longer detect the head

frame, a text warning will be displayed on the screen as shown in Figure 34.

Figure 33: Boundary Warning When Head is Close to the Right Edge

Figure 34: Boundary Warning When Head is Outside camera’s FOV

40

4 Demo & Presentation
This chapter provides introductions to the user-end stages and some User Interface designs. To better convey

our design ideas, we conducted some front-end designs which will be explained here. Upon the completion

of reading this chapter, users should understand how to use the application we designed.

4.1 Working Stages

Before entering the meeting room, there is a calibration stage. In this stage, the project collects information

to calculate the absolute position of the user. This result will be stored and fixedly activated during the

meeting stage. It regulates the "table finding" function and guarantees the stability of the experience during

the meeting stage. If the camera position or user position needs to be changed during the meeting stage,

the user can come back to the calibration stage for re-adjustment. Also, the initial position and initial head-

posing angle are detected and fixed during the calibration stage. The later calculation during the meeting

stage will consider this initial position as zero.

Figure 35: Working Stages

When the calibration is finished, users can quit this stage and automatically enter the meeting stage. During

the meeting stage, all the designed functions will start and keep working until the end of the stage.

Basically, our demo application requires the least user participation to conduct the prior calibration. The

users can return to the calibration at any time if re-adjustment is needed.

41

4.2 Graphical User Interface design

The user graphic user interface (GUI) is an essential feature for augmenting user experience and demon-

strating the concept of our project. The GUI was developed using the Tkinter library, a widely-used Python

module that offers a straightforward and flexible solution for constructing GUI applications. The principle

of our GUI design is to enhance the ease of use for users, so we prioritized the minimalist design approach

while retaining a user-friendly interface.

4.2.1 Main Window

The architecture of the user interface involves two layers: the main window and the pop-up calibration

window. The main window serves as a primary window for displaying the virtual conference room. When

the user decides to re-calibrate the application, they can access the calibration window by pressing a button

located on the main window as shown in Figure 36.

Figure 36: Working Stages

42

4.2.2 Calibration Window

The calibration window shown in Figure 37 enables the user to adjust the camera angle and recenter head

tracking program. In this mode, the table edge is highlighted with different colors to indicate the quality of

the table position. Meanwhile, the window prompts users with directions to adjust their webcam. After the

completion of camera calibration, the user can exit this window by clicking on a confirm button or simply

closing the window.

Figure 37: Calibration Window

43

5 Conclusion & Future Development
The goal this project focuses on achieving is to create one or multiple software solutions to solve the "Zoom

Fatigue" problem and to improve the overall quality of user experience. Based on the background research,

we further investigated the potential causes of "Zoom Fatigue" and explored solutions. The potential causes

include the multiple small windows display mode, the auto jumping speaker view, and the varying head

frame sizes of other participants. These factors are drawing huge attention and requiring a lot of brain

processing, thus causing or exacerbating the "Zoom Fatigue."

To solve the specific problems, we proposed developing a window merging & alignment function to integrate

all the target windows into one, a head-oriented vision-changing function to replace the dynamic jumping

view, and an auto-resizing function to dynamically scale the head frames of the target participants to proper

sizes. Two other assisting functions are designed and applied to enhance or guarantee performance. These

functions aim to reduce brain activities and provide a more comfortable mental environment for users.

The proposals and designs for these functions are well-evaluated based on several factors. The main purpose

of this project is to make the online meeting more realistic and natural since reality requires the least user

brain activity. Virtual Reality (VR) technologies usually are an inevitable potential solution, but they have

their own problems such as physical burden on the neck or cybersickness. Considering the inconvenience

and the high cost of VR headsets, we decided to develop pure software solutions without VR or any other

extra devices. Our project works with only one normal built-in or web camera. The program is mostly based

on light-level trained models and 2-Dimensional computer vision, so it is expected to run on any common

computer easily. To better convey our ideas, we integrate this project as a demonstration consisting of a

simple user interface for free exploration.

While this project has made several useful contributions to the display mode and interactions of the online

meeting, there is always more room for improvement. Regarding the WMA function and the background

removal function, we recommend training a maturer model to boost the accuracies of absolute position

determination and front ground segmentation. Currently, the position determination in the WMA function

is based on 2-Dimensional image augmentation and detection. It works with low cost and low requirements

but sometimes fails to narrow down the valid candidates. With time and budget limitations, we did not train

a model for it. A well-trained model which could recognize table or desk surfaces through 2D cameras will

increase the accuracy and speed of position determination. Similarly, a well-trained model will be able to

improve the performance of background removal. The current background removal function does not have

excellent performance when processing detailed parts such as the fingers and the hair. This problem exists

in most of the current online platforms. A mature trained model should make some improvements but it is

expected to take a long time for training.

44

Also, we recommend bringing the processing to a more powerful server. Currently, most of the processing

is executed on each user’s end and the data is transmitted through the network. This method distributes the

calculation requirements to all the users. If all the calculation and processing can be done on a powerful

server and then only send the corresponding output data to each user’s end, the device requirement will

be lowered significantly. When this step is achieved, the program should also be able to be run on mobile

devices, further expanding the applications. We also recommend the future group develop mobile-end ap-

plications. With the development of mobile-end streaming and video platforms, the public is now showing

more interest in mobile-end applications because of their convenience, so we believe a strong and stable

mobile application will be a trending pattern of video conferences.

In addition to the enhancement potential, we also have some new ideas and concepts. At the beginning of the

project, we had an idea to place 3-Dimensional figures of all the participants including the user him/herself

into a virtual room. Participants are sitting around a round table, and each member can see others by turning

his/her head. The visual output should be similar to VR games but all the figures are not cartoon avatars but

real human figures, and the display will be on the screen but not through a headset. This mode best restores

the reality scene and requires the least extra devices. The conceptual graph of this display mode can be

found in Figure 38 under Appendix A. However, this method still needs multiple cameras for each user to

capture the 3D details and create the human figure in the virtual room. Also, it would need a lot more time

and cost. These are the reasons we discarded the plan. However, we believe such a development path has

potential and will be valuable if more investments are made. To succeed in this purpose, we recommend

students with strong Computer Science or Interactive Media & Game Development backgrounds to take

over and continue exploring.

45

References
[1] “MediaPipe pose.”

[2] “OpenCV: How to Use Background Subtraction Methods.”

[3] “UDP vs TCP: Why to Run Gaming Servers Separate from Chat.”

[4] B. Evans, “The zoom revolution: 10 eye-popping stats from tech’s new superstar.”

[5] E. Gao, “Tencent meeting held 4 bn meetings in 2020, hit 200 mn users.”

[6] W. Standaert, S. Muylle, and A. Basu, “How shall we meet? understanding the importance
of meeting mode capabilities for different meeting objectives,” vol. 58, no. 1, p. 103393.

[7] J. Bailenson, “Opinion | why zoom meetings can exhaust us.”

[8] “MediaPipe face mesh.”

[9] Y. Kubota, “Apple iPhone X Production Woe Sparked by Juliet and Her Romeo.”

[10] T. Warren, “Apple’s face id struggles detailed in new iphone x report,” Oct 2017.

[11] J. García, A. Gardel, I. Bravo, J. L. Lázaro, M. Martínez, and D. Rodríguez, “Directional
people counter based on head tracking,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 9, pp. 3991–4000, 2013.

[12] T. Helten, M. Muller, H.-P. Seidel, and C. Theobalt, “Real-time body tracking with one
depth camera and inertial sensors,” in 2013 IEEE International Conference on Computer
Vision, (Sydney, Australia), p. 1105–1112, IEEE, Dec 2013.

[13] S. Brutzer, B. Höferlin, and G. Heidemann, “Evaluation of background subtraction
techniques for video surveillance,” in CVPR 2011, pp. 1937–1944, 2011.

[14] B. Garcia-Garcia, T. Bouwmans, and A. J. Rosales Silva, “Background subtraction in real
applications: Challenges, current models and future directions,” vol. 35, p. 100204.

[15] J. Kristoff, “The transmission control protocol.”

[16] L. Dostalek, Understanding TCP/IP a clear and comprehensive guide to TCP/IP protocols.
From technologies to solutions, Birmingham, U.K: Packt Pub., 1st edition ed., 2006.

[17] V. Powell, “Image kernels explained visually.”

[18] T. Huang, W. Schreiber, and O. Tretiak, “Image processing,” Proceedings of the IEEE,
vol. 59, no. 11, pp. 1586–1609, 1971.

46

[19] P. H. King, “Digital image processing and analysis: Human and computer applications with
cviptools, 2nd edition (umbaugh, s.; 2011) [book reviews],” IEEE Pulse, vol. 3, no. 4,
pp. 84–85, 2012.

[20] “OpenCV: Hough Line Transform.”

[21] “Document: Line Detection.”

[22] “Python OpenCV - filter2d() function.”

[23] “Wikipedia: Line detection,” Jan. 2022. Page Version ID: 1064863210.

[24] B. Wang and S. Fan, “An improved canny edge detection algorithm,” 2009 Second
International Workshop on Computer Science and Engineering, vol. 1, pp. 497–500, 2009.

[25] P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 9,
pp. 1485–1490, 2005.

[26] “Canny edge detector,” Jan. 2023. Page Version ID: 1136103505.

[27] “OpenCV: Canny edge detection.”

[28] “Mediapipe face Detection.”

[29] V. Holinko, I. Cheberiachko, H. Symanovych, and J. Kicki, “Designing the half-masks of
filter respirators for workers of mining enterprises,” E3S Web of Conferences, vol. 123,
p. 01001, 01 2019.

47

6 Appendix. A: Conceptual Graph of 3D Display Mode

Figure 38: 3D Display Mode Conceptual Graph

7 Appendix. B: Github Repo
More details about the code and demo video can be found through this link:
https://github.com/tommywwz/virtual_conferencing_MQP.git

48

https://github.com/tommywwz/virtual_conferencing_MQP.git

	Introduction
	Online Meetings
	Shortcomings and Limitations in Online Meetings
	Proposed Solutions

	Background
	Current Online Meetings
	Head/Face Tracking
	Infrared Projection & Capture
	Shape Matching
	Face Mesh

	Body Tracking
	MediaPipe Pose
	Depth Camera with Inertial Sensor

	Background Removal/Subtraction
	Networking
	Transmission Control Protocol
	User Datagram Protocol

	Image Augmentation
	Line Detection
	Hough Transform
	Convolution-Based Method
	Canny Edge Detector

	Limitations & Potential

	Technical Design
	Multiple Target Window Merging and Alignment
	Background Removal and Foreground Alignment
	Vision Angle Tilting by Head Orientation
	Auto Display Resizing
	Boundary Warning

	Demo & Presentation
	Working Stages
	Graphical User Interface design
	Main Window
	Calibration Window

	Conclusion & Future Development
	Appendix. A: Conceptual Graph of 3D Display Mode
	Appendix. B: Github Repo

