
Project Number: MQP-MOW-0902

BASEBALL VISUALIZATION

A Major Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Jennifer Hunt

Date: May 3, 2010

Approved by:

Professor Matthew O. Ward, Advisor

2

Abstract

The goal of this major qualifying project is to create an adaptable and entertaining visual

representation of baseball pitch data collected from MLB.com. Several different techniques are

used to create an application that allows the selection of different pitches, displays the

visualization of the selected pitch trajectories, and creates several different graphs of the pitch

data. The insights gained from user testing are utilized to make suggestions for future

enhancements to the project.

3

Table of Contents
Abstract ... 2

Table of Figures .. 5

1. INTRODUCTION .. 6

2. BACKGROUND RESEARCH .. 9

2.1 Current Baseball Visualizations .. 9

2.1.1 KZone .. 9

2.1.2 PitchFX Tool .. 10

2.1.3 MLB.com Gameday ..11

2.2 Visualization Techniques .. 12

2.2.1 Flow Visualization ... 13

2.2.2 Collision Detection .. 14

2.2.3 Shading .. 14

2.2.4 Particle Systems ... 16

2.3 Visualization Tools .. 17

2.3.1 Prefuse Visualization Toolkit ... 17

2.3.2 The Visualization Toolkit ... 18

2.3.3 Other Visualization Tools ... 19

3. DESIGN .. 22

3.1 Data Storage .. 22

3.2 User Selection Methods and the Interface .. 22

3.3 Visualization Features ... 24

3.3.1 View Features ... 24

3.4 Pitch Animation and Features ... 24

3.4.1 Pitch Path ... 25

3.4.2 Pitch Size and Speed .. 26

3.5 Strike Zone Features ... 27

4. IMPLEMENTATION.. 29

4.1 Programming Language .. 29

4.2 The Baseball Visualization Database .. 30

4.2.1 Connection ... 30

4.2.2 Pitch Selection Queries .. 30

4

4.3 Pitch Trajectory Calculations .. 31

4.4 The Baseball Field and Baseball Animations ... 32

4.4.1 Views .. 34

4.4.2 Baseball Animations .. 34

4.4.3 The Strike Zone .. 36

4.5 The User Interface ... 36

4.6.1 The Pitch Selection Panel .. 38

4.6.2 The Visualization Panel ... 40

4.6.2.1 The Full Screen Window... 41

4.6.3 The Graph Panel .. 44

5. RESULTS .. 46

5.1 Pre-Test Results .. 47

5.2 Task Discussion and Observation ... 50

5.3 Post-Test Questionnaire Results ... 51

6. CONCLUSION ... 53

7. WORKS CONSULTED .. 56

8. APPENDIX A: User Testing Documents .. 57

5

Table of Figures

Figure 1: K Zone during a televised game [4] .. 9
Figure 2: PitchFX tool strike zone plot [1] ... 10
Figure 3: MLB.com Gameday example: full 3D mode [8] ...11
Figure 4: Stream lines in 2D [11] ... 13
Figure 5: Particle traces [11] .. 13

Figure 6: Pressure contours on a surface [11] .. 14
Figure 7: Uniform color example .. 14
Figure 8: Flat shading example ... 15
Figure 9: Gouraud shading example ... 15
Figure 10: Phong shading example ... 16

Figure 11: Particle system example [10] ... 17

Figure 12: Prefuse example [12] .. 18
Figure 14: OpenDX examples [9] .. 19
Figure 13: The visualization toolkit example [13] .. 19

Figure 15: JUNG example [6] .. 20
Figure 16: The Flare Visualization Toolkit examples [3] ... 20

Figure 17: Baseball field as seen from the catcher's view ... 33
Figure 18: Predefined views (top, side, pitcher, zoom) .. 34
Figure 19: Multiple pitches drawn at once, Color = Avg. Speed .. 35

Figure 20: User interface prototype .. 36
Figure 21: Final baseball visualization user interface ... 37

Figure 22: Screenshot of the top half of the pitch selection panel .. 38
Figure 23: Screenshot of the bottom half of the pitch selection panel 39

Figure 24: The visualization panel .. 40
Figure 25: Full screen window example .. 41

Figure 26: Beachball size option .. 42
Figure 27: Baseball coloring options. Simple SBX top, speed bottom 43
Figure 28: Graph panel, pitch speed graph .. 45
Figure 29: Pre-test question 1 .. 48

Figure 30: Pre-test question 2 .. 48
Figure 31: Pre-test question 3 .. 49

file:///C:/Users/huntj/Desktop/BaseballVisualization.docx%23_Toc260664482
file:///C:/Users/huntj/Desktop/BaseballVisualization.docx%23_Toc260664483
file:///C:/Users/huntj/Desktop/BaseballVisualization.docx%23_Toc260664492
file:///C:/Users/huntj/Desktop/BaseballVisualization.docx%23_Toc260664494

6

1. INTRODUCTION

 MLB.com provides a plethora of Major League Baseball data, stored in XML files,

recorded from baseball games played since 2007. The data is available for the public to

download and analyze, and contains game conditions, player stats and specs, as well as the data

necessary to reconstruct the baseball pitch trajectory. The specific recorded data for each game

includes the home team, the away team, player names and heights, and the baseball’s initial

position, velocity, and acceleration.

 Baseball fans, athletes, and coaches are interested in compiling and analyzing pitch

statistics in order to discern trends and potentially increase player performance. Current methods

of visualizing the MLB.com baseball data include the PitchFX Tool [1] provided by

BrooksBaseball.net and MLB.com Gameday [8]. The PitchFX tool provides a graphical analysis

of the pitch data, but does not provide spatial representations of pitches that would allow pitch

comparison in 3D space. Gameday provides a 3D visualization of live pitch data, but does not

permit the user to select specific pitches or pitches from multiple games. A baseball visualization

application is needed that combines statistical pitch analysis and the 3D representation of the

pitch and pitch path with the ability to select the pitch information from a broad selection of

different pitch sets.

The purpose of this Major Qualifying Project (MQP) was to design, implement, and

evaluate a system that creates 3D visual representation of user specified baseball pitch data. The

desired features of the baseball visualization application include user specified search criteria,

pitch and pitch path animation, pitch size and coloring options, as well as a strike zone with

height modification that depends on the current batter. The project also needs an area to display

7

large amounts of statistical data that can be analyzed similar to the data provided with the

PitchFX Tool [1].

In order to achieve the project goal, a small portion of the MLB.com pitch data needs to

be downloaded. A baseball visualization database needs to be created, and populated with the

MLB.com pitch data. A set of queries need to be created to retrieve the lists of pitchers, batters,

and dates from the database. A second set of queries needs to be created to retrieve specific

pitches from the database based on the user specified search criteria. The calculations required to

describe the pitch trajectories were defined. A baseball field was created that displays the

calculated pitch trajectories to the screen. The user interface of the application was created to

allow the user access to the system’s functionalities. The interface was divided into three primary

sections: the pitch selection panel, the visualization panel, and the graph panel.

In order to evaluate the baseball visualization application, user testing was conducted.

The user testing scenario involved three distinct phases. The first phase consisted of the

administration of a short questionnaire in order to categorize the subject’s baseball background

and explain trends and outliers in the results. The second phase involved familiarizing the test

subject with the application, administering a sequence of tasks for the subject to complete, and

observing the subject’s behavior when using the application. The last phase of the user testing

scenario, involved the administration of a follow up questionnaire that requested comments on

the system, and suggestions for area of improvement. These comments were used to suggest

future modifications to the application.

The following sections provide details of the background research, design,

implementation, results, and conclusions of the Baseball Visualization Major Qualifying Project.

The background research, Section 2, contains a description of the current baseball visualization

8

applications, visualization techniques, and visualization tools. Section 3 explains the desired

features, options for implementation, advantages and disadvantages, and the final design

decisions. The implementation of the baseball visualization application is discussed in Section 4.

The results of the project and the user testing are discussed in Section 5, and Section 6 discusses

suggestions for future work and the project conclusions.

9

2. BACKGROUND RESEARCH

Players, coaches, fans, sports journalists, and umpires are interested in compiling

statistics about baseball pitches [4]. Motion capture is used to capture the flight of each baseball

pitch [1]. This flight data, as well as other related information, is collected and stored on

MLB.com for the public to use. The MLB.com pitch data can be visualized in order to detect

trends in player performance. The following section presents background information on the

project, including current baseball visualizations, visualization techniques, and visualization

tools.

2.1 Current Baseball Visualizations

 There are various visualizations related to Major League Baseball games, including non-

obtrusive additions of visual elements in broadcasted games and graphical representations of

pitch data. KZone, the PitchFX tool, and Gameday are all examples of baseball visualizations.

2.1.1 KZone

In 2001, Sportvision created the KZone System [4]. The ESPN KZone system monitors

the trajectory of each pitch. Figure 1 shows an example of the KZone system during a game.

Figure 1: K Zone during a televised game [4]

10

The system uses computer generated graphics to enhance the viewer’s experience by

outlining the strike zone boundaries. The system implements three subsystems: the camera pan-

tilt-zoom encoding subsystem, the measurement subsystem, and the graphic overlay subsystem.

The camera pan-tilt-zoom encoding subsystem calibrates the cameras that are used for

broadcasting the game [4]. The measurement subsystem is used to determine whether each

baseball is a ball or a strike, by measuring the batter's stance and detecting the trajectory of each

baseball [4]. The graphic overlay subsystem uses the camera calibration data, produced by the

camera pan-tilt-zoom encoding subsystem, and the baseball measurements, collected by the

measurement subsystem, in order to produce the televised graphics [4].

2.1.2 PitchFX Tool

The PitchFX Tool [1], displayed on BrooksBaseball.net, provides a statistical analysis of

any pitcher during any game. The user enters a date, game, and pitcher, and the tool displays a

variety of information regarding that particular combination. Figure 2 shows a strike zone plot

that was generated by the PitchFX Tool.

Figure 2: PitchFX tool strike zone plot [1]

11

In Figure 2, color indicates the umpire's call; for example, green represents balls (B), red

represents strikes (S), and blue represents outs (X).

The statistical data provided by the tool includes pitch totals, pitch speed, release point,

break, spin direction, spin magnitude, and horizontal movement [1]. The PitchFX tool is useful

for producing a two-dimensional, graphical representation of the MLB.com pitch data that is

used to analyze trends and increase player performance. The BrooksBaseball.net PitchFX tool

does not allow pitch selection from specific types of pitches or different games. The tool does not

have the capability to produce a three-dimensional spatial representation of the data.

2.1.3 MLB.com Gameday

Gameday [8] is a live visualization of baseball pitch trajectories and game information

provided on MLB.com. Gameday has three options for display. There is a full 3D mode, a light

3D mode, and a miniature Gameday. Figure 3 provides an example of Gameday's full 3D mode.

In full 3D mode the trajectory of the pitched baseball is drawn to the screen.

Figure 3: MLB.com Gameday example: full 3D mode [8]

12

The Gameday visualization contains a realistic model of the infield of a Major League Baseball

field, including the bases, pitcher's mound, and the fouls lines, as well as a batter model. The

batter does not swing at pitches but the model switches its position according to whether the

current batter is right or left handed.

 In Gameday, strikes are red and balls are green. In the full 3D version, the paths are also

color coded and appear to fade with time. When multiple trajectories are displayed

simultaneously, the paths converge and it is difficult to discern different paths. The strike zone is

displayed as a two-dimensional, hollow rectangle drawn around the strike zone area. Gameday

also implements a scoreboard, pitcher and batter information, current game status, and strike out

animations. Gameday defines the strike zone as a two-dimensional rectangle when the strike

zone is a three-dimensional area. The MLB.com Gameday application only supports the

visualization of live pitch data from a specific baseball game. Gameday does not support the

visualization of user specified pitch data that can be used to analyze trends within specific data

sets.

 There are aspects of the PitchFX tool and MLB.com’s Gameday that are used to create

this baseball visualization project. These aspects include the 3D spatial representation of the

baseball pitch and the pitch trajectory, taken from Gameday, as well as the user specified pitch

selection and pitching graphs, taken from the PitchFX tool.

2.2 Visualization Techniques

Visualization includes images, graphs, diagrams, or animations that communicate some

message. There are many different types of visualization, including scientific, and information

visualization. There are a variety of techniques that can be used to enhance the visualization of

pitch data, including flow visualization, collision detection, shading, and particle systems.

13

2.2.1 Flow Visualization

One possible method that can be used to visualize the baseball trajectory is flow

visualization. Standard visualization mappings in flow visualization are arrows, stream lines

(Figure 4), streak lines, path lines or particle traces (Figure 5), time lines, and contours (Figure 6)

[11].

Figure 4: Stream lines in 2D [11]

Stream lines are generated as 2D or 3D curves derived from experimental data and characterize

the general flow pattern. The distance between each line is inversely proportional to velocity

[11]. Path lines, or particle traces, can be visualized as static curves that are interpreted in a

single instant, or as a time interval [11].

Figure 5: Particle traces [11]

Contours, also called iso-curves (in 2D) and iso-surfaces (in 3D), are used to visualize scalar data

with a full range of visual depth.

14

Figure 6: Pressure contours on a surface [11]

The process of computer visualization of data begins with data generation, then data

enrichment and enhancement, visualization mapping, rendering, and finally display [11].

2.2.2 Collision Detection

 Collision detection verifies the intersection of parts of one object with another object.

Collision detection between an object and an implicit object is achieved by evaluating the

implicit function at each sample point on the object [10]. Collision detection can be used to

verify the baseball’s intersection with the strike zone.

2.2.3 Shading

 There are various shading models that use illumination equations in order to calculate the

values used to render images. Figure 7 shows an example of a sphere without shading.

Figure 7: Uniform color example

15

One shading model is called flat shading. In flat shading the illumination calculation is

done for each planar patch. The patch is rendered as one single color value. The object appears

facetted because the patches are clearly visible [7], as shown in Figure 8.

Figure 8: Flat shading example

 A second shading technique is Gouraud shading, shown in Figure 9. In Gouraud shading,

an interpolation method is used for smoother shading. The illumination value is calculated at

each of the polygonal patch’s vertices. The colors within the patch are determined by linearly

interpolating the color values at the vertices [7].

Figure 9: Gouraud shading example

 Phong shading, Figure 10, improves upon Gouraud shading by interpolating the normal

across the polygonal patch as opposed to the intensity, in order to pick up highlights. Phong

shading is more computationally intense then Gouraud shading [7].

16

Figure 10: Phong shading example

2.2.4 Particle Systems

A particle system [10] is a technique used to simulate phenomena that are difficult to

render, such as fire or smoke. Particle systems are easier to render because of the following

assumptions. Particles do not collide with other particles; particles do not cast shadows, only as

an aggregate body, and only on the environment; and particles do not reflect light [10]. Particles

are also rendered as a point light source to simplify the rendering process. Here is an example of

a particle structure, which is represented as a tuple holding the velocity, position, force, and

mass, as defined in [10].

typedef particle_struct struct {

 vector3D p; //position

 vector3D v; //velocity

 vector3D f; //force

 float mass;

} particle;

The particle system’s structure is defined in [10] as

typedef particleSystem_struct struct {

 particle *p; //array of state information for each particle

 int n; //number of particles

 float t; //current time (age) of the particle system

} particleSystem;

During the computation of each frame, new particles are generated and assigned

attributes, particles that have reached the end of their lifetime are terminated, and all remaining

particles are animated and rendered. Particles are randomly generated based on a user-specified

17

distribution, which revolves around the predefined average number of particles desired at any

one time [10]. Particle attributes include lifetime, position, velocity, color, transparency, and

shade parameters. These attributes are used to determine the particle’s life, motion, and

appearance in the system [10]. Figure 11 shows an example of a particle system that was used to

generate the effect of fire.

Figure 11: Particle system example [10]

A particle system could be used in the visualization to implement the generated path of

each baseball.

2.3 Visualization Tools

 There are a number of visualization tools that can be used to expedite and enhance the

visualization development. These tools include the Prefuse Visualization Toolkit [12] and The

Visualization Toolkit [13], as well as Open DX [9], JUNG [6], and The Flare Visualization

Toolkit [3].

2.3.1 Prefuse Visualization Toolkit

The Prefuse Visualization Toolkit is a Java-based set of software visualization tools that

uses the Java2D graphics library. Prefuse can be used to build applications and web applets, and

integrates features for visualization, interaction, and data modeling. Prefuse is very useful for

18

visualizing tables, graphs, and trees [12]. The Prefuse Toolkit offers many different tools such as

data structures, integrated color maps, animation processing, and event logging. Figure 12

displays an example of a visualization created with Prefuse.

Other aspects of Prefuse that are helpful in visualizing data are that Prefuse contains a

large library for force-based physics simulations, and user controls such as navigation and drag

controls [5]. The Prefuse Visualization Toolkit is free to download and use, and there is a user’s

manual that describes in detail how to use the many different features of Prefuse.

2.3.2 The Visualization Toolkit

 The Visualization Toolkit (VTK) is an open source software system implemented as a

C++ toolkit, with support for Java, Python, and Tcl wrapping. VTK is used for 3D computer

graphics, image processing, scientific visualization, modeling, volume rendering, and

information visualization [13]. Figure 13 shows an image that was created with The

Visualization Toolkit.

Figure 12: Prefuse example [12]

19

2.3.3 Other Visualization Tools

 OpenDX [9] is an open-source visualization tool that allows the visualization of primarily

scientific, engineering, and analytical data [9]. Figure 14 displays two examples of visualizations

produced with the Open DX software tool.

Figure 14: OpenDX examples [9]

 The Java Universal Network/Graph Framework (JUNG) [6] is an open-source software

library that supports the modeling, analysis, and visualization of directed and undirected graphs,

Figure 13: The visualization toolkit example [13]

20

multi-model graphs, hypergraphs, and graphs with parallel edges [6]. Figure 15 provides an

example of a visualization created using JUNG.

Figure 15: JUNG example [6]

 The Flare Toolkit [3] is an ActionScript library, adapted from Prefuse, that can be used to

create a wide variety of visualizations ranging from basic charts to complex interactive graphics

[3]. Figure 16 shows two applications of Flare, a still of a smoke animation, and a simple tree

graph. The toolkit supports data management, visual encoding, animation, and interaction

techniques [3].

Figure 16: The Flare Visualization Toolkit examples [3]

21

There are many visualization techniques that can be used to represent data. There are also

many software visualization tools that can be used to enhance the visualization. The background

research, techniques, and tools were all considered throughout the design and implementation

process of the baseball visualization project.

22

3. DESIGN

 Upon determination of the project goal, namely designing, implementing, and evaluating

a three-dimensional representation of user specified pitch data, the desirable features of the

project were defined. The features include the methods for data storage, data selection, interface

design, visualization design, the baseball animation, the baseball path, and the strike zone. This

section describes the implementation options, advantages and disadvantages, and the final design

decisions with respect to each desirable feature.

3.1 Data Storage

The method for storing the available data was defined in order to create the baseball

visualization application. A desirable feature of the system is the ability to store, access and

manipulate the data effectively. The implementation options for data storage include simple text

files stored within a local file system, or a database. The storage of data in text files on a local

file system does not provide the data organization necessary to query large subsections of the

information. Databases are created for storing, organizing, and writing queries on large amounts

of data. The most appropriate data storage system for the baseball application is a database.

3.2 User Selection Methods and the Interface

 The primary feature of the baseball visualization application is the ability for the user to

select any pitch based on specified data sets of pitches. There are a number of filters that can be

applied to the data in order to produce different result sets. The data could be filtered by the

pitcher, the batter, and the date the game was played. The type of pitch, such as fast ball, change

up, or slider, the pitch call, strike, ball, or out, and pitch specific data, such as the speed and

23

break, could also be filtered. Filtering the data in this way, allows the user to query a wide range

of pitch subsets from the pitch database.

In order to implement the pitch selection filters, the user interface needs to support a

simple pitch selection panel. The panel could be populated with a combination of GUI elements

to enable pitch selection. For example, the pitcher, batter, and date selections could be

implemented with combination boxes. Range sliders could be used to filter the pitch specific

data, such as the pitch’s start and end speeds. To retrieve the specified subset of pitches, queries

could be generated, specific to the selected search parameters. The potential subsets of pitch data

supported by the user interface includes one or more pitches from one or more pitchers and

pitches of a specific type or call from one or more pitchers. The interface also needs to support

queries for all of the pitches that were pitched to a specific batter, the pitches a specific pitcher

pitched to a batter, as well as any combination of the afore mentioned selections.

Filtering the data allows the user to select any supported combination of pitches to

visualize and analyze. The creation of the pitch selection panel, as well as the selection filtering

methods, is discussed in the implementation section.

A desired feature of the baseball application is that all pieces of the application are

combined and displayed with one main window. The interface window must reserve an area for

pitch selection, an area for the 3D pitch visualization, and an area for the 2D pitch graphs

generated by the application. In order to implement the required features, the main window needs

to contain three panels, the pitch selection panel, the visualization panel, and the graph panel.

The separation of the interface into multiple panels is easier to use. The implementation of the

three different panels is described in the implementation section.

24

3.3 Visualization Features

 The 3D visualization is contained in the visualization panel of the baseball application.

The pitch visualization requires a model of the infield of a Major League Baseball field,

including the pitcher’s mound and home plate. The visualization also requires the generation of

pitches, and display of pitch animations on demand. Implementation options include creating the

required models with modeling software and importing them into the Java3D visualization class,

or creating the objects with Java 3D. Model implementation with Java3D is easier, and sufficient

for the first implementation of the baseball visualization application. Model creation using the

Java3D library will be pursued in the implementation phase of the project.

3.3.1 View Features

Predefined views are a desired feature of the project in order to analyze the baseball

during and after the trajectory animation. There are five desired views (top, catcher, pitcher, side,

and close-up) that allow a full range of baseball examination. The top view is an aerial view of

the entire animation, the catcher view is the view facing the pitcher (the catcher’s point of view),

and the pitcher view is the view facing home plate (the pitcher’s point of view). The side view is

the view between third base and home plate, and can be used to see the rise and fall of the pitch

trajectory. The close-up provides a zoomed view of the strike zone. Possible view

implementation methods include defining the camera position at five locations and switching

between the views, according to the user, or arbitrary viewing.

3.4 Pitch Animation and Features

 A required feature of the baseball animation visualization is the animation of the pitch

from the pitcher’s mound to home plate. The baseball animation could be implemented similar to

25

MLB.com’s Gameday. The animation of the pitch includes the generation of baseball objects, the

generation of the pitch trajectory, and the speed and sizing options of the pitched baseballs.

3.4.1 Pitch Path

 The path of the pitch provides a constant spatial representation of the pitch trajectory.

Drawing the pitch’s trajectory, in addition to the pitch animation, is a desired feature of the

visualization. There are a number of different options available for implementing the pitch

trajectory. The trajectory could be implemented as a particle system, in which the particles could

follow the pitch’s path, and exist for a specified amount of time. The trajectory could also be

implemented as a conglomeration of objects used as place holders, and positioned at specified

frame intervals along each pitch’s path.

Drawing the baseball trajectory allows the spatial comparison of two or more pitches.

One observable disadvantage of drawing the baseball’s trajectory is path convergence and screen

clutter, resulting from drawing multiple pitches. There are a few different methods for mitigating

screen clutter and trajectory convergence. The first method considered involves screen clearance

after a predetermined number of pitches are drawn. The method prevents screen clutter, but

interferes with the user’s requests. The second method considered was the fading and eventually

disappearance of each path based on a defined path lifetime. The method does not effectively

reduce screen clutter if the user draws a plethora of baseballs within a short timeframe. The final

method considered was a user defined screen clearance option, implemented by a simple “clear

screen” button that removes all baseball objects and trajectories when clicked.

 A desired feature of the baseball and baseball trajectory is the representation of additional

information about the pitch using color. Color could be used to create a distinction between balls

and strikes, to display different pitch speeds, or to display different pitch types. The path

26

visualization, “clear screen” option, and path coloring were selected to pursue during the

implementation phase of the project.

3.4.2 Pitch Size and Speed

There is approximately 60 feet between the pitcher’s mound and home plate. A baseball

traveling at 90 mph would take slightly less than half a second to travel from the pitcher’s mound

to home plate. It is difficult to track the pitch’s trajectory when the pitch is displayed at full

speed. The option to change the animation speed is a desired feature of the baseball visualization

application. The baseball speed is set by the equations. One option to implement animation speed

alteration is to modify the baseball speed variable in the equation. An interface element needs to

be provided for the user to specify the speed change. Implementing an animation speed

mechanism allows the user to see the baseball animation at the actual speed of the ball,

displaying the intensity of the pitch, as well as a slower speed to analyze the pitch’s movement.

Another requirement of the visualization project is that the baseball size reflects the

standard size of a MLB ball, which is approximately 2.9 inches in diameter. To implement this,

the size of the sphere object created to represent the baseball, should be set to 0.0029. The units

being used are 1/1000 of an inch. Maintaining a consistent default baseball size creates more

realism in the application. Major League Baseball standard baseballs are difficult to locate within

the field because the baseballs are small. An additional desired feature of the visualization

project is to include baseball sizing options. A possible implementation of sizing options could

entail creating an interface element that allows the selection of multiple baseball sizes. The

baseball objects created could reflect the selected size. Sizing options allow the visualization to

maintain realism and allow the pitch to be easily spotted on the screen.

27

 The pitch size and animation speed modifications were both selected to pursue during the

implementation phase of the project.

3.5 Strike Zone Features

 In baseball, the strike zone defines the area that determines whether a pitch is declared a

strike or a ball, and is an integral part of the game. The left, right, front, and back boundaries of

the strike zone correspond to the edges of home plate. The upper bound is the midpoint between

the batter’s shoulders and belt. The lower bound is defined as the area at the hollow of the

batter’s kneecap. The upper and lower boundaries of the strike zone differ to some extent

depending on the batter’s proportions.

There are two primary methods for defining the strike zone in this application: static and

dynamic. A static strike zone maintains predefined upper and lower boundaries that remain

consistent throughout the visualization. A possible method of implementing a static strike zone

includes creating a box object with predefined dimensions based on average batter heights that

do not change throughout the entire visualization. Although the static representation of the strike

zone is easier to implement, the representation sacrifices pitch call accuracy.

A dynamic strike zone, in which the upper and lower boundaries change to correspond to

the current batter’s proportions, is a desired feature of the visualization application. The top and

bottom boundaries of each pitch are specified within the dataset of collected pitch information.

In order to implement a dynamic strike zone, the boundary information is collected and stored.

The boundary information is used to manipulate the size of the strike zone object before a

specific pitch is drawn. After considering both representations of the strike zone, the dynamic

strike zone was selected to pursue during the implementation phase of the project.

28

 One possible use of the application includes confirming the accuracy of the umpire’s call

by comparing the umpire’s call with the resulting location of the drawn pitch. Accurate strike

zone collision detection can be used to validate the umpire’s call of a specific pitch. Baseball

collision with the strike zone is another desired feature of the application. Implementing collision

detection between the strike zone and the baseballs allows the user to confirm whether the ball

intersected the strike zone. Collision detection can be implemented by creating a bounding object

around the strike zone, and checking at different time intervals if any of the baseball objects

intersect the bounding object. If an intersection is detected, a responding event can be triggered,

such as color change. The advantages of implementing strike zone collision include a higher

probability of umpire call verification.

 The required and desired features are pursued during the implementation phase of the

project, which is described in the following section.

29

4. IMPLEMENTATION

The required and desired features, outlined in the Design section, were considered during

the implementation phase of the project. A number of steps were taken to implement the

visualization project in accordance with the necessary features. The programming language and

environment were selected. The Major League Baseball data was acquired and stored in the

baseball visualization database. A Java3D program was created containing a baseball field, and

different views of the drawn pitches. Calculations were performed on the data and the pitch

trajectory was drawn to the field. The user interface was created in order to combine pitch

selection and the field. The following section explains the implementation of each of the

different parts of the baseball visualization Major Qualifying Project.

4.1 Programming Language

In order to implement the baseball visualization project, a programming language and

environment were selected. Java (Java 3D), and C++ (Open GL) were considered as

implementation languages because of the extensive 3D graphics libraries provided. The entire

project was implemented in Java and Java3D using the eclipse programming environment, as a

result of programmer familiarity and learning curve reduction.

A variety of visualization tools were considered to enhance and expedite the visualization

process. In particular, The Visualization Toolkit, providing 3D capabilities and support for both

C++ and Java, was pursued. The toolkit was not used in the baseball visualization project

because of system build difficulties during the initial stages of project implementation.

30

4.2 The Baseball Visualization Database

MLB.com provides a plethora of Major League Baseball data in XML files available to

the general public. Joseph Adler [2] provides in his book, Baseball Hacks, the Perl script,

hack_28_spider.pl, that was used to download all of the game data for April 7
th

, 2007, April 2
nd

,

2008, and October 9
th

, 2008, totaling 3,705 different pitches. The dates were randomly selected

from games played in different months and years to allow the verification of pitch selection from

different games. The number of games downloaded was limited by space.

A baseball visualization database was created using MySQL. Mike Fast [2] provides a

database schema that was used to create the tables necessary for organizing the pitch data. The

tables created were “atbats”, “games”, “pitches”, “players”, and “umpires”. The “atbats” table

contained references to information regarding the entire at bat, such as the pitcher, batter, inning,

game, the strike count, and the ball count. The “games” table contains the home and away teams,

a reference to the umpire, and the game conditions, such as wind speed and direction. “Pitches”

contains the position, velocity, and acceleration values of each particular pitch. The “players”

and “umpires” tables contain references to the players or umpires names and ids. The database

was populated with the downloaded MLB.com data using a Perl script provided by Mike Fast.

4.2.1 Connection

To establish a connection between the Java project and the baseball visualization

database, the Java Database Connectivity (JDBC) driver was used. A DBConnect class was

created to provide a connection to the database using the JDBC driver and the server, username,

and password parameters specific to the baseball database.

4.2.2 Pitch Selection Queries

After a connection with the baseball database was established, queries were created to

31

retrieve baseball information. A dbqueries class was implemented to contain the queries created

to retrieve the pitchers, batters, dates, and pitch trajectory information. The first set of queries

was created in order to populate the interface with the information necessary to select specified

pitches, such as the list of pitchers, batters, and game dates, as well as the minimum and

maximum values of the start speed, end speed, and the break. Each query was written in a

separate function; for example getPitchers returns an array of strings containing the entire

pitcher’s name on the following specified query:

 “select distinct first, last from (select pitcher as eliasid from atbats) as b natural join players”

The eliasid is the unique id of each pitcher and batter stored in the database. In this query, the

first and last name of the pitcher whose id matches the id provided by the at bat is returned. The

“players” table and the “atbats” tables are joined so that the specific pitcher is returned, as

opposed to any player.

The second set of queries was created to populate the “available pitches” table with the

database results from a search specified with the user selected search criteria. Multiple queries

were created in which the selection criteria changes depending on the user specified search

criteria. For example, if the user does not select a pitcher or batter, the query will not specify that

criteria.

A Pitch class was created to store the “pitchID”, “pitcher”, “batter”, and “des” of a pitch

that was used to populate the “Available Pitches” table. The “des” of a pitch represents the

description of the outcome of the pitch; for example “Hit by Pitch”.

4.3 Pitch Trajectory Calculations

There are two Microsoft Excel spreadsheets that are provided at The Physics of Baseball

[4]. The first spreadsheet, template_for_cd, calculates the drag coefficient and lift coefficient

32

given the 9-parameter fit. The 9-parameter fit contains the baseball's initial position, velocity, and

acceleration in the x, y, and z directions. The second spreadsheet, full_3d_trajectory, uses the

drag and lift coefficients to calculate the position, velocity, acceleration, and other pitch

trajectory information, with respect to time.

In order to store and manipulate pitch information, a PitchData class was created,

containing instance variables for each of the columns in the “pitches” table. These variables

included the pitch id, pitcher, batter, the initial x, y, and z positions, velocities, and accelerations,

as well as the start and end speed. For each pitch added to the “Visualize Pitches” table, the Pitch

ID was used to select the corresponding tuple from the baseball visualization database. A

PitchData object was created for each pitch, and the variables were set to equal the result values

from the query. A list of PitchData objects, labeled “pitches”, was maintained, containing the

pitch information for every pitch in the “Visualize Pitches” table. When the “draw” button is

clicked, the pitch trajectory was calculated for each PitchData object in the “pitches” list.

A Calc class was created to calculate the trajectory information for each pitch. The Calc

class contains functions that represent the calculations defined in the template_for_cd and

full_3d_trajectory files. The functions created include calcAX, calcAY, and calcAZ, which are

used to calculate the acceleration in the x, y, and z directions, respectively. The Calc class

defines a multitude of additional functions that produce values for the additional variables

involved in the calculation defined in the full_3d_trajectory file. The calculated x, y, and z

positions of each PitchData object at every time delta are stored in integer arrays that are passed

as parameters to the animation, in order to be displayed.

4.4 The Baseball Field and Baseball Animations

The baseball field was created to provide a setting for the baseball pitch animations. The

33

field contains the ground, bases, strike zone, baseballs, and baseball trajectories. The baseball

field was implemented in the BVAnimation class using the Java3D library.

The infield was created using two separate box shape instances named the in_green and

in_dirt. The length and width of the in_dirt box was specified to reflect MLB standards. The

height of the box was set to a minimal value. The in_green box was implemented as a slightly

smaller version of the in_dirt shape, and positioned in the center of the in_dirt box. Two separate

appearances, dirt and grass, were created and applied to each of the boxes. The two boxes define

the ground of the infield, and were rotated 90 degrees to reflect the infield of a baseball field.

The three bases and home plate were modeled as simple boxes and scaled to represent the

actual size of the bases. A simple, white appearance was applied to each of the bases. The base

positions were translated to place each base in the proper location in the field. The pitcher’s

mound was modeled and placed in the world, similar to the bases with the exception that the

mound’s width is smaller. The mound is not higher than the field, straying from MLB field

standards. Figure 17 shows the generated baseball field from the catcher’s point of view.

Figure 17: Baseball field as seen from the catcher's view

34

4.4.1 Views

 Five predefined views: top, side, catcher, pitcher, and zoom, of the visualization were

implemented. Figure 17 shows the objects seen from the catcher’s point of view, which is the

default view when the application is first started. Figure 18 shows the remaining four views: top,

side, pitcher, and zoom, respectively. In order to implement each view the plane of projection

and camera location and orientation was transformed to produce the separate views. The user

interface allows the user the ability to instantly switch between any of the defined views.

Figure 18: Predefined views (top, side, pitcher, zoom)

4.4.2 Baseball Animations

 The function setTransforms, defined in BVAnimation, sets the pitch data, creates the pitch

transformation groups and the baseball objects, and starts the baseball animation. During each

frame the baseball object’s position is transformed according to the positions calculated in the

Calc class.

 In order to draw the baseball trajectories, the addPathSphere function is defined in

35

BVAnimation. At every tenth frame of the baseball animation a path sphere is generated, located

at the current position of each pitch. The generation of the path sphere at every 10
th

 frame was

selected because generating the path sphere every frame is expensive, and every tenth frame is

less expensive and still draws a congruent path. The path sphere maintains the coloring options

of the original pitch, and is slightly smaller. At animation completion the full pitch trajectory is

displayed.

The application allows drawing of multiple pitches to the screen at a single time, an

example of this is shown in Figure 19. The strike zone in the figure appears modified based on

the average upper and lower strike zone boundaries of the pitches drawn.

Figure 19: Multiple pitches drawn at once, Color = Avg. Speed

The highlightPath function was implemented in the BVAnimation class. The function

searches the objects in the scene graph for the pitch that is clicked by the user. The pitch and

pitch trajectory’s appearance is changed to a light green color, and the pitch information is

displayed in the text area below the visualization frame. This pitch information includes the

36

information that could not be included in the visualization, such as the wind speed, temperature,

and umpire during the selected game.

4.4.3 The Strike Zone

The top and bottom position of the strike zone was stored in the PitchData class of each

pitch in the “Pitches to Visualize” table. In order to implement the strike zone, the top and

bottom positions of each pitch in the “Pitches to Visualize” table were averaged. The average

value was used to change the size and position of the strike zone box whenever the “Draw”

button is clicked.

4.5 The User Interface

The user interface of the baseball visualization application was created using Netbeans,

which was easier to define the placement of the different graphical elements. An initial prototype

was created and was modified as additional features were added to the project. Figure 20 is a

screen shot of the first prototype of the user interface.

Figure 20: User interface prototype

37

 The prototype contains two frames on the left to allow the user to select a specific pitch,

by pitcher or by value. The prototype contains two panels on the right, for the visualization and

the generated graphs. The user interface changed drastically from the original prototype to the

final version. The basic panel layout remained consistent except for minor size changes. The

pitch selection mechanism was changed drastically. Figure 21 shows the final user interface of

the baseball visualization project.

Figure 21: Final baseball visualization user interface

The interface was created with three different panels placed inside a frame. The pitch selection

panel is located on the right, the visualization panel on the top left, and the graph panel on the

bottom left. The pitch selection panel allows the user to select a subset of pitches from the

baseball database. The visualization panel displays the baseball animations, and the graph panel

contains graphical representations of the data.

38

4.6.1 The Pitch Selection Panel

 The Pitch Selection Panel allows the user to find and select specific sets of pitches to

visualize. The panel was separated into two different sections; the top of the panel allows pitch

selection from the database, the bottom of the panel allows the user to specify which pitches are

drawn. Figure 22 shows a screen shot close-up of the top portion of the pitch selection panel.

Figure 22: Screenshot of the top half of the pitch selection panel

This portion of the panel contains the search parameters that are required to find specific subsets

of pitches. The panel allows the selection of pitches by pitcher, batter, year, call, and the pitch

data values, such as start speed, px and pz. Px is the location of the pitch as it crosses home plate

in the x direction, pz is the location of the pitch as it crosses home plate in the z direction. The

pitcher, batter, and year combination boxes are populated with the current list of all of the

pitchers, batters, and dates that are retrieved from the database. For the slider values, the

minimum and maximum values of each variable are retrieved from the database. A unique

controller class is attached to each combination box that listens for changes. If the pitcher is

changed to a pitcher other than “N/A”, the list of batters changes to represent only the batters that

39

have batted against the specified pitcher. If no search parameters are specified, all of the pitches

in the database are returned. The interface set up allows the user to create pitch subsets, such as

the pitches of one pitcher, one batter, the strikes, the pitches in 2008, the pitches with a start

speed of at least 95 mph, or any combination of the different selection attributes. The “Count

Pitches” button returns the count of the pitches that match the search criteria. The “Get Pitches”

button returns the specified subset of pitches. The pitches that are retrieved from the database

replace the old contents of the “Available Pitches” table, contained in the bottom half of the pitch

selection panel that is displayed in Figure 23.

Figure 23: Screenshot of the bottom half of the pitch selection panel

 The bottom half of the pitch selection panel contains two tables, the “Available Pitches”

table and the “Visualize Pitches” table. The two tables contain a list of Pitch elements. The

pitches in the “Available Pitches” table can be sorted based on any column, Pitch ID, Pitcher,

Batter, and Description; any number of these pitches can be added to the “Visualize Pitches”

table. The reason for two separate tables is so pitches from different pitchers can be retrieved and

drawn to the screen. The “Available Pitches” table changes depending on the search results. The

40

“Visualize Pitches” table remains consistent until pitches are added or removed. The bottom half

of the pitch selection panel also contains the graphing options.

 In order to prevent the user from exhausting the available memory used to run the

application, limits were placed on the number of pitches that can be drawn and graphed. When

the user attempts to draw more than 25 pitches or graph more than 500 pitches, a warning

window appears preventing the user from drawing or graphing those pitches.

4.6.2 The Visualization Panel

 The visualization panel was created to display information and options regarding the

pitch animation. Figure 24 shows an example of the visualization panel.

Figure 24: The visualization panel

 Simple Java Swing class elements, such as JButtons, JRadioButtons, and JTextAreas,

were used to implement the desired features of the visualization panel. A DrawPitchesClick class

was created to handle clicking on the “Draw” button. The DrawPitchesClick reads the

information in the “Visualize Pitches” table, calls the Calc class to perform the trajectory

calculation on the set of PitchData, and transmits the results to the BVAnimation class, that

41

animates those pitches. A ClearScreenClicked class was created to remove all of the pitch objects

from the animation, when the “Clear Screen” button is clicked. The ViewButtonGroupChange

class was created to listen for any changes to the current view. If a change to the view is

detected, the camera position of the animation is transformed. The visualization panel is limited

by space constraints; therefore the full screen window was implemented. The FullScreenClick

class listens for a mouse click on the “Full Screen” button and opens the full screen window if

the button is clicked.

4.6.2.1 The Full Screen Window

 The full screen window was implemented to emphasize the pitch animation and

introduces additional features, such as animation speed and ball sizing. Figure 25 provides a

screen shot of the full screen window of the baseball visualization application.

Figure 25: Full screen window example

A new window was created containing two panels. The top panel contains the animation and the

bottom panel contains both standard and additional pitch options. The standard pitch options

include the “Draw Pitches” and “Clear Screen” buttons, as well as the view radio button, and are

42

directly derived from the corresponding features in the visualization panel. The additional pitch

options include animation modifications that are unique to the full screen window, such as

changes in the baseball size, animation speed, and coloring options.

 Three different baseball size options are supported by the visualization: baseball, softball,

and beach ball. The user changes the baseball size by selecting another option from a simple drop

down menu. The baseball size is a parameter that is passed to the BVAnimation class by the

DrawPitchesClick class. The BVAnimation class provides the function addSphere, which uses the

size parameter in order to create new baseball spheres reflecting the selected size. The different

sizes are implemented to increase pitch visibility. Figure 25 shows the baseballs drawn with the

default size “Baseball”. Figure 26 shows the baseballs drawn with the largest size, “Beachball”,

selected. The shading appearance added to the generated spheres does not work correctly, so the

spheres appear without shading.

Figure 26: Beachball size option

 The user selects the baseball’s speed and coloring options using the same method as

baseball size selection. The speed and coloring options are passed to the BVAnimation class. The

three different speed options supported by the system are slow, medium, and fast. The fast speed

option is the full speed of the pitch. The medium and slow speeds are implemented as fractions

of the full speed. The BVAnimation class extends the time of each frame depending on the

43

currently selected speed option. Pitch speed variation allows the analysis of pitch trajectories at

full pitch speed, as well as a slower speed to extract different types of data from the path.

 There are three different pitch trajectory coloring options currently defined in the baseball

visualization system: simple SBX (strike, ball, out), detailed SBX, and average speed. An

example of pitch trajectories colored using the simple SBX coloring option is displayed at the

top of Figure 27. The getColor function defined in the BVAnimation class retrieves the

appropriate color of each baseball, depending on the selected coloring mode. The bottom of

Figure 27 displays an example of pitch trajectories that are drawn using the average speed

coloring option.

Figure 27: Baseball coloring options. Simple SBX top, speed bottom

44

Color charts, or keys, are provided as a separate pop-up window so that the user can understand

the different pitch colors.

Closing the full screen window allows the user to return to the original baseball

visualization screen. The changes made to the animation on the full screen window are reflected

in the original window.

4.6.3 The Graph Panel

 The graph panel was created in order to provide a graphical representation of the data,

similar to the information provided by the Pitch FX tool. The ScatterPlot class, that uses the

JFree Chart library, was created to generate the specified charts. The pitch selection panel allows

the selection of two different graph options, “Pitch Speed” and “Release Point”. The GraphClick

class was created to populate and display the specified graphs when the “Graph” button on the

pitch selection panel is clicked. The GraphClick class creates a ScatterPlot object and specifies

the horizontal and vertical axis labels, as well as the plot’s title. Within the GraphClick class, the

required data fields are extracted from each PitchData object in the “Pitches to Visualize” table.

The fields are added to the data sets of the ScatterPlot, and the graph is generated and displayed

within the graph panel. Figure 28 shows an example of the graph panel, in which a “Pitch Speed”

graph, populated with pitch data from approximately 50 different pitches, is displayed.

45

Figure 28: Graph panel, pitch speed graph

The final baseball visualization application was exported from eclipse as an executable

jar file. The application can be run on any system with Java3D installed. The next section

provides a description of the user testing strategy to quantify the effectiveness and validity of the

baseball visualization application.

46

5. RESULTS

User testing was conducted to determine the effectiveness of the baseball visualization

application. Due to time and resource constraints, the participants of the testing were selected

based on proximity and willingness to participate. A total of ten test subjects participated in the

project tests. More extensive user testing should be conducted with a user group primarily

consisting of baseball players and coaches, in order to quantify the project’s effectiveness at

providing useful information.

The user testing consisted of three different phases: pre-test, test, and post-test. The test

was administered in a quiet, secluded location to reduce distractions, and took approximately 20-

25 minutes.

During the pre-test phase, the user was given a consent form and a brief description of the

application. The project description included a short introduction to the baseball visualization

project, the project purpose, an explanation of the purpose of the testing, and a summary of the

upcoming tasks. A pre-test questionnaire was administered to determine the subject’s

background, experience in baseball, and familiarity with baseball visualizations. The results of

the pre-test questionnaire are discussed in section 5.1 Pre-Test Results.

During the second phase of the user testing scenario, the user was introduced to the

baseball visualization application and asked to spend a few short minutes to explore the program.

The subject’s actions were observed, particularly in response to how the test subject explored the

system, and recorded for analysis. The user was then given a sequence of tasks to follow that

were designed to introduce the different aspects and features of the project. The tasks consisted

of selecting a pitcher, selecting a batter, changing the slider information, drawing pitches, and

47

exploring the options included in the full screen window, such as changing the ball size. Each

test subject was monitored as the subject explored the visualization application and completed

each of the tasks. The observed behavior of each of the test subjects was recorded for analysis

and discussion. The results of the project exploration and task administration phase are discussed

in section 5.2 Task Discussion and Observation.

During the third and final phase of the testing, a post-test questionnaire was administered.

The purpose of the questionnaire was to give the test subject a chance to evaluate their

experience, and suggest improvements that could be made to the project. Section 5.3 discusses

the post-test questionnaire results.

Examples of the forms, questionnaires, and tasks that were administered to the

participants are provided in Appendix A for reference.

5.1 Pre-Test Results

 The pre-test was administered to understand the test subject’s familiarity with baseball in

order to compare the results between players, fans, and other users. In order to understand each

test subject’s background, various questions were asked and the subject was expected to give a

number ranking of their experiences. The possible answers to the following questions were 1:

never, 2: rarely, 3: occasionally, 4: often, 5: daily.

Question 1: How often do you use computers?

Question 1 was administered to ensure that the test subject’s computer knowledge was

adequate to use the information, in order to understand any possible outliers in the task

administration phase of the testing. Figure 29 shows a simple bar graph representation of the user

response to the question. The general trend in the graph shows the test subjects are proficient

with computer applications.

48

Figure 29: Pre-test question 1

The vertical axis represents the test subject’s response; the horizontal axis represents the number

of subjects that responded to each option. The horizontal and vertical axes remain consistent in

all of the pre-test question response graphs.

Question 2: How often do you watch baseball games?

The second question in the pre-test questionnaire was created understand the test subject’s

familiarity of the game. The responses to the second question are used to compare the task results

between subjects with various levels of familiarity to baseball. Figure 30 shows that there is

approximately an equal distribution of baseball fans, and individuals that rarely watch baseball.

Figure 30: Pre-test question 2

0

1

2

3

4

5

6

7

8

9

1: never 2: rarely 3: occasionally 4: often 5: daily

0

1

2

3

4

5

1: never 2: rarely 3:
occasionally

4: often 5: daily

49

Question 3: How often do you visit MLB.com?

 The third question was designed to evaluate the test subject’s experience with MLB.com

to analyze the subjects interest in baseball statistics, and possible interest in a baseball

visualization application.

Figure 31: Pre-test question 3

The majority of the test subjects do not use MLB.com

The remaining two questions in the pre-test questionnaire warranted an open ended

response.

Question 4: Have you ever played Baseball? If so what position?

 The fourth question was created in order to validate the effectiveness of the baseball

visualization application to baseball players. Fifty percent of the test subjects answered that they

had some experience playing baseball. Three subjects played in the outfield, one subject played

second base, and one subject was a pitcher. The remaining five test subjects have never played.

Question 5: What do you expect from a baseball visualization application?

 The final question allows the test subject to disclose what basic expectations they have of

baseball visualization applications, prior to seeing the application. These expectations included

0

1

2

3

4

5

6

7

1: never 2: rarely 3: occasionally 4: often 5: daily

50

fun, a visual application that is easy to understand, a way to watch the baseball, and a way to

understand the different pitch types because they all look the same.

5.2 Task Discussion and Observation

 I observed each of the test subjects as they explored the visualization application. The set

of tasks started with selecting a pitcher and drawing a strike pitched by that pitcher. The tasks

then provided an exploration of the full screen window, as the user was asked to change the

strike’s size, speed and coloring options. The later tasks involved selecting pitches based on a

specific pitch subset, retrieving and reading pitch information to find the inning, deleting the

pitches from the screen, and generating pitch speed graphs. The tasks tested the user on all of the

basic functionality of the system. After completing the prescribed tasks, the user was given the

option to explore the system in greater detail.

 For the first task, selecting a pitcher and drawing a strike pitched by that pitcher, various

test subjects had different difficulties in completing the task. All ten subjects were able to locate

the pitcher field, scroll through the list of available pitchers, and select a pitcher relatively

quickly. Drawing a strike proved more difficult for a portion of the test subjects. Three subjects

needed help retrieving the pitches, and preparing the pitches to be drawn. Four subjects were

able to work through the interface to draw the pitches, but took a longer amount of time. The

remaining three test subjects were able to draw the strike with relative ease.

 The second task involved opening the full screen window, and manipulating the pitch

based on the different size, animation speed, and coloring options. This task proved relatively

easy for the majority of the test subjects. Two subjects took longer than the others to locate the

full screen window, but once the window was open they were able to change the options with

relative ease. The greatest issue that all ten subjects had in completing this task involved

51

switching between the two windows. A subject would open the full screen window, return to the

original window and the visualization would disappear. The observation lead to the conclusion

that the window changing mechanism is confusing, and a different implementation option for

screen switching should be explored.

 The third set of tasks that were administered during the task phase of the user testing

appeared easier for the subject to complete. The subjects were more familiar with the simple

structure of the baseball application; therefore it was easier to use the more advanced options,

including graphing and removing pitches. Four of the subjects found the mechanism for reading

pitch information hard to locate because of the separation of the mechanism and the produced

result on two different panels.

Based on the observations throughout the task phase of the testing, one major area of the

application that confused the user was view manipulation. It appeared difficult for the user to

move the view around with the panning and zooming functions. The current settings of the

panning functionality are not intuitive. The camera only rotates about a single point. This

observation, in addition to post-test questionnaire results, leads to the conclusion that the panning

functionality should be modified to be more intuitive, or removed completely.

5.3 Post-Test Questionnaire Results

 A post-test questionnaire was administered to collect the test subject’s responses and

suggestions in regards to the baseball visualization application. The questions asked in the post-

test questionnaire included a measure of the subject’s experience using the application, any

suggested improvements to the application, any confusing aspects or pieces of the application

that seemed out of place, the difficulty of using the application, as well as suggestions for future

additions or deletions from the application. These questions were administered as open response

52

questions. The following describes the overall trends formed from combining the results of the

questions from the ten test subjects.

The majority of test subjects found the application confusing at first. “It was a little

confusing. I had a little trouble at first, but figured it out.” One user suggested that a short

introductory tutorial explaining the controls of the project would be very helpful to remove any

confusion. For future releases of the project there should be an accompanying tutorial in order to

reduce the initial confusion of the application. Once the test subject figured out how to use the

application it was relatively easy to use. Nine of the subjects answered that no part of the

application seemed out of place. The tenth responded that beach balls seemed out of place.

 There were multiple suggestions for improvements that can be made to the baseball

visualization application. One subject suggested that when baseballs are added to the “Visualize

Pitches” table, they should be removed from the “Pitches to Visualize” table, because the pitches

are no longer available.

 The suggestions for additions and deletions were analyzed and used to make suggestions

for future additions to the application. The next section describes some of the changes and future

additions that can be made, as well as summarizes the entire project.

53

6. CONCLUSION

 There are aspects of the project that require further improvements. These aspects were

discovered during the analysis of the user testing data, and include the stopping location of the

baseball in the animation, and the camera views. There are also features that can be implemented

in future releases of the project, including increased performance, enhanced graphics, and new

models.

 The baseball’s position is calculated past the location of home plate, portraying the

baseballs lower than they should. One possible solution to the baseball end position issue could

be to stop the trajectory calculations prematurely. The current camera positions of the top and

side views are calibrated incorrectly. In the top view, it is difficult to see the pitches, and in the

side view, the angle of the camera skews the visualization. The camera position and the position

of the plane of projection could be translated and rotated in order to create a closer, more realistic

view of the pitch animations.

In future implementations of the visualization project, methods for increasing system

performance could be considered. Currently, speed is not a prominent concern, but the issue is

enlarged when the database is populated with all of the available pitch data. Methods to reduce

the processing time of the application include optimizing the queries, and using alternate, more

efficient data structures to store the pitch information.

The pitch type (e.g., curve ball, fast ball, slider, and change up) is not explicitly defined

in the baseball visualization database of pitch information. There was no easy way to distinguish

the different pitch types; therefore the pitch types could not be included in the visualization. In

future implementations of the visualization, pitch type classification could be supported, and the

54

user would be able to specify search queries on the pitch type. An additional coloring schema

based on pitch type could also be added to the project in a future implementation. Pitch selection

based on inning could also be included.

In future implementations of the visualization project, the graphics could be enhanced.

For example, a baseball stitch texture could be attached to each baseball’s corresponding

appearance, creating a more realistic baseball model. Shadows could also be added to the scene

to increase the realism of the field. The realism of the pitch trajectory could also be increased by

implementing the rotation of the pitch. Additional objects could be inserted into the scene,

including a catcher, pitcher, and batter model.

 Ultimately the visualization could be extended to show the location of the pitch after

interaction with the batter. The data was not available at the time this visualization project was

implemented. It would also be interesting to create simulations or short animations of batter and

pitcher movement, as well as the pitch being released from the pitcher’s hand. Motion capture

can be demonstrated for hand motion during pitching, as well as the flight trajectory of a baseball

[1], therefore adding pitcher hand movement animations to the visualization would be a

wonderful addition to the visualization, as well as a step closer to realistic representation of the

pitch.

 The purpose of this Major Qualifying Project was to create an application to display 3D

pitch information. Visualization techniques and tools to enhance the baseball visualization

project were researched. A baseball visualization database was created to store the pitch

information that was downloaded from MLB.com. Queries were specified to search the database

for specific pitches. An interface was created that allows the user to specify the search criteria

and to view the resulting visualization of the selected pitch information. After the construction of

55

the baseball visualization application, a small user testing scenario was conducted. System

modifications and future features were suggested based off user testing results. The baseball

visualization application can be used by fans to analyze and visualize user selected subsets of

pitch data.

56

7. WORKS CONSULTED

[1]. BrooksBaseball.net PitchFX Tool. (n.d.). Retrieved September 27, 2009 from

http://brooksbaseball.net/pfx/index.php

[2]. Fast, Mike. (2007). How to Build a Pitch Database. Retrieved April 16, 2010 from

http://fastballs.wordpress.com/2007/08/23/how-to-build-a-pitch-database/

[3]. Flare Data Visualization for the Web, (n.d.). Retrieved April 11, 2010 from

http://flare.prefuse.org/

[4]. Gueziec, A. (2002). “Tracking Pitches for Broadcast Television”. Computer, 35(3), 38-43.

[5]. Heer, J., Card, S., & Landay, J. (2004) Prefuse: A Toolkit for Interactive Information

Visualization. 1-10. Retrieved September 27, 2009 from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.3032

[6]. JUNG Java Universal Network/Graph Framework, (n.d.). Retrieved April 2010, from

http://jung.sourceforge.net/

[7]. McConnell, Jeffrey J. (2006) Computer Graphics Theory Into Practice. Jones and Bartlett

Publishers: Sudbury, Massachusetts. 77- 93.

[8]. MLB.com Gameday. (n.d.). Retrieved September 27, 2009 from

http://www.mlb.com/mlb/gameday/

[9]. OpenDX. (n.d.). Retrieved April 10, 2010 from http://www.opendx.org/

[10]. Parent, Rick, (2008) Computer Animation Algorithms & Techniques. Elsevier: Boston. 241

-246, 425.

[11]. Post, F., & Walsum, T. (1993) “Fluid Flow Visualization”. Focus on Scientific Visualization.

Springer Verlag: Berlin, 1-40.

[12]. The Prefuse Visualization Toolkit. (January 24, 2009). Retrieved September 18, 2009 from

http://www.prefuse.org/

[13]. Visualization Toolkit. (n.d.). Retrieved September 18, 2009 from

http://www.vtk.org/VTK/project/about.html

http://brooksbaseball.net/pfx/index.php
http://flare.prefuse.org/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.3032
http://jung.sourceforge.net/
http://www.mlb.com/mlb/gameday/
http://www.opendx.org/
http://www.prefuse.org/
http://www.vtk.org/VTK/project/about.html

57

8. APPENDIX A: User Testing Documents

CONSENT FORM

WPI Baseball Visualisation MQP Testing

Thank you for considering participating in this study. Research is being conducted to test the

qaulity of this application. This study is being conducted by Jennifer Hunt from WPI.

Over the next few minutes you will be asked to follow a provided set of tasks. You will also be

given a few minutes for free experimentation. Following this, you will be asked some questions

about the difficulty of the tasks and any suggestions you think would make the application easier

to use.

There are no known risks associated with participating in this study.

Please remember that your participation in this research is voluntary, confidential and

anonymous. Only the researcher will have access to the data collected. You may withdraw your

consent to participate at any time without any penalty. This is a completely voluntary research

project so you may stop at any time.

By signing below you acknowledge that you may not gain anything personally by participating

in the experiment.

If you wish to obtain further information about this study you may obtain a more detailed

explanation of its goals after your participation has finished.

YOUR SIGNATURE BELOW INDICATED THAT YOU HAVE READ THE INFORMATION

ABOVE AND YOU ARE CONSENTING TO PARTICIPATE IN THE EXPERIMENT

DESCRIBED ABOVE.

Participant's Signature Date

Participant's email address

I have explained in detail the procedure for this experiment to the participant and, if asked, have

made a copy available for the participant to keep. The participant has agreed to participate by

signing above. My signature also confirms that the experiment was carried out as described.

Researcher Signature Date

58

Pre-Test Questionnaire
This feedback form is being used to determine the effectiveness of the baseball visualization

application developed during the project. Please complete the questionnaire to the best of your

abilities. Thank you.

1. How often do you use computers?

1: never

2: rarely

3: occasionally

4: often

5: daily

2. How often do you watch baseball games?

1: never

2: rarely

3: occasionally

4: often

5: daily

3. How often do you visit MLB.com?

1: never

2: rarely

3: occasionally

4: often

5: daily

4. Have you ever played Baseball? If so what position?

5. What do you expect from a baseball visualization application?

59

Tasks
These tasks are designed to determine the effectiveness of the baseball visualization application

developed during the project, and to determine any changes that can be made to make the

application better.

Please spend a few minutes experimenting with the application. Note: This application only

contains pitches from a limited number of games for testing purposes.

1. Select your favorite pitcher.

2. How many pitches did this pitcher pitch?

3. Draw a strike.

4. Open full screen.

5. Change the ball size, speed and color.

6. Select the trajectory.

7. Select a batter.

8. Find all the pitches pitched to that batter that are 85 – 90 mph.

9. Select a pitch that was a ball, what inning was this pitched in?

10. Delete all the pitches drawn to the screen.

11. Graph the pitch speed of all the pitches in the pitches to draw table.

60

Post-Test Questionnaire
This feedback form is being used to determine the effectiveness of the baseball visualization

application developed during the project. Please complete the questionnaire to the best of your

abilities. Thank you.

1. How was your experience?

2. Can you make any suggestions to improve the application?

3. Was there any part of the application that was confusing? If yes, what was confusing?

4. Was there anything that seemed out of place?

5. How difficult was the application to use?

6. What would you like to see added to the application? (If anything)

7. What would you like to see removed from the application? (If anything)

Comments?

