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Abstract

We consider a financial market with one continuous time risky price process

and one continuous time risk-free price process. We assume all the trading

takes place at finitely many time points in this market. We provide necessary

and sufficient conditions on the discounted price process so that the market

does not admit arbitrage possibilities.
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1 Introduction and Background

One of the most fundamental and important concepts in the theory of math-

ematical finance is the notion of arbitrage. Stated informally, an arbitrage

opportunity is the possibility for an investor to gain money without any ini-

tial capital investment and without the risk of losing money. Naturally, it is

reasonable to expect that arbitrage should not be allowed in financial mod-

els. Indeed, a great deal of the theory of mathematical finance rests on the

assumption that arbitrage opportunities should not exist. In practice, this is

a reasonable assumption as well, since if such an opportunity were to present

itself, it would be exploited very quickly, and the market would shift such

that the opportunity for arbitrage would disappear. A descriptive analogy is

that arbitrage opportunities are like empty parking spaces in a crowded lot:

It is reasonable to assume that no empty spaces exist at any given time, since

as soon as a space becomes free, it will immediately be taken by someone.

In this paper we will present the background necessary for an understanding

of a simple model of a financial market. We will discuss a general discrete-

time multiperiod market model with a risk-free asset and a single risky asset.

In addition to giving definitions of certain fundamental ideas in mathematical

finance (such as martingales and self-financing trading strategies), we will

also require the use of a change of numéraire result and the Dalang-Morton-

Willinger Theorem, and we will give statements of these results as they relate

to our model. Using these tools, we will be able to present our main result,

which states that the no-arbitrage property of the market is preserved when
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the discounted price process of the risky security is composed with a strictly

monotone function.

1.1 The Model Setup

The model that we will be using is a basic multiperiod model with a single

risky security. We will assume that all of the uncertainty in the market is

captured by a finite probability space (Ω,F , P ). The elements of the model

are specified as follows:

• n+ 1 trading dates: t = t0, t1, . . . , tn chosen from the set [0,∞]. These

represent the times at which transactions are possible.

• Finite sample space Ω with K elements; Ω = {ω1, ω2, . . . , ωK}. The

elements represent ”states of the world,” i.e. possible outcomes for the

market.

• A probability measure P on Ω such that P (ω) > 0 for all ω ∈ Ω. This

condition allows us to avoid being overly technical, as is often necessary

in discussions in probability; when we refer to a condition being true

“almost surely,” we mean that the condition holds for every ω ∈ Ω.

Similarly, when we refer to an event having positive probability, we

simply mean that there exists ω ∈ Ω such that the condition holds.

• A filtration {Ft0 ,Ft1 , . . . ,Ftn} representing the information available

to investors at each trading date; Ft represents information available
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at time t.

• A single risk-free asset with price process Bt, having risk-free interest

rate r. This process can be interpreted as representing the value of a

bank account; specifically, Bt represents the amount of money in the

account at time t when $1 was initially deposited at time 0. Naturally,

the process should have B0 = 1 and should be strictly positive for every

ω. Typically B is an increasing process. The interest rate r can itself

be a random variable, but for the purposes of this discussion we will

only take r to be a positive constant. We will assume that interest

is compounded continuously, so that the value of the bank account at

time t is Bt = ert.

• A single risky security with price process Xt, where Xt is nonnegative.

This process should be thought of as representing the price of a risky

asset (e.g. a single share of common stock of a company) at time t.

In other words, we are considering a model in which we allow investors to

trade at certain fixed dates (for example, once per day for some stretch of

time). Investors have information available to them: Namely, that at the

last date the market will be in one of K possible states (represented by the

finite sample space), and each of these states has some nonzero probability of

occurring. As dates pass, investors gain more information about the future

state of the market by observing the information that the market presents

at each trading date; that is, at each trading date, investors know more

about the possible market outcomes than they did at the previous date. The
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filtration involved in the model setup describes how this information can

become available; the structure of information will be elaborated in the next

section.

In our model we consider a risk-free asset (B), representing a money market

account (or bank account), which we assume to have a constant rate of

interest. The importance of the risk-free asset is that it may be invested

in without risk (as the name suggests); investors are guaranteed a certain

return when investing into the money market account. We also consider a

single risky asset (X), whose value at each trading date is random. There is

risk involved for investors since there is a chance they can either gain or lose

money from an investment in the risky asset. Again, the value of X can be

interpreted as the price per share of a company’s common stock.

These are the elements of the model. In the next few sections, we will present

a bit more additional background information on general tools and how they

will apply to our model.

1.2 Information Structures

One of the aspects of conventional financial market models is the filtration

which represents how information about asset prices is revealed to investors.

The revealing of information is modeled in terms of subsets of the sample

space Ω. At time t = t0 we assume that every state ω in the sample space is

a possibility, and when we reach time t = tn, we assume that the “true state”

4



of the world ω becomes apparent to every investor. In the intermediate time,

the information that gradually becomes available to investors allows them

to anticipate the eventual true state of the world, and rule out states that

become impossible.

Pliska [8] gives a description of the structure of information involving parti-

tions of the sample space Ω, in which there exists a sequence {At} of subsets

of Ω, such that At0 = 0, Atn = {ω} for some ω ∈ Ω, and Atn ⊂ Atn−1 ⊂ . . . ⊂

At1 ⊂ At0 . In this way, investors know at time ti that the true state is some

element of Ati . At each date ti, the partition is then defined as the collection

of all possible time t = ti subsets.

A more common way of specifying the structure of information is by the use

of σ-algebras, which correspond directly with the partition model.

Definition 1.1. Let F be a collection of subsets of Ω. F is called a σ-algebra

on Ω if it has the following properties:

• Ω ∈ F

• If A ∈ F , then Ac ∈ F

• If F,G ∈ F , then F ∪G ∈ F

Every σ-algebra on Ω corresponds to a unique partition of Ω. This means

that the information structure can be organized as a sequence of σ-algebras,

{F ; t = t0, t1, . . . , tn}, and we call the sequence a filtration. Note that F0 =

{φ,Ω} and Ftn contains all subsets of Ω.
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At time ti, the information available to investors is contained in an element

of the partition of Ω corresponding to Fti ; the information is described by

an event A that we refer to as an atom of Fti . The investors therefore know

that the information available at the date ti+1 will be a subset of A (and

thereby be contained in the partition of Ω corresponding to Fti+1
). In other

words, if investors have some atom A of information available today, then

their information tomorrow will be a subset of A.

1.3 Stochastic Processes

Definition 1.2. A stochastic process is a function S (t, ω) of both t and ω

(we will typically omit the ω and only write S (t)).

For fixed ω, S (t, ω) is a deterministic function called the sample path. For

fixed t, S (t, ω) is a random variable.

Definition 1.3. A random variable X is called measurable with respect to

a σ-algebra F if the function ω → X (ω) is constant on any subset in the

partition corresponding to F . An equivalent definition is the following: For

any real number x, the set {ω ∈ Ω : X (ω) = x} is an element of F .

The concept of measurability is intuitive, but not always clear directly from

the definition. Loosely speaking, we say a random variable is measurable

with respect to a σ-algebra if the information contained in that σ-algebra is

sufficient to determine the value of the random variable.
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Definition 1.4. A stochastic process is called adapted to the filtration

{F ; t = t0, t1, . . . , tn} if for every t ∈ {t0, t1, . . . , tn}, the random variable

S (t) is Ft-measurable.

This follows naturally from the previous definitions; we want to consider

stochastic processes whose value at each time point can be determined by

the information that the filtration reveals at that point. The next definition

gives another extension of this idea.

Definition 1.5. A stochastic process is said to be predictable with respect to

the filtration {F ; t = t0, t1, . . . , tn} if for every t ∈ {t0, t1, . . . , tn}, the random

variable S (t) is Ft−1-measurable.

Predictability of a stochastic process is more powerful than adaptedness: It

means that the value of the stochastic process at each point in time can be

determined one period in advance.

These definitions are standard and common among researchers in mathemat-

ical finance. Nevertheless, we feel that it is a good idea to review them for

the purposes of this report, to make sure that the reader is sufficiently well-

informed for the sections that follow, particularly in regards to how these

definitions should relate to our model.
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1.4 The Class of Trading Strategies

We will be interested in trading strategies H =
{
Ht0 , Ht1 , . . . , Htn−1

}
. Each

Hti is a stochastic process Hti =
(
HB

ti
, HX

ti

)
, where HB

ti
represents the amount

of shares of the risk-free asset that are bought (or sold) at time ti and held

until time ti+1. Likewise, HX
ti

represents the amount of shares of the risky

security. A positive value corresponds to a long position in the asset, and a

negative value represents a short position. In this way, at each trading date

ti, Hti specifies an investor’s portfolio.

The value process of a trading strategy H is defined as

Vti = HB
ti
Bti +HX

ti
Xti

This represents, as the name suggests, the value of the portfolio that the

investor is holding at time ti; that is, how much money the investor would

earn (or lose) by closing his positions in each asset.

Specifically, the initial investment is Vt0 = HB
t0
Bt0 +HX

t0
Xt0 .

We also define the gains process of a trading strategy at time ti as

GH
ti

= V H
ti
− V H

t0

The gains process represents the value that the portfolio has gained or lost

since the initial investment. This process plays an important role in defin-
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ing self-financing trading strategies and arbitrage; those definitions will be

discussed in the following sections.

1.5 The Self-Financing Constraint

The notion of a self-financing trading strategy is fairly intuitive, but at the

same time, an important tool in our market model. The formulation is

very straightforward: Suppose we create a portfolio H whose time t = t0

positions are
(
HB

t0
, HX

t0

)
. The value of the portfolio at time t0 is then Vt0 =

HB
t0
Bt0 +HX

t0
Xt0 . We hold our positions in the two assets until time t = t1, at

which point the values of the assets have changed. Before making any changes

to the portfolio, we note that its value has changed to HB
t0
Bt1 +HX

t0
Xt1 .

At time t1 we are again allowed to alter our positions in each of the assets;

suppose we now choose positions
(
HB

t1
, HX

t1

)
. The constraint we are introduc-

ing here is the self-financing constraint: Naturally, we mean that we wish for

the trading strategy to finance itself. That is, we will not invest more money

from our pockets, nor will we pocket any money from our portfolio. We want

the value of the portfolio to remain the same when we change our positions

in each asset. In other words, any change in the value of the portfolio is a

result of changes in the value of the investments. Formally, this means that

we want to impose the following condition:

HB
t0
Bt1 +HX

t0
Xt1 = HB

t1
Bt1 +HX

t1
Xt1
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Or equivalently,

Bt1

(
HB

t1
−HB

t0

)
+Xt1

(
HX

t1
−HX

t0

)
= 0.

We therefore define the class of self-financing trading strategies as the set of

all trading strategies which satisfy this condition:

HSF =
{
H =

(
HB

ti
, HX

ti

)
i≥0

: Bti

(
HB

ti
−HB

ti−1

)
+Xti

(
HX

ti
−HX

ti−1

)
= 0
}

The self-financing constraint is important in defining the notion of an arbi-

trage opportunity, which we will introduce later.

For self-financing trading strategies, we will show that an intuitive property

holds in our model: The total gain of the trading strategy is equal to the

sum of the individual gains of the investments in the bank account and risky

security between consecutive trading dates.

Proposition 1.1. The following identity holds for trading strategies H =

(Ht0 , Ht1 , . . . , Htn) belonging to HSF :

Vtk − Vt0 =
k−1∑
i=0

HB
ti

(
Bti+1

−Bti

)
+

k−1∑
i=0

HX
ti

(
Xti+1

−Xti

)

Proof. Recall that the self-financing constraint means the following:

HB
ti−1

Bti +HX
ti−1

Xti = HB
ti
Bti +HX

ti
Xti
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Consider the sum

k−1∑
i=0

HB
ti

(
Bti+1

−Bti

)
+

k−1∑
i=0

HX
ti

(
Xti+1

−Xti

)

=
k−1∑
i=0

[
HB

ti

(
Bti+1

−Bti

)
+HX

ti

(
Xti+1

−Xti

)]

The i = 0 term of this sum is

HB
t0

(Bt1 −Bt0) +HX
t0

(Xt1 −Xt0)

=
(
HB

t0
Bt1 +HX

t0
Xt1

)
−
(
HB

t0
Bt0 +HX

t0
Xt0

) (1)

The i = 1 term is

HB
t1

(Bt2 −Bt1) +HX
t1

(Xt2 −Xt1)

=
(
HB

t1
Bt2 +HX

t1
Xt2

)
−
(
HB

t1
Bt1 +HX

t1
Xt1

) (2)

Note that, due to the self-financing constraint, the first term of (1) and the

second term of (2) will cancel. Similarly, the first term of the i = 1 case will

cancel the second term of the i = 2 case, and so on. After these cancellations,

we will be left with the first term of the i = k − 1 case and the second term

of the i = 0 case, so

k−1∑
i=0

[
HB

ti

(
Bti+1

−Bti

)
+HX

ti

(
Xti+1

−Xti

)]
=
(
HB

tk−1
Btk +HX

tk−1
Xtk

)
−
(
HB

t0
Bt0 +HX

t0
Xt0

) (3)
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Finally, note that the self-financing constraint implies that

(
HB

tk−1
Btk +HX

tk−1
Xtk

)
=
(
HB

tk
Btk +HX

tk
Xtk

)
so we are left with

k−1∑
i=0

[
HB

ti

(
Bti+1

−Bti

)
+HX

ti

(
Xti+1

−Xti

)]
=
(
HB

tk
Btk +HX

tk
Xtk

)
−
(
HB

t0
Bt0 +HX

t0
Xt0

)
= Vtk − Vt0

(4)

Which is what we wanted to prove.

1.6 The Definition of Arbitrage

Definition 1.6. We define an arbitrage opportunity as any self-financing

trading strategy H ∈ HSF which satisfies the conditions

GH
tn = V H

tn − V
H
t0
≥ 0 for all ω ∈ Ω and GH

tn > 0 for some ω ∈ Ω

This is the formal definition of an arbitrage opportunity. Intuitively, these

conditions mean that the trading strategy is guaranteed not to lose value,

and has some possibility of gaining value; they represent the ability to earn

a risk-free profit.
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Definition 1.7. We say that a market does not admit arbitrage (or, the

market is arbitrage-free) if there exists no self-financing arbitrage opportunity

in the market.

As we stated before, it is our goal to study market models which do not

admit arbitrage. This is, intuitively speaking, a condition on the ”fairness”

of a market; we do not want there to be opportunities for investors to make

riskless profits. These are models in which we should be able to fairly price

derivative securities.

2 Change of Numéraire Result

In general terms, a numéraire is a standard unit of an asset against which

the values of other assets are measured. In common practice, a country’s

currency acts as a numéraire, determining the relative value of goods under

a common measure. For certain situations, applying a change of numéraire

can be helpful or necessary; one natural example of a numéraire change is

the change between the currencies of two countries. In other situations it

may be appropriate to change the numéraire to a zero-coupon bond, or make

a change to compensate for inflation, or in the case of this model, to adjust

asset prices by discounting at the risk-free interest rate.

It has been shown (by Delbaen and Schachermayer [4]) that the No-Arbitrage

property of a market may depend on the choice of numéraire, so it is im-
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portant to make sure that the No-Arbitrage property remains intact when

changing the numéraire.

For the purposes of this model, it will be necessary to treat the value of the

bank account process as numéraire, and express the value of the risky security

in terms of the bank account value. In order to simplify the model, we

will discount the bank account process and the risky security’s price process

using the risk-free interest rate. We will use the fact that the market given

by (Bt, Xt) admits no arbitrage if and only if the market given by
(

1, X̃t

)
admits no arbitrage, where X̃t = Xt/Bt denotes the discounted price process

of the risky security. A more generalized version of this result has been shown

[4], and so we will present our version without proof.

In the market (1, X̃), a self-financing trading strategy H̃ is given by:

H̃ = (H̃t0 , H̃t1 , . . . , H̃tn−1)

where H̃ti is a random variable for each i (i.e. H is a discrete stochastic

process).

These are the amounts invested in the risky asset; these values are enough

to determine the trading strategy since we can always choose a unique set of

weights for the risk-free asset such that the trading strategy is self-financing.

The corresponding gains process is given by

GH̃
ti

= H̃t0(X̃t1 − X̃t0) + . . .+ H̃ti−1
(X̃ti − X̃ti−1

)

14



Definition 2.1. We say that the market (1, X̃) does not admit arbitrage if

there exists no H̃ such that

GH̃
tn ≥ 0 for all ω ∈ Ω and GH̃

tn > 0 for some ω ∈ Ω

Theorem 2.1. The following are equivalent:

• The no-arbitrage property holds in the market (Bt, Xt).

• The no-arbitrage property holds in the market
(

1, X̃t

)
.

3 The Dalang-Morton-Willinger Theorem

To introduce the Dalang-Morton-Willinger Theorem, a few other preliminary

definitions are needed; we need to discuss the concept of equivalent proba-

bility measures, and define conditional expectation and martingales. Then

we will be ready to state the Dalang-Morton-Willinger Theorem.

3.1 Equivalent Probability Measure

Definition 3.1. Two probability measures P and Q are called equivalent if

P (ω) = 0⇔ Q (ω) = 0 for every event ω in the sample space Ω.

Essentially, the definition means that the two probability measures P and Q

agree on which events have measure zero. For the purposes of our model,
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since there is no event ω ∈ Ω such that P (ω) = 0, there can also be no event

such that Q (ω) = 0, if Q is a measure equivalent to P . In short, since all of

our outcomes ω occur with positive probability under P , they must also all

be assigned positive probability by Q.

3.2 Conditional Expectation

Definition 3.2. If X is a random variable, and G is a σ-algebra, then the

conditional expectation of X with respect to G (denoted E [X|G]) is a random

variable with the following properties:

• E [X|G] is G-measurable.

•
∫

A
XdP =

∫
A
E [X|G] dP where A ∈ G.

Conditional expectation has the following properties:

• E [aX + bY |G] = aE [X|G] + bE [Y |G] (conditional expectation is lin-

ear)

• E [E [X|G]] = E [X]

• E [E [X|G2] |G1] = E [X|G2] if G2 ⊂ G1

• E [E [X|G2] |G1] = E [X|G1] if G1 ⊂ G2

• E [XY |G] = XE [Y |G] if X is G-measurable.
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3.3 Martingales

Definition 3.3. An adapted stochastic process is called a martingale if

E [Xt|Fs] = Xs.

For the purposes of our model, we will say that a process is a martingale if

E [Xtm|Ftn ] = Xtn . Intuitively, this means that if a process is a martingale,

we do not expect its value to have any tendency to rise or fall.

3.4 Dalang-Morton-Willinger Theorem

Theorem 3.1. The market
(

1, X̃
)

satisfies the no-arbitrage condition if and

only if there is a probability measure Q equivalent to P such that the process

X̃ is a martingale under Q.

The theorem has been widely applied and proven under many different con-

ditions. Essentially, it asserts that if there are no arbitrage opportunities in

the market model, then there necessarily exists a martingale measure equiv-

alent to the real-world measure. Similarly, if the existence of an equivalent

martingale measure can be shown, then it must follow that the market does

not admit arbitrage. Naturally, the existence of a martingale measure is

typically important since it allows for risk-neutral pricing of assets.

Even though this result provides a necessary and sufficient condition for

no-arbitrage, it is not trivial to check if a process admits an equivalent mar-
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tingale measure or not. As an example, consider a martingale M . It does

not immediately follow that the process eM admits an equivalent martingale

measure. However, our result in the next section will show that eM does in

fact admit an equivalent martingale measure.

4 No-Arbitrage Conditions with Simple Integrands

4.1 A Lemma

Before proving the main result, it will be necessary to present a lemma. The

proof of the main result will follow almost immediately from the statement

of the lemma.

Lemma 4.1. The market (1, X̃) does not admit arbitrage if and only if the

discounted price process X̃ satisfies the condition (?) below,

Condition (?): For any two trading dates ti < tj and any atom A in the

partition of Ω corresponding to Fti, either

X̃ti = X̃tj for all ω in A , or

X̃ti > X̃tj for some ω in A , and X̃ti < X̃tj for some ω in A.

This statement means that either X̃ti = X̃tj identically on the event A, or

X̃ti > X̃tj and X̃ti < X̃tj both occur with some probability on the event A.

18



For example, if the atom A = {ω1, ω2}, then the statement would be satisfied

if X̃ti = X̃tj in both outcomes ω1 and ω2. The statement would also be

satisfied if X̃ti > X̃tj in ω1 and X̃ti < X̃tj in ω2.

To imply that the no-arbitrage condition holds, the statement must be true

for every such atom A.

Proof. (Proof of Lemma 4.1) (⇒) By way of contradiction, assume the

market (1, X̃) does not admit arbitrage, but the condition (??) does not hold,

then there are two trading dates ti < tj and an atom A ∈ Fti , such that either

(i) X̃tj ≥ X̃ti for all ω ∈ A and X̃tj > X̃ti for some ω in A

or

(ii) X̃tj ≤ X̃ti for all ω ∈ A and X̃tj < X̃ti for some ω in A

In the case of (i) let H̃ = (H̃t1 , H̃t2 , . . . , ˜Htn−1) be such that H̃tk = 0 for

k = 1, 2, . . . , i− 1, j, j + 1, . . . , n− 1 and H̃tl = 1A for l = i, i + 1, . . . , j − 1.

Then G̃H̃
tn = 1A(X̃tj − X̃ti) and

G̃H̃
tn ≥ 0, for all ω, and G̃H̃

tn > 0 for some ω.

So H̃ is an arbitrage opportunity. In the case of (ii), let ˜̃H = ( ˜̃Ht1 ,
˜̃Ht2 , . . . ,

˜̃Htn−1)

be such that ˜̃Htk = 0 for k = 1, 2, . . . , i− 1, j, j + 1, . . . , n− 1 and ˜̃Htl = −1A

for l = i, i+1, . . . , j−1. Then G̃
˜̃H
tn = −1A(X̃tj−X̃ti) and so ˜̃H is an arbitrage
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opportunity. Contradiction.

(⇐) Assume the condition (?) does hold. By way of contradiction, assume

(1, X̃) admits arbitrage. Then there is a self-financing trading strategy H̃ =

(H̃1, H̃2, . . . , H̃tn−1), such that the corresponding gains process satisfies

G̃H̃
tn ≥ 0, for all ω, and G̃H̃

tn > 0 for some ω.

Let i be the minimum of all k that satisfy

G̃H̃
tk
≥ 0, for all ω, and G̃H̃

tk
> 0 for some ω.

Case I: i = 1

Then

H̃t0(X̃t1 − X̃t0) ≥ 0, for all ω, and H̃t0(X̃t1 − X̃t0) > 0 for some ω.

Let F = {H̃t0 > 0} and E = {H̃t0 < 0}, then either F ∩ {ω : (X̃t1 − X̃t0) >

0} 6= ∅ or E ∩ {ω : (X̃t1 − X̃t0) < 0} 6= ∅. Otherwise, we would have

G̃H̃
t1
≡ 0 which contradicts the minimality of i = 1. Note that since H̃t0 is

Ft0-measurable, we have F,E ∈ Ft0 . Now, if F ∩ {ω : (X̃t1 − X̃t0) > 0} 6= ∅

then there is an atom A in F such that A ∩ {ω : (X̃t1 − X̃t0) > 0} 6= ∅.

So we have X̃t1 ≥ X̃t0 for all ω in A and X̃t1 > X̃t0 for some ω in A. This

contradicts the condition (?). If E ∩ {ω : (X̃t1 − X̃t0) < 0} 6= ∅, we obtain a

contradiction similarly.
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Case II: i > 1

Then, either G̃ti−1
≡ 0, or G̃ti−1

< 0 for some ω.

(i) If G̃ti−1
≡ 0, then H̃ti−1

(X̃ti−X̃ti−1
) ≥ 0 for all ω and H̃ti−1

(X̃ti−X̃ti−1
) > 0

for some ω. So we have the same situation as in Case I. Therefore we can

obtain a contradiction in a similar way as in Case I.

(ii) If G̃ti−1
< 0 for some ω,

Let F = {G̃ti−1
< 0}, then since G̃ti ≥ 0 for all ω in F we have H̃ti−1

(X̃ti −

X̃ti−1
) > 0 for all ω in F . Let B = {H̃ti−1

> 0} and D = {H̃ti−1
< 0}, then

either F ∩B 6= ∅ or F ∩D 6= ∅. So assume F ∩B 6= ∅. Note that X̃ti > X̃ti−1

for all ω in F ∩B. Also note that F ∩B ∈ Fti−1
. So there is an atom A of Ω

corresponding to Fti−1
, such that X̃ti > X̃ti−1

for all ω in A. This contradicts

condition (?). If F ∩D 6= ∅ we again obtain a contradiction similary.

4.2 Main Result

The main result is a theorem showing how the no-arbitrage property of a

market holds under composition with a strictly monotone function.

Theorem 4.1. Let f be a strictly monotone function. The following are

equivalent:
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• The no-arbitrage property holds in
(

1, X̃
)

.

• The no-arbitrage property holds in
(

1, f(X̃)
)

.

Proof. The proof follows almost immediately from the lemma we presented

previously.

(⇒) First, suppose that the no-arbitrage property holds in
(

1, X̃
)

. Now

let ti < tj and an atom A of Fti be given. Additionally, let f be a strictly

monotone function. There are two cases:

Case I: P (A ∩ {X̃ti = X̃tj}) = P (A)

Certainly, X̃ti = X̃tj ⇒ f(X̃ti) = f(X̃tj ),

or equivalently, the set
{
X̃ti = X̃tj

}
is a subset of

{
f(X̃ti) = f(X̃tj )

}
.

So P
(
A ∩

{
f(X̃ti) = f(X̃tj )

})
= P (A) as well.

Case II: P (A ∩ {X̃ti > X̃tj}) > 0 and P (A ∩ {X̃ti < X̃tj}) > 0

If f is increasing, we have

X̃ti > X̃tj ⇒ f(X̃ti) > f(X̃tj ) and

X̃ti < X̃tj ⇒ f(X̃ti) < f(X̃tj )

Equivalently, the set
{
X̃ti > X̃tj

}
is a subset of

{
f(X̃ti) > f(X̃tj )

}
(and

similarly for the “<” statement).
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Thus P
(
A ∩

{
f(X̃ti) > f(X̃tj )

})
> 0 and P

(
A ∩

{
f(X̃ti) < f(X̃tj )

})
> 0

both hold as well.

Similarly, if f is decreasing,

X̃ti > X̃tj ⇒ f(X̃ti) < f(X̃tj ) and

X̃ti < X̃tj ⇒ f(X̃ti) > f(X̃tj )

So P
(
A ∩

{
f(X̃ti) > f(X̃tj )

})
> 0 and P

(
A ∩

{
f(X̃ti) < f(X̃tj )

})
> 0

both hold.

The market
(

1, f(X̃)
)

therefore satisfies the condition equivalent to no-

arbitrage.

(⇐) Let Ỹ = f(X̃), and suppose now that the market
(

1, f(X̃)
)

=
(

1, Ỹ
)

satisfies the no-arbitrage condition, and that f is a strictly monotone func-

tion.

As f is strictly monotone, it has an inverse f−1, which is also strictly mono-

tone.

We can therefore apply the part of the theorem which we just proved: If the

no-arbitrage property holds in
(

1, Ỹ
)

, then the no-arbitrage property holds

in
(

1, f−1(Ỹ )
)

.

Substituting Ỹ = f(X̃), this means if the no-arbitrage property holds in
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(
1, f(X̃)

)
, then it holds in

(
1, f−1(f(X̃))

)
=
(

1, X̃
)

.

This theorem provides a method of constructing new arbitrage-free market

models from other arbitrage-free markets. It also potentially gives a way to

check that the no-arbitrage property holds in a particular model. We can

also present an interesting corollary which follows almost directly from the

statement of the main result.

Corollary 4.1. If M is a martingale and if f is a strictly monotone function,

then (1, f(M)) is an arbitrage-free market model.
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4.3 Examples

Here we will give a few simple examples to demonstrate how the theorem

might be applied.

Example I

Consider a two-period binomial model for the stock price, where the risk-free

interest rate is r = 0. At time t0, the price of the stock is Xt0 ; for simplicity

let us denote Xt0 = X. At time t1, the price can change to either uX or

dX, where d < u. Similarly, in each period, the price Xti+1
is either uXti or

dXti . The no-arbitrage condition for this model is 0 < d < 1 + r < u, i.e.

0 < d < 1 < u for our assumption of r = 0. So the model can be diagrammed

in this way:

Xt0 Xt1 Xt2

u2X

uX

33hhhhhhhhhhh

++VVVVVVVVVV

X

44hhhhhhhhhhh

**VVVVVVVVVVV udX

dX

33hhhhhhhhhhh

++VVVVVVVVVVV

d2X

Now let f(x) = x2 and consider the tree corresponding to the price process

f(Xt) = X2
t (since we generally take the price process to be strictly positive,

we don’t have any concerns about monotonicity; the function is strictly in-

creasing for x > 0). Note that we still have a multiperiod binomial model,

25



and the new up and down factors are u2 and d2 (these factors are still con-

stant between periods, but in general this may not always be the case). The

no-arbitrage condition for a general binomial model is that there is no arbi-

trage in any of the individual single-period submodels; naturally if d < 1 < u

then d2 < 1 < u2. So the no-arbitrage condition is preserved in this model

when the risky price process is squared.

X2
t0

X2
t1

X2
t2

u4X

u2X

33gggggggggggg

++WWWWWWWWWW

X

44hhhhhhhhhhh

**VVVVVVVVVVV u2d2X

d2X

33gggggggggg

++WWWWWWWWWWWW

d4X

Example II

Now we look at a case where the function f is strictly decreasing. For in-

stance, consider the function f(x) = 1
x
. The new up and down factors are 1/d

and 1/u, respectively. Since 0 < d < 1 < u, this implies 0 < 1/u < 1 < 1/d.

So again, the no-arbitrage condition is satisfied.
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1
Xt0

1
Xt1

1
Xt2

1
u2X

1
uX

55kkkkkkkkkkk

))SSSSSSSSSSS

1
X

(down)
55kkkkkkkkkkkk

(up) ))SSSSSSSSSSSS 1
udX

1
dX

55kkkkkkkkkkk

))SSSSSSSSSSS

1
d2X

Example III

As a final example, consider the function f(x) = ex. Composing Xt with

this function again gives a two-period binomial model, but the up and down

factors are no longer constant between nodes. However, we will still find that

the no-arbitrage condition will hold for the model; i.e. the individual up and

down factors at each node will still satisfy d̃ < 1 < ũ. Let us denote by ũ0

and d̃0 the new up and down factors in the first period. Additionally let ũ1,u

denote the up factor in the second period provided that the “up” path was

taken in the first period, and so on (as shown in the diagram).

eXt0 eXt1 eXt2

eu2X

euX

ũ1,uiiii

44iiii

d̃1,u

UUUU

**UUUU

eX

ũ0iiiii

44iiiii

d̃0
UUUUU

**UUUUU
eudX

edX

ũ1,diiii

44iiii

d̃1,d

UUUU

**UUUU

ed2X
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We can compute the new up and down factors at each node directly:

ũ0 =
euX

eX
= e(u−1)X > 1 since u− 1 > 0

d̃0 =
edX

eX
= e(d−1)X < 1 since d− 1 < 0

ũ1,u =
eu2X

euX
= eu(u−1)X > 1 since u− 1 > 0

d̃1,u =
eudX

euX
= eu(d−1)X < 1 since d− 1 < 0

ũ1,d =
eudX

edX
= ed(u−1)X > 1 since u− 1 > 0

d̃1,d =
ed2X

edX
= ed(d−1)X < 1 since d− 1 < 0

The no-arbitrage property holds at each node on the binomial tree, so the

model is arbitrage-free. This argument can easily be extended to a binomial

model with any number of periods.

We have shown in each example that our main result holds by first principles.

The advantage of the theorem is that it can be applied directly to much more

complicated cases; for instance, the function may be too cumbersome to apply

to every possible value of Xti in the model, or the model itself may be more

difficult to work with than a simple binomial model. In such examples, our

theorem provides a sure way to construct new arbitrage-free models.

28



5 No-Arbitrage with Short-Sale Restriction

In this section we discuss no arbitrage conditions when shortsale is not al-

lowed in the market. Let (1, X̃) be the discounted market and again we

assume all the trading in this market can happen only at finitely many

randomly fixed dates t1, t2, . . . , tn. On each trading date ti, the investor

chooses his long position H̃ti in the risky asset X̃ and keeps it until time

ti+1. So a typical trading strategy with shortsale restriction is given by

H̃ = (H̃1, H̃2, . . . , H̃tn−1), where each H̃i, i = 1, . . . , n − 1 is a nonnegative

random variable. We denote by H+ the class of trading strategies H̃ with

shortsale restriction. The gains process corresponding to the trading strategy

H̃ = (H̃1, H̃2, . . . , H̃tn−1) is given by

G̃H̃
ti

= H̃t0(X̃t1 − X̃t0) + . . .+ H̃ti−1
(X̃ti − X̃ti−1

), i = 1, 2, . . . , n.

Definition 5.1. We say that the discounted market (1, X̃) does not admit

arbitrage with shortsale restriction if there exists no H̃ in H+, such that the

corresponding gains process satisfies

G̃H̃
tn ≥ 0, for all ω, and G̃H̃

tn > 0 for some ω.

In the following lemma we provide a condition which is necessary and suffi-

cient for the no-arbitrage property of the market (1, X̃).

Lemma 5.1. The market (1, X̃) does not admit arbitrage with shortsale re-
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striction if and only if the following condition (??) is satisfied

Condition (??): For any two trading dates ti < tj and any atom A in the

partition of Ω that belongs to Fti, either

Xti = Xtj for all ω in A, or

Xti > Xtj for some ω in A

Before proving this emma, we discuss the condition (??) for the case of su-

permartingales. If X̃ is a supermartingale, then E[Xtj |Fi] ≤ Xti . Therefore

for any A ∈ Fti , we have E[1AXti ] = E[1AXtj ] and this is equivalent to the

condition (??). So we can state the following result.

If X̃ is a supermartingale, the market (1, X̃) does not admit arbitrage with

shortsale restriction.

Proof. (Proof of Lemma 5.1) (⇒) By way of contradiction, assume the

market (1, X̃) does not admit arbitrage, and the condition (??) does not

hold, then there are two trading dates ti < tj and an atom A ∈ Fti ,

such that Xtj ≥ Xti for all ω ∈ A and Xtj > Xti for some ω in A. Let

H̃ = (H̃t1 , H̃t2 , . . . , ˜Htn−1) be such that Htk = 0 for k = 1, 2, . . . , i − 1, j, j +

1, . . . , n−1 and Htl = 1A for l = i, i+1, . . . , j−1. Then G̃H̃
tn = 1A(Xtj −Xti)

and

G̃H̃
tn ≥ 0, for all ω, and G̃H̃

tn > 0 for some ω.
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So H̃ is an arbitrage opportunity. Contradiction.

(⇐) Assume the condition (??) does hold. By way of contradiction assume

(1, X̃) admits arbitrage. Then there is a trading strategy H̃ = (H̃1, H̃2, . . . , H̃tn−1) ∈

H+, such that the corresponding gains process satisfies

G̃H̃
tn ≥ 0, for all ω, and G̃H̃

tn > 0 for some ω.

Let i be the minimum of all k that satisfy

G̃H̃
tk
≥ 0, for all ω, and G̃H̃

tk
> 0 for some ω.

Case I: i = 1

Then

H̃t0(X̃t1 − X̃t0) ≥ 0, for all ω, and H̃t0(X̃t1 − X̃t0) > 0 for some ω.

Let F = {H̃t0 > 0} then F is not empty. Otherwise, we would have H̃t0 ≡ 0

and G̃H̃
t1
≡ 0 which contradicts the minimality of i = 1. Also we have

F ∩ {ω : (X̃t1 − X̃t0) > 0} 6= ∅. Otherwise we would also have G̃H̃
t1
≡ 0.

Now, since H̃t0 is Ft0-measurable, we have F ∈ Ft0 . F is the union of

disjoint atoms and one of these atoms, say A, has the property A ∩ {ω :

(X̃t1 − X̃t0) > 0} 6= ∅ (because F has this property). So X̃t1 ≥ X̃t0 for all ω
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in A and X̃t1 > X̃t0 for some ω in A. This contradicts the condition (??).

Case II: i > 1

Then, either G̃ti−1
≡ 0, or G̃ti−1

< 0 for some ω.

(i) If G̃ti−1
≡ 0, then H̃ti−1

(Xti−Xti−1
) ≥ 0 for all ω and H̃ti−1

(X̃ti−X̃ti−1
) > 0

for some ω. This is the same as the Case I above. So we have a contradiction

again.

(ii) If G̃ti−1
< 0 for some ω,

Let F = {G̃ti−1
< 0}, then since G̃ti ≥ 0 on F we have H̃ti−1

(X̃ti− X̃ti−1
) > 0

on F . Therefore X̃ti > X̃ti−1
on F . Note that F ∈ Fti−1

because G̃ti−1
is

Fti−1
measurable. F is the union of the atoms of Ω that are in Fti−1

. Let A

be one of the atoms whose union is F . Then on A we have X̃ti > X̃ti−1
. This

contradicts the condition (??). This completes the proof.

The following theorem states that the no arbitrage property is invariant under

the composition with a strictly increasing function.

Theorem 5.1. The market (1, X̃) does not admit arbitrage with shortsale

restriction if and only if for any strictly monotone determinstic function f

the market (1, f(X̃)) does not admit arbitrage with shortsale restriction.

Proof. Its easy to check that the condition (?) for the price process X̃ is

32



equivalent to the condition (?) for the price process f(X̃). Then Lemma 5.1

applies.

Since supermartingales do not admit arbitrage with shortsale restrictions, we

can state the following result

Corollary 5.1. Let X̃ be a supermartingale, then for any strictly monotone

function f , the market (1, f(X̃)) does not admit arbitrage with short sale

restriction.

6 Conclusion

We have shown that if the discounted market model admits no arbitrage, then

the no-arbitrage property is preserved when the discounted price process of

the risky asset is composed with a strictly monotone function. The result

gives a method of constructing arbitrage-free market models given only a

little information; it can also be used to determine if a specific model is

arbitrage-free (provided enough information is given). Indeed, it is important

to study market models having the no-arbitrage property, since we want to

be able to fairly price derivative securities, and we want to disallow the

possibility of investors making riskless profits. The result as presented in

our model is fairly simplistic, but it is possible to extend it to more general

models.
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There are, however, a few issues we have not yet discussed. In particular, we

expect that there should be a relation between the martingale measure Q of

the discounted market and the measure Qf of the market under composition

with the function f . Furthermore, we did not explicitly prove the results for

the change of numéraire and the Dalang-Morton-Willinger Theorem in our

setting, but instead relied on the more general results given in various past

articles.

34



References

[1] Björk, Tomas. Arbitrage Theory in Continuous Time. Oxford University

Press Inc, 2004.

[2] Patrick Cheridito. Arbitrage in Fractional Brownian Motion Models.

Finance and Stochastics, pages 533–553, 2003.

[3] Jean-Michael Courtault. On the Law of One Price. Finance and Stochas-

tics, pages 525–530, 2004.

[4] Freddy Delbaen and Walter Schachermayer. The No-Arbitrage Property
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