
Accelerating Cryptosystems on Hardware Platforms

by

Wei Wang

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial ful�llment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

January 2014

APPROVED:

Professor Xinming Huang Professor Berk Sunar
Thesis Advisor Thesis Committee
ECE Department ECE Department
Worcester Polytechnic Institute Worcester Polytechnic Institute

Professor Wenjing Lou Professor Yehia Massoud
Thesis Committee Head of Department
CS Department ECE Department
Virginia Tech Worcester Polytechnic Institute

Abstract

In the past decade, one of the major breakthroughs in computer science theory

is the �rst construction of fully homomorphic encryption (FHE) scheme introduced

by Gentry. Using a FHE one may perform an arbitrary numbers of computations

directly on the encrypted data without revealing of the secret key. Thus an untrusted

party, such as a remotely hosted server, may perform computations on the data

without compromising privacy. Therefore, a practical FHE provides an invaluable

security application for emerging technologies such as cloud computing and cloud-

based storage. However, FHE is far from real life deployment due to serious e�ciency

impediments. This dissertation focuses on accelerating the existing FHE schemes

using GPU and hardware design for the existing schemes to make the existing FHE

schemes more e�cient and practical towards real-life applications. The integer-FFT

multiplication algorithm is adopted for the implementation of Gentry-Halevi's FHE

scheme. As the Moore law continues driving the computer technology, the key size of

the Rivest�Shamir�Adelman (RSA) encryption is necessary to be upgraded to 2048,

4096 or even 8192 bits to provide higher level security. In this dissertation, the FFT

multiplication is employed for the large-size RSA hardware design instead of using

the traditional interleaved Montgomery multiplication to show the feasibility of the

FFT multiplication for large-size RSA design. The main technical contributions of

this dissertation are summarized as following:

At �rst, GPU is used to accelerate the Gentry-Halevi FHE scheme. Gentry-Halevi

FHE scheme is the �rst software implementation of the FHE scheme on a general-

purpose computer. Although Gentry-Halevi's FHE scheme employs a numbers of

optimizations, it is still considerably slow. In the Gentry-Halevi implementation,

i

the most computationally intensive arithmetic operation is modular multiplication.

In this research, the million-bit modular multiplication is computed in two steps.

For large number multiplication, Strassen's FFT based algorithm is employed and

accelerated on a graphics processing unit (GPU) through its massive parallelism.

Subsequently, Barrett modular reduction algorithm is applied to implement modular

reduction. As an experimental study, we implement the Gentry-Halevi primitives for

the small setting with a dimension of 2048 on NVIDIA C2050 GPU. The experimental

results show the speedup factors of 7.68, 7.4 and 6.59 for encryption, decryption and

recryption respectively, when compared with the existing CPU implementation.

Second, a hardware multiplier is designed for the Gentry-Halevi FHE scheme.

A power e�cient, high-speed 768K-bit multiplier based on FFT multiplication is

designed for fully homomorphic encryption operations. A memory-based, in-place ar-

chitecture is presented for the FFT processor that performs 64K-point �nite-�eld FFT

operations using a radix-16 computing unit and 16 dual-port SRAMs. By adopting

a special prime as the base of the �nite �eld, the radix-16 calculations are simpli�ed

to require only additions and shift operations. A two-stage carry-look-ahead scheme

is employed to resolve carries and obtain the multiplication result. The multiplier

design is validated by comparing its results with the GNU Multiple Precision (GMP)

arithmetic library. The proposed design has been synthesized using 90nm process

technology with an estimated die area of 45.3 mm2. At 200MHz, the large number

multiplier o�ers roughly twice the performance of a previous implementation on an

NVIDIA C2050 GPU and is 29 times faster than the Xeon X5650 CPU, with the

power consumption of a modest 0.97W.

Thirdly, GPU is used to accelerate the leveled FHE scheme. In leveled FHE

scheme, large-number matrix-vector multiplication is a crucial part of the encryption.

ii

In this research, the Chinese Remainder Theorem (CRT) is employed to reduce the

computational complexity of the large-number element-by-element modular multipli-

cation. As a result, the large-number matrix-vector multiplication is divided into

three steps: decomposition, vector operation and reconstruction. The CRT-based

method is compared with Number Theory Library (NTL), showing the proposed

method is about 7.8 times faster when executing on CPU. Therefore GPU accelera-

tion is employed to speed up the vector operations accounting for 99.6% of the total

computation time. In the GPU implementation, the GPU computation and data

transfer process between GPU and CPU are overlapped. Experiment results show

that the GPU implementation of the CRT-based method is 35.2 times faster than

the same method implemented on CPU and is about 274 times faster than the NTL

library on CPU.

Finally, we explore the feasibility of using FFT multiplication for the large-size

RSA cryptosystem. A new modular multiplication combining the Strassen multiplica-

tion algorithm and Montgomery reduction are designed and an associated RSA mod-

ular exponentiation algorithm is present. The modular multiplication architecture is

di�erent from the interleaved version of Montgomery multiplication traditionally used

in RSA design. By selecting di�erent bases of 16 or 24 bits, it can perform 8,192-bit

or 12,288-bit modular multiplication. A new RSA modular exponentiation algorithm

using FFT multiplication is proposed to reduce one third of the calculation time of

the large-number multiplication in modular multiplication. The design was imple-

mented on the Altera's Stratix-V FPGA and 90-nm application-speci�ed integrated

circuit technologies. It performs one 8K-bit modular multiplication in 6.34 µs and

one modular exponentiation in 0.104 s when operating at 320 MHz.

iii

Acknowledgements

First of all, I would like to sincerely thank for my advisor Professor Xinming

Huang for his guidance and support through all my Ph.D. studies and research at the

Worcester Polytechnic Institute. I am very grateful for his patience, inspiration and

support that have helped me move forward in my Phd career.

I would like to thank Professor Berk Sunar and Professor Wenjing Lou for their

valuable comments as my dissertation committee.

I am grateful to my WPI colleagues Dr. Kai Zhang, Dr. Yanjie Peng, Dr. Yin

Hu, Kavin Yang, Zhilu chen, Jin Zhao, Sichao Zhu, Yun Zhou, Yuteng Zhou for their

friendship and support.

I would also like to thank all the professors and sta� in ECE department for their

help and support during my study in WPI.

This dissertation is dedicated to my parents for their love, support and encour-

agement during all my life.

Especially I would like to thank Prof. Berk Sunar and Dr. Yin Hu for their great

job in the joint project. Prof. Sunar gives me the general research direction for my

dissertation and the great idea and support in the joint project. Dr. Yin Hu puts all

his great ideas and e�orts in the project when working together. The project cannot

be done smoothly and perfect without him. I would also like to thank Niall Emmart

in the UMass, who gives me many good suggestions and advices in the research.

iv

Contents

Abstract i

Acknowledgements iv

Contents viii

List of Tables x

List of Figures xi

List of Algorithms xii

List of Abbreviations xiv

1 Introduction 1

1.1 Background . 1

1.2 Summary of Motivations and Contributions 4

1.2.1 Acceleration of Gentry-Halevi's Fully Homomorphic Encryp-

tion on GPU . 4

1.2.2 VLSI Design of a Large Number Multiplier for Fully Homomor-

phic Encryption . 5

v

1.2.3 Accelerating Leveled Fully Homomorphic Encryption Using GPU 7

1.2.4 Explore the Feasibility of FFT Multiplication for RSA Cryp-

tosystem . 8

1.3 Outline . 9

2 Cryptographic Algorithms 11

2.1 Fully Homomorphic Encryption . 11

2.1.1 The Gentry-Halevi FHE Scheme 13

2.1.2 Basic Leveled FHE Encryption Scheme 15

2.2 The RSA Cryptosystem . 16

3 Arithmetic 18

3.1 Modular Multiplication . 18

3.1.1 Barrett Reduction . 19

3.1.2 Montgomery Arithmetic . 19

3.2 Large Integer Multiplication Algorithms 21

3.3 FFT Multiplication . 22

3.3.1 FFTs in the Finite Field Z/pZ 24

3.4 Modular Arithmetic Comparison . 26

4 Acceleration of Gentry-Halevi's Fully Homomorphic Encryption Us-

ing GPU 28

4.1 Introduction . 29

4.2 Fast Multiplications on GPUs and Modular Reduction 30

4.3 GPU Implementation of FHE . 32

4.3.1 Implementing Encrypt . 32

vi

4.3.2 Implementing Recrypt . 34

4.4 Experimental Results . 35

4.5 Conclusions . 37

5 VLSI Design of a Large Number Multiplier for Fully Homomorphic

Encryption 38

5.1 Introduction and Related Work . 39

5.2 E�cient 192-bit Wide Operations . 41

5.3 VLSI Design of the Large Number Multiplier 43

5.3.1 Radix-16 FFT Unit . 44

5.3.2 64K-Point FFT Processor . 46

5.4 Large-Number Multiplier . 50

5.5 Resolve Carries . 51

5.6 Experimental Results . 52

5.7 Conclusions . 56

6 Accelerating Leveled Fully Homomorphic Encryption Using GPU 58

6.1 Introduction . 59

6.2 Software Implementation on CPU . 60

6.2.1 CRT Representation and Barrett Reduction 60

6.2.2 Software Implementation . 62

6.3 GPU Implementation . 63

6.4 Experimental Results . 64

6.5 Conclusion . 66

7 Explore the Feasibility of FFT Multiplication for RSA Cryposystem 67

vii

7.1 Introduction . 68

7.2 Montgomery Modular Multiplication 69

7.3 VLSI Design of the Modular Multiplication 70

7.3.1 Radix-16 FFT Unit . 71

7.3.2 Resolve the Carries . 72

7.4 The Architecture for Modular Multiplication 75

7.5 Modular Exponentiation Using Strassen Multiplication 77

7.6 Hardware Implementation and Performance Comparisons 78

7.7 Conclusions . 81

8 Conclusions 83

8.1 Summary of Results . 83

8.2 Overview of Contribution . 85

8.3 Recommendations for Future Work 86

Bibliography 87

viii

List of Tables

3.1 Operation counts for a 786,432 bit modular multiplication 26

4.1 Multiplication time CPU vs GPU . 32

4.2 Comparison between di�erent window sizes 34

4.3 FHE on Di�erent Platforms . 36

5.1 Synthesis results using 90-nm CMOS technology (IBM 90nm 9FLP

process) . 54

5.2 Synthesis results on Altera's Stratix-V FPGA 55

5.3 Performance comparison among the proposed design, CPU and GPU 55

6.1 Performance comparison among NTL and the CRT method 62

6.2 Performance comparison among overlapped GPU and non-overlapped

GPU . 64

6.3 Performance comparison of vector operation process among 65

6.4 Performance comparison among NTL, CRT on CPU and CRT with GPU 65

6.5 Memory Space in Di�erent Settings 66

7.1 TABLE 1. Synthesis result and comparison 78

ix

7.2 TABLE 2. Synthesis results using 90-nm CMOS technology (IBM

90nm 9FLP process) . 79

7.3 TABLE 3. Modular Multiplication and Exponentiation Time (Oper-

ating at 320 MHz in ASIC) . 80

7.4 TABLE 4. Implementation Comparisons 80

x

List of Figures

3.1 FFT-based multiplication algorithm. 23

5.1 Diagram of sum-16 unit. 45

5.2 Architecture of the radix-16 FFT unit. 46

5.3 The data storage pattern in the memory banks. 47

5.4 Architecture of the 64K-point FFT processor. 48

5.5 Architecture of modular multiplication unit. 49

5.6 Architecture of the large-number multiplier. 51

5.7 Two-stage pipeline carry resolving unit. 53

6.1 Overlapping computation and data transfer 64

6.2 Execution time comparison . 65

7.1 Diagram of One Processing Element. 73

7.2 Two-stage pipeline carry resolving unit. 74

7.3 The Architecture for Modular Multiplication 76

7.4 Operation Counts of Two Di�erent Algorithms 81

xi

List of Algorithms

3.1 Barrett Reduce Algorithm . 19

3.2 Montgomery multiplication . 21

3.3 Interleaved Montgomery multiplication 21

6.1 Dot Product Using Chinese Remainder Theorem 61

7.1 Montgomery Multiplication Using FFT Multiplication 70

7.2 Modular Exponentiation Using FFT Multiplication 77

xii

List of Abbreviations

AES Advanced encryption standard

ASIC Application speci�c integrated circuits

CMOS Complementary metal oxide semiconductor

CPU Central processing unit

CRT Chinese remainder theorem

CUDA Compute uni�ed device architecture

FFT Fast Fourier transform

FHE Fully homomorphic encryption

GMP GNU multiple precision arithmetic

GPGPU General-purpose computing on graphics processing units

GPU Graphics processing unit

IFFT Inverse fast Fourier transform

NTL Number theory library

xiii

OMF Operation maximum frequency

RAM Random-access memory

ROM Read-only memory

RSA Rivest Shamir Adelman

SRAM Static random access memory

SWHS Somewhat homomorphic encryption

VLSI Very large scale integration

xiv

Chapter 1

Introduction

In this chapter, we �rst introduce background and discuss motivations of our work

in Section 1.1. The motivations and contributions of our work are summarized in

Section 1.2. Finally the organization of this dissertation is presented in Section 1.3.

1.1 Background

Recently, cloud storage and computing are developing at a fast speed, which allows

users outsource computations and storage on their data. In this way, users' private

data can be exposed to untrusted cloud. As a result, privacy and security concerns

become a big issue in cloud storage and computing industry. A good solution to this

privacy and security problem is to keep all data in an encrypted form and perform

computations directly on the encrypted data. Therefore, fully homomorphic encryp-

tion, which supports an arbitrary number of computations directly on the encrypted

data, is invaluable for the cloud storage and computing platforms today. Besides, fully

homomorphic encryption is also very useful in a number of other applications such as

1

electronic voting [1], private information retrieval [2] and �nancial applications [3].

Rivest, Adleman and Dertouzos �rst proposed the concept of encryption scheme

that allows arbitrary operations on encrypted data without revealing the secret key

in 1978 [4]. Many homomorphic encryption schemes, permit simple operations on

encrypted, has been proposed in the past decades. Goldwasser and Micali encryp-

tion scheme was the �rst discovery of semantically secure homomorphic scheme, sup-

porting homomorphic evaluation of a bit-wise exclusive-OR (XOR) operation [5].

Other homomorphic encryption schemes that support either adding or multiplying

encrypted ciphertexts were introduced later. The scheme support multiplicative ho-

momorphic evaluation including RSA [6] and El Gamal encryption scheme [7]. On the

otherwise, the additive homomorphic encryption scheme includes the Paillier encryp-

tion scheme [8], Damgard-Jurik encryption scheme [9], the lattice-based encryption

schemes [10] [11] and many others [12] [13]. All these encryption schemes can only

support either additive or multiplicative homomorphich calculations, but not both.

Boneh, Goh and Nissim [14] introduced the �rst construction of homomorphic en-

cryption scheme that can support both operations at the same time. However, their

scheme can support arbitrary additions but only a single multiplication. The major

breakthrough work cames with the �rst plausible construction of fully homomorphic

encryption based on lattice by Gentry in 2009 [15], which can support an arbitrary

numbers of additions and multiplications on encrypted data.

The �rst step in Gentry's FHE scheme is to construct a Somewhat Homomorphic

Encryption(SWHS) that can only evaluate functions of limited complexity. The

ciphertext in the SWHS scheme is noisy, which means it contains noise to ensure

security. The amount of noise in the ciphertext grows as the homomorphic evaluations

are performed until it is so large that the ciphertext cannot be correctly decrypted.

2

To prevent the accumulation of the noise, Gentry used the bootstrapping procedure

to perform homomorphically decryption on the ciphertext, using an encrypted secrete

key given in the public key, resulting a refreshed ciphertext with reduced noise.

Although Gentry's FHE scheme gives a good promise in theory, the e�ciency of

the FHE scheme is a big problem for practical applications. In the past three years,

many new FHE constructions and optimizations are developed [16�23]. Speci�cally,

Gentry and Halevi introduced the �rst software implementation of the lattice-based

FHE scheme in [18]. Although it employs a number of impressive optimization meth-

ods to reduce the size of public key and improve the e�ciency of primitives, the public

key size is still very large about 17 Mega Bytes, encryption of one bit takes more than

one second and recrypt primitive takes nearly half a minutes on a high-end Intel Xeon

based server in the small setting case. In addition, after every bit-AND operations,

a recryption process must be performed on the ciphertexts to reduce the noise in

a manageable level. Therefore, this lattice-based FHE implementation is extremely

ine�cient for practical applications. Usually, the length of ciphertext (per bit en-

crypted), the keys, the encryption and decryption are used to compare the e�ciency

of di�erent encryption schemes. However, for FHE schemes, the per-gate evaluation

time, de�ned as the ratio of the time used for the homomorphically evaluating a

circuit C to the time of evaluating C on plaintext, shows more importance in prac-

tical applications of FHE. It turns out the schemes following Gentry's lattice-based

method [15,17,18,21] have a per-gate computation time of Ω(λ4) (where λ is the se-

curity parameter) [24]. In a recent development, a leveled FHE scheme is constructed

by Brakerski, Gentry and VaiKuntanathan (BGV) in [23] with asymptotically linear

e�ciency, which means a per-gate evaluation time of Ω(λ). In this thesis, we take

di�erent approaches to accelerate FHE schemes using GPU and custom ASIC designs

3

for practical deployments of FHE.

1.2 Summary of Motivations and Contributions

As mentioned above, the FHE schemes are too ine�cient for practical deployments.

This research is motivated by the development of the practical deployments of Ad-

vanced Encryption Standard (AES) and RSA encryption schemes. One approach to

accelerate AES or RSA encryption is using GPU as a co-processor [25] [26]. The other

approach is to design an Application Speci�c Integrated Circuits (ASIC) which are

dedicated to AES or RSA encryption/decryption operations [27] [28]. At microarchi-

tecture level, it can be implemented as an extension of instruction set of the CPU.

Today many embedded processors have AES or RSA cores included. This work is

aimed to take a similar approach and to use GPU and design a speci�c hardware or

IP blocks for accelerating the existing FHE schemes.

1.2.1 Acceleration of Gentry-Halevi's Fully Homomorphic En-

cryption on GPU

Motivation: The �rst software implementation of a FHE scheme was proposed by

Gentry and Halevi [18]. Although it employs a number of optimizations to reduce

the size of the public-key and to reduce the latencies of the primitives, it is still too

ine�cient for practical deployments. For instance, encryption of one bit takes more

than a second on a high-end Intel Xeon based server, while recrypt operation takes

nearly half a minute for the lowest security setting. With the introduction of the

Compute Uni�ed Device Architecture (CUDA), a number of applications such as the

AES and RSA encryption are accelerated by the general purpose GPU computing

4

(GPGPU) platform [25] [26]. Therefore, GPU is served as our initial step for the

acceleration of FHE schemes.

Contribution: In this work, we present the �rst GPU implementation of the

Gentry-Halevi FHE algorithm [18]. More speci�cally, we combine Strassen's FFT

based integer multiplication algorithm with Barrett's modular reduction algorithm

to implement an e�cient modular multiplier that supports the operands in the size

of million bits. We then utilize the modular multiplier and other operation units

to implement the FHE primitives: encryption, decryption and recryption. On the

NVIDIA C2050, we obtain a factor of 7.4 times speedup for decryption over the CPU

implementation in [18]. We also present the e�cient implementations of encryption

and recryption, which both are optimized to take advantage of the GPU parallelism.

Our GPU implementation yields a speedup factor of 7.68 for encryption and 6.59 for

recrypt when compared with the CPU implementation in [18]. This work appears in

the proceeding of 2012 IEEE HPEC [29] and IEEE Transactions on Computers [30].

1.2.2 VLSI Design of a Large Number Multiplier for Fully

Homomorphic Encryption

Motivation: The research in the above chapter has shown that performance can be

improved greatly through the use of parallelism on a general purpose graphics proces-

sor (GPU). However, a typical GPU usually has very large power consumption around

200 to 400 watt, making it a power ine�cient platform for practical deployment. The

custom ASICs are usually designed for low-power high-performance applications. For

instance, the speci�c hardware is designed to accelerate AES and RSA encryption and

reduce power consumption for practical deployments [27] [28] traditionally. Inspired

5

by previous development of practical AES and RSA encryption, this work is aimed to

take a similar approach and to design a speci�c hardware or IP blocks for accelerating

the core computations in FHE. We try to design a hardware that is much faster than

the GPU with far less power consumption. Since the most computationally inten-

sive operations in the FHE primitives are large-number modular multiplications, our

initial attempt is to tackle the design of a large-number multiplier that can handle

768K bits, in support of the 2048 dimension FHE scheme demonstrated by Gentry

and Halevi.

Contribution: In this work, we attempt to use customized circuits to accelerate

the multiplications for FHE. Speci�cally we present an e�cient, high-speed design

of a 768K-bit multiplier based on Strassen's algorithm including three main compo-

nents: �nite-�eld FFT, inverse FFT and resolving carries. A memory-based in-place

FFT architecture is used for 64K-point �nite-�eld FFT and IFFT. The FFT/IFFT

processor uses a radix-16 computing unit and 16 dual-port SRAMs to store the in-

put data, intermediate and �nal results. By adopting a special prime, the radix-16

calculation is greatly simpli�ed to only additions and shift operations. Parallel ar-

chitecture and two-stage carry-look-ahead scheme are applied to resolve carries for

the multiplication result. The multiplier design is validated by comparing its results

with the GNU Multiple Precision Arithmetic (GMP) library. The proposed design

is synthesized using 90nm 9FLP process with the estimated die area of 45.3 mm2.

When the processor runs at 200MHz, it is about two times faster than the C2050

GPU with 448 cores running at 1.15GHz and 29 times faster than the Xeon X5650

processor running at 2.67GHz. This works appears on IEEE Transactions on VLSI

Systems [31].

6

1.2.3 Accelerating Leveled Fully Homomorphic Encryption Us-

ing GPU

Motivation: FHE is hard to have a practical application in real life due to its serious

e�ciency impediments. Several di�erent FHE schemes have been proposed to make

FHE more e�cient [19,21,23,32]. Recently, a more e�cient FHE scheme called leveled

fully homomorphic encryption without bootstrapping is reported in [23], which has

a per-gate computation time of Ω(λ) (where λ is the security parameter) [24]. It

is more e�cient than Gentry-Halevi's implementation with a per-gate computation

time of Ω(λ4) in [18]. We use NVIDIA GPU C2050 to accelerate Gentry-Halevi

implementation, gaining about 342 times speedup for encryption, 15 times speedup

for recryption and 7 times speedup for decryption as reported in [30]. In this work,

we try to follow our previous step to use GPU to accelerate the leveled FHE scheme.

Contribution: In this work, we propose to accelerate the leveled FHE variant

using NVIDIA GPU. In the leveled FHE scheme, the crucial operation for encryp-

tion is a large-number matrix-vector multiplication. The Chinese Remainder Theory

(CRT) is applied to reduce the complexity of large-number modular multiplications.

It includes three main steps. During the �rst step, CRT is used to decompose each

large-number element into many small words, which is called the decompose process.

The decompose process can be precomputed in the CPU. The second process is vec-

tor operation that performs modular multiplications and additions of all these small

words. Finally, the �nal results can be reconstructed in the reconstruction process.

In our observation, the vector operation process takes most of the computation time

in CPU. So we implement this part in GPU while other computations remain in the

CPU. CUDA program [33] is developed to accelerate the computations by running it

7

in many threads in parallel on a large number of cores available on GPU. In the GPU

implementation, we manage to overlap the calculation process and data transfer pro-

cess to improve the computation e�ciency. Experimental results show the proposed

CRT-based method with GPU implementation gains about 273.6 times speedup when

compared with the NTL library function and 35.2 times speedup when compared with

the same CRT-based method on CPU.

1.2.4 Explore the Feasibility of FFT Multiplication for RSA

Cryptosystem

Motivation: The RSA [6] cryptosystem has wide applications. With the computing

technology continues to develop, it becomes necessary to upgrade the key size to

2048, 4096 or even 8192 bits to provide a higher level security although the key

size with 1,024 bits is still used now. Traditionally, the interleaved Montgomery's

multiplication algorithm [34] is used for the hardware design of modular multiplication

in RSA cryptosystem. Since we applied the FFT multiplication algorithm for the

large-number multiplication in FHE scheme and gained a very good performance in

our previous work, in this work we try to use the FFT multiplication for the hardware

design of RSA cryptosystem to explore its feasibility for the large-size RSA hardware

design.

Contribution: In this work, we employ a novel approach for modular multipli-

cation by combining the Strassen algorithm and Montgomery reduction [34]. Several

strategies are adopted to optimize the multiplication algorithm and support e�cient

hardware design. The proposed design can support 8K and 12K RSA and outperform

the other designs. The design can complete one 8K- and 12K-bit RSA operation in

8

0.104 s and 0.156 s operating at 320 MHz, which is the fastest design to the best of

our knowledge. This work appears in the proceeding of 2013 IEEE HPEC [35].

1.3 Outline

This dissertation is organized as follows.

Chapter 2 introduces the fully homomorphic encryption, expecially the Gentry-

Halevi's FHE scheme and BGV leveled FHE scheme. After that, the RSA cryptosys-

tem is present.

Chapter 3 introduces the number theory arithmetic used for accelerating FHE

scheme and RSA cryptosystem, including modular arithmetic, Montgomery arith-

metic and FFT multiplication.

Chapter 4 presents the implementation of using GPU to accelerate Gentry-Halevi's

FHE scheme. We present the optimizations method for GPU acceleration and give

the performance evaluation and experimental results.

Chapter 5 describes the hardware design of a large-number multiplier for fully

homomorphic encryption. We show the architecture of the VLSI design of the �nite-

�eld FFT engine and the multiplier. Finally, we give results based on VLSI synthesis

and simulation results.

Chapter 6 presents the acceleration of the leveled FHE scheme using GPU. The

CRT-based method and CPU implementation is described. Speci�cally, the GPU is

used to accelerate the vector operation process, the most computation-intensive part.

Finally, we give the evaluation and experimental results.

Chapter 7 presents the hardware design for RSA cryptosystem using FFT multi-

plication. We introduce the Montgomery modular multiplication using FFT multi-

9

plication algorithm, followed by the VLSI architecture of the modular multiplication.

Then we present the modular exponentiation algorithm for RSA exponentiation. Fi-

nally, we give the experimental results of hardware implementation.

Chapter 8 draws the conclusions and discusses future work.

10

Chapter 2

Cryptographic Algorithms

In this chapter, we �rst introduce the two fully homomorphic encryption schemes

in Section 2.1, followed by the RSA encryption in Section 2.2.

2.1 Fully Homomorphic Encryption

In the past decade, one of the most signi�cant advances in cryptography has been the

introduction of the �rst fully homomorphic encryption scheme by Gentry [15]. This

advance not only resolved an open problem posed by Rivest [4], but also opened the

door to many new applications. Indeed, using a FHE one may perform an arbitrary

number of computations directly on the encrypted data without revealing of the

secret key. Thus an untrusted party, such as a remotely hosted server, may perform

computations on behalf of the owner on the data without compromising privacy.

This property of FHE is precisely what makes it invaluable for the cloud computing

platforms today. For instance, it was recognized early in [15] that the privacy of

sensitive data on cloud computing platforms are ideally suited to be protected using

11

FHE. Considering this model of savings in scale and the recent trend, it is safe to

state that cloud computing will have a signi�cant transforming e�ect on business and

personal computing in the coming years. This presents a perfect application target

for FHE schemes.

Informally a homomorphic encryption scheme refers to an encryption function that

allows one to induce a binary operation on the plaintexts while only manipulating the

ciphertexts without the knowledge of the encryption key: E(x1)?E(x2) = E(x1⊗x2).

If the scheme supports the homomorphic computation of any e�ciently computable

function, it is called a fully homomorphic encryption scheme. With FHE, an honest

but curious party can perform any computation directly with encrypted result without

gaining access to the plaintext.

The �rst implementation of a FHE variant was proposed by Gentry and Halevi

[18], which presented an impressive array of optimizations in order to reduce the size

of the public-key and to reduce the latencies of the primitives. Still, encryption of one

bit takes more than a second on a high-end Intel Xeon based server, while recrypt

primitive takes nearly half a minute for the lowest security setting. Furthermore,

after every few bit-AND operations a recrypt operation needs to be applied to reduce

the noise in the ciphertext to a manageable level. In our early work, we are trying

to use GPU and design speci�c hardware module to accelerate the Gentry-Halevi's

implementation. After Gentry-Halevi's implementation, many new FHE construc-

tions and optimizations are developed. Especially the BGV leveled FHE [23] scheme

outstands itself among these schemes as mentioned before. So we begin to use GPU

to accelerate the BGV leveled FHE scheme.

12

2.1.1 The Gentry-Halevi FHE Scheme

We present a high-level overview of the primitives and the details can be referred to

the original reference [18].

Encrypt: To encrypt a bit b ∈ {0, 1} with a public key (d, r). Encrypt �rst generates

a random �noise vector� u = 〈u0, u1, . . . , un−1〉, with each entry chosen as 0 with

the probability 0.5 and as ±1 with probability 0.25 each. Then the message bit b is

encrypted by computing

c = [u (r)]d =

[
b+ 2

n−1∑
i=1

uir
i

]
d

(2.1)

where d and r is part of the public key.

Eval: When encrypted, arithmetic operations can be performed directly on the ci-

phertext with corresponding modular operations. Suppose c1 = Encrypt(m1) and

c2 = Encrypt(m2), we have:

Encrypt(m1 +m2) = (c1 + c2) mod d

Encrypt(m1 ·m2) = (c1 · c2) mod d .

Decrypt: The encrypted bit c can be recovered by computing

m = [c · w]d mod 2 (2.2)

where w is the private key and d is part of the public key.

Recrypt: Brie�y, the Recrypt process is simply the homomorphic decryption of the

13

ciphertext. However, due to the fact that we can only encrypt a single bit and only

a limited number of arithmetic operations can be evaluated, we need an extremely

shallow decryption method. In [18], the authors discussed a practical way to re-

organize the decryption process to make this possible.

Informally, the private key is divided into s pieces that satisfy
∑swi = w. Each wi

is further expressed as wi = xiR
li mod d where R is some constant, xi is random and

li ∈ {1, 2, . . . , S} is also random. The recrypt process can then be expressed as:

m = [c · w]d mod 2

=

[
S∑
cxiR

li

]
d

mod 2

=

[
S∑
cxiR

li

]
2

−
[⌊

(
S∑
cxiR

li)/d

⌋
· d

]
2

=

[
S∑
cxiR

li

]
2

−
[⌊

S∑
(cxiR

li/d)

⌋]
2

.

The Recrypt process can then be divided into two parts. First compute the sum

of cxiR
li for each �block� i. To further optimize this process, encode li to a 0 − 1

vector {η(i)1 , η
(i)
2 , . . . , η

(i)
n } where only two elements are �1� and all other elements are

�0�s. Suppose the two positions are labeled as a and b. We write l(a, b) to refer to the

corresponding value of l. Alternatively we can obtain cxiR
li from

cxiR
li =

∑
a

η(i)a
∑
b

η
(i)
b cxiR

l(a,b) .

Obviously, only when η(i)a and η
(i)
b are both �1�, the corresponding cxiR

l(a,b) is selected

out. In addition, if we encode the l in the way that each iteration will increase it by

one, the next factor cxiR
l(a,b) can be easily computed by multiplying R to the result

14

of the previous computation.

After applying these modi�cations, all operations involved in this formulation of

decryption become bit operations realizable by su�ciently shallow circuits. Thus

we can evaluate this process homomorphically. The parameters ηi will be stored in

encrypted form and incorporated into the public key.

In this scheme, for the small setting, the public key size is about 785,000 bit as

reported in [18]. All the operations in the scheme is based on modular arithmetic.

Compared with modular multiplication, modular addition and subtraction only has

a very small computation complexity. Thus accelerating the modular multiplication

becomes our �rst target for the Gentry-Halevi's implementation.

2.1.2 Basic Leveled FHE Encryption Scheme

The basic leveled FHE encryption scheme works as follows [23].

1. E.Setup (1λ, 1µ, b): λ is the security parameter, representing 2λ security against

known attacks. Use the bit b ∈ {0, 1} to select the parameters between a LWE-

based scheme and RLWE-based scheme. Choose a µ-bit modulusM and choose

the parameters d = d(λ, µ, b), n = n(λ, µ, b) and χ = n(λ, µ, b) appropriately.

2. E.SecretKeyGen (params): Sample s′ ← χn. Set sk = s ← (1, s′[1], ..., s′[n]) ∈

Rn+1
M , which R = R(λ) be a ring.

3. E.PublicKeyGen (params, sk): Generate (n + 1)-column matrix A'←RN×n
M

uniformly and a vector e← χN and set b ← A′s′ + 2e. Set the public key

pk = A.

4. E.Enc(params,pk,m): Assume the plaintext space is R2 = R/2R. To encrypt

15

a message m ∈ R2, set m ← (m, 0, ..., 0) ∈ Rn+1
M , sample r ← RN

2 and output

the ciphertext c←m + AT r ∈ Rn+1
M .

5. E.Dec(params, pk,m): Output m← [[〈c, s〉]M]2.

In this scheme, the modulus, which is part of public key, is an odd number from 512 to

2,048 bits. As shown above, the crucial part in this scheme is a large-number matrix-

vector modular multiplication with the dimension from 9,326 to 61,376. Similar to

the modular exponentiation used for RSA cryptosystem, the matrix-vector modular

multiplication is also needed to recursively perform modular multiplications. As a

result, the modular multiplication plays a crucial part in this scheme.

2.2 The RSA Cryptosystem

The RSA cryptosystem was proposed by Rivest, Shamir and Adleman in 1978. The

encryption and decryption of RSA cryptosystem are both modular exponentiation.

The modular multiplications are recursively performed to �nish one modular expo-

nentiation. Usually the modulus in the RSA cryptosystems are 1,024 bits or even

higher so many modular multiplications are performed for one exponentiation. As a

result a fast modular multiplication is a crucial part for the real-time RSA encryption

and decryption.

Assume a private key S and public key (E,M) are generated from the key gen-

eration procedure. In the RSA cryptosystems, the public key is used for encryption

and private key are used for decryption. For instance, Alice has the private key and

public key. Bob can use Alice's public key (E,M) to encrypt a plaintext message P

to send to Alice using encryption procedure. To encrypt the message P , the plaintext

16

is needed to be partitioned into a sequence of blocks with each block to be an integer

between 0 and M − 1.

C = PE modM

After Alice receives the encrypted message C, she can use the private key S to

recover the message Bob original send.

P = CS modM

17

Chapter 3

Arithmetic

In this chapter, the modular arithmetic is present in Section 3.1. In Section 3.2, we

introduce di�erent large-number multiplications. In Section 3.3, we present the �nite

�eld FFT multiplication used in this dissertation. Then give the comparison results

between di�erent algorithms in Section 3.4.

3.1 Modular Multiplication

From last chapter, we can �nd the modular multiplication is a crucial part for both

FHE and RSA encryptio schemes. The modular multiplication consists of the inherent

multiplication and division operation, making it to be a very complicated arithmetic

operation. There are usually two main method for modular multiplication. One is to

perform the multiplication followed by modular reduction. Another approach is to

interleave the multiplication and modular reduction when using Montgomery multipli-

cation. For modular reduction, Montgomery reduction [34] and the Barrett reduction

algorithms [36] are among the most popular modular reduction algorithms. Now the

18

Algorithm 3.1 Barrett Reduce Algorithm

Procedure: r = tmodM
Precomputation: q = dlog2(M)e,µ =

⌊
22q

M

⌋
Process:
r = t− btµ/2qcM ;
while (r ≥M)
r = r −M ;

end while;
return r;
end procedure

brief overview of Barrett reduction and Montgomery arithmetic are introduced.

3.1.1 Barrett Reduction

Given two positive integers t and M , the Barrett modular reduction approach com-

putes r = t mod M . The algorithm as shown in Algorithm 3.1 requires precomputa-

tion of µ =
⌊
22q

M

⌋
(q = dlog2(M)e). If multiple reductions are to be computed with the

same modulo M , then this number can be reused for all reductions, which is exactly

the case we have.

Note that the last step of the reduction is a loop. However, in our FHE implemen-

tation, as t is normally the result of the multiplication between two integers which

are smaller than M . The loop can always �nish very fast.

3.1.2 Montgomery Arithmetic

The Montgomery method was proposed in 1985 to use Residue Number System (RNS)

representation of integers for modular multiplication [34]. It replaces the costly di-

vision needed for the modular reduction with shifting operations. But we need to

transform the operands into the RNS domain (or Montgomery domain) and trans-

19

form back to get the �nal result.

To transform a integer x into Montgomery domain, we need to choose two coprime

positive integers, the modulus N and the Radix R, 0 ≤ x < N < R. Usually the

Radix R is chosen to be a powers of two to reduce the computation complexity.The

Montgomery representation of x is de�ned by

x = x ·R modN.

The back transform is performed by dividing the Montgomery representation by

R as follows.

x = x ·R−1 modN

The Montgomery multiplication can be performed by

z = x · y ·R−1 modN.

There are usually two ways for Montgomery multiplication. One is to perform

modular reduction after the multiplication shown in Algorithm 3.2 [34]. The an-

other is to perform the modular reduction during multiplication, called interleaved

Montgomery multiplication. The interleaved Montgomery multiplication is widely

used for the small-size RSA design [28, 37] shown in Algorithm 3.3 [34]. The inter-

leaved Montgomery multiplication with the complexity O(N2) plays a domination

role in the hardware design for small-size RSA for instance 1,024-bit RSA or 2,048-

bit RSA. But it may not e�cient any more for the extremely large-number modular

multiplication in Gentry-Halevi's scheme, compared with the method chosen an e�-

20

Algorithm 3.2 Montgomery multiplication

Procedure: r = a · b ·R−1 modN
Precomputation: m = dlog2(N)e, R = 2m, N ′ = −N−1 modR,
Process:
T = ab;
F = (T modR)N ′ modR;
r = (T + FN)/R;
if r ≥ N then
r = r −N ;
return r;
end procedure

Algorithm 3.3 Interleaved Montgomery multiplication

Procedure: r = a · b ·R−1 modN
Precomputation: m = dlog2(N)e, R = 2m, N ′ = −N−1 modR,
Process:
r = 0;
for i in 0 to k − 1 loop
p = r + ai ∗ b;
if(pmod 2 = 0) then r = p/2;
else r = (p+N)/2 ; end if;
end loop
if r ≥ N then r = r −N ; end if;
return r;
end procedure

cient large-number multiplication algorithm. Now we are going to introduce di�erent

large-number multiplications and evaluate the performance of di�erent algorithms.

3.2 Large Integer Multiplication Algorithms

A review of the literature shows that there is a hierarchy of multiplication algo-

rithms. The simplest algorithm is the naive O(N2) algorithm (often called the grade

school algorithm).The �rst improvement to the grade school algorithm was due to

Karatsuba [38] in 1962. It is a recursive divide and conquer algorithm, solving an

21

N bit multiplication with three N
2
bit multiplications, giving rise to an asymptotic

complexity of O(N log23). Toom and Cook generalized Karatsuba's approach, using

polynomials to break each N bit number into three or more pieces. Once the sub-

problems have been solved, the Took-Cook method uses polynomial interpolation to

construct the desired result of the N bit multiplication. The asymptotic complexity of

Toom-Cook algorithm depends on k (the number of pieces) and is O(N log(2k−1)/log(k)).

The next set of algorithms in the hierarchy are based on using fast Fourier trans-

forms (FFTs) to compute convolutions. According to Knuth [39], Strassen came up

with the idea of using FFTs for multiplication in 1968, and worked with Schönhage to

generalize the approach, resulting in the famous Schönhage-Strassen algorithm [40],

with an asymptotic complexity of O(N · log N · log log N). The FFT multiplication

has the lowest computation complexity. Also it is based on FFT, which is very suit-

able for hardware implementation and GPU acceleration. Now we are going to give

a detailed description about the FFT multiplication.

3.3 FFT Multiplication

FFT multiplication is based on convolutions. For example, to compute the product

of A times B, we express the numbers A and B as sequences of digits (in some base

b) and then compute the convolution of the two sequences using FFTs. Once we have

the convolution of the digits, the product of A times B can be found by resolving the

carries between digits. The FFT multiplication algorithm is presented as a diagram

in Figure 3.1.

Brie�y, the Strassen FFT algorithm can be summarized as follows:

1. Given a base b, compute the Fast Fourier Transform of the digits (with respect

22

FF
T

FF
T

aa

a[0]

a[1]

.

.

.

.

.

.

a[n-2]

a[n-1]

bb

b[0]

b[1]

.

.

.

.

.

.

b[n-2]

b[n-1]

A[0]

A[1]

.

.

.

.

.

.

A[n-2]

A[n-1]

B[n-1]

B[n-2]

.

.

.

.

.

.

B[1]

B[0]

x

C[0]

C[1]

.

.

.

.

.

.

C[n-2]

C[n-1]

c[0]

c[1]

.

.

.

.

.

.

c[n-2]

c[n-1]

cc

Resolve Carries

ResultResult

FF
T

FF
T

IF
FT

IF
FT

Figure 3.1: FFT-based multiplication algorithm.

to the base) of A and B, treating each digit as an FFT sample.

2. Multiply the FFT results, component by component: set C [i] = FFT (A) [i] ∗

FFT (B) [i].

3. Compute the inverse fast Fourier transform: set C ′ = invFFT (C).

4. Resolve the carries: when C ′ [i] ≥ B :set C ′ [i+ 1] = C ′ [i+ 1] + (C ′ [i] div b),

and C ′ [i] = C ′ [i] mod b.

The FFT computations can done either in the domain of complex numbers or they

can be done in a �nite �eld or ring. In the complex number domain, it's trivial to

construct the roots of unity required for the FFT, but the computations must be

done with �oating point arithmetic and the round o� error analysis is quite involved.

In the �nite �eld/ring case, all the computations are done with integer arithmetic

23

and are exact. However, the existence and calculating the required root of unity will

depend on heavily the structure of the chosen �nite �eld/ring.

For our FFT multiplier we're going to implement the FFT in the �nite �eld Z/pZ

where p is the prime 264 − 232 + 1 [41]. This prime is from a special class of numbers

called Solinas primes (see [42]). As we shall see, this choice of p has three compelling

advantages for FFTs:

• We can do very large FFTs in Z/pZ. Since 232 divides p − 1, we can do any

power of two sized FFT up to 232.

• There exists a very fast procedure for computing x modulo p for any x.

• For small FFTs (up to size 64), the roots of unity are all powers of 2. This

means that small FFTs can be done entirely with shifting and addition, rather

than requiring expensive 64 bit multiplications.

3.3.1 FFTs in the Finite Field Z/pZ

To perform FFTs in a �nite �eld we need three operators: addition, subtraction and

multiplication, all modulo p, where p = 264 − 232 + 1. Addition and subtraction are

straight forward (if the result is larger than p then subtract p, if the result is negative,

then add p). For multiplication, if X and Y are in Z/pZ then X*Y will be a 128-bit

number, which we can represent as X ∗Y = 296a+ 264b+ 232c+ d (where a, b, c and d

are each 32 bit values). Next, using two identities of p, namely, 296 mod p = −1 and

264 mod p = 232 − 1, we can rewrite the product of X ∗ Y as:

X ∗ Y ≡ 296a+ 264b+ 232c+ d (mod p)

≡ −1(a) + (232 − 1)b+ (232)c+ d

24

≡ (232)(b+ c)− a− b+ d

This means that a 128-bit number can be reduced modulo p to just a few 32-bit

additions and subtractions.

Further, note that 2192 mod p = 1, 296 mod p = −1, 2384 mod p = 1, etc. This

leads to a fast method to reduce any sized value modulo p. Break the value up into

96-bit chunks and compute the alternating sum of the chunks. Then reduce the result

as above.

In addition to the arithmetic operator there are three other criteria in order to

perform multiplication with �nite �eld FFTs. First, to compute an FFT of size k, a

primitive root of unity rk must exist such that rk
∧k mod p = 1 and r∧k i mod p 6= 1

for all i between 1 and k − 1. Second, the value k−1 must exist in the �eld. Third,

we must ensure that the convolution does not over�ow, i.e., k
2
(b− 1)2 < p where k is

the FFT size and b is the base used in the sampling. Finally, we must ensure that

the numbers we are multiplying are less than bk/2.

In a �nite �eld, the process for doing an FFT is analogous to FFTs in the complex

domain, thus:

Xi =
k−1∑
j=0

xj(rk)
ij (mod p) (3.1)

And the inverse FFT is just:

xi = k−1
k−1∑
j=0

Xj(rk)
−ij (mod p) (3.2)

all of the usual methods for decomposing FFTs, such as Cooley-Tukey [43], except

(rk)
j takes the place of ej2πi/k.

25

operation Interleaved Montgomery Karatsuba FFT
dmultu 302,002,176 26,138,787 2,083,530
m�o/mfhi 603,992,064 52,277,574 4,167,060
daddu/dsubu 1,207,898,112 249,505,992 49,345,563
ddrl/dsll 0 0 14,112,477
and/or 0 0 4,639,830
sltu 603,942,912 155,445,660 25,947,906
movz/movn 0 0 25,947,906
load immediate 0 0 1,886,934
TOTAL 2718.0 M 483.4 M 128.1 M

Table 3.1: Operation counts for a 786,432 bit modular multiplication

With large FFTs, the primitive roots almost always looks like random 64-bit

numbers, for example, the r65536 that we use is 0xE9653C8DEFA860A9. However,

for FFTs of size 64 or less, the roots of unity will always be powers of 2. As we

noted above, 2192 mod p = 1 which means (23)64 mod p = 1 and therefore r64 = 23 =

0x08. Likewise, r16 = 212. This property can be used for the fast small-size FFT

computation.

3.4 Modular Arithmetic Comparison

All the operations in FHE are modular operations. Usually two di�erent approaches

are used to address the modular multiplication. The �rst is to do multiplication �rst,

followed by modular reduction. The other approach proposed in [34], interleaves the

multiplication with modular reduction. This is an e�cient grade school approach,

performing the equivalent of two O(N2) multiplications. The interleaved Montgomery

approach is quite commonly used for modular multiplication in the RSA algorithm,

see for example [28] and [44].

To understand the arithmetic cost of di�erent multiplication algorithms, we im-

26

plement three di�erent modular multiplication algorithms in carefully tuned MIPS64

assembly and count the number of ALU operations for each. For Gentry-Halevi's

scheme, the public key size is about 785,000 bit for the small setting with dimen-

sion 2,048. So the 768K-bit multiplications based on di�erent algorithms are imple-

mented. The �rst algorithm uses the interleaved version of Montgomery multiplica-

tion proposed in [34]. The second algorithm uses the non-interleaved three multi-

plication Montgomery reduction implemented with Karatsuba multiplication (it uses

the Karatsuba method if the arguments are larger than three words, and switches to

grade school multiplication to handle the base case when the arguments are small).

The third algorithm adopted in this work is based on FFT multiplication and is de-

scribed in detail in the next section. This algorithm also uses a traditional three

multiplication Montgomery reduction. The operation counts of the three algorithms

are presented in Table 3.1.

Comparing the Karatsuba and FFT multipliers, both of which compute the prod-

uct and then reduce the result modulo N, we can see that FFT multiplication is

faster, requiring only 1/3rd of the number of instructions as the Karatsuba multi-

plier. Comparing the FFT multiplier with interleaved Montgomery approach, widely

used in RSA for modular multiplication, we see that the FFT multiplier uses only

1/20th of the number of instructions. The interleaved version of Montgomery multi-

plication is popular and e�cient in RSA, but it is no longer e�cient for the modular

multiplication in FHE. In all, the approach we adopted for modular multiplication

is the most e�cient algorithm. So we choose the FFT multiplication based modular

multiplication for Gentry-Halevi's scheme.

27

Chapter 4

Acceleration of Gentry-Halevi's Fully

Homomorphic Encryption Using

GPU

In 2010, Gentry and Halevi presented the �rst FHE implementation on an IBM x3500

server. However, this implementation remains impractical due to the high latency of

encryption and recryption. The Gentry-Halevi FHE primitives utilize multi-million-

bit modular multiplications and additions which are time-consuming tasks for a gen-

eral purpose computer. In this work, the million-bit modular multiplication is com-

puted in two steps, which �rst do a large-number multiplication followed by a modular

reduction. For large number multiplication, Strassen's FFT based algorithm is em-

ployed and accelerated on a graphics processing unit through its massive parallelism.

Subsequently, Barrett modular reduction algorithm is applied to implement modular

reduction. As an experimental study, we implement the Gentry-Halevi primitives for

the small setting with a dimension of 2048 on NVIDIA C2050 GPU. The experimental

28

results show the speedup factors of 7.68, 7.4 and 6.59 for encryption, decryption and

recryption respectively, when compared with the existing CPU implementation.

The rest of the chapter is organized as follows. The brief introduction is present

in Section 4.1. In Section 4.2, we brie�y review the GPU implementation of FFT

multiplication and modular multiplications. Further optimizations are discussed in

Section 4.3. In Section 4.4, we present the performance evaluation and experimental

results.

4.1 Introduction

Gentry-Halevi's implementation is far too ine�cient for real-life employment as we

mentioned above. In this work, we take another step towards this direction. We

present a GPU realization of the FHE variant introduced by Gentry and Halevi [18].

Our implementation shows signi�cant improvement in speed over the existing CPU

implementation. Since GPU based cloud computing services are already available,

e.g. on Amazon's EC2 cluster GPU instances, our approach is well supported on ex-

isting computing platforms. The GPU approach is also applicable from the hardware

perspective. With continuous architectural improvements in recent years, GPUs have

evolved into a massively parallel, multithreaded, many-core processor system with

tremendous computational power. Owing to introduction of the CUDA program-

ming paradigm, a vast of computation problems outside of the graphics domain have

bene�ted from the superior performance of GPUs. Among the examples of the gen-

eral purpose GPU computing initiative are FFT [45], data processing [46] and many

other science and engineering applications [47].

An e�cient modular multiplication is crucial for the FHE implementation. Many

29

cryptographic software implementations employ the interleaved Montgomery mul-

tiplication algorithm, c.f. [48, 49]. Montgomery multiplication replaces costly trial

divisions with additional multiplications. Unfortunately, the interleaved versions

of the Montgomery multiplication algorithm generates long carry chains with lit-

tle instruction-level parallelism. For the same reason, it is hard to take advantage of

the parallelism feature of GPUs. In [50], for example, a Montgomery multiplication

implementation on NVIDIA Geforce 9800GX2 card was presented. The speedup fac-

tor of GPU decreased from 2.6 for 160-bit modular multiplication to 0.6 for 384-bit

modular multiplication, which showed a negative trend with growing operand sizes.

In addition, from the algorithm comparison results shown in the last chapter, we can

�nd the FFT multiplication based modular multiplication is much more e�cient than

the interleaved Montgomery multiplication. As a result, the FFT multiplication is

employed for our GPU acceleration.

4.2 Fast Multiplications on GPUs and Modular Re-

duction

The Strassen FFT Multiplication Algorithm: Large integer multiplication is by far

the most time consuming operation in the FHE scheme. Therefore, it becomes the

�rst target for optimization. As mentioned earlier, the key feature a GPU provides

is parallelism. Therefore, a good parallel algorithm will be well matched with GPU

hardware. In [40], Strassen described such a multiplication algorithm based on FFT,

which o�ers a good solution for e�ectively parallel computation of the large-number

multiplication.

Emmart and Weems' Approach: In [41], Emmart and Weems implemented the

30

Strassen FFT based multiplication algorithm on GPUs with computational optimiza-

tions. Speci�cally, they performed the FFT operation in �nite �eld Z/pZ with a

prime p to make the FFT exact. In fact, they chose the p = 0xFFFFFFFF00000001

from a special family of prime numbers which are called Solinas Primes [42]. Solinas

Primes support high e�ciency modulo computations and this p especially is ideal for

32-bit processors, which has also been incorporated into the latest GPUs. In addition,

an improved version of Bailey's FFT technique [51] is employed to compute the large

size FFT. Assembly language level optimization and better arrangement of shared

memory for GPU cores are also introduced.

The performance of the �nal implementation is very promising. For the operands

up to 16, 320K bits, it shows a speedup factor of up to 19 when comparison with

multiplication on the CPUs of the same technology generation. We follow their im-

plementation in [41] and test it on the NVIDIA Tesla C2050. As we can see from

Table 4.1, the actual speedup factors are slightly di�erent from [41]. Nevertheless, it

is a signi�cant speedup over CPU. Therefore, we employ this particular instance of

the Strassen FFT based multiplication algorithm in our FHE implementation.

After we have this e�cient large-number multiplication algorithm, the modular

reduction is the followed step that we need to focus on. Montgomery reduction [34]

and the Barrett reduction algorithms [36] are among the most popular modular re-

duction algorithms. For the same reason as stated above, the interleaved Montgomery

reduction algorithm cannot exploit the full power of the GPU. If we use large residue

so that no long carry chains there, the Montgomery reduction will have the similar

complexity as the Barrett reduction. However, the Barrett approach has a simpler

structure and thus is easier to apply further optimizations. Therefore, we choose the

Barrett method for modular reductions.

31

Table 4.1: Multiplication time CPU vs GPU
Size in K bits On CPU On GPU Speedup
1024 x 1024 8.1 ms 0.765 ms 10.6
2048 x 2048 18.8 ms 1.483 ms 12.7
4096 x 4096 42.0 ms 3.201 ms 13.1
8192 x 8192 97.0 ms 6.383 ms 15.2
16384 x 16384 221.5 ms 12.718 ms 17.4

4.3 GPU Implementation of FHE

The FHE algorithm consists of four functions: KeyGen, Encrypt, Decrypt and Recrypt.

The KeyGen is only called once during the setup phase. Since keys are generated once

and then preloaded to the GPU, the speed of KeyGen is not as important. Therefore

we focus our attention on the other three primitives.

For the Decrypt process, we perform the computation as in Section 2.2 of Chapter

2. Obviously, the most time consuming computation is a single operation of large

number modular multiplication. Directly applying the FFT based Strassen algorithm

and Barrett reduction will speed up the Decrypt operation signi�cantly. Given that

Decrypt is already su�ciently fast, we turn our attention to Encrypt and Recrypt.

4.3.1 Implementing Encrypt

For the Encrypt process, the most expensive operation is the evaluation of the degree-

(n− 1) polynomial u at the point r. In [18], a recursive approach for evaluat-

ing the 0-1 polynomial u of degree (n− 1) at root r modulo d. The polynomial

u (x) =
∑n−1
i=0 uir

i is split into a �bottom half� ubot (r) =
∑n/2−1
i=0 uir

i and a �top half�

utop (r) =
∑n/2−1
i=0 ui+d/2r

i. Then y = rn/2utop (r) + ubot (r) can be calculated. The

degree can be repeatedly cut in half and once the degree is small enough then the

�trivial implementation� can be used to compute all powers of r.

32

In our implementation, as the GPU does not support recursive calls, we use a

more direct approach for polynomial evaluations. Speci�cally, we apply the sliding

window technique to compute the polynomial. Suppose the window size is w and we

need t = n/w windows, we compute:

∑
(uir

i) =
t−1∑
j=0

[rw·j ·
w−1∑
i=0

(ui+wjr
i)]

= ((at−1r
w + at−2)r

w + at−3)r
w +

. . .+ a1)r
w + a0,

aj =
w−1∑
i=0

(ui+wj),

where additions and multiplications are evaluated with modulo d. After organizing

the computation as described above, we can introduce pre-computation to further

speed up the process. As r is a known constant for the encryption, the ri, i =

0, 1, . . . , w can be pre-computed. In addition, to reduce the overhead caused by the

relatively slow communication between the CPU and the GPU, these pre-computed

values can be pre-loaded into GPU memory before the Encrypt process starts. Clearly,

larger window size w leads to less multiplications, which yields better performance.

However, it also means higher storage requirement for more pre-computed values.

Hence, it is trade-o� between speed and memory use.

In our implementation, we have the dimension n = 2048 and |d| is approximately

128KB. We can estimate the performance and storage requirement for di�erent win-

dow sizes from that. The estimated value is listed in Table 4.2. We choose the case

of window size w = 64 for our implementation.

33

Table 4.2: Comparison between di�erent window sizes
Window Number of Size of
Size Multiplications Pre-computed values
16 127 2 MB
32 63 4 MB
64 31 8 MB
128 15 16 MB

4.3.2 Implementing Recrypt

The Recrypt process is more complicated. As mentioned in previous section, Recrypt

process can be divided into two steps: process S blocks separately and then sum them

up. For the process separate blocks, the the most time-consuming computation is in

the form of

cxiR
li =

∑
a

η(i)a
∑
b

η
(i)
b cxiR

l(a,b) .

where ηi is part of the public key. As we mentioned in previous sections, if we encode

the l in a proper way such that each iteration it only increases by one, the next factor

cxiR
l(a,b) can be easily computed by multiplying R with the result of the previous

iteration. Here we refer cxiR
l(a,b) for each iteration as a factor. In each iteration, we

compute factor = factor · R mod d and determine whether we should sum ηb or not.

Since in this process R is a small constant, the computation may even be performed

on the CPU without any noticeable loss of e�ciency in the overall scheme. Therefore,

the CPU is used to compute the new factor value while the GPU is busy computing

the additions from previous iteration. This approach allows us to run the CPU and

the GPU concurrently and therefore harness the the computational power in the

overall system.

The constants used in Recrypt are part of the public key. They can be �pre-

computed� to further speed up the process. Similar to the Encrypt, the public keys

34

can be pre-loaded into the GPU memory to eliminate the costly CPU-GPU commu-

nication step. Taking our implementation as an example, the public key size is about

70MB. It can perfectly �t into the 3GB GPU memory of the latest graphic cards. In

fact, 3GB is enough even for the large setting in FHE [18], whose public key size is

about 2.25GB.

Upon completion of processing all the �blocks�, we can sum these partial results.

In practice, retaining only 4 most signi�cant bits for each number is su�cient for

correctness, i.e. to make decryption work. Note that during the whole Recrypt pro-

cess, all of the operations are evaluated homomorphically. All the numbers which are

summed together are encrypted bit by bit. Therefore, we follow the design of binary

adders and substitute bit operations with corresponding Eval operations - modular

evaluation operations. The addition algorithm used here is called the grade-school ad-

dition. It takes about O(s2) multiplications to compute the sum of s numbers. Hence,

we need O(s2) modular multiplications to perform the grade-school addition homo-

morphically. Clearly the e�ciency of the Strassen-FFT and Barrett reduction based

modular multiplication algorithm directly translates into an e�cient homomorphic

addition computation.

4.4 Experimental Results

An a case study, the Encrypt, Decrypt and Recrypt of the Gentry-Halevi FHE scheme

are evaluated on a server with Intel Xeon X5650 processor running at 2.67GHz, 14

GB RAM and two NVIDIA Tesla C2050s, each of which has 448 cores, 3GB memory

running at 1150MHz. However, only one GPU is used in this implementation. Shoup's

NTL library [52] is used for high-level numeric operations and GNU's GMP library [53]

35

for the underlying integer arithmetic operations. A modi�ed version of the code

from [41] is used to perform the Strassen FFT multiplication on GPU.

For an experimental study, we employed the smallest setting with a lattice-dimension

of 2,048. In this setting, the determinant d has about 790,000 bits. In practical ap-

plications, the key generation can usually be processed o�ine and we do not need to

accelerate this part. Gentry-Halevi implementation code [18] is also executed on the

the same platform for comparisons. The main results of our experiments are summa-

rized in Table 4.3. We see that our GPU implementation is about 7.68, 7.4 and 6.59

faster for encryption, decryption and recryption, respectively, when compared to the

Gentry-Halevi implementation on the CPU [18].

Table 4.3: FHE on Di�erent Platforms
CPU GPU

Encrypt 1.69 sec 0.22 sec
Decrypt 18.5 msec 2.5 msec
Recrypt 27.68 sec 4.2 sec

If we look into the entire 4.2 seconds of the time it takes to compute Recrypt,

we discover that it takes about 3.56 seconds to process these �blocks� and about

0.68 seconds to perform the grade-school addition. Further dissection of the block

processing on GPU, about 2.66 seconds are dedicated for the multiplications and 0.24

seconds for the additions. At the same time, the CPU spends 0.9 seconds computing

factor. Clearly, the sum of the time is more than 3.56 seconds. This indicates the fact

that the CPU and the GPU are actually performing computing tasks concurrently.

36

4.5 Conclusions

In this chapter, we present the �rst GPU implementation of a fully homomorphic

encryption scheme. To optimally support the higher level primitives of the Gentry-

Halevi FHE, we develop e�cient techniques for large integer arithmetic operations.

At the lower level, we pair Emmart and Weems' implementation of Strassen's FFT

multiplication with Barrett reduction to realize a high-performance modular multi-

plication on a GPU. Using this basic operation along with pure Barrett reduction

and modular addition, we implement the FHE primitives. In addition, we tailor the

encryption and recrypt functions to make optimal use of GPU features as well as to

avoid obstacles, such as lack of support for recursive operations. We also develop a

pre-computation strategy to further enhance the e�ciency of the encryption primitive.

The performance results of the FHE primitives are obtained from the executions

on a server equipped with a NVIDIA Tesla C2050 GPU. Experimental results show the

speedup factors of 7.68, 7.4 and 6.59 for Encrypt, Decrypt and Recrypt, respectively,

when compared with the CPU reference implementation in [18]. Although further

advance are still heavily sought before FHE becomes deployable in real-world appli-

cations, this work shows that the performance of FHEs can be signi�cantly improved

by carefully choosing the target platform and by tailoring the algorithms.

37

Chapter 5

VLSI Design of a Large Number

Multiplier for Fully Homomorphic

Encryption

This chapter presents the design of a high-performance 768K-bit multiplier for fully

homomorphic encryption operations. The FFT multiplication algorithm is employed

for the design of the power and area e�cient, high-speed multiplier. The FFT pro-

cessor in the multiplier is based on a memory-based, in-place architecture to perform

64K-point �nite-�eld FFT operations using a radix-16 computing unit and 16 dual-

port SRAMs. The radix-16 calculations can be simpli�ed to require only additions

and shit operations by adopting a special prime as the base of the �nite �eld. A

two-stage carry-look-ahead scheme is employed to resolve carries and obtain the mul-

tiplication result. The proposed design has been synthesized using 90nm process

technology with an estimated die area of 45.3 mm2, which has 20.6M logic equiva-

lent gates (two-input NAND). At 200MHz, the large number multiplier o�ers roughly

38

twice the performance of a previous implementation on an NVIDIA C2050 GPU and

is 29 times faster than the Xeon X5650 CPU, while at the same time consuming a

modest 0.97W.

The rest of the chapter is organized as follows: Section 5.1 gives a brief intro-

duction to fully homomorphic encryption; Section 5.2 presents the e�cient 192-bit

domain operations for fast small-size FFT computation; Section 5.3 and 5.4 shows

the architecture of the VLSI design of the �nite-�eld FFT engine and the multiplier;

Section 5.6 gives results based on VLSI synthesis and simulation, followed by the

conclusions in Section 5.7.

5.1 Introduction and Related Work

The Gentry-Halevi scheme was the �rst software implementation of FHE but its

computing latency is prohibitive for practical applications due to its intensive use

of large-number (hundreds of thousands of bits) multiplications. In our previous

work, we took Gentry and Halevi's FHE algorithm and accelerated it on a GPU

platform [29] [30]. Targeted to an NVIDIA C2050 GPU with 448 cores running at

1.15 GHz, the processing time for 1-bit encryption was reduced to 45 msec and the

recyption was reduced to 1.8 seconds, which is about 37.6 and 15.4 times faster than

the original implementation on the CPU. Although the GPU trial provided signi�cant

acceleration, the major problem remains that the power consumption of a high-end

GPU today is about 200 to 400 watts. Using GPUs to scale FHE up to data center

levels is thus infeasible. The solution is to build low-power customized circuits that

can provide comparable or superior performance to the fastest GPU while reducing

power consumption by orders of magnitude.

39

Previously general-purpose GPU has also been used for acceleration of security

algorithms such as elliptic curve cryptography [54]. But the GPU architecture was

originally geared for graphics operations and later has been extended for general

purpose computations. It is not the most power e�cient architecture for a speci�c al-

gorithm or applications. One approach is to attach an Application Speci�c Integrated

Circuit (ASIC) to the CPU which is dedicated to encryption/decryption operations.

At microarchitectural level, it can be implemented as an extension of instruction

set. Previously customized ASIC or IP blocks has been designed to accelerate the

well-known encryption schemes such as Advanced Encryption Standard (AES) and

RSA [27] [28]. Today many embedded processors have AES or RSA cores included.

This work is aimed to take a similar approach and to design a speci�c hardware or

IP blocks for accelerating the core computations in FHE.

There are some works tackling the problem of hardware acceleration of fully ho-

momorphic encryption. In [55], an FPGA implementation draft for improving the

speed of FHE primitives was proposed. However, no implementation results were

presented. [56] presents a �rst custom hardware architecture supporting encryption,

decryption and recryption primitives for the lowest security setting with a dimen-

sion 2,048 for the Gentry-Halevi scheme. A number theoretical transform based fast

million-bit multiplier is the heart of all the primitives as claimed in [56].

Large integer multiplication is by far the most time consuming operation in the

FHE scheme. Therefore we have selected it as the �rst block for hardware acceleration.

Because multiplication is the dominating component of FHE operations, it will be

a signi�cant step toward practical application of FHE if a high performance, low-

power, area e�cient, high precision, integer multiplier architecture can be developed.

Therefore, our initial attempt is to tackle the design of a large-number multiplier that

40

can handle 768K bits, in support of the 2048 dimension FHE scheme demonstrated

by Gentry and Halevi. In addition to FHE, large number arithmetic also has other

important applications in science, engineering and mathematics. Speci�cally when

we need exact results or the results that exceed the range of �oating point standards,

we usually turn to multi-precision arithmetic [41]. An example application is in

robust geometric algorithms [57] [58] [59]. Replacing exact arithmetic with �xed-

precision arithmetic introduces numerical errors that lead to non-robust geometric

computations. High-precision arithmetic is a primary means of addressing the non-

robustness problem in such geometric algorithms [57].

For further reading, there are a number of papers that cover hardware implemen-

tation of large number multiplication. In [60] Yazaki and Abe implement a 1024-bit

Karatsuba multiplier and in [61] they investigate a hardware implementation of FFT

multiplication. In [62] Kalach investigates a hardware implementation of �nite �eld

FFT multiplication. However, this work presents does not present any information

about the hardware resources and performance.

For our hardware implementation, we will choose k = 65536 and b = 224. These

values meet the criteria above in Chapter 3 and allow us to multiply two numbers

up to bk/2 = 2786432, i.e., 786432 bit in length, which is su�cient to support Gentry-

Halevi's FHE scheme for the small setting with a lattice dimension of 2048.

5.2 E�cient 192-bit Wide Operations

It is often the case in our hardware FFT implementation that needs to perform a

sequence of modular operations (additions, subtractions, and multiplications by pow-

ers of 2). We are going to choose a special prime as we have stated in Chapter 3

41

for the �nite �eld FFT. As a result, a set of optimizations can be achieved by using

the special identities of the chosen prime, including high e�cient modular multiplica-

tions and small-size FFT computations. We have present the high e�cient modular

multiplication procedure. Now we are going to introduce the optimizations of the

small-size FFT computation for the hardware design.

If we were to implement this as 64-bit wide operations, we would need to reduce

the result modulo p between each stage of the pipe. Although the process to reduce a

value modulo p is quite fast it still requires a lot of hardware. It turns out that if we

extend each 64-bit value to 192-bits (by padding with zeros on the left) and run the

pipeline with 192-bit wide values, then we can avoid the modulo p operations after

each pipeline stage by taking advantage of the fact that 2192 mod p is 1. We do this

as follows:

Addition: Suppose we wish to compute x+ y. There are two cases, if we get a

carry out from the 192nd bit, then we have trunc(x + y) + 2192 which is the same as

trunc(x+ y) + 1 modulo p (where trunc(z) returns the least signi�cant 192 bits of z).

If it didn't carry out, then the result is just x+ y. We can implement this e�ciently

in hardware using circular shifting operations.

Multiplication by a power of 2: First let's consider multiplication by 2. Sup-

pose we have a 192 bit value x and we wish to compute 2x. There two cases. If the

most signi�cant bit of x is zero, then we simply shift all one bit to the left. If the top

bit is set, then we need to compute trunc(2x)+2192 which is the same as trunc(2x)+1

modulo p. In both case, it's just a left circular shift by 1 bit. Thus to compute 2j ∗x,

we simply do a left circular shift by j bits.

Subtraction: Since 296 mod p = −1, we can simply rewrite x− y as x+ 296y. The

42

296 is a constant shift.

For the �nal reduction from 192 bits back down to 64 bits, as above, we can represent

a 192 bit number z as z = 2160a+ 2128b+ 296c+ 264d+ 232e+ f where a, b, c, d, e and

f are each 32 bits:

z ≡ 2160a+ 2128b+ 296c+ 264d+ 232e+ f (5.1)

≡ −(232 − 1)a− 232b− c+ (232 − 1)d+ 232e+ f

≡ (232e+ f) + (232d+ a)− (232b+ c)− (232a+ d)

5.3 VLSI Design of the Large Number Multiplier

For high throughput applications, a pipelined FFT architecture is often used [63].

However, the pipelined design requires a memory bu�er at every stage [63], which

becomes problematic in the context of large-integer operations. For a 64K FFT and

64 bits per data sample, we would need 4 Mbits of memory after each stage. Generally

a large FFT involves numerous stages, which makes the total area for memory too

large to be considered for hardware implementation.

In contrast to the pipelined FFT design, a memory-based FFT architecture adopts

an in-place strategy, which allows us to store the intermediate results into the same

memory as the input data. Doing so e�ectively minimizes the memory requirement

for the FFT computation [64]. To improve throughput, multiple memory banks can

be used for parallel access. In our 64K FFT architecture, a total of 16 dual-port

memory banks are used and each memory bank is 256 Kbits in size. Fundamentally,

the 64K FFT is implemented using four stages of 16-point FFTs. The basic concept

of a stage is to perform 4096 16-point FFTs, followed by application of twiddle factors

43

and then transposition. If we repeat that process four times (164 = 64K), then the

result is a 64K FFT. Using an in-place memory-based design, these four stages are

computed sequentially using the same hardware unit and memory.

5.3.1 Radix-16 FFT Unit

One of the key elements of our design is a high throughput 16-point FFT engine. As

discussed in Section 3.3, for small (k ≤ 64) FFTs, the root of unity will always be a

power of 2.

In a �nite �eld based on the Solinas prime p, a 16-point FFT can be performed

using just shift and modulo addition operations. A 16-point FFT can be expressed

as as (5.2), noting 409616 mod p = 2192 mod p = 1. As discussed above, for 192-bit

operations, any carry-out bit can be simply routed back as a carry-in bit, which is

particularly suitable for hardware design.

X(k) =
15∑
n=0

x(n)212·nk%192 mod p (5.2)

x(n) =
1

16

15∑
k=0

X(k)2(192−12nk)%192 mod p (5.3)

For 192-bit addition, a traditional ripple-carry adder would generate a long carry

chain and slow the clock speed considerably. Thus we employ carry-save adders as the

basis for our high-speed design. Given three n-bit numbers a, b and c, the carry-save

approach produces a partial sum ps and a shift-carry sc, where psi = ai⊕ bi⊕ ci and

sci = BarrelLeftShifter((ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci), 1). We can cascade two 3-input

44

carry-save adders to form a 4-input adder. A diagram of the sum-16 unit is shown in

Fig. 5.1. The summation unit is a pipeline architecture that takes 16 inputs every

clock cycle. A normalization unit at the end performs a modulus p operation shown

in (7) and converts the 192-bit result back to 64-bits.

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

ps1

sc1

sc2

ps2

ps

sc

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

NormalizeNormalize

AddModAddMod

Figure 5.1: Diagram of sum-16 unit.

The architecture for a radix-16 �nite �eld FFT unit is shown in Fig. 5.2. It

consists of 16 shifters and 16 summation units. At each clock cycle, the radix-16

45

unit takes 16 data inputs and outputs the 16-point FFT results after a few cycles of

pipeline delay.

16x64 bits
shifter0 Sum Unit

shifter1 Sum Unit

shifter15 Sum Unit

.

.

.

.

.

.

.

.

.

X(0)

X(1)

.

.

.

X(16)

Figure 5.2: Architecture of the radix-16 FFT unit.

5.3.2 64K-Point FFT Processor

The 64K-point FFT can be decomposed into 4 stages of 16-point FFTs. At each

stage, a total of 64K samples are processed through the radix-16 FFT unit. At 16

samples per cycle, that gives a total of 4096 cycles per stage. This architecture reads

16 input values from memory and writes 16 output values to the memory every clock

cycle. Therefore, the memory needs to be partitioned into 16 banks. An in-place

memory addressing scheme is applied to ensure there is no memory access con�ict.

In reference to the derivation in [64] [65], a con�ict-free, in-place scheme for radix-16

FFT can be described as follows.

DataCount = [d15, d14, . . . , d0] (5.4)

46

BankNum = ([d15, d14, d13,d12] + [d11, d10, d9, d8]

[d7, d6, d5, d4] + [d3, d2, d1, d0]) mod 16 (5.5)

Address = [d15, d14, . . . , d4] (5.6)

DataCount denotes the original address of the input data sample. BankNum is

the corresponding bank assignment after partitioning. Address is the new address

in the assigned bank. For 64K samples, the memory is partitioned into 16 banks

and each bank has 4,096 samples. The data storage pattern in the memory banks is

shown in Fig. 5.3.

1

16

0

31

2

17

3

18

4

19

5

20

15

30

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

Figure 5.3: The data storage pattern in the memory banks.

The overall architecture of the FFT processor is shown in Fig. 5.4. Before entering

the processor, the data has been reshu�ed according to (11) and (12). The Address

Generation Unit generates the corresponding bank number and address for each data

sample. After all 64K samples have been received and stored in the memory banks,

47

a
16x64 bits 16 Memory

Banks

Address
Generation

Unit

Address
Generation

Unit

XX

XX

XX

Radix-16
Unit

In
te

rch
an

ge

In
te

rch
an

ge

.

.

.

.

.

.

Control
Signals

FFT Processor

1

d
o

u
tR

o
m

s
FF

T(
b

)

in
v

Figure 5.4: Architecture of the 64K-point FFT processor.

48

the FFT processor begins the computation. At each clock cycle, it reads 16 samples

from the memory banks according to the BankNo and Address generated by the

Address Generation Unit. These 16 values are then permuted into a proper order by

the Interchange Unit and fed to the Radix-16 Unit. Subsequently, the radix-16 FFT

results are modular multiplied with twiddle factors supplied from ROMs. The �nal

results of each stage are permuted to the desired order before being stored back into

the memory banks.

The modular multiplier is designed as shown in Fig. 5.5. The 64-bit multiplier

has 4 pipeline stages. The 128-bit multiplication result is then split into four 32-bit

components a, b, c and d. After going through the addition, shifting and subtraction

as in Fig. 5.5, a 64-bit modular multiplication result is obtained.

Pipelined
Multiplier

(64bit x 64bit)

Pipelined
Multiplier

(64bit x 64bit)

x y

d

[31:0]

c

[63:32]

b

[95:64]

a

[127:96]

++++

<<32<<32

--

RegRegRegReg

AddModAddMod

Figure 5.5: Architecture of modular multiplication unit.

49

5.4 Large-Number Multiplier

The high-level architecture of the large-number multiplier is shown in Fig. 5.6. It

consists of two FFT processors for computing the FFTs of the two inputs a and b.

Then a component-wise product is performed on the two FFT results. Subsequently,

we reuse one of the FFT processors to perform the IFFT operation. The operations

in each step are described as follows:

1. Data Input: The input data samples from a and b are reshu�ed and stored in

the corresponding addresses in the memory banks.

2. FFT: Two 64K-point FFT processors are used in the architecture. To reduce the

hardware needed, both FFT processors share the twiddle factor ROMs. They

also share the control signals generated by the Controller.

3. Component-Wise Product: For the point-wise product, we reuse the modular

multipliers in the FFT processor. Speci�cally at the 4th stage of FFT(a),

instead of multiplying by constant 1, the result of FFT(b) is fed to the modular

multipliers. E�ectively this computes the component-by-component point-wise

product of FFT(a) and FFT(b). We thus avoid adding another set of multipliers

into the design and thereby save chip area.

4. IFFT: One of the FFT processors is reused for the IFFT computation. This

reuse e�ectively saves about 1/3 of the chip area.

5. Resolve Carries: A customized Resolve Carries unit produces the �nal result of

large-number multiplication.

50

FFT ProcessorFFT Processora

ROMsROMs

ControllerControllerFFT ProcessorFFT Processor

Resolve CarriesResolve Carries

b

c

B

Multiplier

16x64 bits

16x64 bits

16x64 bits 16x24 bits

16x64 bits

Figure 5.6: Architecture of the large-number multiplier.

5.5 Resolve Carries

To further explain the process of resolving carries, we take the 768 Kbit Strassen's

multiplier as an example. But note that the design approach is general. We �rst

decompose each 768 Kbit multiplicand into 32K groups of 24-bit numbers. Each

24-bit number is then extended to a 64-bit data sample. Owing to the convolution

property of multiplication, the multiplication results are expected to be 64K groups

of 24-bit numbers, or up to 1,536 Kbits, which leads to the 64K FFT in the design.

Following Strassen's algorithm, the IFFT output is 64K samples of 64-bit data. The

Resolve Carries unit must then obtain the actual 1,536 Kbits results from the IFFT

output data.

Since each group of data is supposed to be 24-bits, each 64-bit value in the IFFT

output is actually overlapped by 40-bits with the next value. For our design, we extend

51

the 64-bit numbers into a 72-bit format having three blocks of 24-bit numbers. The

alignment among the words is illustrated as in Fig. 5.7.

Recall that the IFFT module outputs 16 data samples per clock cycle. A total of

64K data values are output in 4,096 consecutive cycles. Therefore, we must resolve

the carries quickly to match the pipeline throughput. A traditional ripple-carry adder

is again too slow to add 16 numbers in a row. Thus, a hierarchical carry-look-ahead

scheme is employed as in Fig. 5.7. The algorithm has two steps. It �rst adds the

words in parallel, followed by resolving the carry chain in one cycle [66]. The carry

look-ahead function is shown in (13),

carry = ((c << 1) + carryin+ critical)XOR critical (5.7)

where critical[i] and c[i] are two Boolean arrays and carryin is a single carry bit from

the previous word. If zi is critical (zi = MAX_INT), the ith bit of critical[i] is set,

while the ith bit of c[i] is set if zi always generates a carry (zi > MAX_INT). For a

24-bit word, MAX_INT =0xFFFFFF. For a best performance, we use a two-stage

pipeline design for the Resolve Carries unit as shown in Fig. 5.7. The carry-look-

ahead scheme and two stage pipeline enable the Resolve Carries unit to match the

throughput of the FFT/IFFT processor output data at a high clock speed.

5.6 Experimental Results

The design of the large-number multiplier was implemented using System Verilog.

The multiplier ASIC was synthesized for 90nm technology, using the Synopsys De-

sign Compiler, the DesignWare building block libraries, and IBM 90nm CMOS 9FLP

standard-cell library. Table 2 lists the synthesis results for the radix-16 unit, the 64K

52

R0,0R0,0

+

.
.
.

...

Stage 1

Carry0Carry0

Stage 2

R0,1R0,1

+

Stage 1

Carry1Carry1

Stage 2

R0,2R0,2

+

Stage 1

R2,0R2,0

Stage 2

R1,0R1,0R1,1R1,1

++

R1,2R1,2

+

Stage 1

R3,0R3,0

Stage 2

R2,1R2,1

+

R2,2R2,2

+

Stage 1

R4,0R4,0

Stage 2

R3,1R3,1

+

R13,2R13,2

+

Stage 1

R15,0R15,0

Stage 2

R14,1R14,1

+

+

Stage 1

R15,1R15,1

Stage 2

R14,2R14,2

R15,2R15,2

Stage 2

c0c0c1c1c2c2c3c3c4c4c15c15Carry0Carry0Carry1Carry1

The carries generated
for next group

The carries generated
from previous group

Figure 5.7: Two-stage pipeline carry resolving unit.

53

FFT processor, and the multiplier. The number of logic equivalent gates (two-input

NAND) of the chip is 20.6M gates. A large portion of the chip area is occupied by

the memories. For the large number multiplier, we have two FFT processors, each

of which has 16 dual port SRAM banks of size 4,096×64 bits. The estimated area

of each SRAM is about 1.07 mm2, so the total area for the SRAMs is about 34.24

mm2. In addition, the FFT/IFFT processors also require a set of 30 ROMs to store

the twiddle factors. Each ROM is 4,096×64 bits with an estimated chip area of 0.154

mm2. So the total area for the ROMs is about 4.63 mm2. If combined, the total

area for the RAMs and ROMs is about 38.87 mm2, which occupies 85.8% of the chip.

Thus, the architecture of the large-number multiplier is memory-constrained. In fact,

the optimized radix-16 units occupy just 5% of the entire multiplier area. The pro-

posed multiplier was also synthesized using Altera Quartus-II synthesize tool. After

place and route, the design is implemented on Altera's Stratix-V 5SGXMABN1F45I2

FPGA. The resources utilized by the multiplier are listed in Table 3.

Table 5.1: Synthesis results using 90-nm CMOS technology (IBM 90nm 9FLP process)
Radix-16 unit FFT processor Multiplier

Core Area 2.2 mm2 20.7 mm2 45.3 mm2

Dynamic Power 313.8 mW 562.2 mW 968.7 mW
Leakage Power 25.8 uW 202.68 uW 433.1 uW
Total Power 313.83 mW 562.4 mW 969.2 mW

Clock Frequency 200 MHz 200 MHz 200MHz
Core Voltage 1.32 V 1.32 V 1.32 V

We validated the simulation results for the hardware multiplier against a soft-

ware implementation using the GMP library [53]. Random numbers generated by C

code were used as test vectors. The results match perfectly, thus showing that the

architecture as well as the synthesized design of the large-number multiplier operate

correctly.

54

Table 5.2: Synthesis results on Altera's Stratix-V FPGA
Device Utilization Summary
Used Available Utilization

Combination ALUTs 243,402 718,400 34%
Dedicated logic registers 245,257 1,436,800 17%
Total block memory bits 8.912,896 54,067,200 16%

Total DSP blocks 288 352 82 %
Maximum Frequency 229.4 MHz

Table 5.3: Performance comparison among the proposed design, CPU and GPU
Computing Time Speedup factor

Intel Xeon X5650 processor 6 ms 1
NVIDA Tesla C2050 GPU 0.42 ms 14.5
The proposed Multiplier 0.206 ms 29

For performance evaluation, we compare the throughput of our multiplier with the

software implementations on CPU and GPU. The 768K-bit multiplication was eval-

uated on a high-end server with an Intel Xeon X5650 processor running at 2.67GHz

with 24 GB RAM using the GMP library, which supports arbitrary precision arith-

metic, and is carefully designed using fast algorithms and highly optimized assembly

code, as necessary [53]. The execution time on the CPU is about 6 ms. The same

Strassen's multiplication algorithm was also implemented on an NVIDA Tesla C2050

GPU, which has 448 cores running at 1.15 GHz as in [29]. It takes 0.0657 ms to trans-

fer a 786,432-bit number from Xeon processor to the GPU or transfer a 786,432-bit

number from the GPU back to the Xeon processor. When the data has been trans-

ferred to the GPU, we measure the run time of the GPU kernel, and then transfer

the results back to the GPU. The GPU kernel execution time is 0.42 ms, excluding

the data transfer time between CPU and GPU. For our hardware implementation, it

takes 4096 cycles to load the samples into SRAMs, eight stages of FFT/IFFT with

4,119 cycles per stage, and 4,098 cycles to read the multiplication results out of the

55

memory. At 200 MHz, the execution time of the VLSI implementation is 0.206 ms,

which is twice as fast as the GPU and 29 times faster than the CPU as listed in Table

4. More importantly, the proposed VLSI implementation uses approximately 0.97

watts, which is signi�cantly less power than either the GPU or CPU, making it more

suitable for scaling up.

For comparison, in [61], Yazaki and Abe implement a 32,768-bit FFT based multi-

plier in hardware, in an area of 9.05mm2 using a 0.18 µm process. They achieve a run

time 1.02 ms for a 32,768-bit multiplication. Our multiplier handles numbers 24 times

larger and at 5 times the speed. In [56], a million-bit multiplier for Gentry-Halevi

FHE scheme is designed with 26.7M gates. It can �nish one large-number multi-

plication for FHE scheme in 7.75 ms. Our design can calculate one large-number

multiplication in 0.206 ms with 20.6M gates, which can be 37.6 times faster than the

design in [56].

5.7 Conclusions

In this work, an e�cient VLSI implementation of a large-number multiplier is pre-

sented using Strassen's FFT-based multiplication algorithm. To the best of our knowl-

edge, this is the largest multiplier that has been implemented using VLSI design. Due

to memory constraints, a memory-based, in-place FFT architecture was used for the

FFT processor. A set of design optimization strategies were applied to improve the

performance and reduce the are of both the Radix-16 unit and the Resolve Carries

unit. The multiplier was synthesized for 90nm technology with an estimated core

area 45.3 mm2. Experimental results show that the proposed multiplier is about 2

times faster than GPU and 29 times faster than CPU, and its power consumption is

56

less than 1 watt.

57

Chapter 6

Accelerating Leveled Fully

Homomorphic Encryption Using

GPU

In this chapter, we try to use GPU to accelerate the large-number matrix-vector

multiplication, the most crucial part of the encryption algorithm in the leveled FHE

scheme. the Chinese Remainder Theorem is employed to reduce the computational

complexity of the large-number element-by-element modular multiplication. The �rst

step is called decomposition, in which each large-number element in the matrix and

vector is decomposed into many small words. The next step is vector operation that

performs the modular multiplications and additions of the decomposed small words.

Finally the matrix-vector multiplication results can be obtained through reconstruc-

tion. We compare the CRT-based method with Number Theory Library, showing the

proposed method is about 7.8 times faster when executing on CPU. In addition, it

is observed that vector operation takes up to 99.6% of the total computation time

58

and the reconstruction only takes 0.4%. Therefore GPU acceleration is employed to

speed up the vector operations. In the GPU implementation, the GPU computation

and data transfer process between GPU and CPU are overlapped. Experiment results

show that the GPU implementation of the CRT-based method is 35.2 times faster

than the same method implemented on CPU and is 273.6 times faster than the NTL

library on CPU.

The rest of the chapter is organized as follows.The brief introduction is present in

6.1. The CRT-based method and CPU implementation is described in Section 6.2.

In Section 6.3, we present the method for GPU implementation. Section 6.4 gives the

evaluation and experimental results.

6.1 Introduction

FHE is hard to have a practical application in real life due to its serious e�ciency

impediments. Several di�erent FHE schemes has been proposed to make FHE more

e�cient [19, 21, 23, 32]. Recently, a more e�cient FHE scheme called leveled fully

homomorphic encryption without bootstrapping is reported in [23]. It has a per-

gate evaluation time of Ω(λ) (λ is a security parameter), which is more e�cient than

the Gentry-Halevi implementation with a per-gate evaluation time of Ω(λ4). In this

chapter, we want to follow our previous step and try to use GPU to accelerate the

leveled FHE scheme.

A recent work in [67] implemented the Advanced Encryption Standard homomor-

phically using this leveled FHE scheme, which took about 36 hours on a PC to evaluate

a single AES encryption operation. It is too slow for any practical applications. In

this implementation [67], for the smallest case (the depth L = 10) the dimension for

59

the public key matrix is 9326, with the modulus q an odd number ranging from 512 to

2,048 bits. As discussed above, the crucial part in encryption is a matrix-vector mul-

tiplication and decryption is actually a vector-vector multiplication. In this work, we

focus on accelerating the matrix-vector multiplication which is considered the most

computation intensive part in the leveled FHE encryption scheme.

6.2 Software Implementation on CPU

6.2.1 CRT Representation and Barrett Reduction

As mentioned in [67], the modulus is an odd number from 512 to 2,048 bits. For the

matrix-vector multiplication, the computations are essentially large-number multipli-

cations with each multiplicand in the size of 512 to 2,048 bits. This is similar to the

modular multiplication in RSA. In this research, we choose a medium size modulus

of 1,024 bits for evaluation. The CRT method has been used widely in reducing the

computational complexity for RSA encryption [68]. Hereby, we propose to apply the

CRT method to the element-by-element modular multiplication and addition for the

matrix-vector multiplication. We can choose a special odd number for M . When

CRT is applied, it can be broken into 32 coprime pairwise modulies with each 32 bits.

Initially, the 1,024-bit number is decomposed into 32 integers each with 32 bits

during CRT decompose process. In the vector operation process, a modular reduction

is required after each 32-bit by 32-bit multiplication. Thus an e�cient modular

multiplication is crucial for software implementation. Montgomery reduction [34]

and the Barrett reduction algorithms [36] are the most popular modular reduction

algorithms. Compared with Barrett reduction, Montgomery reduction needs extra

computational steps to convert integers into Montgomery domain and later convert

60

Algorithm 6.1 Dot Product Using Chinese Remainder Theorem

Procedure: a× bmodM = a0b0 + a1b1 + ...+ aN−1bN−1.

Decompose: Let the numbers m0, ...,mk−1 be positive integers which are pairwise co-
prime with product M =

∏k−1
i=0 mi. Thus the large numbers a0,...,aN−1and b0,...,bN−1

can be decomposed as follows. The decompose process can be precomputed.

a0,0 = a0 mod m0 , a0,1 = a0 mod m1 ,..., a0,k−1 = a0 mod mk−1
a1,0 = a1 mod m0 , a1,1 = a1 mod m1 ,..., a1,k−1 = a1 mod mk−1

...
...

...
aN−1,0 = aN−1 mod m0 , aN−1,1 = aN−1 mod m1 ,..., aN−1,k−1 = aN−1 mod mk−1

b0,0 = b0 mod m0 , b0,1 = b0 mod m1 ,..., b0,k−1 = b0 mod mk−1
b1,0 = b1 mod m0 , b1,1 = b1 mod m1 ,..., b1,k−1 = b1 mod mk−1

...
...

...
bN−1,0 = bN−1 mod m0 , bN−1,1 = bN−1 mod m1 ,..., bN−1,k−1 = bN−1 mod mk−1

Vector Operations:
t0 = (a0,0b0,0 + a1,0b1,0 + ...+ aN−1,0bN−1,0) mod m0 ,
t1 = (a0,1b0,1 + a1,1b1,1 + ...+ aN−1,1bN−1,1) mod m1 ,

...
tk−1 = (a0,k−1b0,k−1 + a1,k−1b1,k−1 + ...+ aN−1,k−1bN−1,k−1) mod mk−1 ,

Reconstruction: The dot product result can be reconstructed as follows.
a× b mod M =

∑k−1
i=0 tiviMi,

where Mi = M/mi, and vi = M−1
i modmi.

61

back from Montgomery domain. So Barrett method is employed for the modular

reductions in this evaluation.

6.2.2 Software Implementation

he matrix-vector multiplication involves a set of N dot-product operations if the

matrix has N columns. The decompose process using CRT can be precomputed so we

exclude the execution time of the decompose process in the evaluation. We implement

the matrix-vector multiplication using the CRT method using C/C++. We validate

the results for our CRT implementation by comparing to the function of the large-

number matrix-vector multiplication in NTL library [52]. Random numbers generated

by C code are used as test vectors. From Table 6.1, it shows that the CRT method is

about 7.8 faster than the function in the NTL library when both executing on a PC.

Also the vector operations take about 99.6% of the total computing time in the CRT

method, which is the most computation-intensive part. As a result, we propose to

use GPU to accelerate the vector operations, while leaving the reconstruction process

and other remaining operations in the CPU.

Table 6.1: Performance comparison among NTL and the CRT method

Vector Operations Reconstruction Total

NTL library 555.4 sec 0 555.4 sec

CRT method 71.2 sec 0.343 sec 71.5 sec

Speedup �- �- 7.8

62

6.3 GPU Implementation

Two kernel functions are developed to implement the steps of vector operations as in

Algorithm 6.1. The �rst kernel function is kernel_BarretMulMod(), which computes

r = xy mod M (x < M, y < M) described in Algorithm 3.1. To save memory space,

the resulted matrix overwrites the input matrix since their dimensions are exactly the

same. The other kernel function is kernel_addmodcal() used for modular additions.

Both kernel functions use two-dimensional block and thread indexing, as explicitly

parallel processing in the GPU.

The size of input matrix can be too large to �t into the GPU memory. For

example, if the matrix has 9326 × 9326 elements, and each element is converted

to 32 integer numbers each with 32-bits, then the memory size is 10.4 GB for this

matrix only. To solve this problem, we divide the input data into several sections and

keep them independent during computation. The GPU kernel function process one

section of the data each time and the data of next section is transferred from host

memory to GPU memory simultaneously. Thus the computation and data transfer

are completely overlapped, thus the data transferring time is hidden. Based on our

experiment for this particular case, this method can achieve a speedup of 1.96 in

performance compared to non-overlapped GPU version shown in Table 6.2. Fig 6.1

illustrates the process of the overlapped implementation. We allocate CUDA page-

locked (pinned) memory for the input data to enable asynchronous data transfers.

Two CUDA streams are created: one for computing and the other for data transfer.

CPU and GPU synchronization is performed at the end of each section to ensure

all computation and data transfer are completed. The pointer of the used data is

exchanged with that of the newly imported data, making the two memory blocks

63

Kernel Computation & Output
Transferring

Kernel Computation & Output
Transferring

Input data TransferringInput data Transferring

Kernel Computation & Output
Transferring

Kernel Computation & Output
Transferring

Input data TransferringInput data Transferring

......

SynchronizationSynchronization

Figure 6.1: Overlapping computation and data transfer

ready for the next section.

Table 6.2: Performance comparison among overlapped GPU and non-overlapped GPU

Vector Operations

None-overlapped GPU version 3.32 sec

Overlapped GPU version 1.69 sec

Speedup 1.96

6.4 Experimental Results

As a case study, the CRT-based matrix-vector multiplication are evaluated on a desk-

top computer with Intel i5 3570K processor running at 3.4 GHz, 32 GB DDR3 RAM

and one NVIDIA Tesla K20, which has 2,496 cores, 5GB DDR5 memory. Shoup's

NTL library [52] is used for performance comparison and result validation.

Here we employ the smallest setting in [67] with a matrix dimension of 9,326 and

the size of modulus M has 1,024 bits. In the CRT-based method, each 1,024 element

is �rst decomposed into 32-bit small words. As mentioned in Section 3, our CRT-

based matrix-vector multiplication is about 7.8 faster than the NTL library function

on the CPU. Since the vector operation process takes 99.6% of the total calculation

time, we use GPU to accelerate this vector operation process. When implemented

64

on GPU, the vector operation process takes about 1.69 seconds which is 42.1 times

faster than its implementation on CPU as shown in Table 6.3. We compare the NTL-

based calculation time on CPU, the CRT-based method on CPU, and the CRT-based

method with GPU acceleration. The results are listed in Table 6.4 and Fig. 6.2.

Table 6.3: Performance comparison of vector operation process among

Vector Operations Total Cal. Time

CPU 71.2 sec (CPU) 71.5 sec

CPU plus GPU 1.69 sec (GPU) 2.03 sec

Speedup 42.1 35.2

Table 6.4: Performance comparison among NTL, CRT on CPU and CRT with GPU

Calculation Time Speedup

NTL on CPU 555.4 sec 1

the CRT-based method on CPU 71.5 sec 7.8

the CRT-based method with GPU 2.03 sec 273.6

0

100

200

300

400

500

600

NTL The CRT-based CPU
Method

The CRT-based CPU
plus GPU Method

time (sec)

time (sec)

Figure 6.2: Execution time comparison

In the smallest case with the dimension of matrix 9,326 and the modulus 1,024

bits, it requires about 10.4 GB memory to store a matrix. From Table 6.5, we can

see that larger memory space is needed as the matrix dimension grows. Given the

65

limitation of 32 GB RAM in the computer we use, only the small case is evaluated

as an initial study.

Table 6.5: Memory Space in Di�erent Settings

Matrix Dimension Memory Space for one Matrix

9326 10.4 GB

19434 45.0 GB

29749 105.5 GB

40199 192.6 GB

50748 307.0 GB

61376 898.1 GB

6.5 Conclusion

In this work, the CRT method is used to implement the large-number matrix-vector

multiplication. Compared to the NTL library function, the CRT-based method gains

about 7.8 speedup when both executing on CPU. In order to further accelerate the

matrix-vector multiplication, we use GPU to accelerate the vector operation process,

which accounts for 99.6% of the total computation. In the GPU implementation, we

manage to overlap the calculation process and data transfer process to improve the

computation e�ciency. Experimental results show the proposed CRT-based method

with GPU implementation gains about 273.6 times speedup when compared with

the NTL library function and 35.2 times speedup when compared with the same

CRT-based method on CPU.

66

Chapter 7

Explore the Feasibility of FFT

Multiplication for RSA Cryposystem

This chapter presents a novel and fast modular multiplication and exponentiation

architecture for large key-size RSA cryptosystem. The Strassen multiplication and

Montgomery reduction are combined for the large-number modular multiplication,

which is di�erent from the traditionally used interleaved version of Montgomery mul-

tiplication method in RSA hardware design. The proposed design can support 8,192-

bit or 12,288-bit modular multiplication by selecting di�erent bases of 16 or 24 bits. A

new RSA modular exponentiation algorithm using FFT multiplication are proposed

to reduce one third calculation time of the large-number multiplication in modular

multiplication. The design was implemented on the Altera's Stratix-V FPGA and

90-nm application-speci�ed integrated circuit technologies. It performs one 8K-bit

modular multiplication in 6.34 µs and one modular exponentiation in 0.104 s when

operating at 320 MHz.

The rest of the chapter is organized as follows: Section 7.1 gives a brief introduc-

67

tion of RSA design; Section 7.3 shows the VLSI architecture of the modular multipli-

cation; Section 7.6 gives the experimental results of FPGA implementation followed

by the conclusions in Section 7.7.

7.1 Introduction

The RSA [6] system is one of the most widely used public key cryptography systems.

As mentioned above, the RSA operation is a modular exponentiation and its security

level relies on that there are no e�ective procedures or algorithms that can factorize

large integers within a short time period using current computer technology. Now

the size of modulus is at least 1,024 bits to provide a good level of security. As the

Moore law continues driving the computer technology, the key size of 1,024 bits can

be broken. It becomes necessary to upgrade the key size to 2048, 4096 or even 8192

bits to provide a higher level security. It is hard to achieve a good throughput rate

without the use of hardware acceleration because of computing complexity.

RSA cryptosystem recursively performs modular multiplications to �nish one mod-

ular exponentiation. As a result, the performance of a RSA system relies on the

throughput rate of the modular multiplication. There are two methods for mod-

ular multiplication. One is the the interleaved Montgomery's multiplication algo-

rithm [34], and the other is to do multiplication �rstly, followed by modular re-

duction. Traditionally, the interleaved Montgomery's multiplication algorithm with

the complexity O(N2) is used to speed up the modular multiplication calculation.

For the small size RSA, the interleaved Montgomery modular multiplication algo-

rithm is a good choice that can achieve high performance at a low cost of hard-

ware [28, 37, 69, 70]. The FFT based Strassen algorithm proposed in [40], with the

68

complexity of O(N · logN · loglogN), is a high e�cient large-number multiplication

algorithm. The complexity of modular multiplication will be O(N · logN · loglogN) if

the FFT multiplication is used for the three large-number multiplications in modular

multiplication, providing a promising option for RSA implementation with the key

size growing. In this research, we employ a novel approach for modular multiplica-

tion by combining the Strassen algorithm and Montgomery reduction [34]. Several

strategies are adopted to optimize the multiplication algorithm and support e�cient

hardware design. The proposed design can support 8K and 12K RSA and outperform

the other designs even if the interleaved Montgomery algorithm is more e�cient than

the FFT based algorithm at these two key sizes.

7.2 Montgomery Modular Multiplication

In this chapter, we use the same FFT multiplication for the large-number multipli-

cation in RSA design. In this implementation, we choose the base b to be 16 or

24, so every sample has 16 or 24 bits. For a total of 512 samples, we can perform

8192-bit or 12,288-bit multiplication. As we know above, the multiplication of two

numbers is similar to the cyclic convolution result of two signals each with 512 sam-

ples. Typically, cyclic convolution involves �zero padding� and the result contains

approximately twice many samples as that of the input signal. Thus, a high-speed

1024-point �nite-�eld FFT processor is proposed in this design.

The most popular algorithms for modular reduction are the Montgomery reduction

[34] and the Barrett reduction algorithms [36]. For the reason as stated in previous

section, the interleaved Montgomery algorithm generates a long carry chain. If we use

large residue without long carry chains, the Montgomery reduction has the similar

69

Algorithm 7.1 Montgomery Multiplication Using FFT Multiplication

Procedure Montgomery(X,Y , M): c = XY R−1(modM)

Precomputation: n =
⌈
logM2

⌉
, R = 2n,M ′ = −M−1(mod R)

1. T ← IFFT (FFT (X) � FFT (Y));
2. t ← T modR;
3. U ← IFFT (FFT (t) � FFT (M ′));
4. u ← U modR;
5. W ← IFFT (FFT (u) � FFT (M));
6. C ← T +W ;
7. c ← C/R;
8. If c ≥M then c← c−M , end if
end procedure.

complexity as the Barrett reduction. Since it is hard to design the control logic for

Barrett algorithm, we choose the Montgomery method in the hardware design.

We employ the Strassen algorithm for the calculation of the three large-number

multiplications in the Montgomery multiplication as shown in Algorithm 7.1. Multi-

plying two numbers is equivalent to the component-wise product of the FFT results

of two signals in the FFT domain. Thus, we can precompute the FFTs of M and M ′

to reduce the computational complexity.

7.3 VLSI Design of the Modular Multiplication

As described in Section 3.3, the �nite-�eld FFT/IFFT is a key component for the

FFT-based Strassen's multiplication algorithm. The memory-based in-place FFT

architecture allows to store the intermediate results into the same memory where the

input data are read from. As a result, it minimizes the memory usage while still

produces high throughput [64]. In this work, we use the memory-based in-place FFT

architecture and radix-32 butter�y computation. As a result, the 1024-point FFT is

implemented using two stages of 32-point FFT. Using in-place memory-based design,

70

these two stages are computed sequentially using the same hardware unit and memory

space. The radix-16 butter�y unit can be recursively used four times to complete one

radix-32 FFT computation. Therefore, we employ only one radix-16 butter�y unit

instead of the much larger radix-32 unit to further reduce hardware cost.

7.3.1 Radix-16 FFT Unit

With the chosen prime p, 64 is a 32th root, 4096 is a 16th root, 40962 is a 8th root and

so on. This means that 32-point, 16-point and 8-point FFTs can be done with shift

operations rather than costly multiplications. The 16-point FFT can be simpli�ed

as (7.1), since 409616 mod p = 2192 mod p = 1. For 192-bit operations, any carry-

out bit can be simply routed back as a carry-in bit. This special property is useful

for hardware design. The multiplications in 16-point FFT can be accomplished by

circular shifting operations. Instead of performing modular operations after each

addition, we add all 16 numbers �rst and perform the modular reduction only once

to obtain the �nal result. Since 2192 mod p = 1, only 192 bits needs to be kept during

the additions.

X(k) =
15∑
n=0

x(n)212·nk%192 mod p (7.1)

x(n) =
1

16

15∑
k=0

X(k)2(192−12nk)%192 mod p (7.2)

For 192-bit addition, traditional carry-ripple adder would generate a long carry

chain and slow down the clock speed considerably. So we choose carry-save adders

71

that support high-speed design. The diagram of a processing element (PE) in radix-

16 unit is shown in Fig. 7.1. At every cycle, 16 samples are read into the PE, shifted

by the shifter and accumulated by the carry-save adders. At the end, a reduction unit

performs modulus p operation and converts the 192-bit result back to 64-bit. Again,

the special identities mentioned above are employed to simplify the calculation as

shown in (3), where a, b, c, d, e and f are 32-bit components of the 192-bit result.

The radix-16 unit has 16 processing elements. At each clock cycle, the radix-16

unit takes 16 data inputs and outputs the 16-point FFT results after a few cycles of

pipeline delay.

z = 2160a+ 2128b+ 296c+ 264d+ 232e+ f (7.3)

= (232e+ f) + (232d+ a)− (232b+ c)− (232a+ d)

7.3.2 Resolve the Carries

We take the 8192-bit Strassen's multiplier as an example to explain the process of

resolving carries. Each 8192-bit multiplicand is �rst decomposed into 512 groups of

16-bit numbers. Then each 16-bit number is then extended to a 64-bit data sample.

The multiplication results are expected to be 1024 groups of 16-bit numbers, or up

to 16,384 bits. Following the Strassen's algorithm with 1024-point FFT, the IFFT

output are 1024 samples of 64-bit data. The resolve carries unit is to obtain the

actual 16,384-bit results from the IFFT output data.

Since each data is supposed to be 16-bit, each 64-bit data from IFFT output are

actually overlapped 48-bit with the next one. For a structural design, we decompose

72

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder

Carry-Save
Adder ReductionReduction AddModAddMod

ShifterShifter
X(i)

x(0)
x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(9)

x(8)

x(11)

x(10)

x(13)

x(12)

x(15)

x(14)

Figure 7.1: Diagram of One Processing Element.

the 64-bit number into four blocks of 16-bit words. The alignment among the words

are illustrated as in Fig. 7.2.

Recall that the IFFT module outputs 32 data samples per clock cycle in operation.

A total of 1024 data are output in 32 consecutive cycles. Therefore, we have to resolve

the carriers in time to match the pipeline throughput. Apparently the traditional

carry-ripple adder is too slow to add the numbers in a column. A hierarchical carry-

look-ahead scheme for large-number addition as proposed in [66] is applied here to

add the the numbers in parallel. For a high-speed design, we use a four-stage pipeline

design for the resolving carries unit. Overall by using the carry-look-ahead scheme and

four stage pipeline, the resolve carries unit can meet the throughput of the FFT/IFFT

processor at high clock speed.

If we want to do a 12,288-bit multiplication, each multiplicand is �rst decomposed

into 512 words each with 24 bits. Similarly, each 24-bit number is extended to a 64-

73

bit data sample. After processed by FFT and IFFT, the 64-bits data samples are

extended into 72-bit format as three blocks of 24-bit numbers. Then we use the

similar parallel and hierarchical carry-look-ahead scheme to add the numbers in each

column.

.

.

.

...

R0,0R0,0

c0c0c1c1c2c2c3c3c4c4c31c31Carry0Carry0Carry1Carry1

The carries generated for next group

R0,1R0,1R0,2R0,2R0,3R0,3

R1,0R1,0R1,1R1,1R1,2R1,2R1,3R1,3

R2,0R2,0R2,1R2,1R2,2R2,2R2,3R2,3

R3,0R3,0R3,1R3,1R3,2R3,2R3,3R3,3

R31,0R31,0R31,1R31,1R31,2R31,2R31,3R31,3

R30,1R30,1R30,2R30,2R30,3R30,3

R29,0R29,0R29,1R29,1

R28,3R28,3

.

.

.

.

.

.

.

.

.

Carry0Carry0

+++

+++

+++

+ + + +

+

+

+

+

++

Carry1Carry1

+ +
Carry2Carry2

+

Carry3Carry3

+

Carry2Carry2Carry3Carry3

The carries generated

from previous group

Figure 7.2: Two-stage pipeline carry resolving unit.

74

7.4 The Architecture for Modular Multiplication

Memory-based in-place scheme is used for the FFT design. The 1024-point FFT

can be decomposed into 2 stages of 32-point FFT. At each stage, a total of 1024

samples are processed through a radix-32 butter�y unit. The radix-16 unit can be

recursively used four times to complete one radix-32 butter�y computation. A group

of 32 input samples are read from memory, permutated into a proper order by the

Interchange Unit, fed to the radix-16 unit to process four times for one radix-32

butter�y computation, modular multiplied by the twiddle factors stored in ROMs,

permutated again by the Interchange Unit, and written back to the memory. The

memory needs to be partitioned into 32 banks with 32 words in each bank. An in-

place memory addressing scheme can be derived to ensure there is no memory access

con�ict in reference to [64] [65]. The data needs to be read from and written to the

memory concurrently, so dual-port SRAMs shown in Fig. 7.3 are used to store two

multiplicands X and Y .

One radix-16 unit are used both for FFT and IFFT to multiply, for instance, X

by Y . In the �rst stage of FFT or IFFT, the 8 units of 64-bit ModMuls are used to

multiply the processed samples with twiddle factors. In the second stage of FFT, the

same 8 units of 64-bits ModMuls can be reused to multiply FFT (X) and FFT (Y) for

component-wise product to calculate the product of X and Y , or multiply FFT (X)

and FFT (X) to obtain X2. After the IFFT, a group of 32 data are fed into the

resolve carries unit.

The FFT forms of M ′ and M are precomputed and stored in the single-port

SRAMs to reduce the computation complexity. The large-number addition unit shown

in Fig. 7.3 uses the same hierarchical carry-look-ahead scheme as in resolve carries

75

32 DP-SRAMs

(X, t, u, W,C,

C-M, c) Radix-16

Unit

In
te

r
c
h

a
n

g
e32 DP-SRAMs

(Y)

32 SRAMs

(M’_FFT)

32 SRAMs

(M_FFT)

32 SRAMs

(T,c)

8 64-bit

MulMods

In
te

r
c
h

a
n

g
e

In
te

r
c
h

a
n

g
e

32 SRAMs

(M)

Large-Number

Addition

ROMs

inv
Address

Generation Unit

ResolveCarries

Figure 7.3: The Architecture for Modular Multiplication

unit. The large number addition performs the operation of Step 6 in Algorithm 7.1.

The comparison in Step8 is actually a large-number subtraction. The 2's complement

of M is precomputed and stored in the SRAMs so the large-number addition unit in

Fig. 7.3 is reused for the subtraction.

76

Algorithm 7.2 Modular Exponentiation Using FFT Multiplication

Procedure Exponentiation(P ,E,C, M): C = PE(modM)
Inputs: P = plain text; E = exponent = [ek−1ek−2...e0], ei ∈ [0, 1];M = module of m
bits.
Precomputation: n =

⌈
logM2

⌉
, R = 2n,R′ = R−1mod M ,P ′ = P × R mod M, cur =

1×R mod M
1. for i in k − 1 to 0 do
2. cur ← IFFT (FFT (cur) � FFT (cur)) modM ;
3. if ei = 1 then
4. cur ← IFFT (FFT (cur) � FFT (P ′)) modM ;
5. end for;
Postcomputation: C ← cur ×R′modM ;
end procedure.

7.5 Modular Exponentiation Using Strassen Multi-

plication

We use the algorithm shown in Algorithm 7.2, similar to the MSB-�rst algorithm in

[71], for modular exponentiation. In this algorithm, P is a k-bit message with a value

less than the modulusM and denote E as am-bit exponent or key. The multiplication

is similar to one cyclic convolution, which is a component-wise production in the FFT

domain. By taking this advantage, the square operation in Step 2 of Algorithm 7.2

can be achieved by performing a component-wise production of the two same FFT

results. In this way, we only need one FFT operation and one IFFT operation instead

of two FFT operations and one IFFT operation for the multiplication in Step 2. The

FFT results of P ′ only need to be calculated once and stored in SRAMs so the

multiplication in Step 4 only needs one FFT operation and IFFT operation similar

to Step 2. In all, by taking advantage of the FFT multiplication, we can manage to

reduce one third of the calculation time for one large-number multiplication in Step

2 and 4. In the hardware implementation, the m-bit exponent is stored in registers

77

and can be fed into a state machine, leaving the state machine to take care of the

modular exponentiation algorithm.

7.6 Hardware Implementation and Performance Com-

parisons

The design of the large-number multiplier was implemented using System Verilog.

In order to compare with [37],which is the �rst design target for 8,192 RSA to the

best of our knowledge, the design is synthesized using Altera Quartus-II synthe-

size tool. After place and route, the design is implemented on Altera's Stratix-V

5SGSMD8N1F45I2 FPGA. The resource utilized by the modular multiplication are

listed in Table 1.

Table 7.1: TABLE 1. Synthesis result and comparison

Logic Utilization Our Design 8192-bit RSA [37]

Combinational ALU 213,677 32,262

Dedicated Logic Register 89,007 82,023

DSP Blocks 72 �-

Block Memory bits 483,328 �-

Cycles per One MulMod 2330 32,776

Cycles per One Fast MulMod 2030 32,776

The design can also support 8,192 or 12,288-bit RSA encryption if the base is

set to 16 bits or 24 bits. The FPGA Operation Maximum Frequency (OMF) of

the modular multiplier is 209 MHz. It takes 2330 cycles to calculate one modular

multiplication with two FFTs and one IFFTs for one multiplication. In our RSA

using FFT multiplication, we only need one FFT and IFFT for one multiplication

78

and it takes 2030 cycles for one fast modular multiplication as shown in Table 2. It

takes 9.7 µs to complete one modular multiplication when the design operates at 209

MHz. The proposed modular multiplication is about 16.1 times faster than the RSA

co-processor running at the same frequency reported in [37].

The design in [37] uses two modular multipliers in parallel to perform the modular

exponentiation. In our design, one modular multiplier is recursively used. Our design

takes 0.159 s to complete one modular exponentiation while the design in [37] takes

1.28 s, when both running at 209 MHz. The proposed modular multiplication is about

8 times faster than the RSA co-processor in [37].

In order to be referenced and compared by future designs, the multiplier ASIC

was also synthesized for 90nm technology, using the Synopsys Design Compiler, the

DesignWare building block libraries, and IBM 90nm CMOS 9FLP standard-cell li-

brary. The SRAMs in the design come from Synopsys Designware library. Table 2

lists the synthesis results for the RSA chips. The number of logic equivalent gates

(two-input NAND) of the chip is 5,300K gates.

Table 7.2: TABLE 2. Synthesis results using 90-nm CMOS technology (IBM 90nm
9FLP process)

Logic Utilization RSA Chip

Core Area 11.7 mm2

Clock Frequency (MHz) 320 MHz

Clock Voltage 1.32 V

The designs for RSA in [4-11] are targeted for 1,024 or 2,048-bit RSA applications.

There are no reports about performance of 8K-bit RSA application in these design.

Usually di�erent designs have their ASIC implementation results with key size 1,024

bits to compare with others. In order to fairly compare with these designs, we establish

79

Table 7.3: TABLE 3. Modular Multiplication and Exponentiation Time (Operating
at 320 MHz in ASIC)

#Bits Multiplication Time Exponentiation Time Throughput

8,192 6.34 µs 0.104 s (worst) 78.8K bits/s

12,288 6.34 µs 0.156 s (worst) 78.8K bits/s

Table 7.4: TABLE 4. Implementation Comparisons
Ref Technology Area (gates) Period(ns) MulMod/s Key Size BitMul/(gates · s) BitMul/(gates · s · freq)
[69] 0.5 µm CMOS 156K gt 20.0 94.2K 1,024 2.53 M 0.051

[70] 0.18 µm CMOS 148K gt 2.2 438.6K 1,024 12.4 M 0.027

[28] 0.13 µm CMOS 139K gt 2.0 648.6K 1,024 19.6 M 0.039

Ours 90 nm CMOS 5,300K gt 3.1 157.6 12,288 18.0 M 0.056

the concept that compares the bit multiplications that one gate of hardware can

complete in one seconds. Although the designs in [28] [69] and [70] use di�erent

optimization strategies to improve the interleaved Montgomery algorithm, their goal

are all same, which is to complete the original interleaved Montgomery algorithm. So

we use the original interleaved Montgomery algorithm as the standard to estimate its

bit multiplications. The original interleaved Montgomery algorithm has 2M2 +M bit

multiplication with M the bit size so we have (7.4). Table 4 lists the implementation

comparison. From that table we can see, the proposed design ranked No. 2 when

we compared with the BitMulsPerGatePerSec. If all the designs operating at the

same frequency, our design could beat all the rest of designs.

BitMulsPerGatePerSec =
2M2 +M

Gates · Seconds
(7.4)

To understand the arithmetic cost of the interleaved Montgomery algorithm and

FFT based algorithm, we implement two di�erent modular multiplication algorithms

in carefully tuned MIPS64 assembly and count the number of ALU operations for each

80

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

5

6

7

8
x 10

6

Key Size(bits)

A
LU

 O
pe

ra
tio

n
C

ou
nt

s

Interleaved Montgomery

FFT

Figure 7.4: Operation Counts of Two Di�erent Algorithms

as shown in Fig. 4. Although the interleaved Montgomery algorithm is more e�cient

than the FFT based algorithm for 8K and 12K RSA, our well-designed hardware can

still beats the other designs. When the key size is great than 20K bits, the FFT based

algorithm is more e�cient and should be the top option for RSA hardware design.

7.7 Conclusions

In this research, a novel and fast modular multiplication and exponentiation archi-

tecture is presented for RSA with large key sizes. Instead of using the well-known

interleaved version of Montgomery multiplication, we combined the Strassen multi-

plication and Montgomery reduction for the modular multiplier design. The design

support both 8K- and 12K-bit modular multiplication and exponentiation. To the

best of our knowledge, it is the �rst design that can support 12K-bit modular multi-

81

plication and exponentiation for RSA. The design can complete one 8K- and 12K-bit

RSA operation in 0.104 s and 0.156 s operating at 320 MHz, which is the fastest

design to the best of our knowledge.

82

Chapter 8

Conclusions

8.1 Summary of Results

This dissertation is devoted to using the GPU and custom hardware to accelerate the

existing fully homomorphic encryption schemes, and introducing the new hardware

design method for RSA cryptosystem based on FFT multiplication.

• Firstly, we present the �rst GPU implementation of a fully homomorphic en-

cryption scheme. We develop e�cient techniques for large integer arithmetic

operations to support the higher level primitives of the Gentry-Halevi FHE.

We combined Emmart and Weems' implementation of Strassen's FFT multi-

plication with Barrett reduction for a high-speed modular multiplication on a

GPU. In addition, we tailor the encryption and recryption functions to make

optimal use of GPU features as well as to avoid obstacles, such as lack of sup-

port for recursive operations. We also develop a pre-computation strategy to

further enhance the e�ciency of the encryption primitive. We gained about 8

times speedup when running our implementation on a server equipped with a

83

NVIDIA Tesla C2050 GPU, compared with the CPU reference implementation

in [18]. This work shows the performance of FHEs can be greatly improved by

carefully choosing the target platform and by tailoring the algorithms.

• Secondly, we design a power and area e�cient, high-speed large-number mul-

tiplier for Gentry-Halevi FHE scheme. The large-number multiplier is using

Strassen's FFT-based multiplication algorithm. The memory-based, in-place

FFT architecture was used for the FFT processor to reduce the memory usage.

We use a number of design optimization strategies to improve the performance

and reduce the area of the Radix-16 unit. The multiplier was synthesized for

90nm technology with an estimated core area 45.3 mm2. Experimental results

show that the proposed multiplier is about 2 times faster than GPU and 29

times faster than CPU, and its power consumption is less than 1 watt. To the

best of our knowledge, this is the fastest multiplier that has been implemented

using VLSI design for fully homomorphic encryption.

• Thirdly, we follow our previous step to use GPU to accelerate the crucial part

in the leveled FHE scheme. The CRT method is used for the e�cient large-

number matrix-vector multiplication, gained 7.8 speedup compared to the NTL

library function. The GPU is used to accelerate the vector operation process,

accounting for 99.6% of the total computation, to further accelerate the matrix-

vector multiplication. In the GPU implementation, we manage to overlap the

calculation process and data transfer process to improve the computation e�-

ciency. Experimental results show the proposed CRT-based method with GPU

implementation gains about 273.6 times speedup when compared with the NTL

library function and 35.2 times speedup when compared with the same CRT-

84

based method on CPU.

• Finally, we present a novel and fast modular multiplication and exponentiation

architecture for large key-size RSA cryptosystem. We paired the FFT multi-

plication algorithm with Montgomery reduction for the modular multiplication

design instead of using the traditional interleaved version of Montgomery mul-

tiplication in the RSA hardware design. The proposed design can support both

8K- and 12K-bit modular multiplication and exponentiation. To the best of

our knowledge, it is the �rst design that can support 12K-bit modular multi-

plication and exponentiation for RSA. The design can complete one 8K- and

12K-bit RSA operation in 0.104 s and 0.156 s operating at 320 MHz, which is

the fastest design to the best of our knowledge.

8.2 Overview of Contribution

In this dissertation, we present the �rst GPU acceleration and the hardware design

of a large-number multiplier based on FFT multiplication both for Gentry-Halevi's

FHE implementation. We follow this path and continue to use GPU to accelerate

the BGV leveled FHE scheme, which is more e�cient than the Gentry-Halevi's FHE

implementation. Since we designed a very e�cient hardware multiplier, we bring the

FFT multiplication for the hardware design of RSA cryptosystems by combining the

FFT multiplication and Montgomery reduction instead of the traditional interleaved

Montgomery multiplication.

In this dissertation, we are tackling the existing FHE schemes instead of proposing

new FHE schemes. We are trying to using the more e�cient computation algorithms

such as FFT based multiplication and Chinese Remainder Theorem to accelerate

85

the basic primitives such as modular multiplication in this existing FHE schemes.

For the GPU acceleration, the targeted platform is the NVIDIA's general-purpose

GPU. The GPU implementations need some requirements for the memory spaces

and architecture support of the GPU for instance the Fermi architecture. With

slightly changes, the GPU implementations can be migrated to the other NVIDIA

GPU platforms.

8.3 Recommendations for Future Work

Although Gentry's original construction is ine�cient and impractical, recent new con-

structions have signi�cantly improved the e�ciency of fully homomorphic encryption.

Especially, the leveled fully homomorphic encryption proposed by Brakerski, Gentry

and Vaikuntanathan outstands itself, with a asymptotically better FHE system. In

our research, we only use GPU to accelerate the most computation-intensive part in

the encryption of the leveled fully homomorphic encryption scheme. Future work can

use GPU to accelerate the whole leveled FHE scheme including encryption, decryp-

tion, refresh process, homomorphically addition and multiplication. Because of the

leveled FHE scheme is much more e�cient than the Gentry-Halevi FHE scheme. We

expect to see a more promising GPU acceleration results for real life deployment. If

the GPU can get a very good acceleration results, it means the custom hardware can

attain a similar or even better acceleration results. Compared with Gentry-Halevi

FHE scheme, the leveled FHE scheme uses 512, 1024 or 2,048-bit large-number mul-

tiplications, which are also widely used in RSA cryptosystems. A number of e�cient

modular multipliers using interleaved Montgomery multiplication are used for the

RSA hardware design, which can be useful for the leveled FHE hardware design.

86

Bibliography

[1] J. D. Cohen and M. J. Fischer, �A robust and veri�able cryptographically secure

election scheme,� in FOCS, vol. 85, 1985, pp. 372�382.

[2] E. Kushilevitz and R. Ostrovsky, �Replication is not needed: Single database,

computationally-private information retrieval,� in Foundations of Computer Sci-

ence, 1997. Proceedings., 38th Annual Symposium on. IEEE, 1997, pp. 364�373.

[3] M. Naehrig, K. Lauter, and V. Vaikuntanathan, �Can homomorphic encryption

be practical?� in Proceedings of the 3rd ACM workshop on Cloud computing

security workshop. ACM, 2011, pp. 113�124.

[4] R. L. Rivest, L. Adleman, and M. L. Dertouzos, �On data banks and privacy

homomorphisms,� Foundations of secure computation, vol. 32, no. 4, pp. 169�

178, 1978.

[5] S. Goldwasser and S. Micali, �Probabilistic encryption,� Journal of computer and

system sciences, vol. 28, no. 2, pp. 270�299, 1984.

[6] R. L. Rivest, A. Shamir, and L. Adleman, �A method for obtaining digital sig-

natures and public-key cryptosystems,� Communications of the ACM, vol. 21,

no. 2, pp. 120�126, 1978.

87

[7] T. ElGamal, �A public key cryptosystem and a signature scheme based on dis-

crete logarithms,� Information Theory, IEEE Transactions on, vol. 31, no. 4, pp.

469�472, 1985.

[8] P. Paillier, �Public-key cryptosystems based on composite degree residuosity

classes,� in EUROCRYPT 99. Springer, 1999, pp. 223�238.

[9] I. Damgård and M. Jurik, �A generalisation, a simplication and some applica-

tions of Paillier's probabilistic public-key system,� in Public Key Cryptography.

Springer, 2001, pp. 119�136.

[10] M. Ajtai and C. Dwork, �A public-key cryptosystem with worst-case/average-

case equivalence,� in Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing. ACM, 1997, pp. 284�293.

[11] O. Regev, �New lattice-based cryptographic constructions,� Journal of the ACM

(JACM), vol. 51, no. 6, pp. 899�942, 2004.

[12] J. Benaloh, �Dense probabilistic encryption,� in Proceedings of the workshop on

selected areas of cryptography, 1994, pp. 120�128.

[13] D. Naccache and J. Stern, �A new public key cryptosystem based on higher

residues,� in Proceedings of the 5th ACM conference on Computer and commu-

nications security. ACM, 1998, pp. 59�66.

[14] D. Boneh, E.-J. Goh, and K. Nissim, �Evaluating 2-DNF formulas on cipher-

texts,� in Theory of cryptography. Springer, 2005, pp. 325�341.

[15] C. Gentry, �Fully homomorphic encryption using ideal lattices,� in Proc. of the

41st Annual ACM Symposium on Theory of Computing, 2009, pp. 169�178.

88

[16] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, �Fully homomorphic

encryption over the integers,� in Advances in Cryptology�EUROCRYPT 2010.

Springer, 2010, pp. 24�43.

[17] N. P. Smart and F. Vercauteren, �Fully homomorphic encryption with rela-

tively small key and ciphertext sizes,� in Public Key Cryptography�PKC 2010.

Springer, 2010, pp. 420�443.

[18] C. Gentry and S. Halevi, �Implementing Gentry's fully-homomorphic encryption

scheme,� Advances in Cryptology�EUROCRYPT 2011, pp. 129�148, 2011.

[19] Z. Brakerski and V. Vaikuntanathan, �Fully homomorphic encryption from ring-

lwe and security for key dependent messages,� in Advances in Cryptology�

CRYPTO 2011. Springer, 2011, pp. 505�524.

[20] N. P. Smart and F. Vercauteren, �Fully homomorphic SIMD operations,� Designs,

Codes and Cryptography, pp. 1�25, 2011.

[21] Z. Brakerski and V. Vaikuntanathan, �E�cient fully homomorphic encryption

from (standard) lwe,� in Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on. IEEE, 2011, pp. 97�106.

[22] C. Gentry, S. Halevi, and N. P. Smart, �Fully homomorphic encryption with

polylog overhead,� in Advances in Cryptology�EUROCRYPT 2012. Springer,

2012, pp. 465�482.

[23] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, �(Leveled) fully homomorphic

encryption without bootstrapping,� in Proceedings of the 3rd Innovations in The-

oretical Computer Science Conference. ACM, 2012, pp. 309�325.

89

[24] V. Vaikuntanathan, �Computing blindfolded: New developments in fully homo-

morphic encryption,� in Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on. IEEE, 2011, pp. 5�16.

[25] S. A. Manavski, �Cuda compatible GPU as an e�cient hardware accelerator for

AES cryptography,� in Signal Processing and Communications, 2007. ICSPC

2007. IEEE International Conference on. IEEE, 2007, pp. 65�68.

[26] A. Moss, D. Page, and N. P. Smart, �Toward acceleration of RSA using 3D

graphics hardware,� in Cryptography and Coding. Springer, 2007, pp. 364�383.

[27] X. Zhang and K. Parhi, �High-speed VLSI architectures for the AES algorithm,�

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, pp.

957�967, 2004.

[28] M.-D. Shieh, J.-H. Chen, H.-H. Wu, and W.-C. Lin, �A new modular exponenti-

ation architecture for e�cient design of RSA cryptosystem,� IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 9, pp. 1151�1161,

2008.

[29] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, �Accelerating fully ho-

momorphic encryption using GPU,� in Proc. of 2012 IEEE Conference on High

Performance Extreme Computing. IEEE, 2012, pp. 1�5.

[30] ��, �Exploring the Feasibility of Fully Homomorphic Encryption,� IEEE

Transactions on Computers, Aug. 2013.

90

[31] W. Wang, X. Huang, N. Emmart, and C. Weems, �VLSI design of a large number

multiplier for fully homomorphic encryption,� IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Nov. 2013.

[32] A. López-Alt, E. Tromer, and V. Vaikuntanathan, �On-the-�y multiparty compu-

tation on the cloud via multikey fully homomorphic encryption,� in Proceedings

of the 44th symposium on Theory of Computing. ACM, 2012, pp. 1219�1234.

[33] CUDA C PROGRAMMING GUIDE, 5th ed., NVIDIA, July 2013.

[34] P. Montgomery, �Modular Multiplication without Trial Division,� Mathematics

of Computation, vol. 44, no. 170, pp. 519�521, 1985.

[35] W. Wang and X. Huang, �A novel fast modular multiplier architecture for 8,192-

bit RSA cryposystem,� in Proc. of 2013 IEEE Conference on High Performance

Extreme Computing. IEEE, 2013.

[36] P. Barrett, �Implementing the Rivest Shamir and Adleman public key encryp-

tion algorithm on a standard digital signal processor,� in Advances in cryptology

(CRYPTO 86). Springer, 1987, pp. 311�323.

[37] C. P. Rentería-Mejía, V. Trujillo-Olaya, and J. Velasco-Medina, �Design of an

8192-bit RSA cryptoprocessor based on systolic architecture,� in 2012 VIII

Southern Conference on Programmable Logic (SPL). IEEE, 2012, pp. 1�6.

[38] A. Karatsuba and Y. Ofman, �Multiplication of many-digital numbers by auto-

matic computers,� in Proc. of the USSR Academy of Sciences, no. 2, 1962, pp.

293�294.

[39] D. Knuth, The Art of Computer Programming. Addison-Wesley, 2006, vol. 2.

91

[40] A. Schönhage and V. Strassen, �Schnelle Multiplikation Grosser Zahlen,� Com-

puting, vol. 7, no. 3, pp. 281�292, 1971.

[41] N. Emmart and C. C. Weems, �High precision integer multiplication with a GPU

using Strassen's algorithm with multiple FFT sizes,� Parallel Processing Letters,

vol. 21, no. 03, pp. 359�375, 2011.

[42] J. Solinas, �Generalized Mersenne Numbers,� Technical Reports, 1999.

[43] J. W. Cooley and J. W. Tukey, �An Algorithm for the Machine Calculation

of Complex Fourier Series,� Mathematics of Computation, vol. 19, no. 90, pp.

297�301, 1965.

[44] G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, �Modular multiplication and

exponentiation architectures for fast RSA cryptosystem based on digit serial

computation,� IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp.

3101�3109, 2011.

[45] X. Cui, Y. Chen, and H. Mei, �Improving performance of matrix multiplication

and FFT on GPU,� in Proc. of 15th International Conference on Parallel and

Distributed Systems (ICPADS 2009). IEEE, 2009, pp. 42�48.

[46] N. Govindaraju, N. Raghuvanshi, and D. Manocha, �Fast and approximate

stream mining of quantiles and frequencies using graphics processors,� in Proc.

of the 2005 ACM SIGMOD international conference on Management of data.

ACM, 2005, pp. 611�622.

92

[47] J. Baladron Pezoa, D. Fasoli, and O. Faugeras, �Three applications of GPU

computing in neuroscience,� Computing in Science and Engineering, no. 99, pp.

1�1, 2011.

[48] C. Mclvor, M. McLoone, and J. McCanny, �Fast Montgomery modular multi-

plication and RSA cryptographic processor architectures,� in Conference Record

of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers,

2003., vol. 1. IEEE, 2003, pp. 379�384.

[49] A. Daly and W. Marnane, �E�cient architectures for implementing Mont-

gomery modular multiplication and RSA modular exponentiation on recon�g-

urable logic,� in Proceedings of the 2002 ACM/SIGDA Tenth International Sym-

posium on Field-Programmable Gate Arrays. ACM, 2002, pp. 40�49.

[50] P. Giorgi, T. Izard, A. Tisserand et al., �Comparison of modular arithmetic

algorithms on GPUs,� 2009.

[51] D. Bailey, �FFTs in external of hierarchical memory,� in Proceedings of the 1989

ACM/IEEE conference on Supercomputing. ACM, 1989, pp. 234�242.

[52] V. Shoup, �NTL: A Library for Doing Number Theory,� 2001.

[53] The GNU Multiple Precision Arithmetic Library., 2010, http://gmplib.org/, Ver-

sion 5.0.1.

[54] A. Cohen and K. Parhi, �GPU accelerated elliptic curve cryptography in

GF(2m),� in IEEE International Midwest Symposium on Circuits and Systems

(MWSCAS), 2010.

93

[55] D. Cousins, K. Rohlo�, C. Peikert, and R. Schantz, �SIPHER: Scalable im-

plementation of primitives for homomorphic encryption�FPGA implementation

using simulink,� High Performance Extreme Computing Conference, 2011.

[56] Y. Doröz, E. Oztürk, and B. Sunar, �Accelerating fully homomorphic encryption

in hardware.�

[57] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra, �E�cient exact geomet-

ric computation made easy,� in Proc. of the Fifteenth Annual Symposium on

Computational Geometry. ACM, 1999, pp. 341�350.

[58] C. K. Yap and V. Sharma, Robust Geometric Computation. Springer, 2008.

[59] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap, �A Core Library for Ro-

bust Numeric and Geometric Computation,� in Proc. of the Fifteenth Annual

Symposium on Computational Geometry. ACM, 1999, pp. 351�359.

[60] S. Yazaki and K. Abe, �VLSI Design of Karatsuba Integer Multipliers and Its

Evaluation,� IEEE Trans. on Electronics, Information and Systems, vol. 128, pp.

220�230, 2008.

[61] ��, �An Optimum Design of FFT Multi-Digit Multiplier and Its VLSI Imple-

mentation,� Bulletin of the University of Electro-Communications, vol. 18, no. 1,

pp. 39�45, 2006.

[62] K. Kalach and J. P. David, �Hardware Implementation of Large Number Mul-

tiplication by FFT with Modular Arithmetic,� in Proc. of the 3rd Internationa

IEEE-NEWCAS Conference. IEEE, 2005, pp. 267�270.

94

[63] L. Jia, Y. Gao, and H. Tenhunen, �A pipelined shared-memory architecture for

FFT processors,� in Proc. of 42nd IEEE Midwest Symposium on Circuits and

Systems, vol. 2. IEEE, 1999, pp. 804�807.

[64] L. Johnson, �Con�ict free memory addressing for dedicated FFT hardware,�

IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing,

vol. 39, no. 5, pp. 312�316, 1992.

[65] H. Lo, M. Shieh, and C. Wu, �Design of an E�cient FFT Processor for DAB

System,� in Proc. IEEE Int. Symp. Circuits Systems, vol. 4. IEEE, 2001, pp.

654�657.

[66] N. Emmart and C. Weems, �High precision integer addition, subtraction and mul-

tiplication with a graphics processing unit,� Parallel Processing Letters, vol. 20,

no. 4, pp. 293�306, 2010.

[67] C. Gentry, S. Halevi, and N. P. Smart, �Homomorphic evaluation of the AES

circuit,� in Advances in Cryptology�CRYPTO 2012. Springer, 2012, pp. 850�

867.

[68] J. Grossschadl, �The chinese remainder theorem and its application in a high-

speed RSA crypto chip,� in Computer Security Applications, 2000. ACSAC'00.

16th Annual Conference. IEEE, 2000, pp. 384�393.

[69] T.-W. Kwon, C.-S. You, W.-S. Heo, Y.-K. Kang, and J.-R. Choi, �Two imple-

mentation methods of a 1024-bit RSA cryptoprocessor based on modi�ed Mont-

gomery algorithm,� in The 2001 IEEE International Symposium on Circuits and

Systems, 2001., vol. 4. IEEE, 2001, pp. 650�653.

95

[70] Q. Liu, F. Ma, D. Tong, and X. Cheng, �A regular parallel RSA processor,� in

Circuits and Systems, 2004. MWSCAS'04. The 2004 47th Midwest Symposium

on, vol. 3. IEEE, 2004, pp. iii�467.

[71] G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, �Modular multiplication and

exponentiation architectures for fast RSA cryptosystem based on digit serial

computation,� IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp.

3101�3109, 2011.

96

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Summary of Motivations and Contributions
	1.2.1 Acceleration of Gentry-Halevi's Fully Homomorphic Encryption on GPU
	1.2.2 VLSI Design of a Large Number Multiplier for Fully Homomorphic Encryption
	1.2.3 Accelerating Leveled Fully Homomorphic Encryption Using GPU
	1.2.4 Explore the Feasibility of FFT Multiplication for RSA Cryptosystem

	1.3 Outline

	2 Cryptographic Algorithms
	2.1 Fully Homomorphic Encryption
	2.1.1 The Gentry-Halevi FHE Scheme
	2.1.2 Basic Leveled FHE Encryption Scheme

	2.2 The RSA Cryptosystem

	3 Arithmetic
	3.1 Modular Multiplication
	3.1.1 Barrett Reduction
	3.1.2 Montgomery Arithmetic

	3.2 Large Integer Multiplication Algorithms
	3.3 FFT Multiplication
	3.3.1 FFTs in the Finite Field Z/pZ

	3.4 Modular Arithmetic Comparison

	4 Acceleration of Gentry-Halevi's Fully Homomorphic Encryption Using GPU
	4.1 Introduction
	4.2 Fast Multiplications on GPUs and Modular Reduction
	4.3 GPU Implementation of FHE
	4.3.1 Implementing Encrypt
	4.3.2 Implementing Recrypt

	4.4 Experimental Results
	4.5 Conclusions

	5 VLSI Design of a Large Number Multiplier for Fully Homomorphic Encryption
	5.1 Introduction and Related Work
	5.2 Efficient 192-bit Wide Operations
	5.3 VLSI Design of the Large Number Multiplier
	5.3.1 Radix-16 FFT Unit
	5.3.2 64K-Point FFT Processor

	5.4 Large-Number Multiplier
	5.5 Resolve Carries
	5.6 Experimental Results
	5.7 Conclusions

	6 Accelerating Leveled Fully Homomorphic Encryption Using GPU
	6.1 Introduction
	6.2 Software Implementation on CPU
	6.2.1 CRT Representation and Barrett Reduction
	6.2.2 Software Implementation

	6.3 GPU Implementation
	6.4 Experimental Results
	6.5 Conclusion

	7 Explore the Feasibility of FFT Multiplication for RSA Cryposystem
	7.1 Introduction
	7.2 Montgomery Modular Multiplication
	7.3 VLSI Design of the Modular Multiplication
	7.3.1 Radix-16 FFT Unit
	7.3.2 Resolve the Carries

	7.4 The Architecture for Modular Multiplication
	7.5 Modular Exponentiation Using Strassen Multiplication
	7.6 Hardware Implementation and Performance Comparisons
	7.7 Conclusions

	8 Conclusions
	8.1 Summary of Results
	8.2 Overview of Contribution
	8.3 Recommendations for Future Work

	Bibliography

