
Evaluating SGX’s Remote Attestation Security Through
the Analysis of Copland Phrases

by

Freddy Eduardo Veloz Baez

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

April 2022

APPROVED:

Professor Daniel Dougherty, Thesis Advisor

Professor Craig Shue, Thesis Co-Advisor

Professor Craig Wills, Head of Department

Abstract

SGX is a set of extensions to Intel’s chip architecture that allows a process to run

securely in an isolated computing environment known as an enclave and store secrets

that cannot be accessed by the system in which the process is located. This gives

the necessary assurance to a remote party that the computations being run in the

enclave can be trusted, which is a vital requirement in cloud computing. SGX

achieve this via remote attestation, the process of receiving evidence over a network

about the state of a target machine and appraising it.

In this work, we use Copland, a declarative language created to codify the intri-

cacies of layered attestation protocols, to express SGX’s attestation processes. We

also analyze the different components that participate in the protocols and identify

limitations that may be exploited, as well as other components that could potentially

be future targets. We achieve these goals by analyzing the SGX Copland phrases

with Chase, a model-finder tool presented by Rowe et al. that can find possible

attack scenarios in an attestation protocol. By considering different assumptions

and attack targets and producing seldom adversary scenarios, we are able to give

insights into SGX’s attestation security. Additionally, we explore some limitations

in the way Copland can describe complex attestation protocols like SGX, the im-

plications of these obstacles and how to respond to them when analyzing Copland

phrases.

Contents

1 Introduction 3

2 Background and related work 7

2.1 Software Guard Extensions (SGX) . 7

2.1.1 Attestation in SGX . 9

2.1.2 Attacks against SGX . 10

2.2 Copland . 11

2.2.1 Copland syntax . 12

2.2.2 Copland Analysis with Chase 15

2.3 Related work . 16

3 Approach 19

4 Limitations of Copland 22

4.1 Mutual attestation and the ”appraise” action 22

4.2 Problems with mutual attestation . 23

4.3 Embedded mutual attestation . 25

5 Analysis of Attestation in SGX 30

5.1 Local attestation . 30

5.1.1 Copland Phrase Details . 31

1

5.1.2 Results . 38

5.2 Platform Provisioning . 40

5.2.1 Copland Phrase Details . 41

5.2.2 Results . 43

5.3 Remote attestation . 46

5.3.1 Copland Phrase Details . 47

5.3.2 Results . 50

6 Conclusions 53

6.1 SGX . 53

6.2 Copland . 55

A Basic local attestation scenarios 62

B Local attestation scenarios 64

C Platform Provisioning scenarios 67

D Remote attestation scenarios 76

2

Chapter 1

Introduction

During the past decade, we have witnessed the rapid rise of cloud computing, which

can be defined as a business information model in which computing resources lo-

cated in datacenters are delivered as on-demand services over the Internet [2]. This

rise has taken place thanks to cloud computing’s unique characteristics, such as

seamless hardware scaling based on the application’s needs and the convenience of

paying only for the computing resources required[11]. However, this kind of resource

outsourcing comes with a unique set of challenges, one of which is the so called re-

mote computation problem, which is defined by Costan et al. [5] as the difficulty of

securely “executing software on a remote computer owned and maintained by an

untrusted party”, or more concisely expressed with the question: How can we trust

with our secrets a remote system that might have been compromised without our

knowledge?

Multiple solutions have been put forward to guarantee integrity and confiden-

tiality in these kinds of scenarios. A few years ago, Intel released a set of extensions

to its CPU architecture known as SGX, or Software Guard Extensions, which allows

a process to create an isolated computing environment that cannot be accessed by

3

its surrounding system. These isolated environments, known as enclaves, can com-

municate securely with remote entities, which can verify the integrity of the enclave

by assessing evidence of its launching state [1]. The process of receiving evidence

over a network about the state of a target machine or an application and appraising

it in order to determine if the system has been compromised or if it is working as

intended is known as remote attestation [4].

Nevertheless, remote attestation processes can become increasingly complex as

more entities get involved in the process. Finding all the scenarios in which an

adversary can successfully attack an attestation process becomes prohibitive when

working with complex attestations. In this context, an adversary is considered

successful if they can influence the attestation process (whether it is the processes

behind the measurements or the evidence itself being produced) in a way such

that the appraiser concludes that the target system or application has not been

compromised when one of them has. In the case of SGX’s remote attestation, the

process involves at least the following parties (present in three different locations):

the service provider, Intel’s Attestation Service, the quoting enclave, the application

and the application’s enclave [27].

Therefore, an attestation process like the one involved in SGX presents an attack

surface of considerable size that requires a rigorous design phase to successfully

prevent attack scenarios from being computationally feasible. Although Intel has

kept some key aspects of SGX’s design confidential, a number of vulnerabilities have

been detected in SGX in the past few years [5] [28] [3]. The most serious one was

described by van Schaik et al. and was named SGAxe [25]. This attack allows a

malicious agent to steal part of the enclave’s memory, which can include the EPID’s

attestation key, and therefore allow the attacker to pass malicious enclaves as genuine

to Intel’s Attestation Server. The repercussions of SGAxe are critical as it can help

4

bypass all security guarantees provided by SGX [25]. As SGAxe’s inventors proved,

these limitations are rooted in a design phase in which Intel adopted stronger security

assumptions than what its hardware implementation could actually deliver, which

raises the need to perfect these processes.

In order to improve a remote attestation design phase to make these issues easier

to detect early in the process, different approaches can be followed, among which is

formal analysis.

Copland is a declarative language presented by Ramsdell et al. [16] It can express

layered attestation protocols through a syntax that abstracts the specifics require-

ments of these protocols and processes them as parameters of some basic actions

that take place in all attestation processes: measurements and evidence bundling.

Attestation protocols in Copland are expressed as “phrases”. Each phrase consist

of atomic actions that characterize different kinds of measurements that produce

evidence. Other works [15] have modeled attestation protocols in Copland in or-

der to better analyze the ways in which an attacker might compromise the system

and go undetected with the use of a model-finding tool that works with Copland

phrases [20]. We believe that a tool like Copland can be helpful at analyzing SGX.

Specifically, we seek to find out what a declarative language like Copland can

tell us about the limitations and strengths of security related tools like Intel’s SGX.

Can it make it easier to recognize weak points in any of the components involved

in SGX’s attestation process? Can it help us identify the assumptions Intel likely

made at the design phase regarding SGX’s security? And if it does, have these

assumptions been proven correct by other authors or can they be considered to not

have been exhaustive enough?

Regarding Copland, we are interested in exploring whether the language is rich

enough to fully express the nuances of complex attestation protocols like SGX. In

5

case there are limitations, to what issues can they lead? And how can we respond

to them?

To answer these questions, we use Copland phrases to model the SGX attestation

processes in order to gain insight into the strengths and limitations of its design.

We also determine how they can lead to security violations that could jeopardize the

trust in systems that rely on SGX. We ran a model-finder tool presented by Rowe

et al. [20] called Chase on the Copland phrases and specified the attacker’s goal to

be able to identify the different attack models to which SGX’s attestation processes

might be vulnerable to. After that, we tested out a number of different assumptions,

checked how the model reacts to them and determined which security assumptions

were likely made by Intel when designing SGX (for instance, that some attack

models would be computationally infeasible due to SGX’s inherent characteristics)

and whether these assumptions covered all possible attack models. We believe this

work is a tangible example of the benefits of rethinking attestation protocols in

terms of their abstract operations with languages like Copland during their design

phase. Besides that, we believe it provides a security analysis of SGX from a new

perspective.

6

Chapter 2

Background and related work

Some of the tools and concepts relevant to this work are: Intel’s Software Guard

Extensions (SGX), remote attestation and Copland. We also believe it is important

to discuss previous research regarding SGX’s vulnerabilities, to get an idea of some

of the attack approaches that have been pursued against the technology. In the

following sections, we provide some general information about these topics.

2.1 Software Guard Extensions (SGX)

Intel’s Software Guard Extensions, better known as SGX, is a set of extensions to

Intel’s CPU architecture that allow a system to run software securely and store data

that cannot be accessed even if the system itself is compromised [1]. In other words,

it provides integrity and confidentiality to computations that run in a system that

may be malicious [5]. This is achieved with the use of enclaves, which are software

containers that are protected by hardware enforced policies. In this context, the

system’s trusted computing base consists of the software in the enclave, the CPU’s

firmware and its hardware [1]. In order to prevent the possibility of the enclave’s

code being manipulated or accessed, the processor isolates these computations from

7

the operative system, the hypervisor, and the rest of its environment [5].

Protection schemes like SGX aim to solve the secure remote computation prob-

lem, as it is imperative for service providers that communicate with clients over the

Internet to find a way to confirm that the secrets they provide to the client are going

to be secure no matter the state of the system in which it is running. To ensure this

goal, SGX provides the following guarantees [1]:

• An enclave can request a secure assertion of its identity to the platform, which

can be done with the EREPORT hardware instruction.

• An enclave can verify an assertion from another enclave on the same platform.

• A remote entity can verify an assertion from an enclave.

• An enclave can access keys that are bound to the platform, which is done with

the EGETKEY hardware instruction.

A key concept when discussing SGX are the assertions of an enclave’s identity.

They allow other enclaves or an external entity, like a service provider or Intel itself,

to ensure the integrity and the identity of the enclave. They are represented with

the measurement register known as EREPORT. This report is a SHA-256 digest of

the state of the enclave at the moment it is built, including, among other values, its

code, data stored, stack and heap [1].

On the SGX threat model, we assume that a hypothetical attacker has control

over the OS and can read any traffic between components of the device or externally.

The only part of the device that can be trusted is the processor and no side-channel

attacks are feasible. Intel is also a trusted party, which means that the private keys

created during production are assumed to be secure [24].

8

2.1.1 Attestation in SGX

There are two kinds of attestation processes in SGX: local attestation and remote

attestation. In local attestation, an enclave tries to prove its identity to another one

that resides in the same platform. To achieve this, it produces a local quote of its

identity by calling the EREPORT hardware instruction, which generates a report

that includes a MAC tag that binds a message supplied by the challenging enclave

and a protected derivation key that can only be accessed by genuine enclaves. The

MAC is used to prove the authenticity of the target’s enclave Record, which is part of

the report and includes information about its identity, state and other attributes [7].

The MAC tag is a CMAC (block-cipher based MAC) that uses AES 128-bit as its

encryption algorithm [5].

To verify this report, the challenging enclave has to call the EGETKEY hardware

instruction, which derives a report key that can be used to recompute the MAC and

compare it to the one sent by the challenged enclave. As EGETKEY takes as

an argument the value that was binded in the report produced by the challenged

enclave, a malicious enclave cannot impersonate another one [7]. For a more detailed

explanation of SGX’s local attestation process and the inner functioning of the

EREPORT and EGETKEY instructions, check the explanation provided by Costan

et al. [5]

In a remote attestation, a service provider that is not in the same platform

as the enclave challenges it in order to verify its identity. The challenged enclave

must send a remote quote, which is generated by a special enclave known as the

quoting enclave, present in every SGX processor. The quoting enclave verifies the

identity of the challenged enclave through local attestation and then signs the report

by following Intel’s EPID (Enhanced Privacy Identification) protocol and using the

EPID keys that are obtained in a previously executed provisioning process with Intel.

9

The signed report is sent to the service provider and then to Intel’s attestation server

to verify its authenticity. As EPID follows a group signature scheme, Intel cannot

track the identity of the processor which generated the quote, thus providing privacy

and verifying the enclave’s validity at the same time [7].

Another important concept is mutual attestation, which refers to the situation

in which two entities need to attest to each other before they can establish a level

of trust. Depending on the protocol’s requirements, a mutual attestation can be

performed in sequence or parallel. Mutual attestation in the context of Copland is

explored in Chapter 4 [8].

2.1.2 Attacks against SGX

SGX is not completely secure. Possible attacks have been identified by authors like

Costan et al. [5], particularly side-channel approaches that can leak useful informa-

tion from the enclave to the attacker. An adversary that controls the machine’s

kernel can, for instance, learn the memory access patterns used by an enclave, as

SGX’s enclaves use the same address translation process of Intel architecture in

which specific bits are set depending on the type of memory access. This kind of

attack is known as a passive address translation attack. SGX is also vulnerable to

cache timing attacks, another kind of side-channel attack. Subsequent research by

Wang et al. [28] and Brasser et al. [3] have confirmed these vulnerabilities in SGX

and shown that they can be used in practical attacks.

However, probably the most serious attack against SGX is SGAxe, first described

by van Schaik et al. [25] and which has the potential to allow an attacker to imper-

sonate enclaves. SGAxe is based on CacheOut, a Cache attack that exploits Intel’s

memory overwriting process and exfiltrates information via cache evictions [26]. At

a high level, the attacker waits until the enclave reads data from the LD1 cache and

10

then injects its own data into this cache so that its target is evicted from it and

sent to higher-level caches or to memory. When the enclave tries to read this data

again, it is forced to look for it elsewhere and a cache miss occurs, which makes the

processor store the data as soon as it is found in a line fill buffer (LFB). This data

can then be extracted by the attacker via a TSX asynchronous abort (TAA) attack.

In SGAxe, a CacheOut attack is performed in order to extract the processor’s

AES sealing key from a LFB, which is then used to decrypt the EPID keys. An

attacker can then instantiate a malicious quoting enclave that can then sign as valid

any false attestation quote from an enclave under the attacker’s control. As this

report is signed using the correct EPID keys, Intel’s Attestation Server will recog-

nize it as valid and the service provider will start sharing secrets with it, therefore

breaking the confidentiality and integrity of the whole system [25].

2.2 Copland

Copland is a declarative language presented in 2019 by Ramsdell et al. [16]: that

seeks to give a unified syntax to express layered attestation protocols. In this con-

text, a layered attestation is a kind of attestation process in which trust in a system

is built by layers. In other words, different parts of a system are measured in a spe-

cific order layer by layer to progressively increase the level of trust in its integrity .

Copland was developed with the intent of fulfilling three basic requirements

• Flexibility, as attestation protocols can differ widely with each other. To tackle

this, Copland abstracts the similarities that these protocols share into mea-

surements and bundling of generated evidence and sets the specific protocol-

unique operations as parameters.

• Unambiguous execution, which is achieved by Copland’s semantics, including

11

evidence flow and measurement order.

• Ability to be statically analyzed, for which Copland provides denotational

semantics.

2.2.1 Copland syntax

A typical Copland phrase is defined by a place and a series of internal phrases, each of

which is formed by atomic actions that interact with each other through Copland’s

grammar [13]. Each internal phrase can have its own location, or otherwise it is

assumed that the actions it describes take place in the same location as its parent

phrase. We can define this general syntax in the following way:

∗PLACE : PHRASE ... PHRASE

The place where a remote measurement takes place is set with the “@” symbol

with the exception of the location of the first “parent” phrase, which is set with a

“*” symbol. Places can be named with digits or uppercase characters. If no place

is defined in a phrase nor its parent, it is assumed that the phrase takes place at

location 0. The @ symbol has the highest precedence in a Copland phrase and can

be nested, which is used in cases when a component needs to request a measurement

be done by another one. As an example, if we wanted location p to request location

q to execute a specific measurement, we would express it with the following syntax:

@p [@q [PHRASE]]

A typical Copland atomic measurement is defined by an Attestation Service

Provider (ASP), which requires four parameters: the type of measurement (m), the

parameters of the measurement (ā), the location where it takes place (p) and its

12

target (r). For instance, if we want to run an antivirus on a file located at at place q

with no additional parameters, we can express that in the following Copland phrase

(notice that we indicate that the attestation is started by location q itself) [14]:

∗q : ASP av a q file

Besides measurements defined by ASP, Copland has a number of primitives to

express some common actions performed during attestations, like CPY, SIG and

HSH, which refer to copying, signing and hashing, respectively [13]. The exact im-

plementations of these primitives are defined in each protocol implementation based

on its specific needs and not by Copland itself.

Copland phrases interact with each other via branching and linear sequencing,

which define the order in which measurements of an attestation take place. Linear

sequencing execution is denoted by the → character and requires a measurement

to be performed strictly after the previous one, whose evidence is consumed by the

later. In this context, consuming evidence refers to said evidence being used as an

initial parameter of the next one. For instance, a Copland phrase might require

a piece of software to be measured in some way and this measurement might be

signed afterwards. In this example, the evidence produced in the first measurement

is consumed by the second action, namely the signing of said evidence:

@p [ASP m a m r → SGN]

Branching can be sequential or parallel and is used to split evidence to two

phrases via a π branching function. Sequential branching is expressed with the

symbol < and parallel branching with the symbol ∼. At a high level, branching

allows the evidence previously generated in the protocol to be shared among the

13

two phrases at both ends of the branching symbol. The way this evidence is shared

is defined by the π function, which can state that both phrases get a copy of the

evidence or that only one of them does. We can express this way of sharing evidence

with the + or - symbols. So, if we want both phrases to get a copy of the evidence

and we want the first phrase to be executed before the second one, we can express

it in the following way:

PHRASE+<+ PHRASE

On the other hand, if we want the evidence to be received only by the second

phrase and we do not care which phrase is executed first, we can express it like this:

PHRASE−∼+ PHRASE

After both branches have been executed, the evidence produced by both is bun-

dled together.

An example first described in [14] can be a good way of bringing these concepts

together. Imagine that we want a virus checker vc to run an analysis of an appli-

cation t located in p. In order to guarantee that the results we get are fresh, it is

a good idea to send an initial nonce n at the beginning of the attestation process

and have the result of the vc measurement be signed together with the nonce before

returning the evidence. One additional level of security can be achieved by run-

ning a measurement h on the virus checker’s infrastructure v to guarantee that the

checker itself has not been compromised by an attacker. This measurement would

be performed from an isolated domain ma that has access to p’s environment. The

Copland phrase for this attestation protocol would be:

14

@p n [@ma n [(ASP h ā p v) → SIG] → (ASP vc ā p t) → SIG]

2.2.2 Copland Analysis with Chase

In the paper ”Automated Trust Analysis of Copland Specifications for Layered At-

testations” [20], Rowe et. al explain the process to analyze Copland phrases via

Chase and include a number of examples that grow in complexity in order to show

its capabilities. We present one of them to give an idea of the kind of information

we can get from Chase.

Imagine a simple bank website in which users can authenticate and do trans-

actions. The bank asks for a username and password in order to authorize access

to the user. However, in order to guarantee that the user’s browser has not been

compromised, let us say, by a malicious extension that could hijack the user’s session

and send unintended transactions, the bank asks the user to complete an attestation

process in which it receives some evidence to verify if the user’s browser is working

as intended. This process could be done by a browser monitor bmon that would

work from the userspace us outside the browser (so a malicious extension could not

corrupt it) and check every installed extension exts to verify their states. Addition-

ally, we can have an antivirus av that runs from the kernelspace ks that does a scan

of the browser monitor itself in order to confirm it has not been compromised. This

protocol can be expressed by the following Copland phrase:

* bank : @ks [av us bmon] +~+ @us [bmon us exts]

In order to run our Chase analysis, we need to select a measurement of interest

defined by the phi predicate. This measurement refers to the moment in time the

attacker could be considered successful by having corrupted the desired component

without being detected. In our example, the measurement of interest is the one

15

bmon does on exts, while exts is the component the attacker targets.

Running Chase with the provided inputs produces five different successful attack

scenarios. Figure 2.1 shows one of them, in which an attacker corrupts both the

browser monitor and the browser extensions. It then runs the measurement of

interest, which would erroneously tell the bank that the extensions are working as

intended. Finally, before the measurement of the browser monitor, the attacker

repairs it in order to fool the antivirus.

Figure 2.1: Attack scenario on the bank attestation protocol.

The security of this attestation scheme can be improved by making some small

changes. For instance, if we specify that the antivirus measurement has to be done

strictly before the browser monitor measurement, the attack scenario presented in

Figure 2.1 would not be possible. However, the reason to include this simple example

was to give an idea about the attack scenario analysis done by Chase.

2.3 Related work

There has been significant work on remote attestation over the past decade. The

main tenets of the process were established in 2011 by Coker et al. [4] They defined

five principles that should serve as a base of any remote attestation protocol:

1. Evidence generated in an attestation must be fresh.

16

2. Measurements must be able to get all the required information of their target.

3. Targets should be able to decide which measurements are sent to an appraiser.

4. Attestations should have well-defined semantics.

5. Attestations should be able to prove their own trustworthiness.

A common approach when building trust in a system via an attestation is to

perform measurements from deeper to upper layers in order to build trust ”bottom-

up”, in a process that Rowe named layered attestations in a 2016 work [19]. In [18],

Rowe demonstrates the validity of this approach and concludes that if a system

performs a layered attestation, an adversary would need to either corrupt a deep

component of the system or corrupt a component in a very short window of time,

both of which are much harder tasks to accomplish. How the evidence is bundled in

a layered attestation is of particular importance and Rowe proved in a subsequent

work that common approaches, like storing evidence in a Trusted Platform Module

(TPM), might not be secure enough against dynamic corruptions [17].

In order to model the complexities of these protocols, Ramsdell et al. [16] pre-

sented Copland, a language built with the main goal of describing layered attes-

tations protocols while facilitating their formal analysis. Over the past few years,

Copland has received additional support, like the creation of a Copland interpreter

and attestation manager written in Haskell by Petz et al. [13], or the codification

by Gray of TPM functions into the language in order to provide a root of trust for

the different claims made during attestation protocols [6]. Helble et al. [8], for their

part, addressed how to use Copland to model more complex attestation protocols

that involved mutual appraisals, caching evidence and numerous principals.

The analysis of Copland phrases in order to find approaches an adversary might

take to corrupt attestation protocols has been explored by Rowe [20], who in 2021

17

presented the Chase model-finder, which can be used to find different execution sce-

narios and attack models for a Copland phrase based on a set of initial assumptions,

and which is of particular interest for this work as it was used to analyze the SGX

attestation processes. Chase was based on work done by Saghafi et al. in their

Razor model-finder [21], a tool presented in 2015 to analyze first-order theories and

show them in geometric form.

An example of a protocol implemented in Copland and analyzed with the Chase

model-finder can be found in [15], where the authors express the attestation process

of a UAV flying system in Copland and refine the produced phrase by looking at

the possible attack scenarios that the protocol is vulnerable to.

The pertinence of applying formal analysis of the security of SGX via its attes-

tations protocols has been explored by Guttman et al. [7], which took SGX as an

example case for analyzing hardware, trust and attestation rules in these kinds of

protocols. Sardar et al. [22], on the other hand, used the ProVerif protocol verifier

to confirm the security properties of third-party remote attestations based on SGX’s

attestation primitives, assuming the SGX threat model is correct.

In addition to SGX, there has been other proposals to build hardware-based

trust in a system. A popular alternative to SGX is AMD Memory Encryption.

Mofrad et al. [12] analyzed the two technologies and concluded that although AMD

Memory Encryption offered faster performance for applications that need to use

a lot of secure memory, it did not offer the same level of memory protections as

SGX. Another approach is described in [9], where Jurgensen et al. propose using

a seL4 microkernel that runs an embedded Linux virtual machine. This Linux

implementation can run measurements on itself, but not on the seL4 layer, while

the seL4 layer can measure both itself and the Linux system and ensure memory

isolation.

18

Chapter 3

Approach

Our approach aims to detect possible limitations in the design of SGX’s attestation

protocol that could lead to confidentiality and/or integrity violations. We believe

that Copland can be a valuable too to obtain the abstraction levels required to make

the process manageable for complex protocols like the one used in SGX. We followed

the template to analyze attestation protocols presented by Rowe et al. [20] The first

step was to model SGX local and remote attestation processes as Copland phrases

and analyze their denotational semantics and the events involved in the process.

We defined the operations involved in SGX as Copland actions. Some of them

are:

• ereport, which refers to the SGX physical instruction of the same name.

• egetkey, which refers to the SGX physical instruction of the same name.

• verify, which the produced attestation quotes with the CMAC (block-cipher

based MAC) obtained by egetkey.

• checkprivrl, which verifies if a processor’s credentials are in Intel’s revocation

list.

19

Figure 3.1: Copland syntax tree for SGX’s local attestation

This step allowed us to notice some limitations in Copland’s syntax when ex-

pressing SGX’s attestation protocols, which we explain in Chapter 4.

The following step involved analyzing our Copland phrases with a model-finder

tool called Chase developed by the MITRE Corporation [20] to find the different

attack scenarios to which SGX’s attestation processes might be vulnerable. We

then analyzed each attack scenario, classified them according to the level of damage

that they could generate in practical attestation scenarios and identified which of

them have been found in real life attacks against SGX.

We subsequently tried out different security assumptions, each of which reduced

the number of attack models, for the different components in SGX’s attestation

20

processes. We analyzed each scenario until we reached the assumptions that only

left the attack models contemplated in the SGX threat model. By doing this, we

were be able to get a glimpse of the considerations contemplated during Intel’s at-

testation design phase, which could lead to a better understanding of many of the

decisions that are still not well understood among researchers analyzing SGX [23].

We also weighed these assumptions against the guarantees provided by SGX’s im-

plementation [5] [25] [23].

As part of our conclusions, we found most of these assumptions to be based on

SGX’s inherent characteristics (isolation, hardware-enforced protection, etc), which

ruled out most attack scenarios. Although adversary approaches that rely on deep or

recent attacks usually represent an acceptable level of risk in attestation scenarios

due to their complexity [18], Intel’s security assurances regarding SGX and their

described threat model should also rule them out. Our results regarding SGX are

detailed in Chapter 5.

Thus, we hope that this work will provide valuable insights about SGX’s security

in a novel perspective and show the benefits of using a declarative language like

Copland in the design phase of any protocol that requires some kind of remote

attestation.

21

Chapter 4

Limitations of Copland

In this chapter, we explore some of the difficulties we found while modeling the SGX

attestation protocols with Copland, particularly in relation with mutual attestation.

Some of the approaches to address them are discussed in this chapter and then

implemented in Chapter 5.

4.1 Mutual attestation and the ”appraise” action

SGX’s local attestation, which is a part of their larger remote attestation process,

is an example of mutual attestation, as it requires two enclaves located in the same

machine to attest their identity to each other. Only after both enclaves have proven

they are running in the same machine and that they have not been compromised,

they can trust each other and start exchanging information or running any other

operation that requires a certain level of trust between them.

Although there are not many mentions of mutual attestation protocols in Cop-

land’s documentation, Helble et al. [8] include one such example of a protocol that

includes two principals, P0 and P1, that attest their identity to each other and then

send the evidence generated in their respective measurements to a third component

22

P2 that appraises it. This information flow can be seen in Figure 4.1. As the pro-

tocol does not require a specific order in which the attestations have to take place,

this example can be expressed with two different Copland phrases that describe

attestations running in parallel:

* P0, n0: @P1 [attest01 P1 sys] ⇒ @P2 [appraise01 P2 sys]

* P1, n1: @P0 [attest10 P0 sys] ⇒ @P2 [appraise10 P2 sys]

In the first Copland phrase, P0 starts the attestation process and sends a nonce

n0 as initial evidence to guarantee freshness. It subsequently requests P1 to attest

its system. The returned evidence is sent to P2 to appraise it. This result is then

sent back to P1, which now can make the appropriate trust decisions based on the

evidence generated in the process. In the second Copland phrase, the roles of P0

and P1 are inverted.

4.2 Problems with mutual attestation

Although the example shown in section 4.1 can be expressed with the previously

shown phrases, it makes use of an odd addition to make the Copland syntax flexible

enough. In Copland, an atomic phrase of the form m q t refers to a measurement [20],

where m names the measurement itself, q refers to the location (or principal) in

which it takes place and t designates its target. A measurement can be defined

as an operation that produces evidence based on the state of a target component

that can be appraised by a remote party. As an example, in the case of the phrase

“attest01 P1 sys”, the protocol is executing a measurement named attest01 on the

component system located in P1. The appraisal process included in the previous

example does not exactly fit into this definition of a measurement and requires some

23

Figure 4.1: Parallel Mutual Attestation

more context for its role in the protocol to be understood. If we take for instance

the phrase “appraise01 P2 sys”, following the Copland syntax of a measurement we

would say that we are executing a measurement appraise01 on the component system

located in principal P2. However, in this case we are not running a measurement on

any component of P2, we are running an appraisal of the evidence generated so far

by the attestation. Another way of writing the same phrase would be “appraise01

P2 it”, which better conveys the idea that the operation is being performed on the

evidence received, but also highlights the fact that an appraisal does not follow the

syntax for atomic measurements.

In a typical Copland phrase, the appraisal action is left implicit, as we assume

that the principal that starts the attestation process will appraise the evidence

generated by the measurements in some way before taking a trust decision. But in

24

the mutual attestation example discussed so far, the appraisal has to be included

explicitly because it is performed by a different principal. Furthermore, it does not

produce new evidence and only transforms the received evidence into a Boolean or an

enumerated set of values that defines if the evidence passed or failed the assessment.

In this regard, an appraisal action is more akin to an evidence operator like copy,

hash or sign, which are defined terms in the Copland syntax. Considering that

Ramsdell et al. [16] affirmed that they expect to add new terms to Copland, a term

for an appraisal action would certainly help make some phrases less ambiguous and

the Copland syntax more elegant. However, for a protocol like the parallel mutual

attestation example described in this section, the anti-pattern of using an appraisal

as a measurement works well.

4.3 Embedded mutual attestation

Although there are many mutual attestation protocols that can be expressed as

parallel attestations, like the one in the previous example, some are required to

be part of a single string of ordered events. We can imagine a server running in

a cloud computing service to which a remote station has to connect in order to

process some confidential information. To ensure that neither the station nor the

server have been compromised by an attacker, a mutual attestation protocol can be

implemented. Principal P0 would be the remote station and P1 would be the server.

After receiving an initial attestation request by P0, P1 makes its own attestation

request to P0 and waits for the evidence to appraise. If the evidence passes the

assessment, P1 makes a measurement of its system and sends that evidence back to

P0. This ends the attestation, as the final evidence is assumed to be checked by P0

to take the adequate actions afterwards.

25

We can express this protocol with the following Copland phrase:

* P0: @P1 [@P0 [attest10 P0 sys] ⇒ attest01 P1 sys]

In the phrase, the attestation is started by the remote station P0, which sends

a request to the cloud server P0. Before replying to the request, P0 makes its own

attestation request to P1, which fulfills it by executing measurement attest10 on

the system located in itself. The generated evidence is sent back to P1, which then

attests its own system state with the measurement “attest01 P1 sys”. This evidence

is sent back to P0 and the protocol is finished. The attest measurements in this

phrase could actually represent many ordered measurements on each principal or

could be even part of a deeper layered attestation. We express them as a single

measurement for simplicity. The flow and order of attestations in this phrase can

be seen in Figure 4.2.

Figure 4.2: Embedded mutual attestation

In the discussed Copland phrase, the intermediate appraisal made by P1 before

attesting its state to P0 is left implicit. According to the Copland Use Cases note

written by Kretz et al. and included in the Github repository [10], this is one of the

two approaches that can be taken to express these kinds of protocols. However, it

is apparent that we are losing valuable information about the protocol by leaving

26

out of the Copland phrase such an integral portion of it. If we were to explicitly

include the embedded appraisal of the attestation, we could write the following,

more complex, Copland phrase:

* P0: @P1 [@P0 [attest10 P0 sys] ⇒ (appraise P1 it ⇒
{} +<- attest01 P1 sys)]

In this case, we have adopted the anti-pattern described in section 4.2 of treating

an appraisal as a measurement. The evidence produced at the first attestation at

P0 is sent back to P1 and then is distributed via the sequential branching operator

”< ” such that it is consumed by the appraise action to the left and not sent to the

second attest measurement to the right. After P0 appraises the evidence, it decides

whether or not to continue the attestation protocol. In case it does, it first nullifies

the result of the appraise action (as otherwise it would be bundled together with

the evidence of the second attest, which is not necessary) and then executes the

attestation of its own system. The generated evidence is sent back to P0 and the

protocol concludes.

Although we already discussed that this use of a measurement is not what this

kind of phrase was meant to express, there is a bigger difference in this case. In our

protocol, the embedded attestation requires P1 to make a trust decision in the mid-

dle of the protocol that can stop its execution based on the result of the appraisal.

This conditional is a behavior that cannot be expressed with Copland. In a regular

Copland phrase, a series of measurements are performed in some unalterable suc-

cession (although depending on the operators, some of them might run in parallel)

and a decision point only comes after the protocol has concluded and the principal

that started the attestation appraises the generated evidence, an assessment that is

not part of the attestation itself. In this case, however, we have a different kind of

27

action with an atypical behavior that cannot be conveyed by the Copland phrase

itself, but by the context that we attach to the protocol. This could lead to different

results in a static analysis that identifies attack scenarios in which an adversary

successfully avoids detection by the protocol.

We can make a small modification to the previously discussed embedded mutual

attestation example to illustrate this problem. Let us imagine a situation in which

a central in-house server P2 is the one that bootstraps the attestation process and

appraises the final evidence on P1 gathered by P0, as shown in Figure 4.3. Before

the protocol concludes, P2 has to measure its state, again, this time for P2 to

appraise. We can express this modified protocol by adding some minimal changes

to our phrase:

* P2: @P0 [@P1 [(@P0 [attest10 P0 sys] ⇒ (appraise P1 it ⇒
{} +<- attest01 P1 sys))] -<- attest10 P0 sys]

In this example, an attacker avoids detection at P0 ’s system if the system

is corrupted by the time the final attest10 measurement is performed. To prevent

replay attacks by P0, a nonce should be included at the beginning of the attestation.

As we mentioned before, this attestation measurement can be seen as an abstraction

of a deeper layered attestation process. Without external context on the protocol,

an analysis would disregard the appraisal done by P1, as the evidence generated by

it is nullified. Thus, an attack scenario in which P0 is corrupted before the protocol

begins would be valid in theory, as the attacker could then corrupt the attest10

process just before the last measurement and avoid detection. However, a corrupted

P0 would not pass the appraisal done by P1. In the security analysis, this would be

seen as an irrelevant fact, but as P0 has the power to stop the attestation process

altogether, it would not send its own attestation evidence back to P0, which would

28

Figure 4.3: Embedded mutual attestation modified

prevent the attacker from avoiding detection at P0 ’s system as P2 would notice

that something is wrong if it only receives P0 ’s evidence.

As the previous example showed, the lack of a way to express certain nuances in

mutual attestation scenarios on Copland makes the inclusion of context an impera-

tive to fully grasp a protocol. However, one of the purposes of Copland is to be able

to express these kinds of scenarios with its syntax. The problem is also highlighted

by the use of the Chase model-finder tool, as there is no way in the Copland phrase

to express the decision point in the middle of the protocol. To model SGX’s attes-

tation successfully, we include additional assumptions to our Chase inputs, which

will be discussed in chapter 5.

29

Chapter 5

Analysis of Attestation in SGX

In this chapter, we present our analysis of the three SGX attestation protocols:

Local attestation, Platform Provisioning and Remote attestation. For each of them,

we present our modeled phrase in Copland, the attack approaches found with the

Chase model-finder and the security assumptions that the protocols requires to be

considered safe.

5.1 Local attestation

Local attestation is a process in Intel’s SGX architecture in which two enclaves

located in the same system verify each other’s identity and confirm that they are

indeed running in the same machine. The general actions performed during the

process can be seen in Figure 5.1.

The analysis approach we take for SGX was first presented by Rowe et. al for

generic attestation protocols [20]. The first step in our analysis is to describe SGX’s

local attestation process and its components with a Copland phrase. The main

principals that interact in the protocol are the two enclaves that will attest to each

other, which are named encA and encB in our phrase. Figure 5.2 shows a basic

30

Figure 5.1: Information flow in SGX’s local attestation. The enclaves are located
on the same system.

Copland phrase that expresses the protocol.

5.1.1 Copland Phrase Details

The attestation is initiated by encA, which takes the role of the appraising party.

It then retrieves its mrenclave identity record. This section is expressed by: ∗encA :

read encA mrenclaveA. The retrieval of enclave A’s mrenclave is performed by the

measurement read, which takes place on encA. The retrieved mrenclave is sent to

encB via the → operator, which stands for sequential execution, with a request to

attest its state.

*encA: read encA mrenclaveA

⇒ @encB [ereport encB stateB] ⇒ (egetkey encA stateA -<+ _)

⇒ appraise encA reportB ⇒ {} ⇒ ereport encA stateA

⇒ @encB [(egetkey encA stateA -<+ _)

⇒ appraise encB reportA]

Figure 5.2: First Copland phrase for SGX’s local attestation

Once encB receives the request from encA with @encB[...], it calls the EREPORT

CPU leaf instruction, used to obtain a REPORT of encB ’s identity binded with

encA ’s mrenclave. This REPORT is then sent back in a reply to encA, which runs

31

two operations: the first one is the CPU leaf instruction EGETKEY, called with the

measurement msp(egetkey, encA, stateA) and which allows the enclave to obtain

the report key needed to validate the REPORT sent by encB. The second operation

is a copy of this REPORT, which is expressed in Copland with the operator and

that receives the evidence thanks to the sequential branching done with − < +. We

branch our operations because we want both pieces of evidence (the REPORT and

the report key) to be bundled together before being passed on to the next operation,

which is the verification of encB ’s state done by encA. In our phrase, we express it

with the measurement msp(appraise, encA, reportB), and then we null the produced

evidence with the shorthand {}, as its result is used by encA to decide whether or

not encB can be trusted but has no use for the rest of the protocol. Notice that we

have to make the evidence appraisal at encA explicit by adapting it in a Copland

atomic measurement action in order to express the trust decision at the middle of

the protocol, as it can be stopped if encA detects a corruption in encB.

After encA has verified the identity of encB, it also calls the EREPORT instruction

to produce a REPORT of its own state so that encB can appraise encA ’s identity as

well. This is expressed with the same Copland measurements used in the previous

step, but performed on the opposite enclave. We include the final appraisal explicitly

because otherwise the final evidence bundle would be returned to encA, as it is the

principal that started the protocol. But as local attestation in SGX is an example

of mutual attestation in which each appraisal is done in succession, we want the

second enclave to verify the identity of the first one before the protocol returns to

encA and is finalized.

Although this phrase correctly describes the protocol, we can make a change in

order to better convey its nuances. Both EGETKEY and EREPORT are called from

within the enclaves, as it is a requirement imposed by Intel. But as they are CPU

32

instructions, besides the inputs, their execution cannot be influenced in any way

from the enclaves. Thus, we consider it helpful to make this distinction explicit in

this case by introducing a third principal, that we call cpu and that is the one that

performs the egetkey and ereport measurements after receiving a request from one

of the enclaves. We believe this can make it easier to digest before we move on to

more complex attestations in SGX in which we leave this relation implicit. This

modified Copland phrase can be seen in Figure 5.3.

*encA: read encA mrenclaveA ⇒ @encB [@cpu[ereport encB stateB]]

⇒ (@cpu[egetkey encA stateA] -<+ _)

⇒ appraise encA reportB ⇒ {}

⇒ @cpu[ereport encA stateA]

⇒ @encB [(@cpu[egetkey encA stateA] -<+ _)

⇒ appraise encB reportA]

Figure 5.3: Modified Copland phrase for SGX’s local attestation

The Copland phrase can be translated into an event system that determines the

ordering of the measurements in the protocol. Figure 5.4 shows the event system

for our SGX’s local attestation phrase, also generated by Chase. The system shows

that every operation during the local attestation process is executed in a strict linear

order. Considering the fact that it would be easy to modify the protocol so that

the attestations could run in parallel (as they do not depend on the results of the

other), the decision to have them run sequentially seems to be a design choice by

Intel. The label of each event follows the pattern ”e0”, where 0 increases for each

event according to the partial ordering established by the Copland phrase. Besides

the measurement events, additional events take place when a principal requests

measurements from other principals, with the request and the subsequent reply

acting as separate events. The branching operators also create two additional events,

one for splitting the input evidence and one for joining the resulting evidence. The

33

events in SGX’s local attestation are the following:

• l(e0) = msp(encA, void, read, encA, mrenclaveA)

• l(e1) = req(encA, encB)

• l(e2) = req(encB, cpu)

• l(e3) = msp(cpu, e2, ereport, encB, stateB)

• l(e4) = rpy(encB, cpu)

• l(e5) = rpy(encA, encB)

• l(e6) = split(encA, -, <, +)

• l(e7) = req(encA, cpu)

• l(e8) = msp(cpu, e7, egetkey, encA, stateA)

• l(e9) = rpy(encA, cpu)

• l(e10) = cpy(encA)

• l(e11) = join(encA)

• l(e12) = msp(encA, e11, appraise, encA, reportB)

• l(e13) = nul(encA)

• l(e14) = req(encA, cpu)

• l(e15) = msp(cpu, e14, ereport, encA, stateA)

• l(e16) = rpy(encA, cpu)

• l(e17) = req(encA, encB)

• l(e18) = split(encB, -, <, +)

• l(e19) = req(encB, cpu)

34

• l(e20) = msp(cpu, e19, egetkey, encA, stateA)

• l(e21) = rpy(encB, cpu)

• l(e22) = cpy(encB)

• l(e23) = join(encB)

• l(e24) = msp(encB, e23, appraise, encB, reportA)

• l(e25) = rpy(encA, encB)

Figure 5.4: Event system for SGX’s local attestation.

35

With the event system obtained we can start our attack analysis with Chase [20].

As we are working with a mutual attestation scenario, an attacker could potentially

corrupt any of the two enclaves and each of these cases entails its own analysis,

although in practice they will be very similar because the attestations work almost

like a sequential mirror of each other. To analyze the attack scenarios to one of

the enclaves we took a portion of the original Copland phrase, which can be seen

in Figure 5.5 and corresponds to the first part of the attestation, when encB has

finished attesting its state to encA but encA still has not attested itself to encB.

*encA: read encA mrenclaveA

⇒ @encB [@cpu[ereport encB stateB]]

⇒ (@cpu[egetkey encA stateA] -<+ _)

⇒ appraise encA reportB

Figure 5.5: Analyzed portion of SGX’s local attestation

The first step in the analysis is determining the measurement of interest, which

is the point at which we want to find whether an attacker has compromised a certain

component of the system without being detected. We define our measurement of

interest in Figure 5.6. The first part of the logical statement defines e11 as the

measurement event at which the attacker would be considered successful if it had

compromised the system without being detected. The second part of the statement

designates the corruption target of the attacker and is defined with the phi predicate.

In our phrase, the target is reportB, which includes information about the identity

of encB to be appraised and whose corruption could imply that the enclave has been

compromised or that the attestation request was fulfilled by a simulated enclave.

The Chase model finder produces a series of possible attack models based on

the Copland phrase and the parameters provided at runtime. One more assumption

that we include for the initial analysis is the dependencies of the appraisal action,

36

l(E) = msp(encA, e11, appraise, encA, reportB) ⇒
phi(encA, reportB, E)

Figure 5.6: Measurement of interest for the reworked SGX phrase

depends(P, C, encA, appraise) ⇒ P = cpu ∧ C = egetkey ∨
P = cpu ∧ C = ereport ∨ P = encB ∧ C = stateB ∨ P = encA ∧
C = c.

Figure 5.7: Dependencies of the appraisal process

shown in Figure 5.7. We define a relation of dependency between the appraise

measurement and four different components: the egetkey measurement, located in

cpu principal; the ereport measurement, also in the cpu; the stored state of encB;

and a ”c” component located in encA that stands for any unaccounted dependency

not explicitly included in the Copland phrase but that might affect the appraisal.

By running Chase with the selected phrase and measurement of interest, we obtain

a total of 11 attack scenarios. One of them can be seen in Figure 5.8. In this case,

an attacker corrupted the identity of encB and then corrupted the appraisal method

employed by encA to verify the encB ’s REPORT.

Figure 5.8: Example of an attack scenario in which an attacker would beat the
attestation.

37

5.1.2 Results

By analyzing the attack scenarios produced by the Chase model finder we can find

three general categories of attacks. These results are shown in table 5.1.

Attack category Incidence
Scenarios in which the EGETKEY or the EREPORT leaf instructions
have been attacked

10

Scenarios in which the appraisal process has been attacked 1
Scenarios in which an unknown dependency in the attestation has
been attacked

1

Table 5.1: Attack categories for partial Local attestation

Hardware considerations can further reduce the amount of attack scenarios based

on the system’s architecture. Figure 5.9 states that no component that runs directly

on the cpu can be corrupted. This is a reasonable assumption when we consider that

an attack of the EGETKEY or EREPORT implementations (to make them, for in-

stance, be allowed to be called from outside an enclave) would require hardware

modifications that would be impractical for an attacker. By applying this assump-

tion, the number of attack scenarios is reduced to 2.

l(E) = cor(cpu, C) ⇒ false

Figure 5.9: Assumption to forbid the corruption of components at cpu

Analyzing the entire local attestation phrase follows a similar process. Our

measurement of interest focuses on the appraise action on reportA, identified as

event e27. We look at any scenario in which a corrupted reportA, which stores the

appraised enclave’s identity, fools detection by the time the appraise action takes

place. As this time we are considering the entire phrase, we need to include an

additional dependency for the conditional in the first part of the protocol. We add

38

the appraise action from encA as a direct dependency of encB and include its relations

to other components in both principals. Figure 5.10 shows the measurement of

interest and the assumptions for this protocol.

l(E) = msp(encB, e26, appraise, encB, reportA) ⇒
phi(encB, reportA, E).

% Assumptions about system dependencies.

depends(P, C, encB, appraise) ⇒ P = encA ∧ C = appraise ∨
P = cpu ∧ C = egetkey ∨ P = cpu ∧ C = ereport ∨ P = encB ∧
C = stateB ∨ P = encB ∧ C = c.

depends(P, C, encA, appraise) ⇒ P = cpu ∧ C = egetkey ∨
P = cpu ∧ C = ereport ∨ P = encB ∧ C = stateB ∨ P = encA ∧
C = c.

Figure 5.10: Assumptions for complete local attestation phrase

By executing Chase with the provided input we obtain 67 different attack models.

After analyzing the phrases, we found the the corruption scenarios fall into four

scenarios, shown in table 5.2.

Attack category Incidence
Scenarios in which the EGETKEY or the EREPORT leaf instructions
have been attacked (could include instances of the other categories)

55

Scenarios in which the appraisal process has been attacked 1
Scenarios in which an unknown dependency in the cpu has been at-
tacked

3

Scenarios in which the state of the second enclave has been attacked 8

Table 5.2: Attack categories for Local attestation

An example of the third category is shown in Figure 5.11, in which an attacker

successfully corrupts the identity of the first enclave by attacking part of the context

of the EGETKEY leaf instruction on the cpu and then the state of the second enclave

in order to be able to pass the appraise action with a corrupted target enclave. In

practice, this kind of attack would be unfeasible, as the attacker would need to

39

Figure 5.11: Attack scenario for the complete local attestation.

corrupt an unidentified component in the cpu principal that would affect the key

retrieval instruction in such a way that the corrupted enclave would pass appraisal.

As before, we can limit these kinds of attacks by including the assumption shown

in figure 5.9 and reduce our attack scenarios to three instances.

5.2 Platform Provisioning

In order for an enclave to prove their identity to an external Service Provider during

remote attestation with SGX, the target enclave has to send a verifiable crypto-

graphic QUOTE. However, a QUOTE can only be produced by an enclave once

it gains access to a special asymmetric attestation key. The process by which a

SGX-enabled machine obtains this key is known as Platform Provisioning. It only

takes place once and the obtained key is stored and used in all subsequent remote

40

attestations. The only exception takes place whenever a new security update be-

comes available, in which case the Platform Provisioning protocol is executed again.

Figure 5.12 gives a glimpse on the Platform Provisioning protocol.

Figure 5.12: Information flow during Platform Provisioning.

*ips, ipspubk:

@pve [((read pve pk1 ⇒ # ⇒ !) +~+ (read pve svn ⇒ !))]

⇒ checkIfProvisioned ips ppid ⇒ genChallenge ips pk2

⇒ @pve [(decrypt pve chal ⇒ genProof pve tcb)]

⇒ validate ips tcb2

Figure 5.13: Copland phrase for Platorm Provisioning

5.2.1 Copland Phrase Details

Figure 5.13 presents our Copland phrase for Platform Provisioning. Two principals

interact during the protocol: Intel’s Provisioning Service (named ips in our phrase)

and the provisioning enclave (named pve in our phrase), The later is a special en-

clave that comes preinstalled in every SGX-capable machine and only interacts with

with this protocol. At the beginning of the process, the pve uses the IPS’s public key

(ipspubk) to sign the hash of the Platform Provisioning ID (pk1) and its Security

41

Version Number (svn). Both are then returned to the IPS, which checks if a pro-

visioning has already taken place for a particular Platform Provisioning ID (ppid).

Next, the IPS creates a challenge based on the information received by the PVE and

sends it to the pve. The pve decrypts the challenge and generates a proof based

on its Trusted Computing Base (tcb) and then returns it to the IPS for validation,

which proves the identity of the machine to the IPS.

Of the two entities that participate in this protocol, our analysis will only con-

sider the case in which the pve is compromised or fake, as we can assume the IPS will

be secure thanks to its location inside Intel’s premises and also because its security

is not guaranteed by the SGX implementation, which the focus of this work.

The Platform Provisioning protocol illustrates another possible improvement to

the Copland language: a way to name the evidence we get from a measurement, so

that in case that evidence is going to be used in the next measurement, the language

can express this relationship explicitly. Consider the last two measurements in our

Copland phrase. The first one generates proof that satisfies the IPS’s challenge

based on its Trusting Computing Base (tcb). The evidence generated returns to

the IPS, which decrypts it and verifies its correctness. In the Copland phrase, we

name this component tcb2. However, Copland lacks a mechanism that allows us

to specify that this tcb2 comes directly from the evidence produced in the previous

measurement, so in order to express this relationship in the Chase model finder, we

have to add a dependency assumption, which can be seen in Figure 5.10.

depends(P, C, ips, tcb2) ⇒ P = pve ∧ C = genProof ∨ P = pve ∧
C = tcb.

Figure 5.14: Basic dependencies for Platform Provisioning

With this assumption, we specify that tcb2 explicitly depends on the tcb com-

42

ponent measure previously and the genProof process itself. However, if there was

a way to express that the previous evidence is the target of the next measurement

in the Copland phrase itself, the protocol would avoid ambiguity and we would not

need to add these kinds of assumptions.

In order to express the rest of the relationships in the protocol, we add the

following five dependencies:

• depends(P, C, ips, tcb2) → P = pve & C = genProof ∥ P = pve & C = tcb.

• depends(P, C, pve, tcb) → P = ips & C = ppid.

• depends(P, C, ips, ppid) → P = pve & C = pk1 ∥ P = pve & C = svn.

• depends(P, C, pve, genProof) → P = ips & C = genChallenge.

• depends(P, C, pve, genChallenge) → P = ips & C = checkIfProvisioned ∥ P

= ips & C = ppid.

The first dependency indicates that the genProof process depends on the chal-

lenge sent by the IPS. The second one signals that the challenge received by the pve

depends on the challenge generation process at the IPS. The last one indicates that

the challenge regeneration depends on the reading process and on the components

platforming keys and svn.

For our last step, we define the measurement of interest in our analysis, which

in this case is the validate measurement at Intel’s Provisioning Service. The target

component is the tcb. This definition can be seen in Figure 5.15.

5.2.2 Results

By running Chase on our Copland phrase with the stated assumptions, we obtain

110 different attack scenarios for the Platform Provisioning process. An example of

43

l(E) = msp(isp, E1, validate, isp, tcb2) ⇒ prec(E, E2) ∧
phi(pve, tcb, E2).

Figure 5.15: Measure of interest for Platform Provisioning

an attack model can found in Figure 5.17. In this attack, the adversary is able to fool

detection by corrupting, besides the trusted computing base, the proof generation

process itself that takes place in the provisioning enclave,

Furthermore, we can classify the attack scenarios into three categories. They are

included in Table 5.3.

Attack category Incidence
Attacks that take place after the protocol has finished 32
Attacks that corrupt some of the processes or inputs in the provision-
ing enclave that produce the response to the IPS

9

Attacks that corrupt some of the validating process in the IPS 69

Table 5.3: Attack categories for Platform Provisioning

Although the number of possible attack scenarios is considerable, we can reduce

it by applying a number of assumptions based on this particular case. For instance,

the attack scenarios that take place after the protocol’s last measurement are not of

concern in this case, as they would still need to pass SGX remote attestation before

the platform receives any kind of sensitive information that an attacker might be

seeking. We can exclude all scenarios in which a corruption event happens after our

final measurement event on the quoting enclave, whose label is e13 in our Copland

phrase, by applying the following assumption:

prec(e13, E2) ∧ l(E2) = cor(P,C) ∧ ms_evt(e13) ⇒ false.

Figure 5.16: Assumption for Platform Provisioning

44

Figure 5.17: Attack scenario for Platform Provisioning.

This reduces the number of attack scenarios to 78. The next assumption is

related to the security of the IPS. As attacks on large tech companies over the past

decade have demonstrated, no organization can guarantee that their security level

would be enough to prevent possible cyberattacks. A successful attack on the IPS

could bring more serious problems than the integrity of the provisioning process

itself, as it would compromise every SGX-compatible chip’s root provisioning keys,

which are created during the manufacturing process and stored by Intel to confirm

the chip’s identity. SGX technology, however, also makes use of the root sealing key

to derive keys used during remote attestation. The root sealing key is generated the

first time the device is turned on and thus is not saved by Intel. This reduces the

security risks of a successful attack on the IPS, although the provisioning process

itself would remain compromised. This is a clear weakness of the SGX design, even

with the provisions added by Intel to mitigate its impact.

45

After considering the risks involved with any kind of attack on the IPS, we can

exclude them from our results by defining an assumption in which components lo-

cated inside the IPS cannot be corrupted. We can accomplish this with the following

statement:

l(E) = cor(ips, C) ⇒ false.

By applying this assumption the number of attack scenarios is reduced to nine.

At this point, we can conclude that the weakest link of the Platform Provisioning

process is the Provisioning enclave. The security of this enclave is high, as it cannot

be accessed by users and it is only involved with in this process. By including an

assumption to forbid attacks against the pve, the attack scenarios get reduced to

zero. However, additional research is required to confirm is this enclave is as secure

as required to prevent attacks, as a vulnerability in it would leak the attestation key

used by the platform in SGX’s remote attestation.

5.3 Remote attestation

After an SGX-enabled device has obtained its attestation key through the Platform

Provisioning process described in section 5.2, it can attest itself to external entities

through remote attestation. In order to achieve it, a special enclave known as the

Quoting enclave must create a QUOTE of the target enclave signed with the device’s

attestation key so that it can be verified by Intel. The Quoting enclave comes pre-

installed by default in every SGX-enabled device and its sole purpose is to facilitate

remote attestation, as is the only enclave that can access the attestation key and

thus helps protect it even from other enclaves [5]. Figure 5.18 presents our Copland

phrase for remote attestation.

46

*sv: @isp [read1 isp epidGroup] ⇒ @ias [read2 ias sigRL]

⇒ genChallenge sv spid

⇒ @isp [ereport isp stateISV

⇒ @qe (egetkey qe stateQE -<+ _)

⇒ verify isp stateISV ⇒ egetkey qe epidkey

⇒ genQuote isp mrenclave]

⇒ @ias [(validate ias quote +<+ checkprivrl ias quote)

⇒ createReport ias report]

Figure 5.18: Copland phrase for Remote attestation

5.3.1 Copland Phrase Details

The attestation is initiated by the Service Vendor (sv in our phrase), which sends

a request to the Independent Service Provider’s (isp) enclave for its alleged EPID

group in the measurement @isp [read1 isp epidGroup]. In this scenario, the sv asks

the isp to prove its identity before it can share company secrets with it. After the

sv receives the EPID group, it asks the Intel Attestation Service ias for an updated

Signature Revocation List sigRL with the next part of the Copland phrase: @ias [...].

After receiving a reply from Intel, the isp generates a challenge message with

the measurement genChallenge that includes the updated sigRL, its Service Provider

ID spid and a nonce for freshness. Once the enclave receives the challenge, it calls

the EREPORT leaf instruction to generate a cryptographic REPORT and sends it to

the Quoting enclave qe via the => linear sequence operator. At this point, a local

attestation process starts in which the Independent Service Provider’s enclave attests

itself to the Quoting enclave. The qe calls the measurement msp(egetkey qe stateQE)

to obtain the report key necessary to decrypt the target’s enclave REPORT. It then

verifies the isp’s identity.

Once the Quoting enclave finishes local attestation, it calls the EGETKEY in-

struction again, but this time to retrieve the attestation key (also known as EPID

47

private key) obtained during Platform Provisioning. We express this operation with

the measurement msp(egetkey qe epidkey). With the key in its possession, the Quot-

ing enclave can finally generate the QUOTE over the isp’s MRENCLAVE identity sig-

nature and encrypt it with the Intel Attestation Service’s public key, which is hard-

coded in the qe. We abstract these operations with the msp(genQuote qe mrenclave)

measurement.

The generated QUOTE is sent back to the isp, then to the Service Vendor

and finally to Intel Attestation Service. The ias performs two verification: it

first validates the QUOTE based on its identity signature and then checks that

the device is not included in the Private Revocation List. If it was able to con-

firm the platform’s identity, it creates an attestation report with the measurement

msp(createReport ias report) and sends it to the Service Vendor, which finishes the

protocol.

l(E) = msp(qe, E1, genQuote, isv, mrenclave) ⇒
phi(isv, mrenclave, E).

Figure 5.19: Measurement of interest for Remote attestation

For our analysis, we consider the case in which an attacker tries to compromise

the Independent Service Provider’s enclave, as it is the principal that would receive

the information the attacker would potentially want to get access to. Our measure-

ment of interest cam be seen in Figure 5.19 and is the genQuote operation on the

Quoting enclave and the component the attacker would need to corrupt to be con-

sidered successful is the identity signature MRENCLAVE, which describes the state

of the target enclave.

After modeling the relations between the different components of the protocol,

we came up with the following dependencies:

48

• depends(P, C, ias, report) → P = ias & C = validate ∥ P = ias & C =

checkprivrl ∥ P = ias & C = quote.

• depends(P, C, ias, quote) → P = qe & C = genQuote ∥ P = isp & C =

mrenclave.

• depends(P, C, ias, quote) → P = isp & C = mrenclave ∥ P = isp & C =

stateISV.

• depends(P, C, isp, mrenclave) → P = isp & C = stateISV.

• depends(P, C, qe, genQuote) → P = qe & C = egetkey ∥ P = isp & C =

stateISV.

• depends(P, C, qe, verify) → P = qe & C = egetkey ∥ P = isp & C = ereport.

• depends(P, C, qe, egetkey) → P = qe & C = stateQE ∥ P = qe & C = verify.

The first three dependencies refer to the evidence flow to the components of the

Intel Attestation Service. But as our measurement of interest takes place before

the QUOTE is sent to the ias, its components do not participate in any attack

analysis. The fourth dependency sets an explicit relation between the enclave’s

identity signature and the state of the enclave itself. The quote generation process

depends directly on the result of the EGETKEY instruction to get the attestation

key and of the state of the target enclave. The next dependency refers to the

Quoting enclave verification during local attestation, and it depends on the result

of the EREPORT instruction and of the EGETKEY to get the report key. Our last

statement is used to express the conditional step that we cannot express in Copland

directly (as explained in section 4.3) and which refers to the result of the embedded

local attestation that can stop the protocol in case it cannot be verified.

49

5.3.2 Results

After running Chase with the detailed inputs, we obtain 114 different attack sce-

narios against Remote attestation. By analyzing the results, we can identify three

attack categories that an adversary could try, which are included in Table 5.4.

Figure 5.20: Attack scenario for Remote attestation.

Figure 5.20 shows an example in which an attacker avoids detection by corrupt-

ing the EREPORT instruction so that the compromised enclave would appear to

50

Attack category Incidence
Attacks where the verification or quote generation processes in the
Quoting enclave are compromised

25

Attacks against the EGETKEY or EREPORT leaf instructions 67
Attacks against an unidentified dependency in the Quoting enclave 22

Table 5.4: Attack categories for Remote attestation

be working correctly. As we discussed before, many of the found attacks are not

actually realistic, particularly the ones that depend on corrupting the processor. In

order to account that, we can include a couple of dependencies to specify that the

processor leaf instructions ca not be compromised during any kind of attack. These

assumptions can be seen in Figure 5.21.

(E) = cor(P, egetkey) ⇒ false.

l(E) = cor(P, ereport) ⇒ false.

Figure 5.21: Assumptions to limit processor attacks

By applying these assumptions and re-running our Copland phrase through

Chase, we can reduce the number of attack scenarios to 47. This is still a con-

siderable number of attack strategies, although they follow similar patterns. In

particular, all the identified attack scenarios require the Quoting enclave to be com-

promised. As this enclave is the only one that can access the attestation key and the

one that generates the QUOTE to be verified by Intel, the security of the protocol

is very high. It is apparent that the inviolability of the qe is an essential component

of SGX’s threat model. This is shown by applying the assumption in Figure 5.22,

which reduces the attack scenarios to zero. However, different attacks found in the

previous years point out that these assumptions were too optimistic.

51

l(E) = cor(qe, C) ⇒ false.

Figure 5.22: Assumption to limit attacks against Quoting enclave

52

Chapter 6

Conclusions

In this work, we analyzed the security of SGX’s design with the help of the Copland

declarative language and the Chase model-finder. We now present our conclussions

for both SGX and Copland.

6.1 SGX

We used Copland to model the three SGX attestation processes: local attestation,

platform provisioning and remote attestation, and found the attack approaches that

an adversary could pursue in order to compromise the process. We grouped the

approaches in different categories. These results are detailed in Chapter 5.

In the case of local attestation, we found the following approaches:

1. Attacks in which the EGETKEY or the EREPORT leaf instructions have been

compromised (could include instances of the other categories).

2. Attacks in which the appraisal process has been compromised.

3. Attacks in which an unknown dependency in the processor has been compro-

mised.

53

4. Attacks in which the state of the second enclave has been compromised.

During our analysis of Platform Provisioning, we found the following attack

categories:

1. Attacks that take place after the protocol has finished.

2. Attacks that corrupt some of the processes or inputs in the provisioning enclave

that produce the response to the IPS.

3. Attacks that corrupt some of the validating process in the IPS.

Finally, with remote attestation, we found that an attacker could follow these

approaches:

1. Attacks where the verification or quote generation processes in the Quoting

enclave are compromised.

2. Attacks against the EGETKEY or EREPORT leaf instructions.

3. Attacks against an unidentified dependency in the Quoting enclave.

Next, we tested out different assumptions in each protocol as input for Chase in

order to get a better idea of the requirements over which SGX’s security rests upon.

For instance, we found the following assumptions to be vital for SGX to work as

advertised:

• The processor (including the fused-at-production secret keys on it) cannot be

compromised.

• The special Quoting and Provisioning enclaves cannot be compromised.

• Intel has to be trusted.

54

Additionally, we found some design choices that make SGX harder to attack.

For instance, we noticed that SGX’s protocols have been created to run explicitly

in sequence to reduce the possible attack windows, as some of its operations could

work in parallel. Also, the fact that the operations that manipulate the most critical

keys in a SGX device are handled by separate entities to which users have no direct

access reduces the likelihood of attacks. The fact that most attacks on the remote

attestation protocol can only succeed by compromising the Quoting enclave first is

an indicator of this design choice.

6.2 Copland

Regarding Copland, we ran into issues while attempting to model the complexities

of SGX’s attestation protocols. As a result, our Copland phrases were missing

relevant information about the protocols that we could only be expressed through

some external context in addition to the phrases. We find that, although in most

cases there are workarounds to model these processes, an extension to Copland

would help achieve the language goal of expressing attestations more naturally. We

explain many of these considerations and some approaches to deal with them by

going through small examples in Chapter 4. Some of the inconveniences we found

in Copland are the following:

1. Conditional constructs in mutual attestations are not available in Copland.

2. There is no way to reference previously generated evidence in the phrases.

3. Explicit appraisals have to be expressed as measurements even though they

do not comply with their definition.

In most cases, these inconveniences can be solved with workarounds. We also

55

showed that failing to address them can lead to unrealistic attack scenarios after

the phrases were analyzed with Chase. Proposals to fix these cases include dividing

complex phrases into smaller ones that can be analysed separately or adding more

input assumptions in order to treat them as dependencies.

We also ran into issues when processing very complex Copland phrases with

the Chase model-finder, specifically out-of-memory errors. To circumvent this, we

reduced the complexity of the system by leaving some operations and principals

implicit, like the processor in the case of the leaf instructions. We found this to be

a good approach, although it requires including additional assumptions to Chase to

describe the operations and their security correctly.

56

Bibliography

[1] Anati, I., Gueron, S., Johnson, S., and Scarlata, V. Innovative Tech-

nology for CPU Based Attestation and Sealing. In Proceedings of the 2nd

international workshop on hardware and architectural support for security and

privacy (2013, June), vol. 13, ACM, p. 7.

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Kon-

winski, A., and Zaharia, M. A View of Cloud computing. Communications

of the ACM 53, 4 (2010), 50–58.

[3] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun,

S., and Sadeghi, A. R. Software Grand Exposure: SGX Cache Attacks are

Practical. In 11th USENIX Workshop on Offensive Technologies (2017).

[4] Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J.,

O’Hanlon, B., and Sniffen, B. Principles of Remote Attestation. Inter-

national Journal of Information Security 10, 2 (2011), 63–81.

[5] Costan, V., and Devadas, S. Intel SGX Explained. IACR Cryptol 86

(2016), 1–118.

[6] Gray, J. Implementing TPM Commands in the Copland Remote Attestation

Language.

57

[7] Guttman, J. D., and Ramsdell, J. D. Understanding attestation: An-

alyzing protocols that use quotes. In Security and Trust Management - 15th

International Workshop, STM 2019, Luxembourg City, Luxembourg, September

26-27, 2019, Proceedings (2019), S. Mauw and M. Conti, Eds., vol. 11738 of

Lecture Notes in Computer Science, Springer, pp. 89–106.

[8] Helble, S. C., Kretz, I. D., Loscocco, P. A., Ramsdell, J. D., Rowe,

P. D., and Alexander, P. Flexible mechanisms for remote attestation. ACM

Trans. Priv. Secur. 24, 4 (2021), 29:1–29:23.

[9] Jurgensen, G., Neises, M., and Alexander, P. An sel4-based architec-

ture for layered attestation. In Proceedings of the 7th Annual Symposium on

Hot Topics in the Science of Security, HotSoS 2020, Lawrence, Kansas, USA,

September 22-24, 2020 (2020), P. Alexander, D. Davidson, and B. Choi, Eds.,

ACM, pp. 18:1–18:2.

[10] Kretz, I. D., Ramsdell, J. D., and Rowe, P. D. Use Cases for Remote

Attestation. https://ku-sldg.github.io/copland/resources/tutorial/

README, 2008. [Online; accessed 24-March-2022].

[11] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghalsasi,

A. Cloud Computing—The business Perspective. Decision Support Systems

51, 1 (2011), 176–189.

[12] Mofrad, S., Zhang, F., Lu, S., and Shi, W. A comparison study of

intel SGX and AMD memory encryption technology. In Proceedings of the 7th

International Workshop on Hardware and Architectural Support for Security

and Privacy, HASP@ISCA 2018, Los Angeles, CA, USA, June 02-02, 2018

(2018), J. Szefer, W. Shi, and R. B. Lee, Eds., ACM, pp. 9:1–9:8.

58

https://ku-sldg.github.io/copland/resources/tutorial/README
https://ku-sldg.github.io/copland/resources/tutorial/README

[13] Petz, A., and Alexander, P. A Copland Attestation Manager. In Pro-

ceedings of the 6th Annual Symposium on Hot Topics in the Science of Security

(2019, April), pp. 1–10.

[14] Petz, A., and Alexander, P. An Infrastructure for Faithful Execution of

Remote Attestation Protocols. In NASA Formal Methods Symposium (2021,

May), Springer, Cham, pp. 268–286.

[15] Petz, A., Jurgensen, G., and Alexander, P. Design and Formal Verifi-

cation of a Copland-based Attestation Protocol. In ACM-IEEE International

Conference on Formal Methods and Models for System (2021).

[16] Ramsdell, J. D., Rowe, P. D., Alexander, P., Helble, S. C.,

Loscocco, P., Pendergrass, J. A., and Petz, A. Orchestrating Lay-

ered Attestations. International Conference on Principles of Security and Trust

(2019, April), 197–221.

[17] Rowe, P. D. Bundling evidence for layered attestation. In Trust and Trustwor-

thy Computing - 9th International Conference, TRUST 2016, Vienna, Austria,

August 29-30, 2016, Proceedings (2016), M. Franz and P. Papadimitratos, Eds.,

vol. 9824 of Lecture Notes in Computer Science, Springer, pp. 119–139.

[18] Rowe, P. D. Confining adversary actions via measurement. In Graphical

Models for Security - Third International Workshop, GraMSec 2016, Lisbon,

Portugal, June 27, 2016, Revised Selected Papers (2016), B. Kordy, M. Ekstedt,

and D. S. Kim, Eds., vol. 9987 of Lecture Notes in Computer Science, Springer,

pp. 150–166.

[19] Rowe, P. D. Principles of layered attestation. CoRR abs/1603.01244 (2016).

59

[20] Rowe, P. D., Ramsdell, J. D., and Kretz, I. D. Automated Trust

Analysis of Copland Specifications for Layered Attestations. In 23rd Inter-

national Symposium on Principles and Practice of Declarative Programming

(2021, September), pp. 1–15.

[21] Saghafi, S., Danas, R., and Dougherty, D. J. Exploring theories with

a model-finding assistant. In Automated Deduction - CADE-25 - 25th Inter-

national Conference on Automated Deduction, Berlin, Germany, August 1-7,

2015, Proceedings (2015), A. P. Felty and A. Middeldorp, Eds., vol. 9195 of

Lecture Notes in Computer Science, Springer, pp. 434–449.

[22] Sardar, M. U., Faqeh, R., and Fetzer, C. Formal foundations for in-

tel SGX data center attestation primitives. In Formal Methods and Software

Engineering - 22nd International Conference on Formal Engineering Meth-

ods, ICFEM 2020, Singapore, Singapore, March 1-3, 2021, Proceedings (2020),

S. Lin, Z. Hou, and B. P. Mahony, Eds., vol. 12531 of Lecture Notes in Computer

Science, Springer, pp. 268–283.

[23] Swami, Y. Intel SGX Remote Attestation is not Sufficient. In Procedings Black

Hat USA (2017, July).

[24] Tomescu, A. SGX and Haven. http://people.csail.mit.edu/alinush/6.

858-fall-2014/2015/l08-sgx.html, 2015. [Online; accessed 9-April-2022].

[25] van Schaik, S., Kwong, A., Genkin, D., and Yarom, Y. SGAxe: How

SGX fails in Practice.

[26] van Schaik, S., Minkin, M., Kwong, A., Genkin, D., and Yarom, Y.

CacheOut: Leaking Data on Intel CPUs via Cache Evictions. In 2021 IEEE

Symposium on Security and Privacy (SP) (2021, May), IEEE, pp. 339–354.

60

http://people.csail.mit.edu/alinush/6.858-fall-2014/2015/l08-sgx.html
http://people.csail.mit.edu/alinush/6.858-fall-2014/2015/l08-sgx.html

[27] Vill, H. SGX Attestation Process.

[28] Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler,

V., and Gunter, C. A. Leaky Cauldron on the Dark Land: Understand-

ing Memory Side-channel Hazards in SGX. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security (2017, Octo-

ber), pp. 2421–2434.

61

Appendix A

Basic local attestation scenarios

The following figures show the attack models obtained by Chase after applying

the basic assumptions discussed in Chapter 5.1 to the simplified local attestation

Copland phrase.

62

63

Appendix B

Local attestation scenarios

The following figures show the attack models obtained by Chase after applying

the basic assumptions discussed in Chapter 5.1 to the complete local attestation

Copland phrase.

64

65

66

Appendix C

Platform Provisioning scenarios

The following figures show the attack models obtained by Chase after applying the

basic assumptions discussed in Chapter 5.2 to the Platform Provisioning Copland

phrase.

67

68

69

70

71

72

73

74

75

Appendix D

Remote attestation scenarios

The following figures show the attack models obtained by Chase after applying the

basic assumptions discussed in Chapter 5 to the remote attestation Copland phrase.

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

	Introduction
	Background and related work
	Software Guard Extensions (SGX)
	Attestation in SGX
	Attacks against SGX

	Copland
	Copland syntax
	Copland Analysis with Chase

	Related work

	Approach
	Limitations of Copland
	Mutual attestation and the "appraise" action
	Problems with mutual attestation
	Embedded mutual attestation

	Analysis of Attestation in SGX
	Local attestation
	Copland Phrase Details
	Results

	Platform Provisioning
	Copland Phrase Details
	Results

	Remote attestation
	Copland Phrase Details
	Results

	Conclusions
	SGX
	Copland

	Basic local attestation scenarios
	Local attestation scenarios
	Platform Provisioning scenarios
	Remote attestation scenarios

