

Database-Integrated Analytics

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in partial

fulfillment of the requirements for the Degree of Bachelor of Science.

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on the web without editorial or peer review.

Submitted By:

Shaolin Xie

May 05, 2021

Advisor: Mohamed Eltabakh

 2

Abstract

The coordination between data analytics and database systems becomes exceedingly

important in order for data scientists to efficiently analyze data that is stored inside the

database. Currently, there are three approaches to use data analysis tools with databases:

client-server connection, in-database processing, and embedded database. This project

focuses on comparing the client-server connection to the in-database processing. Two

machine learning models - Support Vector Machine and Random Forest - are implemented

using each of the approaches and then tested on datasets of different scales. In this project,

the in-database processing approach is achieved using Apache MADlib, and the client-

server connection approach is implemented using python codes. After comparing the run-

time efficiency and the testing accuracy of the two approaches, conclusions are drawn

regarding the performance of each approach.

 3

Table of Contents

Abstract 2

Table of Contents 3

1. Introduction 4

2. Background 5

2.1 Client-Server Connection

2.2 In-database Processing

2.3 Embedded Database

2.4 Apache MADlib Library

2.4.1 Introduction

 2.4.2 Installation

2.5 Python Implementations

3. Analytical Tools 11

 3.1 Supervised vs Unsupervised Learning

3.2 Support Vector Machine

3.3 Random Forest

4. Methodology 15

 4.1 MADlib Function Algorithm – SVM

4.2 Python Function Algorithm - SVM

4.3 MADlib Function Algorithm - Random Forest

4.4 Python Function Algorithm – Random Forest

5. Results and Analysis 21

6. Conclusion 23

Bibliography 24

Appendix 25

 4

1. Introduction

 Big data is ingrained in every industry. Companies try to gather data to uncover the insights

and trends of their business, and Relational Database Management System (RDBMS) is the most

popular and widely used method for data storage and management. While the data is stored in the

database systems, machine learning tools that analyze the models are usually built to work in a

stand-alone fashion.

The gap between the analytical tools and the database creates inconvenience and

inefficiency for data scientists to analyze data. Therefore, the coordination between machine

learning and database systems becomes exceedingly important in order for data scientists to

efficiently analyze data that is stored inside the database.

The goal of this project is to investigate and evaluate database-integrated analytics tools,

specifically by comparing the client-server connection approach to the in-database processing

approach. Two machine learning models - Support Vector Machine and Random Forest - are

arbitrarily chosen and implemented in Apache MADlib and Python. The run time efficiency and

testing accuracy are compared in order to determine whether MADlib functions or Python

implementations have better performance in terms of conducting database-integrated analysis.

 5

2. Background

The relational database management system is the most popular and widely used method

for data scientists to store and manage data, however, there is a gap between the analytical tools

and data storage. There will be lots of trouble if the data scientist just manages their data by storing

them as text files, especially when the data scientist has to deal with multiple sources at the same

time. Currently, there are three different approaches to use data analysis tools with the database:

client-server connection, in-database processing, and embedded database.

2.1 Client-Server Connection

The client-server connection is where the database and tools are completely separated.

The relationship between analytical tools and databases can be demonstrated by Figure 2.1.

Figure 2.1 Client-server connection model

To analyze the data that is stored inside the database, the analytical tool needs to give

commands to export data from the database to the analytical tool. After the tools process the data

and compute the result, it will send the output back to the database. The process is shown in

Figure 2.2 [1].

 6

Figure 2.2 Client-server connection process

The client-server connection has the advantage that this approach is database-agnostic,

where the ODBC or JDBC connectors can be used to connect to almost any database. It is also

easy to load files without changing the algorithm pipelines in such a case. However, exporting

tables could be time-consuming, especially when tables are large. It also requires the client to

have the memory that is big enough to fit the full dataset. Moreover, the bottleneck heavily

depends on the clients’ protocols.

2.2 In-database Processing

For the in-database processing, the analytical tools are implemented inside the database.

The data stays inside the database. The relationship of such an approach can be viewed as the graph

Figure 2.3.

 7

Figure 2.3 In-database processing model

First of all, this method solves the problem of time being spent on exporting data. It allows

data scientists to perform some analysis inside the database. This approach can be easily achieved

by loading data to the pipeline using standard-compliant SQL functions. However, it becomes

difficult if we need more than simple analysis tools, such as building models and create user-

defined functions. For the in-database approach, user-defined functions are usually written in

C/C++ languages, which requires a significant rewrite of the existing pipelines as well as in-depth

knowledge of the database internals.

2.3 Embedded Database

 The embedded database approach lets users install and run databases within the client

programs.

Figure 2.4 shows the structure of the embedded database.

Figure 2.4 Embedded database model

This approach requires significant effort from the users to keep the database maintained

and tuned. Its benefits don’t usually outweigh the efforts when the user is working on small-scale

data analysis.

 8

2.4 Apache MADlib Library

For the purpose of studying in-database processing, Apache MADlib is chosen for this

project. The MADlib library provides helpful machine learning functions that operate with

PostgreSQL and Greenplum databases.

2.4.1 MADlib Structure

As an in-database processing approach, there are three major components of MADlib

source code: Python driver functions, C++ implementations functions, and the C++ database

abstraction layer [2].

The driver functions are the main entry point from user input and are responsible for the

flow control of the algorithms, such as validating input parameters, executing SQL statements,

evaluating the results, and looping to execute more SQL statements.

The C++ functions are the C++ definitions of the core functions. They are implemented in

C++ rather than Python as needed.

The C++ database abstraction functions provide a programming interface that abstracts all

the Postgres internal details away such that MADlib can focus on the internal functionality rather

than the platform integration logic.

For each MADlib module, there is a required .sql_in file that creates database objects for

this method. There are also optional .py_in, and .c files, which are Python and C/C++ codes that

help in pre/post-processing data and support method algorithms.

2.4.2 MADlib Installation

For this project, MADlib and Postgres are installed on OSX. Since MADlib only works

with PostgreSQL 11 and 12, I download the dmg file for Postgres.app with version PorstgreSQL12.

I then installed the Postgres.app following the instructions on Postgresql.org and initialize

databases in the app to port 5432, shown in Figures 2.5 and 2.6.

 9

Figure 2.5 Postgre.app instructions

Figure 2.6 Port initialization

After that, I can use SQL commands from the terminal. In the terminal, I create a new

database “mad” and installed MADlib using the following commands:

Now “mad” database is created inside the Postgres app, shown in Figure 2.7, where I can

execute all the MADlib commands [3].

 psql -d postgres -c "CREATE DATABASE mad"
/usr/local/madlib/bin/madpack -p postgres -c $USER@$HOST/mad install

 10

Figure 2.7 “mad” database in Postgres.app

2.5 Python Implementations

To achieve the client-server connection, I use psycopg2 to connect to the PostgreSQL

database from Python. After importing the datasets from the database, I saved the data as data

frames and can initiate analysis algorithms on them. Python is chosen in comparison to the MADlib

functions since MADlib’s implementations of SVM and random forest are both partially composed

by Python codes. Out of personal interests to comprehend the algorithms as well as understanding

the code complexity of implementing the machine learning models, SVM and random forest

functions are then built from scratch to support the tests, which I call the client-server standalone

(CSS) method.

While my CSS implementations use the same algorithms as the MADlib functions, I also

want to adopt a library that has the same level of maturity as the MADlib library such that the

comparison of the efficiency and accuracy between the in-database and client-server methods is

more accurate. Algorithms from scratch don’t usually have the ideal scaling when datasets

become large, and the results could be off, and efficiency could become low. Therefore, I also

choose to use the SVM and random forest classification functions in the Scikit-learn library as

the second implementation and the reference group for the client-server applications.

 11

3. Analytical Tools

 Support Vector Machine and random forest models are chosen from the MADlib library

due to their potential to provide useful results. They are both supervised learning models, which

makes the testing results consistent and better monitored.

3.1 Supervised vs Unsupervised Learning

Machine learning is the technique to let computers learn and act like humans, and it can

improve their behaviors by feeding them more data and observations. Supervised and unsupervised

learning are two categories of machine learning.

Supervised machine learning, just like its name suggests, is the type of learning that has

existing results or expected results when we train the models. Regression and classification are the

two supervised machine learning categories, and general linear models and tree-based models are

the most commonly used examples. Supervised learning usually has the following working

pipeline:

• Split the dataset into a training set and a testing set.

• Build the model and train the model with a training set to find the relationship between

inputs and outputs.

• Use the model to predict the result in the testing set.

• Compare the result and the real data in the training set.

• Adjust the model as needed.

Unsupervised machine learning, on the other hand, doesn’t require a training and testing

set. Data scientists simply need to input all the data and the model will then find the pattern itself.

Clustering is one of the commonly used unsupervised learning models, where data is classified

into groups or clusters based on the pattern [4].

 12

3.2 Support Vector Machine (SVM)

SVM is a machine learning model that is used for both regression and classification,

although it is more widely used for classification. The two-class linear SVM method classifies data

points into two groups with a straight line on a plane, and the goal of such an algorithm is to find

the line that best classifies two groups.

The following Figure 3.1 shows the possible hyperplanes that classify data points into two

classes. But we need an algorithm to find the best hyperplane that classifies the data most

accurately.

Figure 3.1 Possible hyperplanes for classification

SVM is used to find a hyperplane on an n-dimensional space that separates data points into

different classes. Our objective is to find the hyperplane that maximizes margin, which is the

distance from the hyperplane to the nearest training data point of each group. Such hyperplane is

the optimal hyperplane, which is shown in the figure below. It is also called the decision boundary.

Vectors that lie on the margin are called support vectors. Support vectors determine the shape of

the decision boundary and changing them will affect the position of the hyperplane See Figure 3.2

for the SVM hyperplane[8].

 13

Figure 3.2 SVM classification hyperplane

 The linear SVM model has the following expression:

To maximize the margin, SVM uses a cost function that has the following expression:

In the expression, there is the regularization parameter λ, which is used to balance the

margin and the loss. The larger λ gives a wider margin. If the predicted value and the actual

value are different, we calculate the loss value and add it to the loss. We want to find a weight 𝑤

that minimizes the function.

Now to find gradients, we take partial derivative regarding 𝑤 in the loss function, which

looks like the following:

The gradients are used to update the weights. When our model correctly predicts the class

of a data point, we update the gradient using the following function:

 14

 Otherwise, we update the gradient along with the loss:

3.3 Random Forest

Random forest is a supervised machine learning model for classification. It is composed

of many decision trees. How the decision tree works are that if we start from the root node, we

determine whether a data point is classified to the left node or the right based on a true or false

answer to the criteria. If the answer is true, the node is classified to the left node, otherwise to the

right node. The process is repeated until the bottom nodes are reached [9].

 Building on top of the decision tree algorithm, the random forest algorithm uses

bootstrapping method to create many uncorrelated decision trees.

To construct the binary decision trees, a measurement of uncertainty called entropy is used.

Entropy has the following expression:

where we want to minimize H(X) and𝑝! is the probability of class j. When we split a training set,

we want to find a set that maximizes the entropy.

 By finding the difference between fore and after a split, we calculate information gain (IG).

The information gain has the following formula:

where 𝐷", 𝐷#$%&, and 𝐷'()*& are the datasets from the parent, left child, and right child node, and

𝑁", 𝑁#$%&, and 𝑁'()*& are the number of observations of these nodes.

 To build a random forest that contains n trees, we draw n bootstrap samples from the data

and grow a decision tree from each of those samples. The predictions generated by random forest

are the voting majority of all the terminal nodes.

 15

4. Methodology

 To compare the performances of in-database processing and client-server connection, SVM

and random forest models are implemented on datasets of different scales. For each model, the

Python functions are developed to be comparable to the corresponding MADlib functions. The

three datasets were chosen each have 533 entries [5], 32419 entries [6], and 146956 entries [7].

After testing Python and MADlib functions on each of the datasets, the runtime and accuracy of

each run are recorded and analyzed to conclude. All the datasets are two-class classification

predictions. Datasets are cleaned and all independent variables have an integer value. All

duplicates are removed from the datasets. In each implementation, the model is trained on the first

80% of the dataset and tested on the rest 20%.

 To test different approaches, two databases are created in Postgres.app. “mad” database is

used to initialize data tables and execute MADlib commands for the in-database approach, and the

“mqp” database is used to initialize data tables for the client-server approach.

Because of the designs of MADlib functions, the attribute “id” of type SERIAL is created

for each table. In addition, each dataset is split into training and testing set before they are

separately loaded into the database as .csv files using the COPY command. The run time of each

query is recorded using the “\timing on” command. Accuracy is calculated by finding the ratio of

the correct predictions to the total number of test entries. To ensure the training and testing sets

are consistent for each implementation, the shuffle is set to false for train_test_split() functions.

For “mqp” database, data tables are simply loaded from .csv files using the COPY

command.

4.1 MADlib Function Algorithm – SVM

 The MADlib SVM classification function has the following format:

svm_classification(

source_table,

model_table,

dependent_varname,

 16

independent_varname,

kernel_func,

kernel_params,

grouping_col,

params,

verbose

)

 In this project, the source_table is the training dataset, which is 80% of the whole dataset.

Model_table is an output table that is generated from the SVM classifier. Depedent_varname is

always called “Y” in the input table and has exactly two distinct values. Independent_varname is

always all the columns that are other than “Y”. Kernel_func is set to “linear” for all tests, and

verbose is default to FALSE. All the other parameters default to NULL.

 The SVM prediction function has the following format:

svm_predict (model_table,

 new_data_table,

 id_col_name,

 output_table)

 The new_data_table contains prediction data, and the output_table contains the prediction

results.

 After training the training set with svm_classification(), a prediction table is generated

using svm_predict(). The number of misclassifications is found and the accuracy rate is then

calculated [11].

4.2 Python Function Algorithm – SVM

 The Python code for SVM is mainly composed of three functions.

 The cost_function() takes weights, input features and target output. Mathematically, the

cost function is given by the given expression:

 17

The second half of the function is the hinge loss, which is calculated using the

regularization parameter C times the average distance from each input data point to the output.

The Python code looks like the following:

The second function is the gradient_function(). It takes in the weights and the features and the

output cost gradient. Its function looks like the following:

If the prediction is correct, we keep the weight; otherwise, we update the weight with the

loss function. The Python codes look like the following:

 18

 The third method is the sgd() function. This function takes the features and the predictions

as inputs and returns the calculated weights to the optimal hyperplane. The function iterates the

implementations of the loss functions and gradient function until the stoppage criteria are signaled.

In this method, the function will stop looping until there is no significant decrease in the cost

function [10].

4.3 MADlib Function Algorithm - Random Forest

 The MADlib random forest classification function has the following format:

forest_train(training_table_name,

 output_table_name,

 id_col_name,

 dependent_variable,

 list_of_features,

 list_of_features_to_exclude,

 grouping_cols,

 num_trees,

 num_random_features,

 importance,

 num_permutations,

 max_tree_depth,

 min_split,

 min_bucket,

 num_splits,

 surrogate_params,

 verbose,

 sample_ratio

)

 19

 The training_table_name is the input training set. Output_table_name is the generated table

containing the model. List_of_features is the list of predictors. list_of_features_to_exclude and

grouping_cols are set to NULL in the tests. num_trees is the maximum number of trees to grow,

which is set to 10. num_random_features is set to 1. The variable importance is set to false.

nu_permutations is default to 1, max_depth of the tree is set to 5, min_split is the minimum number

of splits that must exist in a node for a split to be attempted, which is set to 20; min_bucket is 3,

which means a minimum of 3 observations needs to be in any terminal node. The num_splits is

the number of splits per continuous variable; it is set to 5.

 From the forest_train() function, a model table, a group table, and a summary table are

produced.

 The prediction function for random forest has the following syntax:

forest_predict(random_forest_model,

 new_data_table,

 output_table,

 type)

 The random_forest_model table contains the random forest model from training. The

new_data_table is the table containing the prediction data. The output_table contains the

prediction results [12].

 In the source code, the random forest module is implemented by using a py_in file, a sql_in

file, and a cpp file that helps to process data, as long as inheriting some functions from the decision

tree algorithm.

4.4 Python Function Algorithm – Random Forest

 The random forest algorithm is mainly composed of two part: building a decision tree and

bootstrapping datasets to make a random forest.

 To build a decision tree, we use functions entropy() and information_gain() to determine

the best split point. The entropy() function inputs the probability of a class within a node and

calculates the entropy; the information_gain() function takes in the left and right child of a node

and calculates the information gain of this particular split. The Python code looks like the following:

 20

Using entropy() and information_gain functions, the function spliting_point() is created to

find the splitting point. It takes in the data frame and all the potential splits. The function iterates

through each potential split and return the best splitting column and value that produces the highest

information_gain [13].

Then I use the make_bootstrap() function to draw bootstrap samples. It takes in a training

set as data frame and the bootstrap size, then returns the bootstrapped data frames of the given size.

The code is as follows:

 Then I implemented the decision_tree() function, which takes the data frame as input, with

current depth, minimum sample size, max tree depth, random attributes, and random split attributes.

Then it outputs a decision tree.

 With the implementation of decision_tree() function, the final random_forest() function is

easily created, which takes the input values training data frame, the bootstrap size, random

attributes, random splits attributes, forest size, and the tree max depth. The function then outputs

the random forest.

5. Results and Analysis
The result table (Table 5.1) below is generated from testing different models in MADlib

and with Python codes:
 In-Database Processing Client-Server Connection

 MADlib Functions CSS Functions Scikit-learn Functions

Dataset Run Time (ms) Accuracy Run Time (ms) Accuracy Run Time (ms) Accuracy

SVM Small 525.48 70.09% 2143.68 85.04 % 556.607 85.04%

 21

Medium 9612.341 60.29% 12509.702 75.22% 13294.266 75.22%

Large 48671.174 45.38% 53623.046 47.97% 53441.558 51.68%

Random

Forest

Small 1062.238 85.04% 639.664 77.57% 728.246 82.24%

Medium 7983.027 73.23% 30603.045 78.20% 5329.16 75.37%

Large 171203.971 73.11% 170412.256 67.47% 20543.422 77.51%
Table 5.1 Test results

To see the results graphically, I created Figure 5.1 for run time comparisons, and Figure

5.2 for accuracy comparisons between three implementations.

Figure 5.1 Run time comparisons

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

SVM - S SVM - M SVM - L RF - S RF - M RF - L

Run time

MADlib Functions Sklearn Functions CSS Method

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

SVM - S SVM - M SVM - L RF - S RF - M RF - L

Accuracy

MADlib Functions Sklearn Functions CSS Method

 22

Figure 5.2 Accuracy comparisons

The graphs show that the MADlib SVM function has the shortest runtime among three

implementations but doesn’t have the same advantage for its random forest function. The MADlib

random forest method never has shorter runtime comparing to the scikit-learn. CSS function is

very inconsistent, but its runtime is usually large among the three tests.

The MADlib’s random forest function has a run time that is significantly larger than the

sklearn application, especially when working with the large dataset.

In terms of testing accuracy, both CSS implementation and the scikit-learn implementation

have higher accuracy than the MADlib when fitting the SVM model. For the random forest model,

MADlib has higher accuracy for the small dataset but lower accuracy for medium and large set

when comparing to the scikit-learn approach.

 I also want to make a note that although my own code is around six times the length of the

MADlib codes, the length of codes to implement scikit-learn functions is almost the same as the

MADlib code, which means that the simplicity to implement the in-database and client-server

algorithms are almost the same if the algorithm is already defined in some library.

 23

6. Conclusion
Based on the results from the experiments, I generated the conclusion that among the

methods used in the project, the scikit-learn library has the steadiest performance and scales the

best. The client-server approaches generally has slightly higher accuracy than the in-database

approach and better efficiency when working with more complex algorithms.

 The MADlib library is a powerful tool with mature algorithms and acquires big advantage

in run time efficiency by operating analysis directly inside the database. However, it has its

limitations in terms of test accuracy and algorithm efficiency. Although connecting to the database

from Python takes some amount of time, the accuracy and efficient algorithm designs of the sklearn

library could outweigh the cost to export large tables.

My inference for the big difference between the random forest runtime of the MADlib

functions and the sklearn functions is that MADlib has multiple files that are integrated indifferent

parts of its modules. The training complexity of the algorithm itself as well as the various

coordination between different files slowed down the computation inside the database, and even

led it to crash for quite a few times. The program also caused issue with the database itself that the

database was unable to load the data tables, and I had to restart the laptop for multiple times. The

program also encountered a few crashes when implementing random forest algorithms using the

Python code, but I was always able to terminate the code and go back to fix the problem without

affecting the database at all.

 Although the CSS implementation also has quite inefficient run times, it is implemented in

a single python file, whereas the MADlib functions requires coordination of several Python, SQL

and C++ files as well as database objects to compose a machine learning mode. The simplicity to

design code that is used outside the database creates convenience for the client-server approach.

The inconvenience of the in-database processing also occurs when I needed to calculate the

accuracy rate or split the dataset in to training and testing set, which are processes that I needed to

execute outside the database during the tests.

 24

Bibliography
1. Raasveldt, Mark. “Integrating Analytics with Relational Databases.” PhD@VLDB (2018).

2. “Apache Software Foundation.” Architecture - Apache MADlib - Apache Software

Foundation, cwiki.apache.org/confluence/display/MADLIB/Architecture.

3. Worms, David. “Installing and Using MADlib with PostgreSQL on OSX.” Adaltas RSS,

www.adaltas.com/en/2012/07/07/postgres-madlib-installation-example/.

4. Devin Soni. “Supervised vs. Unsupervised Learning.” Medium, Towards Data Science, 21

July 2020, towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d.

5. UCI Machine Learning Repository: Blood Transfusion Service Center Data Set,

archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center.

6. UCI Machine Learning Repository: Census Income Data Set,

archive.ics.uci.edu/ml/datasets/Census+Income.

7. UCI Machine Learning Repository: Clickstream Data for Online Shopping Data Set,

archive.ics.uci.edu/ml/datasets/clickstream+data+for+online+shopping.

8. Gandhi, Rohith. “Support Vector Machine - Introduction to Machine Learning Algorithms.”

Medium, Towards Data Science, 5 July 2018, towardsdatascience.com/support-vector-machine-

introduction-to-machine-learning-algorithms-934a444fca47.

9. Random Forests From Scratch, carbonati.github.io/posts/random-forests-from-scratch/.

10. Abbassi, Qandeel. “SVM From Scratch - Python.” Medium, Towards Data Science, 1 Apr.

2020, towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2#d7d8.

11. “Support Vector Machines.” MADlib, madlib.apache.org/docs/latest/group__grp__svm.html.

12. “Random Forest.” MADlib,

madlib.apache.org/docs/latest/group__grp__random__forest.html.

13. Carbonati. “Carbonati/Machine-Learning.” GitHub, 23 Dec. 2017,

github.com/carbonati/machine-learning/blob/master/random-forests/random%20forests.ipynb.

 25

Appendix

The original goals of this project were to integrate a few machine learning functions by

myself inside the MADlib library, which required the installation of the MADlib source code. I

had made many attempts to install MADlib from source code, but an error kept prompting that

“'cstddef' file not found”. I first thought the error was caused by the incompatible version of

boost that was installed, but the real reason was that a library called libstdc++, which has been

removed from MAC OS around five years ago, is extensively used in the source code. Many

attempts were made to integrate this function with my laptop, but they all failed. There were a lot

of pre-installation steps done when trying to install the MADlib library. They are not used for the

final paper, but the guide that I wrote could be helpful for other people or future references. The

guide is shown below.

Current Mac version:

macOS Big Sur Version 11.2.3

1. Install GNU M4

https://www.gnu.org/software/m4/m4.html

Run command:

git clone git://git.sv.gnu.org/m4

Then cd to the directory of m4, which for me is /Users/shaolin_x/m4. Then run command:

git checkout -b branch-1.4 origin/branch-1.4

2. Install Xcode command line tools

Run command:

xcode-select –install

*If the xcode doesn’t work properly after this installation, download Xcode from Apple App

Store. The file is around 11GB.

3. Install Homebrew

https://brew.sh

 26

Run command:

/bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

4. Install cmake 3.19.7

Run command:

brew install cmake

5. Install Clang 12.0.0

https://clang.llvm.org/get_started.html

To install, follow the instructions from the website for “On Unix-like Systems”

*This installation took around 5 hours

The installed Clang version is as following:

shaolin_x@ShaolindeMacBook-Pro ~ % clang -v

Apple clang version 12.0.0 (clang-1200.0.32.29)

Target: x86_64-apple-darwin20.3.0

Thread model: posix

InstalledDir: /Library/Developer/CommandLineTools/usr/bin

6. Install Bison3.7.6

Run command:

brew install bison

Make sure bison version is 3.7.6. Check use command:

bison --version

Mac has a built-in Bison 2.3 that is detected under path /usr/bin/bison.

To make sure the newer version of Bison is used, open .bash_profile file with command:

touch ~/.bash_profile; open ~/.bash_profile

add this line to the end of .bash_profile file:

export PATH="/usr/local/bin:/usr/local/sbin:~/bin:$PATH"

 27

Then run command:

source ~/.bash_profile

To check the step is successful, run command:

sudo vi /etc/paths

Make sure /usr/local/bin is on top of usr/bin

7. Install Flex

Run command:

brew install flex

Make sure flex version is 2.6.4. Check use command:

flex --version

8. Install Doxygen

Download from https://www.doxygen.nl/download.html#srcbin.

Follow instructions under “GIT repository”.

9. Install dot

Run command:

brew install graphviz

10. Install poppler

Run command:

brew install poppler

11. Install PostgreSQL12

Download PostgreSQL12 from https://postgresapp.com/downloads.html.

Follow the 3 steps under tab “Introduction” on https://postgresapp.com to finish installing

12. Install cmake 3.5.2

 28

https://cmake.org/install/

Download source code cmake-3.5.2.tar.gz from https://cmake.org/files/v3.5/

cd to the source code directory, which for me is /Users/shaolin_x/cmake-3.5.2

Run commands:

./bootstrap

make

sudo make install

13. Install LaTeX

Follow the exact instructions on this website:

https://www.wellesley.edu/lts/techsupport/latex/latexmac

14. Install boost1.75.0

Run commands:

brew install boost

export BOOST_INCLUDEDIR=/usr/local/opt/boost/include/

15. Install Apache MADlib

Download apache-madlib-1.17.0-src.tar.gz from

https://dist.apache.org/repos/dist/release/madlib/1.17.0/.

Run commands:

cd /Users/shaolin_x/apache-madlib-1.17.0-src

./configure

mkdir build

cd build/

make

Or run commands:

cd /Users/shaolin_x/apache-madlib-1.17.0-src

 29

mkdir build

cd build

cmake .. -DCXX11=1

make

Refer to installation guide:

https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide#InstallationGuide-

CompileFromSourceCompilingFromSource

After running cmake .. -DCXX11=1 command, it should report that:

Boost 1.47 found.

-- No sufficiently recent version (>= 1.47) of Boost was found. Will download.

>> Adding PostgreSQL 12.0 (x86_64) to target list...

-- Could NOT find Greenplum (missing: GREENPLUM_EXECUTABLE)

-- Using default web-based MathJax

-- Configuring done

-- Generating done

-- Build files have been written to: /Users/shaolin_x/apache-madlib-1.17.0-src/build

After running make command, it might encounter error CMP0057.

To fix the error, go to /usr/local/lib/cmake/Boost-1.75.0/BoostConfig.cmake and add the

following code to line 240:

if(POLICY CMP0057)

cmake_policy(SET CMP0057 NEW)

endif()

It will look like this:

Then if I attempt to run make command again, the process will be stopped by error:

 30

Looking at the file that generates error:

My guess is that the error is caused by boost.

Now the only problem I need to fix is to install a Boost that has version later than 1.47 but no

later than 1.65 (required by MADlib).

16. Install boost again

*This is the part where I encounter problem.

Need to install Boost version >=1.47 and <=1.65.

Download boost_1_64_0.tar.bz2 from https://dl.bintray.com/boostorg/release/1.64.0/source/

cd to the directory, which for me is ./Desktop/boost_1_64_0. Run commands:

cd ./Desktop/boost_1_64_0

./bootstrap.sh --prefix=/usr/local/boost_1_64_0

./b2 cxxflags="-std=c++14" install

 31

However, I encountered error message when running ./bootstrap.sh command:

Installation guide is on this website:

https://www.boost.org/doc/libs/1_69_0/more/getting_started/unix-variants.html#install-boost-

build

Note that I tried to run the exact same commands for boost version 1.75 source file, and it

compiled and built with no problem.

TODO: I don’t know how to build any boost of version 1.60~1.65.

I also located the source code of how MADlib detects boost (in file apache-madlib-1.1.70-

src/src/CMakeLists.txt).

