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Abstract 
 

The coordination between data analytics and database systems becomes exceedingly 

important in order for data scientists to efficiently analyze data that is stored inside the 

database. Currently, there are three approaches to use data analysis tools with databases: 

client-server connection, in-database processing, and embedded database. This project 

focuses on comparing the client-server connection to the in-database processing. Two 

machine learning models - Support Vector Machine and Random Forest - are implemented 

using each of the approaches and then tested on datasets of different scales. In this project, 

the in-database processing approach is achieved using Apache MADlib, and the client-

server connection approach is implemented using python codes. After comparing the run-

time efficiency and the testing accuracy of the two approaches, conclusions are drawn 

regarding the performance of each approach. 
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1. Introduction 

 
 Big data is ingrained in every industry. Companies try to gather data to uncover the insights 

and trends of their business, and Relational Database Management System (RDBMS) is the most 

popular and widely used method for data storage and management. While the data is stored in the 

database systems, machine learning tools that analyze the models are usually built to work in a 

stand-alone fashion.  

The gap between the analytical tools and the database creates inconvenience and 

inefficiency for data scientists to analyze data. Therefore, the coordination between machine 

learning and database systems becomes exceedingly important in order for data scientists to 

efficiently analyze data that is stored inside the database.  

The goal of this project is to investigate and evaluate database-integrated analytics tools, 

specifically by comparing the client-server connection approach to the in-database processing 

approach. Two machine learning models - Support Vector Machine and Random Forest - are 

arbitrarily chosen and implemented in Apache MADlib and Python. The run time efficiency and 

testing accuracy are compared in order to determine whether MADlib functions or Python 

implementations have better performance in terms of conducting database-integrated analysis. 
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2. Background 

 
The relational database management system is the most popular and widely used method 

for data scientists to store and manage data, however, there is a gap between the analytical tools 

and data storage. There will be lots of trouble if the data scientist just manages their data by storing 

them as text files, especially when the data scientist has to deal with multiple sources at the same 

time. Currently, there are three different approaches to use data analysis tools with the database: 

client-server connection, in-database processing, and embedded database. 

 

 

2.1 Client-Server Connection 

The client-server connection is where the database and tools are completely separated. 

The relationship between analytical tools and databases can be demonstrated by Figure 2.1. 

 
Figure 2.1 Client-server connection model 

 

To analyze the data that is stored inside the database, the analytical tool needs to give 

commands to export data from the database to the analytical tool. After the tools process the data 

and compute the result, it will send the output back to the database. The process is shown in 

Figure 2.2 [1].   
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Figure 2.2 Client-server connection process 

 

The client-server connection has the advantage that this approach is database-agnostic, 

where the ODBC or JDBC connectors can be used to connect to almost any database. It is also 

easy to load files without changing the algorithm pipelines in such a case. However, exporting 

tables could be time-consuming, especially when tables are large. It also requires the client to 

have the memory that is big enough to fit the full dataset. Moreover, the bottleneck heavily 

depends on the clients’ protocols. 

 

 

2.2 In-database Processing 

For the in-database processing, the analytical tools are implemented inside the database. 

The data stays inside the database. The relationship of such an approach can be viewed as the graph 

Figure 2.3. 
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Figure 2.3 In-database processing model 

 

First of all, this method solves the problem of time being spent on exporting data. It allows 

data scientists to perform some analysis inside the database. This approach can be easily achieved 

by loading data to the pipeline using standard-compliant SQL functions. However, it becomes 

difficult if we need more than simple analysis tools, such as building models and create user-

defined functions. For the in-database approach, user-defined functions are usually written in 

C/C++ languages, which requires a significant rewrite of the existing pipelines as well as in-depth 

knowledge of the database internals. 

 

2.3 Embedded Database 

 The embedded database approach lets users install and run databases within the client 

programs. 

Figure 2.4 shows the structure of the embedded database.  

 
Figure 2.4 Embedded database model 

 

This approach requires significant effort from the users to keep the database maintained 

and tuned. Its benefits don’t usually outweigh the efforts when the user is working on small-scale 

data analysis. 
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2.4 Apache MADlib Library 

For the purpose of studying in-database processing, Apache MADlib is chosen for this 

project. The MADlib library provides helpful machine learning functions that operate with 

PostgreSQL and Greenplum databases.  

 

2.4.1 MADlib Structure  

As an in-database processing approach, there are three major components of MADlib 

source code: Python driver functions, C++ implementations functions, and the C++ database 

abstraction layer [2].  

The driver functions are the main entry point from user input and are responsible for the 

flow control of the algorithms, such as validating input parameters, executing SQL statements, 

evaluating the results, and looping to execute more SQL statements. 

The C++ functions are the C++ definitions of the core functions. They are implemented in 

C++ rather than Python as needed. 

The C++ database abstraction functions provide a programming interface that abstracts all 

the Postgres internal details away such that MADlib can focus on the internal functionality rather 

than the platform integration logic. 

For each MADlib module, there is a required .sql_in file that creates database objects for 

this method. There are also optional .py_in, and .c files, which are Python and C/C++ codes that 

help in pre/post-processing data and support method algorithms.  

  

2.4.2 MADlib Installation 

For this project, MADlib and Postgres are installed on OSX. Since MADlib only works 

with PostgreSQL 11 and 12, I download the dmg file for Postgres.app with version PorstgreSQL12. 

I then installed the Postgres.app following the instructions on Postgresql.org and initialize 

databases in the app to port 5432, shown in Figures 2.5 and 2.6.  
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Figure 2.5 Postgre.app instructions 

 
Figure 2.6 Port initialization 

 

After that, I can use SQL commands from the terminal. In the terminal, I create a new 

database “mad” and installed MADlib using the following commands:  

 
Now “mad” database is created inside the Postgres app, shown in Figure 2.7, where I can 

execute all the MADlib commands [3]. 

   psql -d postgres -c "CREATE DATABASE mad" 
/usr/local/madlib/bin/madpack -p postgres -c $USER@$HOST/mad install 
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Figure 2.7 “mad” database in Postgres.app 

 

 

2.5 Python Implementations 

To achieve the client-server connection, I use psycopg2 to connect to the PostgreSQL 

database from Python. After importing the datasets from the database, I saved the data as data 

frames and can initiate analysis algorithms on them. Python is chosen in comparison to the MADlib 

functions since MADlib’s implementations of SVM and random forest are both partially composed 

by Python codes. Out of personal interests to comprehend the algorithms as well as understanding 

the code complexity of implementing the machine learning models, SVM and random forest 

functions are then built from scratch to support the tests, which I call the client-server standalone 

(CSS) method. 

While my CSS implementations use the same algorithms as the MADlib functions, I also 

want to adopt a library that has the same level of maturity as the MADlib library such that the 

comparison of the efficiency and accuracy between the in-database and client-server methods is 

more accurate. Algorithms from scratch don’t usually have the ideal scaling when datasets 

become large, and the results could be off, and efficiency could become low. Therefore, I also 

choose to use the SVM and random forest classification functions in the Scikit-learn library as 

the second implementation and the reference group for the client-server applications. 
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3. Analytical Tools  

 
 Support Vector Machine and random forest models are chosen from the MADlib library 

due to their potential to provide useful results. They are both supervised learning models, which 

makes the testing results consistent and better monitored. 

 

 

3.1 Supervised vs Unsupervised Learning 

Machine learning is the technique to let computers learn and act like humans, and it can 

improve their behaviors by feeding them more data and observations. Supervised and unsupervised 

learning are two categories of machine learning.  

Supervised machine learning, just like its name suggests, is the type of learning that has 

existing results or expected results when we train the models. Regression and classification are the 

two supervised machine learning categories, and general linear models and tree-based models are 

the most commonly used examples. Supervised learning usually has the following working 

pipeline:  

• Split the dataset into a training set and a testing set.  

• Build the model and train the model with a training set to find the relationship between 

inputs and outputs. 

• Use the model to predict the result in the testing set. 

• Compare the result and the real data in the training set.  

• Adjust the model as needed. 

Unsupervised machine learning, on the other hand, doesn’t require a training and testing 

set. Data scientists simply need to input all the data and the model will then find the pattern itself. 

Clustering is one of the commonly used unsupervised learning models, where data is classified 

into groups or clusters based on the pattern [4].  
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3.2 Support Vector Machine (SVM) 

SVM is a machine learning model that is used for both regression and classification, 

although it is more widely used for classification. The two-class linear SVM method classifies data 

points into two groups with a straight line on a plane, and the goal of such an algorithm is to find 

the line that best classifies two groups. 

The following Figure 3.1 shows the possible hyperplanes that classify data points into two 

classes. But we need an algorithm to find the best hyperplane that classifies the data most 

accurately. 

 
Figure 3.1 Possible hyperplanes for classification 

 

SVM is used to find a hyperplane on an n-dimensional space that separates data points into 

different classes. Our objective is to find the hyperplane that maximizes margin, which is the 

distance from the hyperplane to the nearest training data point of each group. Such hyperplane is 

the optimal hyperplane, which is shown in the figure below. It is also called the decision boundary. 

Vectors that lie on the margin are called support vectors. Support vectors determine the shape of 

the decision boundary and changing them will affect the position of the hyperplane See Figure 3.2 

for the SVM hyperplane[8]. 
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Figure 3.2 SVM classification hyperplane 

 

 The linear SVM model has the following expression: 

 
To maximize the margin, SVM uses a cost function that has the following expression: 

 
In the expression, there is the regularization parameter λ, which is used to balance the 

margin and the loss. The larger λ gives a wider margin. If the predicted value and the actual 

value are different, we calculate the loss value and add it to the loss. We want to find a weight 𝑤 

that minimizes the function. 

Now to find gradients, we take partial derivative regarding 𝑤 in the loss function, which 

looks like the following: 

 
The gradients are used to update the weights. When our model correctly predicts the class 

of a data point, we update the gradient using the following function: 
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 Otherwise, we update the gradient along with the loss: 

 
 

3.3 Random Forest 

Random forest is a supervised machine learning model for classification. It is composed 

of many decision trees. How the decision tree works are that if we start from the root node, we 

determine whether a data point is classified to the left node or the right based on a true or false 

answer to the criteria. If the answer is true, the node is classified to the left node, otherwise to the 

right node. The process is repeated until the bottom nodes are reached [9].  

 Building on top of the decision tree algorithm, the random forest algorithm uses 

bootstrapping method to create many uncorrelated decision trees.  

To construct the binary decision trees, a measurement of uncertainty called entropy is used. 

Entropy has the following expression: 

 
where we want to minimize H(X) and𝑝! is the probability of class j. When we split a training set, 

we want to find a set that maximizes the entropy.  

 By finding the difference between fore and after a split, we calculate information gain (IG). 

The information gain has the following formula: 

  
where 𝐷", 𝐷#$%&, and 𝐷'()*& are the datasets from the parent, left child, and right child node, and 

𝑁", 𝑁#$%&, and 𝑁'()*& are the number of observations of these nodes.  

 To build a random forest that contains n trees, we draw n bootstrap samples from the data 

and grow a decision tree from each of those samples. The predictions generated by random forest 

are the voting majority of all the terminal nodes. 
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4. Methodology 

 
 To compare the performances of in-database processing and client-server connection, SVM 

and random forest models are implemented on datasets of different scales. For each model, the 

Python functions are developed to be comparable to the corresponding MADlib functions. The 

three datasets were chosen each have 533 entries [5], 32419 entries [6], and 146956 entries [7]. 

After testing Python and MADlib functions on each of the datasets, the runtime and accuracy of 

each run are recorded and analyzed to conclude. All the datasets are two-class classification 

predictions. Datasets are cleaned and all independent variables have an integer value. All 

duplicates are removed from the datasets. In each implementation, the model is trained on the first 

80% of the dataset and tested on the rest 20%. 

 To test different approaches, two databases are created in Postgres.app. “mad” database is 

used to initialize data tables and execute MADlib commands for the in-database approach, and the 

“mqp” database is used to initialize data tables for the client-server approach. 

Because of the designs of MADlib functions, the attribute “id” of type SERIAL is created 

for each table. In addition, each dataset is split into training and testing set before they are 

separately loaded into the database as .csv files using the COPY command. The run time of each 

query is recorded using the “\timing on” command. Accuracy is calculated by finding the ratio of 

the correct predictions to the total number of test entries. To ensure the training and testing sets 

are consistent for each implementation, the shuffle is set to false for train_test_split() functions. 

For “mqp” database, data tables are simply loaded from .csv files using the COPY 

command. 

 

 

4.1 MADlib Function Algorithm – SVM 

 The MADlib SVM classification function has the following format: 

svm_classification( 

source_table, 

model_table, 

dependent_varname, 
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independent_varname, 

kernel_func, 

kernel_params, 

grouping_col, 

params, 

verbose 

) 

 In this project, the source_table is the training dataset, which is 80% of the whole dataset. 

Model_table is an output table that is generated from the SVM classifier. Depedent_varname is 

always called “Y” in the input table and has exactly two distinct values. Independent_varname is 

always all the columns that are other than “Y”. Kernel_func is set to “linear” for all tests, and 

verbose is default to FALSE. All the other parameters default to NULL. 

 The SVM prediction function has the following format: 

svm_predict (model_table, 

            new_data_table, 

            id_col_name, 

            output_table) 

 The new_data_table contains prediction data, and the output_table contains the prediction 

results. 

 After training the training set with svm_classification(), a prediction table is generated 

using svm_predict(). The number of misclassifications is found and the accuracy rate is then 

calculated [11]. 

 

 

4.2 Python Function Algorithm – SVM 

 The Python code for SVM is mainly composed of three functions. 

 The cost_function() takes weights, input features and target output. Mathematically, the 

cost function is given by the given expression:  
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The second half of the function is the hinge loss, which is calculated using the 

regularization parameter C times the average distance from each input data point to the output. 

The Python code looks like the following: 

 
The second function is the gradient_function(). It takes in the weights and the features and the 

output cost gradient. Its function looks like the following: 

 
If the prediction is correct, we keep the weight; otherwise, we update the weight with the 

loss function. The Python codes look like the following: 
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 The third method is the sgd() function. This function takes the features and the predictions 

as inputs and returns the calculated weights to the optimal hyperplane. The function iterates the 

implementations of the loss functions and gradient function until the stoppage criteria are signaled. 

In this method, the function will stop looping until there is no significant decrease in the cost 

function [10].  

 

 

4.3 MADlib Function Algorithm - Random Forest 

 The MADlib random forest classification function has the following format: 

forest_train(training_table_name, 

             output_table_name, 

             id_col_name, 

             dependent_variable, 

             list_of_features, 

             list_of_features_to_exclude, 

             grouping_cols, 

             num_trees, 

             num_random_features, 

             importance, 

             num_permutations, 

             max_tree_depth, 

             min_split, 

             min_bucket, 

             num_splits, 

             surrogate_params, 

             verbose, 

             sample_ratio 

             ) 
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 The training_table_name is the input training set. Output_table_name is the generated table 

containing the model. List_of_features is the list of predictors. list_of_features_to_exclude and 

grouping_cols are set to NULL in the tests. num_trees is the maximum number of trees to grow, 

which is set to 10. num_random_features is set to 1. The variable importance is set to false. 

nu_permutations is default to 1, max_depth of the tree is set to 5, min_split is the minimum number 

of splits that must exist in a node for a split to be attempted, which is set to 20; min_bucket is 3, 

which means a minimum of 3 observations needs to be in any terminal node. The num_splits is 

the number of splits per continuous variable; it is set to 5. 

 From the forest_train() function, a model table, a group table, and a summary table are 

produced. 

 The prediction function for random forest has the following syntax: 

forest_predict(random_forest_model, 

               new_data_table, 

               output_table, 

               type) 

 The random_forest_model table contains the random forest model from training. The 

new_data_table  is the table containing the prediction data. The output_table contains the 

prediction results [12]. 

 In the source code, the random forest module is implemented by using a py_in file, a sql_in 

file, and a cpp file that helps to process data, as long as inheriting some functions from the decision 

tree algorithm. 

 

4.4 Python Function Algorithm – Random Forest 

 The random forest algorithm is mainly composed of two part: building a decision tree and 

bootstrapping datasets to make a random forest. 

 To build a decision tree, we use functions entropy() and information_gain() to determine 

the best split point. The entropy() function inputs the probability of a class within a node and 

calculates the entropy; the information_gain() function takes in the left and right child of a node 

and calculates the information gain of this particular split. The Python code looks like the following: 
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Using entropy() and information_gain functions, the function spliting_point() is created to 

find the splitting point. It takes in the data frame and all the potential splits. The function iterates 

through each potential split and return the best splitting column and value that produces the highest  

information_gain [13]. 

Then I use the make_bootstrap() function to draw bootstrap samples. It takes in a training 

set as data frame and the bootstrap size, then returns the bootstrapped data frames of the given size. 

The code is as follows: 

 
 Then I implemented the decision_tree() function, which takes the data frame as input, with 

current depth, minimum sample size, max tree depth, random attributes, and random split attributes. 

Then it outputs a decision tree.   

 With the implementation of decision_tree() function, the final random_forest() function is  

easily created, which takes the input values training data frame, the bootstrap size, random 

attributes, random splits attributes, forest size, and the tree max depth. The function then outputs 

the random forest. 

  

5. Results and Analysis 
The result table (Table 5.1) below is generated from testing different models in MADlib 

and with Python codes: 
  In-Database Processing  Client-Server Connection 

 

 
 MADlib Functions CSS Functions Scikit-learn Functions 

Dataset Run Time (ms) Accuracy Run Time (ms) Accuracy Run Time (ms) Accuracy 

SVM Small 525.48 70.09% 2143.68 85.04 % 556.607 85.04% 
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Medium 9612.341 60.29% 12509.702 75.22% 13294.266 75.22% 

Large 48671.174 45.38% 53623.046 47.97% 53441.558 51.68% 

Random 

Forest 

Small 1062.238 85.04% 639.664 77.57% 728.246 82.24% 

Medium 7983.027 73.23% 30603.045 78.20% 5329.16 75.37% 

Large 171203.971 73.11% 170412.256 67.47% 20543.422 77.51% 
Table 5.1 Test results 

 

To see the results graphically, I created Figure 5.1 for run time comparisons, and Figure 

5.2 for accuracy comparisons between three implementations. 

 
Figure 5.1 Run time comparisons 
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Figure 5.2 Accuracy comparisons 

 

The graphs show that the MADlib SVM function has the shortest runtime among three 

implementations but doesn’t have the same advantage for its random forest function. The MADlib 

random forest method never has shorter runtime comparing to the scikit-learn. CSS function is 

very inconsistent, but its runtime is usually large among the three tests. 

The MADlib’s random forest function has a run time that is significantly larger than the 

sklearn application, especially when working with the large dataset.  

In terms of testing accuracy, both CSS implementation and the scikit-learn implementation 

have higher accuracy than the MADlib when fitting the SVM model. For the random forest model, 

MADlib has higher accuracy for the small dataset but lower accuracy for medium and large set 

when comparing to the scikit-learn approach. 

 I also want to make a note that although my own code is around six times the length of the 

MADlib codes, the length of codes to implement scikit-learn functions is almost the same as the 

MADlib code, which means that the simplicity to implement the in-database and client-server 

algorithms are almost the same if the algorithm is already defined in some library. 
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6. Conclusion 
Based on the results from the experiments, I generated the conclusion that among the 

methods used in the project, the scikit-learn library has the steadiest performance and scales the 

best. The client-server approaches generally has slightly higher accuracy than the in-database 

approach and better efficiency when working with more complex algorithms.  

 The MADlib library is a powerful tool with mature algorithms and acquires big advantage 

in run time efficiency by operating analysis directly inside the database. However, it has its 

limitations in terms of test accuracy and algorithm efficiency. Although connecting to the database 

from Python takes some amount of time, the accuracy and efficient algorithm designs of the sklearn 

library could outweigh the cost to export large tables.  

My inference for the big difference between the random forest runtime of the MADlib 

functions and the sklearn functions is that MADlib has multiple files that are integrated indifferent 

parts of its modules. The training complexity of the algorithm itself as well as the various 

coordination between different files slowed down the computation inside the database, and even 

led it to crash for quite a few times. The program also caused issue with the database itself that the 

database was unable to load the data tables, and I had to restart the laptop for multiple times. The 

program also encountered a few crashes when implementing random forest algorithms using the 

Python code, but I was always able to terminate the code and go back to fix the problem without 

affecting the database at all. 

 Although the CSS implementation also has quite inefficient run times, it is implemented in 

a single python file, whereas the MADlib functions requires coordination of several Python, SQL 

and C++ files as well as database objects to compose a machine learning mode. The simplicity to 

design code that is used outside the database creates convenience for the client-server approach. 

The inconvenience of the in-database processing also occurs when I needed to calculate the 

accuracy rate or split the dataset in to training and testing set, which are processes that I needed to 

execute outside the database during the tests.  
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Appendix 

The original goals of this project were to integrate a few machine learning functions by 

myself inside the MADlib library, which required the installation of the MADlib source code. I 

had made many attempts to install MADlib from source code, but an error kept prompting that 

“'cstddef' file not found”. I first thought the error was caused by the incompatible version of 

boost that was installed, but the real reason was that a library called libstdc++, which has been 

removed from MAC OS around five years ago, is extensively used in the source code. Many 

attempts were made to integrate this function with my laptop, but they all failed. There were a lot 

of pre-installation steps done when trying to install the MADlib library. They are not used for the 

final paper, but the guide that I wrote could be helpful for other people or future references. The 

guide is shown below. 

 

Current Mac version: 

macOS Big Sur Version 11.2.3 

1. Install GNU M4  

https://www.gnu.org/software/m4/m4.html 

Run command: 

git clone git://git.sv.gnu.org/m4 

 

Then cd to the directory of m4, which for me is /Users/shaolin_x/m4. Then run command: 

git checkout -b branch-1.4 origin/branch-1.4 

 

2. Install Xcode command line tools 

Run command:  

xcode-select –install 

*If the xcode doesn’t work properly after this installation, download Xcode from Apple App 

Store. The file is around 11GB. 

 

3. Install Homebrew 

https://brew.sh 
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Run command: 

/bin/bash -c "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 

 

 

4. Install cmake 3.19.7 

Run command: 

brew install cmake 

 

5. Install Clang 12.0.0 

https://clang.llvm.org/get_started.html 

To install, follow the instructions from the website for “On Unix-like Systems” 

*This installation took around 5 hours 

 

The installed Clang version is as following: 

shaolin_x@ShaolindeMacBook-Pro ~ % clang -v       

Apple clang version 12.0.0 (clang-1200.0.32.29) 

Target: x86_64-apple-darwin20.3.0 

Thread model: posix 

InstalledDir: /Library/Developer/CommandLineTools/usr/bin 

 

6. Install Bison3.7.6 

Run command: 

brew install bison 

Make sure bison version is 3.7.6. Check use command:  

bison --version 

Mac has a built-in Bison 2.3 that is detected under path /usr/bin/bison.  

To make sure the newer version of Bison is used, open .bash_profile file with command: 

touch ~/.bash_profile; open ~/.bash_profile 

add this line to the end of .bash_profile file: 

export PATH="/usr/local/bin:/usr/local/sbin:~/bin:$PATH" 
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Then run command: 

source ~/.bash_profile 

To check the step is successful, run command: 

sudo vi /etc/paths 

Make sure /usr/local/bin is on top of usr/bin 

 

 

7. Install Flex 

Run command: 

brew install flex 

Make sure flex version is 2.6.4. Check use command:  

flex --version 

 

8. Install Doxygen 

Download from https://www.doxygen.nl/download.html#srcbin.  

Follow instructions under “GIT repository”. 

 

9. Install dot 

Run command: 

brew install graphviz 

 

10. Install poppler 

Run command: 

brew install poppler 

 

 

11. Install PostgreSQL12 

Download PostgreSQL12 from https://postgresapp.com/downloads.html. 

Follow the 3 steps under tab “Introduction” on https://postgresapp.com to finish installing 

 

12. Install cmake 3.5.2 
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https://cmake.org/install/ 

Download source code cmake-3.5.2.tar.gz from https://cmake.org/files/v3.5/ 

cd to the source code directory, which for me is /Users/shaolin_x/cmake-3.5.2 

Run commands: 

./bootstrap 

make 

sudo make install 

 

13. Install LaTeX 

Follow the exact instructions on this website: 

https://www.wellesley.edu/lts/techsupport/latex/latexmac 

 

14. Install boost1.75.0 

Run commands: 

brew install boost 

export BOOST_INCLUDEDIR=/usr/local/opt/boost/include/ 

 

15. Install Apache MADlib 

Download apache-madlib-1.17.0-src.tar.gz from 

https://dist.apache.org/repos/dist/release/madlib/1.17.0/. 

Run commands: 

cd /Users/shaolin_x/apache-madlib-1.17.0-src 

./configure 

mkdir build 

cd build/ 

make 

Or run commands: 

cd /Users/shaolin_x/apache-madlib-1.17.0-src 
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mkdir build 

cd build 

cmake .. -DCXX11=1 

make 

Refer to installation guide: 

https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide#InstallationGuide-

CompileFromSourceCompilingFromSource 

After running cmake .. -DCXX11=1 command, it should report that: 

Boost 1.47 found. 

-- No sufficiently recent version (>= 1.47) of Boost was found. Will download. 

>> Adding PostgreSQL 12.0 (x86_64) to target list... 

-- Could NOT find Greenplum (missing:  GREENPLUM_EXECUTABLE)  

-- Using default web-based MathJax 

-- Configuring done 

-- Generating done 

-- Build files have been written to: /Users/shaolin_x/apache-madlib-1.17.0-src/build 

After running make command, it might encounter error CMP0057.  

To fix the error, go to /usr/local/lib/cmake/Boost-1.75.0/BoostConfig.cmake and add the 

following code to line 240: 

if(POLICY CMP0057) 

cmake_policy(SET CMP0057 NEW) 

endif() 

It will look like this: 

 
Then if I attempt to run make command again, the process will be stopped by error: 
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Looking at the file that generates error: 

 
My guess is that the error is caused by boost.  

 

Now the only problem I need to fix is to install a Boost that has version later than 1.47 but no 

later than 1.65 (required by MADlib). 

 

16. Install boost again 

*This is the part where I encounter problem. 

Need to install Boost version >=1.47 and <=1.65. 

Download boost_1_64_0.tar.bz2 from https://dl.bintray.com/boostorg/release/1.64.0/source/ 

cd to the directory, which for me is ./Desktop/boost_1_64_0. Run commands: 

cd ./Desktop/boost_1_64_0 

./bootstrap.sh --prefix=/usr/local/boost_1_64_0 

./b2 cxxflags="-std=c++14" install 
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However, I encountered error message when running ./bootstrap.sh command: 

 
 

Installation guide is on this website: 

https://www.boost.org/doc/libs/1_69_0/more/getting_started/unix-variants.html#install-boost-

build 

Note that I tried to run the exact same commands for boost version 1.75 source file, and it 

compiled and built with no problem. 

TODO: I don’t know how to build any boost of version 1.60~1.65. 

 

I also located the source code of how MADlib detects boost (in file apache-madlib-1.1.70-

src/src/CMakeLists.txt).  

 
 

 


