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Abstract

Desktop at Fingertip is a proof-of-concept prototype system that ap-

proaches the desktop interaction paradigms of cursor control and text input

through two-finger in-air micro-gestures. Our system is based on millime-

ter wave radar sensing, and does not require instrumentation on the user. We

present “ThuMouse”, a novel interaction paradigm aimed to create a gesture-

based and touch-free cursor interaction that accurately tracks the motion of

fingers in real-time. ThuMouse allows users to experience the truly mouse-

less monitoring of the cursor using frequency-modulated continuous-wave

(FMCW) radar. ThuMouse regressively tracks the position of a finger, al-

lowing a finer-grained interaction. The paper features the gesture sensing

pipeline we built, with regressive tracking through deep neural networks,

data augmentation for robustness, and computer vision as a training base.

We also present IndexPen, an interaction mode that can successfully iden-

tify 29 distinct characters, representing the letters A-Z, as well as Space,

Backspace, and Enter. We investigate the technical and design considera-

tions of the combined system to enable new in-air, micro, tracking-based in-

teraction and discuss future work that can be enabled with these paradigms.
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Summary

This project involves three graduate students working towards a directed research

and two undergraudate students working towards a MQP requirement. My role

in this group is same as everyone in the group: to collect data, run experiments,

write reports, submit to conferences, and deal with software and hardware chal-

lenges. In this document, we will mainly be reporting the ThuMouse and Index-

Pen projects that we have worked on. The document details a general timeline

that we will adhere with and make changes along the way, a completed method-

ology that we utilized to carry out our projects, and a detailed section about the

background research that we did before starting the projects. We will also be dis-

cussing what we have learned from making these projects happen and how we

incorporate the lessons into our future projects.
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1 Introduction

Overview As interaction continuously moves away from desktop to mobile, also

with hands-free gadgets such as virtual reality (VR), Augmented Reality (AR)

gaining popularity, the demand for efficient and compact interaction methods is

ever necessitated. In this decade, radio-frequency (RF) based interfaces have been

largely investigated. Many proposed systems leverage channel information from

existing infrastructure such as commodity WiFi and Radio-Frequency Identifica-

tion(RFID) to detect human activities and gestures. Under the umbrella of 5G

standards that is quickly taking shape lately, wireless technology is sought to dis-

play increased speed, reduced latency, and become more energy-efficient and cost-

effective. Among the various new standards, Frequency-Modulated Continuous-

Wave (FMCW) variant of mmWave radars captures the spatial and temporal in-

formation of objects by transmitting a continuous wave modulated in a specific

frequency range. The dynamic profile given by the device, owing to the high

signal frequency (usually greater than 60GHz), as well as well-established pro-

cessing chain, is remarkably precise and capable of achieving sub-millimeter ac-

curacy. Also, the data of mmWave sensors is relatively light-weighted compared

to other gesture input methods such as computer-vision based approaches, making

mmWave radar more fitted in devising ubiquitous gesture interface for low-power-

rated devices such as those for smartwatch and portable AR.

1



Figure 1: Desktop at Fingertip enables in-air two finger text input (left) and cur-
sor control (right) on devices with limited physical size and no instrumentation
required on the hand.

Motivation Just like the touchscreen technology in the early 80s, we believe

that the use of mmWave technology as a ubiquitous gesture interface has started

to bloom into its respective usage, as evidenced in [1]. The mmWave technology

can be applied to many applications such as automotive applications (33), VR

headsets, etc. in the form of gesture sensing. It is believed that a viable ubiquitous

gesture interface can be established by integrating mmWave technology into ev-

eryday electronics such as smartphones, smartwatches, and laptops. For example,

the rub motion of the thumb against the index finger can be interpreted as a volume

control. In terms of laptops, we believe that this technology can be revolutionary

as we would be able to monitor the mouse by tracking the movement of the fingers

and allow the users to input text using the gesture sensing applications. All in all,

the mmWave technology has the potential to become the new “capacitive touch”

that everyone uses on a daily basis.

Contributions The challenges remain in exploring algorithms that enable the

2



capturing of finer micro-gestures, and designing an interface for real-world in-

teraction with it. We propose a mmWave-based cursor interaction system - Thu-

Mouse. It is a mmWave-sensor-based interaction paradigm that can be used as a

pointing device. The system tracks the motion of the thumb rubbing on the in-

dex finger to actuate the control of a cursor. We build on the mmWave processing

chain proposed in (13), and designed FMCW signal suited for micro-gesture sens-

ing. An end-to-end data processing pipeline is built with a robust yet light-weight

deep learning regressor and classifier. Experiments were conducted to evaluate

the reliability of the system. The thumb tracking achieved a mean square error

of 7.55e−4 mm on the x-y plane and an interface was designed where user may

control a the cursor in a graphic user interface (GUI) in real-time.

Overall, mmWave sensors presents numerous advantages as a gesture sensor,

such as their characteristic environment-independence, compact size, and low cost

both computationally and monetarily, making them competent candidate upon

which novel gesture scheme can be established. In this regard, prior work includes

earlier exploits by Arbabian et al on high-frequency pulse-band radar, and more

recently, Texas Instruments mmWave sensor and Project Soli of Google ATAP

have contributed to the design of solid-state mmWave FMCW sensors applica-

tions around them.

On the other hand, we summarize the limitation of existing system as follows:

(1) comparing to capacitive sensing or optical sensors, mmWave radars lacks spa-

tial resolution due to fact that the reflected signals are superimposed; albeit this

is offset by the high temporal/velocity resolution and highly sophisticated predic-
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tion model, distinguishing similar gestures suffers because the moving parts (i.e.

a specific finger) resides in close proximity between each other. (2) Current ap-

proaches feed to the machine learning model with the raw analog-to-digital con-

verter (ADC) output with minimal pre-processing. The resulting data profile is

usually a range-velocity image of the object in front of the radar. Those data can

vary across different platform in their size and resolution, which calls for domain

specific predicting models (in contrast, image data from cameras possesses much

more generality). (3) Moreover, the high throughput of data taxes the hardware to

be able to achieve real-time gesture-recognition; the processing pipeline must be

limited in its complexity, where input accuracy must give away for the real-time

interaction. (4) The features given by mmWave devices is relatively unique com-

paring with other sensing technologies, which makes it difficult to adapt existing

pre-processing and predicting methods. The lack of distinct and human-readable

features (due to low spatial resolution in the raw profile) also poses difficulties

in visualizing the data, through which better-performing models can be built and

more elegant interfaces such as tracking the motion, can be designed from we-

bcams with "You Only Look Once (YOLO)(an object detection algorithm)(27)

as well as LeapMotion as the training base or ground-truth for the radar data.

Through this method, the CNN network could be well trained and we could also

evaluate its performance specifically.

To train model for the mmWave-sensor-based system, we set up a dual input

data collection plan. On the one hand, data is streaming from mmWave radar in the

form of detected points (DP). On the other hand, we collect data from webcams

4



and using "You Only Look Once (YOLO)"(an object detection algorithm)(27) as

the training base or ground-truth for the radar data. Through this method, the

CNN network could be well trained and we could also evaluate its performance

specifically.

Our main contributions are : (1) we leverage the sensing ability powered by

the signal processing chain from (13); this enables us to detect the spatial po-

sition of objects as well as their velocity, making it possible to track the finer

gesture. (2) Design the real-time tracking with an end-to-end gesture pipeline us-

ing the radar point cloud and applying several data augmentation, enriching the

feature and build more robust models. (3) We designed and evaluated 3D Convo-

lutional Long-short-term-memory (LSTM) deep learning model with which the

point cloud data is passed to realize the motion tracking and gesture classifica-

tion(4) We examine micro-gesture designs in the context of desktop interaction

and present the concept of Desktop at Fingertip, which includes ThuMouse and

IndexPen for cursor control and text input. (5) We investigate the use of millimeter

wave radar sensors in detecting an appropriate gesture set, and detail the real-time

processing pipeline we have developed. (6) We investigated technical efficacy of

IndexPen and showed that the proposed approach is able to resolve 29 IndexPen

characters with high within-user accuracy – 99.7%. (7) We share our collected

data and the source code for the mmWave interface we developed and the script

that processes the data and provides the evaluation results
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2 Background

Building on top of other RF-based interfaces, radar, especially the mmWave vari-

ant is given rise by the upcoming 5G standards. As a sensing technology, mmWave

FMCW radar possesses high resolution in capturing motions, and to our study

specifically, human gestures. In the literature review, we studied (1) prior work

that built radar-based interfaces, (2) machine learning algorithm used for gesture

detection.

2.1 Radio Frequency Cloud and HCI

With Desktop at Fingertip, we aim to capture micro-gesture in-air gestures and

control the coordinates in a mobile device accurately and conveniently. To do

this, we use millimeter wave radar, which is one type of radio frequency (RF)

information that is increasingly available for human-computer interaction appli-

cations (19). Radio-frequency (RF) data from existing infrastructure (e.g. WiFi,

Radio-frequency identification (RFID)) have been explored to recognize human

activities and gestures (24) (41). This is accelerating as 5G standards emerge,

with devices possessing increased speed, reduced latency, and increased energy-

efficiency and lower cost (9).

As noted by Pahlavan, et al. (19), unmodified global system for mobile com-

munications (GSM) signals have been used to enable tapping, hover and sliding

gestures around a mobile device (39). With radio signals and one external sensor

hanging on the wall, researchers have demonstrated that gait velocity and stride
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length can be monitored, enabling health-aware smart homes (11). Indoor WiFi

signals have been used to identify motion direction, leading to a contactless dance

“exergame” (26) as well as sign language gesture recognition (16). Other work

demonstrated that 5GHz WiFi can be used to achieve decimeter localization accu-

racy of up to four users as well as activity recognition of up to three users doing

six different activities

2.2 Micro-gestures in HCI

With the increase in micro-gestures in HCI, there have been numerous types of

gestures proposed. To gain insight into end-user preferences, Chan et al. (4) con-

ducted a user elicitation study of single hand micro-gestures, and we refer the

reader to this paper for an in-depth exploration. Their study identified four main

categories of micro-gestures: tap, swipe, draw, and circle. They also found that

out of the four, taps and swipes were the most commonly used by end users. Thu-

Mouse enables swipe, draw and circle, as it a flexible cursor control method, and

the thumb can perform any of these on the index finger. Draw was not frequently

used by end-users, but is the basis of the IndexPen interaction we present. Because

we propose an alphabet resembling handwriting, the draw gestures can be easily

remembered, which may have been an issue for other draw gestures. Due to the

fact that the thumb can comfortably reach the other parts of the hand, Chat et al.

found that the thumb was used more frequently in general, and was used on all the

elicited swipe gestures performed by the participants (4). In both ThuMouse and

IndexPen, we combine the thumb and the index finger.
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Different form factors for enabling micro-gestures in the hand have been ex-

plored. These can be categorized by whether they take a wearable or an in-air

approach.

2.2.1 Wearable

Wearable devices have been proposed for micro-gesture detection of the hand as

they can capture physical or physiological data well through the direct contact

with the user’s skin. TipText (36) is a miniature QWERTY keyboard broken into

a grid with several letters in each section. By clicking the tip of the index finger

with the thumb, users can select a grid section and the specific letter within that

section is disambiguated using a language model. Benefitting from the small size,

TipText has the potential to be integrated with watches and smartphones. Elec-

tromyography, which senses muscle activation during motor movements of the

hand and fingers, provides another way to detect gestures by directly decoding the

human muscle activities (32; 31). Force sensitive resistors were used in WristFlex

to successfully recognize subtle finger pinch gestures (7). FingerPad (5) has the

most similar interaction properties to IndexPen, but uses two nail-mounted devices

that detects magnetic field intensities and transforms that to coordinates for a user

interface.

2.2.2 In-air

Compared to wearable methods, in-air approaches for gesture detection may be

more favorable as they do not require the user to attach any electronics to the body.
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This removes some of the device-specific constraints and can present advantages

on aspects of sanitation, aesthetic, and utility. For micro-gesture detection, many

optical methods are used to extract features of the user. A 3-D time-of-flight

(TOF) camera (14) has been used to simplify segmentation between the hand and

arm. In using time-of-flight camera, the depth features are included to distinguish

certain gestures: gestures which have the same projections, but different align-

ments. The projections of the hand onto the x and y axis are used as features for

the classification. The region of the arm is discarded since it contains no useful

information for the classification and due to strong variation between human be-

ings. Yet, the TOF camera has disadvantages due to low resolution. Marin et al.

confirmed the effectiveness of using the Kinect camera in human body recogni-

tion applications (17). They first extracted the gestures from the acquired depth

and color data and then two different types of features were computed from the

3D points corresponding to the hand. They also explored Leap Motion’s optical

method and reported that it differs from the depth camera which return a complete

depth map. The Leap Motion provides a higher level but more limited data de-

scription while Kinect provides the full depth map. Even when the data provided

by the Leap Motion is not completely reliable (e.g. some fingers might not be de-

tected), the proposed set of features and classification algorithm allows to obtain

a good overall accuracy (17).
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2.3 Nontraditional real-time interfaces

CV: With the aid of increasingly high processing power and advanced computer

algorithms, CV-based real-time gesture interfaces have taken a large percentage

of the market share; examples includes Microsoft Kinect (38), Leap Motion (17),

Emotiv, and Holo-lens. However, the model accompanying optic sensors is usu-

ally complex due to their rich features (large number of pixels and can be highly

dependent on the ambient lighting.

Radio Frequency-based: Because of the universal usage of RF signals(e.g.,

Wi-Fi, RFID, radar signal), analyzing RF propagation to detect the human ac-

tivity and gesture is becoming a hot spot. Many researches took advantage of

existing infrastructure such as RFID (41)(3) to detect the gesture. At the same

time, using commodity Wi-Fi devices to actuate whole-home gesture sensing and

activity detection is also investigated in (23)(1)(10)(8) (40).

2.3.1 Radar-based interfaces

Radar, as a special variant of RF technology, is built specifically for detecting

objects in its coverage. While long-range impulse radar have featured in tracking

aircraft and other large-scaled entities, the use of radar in consumer electronics

market has remained obscure for decades.

Early work in (37)(2) laid a hardware and signal processing foundation in uti-

lizing mmWave in gesture detection. It is evident from (37) that feasible gesture

interface can be implemented with radars that transmits frequency-modulated sig-
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nal on Extremely High Frequency (i.e. mmWave). More recently, Soli (15) (34)

(22) (29) brought it into the context of micro-gesture sensing, wearable, and smart

devices. In this setting, gesture interface presents many-faceted possibilities: Soli

introduced the idea of virtual tool and proposed the Soli 60-GHz mmWave FMCW

radar to track the fine-grained gestures, capable of detecting 4 gestures from a sin-

gle user(15) . On the other hand, (33) implemented car infotainment interaction

with the sensor proposed in (15) , able to distinguish two sets of gestures with

each containing three different motions.

In detecting different gestures, traditional machine learning approach such as

random forest, Support Vector Machine(SVM). In the paper of Soli (15) and

human-car interaction(33),their systems use Random Forest algorithm to auto-

matically detect and select most relevant features for multiple classification of

gestures. And in the article of (6), the multiclass-SVM is used to detect human

gestures but require vectors of fixed dimension as input. On the other hand, in

recent years, Deep learning has displayed great potential in performing through

it capability to learn intermediate representation of raw data and been shown to

routinely beat traditional machine learning methods aforementioned (34).

On the other hand, (34) investigate the use of deep learning models; a features

that a mmWave sensor can yield is the range-velocity map on per-frame bases.

Noting the fact this type of feature is essential a 2D image-like array, (34) applied

Convolutional Recurrent Neural Network (CRNN), typically used for video clas-

sifications and arrived at accuracy of 87% on 11 gestures across multiple subjects.

We summarize the limitations of existing system as follows: (1) comparing
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to capacitive sensing or optical sensors, mmWave radar lacks spatial resolution

due to the fact that the reflected signals are superimposed; albeit this is offset by

the high temporal/velocity resolution and highly sophisticated prediction model,

distinguishing similar gestures suffers because the moving parts (i.e. a specific fin-

ger) resides in close proximity between each other. (2) Current approaches feed

to the machine learning model with the raw analog-to-digital converter (ADC)

output with minimal pre-processing. The resulting data profile is usually a range-

velocity image of the object in front of the radar. Those data can vary across differ-

ent platform in their size and resolution, which calls for domain specific predicting

models (in contrast, image data from cameras possesses much more generality).

(3) Moreover, the high throughput of data taxes the hardware to be able to achieve

real-time gesture-recognition; the processing pipeline must be limited in its com-

plexity, where input accuracy must give away for the real-time interaction. (4)

The features given by mmWave devices is relatively unique comparing with other

sensing technologies, which makes it difficult to adapt existing pre-processing and

predicting methods. The lack of distinct and human-readable features (due to low

spatial resolution in the raw profile) also poses difficulties in visualizing the data,

through which better-performing models can be built and more elegant interfaces

such as tracking the motion, can be designed.

We are jointly inspired by great sensing capability of mmWave sensors on

resolving fine-grained finger motions as well as the virtual tools brought up in

(15). In this work, we discuss ThuMouse, a gesture system building on top of

(13) that aims towards partial desktop environment interaction. Specifically, the
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system tracks the motion of the thumb to simulate touch-pad or mouse. The signal

processing pipeline can be applied to any mmWave devices, and we make avail-

able the software processing chain including prepossessing, data augmentation

and model-training. The table below shows the literature review we conducted

before starting the experiments.

Table 1: Literature Review

System Problem Hardware and Features Machine

learning alg

Wisee

(Push,dodge,

strike,pull,Drag,

Kick,Circle,Punchx2,

Bowling)x

(LOS,NLOS,TW)/94%

Wi-Fi, Doppler Shift No ML

applied

Soli

Virtual button, virtual

slide, Horizontal Swipe,

Vertical Swipe/92.10%

Mmwave, fine

displacement,

total measured energy,

measured energy from

moving scattering centers,

scatter- ing center

range, velocity centroid,

and many others

No ML

applied
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Table 1: Literature Review

System Problem Hardware and Features Machine

learning alg

Allsee

Flick,Push,Pull,

Double Flick, Punch,

Lever,Zoom in,

Zoom out/94.4% for TV

transmission and 97%

TV transmission

and RFID

No ML

applied,

analog only

In-car

infotainment

control

Low wiggle(91%)

Turn over(99%)

High grab(95%)—

for Driver Swipe(91%)

Large circle(97%)

Small circle(96%)

—for passenger

Mmwave, range,

acceleration, energy total,

energy moving, velocity,

velocity dispersion,

spatial dispersion,

energy strongest

component,

movement index.

Random Forest

classifier
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Table 1: Literature Review

System Problem Hardware and Features Machine

learning alg

Interacting

with Soli

Pinch Index,

Pinch Pinky,

Finger Slide,

Finger Rub,

Slow Swipe,

Fast Swipe,

Push, Pull,

Palm Tilt,

Circle, Palm Hold/(87%)

MmWave, range-doppler

profile

CNN

and RNN

Indoor motion

detection

Falling,

Running, Walking,

Sittting/85%

Wi-Fi,

channel state

information

Random

Forest KNN

SVM
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Table 1: Literature Review

System Problem Hardware and Features Machine

learning alg

Wearable

Physiological

Monitoring

Systems

Standing(90.11%),

walking(91.49%),

running(89.56%),

lying(90.71%),

crawling(83.89%),

climbing(88.16%),

on the stair(86.91%)

Radio frequency

channel
SVM

TipText QWERTY keyboard

entry

thumb-tip to

tap the tip of

the index finger

Spatial model

and language

model

Soli Music Musical interaction
Mmwave, acceleration,

fine displacement

and energy total

same

with soli

Table Notes,

extra

information
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3 Methodology

In this section, we discuss the system pipeline with which the preliminary studies

is carried out. Namely, we explain the detection principle of mmWave sensors,

the experimenting environment and hardware, the evaluated gesture schemes, and

algorithm used to process the data and actuate the interactions. It is worth noting

that content of this section are up to change based on future development.

3.1 Radar Signal Processing

We go over the RF front-end, its various stages of signal processing, and explains

why mmWave FMCW radars are suitable for dynamic gesture recognition. It also

covers how the radar detects objects as reflecting points and presents the hardware

used for evaluation.

3.1.1 Points Detection

The mmWave FMCW radar detects an object through the principle of reflection.

During each sampling period, the transmitter (Tx) sends a chirp, which is a signal

with its frequently changing over time. The reflected signal from objects in the

field of view (FoV) of the radar is picked up by the receiver antennas (Rx). The

signal used for further analysis is given by mixing the Tx and Rx signals in the

following way:

XT x = sin[ωT x× t +φT x] (1)

17



XRx = sin[ωRx× t +φRx] (2)

Xmixed = sin[(ωT x−ωRx)× t + (φT X −φRX)] (3)

From the above equations, we can calculate the intermediate frequency (IF)

signal Xmixed or XIF by combining the TX signal and RX signal.the IF signals

only valid during the chirping time (i.e. when the Tx signal is present). The Fast

Fourier Transform (FFT) is performed on the IF signal, the frequency peaks then

corresponds to the distance between the radar and the reflecting object. This FFT

is known as one-dimension FFT (1DFFT).

Figure 2: the sensor extracts the analog to digital converter (ADC) data from
the instantaneous frequency (IF) signals and put in ADC data bins. Applying
row-wise FFT (on the data of each receiver), the range profile is obtained where
a further FFT is performed column-wise over multiple bins (chirps) to get the
velocity of the detected points at certain ranges(13)

On top of the first FFT over a single chirp, which resolves the range, the radar

emits a series of chirps in quick succession as depicted in Figure 1. Through a sec-
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ond FFT (2DFFT) over the IF signal for those multiple chirps, the radial velocity

(the velocity of the object relative to the sensor) of objects can be obtained. The

detecting power of mmWave radar, when resolving the radial range and velocity,

is defined by two resolutions: range resolution and velocity resolution. Range and

velocity resolution is given by the following equations:

Rangeres =
C

2×FB
(4)

where C is the speed of light(3× 108) and FB is the frequency band with which

the chirp sweeps. For 4GHz of chirp band, it gives 3.75cm range resolution.

Velocityres =
λ

2T f
(5)

where λ is the wavelength of the chirp starting frequency and T f is frame time

which equals to the number of chirps times the duration of a single chirp. If

radial distance between two reflecting point is less than the range resolution, the

radar would identify the two as a single detected point, and likewise for velocity.

Note that because the velocity is calculated after determining the range, closely

places objects (pairwise distance no greater than the range resolution) can still be

distinguished as different objects if the difference in their velocity is larger than

the Vres.

This is the key to gesture detection with FMCW radars, as the fingers usually

resides within Rangeres but during dynamic gestures, fingers or parts of hand typ-

ically move at different speeds in relatively to each other. This creates a dynamic
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profile where lays a fertile feature space for micro-gesture study.

So far we are able to detect objects with their radial range and velocity, now

with multiple chirps being received by the Rx, the angle of a reflecting point is

entailed by the phase change of the IF signal across different Rx. Moreover, with

antennas arranged both horizontally and vertically, the sensor is able to resolve

both azimuth and inclination.

The angle resolution equation is as follows:

θres =
λ

N ×d× cos(θ)
(6)

, where d is the spacing between Rx antennas, and θ is the angle of objects. The

equation signifies that θres is non-linear. As the function sin(theta) is the most

sensitive when theta is around zero degrees, the sensor gives the best angle dis-

crimination when the object is directly in front of the radar (i.e. θob ject = 0). As

theta increases and approaches 90 degrees, the angle estimation accuracy degrades

as the sin(theta) value does not change much.

With the radial range, angles including azimuth inclination, and velocity, the

points are essentially velocity heat-map in 3D polar coordinates. Thus, the dy-

namic profile that the sensor yields is a list size-4 vectors (r, θ,Φ,doppler), each

representing a detected point, where r is the radial range between the point and

the original (where the radar is situated), θ is the inclination or vertical angle, and

φ is the azimuth or the horizontal angle.

To summarize, the reflecting points must satisfy the following pairwise con-
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ditions to be seen by the radar: (1) if the radial distance (relative to the radar)

between to reflecting surface is greater than Rres (2) if (1) is not satisfied, then

difference in radial velocity of the two points must be greater than Vres (3) if (2)

is not satisfied, the angle between the two points must be greater than the θres.

In dynamic gesture capturing, the motion is considered to be more crucial

compared to static hand shapes. Meanwhile, in order to eliminate other static

environmental noise such as the arm, floor and walls, Clutter Removal is applied

at the end of second FFT which calculates the velocity(13). It also abates the

computation load as the static points are removed from all the radar frames. By

subtracting the mean from the S 2DFFT , most immobile objects are removed from

the samples.

S 2DFFT = S −mean(S 2DFFT ) (7)

where S 2DFFT is the bin formed by 2DFFT and S are each sample in S 2DFFT .

To be able to further manipulate the point cloud data such as transformations,

we perform a Polar to Cartesian Coordinates conversion as the last step in the

point processing pipeline.

x = r× sinθ× cosφy = r× sinθ× sinφz = r× cosθ (8)

where the x, y and z are the Cartesian coordinates of the detected point. Their unit

are in meters.
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3.1.2 Signal Design for Gesture Application

The Understanding of the above resolution equations (4)(5)(6) is crucial when

devising suitable signal shape for the gesture recognition. It defines several key

points in using mmWave as a gesture interface (1) To detect fine-grained gestures,

range resolution needs to be reasonably small so that the structure of the hand will

be distilled in the feature space. (2) dynamic gesture recognition requires a high

degree of temporal (velocity) resolution(15). (3) Moreover, to reduce ambiguity

on the angle of arrival (AoA), the gesture-performing area should be aligned with

the central axis perpendicular to the antenna module.

However, it is out of the scope of this paper to compare how different hyper-

parameter affect the precision of tracking. Without a in-depth analysis of tuning

signal configuration and with consideration on hardware limits, we apply

FB = 4GHz Fstart = 60GHzFend = 64GHz T f = 20mesc (9)

with 30msec inter-frame delay for processing, which gives a frame rate of 20FPS,

Rangeres=3.75cm, Velocityres=0.12m/s A extension of this work can be made

on studying the how the parameters affects the detecting precision of mmWave

sensors.

3.1.3 Hardware: IWR6843ISK

Our system is based on the IWR6843 designed by Texas Instrument, an integrated

single-chip based on the FMCW technology and the frequency is modulated be-
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tween 60 to 64 GHz. Benefit by the on-board digital processing unit and hardware

accelerator aiming at quickly computing FFT and resolve log-magnitude opera-

tions, it can detect, at a relatively high frame rate (20 FPS), the spatial coordinates

(range angle) and velocity of objects. IWR6843ISK is an antenna module that

falls under the line of the IWR6843 mmWave sensor device. It has a long range

on-board antenna with 108◦ azimuth field of view (FoV) and 44◦ inclination FoV.

MMWAVEICBOOST provides a platform for the rapid evaluation.

3.1.4 Hardware: IWR6843AOP

Our system is based on the Texas Instrument’s IWR6843AoP (antenna on pack-

age), an integrated compact mmWave radar device. It operates between 60 to 64

GHz thus giving a best range resolution of around 3.75cm as stated above, well-

suited for micro-gesture detection applications. Benefit by the on-board digital

processing unit (DPU) aiming at quickly compute FFT and resolve log-magnitude

operations. The radar duty cycle includes (1) data capturing phase, when the radar

continuous sends chirp signals and receiving them (2) processing phase during

which the above FFT calculations is carried out with the DPU, and (3) transmit-

ting phase: where the result of the detection is relayed through a serial interfaces

the the host computer. Due to the limited processing power of the hardware, we

need to make some trade offs between the frame rate, range resolution, and veloc-

ity resolution.
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Figure 3: The hardware comparison table for TI mmWave devices

Figure 4: The physical appearance of the IWR6843 Antenna-on-Package radar
device, and its comparative size

By the end of each duty cycle, the host will have received the detection in-

formation captured during the last cycle. This information is defined as a frame

that includes two dynamic profiles, that of range-doppler and range-azimuth-

elevation.

3.1.5 Range-doppler Profile

The range-doppler profile is obtained at the end of the 2D FFT, where the range

and velocity information of the objects are extracted. The profile is a two-dimensional

matrix with columns being the velocity and rows being the range. At each point
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in the matrix, the value is the amplitude calculated through the 2D FFT and rep-

resents how strong the reflecting signal is at a specific range and moving at some

velocity. It can help to visualize the features as heatmaps. Figure 5 shows how

motions are reflected in the range-doppler profile.
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Figure 5: The range-doppler profiles show the relative power for objects of (1) a
specific distance from the radar;(2) moving at a certain radial velocity relative to
the radar

The number of rows corresponds to the number of range bins and we used
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eight, making the radar able to see objects up rmax = rres×numrangebins = 35.2cm.

The number of columns is the that of the velocity bins, which we set to 16. It

gives a maximum detectable velocity vmax = vres×numvelocity = 2.56m/s. These

parameters define the gesture performing range for the system. The numbers of

bins are constrained by the data processing time and the transmitting speed of

the serial interface. With the trade-off between the frame rate. We used these

parameters to ensure the best resolutions at 30 FPS.

3.1.6 Range-azimuth-elevation Profile

Range-azimuth profile (Figure 6) is a dynamic feature set given by the radar. Ob-

tained at the end of the signal processing pipeline, this profile represents angle of

arrival (AoA) for the detected objects. Both the azimuth and the elevation combine

into a matrix where the rows are the angle (azimuth and elevation) between the

objects and the radar. The columns are the same as in the range-doppler profile; it

shows how far away the objects are from the radar.
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Figure 6: The range-azimuth-elevation profiles gives the relative power for ob-
jects of (1) a specific distance from the radar; (2) at certain azimuth and elevation
angle relative to the radar. The azimuth-elevation axis is non-linear as the angle
resolution degrades as the objects moving away from the central axis of the sensor
(Equation 6)

In the DFT system, we collect frames from the mmWave sensor, with each

frame consisted of a 8 × 16 range-doppler profile and a 8 × 64 range-azimuth-

elevation profile. Each frame lasts 33ms, giving roughly 30 frames per second

(FPS). The sequenced frames is then used as the deep learning features in the next

step of the pipeline to give the final ThuMouse tracking and IndexPen classifica-

tion.
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3.1.7 Configuration

We want the maximum possible specifications we can get out of the radar module

but these specifications come at a cost of the CPU load. Whenever the CPU load

goes over 100 percent, the board freezes and hangs onto the last state it was in

and we need to restart the board. In order to account for CPU load as well as

the sudden surges of detected points, we are only using 20 frames per second as

for frame rate, 0.039 meter for our range resolution, and 1.1 meters per second

for the velocity resolution. In order to detect movements, we use "Remove Static

Clutter". It removes all the detected points of a stationary object in front of the

radar.

3.2 DFT Gesture Paradigms

In our study, we evaluated two gesture schemes: IndexPen and ThuMouse: ges-

tures for text input and cursor-like interaction respectively.

3.2.1 IndexPen

IndexPen are performed by drawing characters with the tip of the index finger

against the distal.(picture)Turning the hand 90◦ allow natural transition between

ThuMouse and IndexPen. To minimize the effort for detecting without the loss of

writing comfortable, we use the partial of the Palm Pilot alphabet, our alphabet

for evaluation includes 4 letters (E, H, L, O) and one special characters: back-

space. The evaluation set is extracted from the alphabet so that the users can input
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’HELLO’. The order of strokes used for IndexPen is the Palm Pilot alphabet (28).

This is to avoid unnecessary noise and to retain data purity.

Figure 7: Left: the alphabet where the index finger of the right hand writes on the
the face of the thumb. Right: the IndexPen gesture is performed with the thumb
pointing at the center of the antenna module. This ensures best angle resolution
as discussed in section 3.1.1

3.2.2 ThuMouse

ThuMouse is the application we build around the capability of locating the po-

sition of the thumb-tip. We define ThuMouse gesture follows: user may move

his or her thumb against the planar surface of the index finger. The temporal dis-

placement of the thumb is reflected in cursor movement; the gesture is similar

to ’Thumb Rub’ in(34)(33), but ThuMouse actually resolves the position of the
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thumb on the rubbing surface, allowing for finer-grained controls. In other words,

the thumb tip is playing the role of mouse and surface defined by the index finger

is emulating the mouse pad, which is natural, soft and unobtrusive. This gesture

can maximum guarantee the the index finger surface have ample space where the

thumb tip can navigate.

In addition to resolving the x-y coordinate of the thumb-tip that emulates the

movement of a mouse, we introduce the z axis (perpendicular to the thumbnail)

such that if the thumb leaves surface of the index finger, the tracking would freeze

just as a touch-pad will cease the cursor movement when it lost contact with the

controlling finger. Moreover, the system interprets click from successive up-and-

down motion in a short time interval.

Figure 8: Like the IndexPen, the ThuMouse gesture is performed with the thumb
of the acting hand pointing at the center of the antennas to achieve best angle
resolution as per section 3.1.1

IndexPen enables text entry as gestures performed by the index finger writing

on the the face of the thumb. To minimize additional training that the user has

to be subjected to, we aimed to create an input mode that reflects how a person
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naturally writes. We took inspiration from the Palm Pilot alphabet (28). This

writing table was developed in the early days of handwriting recognition, and

therefore the strokes are designed for the ease of identification. However, the

PalmPilot alphabet was designed for writing pads and the features used are the

pixel values. With IndexPen, the features used are based on the dynamic profiles

produced by mmWave radars (i.e., range, velocity, angle).

Based on these design considerations, we created the IndexPen gestural al-

phabet (Figure 10). It includes 29 fingertip writing gestures, representing the 26

letters and 3 utility keys. The gesture mimics real-world writing strokes and is

designed to afford a natural way of writing. While striving for natural gestures,

we also take into account whether such gestures are distinguishable through the

mmWave radar features. As will be described below in the Radar Signal Process-

ing section, the radar detects the range, angle and velocity of the objects. Letters

with similar starting points, traces, and end points are likely to be confused. Based

on these considerations, the letters such as A, F, K and T are simplified into one-

stroke, while letters including O and V are given embellishments to make them

more distinguishable from C and V respectively (Figure 10).

In addition to the 26 English letters, we add three utility characters to the table,

including space, delete and enter. These three characters were designed with

emphasis on the ease of performing the gestures and the likeness to real writing

experiences. The space gesture is a slide towards the natural writing directionality,

whereas the delete gesture is the reverse of the space. Enter is a forward swap

intended to mimic ’pressing enter to send the message’ action.
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Figure 10: The IndexPen Gestural Alphabet. The basic text-entry interface has 26
letters, delete, space and enter. The illustration’s gesture is with the left hand so
that the characters are not ’flipped’. The snapshot at the bottom right shows a user
ready to perform the IndexPen gesture.

3.3 Mode Switching Between ThuMouse and IndexPen

The user should be able to seamlessly switch between the two modes of interac-

tion. The hand position for ThuMouse and IndexPen is different, and so differential

decoding can enable automatic mode switching between the two modes (Figure

??). To reach this level of context-awareness, future work will further evaluate the

robustness of this approach.

3.4 Design Considerations

In envisioning the desktop input interface at the tip of the fingers, we examine

three system design aspects that help to afford comfortable, and easy-to-learn con-

trols. The three factors are accuracy, smoothness and learnability.

IndexPen

We define the following design considerations in evaluating the performance
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of IndexPen.

Accuracy The accuracy of IndexPen can be assessed in two-folds. Being a

symbol classification problem, it’s accuracy is simply to see if the detected gestu-

ral character is same as the output word, for a single user. We call this within-user

accuracy. On the other hand, IndexPen set contains as many as 29 symbols, and

some characters similar to each other. Additionally, as the gestures simulates ac-

tual writing, the users may transfer his or her personal writing style into the con-

text. Therefore, another way assess accuracy would be how closely do we need

to follow the pen pilot strokes for our system to register as the correct letter. As

a result, to design an accurate text-entry system, the system would need to output

the correct letter without requiring too much effort from the user. This is defined

as the cross-user accuracy.

In mutliclass classification problem like ours, there will always be false-positives

and false-negtaives in the system. False-positives for our system would be the

system detecting characters while the user is not actively writing anything. False-

negatives would be when the system fails to detect the writing even though the

user is actively performing the gestures required for the characters. Second fold

of evaluating accuracy: * false-positives, the system detects a writing but the user

actually did not write anything * false-negative, the system fails to detect the writ-

ing when the user, in fact, performed the gestures

Responsiveness A dependable text-entry system would have a smooth transi-

tions between each characters. The importance of segmentation and out of dis-

tribution came into play when designing a real-time text-entry system. It is also
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important that the system registers and processes the user’s input in a swift fashion

so that the interaction flows effortlessly for the user. The system should not cause

any inconvenience by making the user wait for each character to register before

writing the next letter.

This is particularly important as the classification is being continuously per-

formed over streams of data. The responsiveness would measure the time between

when the user considers the gesture to be completed, to when the written character

is detected.

Input Speed One of the most important aspects of designing a system is mak-

ing it time efficient. The user should not have to wait after performing each char-

acter. The lack of speed could potentially cause the user would rather prefer to

type on another device. We could measure the input speed by measuring the

Words Per Minute from typing. We also need to make a design so that there are

no False Positives as it would greatly reduce the input speed. The user would

have to constantly delete the characters instead of inputting the characters. The

standard QWERTY keyboard has an average of 40 words per minute and TipText

(36) has an average of 11.9 words per minute. As a result,

How fast can the user type in characters with IndexPen

Learnability For this text-entry system to be learnable, the design should be

intuitive for the users. We would also need to look at the system’s consistency

and naturalness. For consistency, we mean that the same input strokes performed

by the user should output the same letter. If the user keeps performing the same

stroke and our system outputs different letter, it would affect the learnability of the
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system. For naturalness, the user should be able to follow a line of instruction such

as "Please write the letter on your thumb using your index finger" and perform

the actions instantly without having to output extra effort to learn the system.

Although the output is the same, everyone have different strokes when it comes

to letter writing. As a result, for the naturalness, a reliable system would not care

whether the strokes are different and map the final output.

ThuMouse

We list out the following design considerations for measuring ThuMouse’s

performance as a cursor device.

Accuracy To achieve satisfactory interaction experience, the processing pipeline

must be able to map the finger movement to that of the cursor with high accuracy.

Consider a traditional computer mice, it provides a diligent experience for navi-

gating through the digital world. This particular interaction can be interpreted as

that a user can, with physical interaction with the mouse, (1) move the cursor to

where the user wants it to be (2) adjust the speed of the cursor based on needs (3)

the cursor starts to relocate and stops when the user starts and stops moving.

The performance is boiled down to three types of accuracy: location, velocity,

and synchronization. When using a cursor input device, the location accuracy

is how precise the device can translate the its physical displacement to that of

cursor. During the process of movement, the velocity accuracy can be measured

by comparing the rate of change in displacements between the physical and the

virtual; the discrepancy between the first derivatives of the displacements tells

if the cursor is moving at the speed that the user intends. The synchronization
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deals specifically with the situation when the user has just commenced or ceased

a movement. We can view it as that the two entities involved: physical device and

the cursor can, at any time, be in one of the two states : moving or still. If state of

one entity changes, how much time have elapsed till the other entity followed that

change. In other words, synchronization accuracy measures the responsiveness

for the mapping of states.

Smoothness A successful tracking device should be free of any perceptible

glitches. That is, user may not experiences moments when the cursor stops for

a time then jump to another location. The tracking pipeline needs to issue dis-

placement in a succession of fixed and short time intervals. On the other hand,

the device should allow user to navigate the digital environment easily with error-

proofing interactions. In the case of a computer mice, if there is a target needs to

be clicked, most of us are able to trace our way towards the target with a straight

line, thank to the nature mapping between mice movement and that of the cursor.

To the design of new tracking devices, being smooth implies that the device

must be capable of continuously detecting and mapping user’s input with high

enough frames per second (FPS). In addition, tracking is different from classify-

ing gestures because of the flexibility it affords. In actuating this flexibility, the

designer should careful with the way that the user gives inputs. The input method

(i.e., gesture) should not allow to much space for making errors and the system

needs to have a fairly deterministic mapping between the actions in the physical

and the virtual world.

Learnability To build an intuitive design, the learning curve of the system
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must be low. A learning curve is a hypothetical graph of how much time and

effort required for a person to invest before our tool become productive to them.

Having a low learning curve would allow the users to spend time using the system

as opposed to having the users learn the system for hours on end. The two most

important factors for developing a easy-to-use system are consistency and natu-

ralness of the input techniques. To achieve consistency and naturalness, a good

system would map the movement of the cursor to whichever direction the user

moves their thumb. If the user moves to the left, the cursor will follow the same

path and same direction. Affordance looks at the perceived and actual properties

of a thing that determines how the thing is to be operated. An ideal system would

make have the same perceived and actual affordances and would have no surprise

functionality. With the natural mapping as well as the consistency of the method,

we hope to achieve a learnable and intuitive system on which the future cursor

based input systems could depend upon.

To understand competence of the proposed system, we device quantitative

measures for each of the above design considerations. The data is collected in

a two-stage user study and the result is presented in section ??.

3.5 Gesture Sensing

The software gesture pipeline starts with detected points, which represent the ob-

jects front the radar. The points are extracted by the pipeline explained in the last

section and from there, our system extracts finer features of the dynamic gestures.

In this section, we cover the pre-processing steps in which the observed points are
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transformed into deep learning features. We also discuss the deep learning model

that analyze the pre-processed feature and how the gesture schemes are actuated.

Besides, we discuss two different methods – YOLO and Leap Motion as our input

labels.

3.5.1 Preprocessing

The preprocessing step is to transform the detected points into suitable machine

learning features of which a neural networks can study. The points are first clus-

tered and filtered, by doing so algorithms after this point focus only on the hand

that is performing the gesture. The filtered points are then rasterized in a 3D voxel

space, forming a 3D feature array,

The pre-processing is performed every time the radar resolves a point cloud

data collection through the detection procedure explained in the last section; we

call this data collection a radar frame. A frame at time t is consisted of n detected

points, defined as n×4 matrix; each row is the Cartesian coordinates and Doppler

(velocity) of the detected points. The number n may vary across frames depending

on how the resolvability conditions from section 3.1.1 are satisfied. We can refer
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to the matrix as the point array as each row denotes a detected point.

pt =



x0 y0 z0 doppler0

x1 y1 z1 doppler1

...

...

xn yn zn dopplern


(10)

Clustering: Similar to the static clutter removal at signal-level by equation

(7), ThuMouse further removes dynamic noise in point-level using the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN). The algorithm

identifies high density areas and expose out-lier; in ThuMouse settings, we define

that there must be at least 3 points to form a cluster and two points need to be

at most 20cm apart to be considered as in the same cluster. These parameters

are picked based empirical observations in our experiments and shown to perform

well in determining the noises and the ’core of gesture’. For readers interested

in the DBSCAN algorithm, we refer this paper (30) by Sander et al. It explains

the detail of the algorithm. We define the point array after applying DBSCAN as

P f iltered.

We define the gesture performing area as being within the radial range of

Rbound meters relative to the radar. Rbound is depending on the gesture scheme

implemented with the pipeline. For mobile usage, it is reasonable to set Rbound at

0.25m. We create a bounding volume: x,y,z ∈ [−Rbound,Rbound] around the point

cloud to filter out any points that lie outside the specified range of the radar. To
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prepare for Voxelization (the next step in pre-process), the spatial coordinates in

P f iltered needs to be within the range of 0-1. Therefore, the xyz value are the

min-max normalized in the bounding volume with:

xi =
xi− xmin

xmax− xmin
,yi =

yi− ymin

ymax− ymin
,zi =

zi− zmin

zmax− zmin
(11)

where the minimal and maximum values are given by the bounding volume:

xmin = ymin = zmin = −Rbound xmin = ymin = zmin = Rbound3.1.1 (12)

3.5.2 Voxelization

As the last step in pre-processing, we rasterize Pt f iltered into a (25×25×25) voxel,

defined as Voxelt. This procedure is necessary as the subsequent convolutional

feature extractor only take inputs with fixed dimensions, and the points array is

not acceptable because of the variable number of rows. On the other hand, convo-

lutional Neural Network (CNN) has shown great success in extracting and repre-

senting point cloud data if put in voxel form (18). Because feature P f iltered at this

stage is essentially in point-cloud format, we take advantage of the convolutional

network structure by voxelizing the detected points.

The unit for the three axis are in meters, with Pt being Min-Max normalized

between 0 and 1, the grid of the voxel has the resolution of 1 centimeter. Addi-

tionally, the forth column of P f iltered is the velocity (doppler) of each observed

points. Different from typical point-cloud voxelization methods (20), this veloc-
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ity information is treated as the heat, or color of each voxel. Overlapping points

are added to the voxels incrementally; i.e., locations where there are more objects

moving would become a hotter spot. The resulting volume can be interpreted as

a 3D velocity heat map, or 3D graph with a single color channel: velocity. The

characteristic of this features is effectively the same as that of a regular 2D image:

the distribution of the hot spot is non-linear.

3.5.3 Data augmentation

Data augmentation methods helps to increase the amount of relevant training data

without physically collecting more. Moreover, it is shown that CNN can benefit

from data augmentation to become more robust (21). In this study, we borrow

data augmentation methods that was brought up in (25) and (20) to . Namely, a 3-

fold data augmentation is applied on the detected points to form new samples; the

labels (ground truth) for augmented is the same as its none-augmented counter-

parts. The three augmentation techniques being performed are: translation, scale,

and rotation, and they are applied to P f iltered before the voxalization. Transla-

tion changes the spacial coordinates of the detected points. It is for simulating an

added and small Gaussian noise to the data. In other words, each points is trans-

lated by a small displacement; the amount of displacing is defined by the noise

distribution has a mean of 0 meter and a standard deviation of 0.02 meter. The

numbers are derived from empirical observation for our study case for the noise

can not be too large to twist the original data-set in a substantial way nor can it be

so small that its augmentation value is barely noticeable.

42



Scale linearly alter the coordinates if the points along a the x, y, and z axis.

The factor used for scaling is the same normal distribution used in translation.

Scale is effectively the same as Translation for it also changes the location of the

each points in P f iltered, but instead of introducing noise, it is meant for simulate

person with differently shaped hands than those of the participants.

Rotation is to cover the case where participants may perform the gesture at

varying tilted angle. Although the subjects are instructed to perform the gesture in

a certain relative position to the radar, the angle of the hand is not strictly imposed

as per real-life scenarios. The rotation is applied along the three Cartesian axis,

and the amount of rotation is follows the same distribution as in the translation

and scale.

3.5.4 ThuMouse Neural Networks

Dynamic gestures have temporal, as well as spatial characteristics. Therefore, we

decided that the network model the dynamic profile of a gesture needs to contain

(1) convolutional layers that extract the non-linear features of each radar frame,

(2) LSTM cells that retain the features from the frames in a time regressive man-

ner, (3) dense layers as output that are adjustable based on given gesture scheme.

Moreover, in order to run the gesture system in real-time, the network should also

be lightweight and low latency for smoother user experience.

To meet the above requirements, we design the following neural network

model as we shown in Fig. 8.
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Algorithm 1: Data augmentation algorithm applied to Detected Points
Result: an augmented sample Paug from P f iltered
if translate then

for pinP f iltered do
translate(p,amount = Gaussian(µ =

0.0, σ = 0.02))
endfor

endif
if scale then

ScaleX(P f iltered, f actor = Gaussian(µ =

0.0, σ = 0.02))
ScaleY(P f iltered, f actor = Gaussian(µ =

0.0, σ = 0.02))
ScaleZ(P f iltered, f actor = Gaussian(µ =

0.0, σ = 0.02))
endif
if rotate then

RotateX(P f iltered, f actor = Gaussian(µ =

0.0, σ = 0.02))
RotateY(P f iltered, f actor = Gaussian(µ =

0.0, σ = 0.02))
RotateZ(P f iltered, f actor = Gaussian(µ =

0.0, σ = 0.02))
endif

Figure 13: ThuMouse CRNN Architecture: the input layer reads the voxalized
detected points from the mmWave sensor; 3D convolution is then performed onthe
3D volumes to produce the feature map which is feed into LSTM layers. LSTM
cells propagate information into fully connected layers and outputs thex, y and z
as tracked position of the
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In contrast to work using the Range-Doppler profile as input (34), ThuMouse’s

network model takes in the voxalized detected points, which include the x, y, z,

and velocity. The detected points can represent the tendency of motion better

which allows a shallower and lighter model to be implemented without loss in

performance.

The input of the network is the voxalized points aforementioned with the shape

(25 ∗ 25 ∗ 25 ∗ 1). The convolutional layers act as feature extractors to initially

interpret the spatial features of a radar frame; it includes 3D convolutional, batch

normalization, max-pooling layers, and concluded with flatten layers. To avoid the

common problem of ’dead neurons’ in convolutional layers, we use the leakyRelu

activation function for layers.

The condensed features then go through one layer of LSTM that regressively

looks back to the previous 20 timesteps, (corresponding with the number of frames

the system receives per second). The model culminates with a fully connected

layer where it gives the tracked position of the thumb tip in its spatial coordinates

(x, y and z).

In order to decrease the over-fitting effect from trained neurons, we need to

make the system more applicable to generalized situations, such as in the case of

a new user. To do so, we randomly drop nodes trained in the system. With it,

we reduce the output dependency from certain features. We apply the common

practice of dropout here and the rate being applied to both the LSTM and fully

connected layers is 0.5.
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3.6 DFT Neural Networks

With the sensor-signal processing pipeline explained above, the physical infor-

mation of the objects detected by the radar is represented in range-doppler, and

range-azimuth-elevation profiles. As the data streams in, the sequence of the two

profiles forms a dynamic profile that characterized by the gesture performed.

In this section, we cover the multi-input multiple-output (MIMO) deep learn-

ing model that we constructed. The model extracts high-level features from the

two types of profiles aforementioned and output both the IndexPen classification

and ThuMouse tracking. We design the network structure with the following con-

siderations.

It has been shown that Convolutional Neural Networks (CNN) are well-suited

for distilling two-dimensional features such as images. CNN captures the spatial

feature of the image-like profiles and is able to extract non-linear, and high-level

features such as whole finger motion, the relative location of specific hand parts,

and so on.

Meanwhile, the input contains two profiles and the model should first merge

them in some way. In solving similar problems, past studies have added the chan-

nel dimension and put the multiple images as different channels(35). For this

system, it is also important to note that the relevant features for gesture detec-

tion in range-doppler and range-azimuth-elevation can differ greatly as the former

reflect the radical velocity, and the range-azimuth-elevation is the spatial informa-

tion. This fact led us to use two different CNNs for the two profiles, and they do

not depend on each other.
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The extracted feature maps from the two profiles is flattened and concatenated

before being sent to the time distributed layers. As the features are coming in as

sequences, time has to be taken into account. That is, the model needs to look at

data in a time interval to make predictions. As traditional neural networks suf-

fer from the exploding/vanishing gradient problem when dealing with sequenced

data, we use long-short-term-memory (LSTM) layers to solve the problem. LSTM

has the capability of gating the information, giving the model another level of flex-

ibility to decide what temporal features are important for the gesture detection.

Indeed, prior work (34) showed that Convolutional Recurrent Neural Net-

works (CRNN) with LSTM cells perform well in resolving the range-doppler

profile in gesture classification. We extend this idea to that of the range-azimuth-

elevation profiles as second input for the network. After extracting the spatial and

temporal features, the system take to the standard Fully Connected (FC) layers.

We make a copy of the extracted features and put them through two different FC

layers that outputs the ThuMouse tracking and IndexPen classification predictions,

respectively.

It is important to note that the design uses the same spatial and temporal lay-

ers for two gesture applications. The output does not diverge into IndexPen and

ThuMouse until the second-to-last layer. It was considered to use two entirely

separate models, as having a model fine-tuned to a specific gesture application

is likely to yield higher accuracy. However, synchronization of ThuMouse and

IndexPen is crucial as they are integrated parts under DFT. Additionally, because

of the similarity between the two gestures, the detecting model may duplicate the
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feature extractors for each, taking advantage of transferred learning.

Figure 14: DFT CRNN Architecture: the two inputs include the profiles for range-
doppler and range-azimuth profiles. 2D convolution is then performed on the
each of the profile feature map which is feed into LSTM layers. LSTM cells
further extract the temporal information and send copies of the their output to the
ThuMouse and IndexPen FC layers which give the final prediction of the gesture
detected.

Computer Vision as Training Base Inspired by Huang et al.(12), we use a dou-

ble input apart from the mmWave sensor that we are experimenting with. How-

ever, our design of the gesture disallows the presence of another device in its

performing area. We evaluated a number of alternative ground-truth observers

such as an accelerometer mounted on the thumb. But any wearable device will

introduce bias in the signal shape received by the radar device.

Our solution for this problem is to use webcams and the radar as dual inputs

in recording the thumb’s movement. Compared with many other options, a cam-
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era has the advantage of being a physically unintrusive observing device and the

recent advancement in video-based convolutional neural networks promises high

accuracy. It can help us evaluate the radar’s tracking performance by analyzing the

outputs from each method. Even though there exists time discrepancy between the

camera’s and radar’s system, the time-stamps of radar are fully included in cam-

era’s time-stamps. Therefore, we choose the camera’s tracking as ground truth

reference for radar’s tracking.

3.7 Ground Truth Collecting

Ground-truth in our system refers to the position of the thumb. We want the true

position of the thumb so that we can train our network. In order to achieve the

true position, we use webcams with YOLO algorithm to yield the ground-truth.

3.7.1 YOLO Detection

We have two iterations for this project. During the first iteration, we used YOLO

for ground truth labelling. To get the location information of thump tip in each

camera frames, we use the YOLO(27). YOLO is CV-based object tracking algo-

rithm that gives the "bounding box" of the detected objects. We have to manally

label the ground truth with this approach. In the second iteration, we use the in-

teractive LeapMouse that auto-labels the ground truth for us. We can evaluate the

performance of the ThuMouse tracking using the ground truth systems.

The method is as follows: a YOLO model that identifies the position of the

fingertip is pre-trained with 750 images from 3 participants from the research
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group (each select 250 images) with 300 epochs, nearly 20k steps. We observed

that the model thus trained performs reasonably well in noting where the finger

tip is from camera frames.

During a data collection session for ThuMouse, we record the radar frames

along with the two cameras. Then we use the trained YOLO model to process

recorded video frames and obtain the location information of the fingertip. Be-

cause the frames from both radar and camera are recorded simultaneously, we can

take the location information of finger-tip from the cameras as the ground truth for

the radar’s estimation. It is possible that the radar’s timestamp does not match the

frames of the camera due to the fact that the radar operates at 20 FPS and camera

at 30 FPS. Since the goal is to get the location of the finger for every radar frames,

if the timestamp of a radar frame lays in between the time of two camera captures,

we linearly interpolate the positions given by the two photos to get the location of

the fingertip at the time when that radar frame is recorded.

The Yolo model is trained with 750 images from 3 users (each select 250 im-

ages) with 300 epochs, nearly 20k steps. We use this model to predict on recorded

video frames and note the location of the fingertip as given by the CV model.
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Figure 15: YOLO Sample: YOLO algorithm is used to predict thumb tip’s loca-
tion with the top and side cameras. The tracked box produced forms the ground-
truth for evaluating the radar tracking performance.

By comparing the YOLO’s tracking of the fingertip and the radar’s, we can

test and evaluate the performance of the trained CRNN model.

3.7.2 Leap Motion Detection

Previously, we used YOLO to detect object and there were some disadvantages

that comes with it. First, the YOLO algorithm relies on the camera’s performance,

sometimes the camera will lose focus if rubbing too fast. It becomes hard to

predict accurate results as ground truth system is too blurred to train network.
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Secondly, the Camera’s position will highly influence the results of (x,y,z). Due

to the 2 cameras we used to predict x-y and y-z, little movement of the whole

system will cause the the output of x,y,z inaccurate enough and thus making the

performance of network bad. So, now we introduce a new device named Leap

Motion. It detects user’s hand and simulate a 3D output shown in desktop.

There are two major benefits comparing Leap Motion with YOLO. Because

Leap Motion could simulate one 3D model with one infrared camera while YOLO

requires for 2 cameras to give (x,y,z), using Leap Motion could reduce the effect

of cam’s movement and match the corresponding (x,y,z). Secondly, Leap Motion

could simulate the hand model in real-time quicker then using YOLO. So it would

help us to use Leap Motion’s prediction in (x,y,z) as the baseline of the thumb

tricking and compare the performance of the prediction from radar’s data.

Figure 16: Real time Leap Motion model in Unity. The Green box represent
the central of thumb tip. Besides, we set the reference point at the end of index
finger because it has less movement than other point and much easier to detect.
(a)This is the Operating interface for data collection, user would test to show their
hand(right hand) under the leap Motion and adjust their movement or position for
later collecting; (b)This is the Recording interface, once the collection is started,
the output label of x,y,z will be present on the screen and be recorded later; (c)3rd
figure here represent the calibrating function, users would be asked to keep rub-
bing and the system would record user’s max z-value and later be regarded as the
threshold for telling clicking or not.
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3.8 Second Iteration Neural Networks

With the sensor-signal processing pipeline explained above, the physical infor-

mation of the objects detected by the radar is represented in range-doppler, and

range-azimuth-elevation profiles. As the data streams in, the sequence of the two

profiles forms a dynamic profile that characterized by the gesture performed.

In this section, we cover the multi-input multiple-output (MIMO) deep learn-

ing model that we constructed. The model extracts high-level features from the

two types of profiles aforementioned and output both the IndexPen classification

and ThuMouse tracking. We design the network structure with the following con-

siderations.

It has been shown that Convolutional Neural Networks (CNN) are well-suited

for distilling two-dimensional features such as images. CNN captures the spatial

feature of the image-like profiles and is able to extract non-linear, and high-level

features such as whole finger motion, the relative location of specific hand parts,

and so on.

Meanwhile, the input contains two profiles and the model should first merge

them in some way. In solving similar problems, past studies have added the chan-

nel dimension and put the multiple images as different channels(35). For this

system, it is also important to note that the relevant features for gesture detec-

tion in range-doppler and range-azimuth-elevation can differ greatly as the former

reflect the radical velocity, and the range-azimuth-elevation is the spatial informa-

tion. This fact led us to use two different CNNs for the two profiles, and they do

not depend on each other.
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The extracted feature maps from the two profiles is flattened and concatenated

before being sent to the time distributed layers. As the features are coming in as

sequences, time has to be taken into account. That is, the model needs to look at

data in a time interval to make predictions. As traditional neural networks suf-

fer from the exploding/vanishing gradient problem when dealing with sequenced

data, we use long-short-term-memory (LSTM) layers to solve the problem. LSTM

has the capability of gating the information, giving the model another level of flex-

ibility to decide what temporal features are important for the gesture detection.

Indeed, prior work (34) showed that Convolutional Recurrent Neural Net-

works (CRNN) with LSTM cells perform well in resolving the range-doppler

profile in gesture classification. We extend this idea to that of the range-azimuth-

elevation profiles as second input for the network. After extracting the spatial and

temporal features, the system take to the standard Fully Connected (FC) layers.

We make a copy of the extracted features and put them through two different FC

layers that outputs the ThuMouse tracking and IndexPen classification predictions,

respectively.

It is important to note that the design uses the same spatial and temporal lay-

ers for two gesture applications. The output does not diverge into IndexPen and

ThuMouse until the second-to-last layer. It was considered to use two entirely

separate models, as having a model fine-tuned to a specific gesture application

is likely to yield higher accuracy. However, synchronization of ThuMouse and

IndexPen is crucial as they are integrated parts under DFT. Additionally, because

of the similarity between the two gestures, the detecting model may duplicate the
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feature extractors for each, taking advantage of transferred learning.

4 Evaluation and Results

For the evaluation and results, we have three iterations at which we ran the project.

At this point, we are currently at the third iteration. The first iteration of Thumouse

is when started to shape the idea by actually conducting experiments and the sec-

ond iteration is the refining of the idea. The third iteration is a stage for developing

our own GUIs and conduct user-studies.

4.1 First Iteration

Initial evaluation on the proposed system is conducted and we hereby present the

preliminary results and findings. Here we discuss how the two proposed gesture

schemes perform. We present a quantitative evaluation where we analyze the

tracking effectiveness of ThuMouse and classification accuracy of IndexPen by

showing the efficacy of the system on the validation set.

4.1.1 Experiment Environment

IndexPen: In recording the data for IndexPen, the subject would write each char-

acter during a fixed interval; at 20 FPS, the interval is set at 4 seconds as we find

this is a typical time to perform one writing with IndexPen. Each character is

repeated twice in succession, which generate writing 20 samples per loop. The

process is repeated 3 times to produce a group of 60 samples; we define this as a
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session. Each subject is asked to perform two sessions in one sitting and we col-

lect 10 sessions per participant. The number of samples thus produced is 30000

(10 characters×60 repetition per loop×10 session per subject×5 subject). Since

the order of writing characters from the alphabet is pre-determined, each gesture

sample is label accordingly.

ThuMouse tracking dual input: Assigning the true x, y, and z location

(ground-truth) to the radar frames is more challenging to carry out. To achieve

frame-level tracking, the absolute coordinates of the thumb tip needs to be ob-

tained as the ground truth with fits to the model’s output layer.

We are inspired by Huang et al.(12) to use a double input apart from the

mmWave sensor that we are experimenting with. However, the method of (12)

does not directly apply here; our design of the gesture disallow the presence of

another device in its performing area. The team evaluated a number of alterna-

tive ground-truth observers such as an accelerometer mounted on the thumb. But

any wearable devices will introduce bias in the signal shape received by the radar

device.

Our solution for this problem is to use both a Webcam and the radar as dual

inputs in recording thumb’s movement. Comparing with many other options, a

camera has the advantage of being non-physically-intrusive observing device and

the recent advancement in video-based convolutional neural networks promises

high accuracy. It can helps us evaluate radar’s tracking performance by analyzing

the outputs from each method. Even though there exists time discrepancy between

the camera’s and radar’s system, the time-stamps of radar are fully included in

56



camera’s time-stamps. Therefore, we choose the camera’s tracking as ground

truth reference for radar’s tracking.

To get the location information of thump tip in each camera frames, we use the

YOLO(27). YOLO is CV-based object tracking algorithm that gives the "bound-

ing box" of the detected objects. With it, we can evaluate the performance of the

ThuMouse tracking architecture.

ThuMouse needs to able to resolve the how much the cursor should move at

each radar frame, given that the radar is capturing detected points at 20 FPS, man-

ually labeling the data is out of the question, nor could we do the same approach

as we did for IndexPen because there is no pre-defined gesture set.

The method is as follows: a YOLO model that identifies the position of the

fingertip is pre-trained with 750 images from 3 participants from the research

group (each select 250 images) with 300 epochs, nearly 20k steps. We observed

that the model thus trained performs reasonably well in noting where the finger

tip is from camera frames.

During a data collection session for ThuMouse, we record the radar frames

along with the two cameras. Then we use the trained YOLO model to process

recorded video frames and obtain the location information of the fingertip. Be-

cause the frames from both radar and camera are recorded simultaneously, we can

take the location information of finger-tip from the cam’s as the ground truth for

the radar’s estimation. It is possible that the radar’s timestamp does not match

the frames of the camera due to the fact that the radar is at 20 FPS and camera at

30. Since the goal to get the location of the finger for every radar frames, if the
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timestamp of a radar frame lays in between the time of two camera captures, we

linearly interpolates the positions given by the two photos to get the location of

the fingertip at the time when that radar frame is recorded.

According to section 3.1.1, the mmWave sensor only detects objects that are

moving in relative to the sensor itself. We decided it is more feasible for the

system resolve the displacement (deltax, deltay, deltaz for displacement along the

three axis) of the fingertip between frames instead of giving the absolute position.

By comparing the cam’s real-time variation of fingertip and the radar’s pre-

dicted variation, we can test the performance of the trained CRNN model.

Layer Type Filters Size/Stride Output

Input Image / 608*608 /

Convolutional 32 3*3 224*224

Maxpool / 2*2/2 112*112

Convolutional 64 3*3 112*112

Maxpool / 2*2/2 56*56

Convolutional 128 3*3 56*56

Convolutional 64 1*1 56*56

......

=

The time-stamps of radar can be extracted from recorded files and each time-

stamp could find between two frames of the camera. According to the location

information of the detected point and coherence of testing movement, we can

calculate the detected thumb tip for each radar frame. And because the radar
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system reflect the real-time fluctuation in points, we store the variation of each

point from its last time-stamp and train the CRNN model with these changes to

predict real-time points movement through radar-frames.

To evaluate the performance of the system in matrix units, all trials are carried

out with the hand at the same relative position to the top camera. Doing so ensure

the displacement of the finger per pixel of camera-frame is consistent across ex-

periment sessions.The values includes the distance from above camera and hand,

resolution of the cam1 and cam2 and the angle of views. As shown in figure be-

low, the sensors are set up in a specific way so that we can collect data from the

optimal location.

However, the dual input of radar and webcams still have some problems. Cam-

era sometimes loses focus, which will affect the accuracy of the results, and cam-

era’s position will highly influence the results of (x,y,z). At the same time, it

always takes time to train the YOLO model firstly before training the ThuMouse

model,Greatly reducing experimental efficiency.

4.1.2 Experiment Setup

The overall experiment environment is set up in a way that the radar is always at a

same relative position to the cameras (important to ThuMouse as will be discussed

in section XX). It also can be used for both IndexPen and ThuMouse, of which

the later utilizes the webcams as suppliers of ground-truth. While the system

collecting radar frames, video streams from the two webcams, one is above the

hand to detect the x and y (cam1) and the other one is placed to detect the y and z
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(cam2), which are then feed into the YOLO framework to resolve the true x, y, z

position of the thumb tip.

Rescam1Y = 400pixels Rescam1X = 600pixels

Dcam1 = 10cm AoV = 78◦

By using these values, we get:

PresX =
2×Dcam1× cos(AoV/2)

Rescam1X
= 2.70mm/pixel

PresY =
2×Dcam1× cos(AoV/2)

Rescam1Y
= 4.05mm/pixel

(13)

PresX and PresY will be used in studying the discriminating capability of the

ThuMouse.

60



Figure 17: First iteration-experiment setup, one camera is mounted on the top
shaft; second camera is located at the side. Middle.

4.1.3 Results

Here we present the validation result to show the tracking capability of ThuMouse

and classification accuracy of IndexPen.

IndexPenThe IndexPen gives a total accuracy of 93%. The classification re-

sult for each of the five gestures in the alphabet is given by the confusion matrix

in figure
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Figure 18: Confusion Matrix of IndexPen classifier: the numbers in the matrix
shows how much the classifier is predicting the wrong label. The near-uniform
distribution along the diagonal signifies that the model is performing equally well
on all gestures from IndexPen alphabet

ThuMouse Overall, ThuMouse performs well in resolving movement of the

thumb-tip on the rubbing on the surface of the index finger. For table 1 and fig-

ure 9-11, it is evident that the general trend of radar tracking predictions corre-

spond to that of the camera’s. In terms of resolving the XYZ displacement of the

thumb-tip, the system displays reasonably good efficacy for the x-y plane (Mean

Squared Error (MSE)xy=16.4 px=1.35 millimeter). The competence along the z-

axis, however, is wanting, which can be made a subject for future study to address.

At present, we may conjecture that the lack of discriminating power for z is due

to the fact that the signal strength drops more sharply along the inclination than it

does along the azimuth, resulting in a smaller inclination FoV.
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Table 2: System performance along each axis. The last row shows the statistics
for x-y combined as a plane

Mean Squared Error Standard Deviation

X 9.23 px (1.27 mm) 3.03 px (1.12 mm)

Y 23.6 px (1.44 mm) 4.86 px (1.20 mm)

Z 64.4 px 8.02 px

XY 16.4 px (1.35 mm) 4.05 px (1.16 mm)

Overall 32.4 px 5.69 px

Figure 19: Left:X-Y Contour Color Map;Middle:X-Z Contour Color Map;
Right:Y-Z Contour Map. From the figure, the XY contour map is most stable
and gather almost in one area
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Figure 20: Radar tracking vs. CV tracking: the chart shows 10 consecutive track-
ing result on the x-y plane. The number in the graph are the index in time.

Figure 21: Radar tracking vs. CV tracking: the charts shows 120 consecutive
tracking along x, y and z axis.

4.2 Second Iteration

For this second iteration, we completely changed the hardware and the groundtruth

system. Instead of IWR6843ISK and Webcams, we use IWR6843AOP and Leap-

Motion for both Thumouse and IndexPen. Here, we also came up new refined

versions of Thumouse and IndexPen.
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4.2.1 Experiment Environment

IndexPen To explore the accuracy of text entry with IndexPen, we collected a

large dataset where an individual performed the 29 gestures. The goal was to

explore the accuracy with which our system could classify the 29 gestures.

An individual would write each character during a fixed interval; the interval

was set at 4 seconds as we find this is a typical time to perform one writing with

IndexPen. Each character was repeated ten times in succession, which generates

10 writing samples per loop. The process is repeated 5 times, each time with a

different letter, to produce a group of 50 samples (10 of each letter); we define

this as a session. We collected 200 samples per character. As there are 29 classes

(A to Z, Space, Delete, and Enter), the total number of samples produced is 5800

(29 classes× 50 repetition per loop). Each sample is consisted of 121 frames

(4 sec per sample× 1
30ms f rames per second). Therefore in total, the study col-

lected 708,100 (5800 samples×121 f rames per sample) frames of radar profiles

over all 29 classes.

ThuMouse The evaluation of ThuMouse extends the previous implementation

to make it more practical for real-world interaction, bringing the application-level

in actuating the control of the cursor. For this, we first created a user interface

for exploring and calibrating the ThuMouse tracking information to an on-screen

interface. We also performed a replication study to explore the accuracy of the

ThuMouse tracking, but using a different source (LeapMotion) as the ground truth.

LeapMotion is a new approach to work as the ground truth of ThuMouse. It

detects user’s hand and simulates a 3D output shown in desktop. The detailed
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information about Leap Motion is in 3.4.2. As a tracking device, it is vital that

the neura l network is trained with proper labels. The previous work (9) took

the approach of using webcams and CV for this end. One of the problems with

using YOLO is that it does not provide a real-time feedback. We had to manually

labeled the system so that we can test it against the radar.

To this end, we use the LeapMotion sensor to resolve the ground truth for

tracking information. For a system that is intended to be an input devices, it is

beneficial if its training data is also collected in an interactive manner. That is,

the ground-truth system needs to provide real-time feedback, creating a mode of

interaction. The system under study, when being trained, needs to approximate

the interaction defined by the ground-truth.

LeapMotion automatically and accurately labels for tracking, thus making it a

reliable ground truth. The sensor intakes all the movements of the hand as well as

the fingers and outputs a model of the hand with all the coordinates printed above.

With LeapMotion, the user can perceive the model of their hand on the screen in

real-time. Data collection is much more natural compared to the computer vision

approach in earlier work. We can visually intake information on whether we are

performing the right gesture or not as well as whether the sensor is recognizing

our hand or not. To explore the cursor control enabled by ThuMouse, we created

a simple user interface where the user moved a red sphere on the screen. The red

ball moves accordingly with the ThuMouse. For this system to work, we had to

tune the system with specific parameters for each person. Upon confirming that

the system works, we tested the radar with LeapMotion as a ground-truth.
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4.2.2 Experiment Environment

The new environment is set up the same way above using radar and Leap Motion.

The Leap Motion is fixed above the radar. The system collects radar frames and

video streams from Leap Motion together to train the model. The new experiment

setup is shown in the Figure below.

Figure 22: Second iteration-experiment setup, Leap Motion is above the radar

4.2.3 Results

IndexPen The confusion matrix for the IndexPen gesture classification is shown

in Figure 23, which represents the prediction results for all 26 alphabet and three

special commands (Space, Delete, Enter). Each row contains 200 prediction re-

sults for a particular character. Overall, we achieved 99.7% accuracy.
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Figure 23: Confusion Matrix of IndexPen classifier: Alphabets on the vertical axes
shows the actual input label, horizontal is the prediction from IndexPen classifier.
The numbers in the matrix represent the percentage of labels predicted versus the
true label. The high distribution on the diagonal shows that the IndexPen has high
classification accuracy for all 29 gestures.

It is interesting to note for these gestural characters that did not achieve unit

accuracy, they were consistently mis-classified to one other symbol. Namely, the

pairs include A-K, G-C, I-H, Enter-G. One explanation for this behavior of uni-

form mis-classification is the similarity between the strokes of these pairs. As seen

in the IndexPen gesture table, C and G only differs in the last horizontal swipe.

Others pairs are more challenging to understand (i.e., Enter and G). However, it is

important to note that the features given by the radar are the range-doppler and the
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range-azimuth-elevation matrices. Two gestures appearing similar as pixels does

not necessarily imply that they also look similar in the radar features, and vice

versa. Further, we expect that confusion matrices will be unique to an individual,

based on the way they perform the gestures. As we test this with a wider group of

users, we will explore this.

Figure 24: Averaged temporal probability evolution for the 29 IndexPen gestures.

As the classifier deals with streams of data, it is also important to see how

the predicted probability evolves as a gesture is being performed. Figure 24 gives

as the evolving predicated probability as the radar frames is being feed into the

network while the user is performing the gesture. It is evident that all the proba-

bilities for all the gestures shows a sudden surge upward at the 2nd second since

the gesture onset. Moreover, the probabilities all tend to converge towards the end

of the 3rd second. One implication of this behavior for real-time input systems is

that the detection system should set a threshold value for determining if a gesture
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has actually being performed.

The high within-user accuracy shows high promise in bringing the system to

the interaction stage. However, the result is not conclusive for all the samples are

collected on a single user. The preliminary results shows that we can accurately

detect IndexPen gestures of a user with a model trained on their own data. If

the high within user accuracy holds true, it can be permissible to suggest that

in real interaction settings, user-specific calibration can significantly improve the

stability and precision of the proposed system.

Generally, ThuMouse performs well in resolving the position of moving ob-

jects in 3D space. The predicted path from the radar is generally with the real

path, which is by the LeapMotion sensor. In terms of resolving the XYZ dis-

placement of the thumb-tip, the system displays reasonably good efficacy for the

x-y plane (Mean Squared Error (MSE)xy=7.55e−4millimeters px= 4.35e−4 mil-

limeters). As the table above indicates, our mean squared error is significantly

reduced by using LeapMotion as groundtruth compared to our WebCam results.

RMSE of X is reduced from 1.27mm to 0.000435mm, RMSE of Y went from

1.44mm to 0.000975mm. The advantages of having a better system are not only

apparent in terms of number but also apparent for us testers. We feel that Thu-

mouse is much smoother and more responsive compared to our previous work.

Overall, both ThuMouse and IndexPen performs well in resolving movement of

finger-tip and shows good efficacy. LeapMotion ThuMouse shows significant de-

crease in mean-squared error compared to YOLO ThuMouse. IndexPen achieved

an accuracy of 99.7% across 29 characters.
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Table 3: System performance for two different systems. The second last row
shows the statistics for x and y axis combined as a plane, and the row headed
’XYZ’ is for the overall performance.

LM ThM(mm) WC ThM (mm)
RMSE X 4.35e−4 1.27
RMSE Y 9.75e−4 1.44

XY combined 7.55e−4 16.4
X to Y ratio (no unit) 0.45 0.88

4.3 Third Iteration

4.3.1 mGesf GUI

To further modulate the experiment procedure, we developed an accompanying

GUI in the second iteration.

The Micro-gesture Sensor Fusion Graphic User Interface (mGesf GUI) is de-

signed to enable an all-in-one experiment pipeline including the connect to the

sensors, parsing streams from them, recording experiment data, training evaluat-

ing the ML models in interpreting the data collected, and to carry out user studies

with the established models.

The GUI includes two major components - the sensor and the experiment in-

terface. The former is in charge of establishing serial interface with the various

sensors (radar, camera, and so on) and relaying and visualizing the real-time data

streams. The experiment interface is for researchers to conduct experiment ses-

sions for the detection of micro-gestures. The current implementation includes

experiment interface for IndexPen and ThuMouse. However, the software is not
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limited to experiment with this two already-defined gesture schemes. The Ind-

exPen and ThuMouse problems can be generalized to common classification and

tracking tasks respectively, and the GUI allows the user to gear the interface to

their own customized experiments.

Controls At launch, mGesf GUI starts with the control tab, under which

presents the control panels for various sensors. The current implementation in-

cludes the full control for the mmWave radar but limited for the LeapMotion and

the UWB sensor as they are still under development. It is worth noting that each

sensor’s group presents a run-time area. This area would display real-time visual-

ization for its relating sensor if that particular hardware is running. The run-times

are to provide a holistic view to the user so that one does not need to switch to

each sensor’s individual tabs to confirm the running status of that sensor.

Figure 25: The control tab of mGesf GUI, each sensor has a panel for its controls.
The common theme among the panels is the run-time window, which displays the
data stream from the respective sensors if they are running.
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Gestures The Gesture tab is a more complicated interface loaded with more

substructures, but most of its idea coincides with that of the controls. The run-time

windows from the control tab made their reappearance here because it is important

for the experimenter to see the real-time profiling of sensors under study.

Figure 26: The gesture tab of mGesf GUI. The three figures above are the run-time
plots for each sensor (for the ones that are running at the time). The lower-half
presents specific options for carrying out gesture experiments.

The lower half of the Gesture tab provides a control interface to the experi-

menter and instructions to the subject. The current implementation includes three

types of gesture paradigms - IndexPen, ThuMouse, and DFT, among which the

DFT’s is still under development and would be noted as part of the future work.

The recording interface for Index follows the data collection methodologies.
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Figure 27: Experiment interface for recording the IndexPen data.

The interval slider tells how a single gesture performance lasts, where the re-

peats tells how many repetition the subject need to do for each gesture before

moving on to the next. The user can define the categories of gesture of this ex-

periment session in the classes text box. The right hand side is the instruction

area for the subject. A metronome-like timer counts the second of each gesture

performing interval, and its bubbles are lit as an interval progresses.
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Figure 28: (above) The detection tab for evaluating the IndexPen classification
model (below) The detailed graph showing the temporal probability evolution for
each class in the IndexPen alphabet

Once, the data is collected to a desired amount within the recording table.

The experimenter can then proceed to the train tab (not shown in the figures) to

establish a customizable machine learning model that resolve the gestures. The

detection table is used for evaluating and testing the IndexPen model built through

the same pipeline. Here, the user can load the trained model and perform real-

time evaluation with it. This interface also provides another degree of insight

75



into the model’s performance via the probability view. Here, the user can see

how the predicted probability evolve as time progresses. This visualization of the

temporal probability evolution is to give the experiment an understanding of the

inner-working of their model, and facilitate them to improve on the model design

that leads to more accurate inferences on the gestures.

Figure 29: (one above) The recording tab for ThuMouse, that gives two types
of interaction tasks. (two below) The two interaction tasks act as the recording
session for ThuMouse, including that of ’following’ and ’locating’.
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The ThuMouse recording tab is organized mostly the same way as that of the

IndexPen’s. Nevertheless, the recording session of ThuMouse is organized into

interactive tasks instead of plain-gesture performance as seen for IndexPen. It is

also worth noting that the interaction in the recording tasks are actuate through

the ground-truth system. That is, the subject control the movement of the cursor

through the ThuMouse gesture, and the gesture input is interpreted into cursor

movement by the sensor that yields the ground-truth; in our second iteration, it is

the LeapMouse app with the LeapMotion sensor.

The two interactive task are ’follow’ and ’locate’. In the former, the user is

asked to move the cursor following a predefined path displayed on the screen. The

locate tasks shows spheres at the four corner of the instruction area, one at a time;

the subject is asked to move the cursor to where the sphere is current located.

The interactive mood of collecting the ThuMouse data is significantly different

from how the team did in the first iteration, where the subject is only asked to

performed arbitrary movement on certain axis. Though due to the time constraints,

the team has not been able to collect data in this interactive way, it is permissible

to say the new way concurs more with how the people would use the system in

real life and would lead to collect well-founded data that results in establishing

more robusts statistic models for resolving the gestures.
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5 Conclusion

In the development of input interfaces, every steps takes some new physical ac-

tion and map it to the virtual world. From computer mouse, touch screen and to

gestures, each new input paradigm not only excite significant interest of the public

and the market. In the past decades, reflecting this trend, a series of technologies

including alternative realities cite, eye-tracking cite, and gesture interface have

emerged in our lives and build a high connection with our life. No matter we are

at the home or cars, using these techniques gives us a better way to enjoy our life.

We presented a new concept called ThuMouse as a type of in-air gesture track-

ing. ThuMouse is performed by moving and clicking with the thumb on the plant

of the index finger in order to move the cursor and realize the function of the

click. The proposed ThuMouse scheme is different from most existing literature

in the way that: Most literature focuses on large-scale gestures, usually involving

the movement of multiple fingers and even hands. Compared with these gestures,

micro-gesture is more preferable and practical in the mobile context (as shown

in TipText 2019, Pyro 2017, Soli 2016). Besides, part of the literature such as

TipText 2019 are allowed to put some sensors on the subjects, which will bring

some limitations on use situations and make the users feel unnatural. Besides, the

gestures proposed by most literature does not give haptic feedback.

ThuMouse, is a novel gesture paradigm by taking the mmWave sensor as the

main hardware and two cameras as the ground truth. It is a complicated com-

bination of the hardware and software, which include radar signal processing,
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Computer Vison, data analyse and Deep learning. Aimed to realize the function

of moving and clicking, radar sensor picks up the reflected signals from the hands

and recorded it as raw input matrix firstly. Then, these detected points are ex-

tracted and rasterized in the voxel space as the deep learning features. Besides,

we recorded the radar frame along with two cameras, which put on the top and

left. Then, we use the trained YOLO model to process these video frames and

get the location information of the thumb. By processing these radar frames and

video frames, we can realize the basic function of the ThuMouse.

Compared with the old, we change the ground truth from the two cameras into

the LeapMotion. Compared with cameras, which often lose focus and have high

dependence on environment, LeapMotion is a more stable and more powerful

hardware. Besides, we take three user studies, which can make the ThuMouse

more practical.

All in all, our contributions are: (1) introduce a new method for text-entry

based in-air gesture recognition paradigm to detect the micro-gesture. (2) make

an improvement of ThuMouse and take it into a application level. (3) Test different

algorithms for ThuMouse in order to get the highest accuracy. (4) conduct three

times of user study to improve the use experience.

Although our product shows significant promise in terms of IndexPen, it was

wanting in terms of tracking performance of ThuMouse along the y and z axis.

After testing the IndexPen, we have a 93% of recognition accuracy. After testing

ThuMouse with our proof of concept website, it was brought to our attention that

our y-axis and z-axis (elevation) was not working as well as our x-axis. We had to
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disable the two axes to make our product work. Figure below shows a diagram of

our prototype. There are two cameras one to detect x, y axis and another one from

above to check the y, z axis. We have concluded that our current design is not

operational for everyday use and we have decided to change our product design

as well as our training models to make further developments on this project.

Instead of working on our project in the usual waterfall fashion, we decided

to work on it using agile methods. So, in total, we formed 6 iterations to work

on across the year. As of now, we have finished two interactions. Each iteration

consists of modifying and adapting to whatever the users need. There will be

user studies being conducted whenever the development is operational. Figure

above indicates how the project has established across the two interactions before

finishing A-term.

From March to July, the first iteration was ran. During the Preliminary Re-

search phase, we mainly searched for design tools, wrote out schematics, create

prototype requirements, and assembled the prototype. From July to October, the

second iteration was ran. Our main objective during this iteration was to develop

our project to hit the CHI conference schedules. First, we did a literature review

and collected data to create a ThuMouse model and the IndexPen application. We

also did a proof of concept demonstration by creating a website to allow the users

experience our model of ThuMouse. Although we did not catch the CHI submis-

sion deadline, we were able to submit the results to ICCE conference. We plan to

use the first ten days of October to retrospection and documentation of the work

that we have done.
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From October to December, we presented ThuMouse at IEEE ICCE, and stud-

ied new radar module from the Texas Instrument and used LeapMotion instead of

YOLO. We worked on the LeapMouse applications and LeapMotion Radar Fusion

design options. We presented our ThuMouse prototype at the ICCE conference.

From January to May, we focused our energy on UIST conference submis-

sion. At first, we were going to make a new version of ThuMouse to submit to the

conference. Due to timing restraints, we had to shift our gear and use "Desktop at

Fingertip" which incorporated a new version of ThuMouse along with the Index-

Pen work we did. Afterwards, from After that, we plan to brainstorm and develop

new products using the results, feedback, and experience that we have gotten from

the iteration 2.

6 Future Work

For IndexPen, given the high classification of IndexPen, we assume that similar

gestures can be fitted to alphabets in addition to, or other than that of the English.

An immediate improvement to the proposed IndexPen is to add the Arabic num-

bers to the gesture set. On the other hand, it is worth investigating to what size

an IndexPen gesture set would be so the accuracy would reach its ceiling. That

is to study how the classification error varying given more character categories,

and possibly extend to resolve characters from ideographic languages where the

number of written characters are more pronounced.

We have shown that ThuMouse enables the user to control the movement of the
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cursor. To extend this gesture to have the same capability as a computer mouse

or track-pad, additional gestures need to be considered to cover controls such

as click, scrolling, and zooming. As the core idea of ThuMouse centers upon

natural mapping, we recommend future work to investigate how an in-air micro-

gesture system can achieve the same level of control as the everyday desktop input

devices.

In near future, we decided to finish the user-studies that we planned on con-

ducting. The results on the user-studies could go into the CHI conference sub-

mission next semester. We would like to explore our options with Ultra-wide

band. We would also like to finish developing the GUI that we are working on for

the sensor fusion approach as that GUI would make collecting data much more

efficient.
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