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Glossary 
Ergometer (erg): ​stationary rowing machine 
Shell:​ the hull of a rowing boat 
Eight:​ a rowing boat that hold eight rowers and a coxswain 
Coxswain:​ an individual who sits in the stern of the boat and steers 
Head race:​ boats race in single file and compete against the clock 
Sweeping:​ a style of rowing where rowers each use one oar 
Sculling:​ a style of rowing where rowers each use two oars 
Catch:​ the position where the rower reaches the front of the slide 
Drive:​ the power portion of the stroke, the leg drive 
Finish:​ the final part of the drive, handle is pulled into body 
Recovery:​ rower moves from the finish back to the catch 
Starboard:​ a rower whos oar is on their left side 
Port:​ a rower whos oar is on their left side 
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Abstract 
Performance in rowing is reliant on the precise and consistent execution of strokes. 

Perfection of the stroke takes years of focused effort, with particular focus on the timing of the 
legs, trunk and arms. Training is required not only on the water but on stationary training 
ergometers. Currently, instrumentation of the rowing stroke timing elements is limited to rating 
and coaching feedback. There is still no componitized feedback system for the three main 
elements of the stroke: legs, body, arms. This project’s aim is to create a visualization tool for 
rowers that breaks down the three movements in the stroke to provide coachable feedback.  The 
tool has three microelectromechanical system (MEMS) sensors, each of which is positioned 
corresponding to the targeted movement.  The first sensor is located on the seat of the erg, the 
second on the handle, and the last sensor on the rower’s back. A display of the rower’s timing 
element data allows them to learn and correct their strokes in real time. The system is still in 
development so it has a few limitations. A bad connection from the tape inhibited data transfer so 
heavy interpolation was used. Underfitting is likely.  Possible future routes for this project 
include using machine learning to determine stroke quality, using machine learning to detect the 
phases of the stroke, engineering a wearable holder for the sensors to improve data transfer, and 
developing better ways to visualize the stroke in real time. 
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Executive Summary 

The ergometer (erg) has become one of the most useful tools for the general rower, it                
allows an athlete to receive live feedback on speed, power application, and stroke rate over time.                
This allows experienced athletes to gather data related to the power they are generating which is                
converted to speed. Athletes are able to track fitness and compare themselves to other athletes               
(Geer, 2018). Coaches are able to evaluate the rowers potential to actually move the boat on the                 
water. However, gathering data on technique, using only the ergometer, is limited. Timing can              
only be gauged based on strokes per minute, displayed on the monitor, and technique can be                
partially shown using the force curve that the monitor on the erg displays live during a stroke.                 
The force curve is able to show the total force that is created with the legs, back, and arms during                    
each stroke (Breiland, 2017). 

While this metric is helpful, there is no current display that breaks the stroke down into                
its key elements individually: leg drive, back swing, and arm pull. Since there is no current                
technology on the market there are no engineering standards that exist for the product.              
Accurately displaying relative positions and timing of these elements will allow athletes to make              
minor adjustments in timing of each element of the stroke and ultimately the athlete will be able                 
to improve technique. This will also serve as a useful tool to coaches trying to analyze the                 
athlete’s stroke.  

In order to achieve our final design, our team had three design iterations. The first               
iteration of the project was completed using the motion capture facility in PracticePoint. The test               
subject was outfitted with reflective markers on the anatomical landmarks and a Delsys IMU              
sensor in the center of the back. Two Delsys IMU sensors were also fixed to the seat and handle                   
of the erg. Acceleration data of the seat, handle, and back was collected from the IMU sensors.                 
Position data was collected using the Vicon motion capture system and the reflective markers on               
the test subject. The primary conceptual design was the visualization that was created from this               
data. Matlab was used to visualize acceleration over time and the position over time. This               
iteration makes obvious that it is possible to isolate the acceleration of the three parts of the                 
stroke using three sensors located on the seat, back, and handle. In the second iteration, an                
instrumented system was developed to break down the elements of the stroke in real time.               
MEMS sensors were placed in the same locations. Sensor data was collected by a Raspberry Pi                
as the test subject was rowing on the erg. These values were displayed while they were rowing.                 
They were able to see distinct differences between consecutive strokes. In the final design, the               
model was applied to the data. This yields the independent acceleration values of each element.               
Unique colors were assigned to each element for easy identification across charts and for easy               
identification of back usage. Hopefully this will help to investigate the association between             
excessive back usage effect and injury. The display updates after every stroke, giving them              
adequate time to interpret.  It also allows them to compare consecutive strokes easily. 
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Our team also had a few different iterations for the visualization of the data being               

collected. The early visuals made from motion capture systems in PracticePoint gave helpful             
insight to the specifics of the stroke. While the graphs that were produced from the sessions and                 
had a different visualization method, it still provided accurate information for timing and             
position of the stroke.The later visuals made using a real time display gave further, more specific                
insight into the stroke. Between just the few test subjects, it seems that the stroke can be broken                  
down into three parts. Each acts in consequence of the former. How the elements behave in                
higher level athletes is to be determined. 
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Chapter 1: Introduction 
Rowing is a physically and technically demanding sport that requires all muscle groups in 

the body to work in a coordinated sequence to create a powerful and efficient stroke. An 
effective stroke will be the results of proper timing, technique and power application. 

The ergometer has become one of the most useful tools for the general rower, it allows an 
athlete to receive live feedback on speed, power application, and stroke rate over time. This 
allows experienced athletes to gather data related to the power they are generating which is 
converted to speed. It can also help coaches to evaluate the rowers potential of actually moving 
the boat on the water. Therefore if the rower is also able to develop the correct technique on the 
erg then this is less the rower needs to learn when they are actually in a boat on the water. For 
our project our team will focus on improving the technique of the rower on the erg so that they 
can easily apply the same technique when they are on the water. However, gathering data on 
technique using only the ergometer is currently limited. Timing can only be gauged based on 
strokes per minute, displayed on the monitor, and technique can be partially shown using the 
force curve that the monitor on the erg displays live during a stroke. While these metrics are 
helpful, there is no current display that breaks the stroke down into its key elements: leg drive, 
back swing, and arm pull. Accurately displaying relative positions and timing of these elements 
will allow athletes to make minor adjustments in timing of each element of the stroke and serve 
as a useful tool to coaches trying to analyze their athletes stroke. 

The biomechanics of the rowing stroke has been studied for over 50 years in the rowing 
community (Baca, 2019). Optimal stroke technique has yet to be proven, and every coach has a 
different preference when it comes to technique and style of execution. Like other sports, 
technique has a lot to do with the coaching involved.  There are many coaching tools on the 
market that attempt to facilitate the teaching of the stroke, but none that enable the coach to 
visualize each element of the stroke independently.  Using 3-D motion capture hardware and 
software will allow the stroke to be quantitatively visualized, therefore making more accurate 
estimates as to what needs to be changed during the stroke.  

The goal of this project is to expand on the practicality of the ergometer by developing a 
visualization tool that displays data from body positions throughout the stroke. This tool will 
allow for more intuitive and effective training while using an ergometer. Currently, there is none 
widely available that is easy to use. This device will be a useful coaching tool that provides 
detailed feedback to the rower as they row.  
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Chapter 2: Literature Review 
2.1 The sport of rowing 

Rowing competitions are not like other competitions in sports. There are no national 
sporting leagues for rowing, but there are teams.  Rowing teams are called crews, and each crew 
is either out of a university, boat club, or a whole country.  Boat clubs that are geographically 
close to each other typically have competed for generations.  Rowing competitions are more 
traditional in this way, but in this age there are more invitational events that hundreds or even 
thousands of crews race at, like the Head of the Charles in Boston, MA.  Races can even have 
dozens of crews competing at the same time: rowing down the same river in single file.  Races 
have never had a universally required distance.  The distance of the race usually comes down to 
the distance of open water available for racing.  However, in the Olympic events, there is a 
standard distance of 2000 meters that the athletes compete and train for (“Rowing Basics”, n.d). 
For the most part, the race courses are straight as possible and the boats race side by side to the 
finish line.  The other kind of racing, done in single file, is called head racing and is typically 
done when the course is curvy. 

The boats used for rowing are called racing shells.  Rowers sit on a seat that slides back 
and forth on a track in the shell and their feet are strapped into the boat in front of them.  The 
oars are held in place by a rigger, which helps leverage the oar in the water (“Rowing Basics”, 
n.d).  The rowers hold the oar with both hands and press their feet against the foot-plates to pry 
the boat through the water towards their backs.  Figure 1 shows a classic racing shell designed 
for 8 rowers.  

 

 
Figure 1. Standard 8-man rowing shell straight-rigged​ (Whitman, n.d.). 
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There are several different competitive boat types to date.  The most popular boat type by 
far is the eight man boat called an eight seen in figure 2.  At the most elite level, crews desire to 
win competitions in the eight more than other boat types.  
 

Figure 2. Polish eight racing on a buoyed course (“Empacher Racing Eight”, n.d.). 
 

The other types of boats work in the same way, but are designed for less rowers. There is 
a four man boat called a four or a quad (depending on whether it’s designed for sweeping or 
sculling, respectively), and two man boats called a pair or a double.  The sweeping boats are 
made so that each rower uses one oar on one side of the boat.  The sculling boats are made so 
that each rower uses two oars with one on each side of the boat (“Rowing Basics”, n.d). The 
common boat types used in competition can be seen in figure 3 below. 
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Figure 3. Different types of boats used in competition (Malacrida, 2020). 
 

There are also different kinds of oar shapes that are popular with rowers of all levels. 
The main kind of oars are the rectangular edged blades shown in the image of the Polish eight 
(“Empacher Racing Eight”, n.d.). There are other kinds of oars that have different edge types that 
are permitted for use in rowing competitions, but the rectangular blades are currently the most 
popular.  The type of blade that the crew uses comes down to coaching preference. 

Crews usually have their own style of rowing, which is usually a product of coaching. 
There are more traditional ways of rowing and there are also more contemporary ways of 
rowing.  Coaching has evolved, and it continues to evolve with the introduction of new 
technology.  This happens relatively slowly with rowing however, because it is and has always 
been a traditional sport.  Yet there remains a variety of rowing styles between crews.  The 
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interesting part is that almost every style on the spectrum has been successful.  It is very difficult 
to identify a particular style as being more effective.  This project attempts to dissect some of this 
mystery, but culturally there is not a best style.  Universities, boat clubs, and countries all have 
identifiable styles that are unique to their crew.  The specific differences in style come down to 
the timing of the legs, trunk, and arms, in that order.  The timing of these elements have been 
contemplated by every coach molding his/her rowers. 

2.1.1 Basics and Anatomy of the rowing stroke 
The rowing stroke is a complex motion that engages almost all muscle groups in the 

body. Many people think of rowing as an upper body sport when really the majority of the power 
comes from the rowers legs (US Rowing, 2019). The rowing stroke is comprised of four parts: 
the catch, the drive, the finish and the recovery. At the catch, the tibia is completely vertical the 
femur is approximately 30 degrees distal to the tibia. The torso is angled towards the femur, and 
the arms are fully extended so that there is no bend at the elbows. The next phase is the drive 
where the athlete engages their abdominal muscles and applies pressure to the footboards. As the 
athlete puts pressure against the footboards the legs start to fully extend until the knee reaches an 
angle of approximately 180 degrees. The rower also engages the arms pulling the handle towards 
the torso and bending the elbows. After completing the drive the rower is at the finish position. 
At the finish the legs are fully extended, the handle is against the upper abdominal muscles, the 
shoulders are engaged, the abdominal muscles are engaged and the upper body is at a 10 to 15 
degree angle posterior to the pelvis. The next position is the recovery, which is comprised of the 
movement that allows the rower to move back to the catch position. During the recovery the 
order of movement of the body parts is very important. First, the hands move away from the 
body in a horizontal line towards the catch. The body then follows the movement of the hands 
rotating to a 20 to 30 degree angle anterior to the pelvis. Once the body reaches this angle the 
seat starts to move forward as the rower draws themselves up towards the catch. The knees come 
up until the rower is back in the catch position, described earlier, with their forward body angle 
and shins in a vertical position (US Rowing, 2019). You can see the four parts of the rowing 
stroke and the muscles that are activated during each phase in the figure 4 below. 
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Figure 4. The four phases of the rowing stroke (US Rowing, 2019). 

 
In all forms of rowing these four different phases apply and are sequenced in the same 

order. However, when it comes to technique there are multiple styles each with their own slight 
deviations that are followed. According to Klesnev there are four extreme styles (Kleshnev, 
2016). Most rowers do not row with just one style but with a combination of them. In the book 
The Biomechanics of Rowing ​Kleshnev refers to the four styles as Adam, DDR, Rosenburg, and 
Grinko. These four styles can be seen in figure 5 below. 
 
 

 
Figure 5. The four rowing styles (Klesnev, 2016). 
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In 1977 Klavora defined the first three rowing styles: DDR, Rosenberg, and Adams. 
These styles were created based on the movement of the legs and trunk. In the diagram above the 
x-axis represents the timing sequence of the legs and trunk in relation to each other and the 
y-axis represents which segment is emphasized. The DDR style is defined as a stroke where the 
drive begins with a large, forward declination of the trunk. This movement is then followed by a 
simultaneous movement of the legs. The Rosenberg style starts the same as the DDR style with a 
large, forward declination of the trunk. Following this the legs then engage, unlike the DDR style 
the legs extend without movement of the trunk. After the legs extend the trunk moves into a 
layback position. The Adam style is similar to the DDR style where the legs and trunk move 
simultaneously. However, unlike the DDR style the Adam’s style has a long leg drive and less 
forward declination of the trunk (Klesnev, 2016). 

However, these three strokes do not complete the above figure, there is still one style that 
is missing. The stroke that is missing is one that emphasizes the leg movement but also has 
simultaneous timing. This style was named Grinko after the Russian coach Igor Grinko. It took 
coaches years to understand how this style of rowing could be beneficial but Igor Grinko 
continued to coach this style. Igor Grinko went on to coach many rowers who became world 
champions and even olympic medalists. Once coaches saw this and started to understand this 
style better they tried to incorporate it into their own teachings (Klesnev, 2016).  

Researchers analyzed the power curve that could be created from each of these styles. 
They were able to determine that a stroke that consists of simultaneous movement of the legs and 
trunk will create a rectangular shaped curve but show less peak power. In the styles where the 
legs and trunk move sequentially the curve is more triangular and has a higher peak force 
(Klesnev, 2016). This shows that overall the rower is able to generate more power when they 
move their legs followed by their back rather than moving the two simultaneously. Power curves 
for each body segment as well as full body motion can be seen in figure 6 below. 
 

 
Figure 6. Power curves of the four rowing styles (Klesnev, 2016). 
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Due to the difference in rowing styles it is hard to define what the “perfect” stroke is. 
However, it is important to have a picture of the ideal stroke in mind. If the rower can picture 
what the ideal stroke is then they can aspire to row like that. If they have no aspiration then they 
have no way of knowing if they are getting better or worse. Having the aspiration also helps the 
rower to avoid techniques and bad habits that could cause injury. The ideal stroke will be 
different based on the rowers size and shape but can be determined by biomechanics (Breiland, 
2018).  

No matter the size and shape of the rower, the same sequence during the stroke is used.  
During the catch the arms are straight, the head is still, and the shoulders are level. The torso has 
a slight anterior lean that is initiated from the hips to allow the shoulders to remain anterior to the 
hips. The shins of the rower are in a vertical position. The catch position can be seen in figure 7 
below.  

 
Figure 7. The catch (“Muscles used”, 2019). 

 
From the catch the rower then proceeds into the movement of the drive. During the drive 

the legs are activated first, the back then swings past the vertical position and then the rower 
pulls on the handle with the arms. During this motion the hands should remain on a level plain 
creating a straight line from the flywheel to the body of the rower. Once this sequence is 
completed the rower should be at the finish. In this position the torso is in a slight layback 
position, posterior to the hips and the core of the rower is engaged showing that the rower is in a 
position of power. The legs are fully extended and the handle is held slightly inferior to the ribs. 
In this position the shoulders and arms are relaxed and wrists are flat and not in a cocked 
position. The finish position can be seen in figure 8 below.  

 

 
Figure 8. The finish (“Muscles used”, 2019). 

20 



 

After arriving at the finish the rower goes into the recovery phase to get back to the catch. 
During the recovery the arms are extended first and then once the arms are extended the torso 
follows, creating a bending motion from the hip. After the hands pass over the knees the legs 

start to bend and the seat is gradually moved towards the flywheel. Once the rower reaches the 
catch position they are able to start this sequence again (Cheri, 2019). 

2.1.2 Rowing on the Ergometer vs. The Water 
There are three types of rowing: sweeping, sculling, and ergometer (erg) rowing. In 

sweeping the rower is driving a singular blade on one side of the boat (either port or starboard). 
In sculling, the rower is driving two smaller blades, one on each side of the boat. In ergometer 
rowing, the rower is on a machine that simulates the technique with a symmetrical handle rather 
than an oar. Minus the hand skills involved in each type of rowing the technique used, 
specifically the timing of each segment remains the same.  

The erg is an exercise machine that was developed by Dick and Peter Dreissigacker as a 
way to both simulate the rowing stroke as well as provide comparable data to the work being 
done when rowing on the water. Since the first erg was developed in 1981 there have been 
substantial improvements made (Geer, 2018). In figure 9 there is an image of the first erg and in 
figure 10 there is an image of what the erg looks like today. 
 

 
Figure 9. Model A, the first ergometer (Geer, 2018). 

 

 
Figure 10. A model of the current ergometer (Geer, 2018). 
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Although the primary techniques used on the water and on the erg are similar there are 

still many differences between rowing on the water and rowing on the erg. There is a significant 
difference between the handle velocity and shell acceleration on the erg vs. rowing on the water 
therefore the erg should only be used for cross-training and cannot completely replace on water 
rowing. One of the main differences between rowing on the erg and rowing on the water is that 
on the erg the footplate is stationary which increases the inertial forces. Another major difference 
is that on the water the acceleration of the boat has a big effect on the rowers performance, where 
that can not be simulated on the erg. On the water the handle force and leg speed increases faster 
than on the erg. This is due to the fact that on the erg the rower is interacting with a stationary 
support where on the water the rower is interacting with a mobile point of support. There is also 
a difference in the gearing ratio in the boat vs. the erg which also affects the magnitude of the 
handle force (Kleshnev, 2005). The difference in the gearing ratio can be seen in figure 11 
below.  
 

 
Figure 11. Gearing ratio in the boat (left) and on the erg (right) (Kleshnev, 2005). 

 
The difference in the handle force and speed on the water vs. on the erg can be seen in the 

graphs below in figure 12. 
 

Figure 12. Graphs of the handle force and speed during both scenarios (Kleshnev, 2005). 
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Rowing on the erg versus on the water is visually the same and incorporates the same 

timing ratios of body segments; however, as shown above, there are significant differences in 
mechanics. A table of the similarities and differences between on water rowing and ergometer 
rowing can be seen below. 
 
Table 1. Similarities and differences between water and ergometer rowing. 
 

Similarities Differences 

● Major techniques 
● Stroke components and motions  
● Muscle activation 

● Additional technique (ex. blade entry) 
● Starboard vs. port 
● Handle velocity  
● Shell acceleration 
● Gearing ratio 

 
 
2.2 Introduction to biomechanics 

The biomechanics of the rowing stroke can be broken down as the heart of the sport. The 
stroke can be broken down into quantitative data that relates to the physical motion that the 
athlete is doing. A way to analyze complex motionsis through motion capture. For the purpose of 
the rowing stroke, two dimensional and three dimensional motion capture will be used in the data 
collection. Two dimensional motion capture will be in the form of a video, and three dimensional 
motion capture will be through the Vicon motion capture system. Both will assist in relating data 
to a physical position and timing of the stroke. Essentially, the motion capture data will be used 
to determine body angles, forces, and moments at specific joints, along with the relative timing. 
Reflective markers will be placed across the body in order to create a full 3D digital model of the 
rowing stroke. The markers will be placed in a pattern so that the software can connect all of the 
markers to create a geometric model of the person including all the joints. The placement of the 
sensors can be seen in figures 13 and 14 below.  
 

23 



 

 
Figure 13. Front view of the anatomical markers placed on the subjects body (Vicon, 2016). 

 

 
Figure 14. Rear view of the anatomical markers placed on the subjects body (Vicon, 2016). 

 
In addition to the Vicon motion capture system our team will be using Delsys Trigno 

sensors to collect acceleration data during each part of the stroke. The Delsys Trigno Avanti 
Sensors are the main tool that will be used for the data collection of the rowing stroke. A sensor 
will be placed on the seat, handle, and body of the rower so that the data from each section of the 
stroke can be distinguished.  

In addition to measuring the acceleration of the rower the Delsys sensors will also be 
used to measure muscle activation. This will be done using the electromyography (EMG) 
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component of the sensor. Sensors will be placed on the calves, quads, fore-arms, triceps, hips, 
and shoulders. This will allow us to gather enough data to accurately create a musculo-skeletal 
model to calculate joint loads. While the stroke on the erg is mostly symmetrical on both sides of 
the body, having three dimensional sensors will allow the team to determine if there are any 
deviations in symmetry. This will allow us to determine if the body is ever in a position that will 
compromise the physical health of the rower. 

2.2.1 The Math Behind Vicon Motion Capture 
The Vicon motion capture system uses a software called Nexus to perform all of its 

calculations. The user inputs the segment lengths of the test subject along with the test subjects 
weight. Vicon then uses the segmentation method to calculate the COM of the rower and then 
creates a data set of how the COM of the rower changes over time. The diagram used for the 
segmentation method can be seen in figure 15 below. Table 2 shows the proportions that are used 
to calculate the center of mass.  
 

 
Figure 15. Segmentation of the body (Klesnev, 2016). 
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Table 2. Segmentation Coefficients from Vicon’s Plug-in-Gait (“Vicon Motion Systems”, 2016). 
 

 
 
The general equations used to calculate the center of mass are:    
 

COMx = m1+m2+m3...
m1 x1+m2 x2+m3 x3...* * *

   
 

COMy = m1+m2+m3...
m1 y1+m2 y2+m3 y3...* * *

   
 

The Vicon software is also able to calculate the angles of each of the joints on the body 
based on the biomechanical model created of the test subject. The software compares the relative 
orientations of the segments that are proximal and distal to the joint that is trying to be measured 
(Vicon, 2016). A data set is then created of the change in angle over time for the duration of the 
rowing motion. The software is then able to create a graph of position over time that can be used 
to compare to the acceleration over time. 

Although not used for this project, due to the limitations of the size of the force plate, the 
Vicon software also has the ability to calculate the forces. If the team had collected force data 
then the team would be able to calculate the moments on the joints. The diagram and equations 
used for this process can be seen in figures 16 and 17. 

 

26 



 

 
Figure 16. Diagram to show location of forces and moments on the lower body. 

 

 
Figure 17. Equations to calculate sum of the moments and forces. 

2.2.2 Delsys Sensors 
Initial data collection for the biomechanics of the rowing stroke will be done with the 

Delsys Trigno Sensors. These sensors are able to visualize any motion in a confined area. With 
sixteen sensors, data will be gathered from every joint that is majorly involved in the stroke. This 
will allow us to accurately determine the timing, muscle activation, and relative position of each 
joint and the surrounding muscles. Using the sensors, we will collect data that represents the 
motion of proper rowing, as well as improper rowing. This will give us an idea as to what the 
data will look like for both cases.  
 
2.3 Common Injuries in Rowing 

The most common injuries in rowing come from overuse due to the repetitive nature of 
rowing. The injuries are related to both the volume of training and the technique used. The most 
common injuries are to the knees, lumbar spine, and ribs (Hosea, 2012). With other injuries 
being to the shoulder and wrist. Injuries are then aggravated when rowers try to row through the 
pain and their other muscles try to compensate for their injury (Parkinson, 2020).  
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2.3.1 Common Injuries (Upper Body)  
The back functions as a cantilever and helps to transfer power between the legs and the 

oar (the handle in the case of the erg). One common back injury is a lumbar disk injury also 
known as “slipped disk”. This injury occurs when excessive force is put onto the lumbar spine. 
The rower pulls the oar/handle backwards while angled forward which puts strain on the back if 
the rower does not engage the core. Another back injury is an injury to the sacroiliac joint.This is 
generally caused because of overuse from high volume training. The sacroiliac joint is located in 
the lower back, one on each side of the spine. The joint acts to connect the spine to the pelvis. 
This injury is also caused when excessive force is put on the back. Figure 18 below shows the 
anatomy of a slipped disk injury. 

 

 
Figure 18. Slipped disk anatomy (“Herniated Disk Treatment”). 

 
Rib stress fractures are another common injury in the sport of rowing. In these injuries it 

is common to feel the pain in the back and have tenderness over the injured rib. An x-ray image 
of a rib stress fracture can be seen in figure 19 below.  
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Figure 19. Rib stress fracture (Hosea, 2012). 

 
Due to the movement of feathering another injury in rowing is wrist injuries. The flipping 

of the oar perpendicular and parallel to the water is what causes extensor tenosynovitis. The 
muscles affected by this injury can be seen in figure 20 below.  
 

 
Figure 20. Wrist tendons affected by feathering method in rowing (Hosea, 2012). 

 
2.3.2 Common Injuries (Lower Body)  

Another common area for injury in rowing is the knees.  There are two common knee 
injuries: chondromalacia patella and iliotibial band (ITB) friction syndrome. A chondromalacia 
patella injury results in anterior knee pain during the rowing stroke. Chondromalacia patella can 
also make it difficult to climb and descend stairs. It also could result in swelling around the knee 
joint and a clicking noise coming from the knee area during rowing (Hosea, 2012). Injuries to the 
knees are caused by the repetitive forward and back motion that the knees endure during the 
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rowing stroke. Proper biomechanics can help combat or attenuate these injuries in rowers. The 
toes should be lined up with the knees with the foot ties turned slightly outwards. The core 
muscles should be engaged in order to maintain the correct back posture. The knees should move 
back and forth in one fluid motion without any jerking. Another way to help prevent this injury is 
to raise the height of the footstretcher in order to decrease the knee flexion angle at the catch. 
Figure 21 below shows iliotibial band friction syndrome.  

 

 
Figure 21. Iliotibial band friction syndrome (Hosea, 2012). 

 

2.3.3 Injury Identification 
While the optimal stroke position is up to interpretation of a specific athlete's body type 

and coach, there are certain techniques and general errors that put the body in a position that 
creates unnecessary strain. A common injury among rowers can be ribcage stress injuries (RSI). 
Several  published journals have discussed the reasoning behind this and have related that poor 
stroke mechanics can put the body in a more compromising position than others.(Hosea, 2020) 
Different stroke/coachings styles will have different tendencies as well. For example, some 
coaches may suggest the proper stroke is to initiate leg/knee extension from the catch, followed 
sequentially by the hips and back, while other styles suggest the legs, hips, and back must be 
synchronously initiated. According to a study (Hosea, 2020), more rowers who practice the latter 
technique experience RSI more frequently, due to the loading pattern. This is then amplified by 
the constant loading and unloading nature of the sport. The image below displays the location of 
RSI in elite rowers overtime. By loading the stroke with both the upper and lower body 
simultaneously, the torso and rib cage experiences more stress than if they were loaded 
sequentially. This is also a result of overall bone strength, which can be broken down into bone 
mineral density and bone structure (Hosea, 2020). The bones of the rib cage do not have the 
same structure as the long bones of the legs, making them less suitable to be repeatedly loaded 
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and unloaded. Current studies are being done as to what are the most effective ways to prevent 
such injuries, while still performing at a high level.  

2.3.4 Injury Prevention 
Prevention of these injuries can come in several forms. Several published journals have 

suggested that both mechanics as well as nutrition can contribute to the prevention of rowing 
related injuries. Several studies have shown that athletes who are consistently rowing at high 
volumes, such as elite athletes during winter training. 

Proper stroke timing and mechanics are key to injury prevention. Many common stroke 
mistakes can lead to future injuries that can be avoided if they are identified and corrected. One 
extremely noticeable mistake in rowing is referred to commonly as “lunging at the catch.” 
Ideally during a stroke, the catch is when the knees are fully compressed, the back is in a position 
of power, and is not in a slouched state. The general mechanics of this error involve motion of 
the upper body, after the knees are fully compressed. This generally causes the rowing to over 
compress, and put back in a position that is more likely for injury. When a rower initiates the 
stroke, it should be done with the legs and transferred through the abdomen, while the arms 
remain fully extended. Bending the elbows too early in the stroke can result in tendonitis in the 
forearm and wrist. On an acceleration graph, this would be displayed as additional positive 
acceleration with the hands after the catch. This is an extremely common injury among rowers, 
using a device such as this could potentially inform the athlete of their error and the athlete could 
make adjustments based on the graphs. Another common mistake in the stroke commonly 
referred to as “shooting the slide.” This is when the rower engages the legs at the catch of the 
stroke, but does not engage the abdomen, essentially moving the seat without moving the handle 
or the flywheel. This difference can also be noticeable in a graph of the seat acceleration. 
Therefore if there is a tool that can display the change in acceleration of the different components 
of the stroke it could ultimately help prevent injuries. 
 
2.4 Current Tools used to Visualize the Stroke 

At the most elite level, coaches are always searching for marginal gains in the form of 
seconds.  There have been numerous attempts to visualize the rowing stroke with both static 
graphs from collected data and real-time visuals that are graphed on a per-stroke basis; used to 
make minute corrections based on the data.  One analysis was conducted by The University of 
Twente in The Netherlands that attempted to utilize machine learning techniques to separate 
good rowing from bad rowing. They were unable to find bad rowing with absolute posture 
angles, however, they were able to pick out bad rowing by assessing the variation in the posture 
angles between strokes in which bad rowers typically were more inconsistent (Bosch, 2015). At 
the elite level posture angles vary slightly between different athletes because of different 
technique and body styles of each athlete. These differences make it hard to determine an 
optimal posture angle for all athletes. However, graphing continuously shows a noticeable 
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difference between techniques.  Even the slightest differences in techniques shows up when 
using numerical data.  Figure 22 graphs posture angle over time for three different sensors. 
These differences can be reviewed and considered by coaches.  Also, key points like maxima and 
minima can be compared. These differences can then be assessed comparing the visualized data 
to quantitative differences in the speed of the rower.  

 

 
Figure 22. Body angles during rowing stroke (Bosch, 2015). 

 
The BioRowTech System by BioRow is one product that displays data similar to the 

goals of this project (Figure 23).  They display the velocities of the legs, trunk and hands all 
independently.  The handle velocity is a sum of the other three segment's velocities.  Our team 
plans to use the idea that the handle velocity is the sum of the other segment’s velocities, and 
extract the velocities in the same way.  When the legs sensor moves, every other sensor moves 
the same amount.  When the back sensor moves, the handle sensor moves the same amount.  And 
when the handle sensor moves alone, it is the only sensor moving.  The velocity points on the 
graph are calculated using these rules. When they take the velocity from the back sensor, they 
subtract out the legs velocity to get the independent back velocity.  This project will utilize 
similar techniques. 
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Figure 23. BioRow visualization with three sensors, and a breakdown of the timing elements (“Biorow Systems”). 

 
This project aims to create a tool that can assist in the training of rowers, and in doing 

this the display must be effective at showing the difference between one stroke and the next. 
Using these line graphs, it is hard to tell how much overlap there is between the curves and 
where the relative maxima are.  It is important that the difference between strokes is easy to see 
so that when corrections are made they are seen on the display. 

The standard rowing machine, Concept2, has a built-in display for showing power output 
over time.  The power at any one moment is a product of the speed of the flywheel, and the 
rowing machine graphs that value over time for each stroke.  Figure 24 shows the rowing 
machine monitor with the force/time graph displayed.  

 

 
Figure 24. Force curve on a Concept2 ergometer (adapted from “Using the force curve”, 2019). 
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The curve that the display makes is similar to the curve shown on the graphs that were 
constructed for the Dutch sensor instrumentation project mentioned before.  One of the key 
differences between these two displays for the matter of this project is that the graph in figure 24 
is the summation of the force generated by the back, legs and arms, and the graph in figure 23 is 
broken down into separate elements of the stroke.  This project aims to deploy an interpretation 
of the stroke similar to that of figure 23.  To record data for the figure 23 graph, the sensors were 
placed on the lower leg, upper back, and lower back.  For this project, the sensors will be placed 
in different areas than this, discussed later. 

Since the stroke has been envisioned as a curve on the most popular and standardized 
rowing machine, it might be the easiest understood interpretation of the rowing stroke over time. 
This project will be focusing on the curve because of its many implications in rowing.  
 
2.5 Sensor implementation 

The goal of the application being developed is to provide a visual feedback tool that 
provides a more complete picture of the stroke. A key challenge in developing this tool is where 
to position the sensors in a way where the timing of each element can be extracted individually. 
The Dutch instrumentation project placed the sensors in places that would not enable extraction 
of each element.  Figure 25 shows the sensor placements for the Dutch sensor instrumentation 
project. 

  
Figure 25. Dutch project sensor placement (Bosch, 2015). 

 
This project aims to extract the distance/time graphs for each of the legs, back and hands. 

To do this, the sensor must have the capability to measure acceleration, gyroscope, and 
magnetometer data.The dutch instrumentation project chose to place the sensors on the rowers 
body this allowed them to extract changing angles over time. Our team has chosen to instead 
place two of the three sensors on the ergometer instead. Placing the sensor on the ergometer 
gives the benefits of reduced data noise however only gives acceleration and position data. 
Showing acceleration and position gives the rower tangible feedback that they can act upon. 
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Statistics like acceleration are easy for a rower to understand as they can control how fast they 
execute each part of the stroke.  

Three sensors are sufficient to extract the individual timing of each element of the stroke: 
a single sensor between the shoulders, a single sensor on the handle, and a single sensor on the 
sliding seat. The seat is one key part of the rowing motion as it moves with the legs of the rower. 
The acceleration and position of the seat moving towards the catch and through the drive can 
give information such as the stroke rate, drive time, and drive length. Drive time and drive length 
are crucial pieces of data as they pertain directly to force applied over the duration of the stroke. 
Information from the seat movement can also be used when analyzing timing of other elements 
of the stroke in relation to the movement of the seat. Another key location for the stroke is the 
torso of the rower. Important data such as body position angle, and timing helps to set up the 
rowers position at the catch, finish, and body swing throughout the drive. This information can 
easily be used by a rower to make small changes in positioning that affect his or her stroke. The 
last important position is the handle of the erg. Position on the vertical axis can indicate the 
handle height of the rower at the catch, finish, as well as through the drive. Timing of the hands 
coming out of the finish is also important in setting up the rower’s recovery timing. It can also 
give information on when the hands are moving compared to other parts of the rowers body. 
Placing sensors on these parts of the rower and machine will give enough information to give a 
complete visualization of the rowing stroke. To do this, the research was done about visualizing 
physical movements in other applications. 

Chapter 3: Methodology 
During the beginning stages of our project our team worked on two main sides of the 

project: biomechanics and computer science. Therefore the methodology will be split into these 
two sections accordingly.  
 
3.1 Biomechanics Methodology 

3.1.1 Setup 
Our team conducted our first data collection session in the PracticePoint facility at 

gateway. PracticePoint has a motion capture room that is equipped with 10 Vicon Vantage 
cameras surrounding the perimeter of the room. The first step of the motion capture process is to 
fit the test subject with reflective markers on the major anatomical landmarks of the individual. 
Double sided tape was used to attach these markers to the test subject. These markers will be 
used to create a biomechanical model made up of the major planes and joints. The positioning of 
the markers on the posterior and anterior of the test subject can be seen in figures 26 and 27 
below.  
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Figure 26. Placement of reflective markers on the anterior of the test subject. 

 

 
Figure 27. Anatomical markers on the posterior of the test subject. 
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After outfitting the test subject with the reflective markers a calibration process was then 
conducted to determine the range of mobility of all the joints of the test subject. The test subject 
had to conduct a range of mobility movements for both legs, knees, ankles, shoulders, arms, 
elbows, hips, and neck. This was done by hinging the ankle followed by the knee for both legs. 
The legs were then swung back and forth in all directions followed by a full rotation of the hips. 
The elbows were then flexed and extended, the arms were swung in all directions and then the 
shoulders were rotated. The neck was then rotated in a similar way to the hips. This calibration 
data was then used to create a scaled biomechanical model of the test subject with accurate joint 
movements. Three delsys sensors were then added to the system. One on the back of the test 
subject (sensor 3), one on the handle of the ergometer (sensor 2), and one of the seat of the 
ergometer (sensor 1). The test subject then sat on the ergometer and rowed without any specified 
style for two minutes. Then the test subject imitated the four extreme rowing styles: DDR, 
Adams, Rosenberg, Grinko. The test subject imitated each of these styles for two minutes. Next 
the test subject imitated two poor rowing techniques, shooting the slide and lunging at the 
catched. The test subject performed each of these movements for two minutes. Data was then 
collected from both the vicon system and the delsys sensors for each stroke type. The data 
collection will be further explained in the following sections.  

Three weeks later, another data collection session was conducted at the PracticePoint 
facility in Gateway. Three weeks gave the group an adequate amount of time to analyze the data 
from the previous session and determine what changes needed to be made. The team determined 
that although the data collected was adequate the team also wanted to collect muscle activation 
data. The team also collected the same data from session one to compare for consistency. The 
same calibration technique was used and range of mobility tests were completed again. The test 
subject was first outfitted with the reflective markers as seen in figures 26 and 27. This time six 
additional Delsys sensors were applied to the body of the test subject. In addition to the sensors 
on the back, handle, and seat, sensors were added to the right and left quadricep, right and left 
bicep, and right and left latissimus dorsi. Before these sensors were added the attachment site 
was cleaned with an alcohol wipe and the dead skin was removed with tape. This was done to 
improve the EMG connection of the sensor. The sensors were then attached directly to the skin 
using double sided tape. The EMG capabilities of the sensors were then used to measure the 
activation of the quadriceps, biceps, and latissimus dorsi. These are the major muscles engaged 
during the rowing stroke and therefore they were the regions chosen for data collection. Sensor 1 
was placed on the seat, sensor 2 on the handle, sensor 3 in the center of the back, sensor 4 on the 
right bicep, sensor 5 on the left bicep, sensor 6 on the left quad, sensor 7 on the right quad, 
sensor 8 on the left latissimus dorsi, sensor 9 on the right latissimus dorsi. The test subject then 
rowed for one minute for each style: Rosenburg, Adams, DDR, Grinko. The test subject then 
rowed for one minute while imitating lunging and then another minute while imitating shooting 
the slide. The test subject then rowed as they normally would without trying to imitate any 
specific style to see how the rowing compared to the specific styles. The team decided to reduce 
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the time of each rowing style to one minute as that provided a sufficient amount of data for 
comparison between rowing styles. 

About three weeks after the second session, another test session was then conducted with 
additional sensors added to the test subject. The team decided to measure the muscle activation 
where injuries commonly occur in addition to the major muscles that are activated during the 
stroke. The data from the muscle activation from session two was noisy and did not pick up on 
the majority of the activation. The majority of the displayed movement was residual from the 
joint movement of the test subject. In addition to all the sensors mentioned in session two, 
sensors were also added to the right and left flexor carpi radialis and left and right abdominal 
muscles. These muscles were all chosen due to common injury sites in rowing. The abdominal 
muscles were chosen due to the fact that a back injury is more likely when the abdominal 
muscles are not engaged due to more force being applied to the back. For this study sensor 1 was 
placed on the left bicep, sensor 2 on the right bicep, sensor 3 on the left latissimus dorsi, sensor 4 
on the right latissimus dorsi, sensor 5 on the left quadricep, sensor 6 on the right quadricep, 
sensor 7 on the left flexor carpi radialis, sensor 8 on the right flexor carpi radialis, sensor 9 on the 
left abdominal muscle, sensor 10 on the right abdominal muscle, sensor 11 on the center of the 
back, sensor 12 on the seat, and sensor 13 on the handle. Figures 28 and 29 below show the test 
subject with all the reflective markers in addition to all the sensors (not shown in figure sensors 
12 and 13). The data from the muscle activation from session two was noisy and did not pick up 
on the majority of the activation; the majority of the displayed movement was residual from the 
joint movement of the test subject. Therefore, for this test session the team tried testing multiple 
locations for the sensors around the location of each muscle before attaching the sensor to the 
test subject.  
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Figure 28. Placement of reflective markers and Delsys sensors on anterior test subject. 

 

 
Figure 29. Placement of reflective markers and Delsys sensors on posterior of test subject. 
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3.1.2 Data Collection: Vicon 
The Vicon motion capture system proved to be an extremely beneficial tool to our team 

during the data collection phase of our project. Our team utilized the plug-in-gait software from 
vicon to measure the complex motions of the rowing stroke. The hardware for this program uses 
thirty six reflector balls that are placed at crucial locations on the body. The room was set up 
with infrared cameras that measured the light being reflected off the balls. 

Using the Plug-in-Gait software included with Vicon, our group was able to isolate the 
critical joints involved in the rowing stroke. While Plug-in-Gait is generally used for the 
intentions of analyzing the walking gait of a desired subject, the same procedure can also be used 
to gather desirable data for the rowing stroke. Using this tool the team was able to gather data for 
acceleration and projected moment outputs for each angle of choice. The software was able to 
compile each of the reflector balls locations on our subject and create a stick figure model shown 
below in figure 30.  
 

 
Figure 30. Vicon stick figure of test subject 1 rowing. 

 
From this model and the anatomical dimensions of the test subject that were inputted the 

software was able to calculate the angles of each of the joints of the model over time. In addition 
to calculating the angles the software was also able to calculate the change in position of the 
COM of the test subject in addition to other data points. From all the data collected by the 
software our team used the plug-in-gait outputs (model outputs) to determine the change in angle 
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over time for each section of the stroke. The elbow angle was used to identify the timing of the 
arms. The knee angle was used to determine the timing of the legs. The pelvis angle was then 
used to identify the change in angle of the back.  

3.1.3 Data Collection: Delsys 
For the data collection from the Delsys sensors our team collected acceleration data, 

gyroscope data, and EMG data for each sensor. The data was exported from the software in a 
CSV file that could be used for analysis. For the first part of the project our team focused mainly 
on the acceleration data from the sensors. The team focused on the change in acceleration in the 
primary direction of movement (for this case it was the z-direction based on the orientation of the 
sensors). The change of acceleration in the x and y directions was minimal and therefore was 
taken into consideration but not used in data analysis. A range of data equivalent to one stroke 
was then selected from the data and further analyzed. This process was completed for each of the 
different stroke types. An explanation of the analysis is described in the following section. 

3.1.4 Data Analysis: Matlab 
A Matlab program was then created in order to read the CSV files from both the Vicon 

motion capture system and the Delsys Trigno sensors. This program was created in order to 
create normalized graphs of that data that can be overlayed on top of each other for comparison. 
Our team started by creating graphs of the change in knee angle, elbow angle, and pelvis angle 
over time. The average angle was graphed and then overlaid with a shaded area that showed the 
standard deviation of the data. The max angle of the knee was used to differentiate between the 
different strokes so that each stroke could be overlaid on top of eachother. Once the graph was 
created for all the different angle changes (knee, elbow and pelvis). Another graph was then 
created for the acceleration of the seat, one for the acceleration of the handle, and one for the 
acceleration of the back. The x, y, and z acceleration were all plotted on their respective graphs 
but for the purpose of our project our team will focus on the z acceleration because the 
acceleration in the x and y directions was minimal. The position graphs were then compared to 
the acceleration graphs to determine how the change in acceleration related to the change in 
position of the different joints of the rower. Graphs of the gyroscope and EMG data can also be 
graphed in the same way in the future. The Matlab script created with the assistance of 
Christopher Nynz can be found in Appendix C.  
 
3.2 Computer Science Methodology 

3.2.1 Data Prototyping 
Using Bluetooth enabled MEMS (microelectromechanical system) 9-axis sensors, data 

can be sent at a high rate around 100 Hz to any Bluetooth enabled device. Our team used a 
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sensor called the MetaMotionR, shown in figure 31.  It is programmable with a proprietary API 
(application programming interface) which enables our team to interface with the sensor in a 
number of different ways, including sensor activation, and calibration as well as log and stream 
data.  The data available for use includes 3 dimensional acceleration (g’s), 3 dimensional 
magnetic flux density (microTeslas), and 3 dimensional orientation. 

 

 

Figure 31. Bluetooth 9-axis sensor developed by MetaMotionR.  
 

The accelerometer records acceleration data in the format shown in figure 32.  Since this 
project aims to extract acceleration in each part of the stroke, this will be the data to work with. 
However, the other data will be necessary later to help with reducing error. 
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Figure 32.  Acceleration data in units of g’s in 3 dimensions, corresponding to time. 

 
Testing for feasibility, our team’s sponsor, Jon Rourke, rowed using a MEMS device. 

One sensor was placed on the slide, and then after rowing for some time it turned out that it is 
feasible to use them for recording rowing data.  The interpolation of the data is consistent, 
despite a bit of error existing in the raw values.  Figure 33 below shows data recorded over a few 
strokes.  Looking at the position curves, there is enough error from integration for the data to 
drift.  Thus, our team cannot use position data.  This was an early concern, but later determined 
not to be because it could be avoided by using only acceleration data.  
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Figure 33. Acceleration data recorded over multiple strokes. Velocity and position obtained by integrating 

acceleration once and twice, respectively. 
 

Then our team tried all three sensors together.  The sensors were placed on the handle of 
the ergometer, between the shoulder blades of the rower, and on the seat of the ergometer. 
Sticky tape was used as a temporary fastening technique.  Each sensor was placed in the same 
orientation on the x, y and z planes to ensure that the streamed data from each category was 
consistent.  Whatever axis is parallel to the direction of the drive should be used.  In this case, it 
is the z-axis that is of interest. The sensor placement on the erg and the rower can be seen in the 
figure below. The three sensors are drawn in blue and are labeled S1, S2, S3. The sensor 
placement can be seen in figure 34 below.  
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Figure 34. Diagram of rower and sensor placement on the rower. 

 
By collecting data during rowing sessions, our team accumulated enough data. Having 

the data in csv files, our team could graph our data in different ways quickly.  Then our team 
observed the data and interpreted its characteristics.  In particular, how it compares to our 
proposed model.  Shown in the figure 35 below are a few of the prototype graphs. These 
particular graphs are acceleration during the drive for each part of the stroke.  These graphs 
allowed our team to assess whether or not the data needed to be interpolated in order to be 
clearer.  These graphs are slightly underfit, but we were primarily interested in the trend of the 
data not the appearance. 
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Figure 35. Graphs of individual strokes for each component. 
 

Our next step was to overlay the three on the same graph.  This enables our team to see 
the relative differences in acceleration for each sensor.  There are two graphs that follow: figure 
36 is raw acceleration data, and figure 37 is the acceleration values after applying our model 
calculations.  The model is explained by the equations below. 
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Figure 36. The raw acceleration data of each sensor during two medium pressure strokes. 

 
Remembering the model, the ​back​ curve is a sum of both the accelerations of the ​slide 

and the ​back​: 
back​sum​ = back ​actual​ + slide ​actual  

 
And the ​handle​ curve is a sum of all the accelerations of the ​slide​, ​back​, and ​handle​: 

handle​sum​ = handle ​actual​ + back ​actual​ + slide​actual  
 

This is because they are all connected to each other by a body.  Any acceleration that 
occurs on the slide also occurs on the back and handle because they are attached; and any 
acceleration that occurs on the back also occurs on the handle because they are attached.  In 
example, the slide contributes to both the back and handle but neither back or handle contribute 
to the acceleration of the slide.  In order to graph the acceleration generated by a particular part 
of the stroke, the back and handle must be adjusted. 

 
The back must be adjusted by subtracting the slide: 

back​actual​ = back​sum ​- slide ​actual 

 

The handle must be adjusted by subtracting the back and slide: 
handle​actual​ = handle​sum ​- back ​actual​ - slide​actual 
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Figure 37. The actual acceleration data obtained by subtracting slide from back, and slide & back from handle. 

 
This graph shows some information that was lost in the previous graph.  The handle has a 

negative acceleration value on the drive, which is inside the dotted box.  Notice how the slide 
stays the same as the previous graph, and the back and handle are adjusted to reflect their 
contribution.  Although only two strokes are represented and there is only one rower 
participating,  this is valuable information. 

3.2.2 Coding Implementation 
Our team chose the MetaMotionR sensor because it is small, wireless, and easily 

programmable in Python.  The API is written in C with a python wrapper allowing the real time 
display code to be written in python.  Python can be used to run a server, collect data via 
bluetooth in real time, and send that data to a client.  It also has convenient libraries to visualize 
the data in the early stages. 

Our team chose to collect the data on a small computer, Raspberry Pi, that runs on a 
Debian Linux based operating system called Raspbian.  With a Linux distribution, our team 
could use the sensor API along with the Python bluetooth packages to write the program.  The 
commands that came with the API enable the custom program our team wrote to both configure 
the sensor as well as stream data from the device. The Raspberry Pi can be seen in figure 38 
below. 

 

48 



 

 
Figure 38. Raspberry Pi 3 Model B+, 2017. 

 
In order to achieve real time data streaming, our team is taking the approach of using a 

web framework. In particular Django is being used as the framework of choice. The reason a 
web framework is very useful for real time streaming is because it allows the data visualization 
to be accessed from anywhere. Once the web server is started on the Raspberry Pi the stream can 
then be accessed from any web enabled device. Each time one of the sensors sends a piece of 
data to the Raspberry Pi the data is passed into Django. Then that data is sent to the client on a 
webpage using D3 to graph the data. D3 allows the binding of data to structures called document 
object models. Once bound, these document object models or DOAs can be manipulated in many 
different ways to create different graphs and visualizations of the data. 

The main coding implementation challenge is that the processing time has to be fast 
enough so the user sees the graph before it’s outdated. Since the rower is constantly taking 
strokes, data is relevant until the next stroke is taken. After that, the data is not live.  There are 
three things that need to be accomplished while processing: 1. Transmit the data using bluetooth 
2. Process and clean the data 3. Update the display. All these things need to happen during the 
recovery of the stroke so the data can be processed. Only then would the user be able to see the 
graph in time.  This then allows the user to assess their technique in real-time.  This was 
accomplished with a 2 second window for processing.  The effectiveness of this will be 
addressed in a later section. 

The secondary coding implementation challenge is drive detection. Since our team is 
only interested in the drive, there has to be a method to detect with acceleration data when the 
drive is happening (as opposed to the recovery).  Some original ideas to do this involve using 
derivatives to find the maximum and minimum of the data which would give the beginning or 
end of the drive.  Hence, finding the time at which the first derivative of acceleration (jerk) 
reaches 0 gives the start and of the drive. The jerk value at the beginning of the drive would be 0 
because that is where the change in acceleration is 0.  Each of these can be calculated from the 
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accelerometer data from the sensor.  Unfortunately, this idea did not work well in practice 
however because of the dis-continuity of the data stream.  To solve this problem, our team 
decided to display only one directional acceleration from the sensors.  During the drive, 
acceleration values are positive and during the recovery they are negative.  This is because the 
movements are in opposite directions.  Choosing to display only positive acceleration values 
means only the drive is displayed. 

The third coding implementation challenge is zeroing out gravitational acceleration.  The 
gravitational pull of the earth influences the acceleration values because the sensors are 
accelerating 1g away from earth’s center when lying still, shown in figure 39. 

 

  
Figure 39. Acceleration data without using sensor fusion. Sensor was placed still on a flat surface.  Z-axis 

acceleration is approximately -1 despite no movement. 
 
 To solve this problem, our team has to utilize sensor fusion.  The MetaMotionR sensor 

has a 3-axis accelerometer, 3-axis magnetometer, and a 3-axis gyroscope.  We can determine the 
direction of the earth’s center using the magnetometer, and determine the sensor’s orientation 
with the gyroscope.  Then we can subtract the gravitational acceleration vector (with magnitude 
1) from the recorded acceleration vector to factor out gravity, shown in Figure 40. 
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Figure 40. Acceleration data using sensor fusion. Sensor was placed still on a flat surface. All acceleration 

values are close to 0. 
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Chapter 4: Design Process 
4.1 Initial Client Statement 

Based off of meetings with our sponsor Jon Rorke our team was presented with an initial 
client statement: “Currently, instrumentation of the rowing stroke timing elements is limited to a 
combination of rating, recorded in strokes/minute, power curves derived from machine or oar 
lock-based instruments, mirrors, videotape, and coaching feedback. What rowers need is a tool 
where they can receive individualized visualization of the three components of the rowing 
stroke: legs, back, and arms, in real time.” 
 
4.2 Revised Client Statement 

After meeting with the sponsor and further discussing what the goal of the application 
was; our team was given a revised client statement. The statement is as follows: “Develop an 
instrumented system to measure and feedback to the rower and the coach the timing and 
magnitude of the critical stroke elements individually for the legs, trunk, and arms throughout the 
catch and recovery phases of the stroke. The system should facilitate the real-time, intuitive 
observation by both athlete and coach and thus drive continuous stroke technique evolution.  
The measurements must be calibrated to a sufficient degree to allow valid long-term comparison 
over time and across rowers.” 
 
4.3 Objectives 

After reviewing the revised client statement our team created four objectives to meet as 
throughout the project. The first objective was to determine the viability of the proposed sensor 
placement through experimental sessions at The Practice Point Lab. Our team had an initial 
proposal of where the three sensors should be placed on the erg and rower in order to achieve the 
goal of breaking down the stroke however did not fully know if this sensor placement would 
work. This first objective was to use advanced three dimensional motion capture in order to 
prototype the sensor placement without having to go too much into the development process. 

Our team's second objective was to collect real time data from three sensors on the rower 
and ergometer with a custom made program. This objective’s goal was to provide verification 
that a custom made program could collect data from three motion sensors. For this objective, our 
team was only looking to log data from the three sensors as an initial step and did not try to 
display that data in real time.  

Our team’s third objective was to display real time data that breaks down timing of the 
legs, trunk, and arms. This objective is similar to our teams second objective however the 
difference is that this objective displays the data in real time not just logs it. This objective’s goal 
was to verify that real time graphing could be achieved using the hardware our team chose to 
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use. Our team was looking for a real time graph of each sensor’s acceleration on a stroke by 
stroke basis.  

Our team’s fourth and final objective was to create a useful visualization to facilitate 
coaching on the ergometer. This final objective was set so that our team's custom made program 
would have a meaningful impact on the rower using the system. The goal of the visualization 
was to convey information that could give deep, substantial technique feedback to the rower and 
the coach that is also easy to interpret while under the stress of exercising.  

  
4.4 Needs Analysis 

From the data collected at PracticePoint and with the MetaMotionR sensors the user 
needs an interface where they can see live changes in the rowing stroke while rowing on the erg. 
The visualization should be intuitive and easy for the user to understand while exercising.  

Our team conducted a pugh analysis to determine the viability of each design based on 
four design criteria. The design criteria used for this analysis were low cost, ease of use, ease of 
implementation, and effectiveness and accuracy. For our product the effectiveness and ease of 
use were the most important criteria with cost being the next most important and ease of 
implementation being the least. From this criteria our team decided that the real time data display 
was the best with an overall score of 48. The logged data design had a score of 33 and the design 
from PracticePoint had a score of 29. Table 3 shows the pugh analysis that our team created. 

 
Table 3. Pugh Analysis 

Criteria (Scored 
0-4)  

Importance 
Weights 

Design 1 
(Practice Point) 

Design 2 
(Logged Data) 

Design 3 (Final 
Real time Data) 

Cost  3 1 3 4 

Ease of use 4 2 3 4 

Ease of 
implementation 

2 1 2 4 

Effectiveness & 
Accuracy 

4 4 2 3 

 Scores: 29 33 48 
 

Each of the scores are determined by multiplying each criteria by the importance. The 
importance factor was determined by the impact each had during the data collection periods. 
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4.5 Primary Conceptual Design 
The first iteration of our project was created using data collected with Delsys sensors in 

PracticePoint. The sensors were placed on the seat and handle of the erg and the back of the 
rower. A graph of the acceleration of the rower overtime was created in Matlab. A separate graph 
was created for the acceleration of each sensor. However, the acceleration of the legs, body, and 
arms was not directly isolated because each sensor does not correspond directly to the 
acceleration of one body part. The primary design shows that it is possible to graph the 
acceleration of the primary parts of the rowing stroke using three sensors. The average 
acceleration for each sensor was graphed for one stroke (from catch to finish) with a standard 
deviation to show the consistency between strokes. Graphs were created for the four different 
stroke types (Adams, Grinko, Rosenberg, and DDR). In addition graphs were also created for 
two common bad techniques in rowing (shooting the slide and lunging at the catch). In figure 41 
below you can see the graph of Adam style. Additional graphs of the other styles can be found in 
Appendix A.  

 

 
Figure 41. Acceleration vs. time for Adam Style. 

 
In addition to creating a conceptual design for displaying acceleration data a conceptual 

design was also created for the position of the rower overtime. This data was collected using the 
Vicon motion capture system in PracticePoint. Graphs were then created of the change in leg 
position, back position, and arm position over the course of the stroke. These graphs were 
created by using the change in the angle of the knee, pelvis, and elbow respectively. The raw 
data was plotted first for each component so that the angle data could be visualized on separate 
graphs. The timing was then normalized so that all the components could be plotted on one 
graph. A graph of the average stroke was then compiled with the dark line being the average and 
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the shaded part showing the standard deviation between strokes. Figure 42 shows the raw data 
and figure 43 shows the combined graphs. 

 

Figure 42. Raw position data from motion capture. 
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Figure 43. Position data with normalized time. 
 
4.6 Alternative Conceptual Designs 

The usefulness of visualized data lies in the interpretability of its visualization/model; 
how the user interprets the data depends on the interpretability of the visualization. Having a tool 
that can give a user a lot of data for the sake of data alone is not useful. The user must be able to 
derive meaning from what is being put in front of them. This concept is especially important 
with athletics. As specified, this tool is meant to be used in real time while the user is exercising. 
While under the intense physical exertion that rowing creates, the user may not be able to 
perceive a large, complicated volume of data. Therefore, it is important that we explore different 
forms to better visualize and to better translate the data. 

Animation is frequently used for visualizing data over time to better understand the 
relationship between some variable and time. According to Robinson, Fernandez (Robinson and 
Fernandez, 2008) animation is more visually appealing and easier to understand than other types 
of data visualization. Our team hypothesized that animation could be applied to the visualization 
of the stroke. Using motion to represent physical motions might be useful for this project.  This 
would give the rower a real-time animation of their own data; although it would likely increase 
the cognitive load. An example of this is shown in the graph in figure 44 below. The ball is a 
motion enabled object that moves with the subject. The speed of the object is controlled by the 
data gathered from the rower. An object for each element of the stroke would allow simultaneous 
comparison of their relative speeds. Each element is represented by an object. While prototyping 
this idea, our team determined it would not be possible. As mentioned previously, displaying 
data in real-time requires fast processing and given our computational limits it was determined 
that animation updates would be too much to compute in the <1-sec recovery period. 
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Figure 44. Animation for visualizing relative speed between objects--objects are in motion (Bostock, 2019). 

 
A static form that we considered using is the stream graph. A stream graph uses area to 

convey the relationship between multiple categories. Below in figure 45 is an example of a 
stream graph. This particular stream graph shows box office shares of different movies over 
time. According to Robert Kosara (Kosara, 2016) the issue with stream graphs is that the 
irregularly shaped items stacked on top of eachother make precise readings difficult. In spite of 
this, the stream graph makes for an interesting look at the data. Our team explored this as a 
visualization technique for our project as it incorporated well the idea of general readings over 
precise readings. Each sensor would be a stream on the graph. This way a rower could look at the 
visualization and see generally how much of each piece their stroke was composed of. The 
stream graph has a flaw though; too many streams can cause the data to get cluttered and hard to 
read. Our team wants the display to be simple. When rowing at lower intensity, the rower could 
potentially absorb complicated figures and statistics but at higher intensities this is not possible.  
 

 
Figure 45. Steam Graph (Bostock, 2018). 

 
Our team also considered variations of the bar chart. Two options were considered: the 

stacked bar chart (figure 46) and the grouped bar chart (figure 47). A stacked bar chart puts  
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Figure 46. Grouped Bar chart (Bostock, 2018). 

 
Figure 47. Stacked Bar chart (Bostock, 2018). 

 
different categories on top of eachother while a grouped bar chart puts the different categories 
next to each other represented by different bars, shown below. Both types have benefits and 
drawbacks. With the stacked bar chart, the data from the three sensors would each be stacked on 
top of each other. With the grouped bar chart the data would be adjacent to each other. One of 
the easiest forms for visual comparison is length, which is a plus, but the grouped bar chart is 
better suited for quantitative measurements rather than relative (Ward, 2015). Our team was 
willing to sacrifice information load for simplicity. The stacked columns were simpler but 
ultimately we did not pursue it. The bar chart prototypes did not work for acceleration over time 
data because they were too busy, but they worked better for maximum acceleration.  They 
allowed for quick, easily interpretable comparison of the three parts of the stroke. Also, from the 
bar chart experiments we learned that the stacking aspect of the stacked bars work well with the 
rowing stroke model, so we explored other stacking chart options and tried a stacked line chart. It 
seems to be a good compromise of simplicity and structure. 
 
4.7 Final Design Selection 

The stacked line chart is useful for interpreting the data, but we can update the style, 
format, and frequency of feedback to make it user friendly.  

58 



 

4.7.1 Form 
Multiple coordinated views make understanding data easier (Convertino et al., 2003; 

North and Shneiderman, 2000; Roberts, 2007). For the sake of better understanding the stroke, 
having maximum acceleration on the display might be useful. Maximum acceleration is 
displayed above the stacked line chart as a bar chart. The bar chart (figure 48) drew out a 
positive correlation in the elements, maximizing complementarity between the two views 
(Baldonado et al. 2000). It is helpful to see an upward or downward trend over different timing 
elements.  

 

  
Figure 48. Real-time display. 

 
As a bonus, the two views update in parallel so that the feedback is parallel, or 

coordinated.  This can help them form a connection between the two views.  This particular 
design is known as a dual view; the line chart provides an overview and the bar chart provides 
detail (Roberts, 2007), or an ​Overview+Detail​ view, opposed to ​Focus+Context,​ ​Difference 
views​, and ​Master/Slave.​ An ​Overview+Detail ​view​ ​shows the whole dataset in one view and a 
piece of it in another view.  ​Focus+Context ​shows a detailed bit of information with another 
view to give it context.  ​Difference views ​are used to show the difference between two datasets. 
Difference views were used in figure 48 for design verification, as an example. Finally, 
Master/Slave ​is when some view controls the other view. 
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4.7.2 Style 
The style in figure 48 is described as replacement (Roberts, 2007).  Replacement happens 

when some new parameter changes the model and the new model replaces the old.  Alternatives 
to this include overlay and replicate.  Overlay happens when the new model is shown with the 
old model.  Replication happens when the new model is displayed in a new window.  Our team 
hypothesized that replacement would help the user focus on the current stroke while not diluting 
the information. 

The style also uses color coded categories, keeping consistency across views. Encoding 
the categories with color helps the user identify the categories across views (Baldonado et al. 
2000). The colors are also easily separable because of the ordering.  The back is color coded as 
orange because 1. It makes it easier to see the difference between the elements. 2. It is a 
danger-zone for rowers in that too much use can cause injury. Choosing a color dissimilar to the 
others makes it so that changes are more likely to be seen. 

Brushing is implemented as a tool for the coach to use. When brushing, the same 
elements are highlighted in both views simultaneously. Brushing is useful for identifying outliers 
(Lawrence et al. 2006), but with only 3 categories it was not difficult. The usefulness of brushing 
in this project was determined less than more, among a few tests. 

Also, it is important to note the difference in complexity between the real-time 
visualization and the test visualizations. The real-time visualization received less data (~50 
pts/update) than the test one (~400 pts/update), so interpolation was used for smoothing. 
However this caused drastic underfitting in the real-time visualization. A recommendation for 
any users of this system is to graph the saved data offline to get a better idea of the data, then the 
real-time visualization can be used more effectively. There are a number of examples within this 
document. 

4.7.3 Frequency of Feedback 
Looking into research on motor learning, which is a change in motor performance caused 

by training, concurrent feedback is effective in the early learning period (Liebermann et al., 
2002), especially if the task is complex (Lee et al., 1990; Shea & Wulf, 1999; Snodgrass et al., 
2010; Swinnen et al., 1997; Todorov et al., 1997; Wishart et al., 2002; Wulf et al., 1999; Wulf et 
al., 1998).  However, when the learner is more experienced with the movement, they might 
benefit from less frequent, terminal feedback (Sigrist et al., 2012).  Experienced users also might 
benefit more from terminal feedback because the task is no longer complex to them (Guadagnoli 
& Lee, 2004).  Because the product is designed for high level athletes, terminal feedback seems 
to be the right choice.  Below in figure 49 is an outline of the usefulness of several learning 
methods given task complexity.  
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Figure 49. Effectiveness of feedback strategies with varying functional task complexity.  Solid lines indicate 

experimentally confirmed and dashed is hypothesized (Sigrist et al., 2012). 
 

The green highlighted area is where our team hypothesizes this project could live, 
depending on rower experience level. The smaller box indicates the specific target of this project, 
more experienced rowers. Concurrent feedback, had it been useful, would continuously update 
until the stroke ends.  Figure 50 shows examples of what the display might look like.  The three 
images are snapshots of the display; although they are not necessarily consecutive frames. 
Terminal feedback of the stacked line chart is shown in figure 51.  The display only updates once 
the stroke ends.  The top is an example of what it looks like during a stroke.  The bottom is an 
example of what is on the screen after.  The terminal feedback looks good, and based on the 
findings it is the better choice.  
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Figure 50.  Concurrent feedback of the stacked line chart. The display updates continuously until the stroke ends. 

 
 
 

 
Figure 51. Terminal feedback of the stacked line chart. The display only updates once the stroke ends. 
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Chapter 5: Design Verification 
 
5.1 Testing Procedures 

To test the design, our team recorded data during multiple rowing sessions.  To put 
together figure 52, our team manually picked out individual strokes from the sensor data csv file. 
Looking at the figure, it seems like there is enough variation between strokes to give coachable 
feedback--although not too much variation to bring up concerns.  The sensors are fairly 
consistent with readings; so any major changes can be attributed to the rower. 

Figure 53 is a stacked line chart.  The green area shows the acceleration of the slide, the 
red area shows the acceleration of the back, and the blue area shows the acceleration of the 
handle.  Before looking at the chart, our team expected to see acceleration in this order: slide, 
then back, then handle as this corresponds to the sequence of the rowing stroke. 

Looking at the chart, our team’s hypothesis is tentatively confirmed.  At first the slide is 
the only acceleration seen, indicating that the legs are the only part of the body accelerating and 
contributing to the stroke. In the next part of the stroke the back adds to the acceleration of the 
stroke while the slide acceleration decreases. Finally, after the back decelerates the handle 
accelerates dramatically. That is consistent with the hypothesis and also consistent with the 
graphs in section 3.2.  However, sometimes at the beginning there are seemingly random bumps. 
For example, in the bottom right of figure 53 there are red and blue bumps at the beginning.  

 

Figure 52. 12 strokes randomly taken from 4 different rowing sessions. Green is the slide, Red is the back, and Blue 
is the handle. 
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These are actually explainable by bad rowing techniques. If there is a red bump too early, 

this is called opening the back. When a rower opens their back, the back is initiated before the 
legs. In addition, if there is a small blue bump too early the rower grabbed at the catch.  Grabbing 
at the catch is when a rower begins the stroke by pulling with their arms. 
 

 

 
Figure 53. Closeup of one of the strokes. 

 

 
Figure 54. Maximum acceleration over 1 stroke. 

 
Looking at maximum acceleration of this stroke in figure 54, the slide and back are 

relatively equal while the handle definitely reached a higher acceleration.  Although the handle 
has a higher peak acceleration, it is only maintained for a brief period whereas the slide and back 
have longer maintained acceleration. After looking at this stroke, a coach might notice that the 
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rower opened the back slightly at the catch (the red bump before the slide starts). So they might 
tell the rower to use the legs more at the catch. Other than that, everything else seems to be in 
order. Looking at another stroke in figure 55, a coach might notice that the rower was shooting 
the slide.  Shooting the slide is when a rower pushes the legs without swinging the back and 
arms.  This is indicated by the sharp decline of the slide acceleration followed by a sharp 
increase in back acceleration.  In this case, even though it is not optimal it is not that bad because 
the back curve starts before the slide curve ends.  If the back started after the slide ended, then 
that would be worse as the rower would have discontinuity in their movements.  Although we do 
not know for certain if during this particular stroke the rower shot the slide, the data strongly 
suggests that they did. This is an example of how general knowledge of the rowing stroke can be 
applied to interpret the results from the visualization. 
 
 

 
Figure 55. Closeup of one of the strokes. 
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Chapter 6: Final Design and Validation/Results 
 
6.1 Experimental Methods 

Experimental data was extremely important both for providing preliminary visualization 
as well as providing an accurate biomechanical model of the rower. Experimental data was 
captured initially by utilizing Practice Point, a state of the art motion capture facility on the WPI 
campus.  

The Practice Point facility at WPI was equipped with a room at Infrared Cameras that 
were used to track the motion of reflective markers on a subject's body. Motion was tracked and 
measured using the Vicon Plug-in-Gait software. This software allowed us to extract position 
and motion data from each session and visualize it by applying a butterworth filter to the motion 
and graphing it. There were 40 reflective markers on the subjects body, these were meant to 
measure the exact position of the subject through the entire stroke cycle. Utilizing the Practice 
Point Facility and the Vicon software gave us much more data than what our MEMS sensors 
gave out, the results from both are comparable.  

The experimental data from the early test sessions with our MEMS sensors provided 
helpful insight as to what needed to change moving forward. The original sensors were put 
through prototype testing that involved taping the bulky sensors to the subject and observing the 
data. After several initial tests, the group decided to adopt a more compact accelerometer.  
 
6.2 Data Analysis Final Product 

Collecting real-time data with the final design proved to be difficult with the data-loss 
and timing issues. Nevertheless, the data was comparable to every other offline session.  Figure 
56 shows two consecutive strokes on the display. For this rower, elements of the stroke seem to 
be building upon each other. When the previous element reaches a maximum, the next element 
adds on significantly. The maximums are marked in the figure on the left. On the right, the last 
element does not build off the previous indicating that there was deceleration and most likely 
loss of power. Being able to recognize this pattern is possibly the most useful feature of this 
visualization.  If the building stops before the stroke ends, there must be a coachable movement 
that corrects this. 
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Figure 56. Real-time display updated over two consecutive strokes. 

 
6.3 Data Analysis Biomechanics 

In order to show that there was a significant difference between the well executed and 
poorly executed rowing strokes the team conducted a t-test in Excel. The team used the 
following data to conduct the t-test. The data in table 3 was inputted into the t-test function in 
Excel. 

Table 4. Data used to conduct t-test. 
 
 
 
 

A t-test was conducted between the slide acceleration of the Adam Style, with the 
Rosenberg and Grinko style and Rushing the slide data. The t-test showed that there was no 
significant difference between the slide acceleration of the Adam and Rosenberg style and the 
Adam and Grinko style. However, there was a significant difference between the slide 
acceleration of the Adam style and the Rushing the slide data. These results were what the team 
expected. The team did not expect a significant difference between the three rowing styles. This 
is because the difference between these styles is how the legs and back are emphasized during 
the stroke which only minimally affects the acceleration of the slide. Rushing the slide is a 
common poor technique that some rowers develop as they are learning how to row. It is when the 
slide accelerates backwards before the handle and back of the rower moves. When rowers rush 
the slide the acceleration increases drastically. Therefore, it was expected that there would be a 
significant difference between the slide acceleration of the Adam style and the slide acceleration 
of the rushing the slide data.This can be seen by the p-value of 8.44e-06. The p-values between 
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the other stroke types can also be seen in table 4 below. A close up of the comparison of the slide 
acceleration of the Adam style and rushing the slide can be seen in figures 57 and 58 below. 

 
Table 5. P-values generated in Excel. 

 
 
 
 
 

 
Figure 57. Slide acceleration of Adam style. 

 
 

 
Figure 58. Slide acceleration of rushing the slide. 

 
 
6.4 Product Impacts 

This section contains theoretical product impacts as the team does not have an actual 
product. 

6.4.1 Economics 
The price of this product is competitive with the current devices on the market. The top 

competitor of our product is BioRow which costs 500 euros, approximately 541 USD (as of 
April 27, 2020 1 euro=1.08 USD). Our product consists of 3 sensors which each cost 
approximately 100 USD. However, if this device were mass produced then that would 
substantially reduce the cost of our product. The manufacturing costs of our product would also 
be minimal. Another competitor is the technology that is currently on the erg itself. Since both 
our product and BioRow are used as an add on for the erg there is a big jump in cost. However, 
the technology in our product exceeds what the erg itself can do and therefore the benefits are 
able to outweigh the cost difference.  
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6.4.2 Environmental Impacts 
Our product has minimal impacts on the environment. The sensors that are being used are 

already being manufactured for other products as well. Therefore any environmental impacts that 
occur from the production of these sensors are not directly related to our product. The sensors are 
also recyclable; the outer casing of the sensor is made of plastic and therefore can be recycled in 
the normal recycling stream. The internal electrical components can be recycled at an electronics 
recycling center and the lithium ion batteries can also be recycled. The battery is also 
rechargeable so it will last 2-7 years before it has to be replaced. A device to attach the sensors to 
the rower and erg also needs to be created but this can be designed and 3D printed. Therefore 
there would also only be minimal to no environmental impacts from this process.  

6.4.3 Social Influence 
This product will have an impact on the rowing community. This product is specifically 

targeted towards rowers and coaches and therefore most likely will not impact the general 
population. Ideally the device will help improve rowers technique and therefore could have an 
impact on the rower’s rowing performance. The tool is created to assist rowers when training on 
the erg but the benefits of the product will be able to be seen in the timing of the rower’s stroke 
on the water as well. In the future a tool like this could also be developed for running and other 
aerobic activities. It could help all athletes to stay on top of their training. This is especially 
something to consider during the pandemic that we are currently living through. Athletes will not 
have access to their coaches and the general population is trying to stay active, so an app that 
will help them improve their technique and reduce injuries would be beneficial. It could make 
activities like rowing, running, and biking more mainstream. This is important, more so than 
ever, during this global pandemic where society is moving inside. 

6.4.4 Political Ramifications 
There are no political ramifications of this product as the team does not currently plan on 

making the product available internationally. If in the future the product becomes available 
internationally then there could be potential political ramifications as our top competitor's 
product is based in the United Kingdom. However, although our product has a similar goal to 
this product the technology used to create it as well as the visualization outcome is completely 
different. Therefore it is extremely unlikely that there will be any political ramifications.  

6.4.5 Ethical Concerns 
There were no ethical concerns associated with this product. The product was tested on 

humans (only within the project team); however, the only devices that the human came in contact 
with were the wearable sensors. These sensors are already manufactured to be worn by humans 
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and therefore there were no harms associated with this product. Due to Covid-19 the team was 
unable to complete further testing of the product. However, if further testing was conducted with 
outside test subjects then our team would have gone through the IRB process and created an 
informed consent form for all participants, that would have remained confidential. Any data that 
would have been used from these studies would have remained anonymous  

6.4.6 Health and Safety Issues 
The health and safety issues associated with this project do not exceed the health and 

safety issues associated with the sport of rowing. As with any sport or exercise there is always 
the risk of injury if not conducted properly. However, the addition of three sensors does not 
increase the health and safety issues associated with rowing. There is even the possibility of 
reducing these risks as the technology will help improve the rowers technique and reduce the 
likelihood of injury occurring from improper technique. Being able to notice the differences 
between the graphs can also lead to good injury prevention techniques. An athlete would be able 
to identify a common mistake and potentially avoid an unnecessary injury. The sensors generate, 
use, and radiate radio frequency energy and therefore if they are not installed correctly then they 
could have interference with radio connections.  

6.4.7 Manufacturability 
The manufacturing associated with this product is minimal. The product uses sensors that 

have already been manufactured. The sensors are coded to work together to get the desired 
outcome which will be displayed through an app. Therefore, the physical manufacturing process 
is minimal. One thing that will have to be manufactured is the housing for the sensors that will 
allow for a better connection between the user and the program. This can be manufactured easily 
using manufacturing techniques such as 3D printing. The fixture could be manufactured using 
ABS plastic which costs $25 per a kilogram. The sensor is approximately 1.5in x 1in x 0.5in; 
therefore we could say that the housing would use approximately 1in^3 of filament. The density 
of ABS is 1.07 grams/cm^3, so 1kg of filament would give a cubic area of 934 cm^3 (57 in^3). 
Therefore each housing unit would cost less than $0.50 to manufacture. The team created a bill 
of materials (BOM) and cost of goods sold for the product (COGS), which can be seen in tables 
5 and 6 below.  
 
Table 6. BOM for the final product. 
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Table 7. COGS for the final product. 

 

6.4.8 Sustainability 
This product has no additional sustainability concerns. As mentioned in the 

environmental concerns section the impacts would not be directly related to our product since the 
sensors are already being manufactured for other uses as well. The only additional manufacturing 
process that is being used is 3D printing which is a sustainable process since it can be completed 
using recycled materials. 3D printing also reduces waste since it only uses the necessary 
material.  
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Chapter 7: Discussion 
7.1 Product Feasibility 

With only several tests done, the product seems feasible. Unfortunately testing of the 
final iteration was limited to within the team because of the global pandemic effective during 
D-term of 2020. However, in the tests completed the visualization seems to vary more by rower 
than intra-rower strokes. This does not help narrow the search for optimal timing of the stroke 
elements, but it tells us that doing an inter-crew comparison might result in valuable feedback. 
Novice rowers have more variation in their strokes than well trained rowers (Bosch, 2015), but 
an analysis between two or more well trained crews might provide insight into timing differences 
that affect performance. There are a few more steps to take before a comprehensive analysis can 
be conducted, such as programming the separation of strokes, but this project created a means to 
dissect the timing elements. 

As a product, it is still in the development phase. It is entirely possible that it could be a 
usable product in a few years, but it is important that an analysis is conducted on high level 
rowers timing elements to determine product impact. Although the current measurement system 
is probably not precise enough to see acute differences between the strokes of a well trained 
rower, it is precise enough to see differences between rowers. If differences in timing between 
well trained rowers are related to performance success, then that would make this an invaluable 
product to high level crews. 
 
7.2 Design Limitations 

During testing of the real-time system a few limitations were noticed. The first being the 
manner in which the sensors were mounted. The three sensors are mounted to the rower and erg 
with athletic tape for ease of attachment in different positions. But mounting with tape blocks 
bluetooth data transfer down to ~15% of the original dataset. Sparsity causes inaccuracies in the 
display and a definite underfit of the small dataset. This could be prevented in future iterations 
by devising a better mounting method that minimally covers the sensors. Some ideas are 1. A 
chest strap that enables detachable sensors. 2. A clamp that attaches to the erg handle and enables 
detachable sensors. 3. A clamp for the seat that enables detachable sensors. 

The second design limitation originates from the timing constraint for processing. In 
order to update the display for every stroke, our team decided to collect data, process, and update 
the display in set time intervals; we decided 2 seconds was appropriate. Every 2 seconds the 
program resets the graph to display the next stroke. 2 seconds is near the average time for a 
rower to take a stroke at ~25 strokes per minute. As a consequence, if the rower is not rowing 
around 25 strokes per minute then they will only see part of the stroke on the display. With 
higher stroke rates a single stroke takes a shorter amount of time so the stroke might show up in 
full on the display. With lower stroke rates a single stroke takes as long as 4 seconds to complete 
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which would only show about half the stroke on the display. Solutions for resetting the graph 
upon stroke completion could be 1. Using local maxima to identify the start and stop of the 
stroke, thus extracting the full stroke from the data. 2. Transfering data in small chunks (~10 
points) and as they arrive check for Gaussian anomalies. 3. Use machine learning to identify 
telling features. These features are like where the catch is located or where the finish is located.  
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Chapter 8: Conclusion and Recommendations 
 
8.1 Conclusions 

Overall our team accomplished all objectives defined. The first objective was to 
determine the viability of sensor placement through experimental sessions at The Practice Point 
Lab. Through data collection sessions at Practice Point our team was able to determine that the 
three sensors were sufficient to classify the rowing stroke. Furthermore, three sensors placed on 
the handle and slide of the erg as well as on the back of the rower was enough to derive detailed 
information about the stroke from the data. This information can show technique deficiencies as 
well as show the amount of acceleration each part of the body is contributing to the total 
acceleration of the stroke. 

Our team’s second objective was to collect real time data from three sensors placed on 
the rower’s body and the ergometer. This goal was accomplished by our team during the 
preliminary design  phase. As seen in section 3.2.1 during the prototyping phase of development 
our team was able to log acceleration data from the three sensors into a csv file then graph them 
using matlab. Completing this objective allowed our team to visualize what the data of the stroke 
looked like together and be able to start to brainstorm how that data could be visualized. 

Our team’s third objective was to display real time data that breaks a rowers stroke down 
into slide, trunk and handle acceleration. This objective was completed in the final iteration of 
our team’s developed application. As seen in section 5.1 figure 52 the final application was able 
to display the three elements of the stroke in real time. These visualizations are displayed on a 
stroke by stroke basis as the rower is rowing. 

Finally, our team’s fourth objective was to create a useful visualization of the 
acceleration data to facilitate coaching on the ergometer. Completion of this objective can be 
seen again in section 5.1 figure 52 where a stacked line chart and bar chart was used in the final 
visualization of the acceleration data. These visualizations utilized color and height to 
differentiate between the three different accelerations of the legs, trunk, and back. The 
visualizations are both easy to understand for a rower who is exercising while also giving depth 
of information to give valuable technique feedback to both the rower and the coach. 

 
8.2 Recommendations/Topics of Future Research 

Future projects can continue what this project has initiated by using machine learning. 
Machine learning could have a few applications for analyzing the rowing stroke. One idea is to 
classify good versus bad strokes. The coach could train a model with a prefered style in mind and 
while the rower is rowing he would give feedback whether or not that stroke was in the coaches 
prefered style. A major consideration for any team that pursues this idea is that style varies 
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largely by person. So in order to properly classify a stroke within a large category, say Adams 
style, then it is likely that they will need 100 or more rowers to cast a net that is wide enough. 

Another idea is to classify a stroke as injury prone or not injury prone. The coach could 
train a model to identify injury prone strokes which would signal to the coach that the rower is 
using an injury prone style. This would have the added benefit of training a rower with 
theoretically safer/better rowing techniques.  To implement this, a large amount of data would be 
needed to train the algorithm. 

Another topic of future research could be exploring alternative visualization techniques to 
the ones used in this project. There are still many aspects that could be improved. Concepts such 
as optimal color usage, more effective forms, and the limit to the amount of information a rower 
can absorb while exercising. It might be especially interesting to explore 3D visualizations for 
rowing data. It is definitely possible to visualize the stroke in 3D, but we are not sure what forms 
might be useful for feedback. It is possible that 3D surfaces could represent the stroke better. All 
of these ideas would benefit from more testing with high-level rowers. There are many paths to 
follow. We believe that any of these paths would be both interesting and original. 
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Appendices  

Appendix A 
*DDR data was noisy (and therefore did not provide accurate data) 
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Appendix B 
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Appendix C 
This is the script for the creation of the position graphs. 

Load the study data 
KinematicData = 
csvread(​'ShootingTheSlide.csv'​,5,0,​'A6..OK10000'​); ​%csvread('FileName',start 
row, start column, 'spreadsheet range') 
IMUData = 
csvread(​'ShootingTheSlide_Plot_and_Store_Rep_1.7.csv'​,1,0); 
 

Define some variables 
MocapFrameRate = 100; ​%Samples/second 
RowingStyle = ​'Rushing'​; ​%Indicate the rowing style to title the 
 

Sort into relevant variables and make data 
equal length. 

IMUTime = IMUData(:,3); 
% The IMU Data is padded with zeros at the end, find the point at 
Which the timer stops and remove the extra zeros 
[CaptureLength,I] = max(IMUTime); 
IMUData = IMUData(1:I,:); 
IMUTime = IMUTime(1:I); 
% Create a time vector for the motion capture data based on the IMU Time and the length of the mocap data 
MocapTime = linspace(0,CaptureLength,length(KinematicData)); 
% Sort out the relevant kinematic measurements from the data 
KneeAngle_R = KinematicData(:,300); ​%Rotation about x (flexion/extension) 
KneeAngle_L = KinematicData(:,108); ​%Rotation about x (flexion/extension) 
ElbowAngle_R = KinematicData(:,234:236); 
ElbowAngle_L = KinematicData(:,42:44); 
PelvisAngle_R = KinematicData(:,351); 
PelvisAngle_L = KinematicData(:,159); 
 
% Use the matlab function interp1 so that the IMU data and motion capture data share the same time vector 
 
KneeAngle_R = interp1(MocapTime,KneeAngle_R,IMUTime); 
KneeAngle_L = interp1(MocapTime,KneeAngle_L,IMUTime); 
ElbowAngle_R = interp1(MocapTime,ElbowAngle_R,IMUTime); 
ElbowAngle_L = interp1(MocapTime,ElbowAngle_L,IMUTime); 
PelvisAngle_R = interp1(MocapTime,PelvisAngle_R,IMUTime); 
PelvisAngle_L = interp1(MocapTime,PelvisAngle_L,IMUTime); 
% Rename the IMU time to the single time vector 
Time = IMUTime; 
 

Plot the unprocessed data to check its quality 
%Plot the kinematic data on one figure 
figure 
subplot(3,1,1) 
hold ​on 
grid ​on 
plot(Time, KneeAngle_R) 
plot(Time, KneeAngle_L) 
title(​'Knee Angle'​) 
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ylabel(​'Flexion/Extension (^\circ)'​) 
subplot(3,1,2) 
hold ​on 
grid ​on 
plot(Time, ElbowAngle_R) 
plot(Time, ElbowAngle_L) 
title(​'Elbow Angle'​) 
ylabel(​'Flexion/Extension (^\circ)'​) 
subplot(3,1,3) 
hold ​on 
grid ​on 
plot(Time, PelvisAngle_R) 
plot(Time, PelvisAngle_L) 
title(​'Back Angle'​) 
ylabel(​'Flexion/Extension (^\circ)'​) 
xlabel(​'Time (s)'​) 
 

Fill in Gaps in the motion capture data and filter 
the IMU data 
% Use a cubic spline interpolant to fill gaps in the kinematic data 
KneeAngle_R(:,1) = gapfiller(KneeAngle_R(:,1)); 
KneeAngle_L(:,1) = gapfiller(KneeAngle_L(:,1)); 
ElbowAngle_R(:,1) = gapfiller(ElbowAngle_R(:,1)); 
ElbowAngle_L(:,1) = gapfiller(ElbowAngle_L(:,1)); 
PelvisAngle_R(:,1) = gapfiller(PelvisAngle_R(:,1)); 
PelvisAngle_L(:,1) = gapfiller(PelvisAngle_L(:,1)); 
 

Find the repetitions in the exercise based off 
the knee angle 
% Seperate function that searches for the points of maximum knee flexion, these points are used to segment the rowing repetitions 
[RepIndexes] = findreps(KneeAngle_R(:,1), 40, 70); 
 

Segment the data into individual repetitions 
% Initialize a variable that tracks the number of samples in each repetition 
RepetitionLengths = []; 
% Iterate through the repetition indexes to segment the data into 
% individual repetitions 
for ​i = 1:length(RepIndexes)-1 
SegmentedKneeAngles{i} = [KneeAngle_R(RepIndexes(i):RepIndexes(i 
+1),1),KneeAngle_L(RepIndexes(i):RepIndexes(i+1),1)]; 
SegmentedElbowAngles{i} = [ElbowAngle_R(RepIndexes(i):RepIndexes(i 
+1),1),ElbowAngle_L(RepIndexes(i):RepIndexes(i+1),1)]; 
SegmentedPelvisAngle{i}= [PelvisAngle_R(RepIndexes(i):RepIndexes(i 
+1),1),PelvisAngle_L(RepIndexes(i):RepIndexes(i+1),1)]; 
 
RepetitionLengths = [RepetitionLengths;length(SegmentedKneeAngles{i}(:,1))]; 
End 
 

Normalize each repetition and interpolate so 
they share the same time vector 
LongestRepetition = max(RepetitionLengths); 
NormalizedTime = linspace(0,1,LongestRepetition); 
for ​i = 1:length(RepetitionLengths) 
RepTime = linspace(0,1,length(SegmentedKneeAngles{i}(:,1))); 
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NormalizedKneeAngle_R(:,i) = 
interp1(RepTime,SegmentedKneeAngles{i}(:,1),NormalizedTime); 
NormalizedKneeAngle_L(:,i) = 
interp1(RepTime,SegmentedKneeAngles{i}(:,2),NormalizedTime); 
NormalizedElbowAngle_R(:,i) = 
interp1(RepTime,SegmentedElbowAngles{i}(:,1),NormalizedTime); 
NormalizedElbowAngle_L(:,i) = 
interp1(RepTime,SegmentedElbowAngles{i}(:,2),NormalizedTime); 
NormalizedPelvisAngle_R (:,i)= 
interp1(RepTime,SegmentedPelvisAngle{i}(:,1),NormalizedTime); 
NormalizedPelvisAngle_L(:,i) = 
interp1(RepTime,SegmentedPelvisAngle{i}(:,2),NormalizedTime); 
end 
 
for ​i = 1:length(NormalizedTime) 
% Calculate the average knee angles across all repetitions 
AverageKneeAngle_R(i) = mean(NormalizedKneeAngle_R(i,:)); 
AverageKneeAngle_L(i) = mean(NormalizedKneeAngle_L(i,:)); 
% Calculate the standard deviation of the knee angle across all 
% repetitions 
SigmaKneeAngle_R(i) = std(NormalizedKneeAngle_R(i,:)); 
SigmaKneeAngle_L(i) = std(NormalizedKneeAngle_L(i,:)); 
% Calculate the average elbow angles across all repetitions 
AverageElbowAngle_R(i) = mean(NormalizedElbowAngle_R(i,:)); 
AverageElbowAngle_L(i) = mean(NormalizedElbowAngle_L(i,:)); 
% Calculate the standard deviation of the elbow angle across all 
% repetitions 
SigmaElbowAngle_R(i) = std(NormalizedElbowAngle_R(i,:)); 
SigmaElbowAngle_L(i) = std(NormalizedElbowAngle_L(i,:)); 
% Calculate the average thorax angles across all repetitions 
AveragePelvisAngle_R(i) = mean(NormalizedPelvisAngle_R(i,:)); 
AveragePelvisAngle_L(i) = mean(NormalizedPelvisAngle_L(i,:)); 
% Calculate the standard deviation of the elbow angle across all 
% repetitions 
SigmaPelvisAngle_R(i) = std(NormalizedPelvisAngle_R(i,:)); 
SigmaPelvisAngle_L(i) = std(NormalizedPelvisAngle_L(i,:)); 
end 
 

Plot the average of each sensor and kinematic 
measurement 
figure 
hold ​on 
shadedErrorBar(NormalizedTime,AverageKneeAngle_R,SigmaKneeAngle_R,​'lineProps'​,​'- 
k'​); 
shadedErrorBar(NormalizedTime,AverageElbowAngle_R,SigmaElbowAngle_R,​'lineProps'​,​'- 
r'​); 
shadedErrorBar(NormalizedTime,AveragePelvisAngle_R,SigmaPelvisAngle_R, ​'lineProps'​,​'- 
b'​); 
grid ​on 
xlim([0,1.5]) 
legend(​'Knee Angle'​,​'Elbow Angle'​,​'Back Angle'​) 
ylabel(​'F/E Angle (^\circ)'​) 
title([​'Rowing Cycle Averages: '​,RowingStyle,​' Style'​]) 
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