

Implementing Recommendations for the

Labor and Delivery Application Utilizing

Prototype Testing

An Interactive Qualifying Project Report:

submitted to the faculty of the

 WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

degree of Bachelor of Science

by

Michael Krebs

April 25, 2019

Project Sponsor:

Amir Mehdizadeh, MD

UMass Memorial Hospital

Project Advisor:

Bengisu Tulu, PhD

Worcester Polytechnic Institute

IQP BXT-1803

i

Abstract

The goal of this project is to create a minimum viable product for the labor and delivery team at

UMass Memorial Hospital based on the recommendations made by Improving Labor and

Delivery Tracking App. A number of development frameworks and JavaScript libraries were

compared to determine the best platform to develop the web application in the time frame of the

project. We expect that the new prototype web application will serve as the foundation for a

future project to build upon and eventually integrate into the labor and delivery team at UMass

Memorial Hospital.

ii

Acknowledgments

I would like to acknowledge the following people for their assistance and guidance that made

this project possible. Dr. Amir Mehdizadeh, for his guidance and expertise in the labor and

delivery field which enabled first-hand experience into how best this application can serve its

potential users. Professor Bengisu Tulu for her support, passion and direction for the duration of

the project. Lowe, Nawab, and Servidio, whose detailed work in evaluating and testing the prior

application led to tangible recommendations that serve as the foundation for this project.

iii

Table of Contents

Abstract i

Acknowledgments ii

Table of Contents iii

List of Figures v

List of Tables vi

Executive Summary vii

1. Introduction 1

2. Background 2

2.1 UMass Memorial Labor and Delivery 2

2.2.1 Ionic Framework 2

2.2.2 Angular 3

2.2.3 Vue 3

2.2.4 React 4

2.2.5 Express and NodeJS for Server Side 4

2.3 Deployment Using Heroku 5

3. Methodology 6

3.1 Project Initiation and Scoping 6

3.2 Requirements Gathering and Prioritization 6

3.3 Development Methodology 8

4. Results 9

4.1 Documentation of App 9

4.1.1 Overview 9

4.1.2 Client 9

4.1.2.1 Client Overview 9

4.1.2.2 Client Architecture 11

4.1.2.3 Creating a New Page 14

4.1.3 API 16

iv

4.1.4 Server 18

4.1.5 Development Server 20

4.2 Database Schema 21

5. Recommendations and Conclusions 23

5.1 Future Features 23

5.2 Future Deployment 23

5.3 Conclusions 25

References 26

Appendix 27

v

List of Figures

Figure 1 User Application Information Flow ... 9

Figure 2 Root Component ... 10

Figure 3 JavaScript Injection in JSX .. 11

Figure 4 Component Composition .. 12

Figure 5 Client Interface Structure Diagram .. 13

Figure 6 Sending Variable with Redirect.. 14

Figure 7 Receiving Variable within Desired Component ... 14

Figure 8 Routes within App.js .. 14

Figure 9 App.js Importing Components ... 15

Figure 10 Template for Making a New Component ... 15

Figure 11 Internal Functions ... 16

Figure 12 Exported Functions ... 17

Figure 13 Exported Function Being Called .. 17

Figure 14 Helper Functions .. 18

Figure 15 Server Endpoint Creation ... 18

Figure 16 App Declaration in Server .. 19

Figure 17 Connection to the Database .. 19

Figure 18 Example Function Call in Server.js .. 20

Figure 19 Deployment Proxying Instructions ... 20

vi

List of Tables

Table 1 Prioritized Features .. 7

Table 2 Future Features .. 24

Table 3 Design For Experience Recommendations (Lowe et al., 2019) 27

Table 4 Design For Context Adaptability Recommendations (Lowe et al., 2019) 28

Table 5 Design for Workflow Integration Recommendations (Lowe et al., 2019) 31

Table 6 Dr. Amir Mehdizadeh Terminology and Field Recommendations 32

vii

Executive Summary

This project aims to improve upon the accuracy and efficiency in how labor and delivery patient

information is recorded and accessed. To achieve this goal a minimum viable product was

developed by integrating recommendations from prior projects. This project was organized under

two major phases.

The first phase of the project was learning and building upon the previous application that was

developed by (Curtis, Friedlander, Gelinas, Hammer, & Perullo, 2018) in time for the work of

Improving Labor and Delivery Tracking App to conduct a field test that would provide insight to

making a successful application. During this phase the focus was on developing the prior

application and learning its intricacies as the original plan was to iteratively build upon the prior

application until it was a viable product that the UMass Memorial labor and delivery ward could

integrate. However, in accordance with the original developers’ recommendation we switched

the aim of the project to perform throwaway prototyping and create a new application based on

what was learned from the previous application. In concurrence with the work of (Lowe et al.,

2019) a proposal was created for how the new prototype application will be developed,

integrating the recommendations made by both Dr. Amir Mehdizadeh, prior MQP and IQP teams

and by Dr. Bengisu Tulu. I researched which frameworks and JavaScript libraries would be best

to develop the application in the given the time and resources available for the project. During

the formal proposal presentation to Dr. Amir Mehdizadeh and colleagues, we determined the

goals for the next phase of the project.

The second phase of the project was to take what was learned from the previous phase and use

this information to develop and test a new prototype. The prototype would be in a more modern

JavaScript library that is expected to continue to grow in usage that will allow for easier

maintenance and extensibility. The prototype best attempted to implement the three major

recommendations from (Lowe et al., 2019) -design for experiences, design for context

adaptability, and design for workflow integration - as well as incorporate the correct terminology

and features that were explicitly stated as desirable by Dr. Amir Mehdizadeh. I used the React

JavaScript library to develop the front end portion of the application with NodeJS and Express as

my backend server and deployed the application to Heroku. After developing the application, I

also developed a highly descriptive documentation, so that future work on the project can realize

the end goal of integrating into the work by clinicians at the labor and delivery ward. I also

provided recommendations for how the future teams working on this project should focus their

efforts.

1

1. Introduction

In an era with rapid technological improvements, there are still areas of industry where the

advancements have not been implemented. The healthcare industry is integrating technologies

every day on large scales. However, some parts of the healthcare industry like labor and delivery

wards which have specialized needs that are not always satisfied with enterprise systems are still

looking for innovative technology solutions to help them improve their workflow and

communication challenges. In 2017, the first iteration of this project was started with a

partnership between a WPI MQP team and one of the residents working at UMass Memorial

Hospital’s labor and delivery ward. The work of (Curtis et al., 2018) created a mobile application

that would help residents and attendants in the labor and delivery ward effectively record and

monitor patient information. One year later the second iteration of this project started with the

work of (Lowe et al., 2019) by getting a firsthand look into the work of the clinicians at the labor

and delivery ward. With their firsthand insight and extensive research into the causes of error in

medical fields they were then able to pinpoint why this application would be of value to the

clinicians since miscommunication was a primary factor. They then evaluated and tested the

application built by (Curtis et al., 2018) to see how it addressed the needs of all clinicians in the

labor and delivery. Their work resulted in recommendations for future development which stands

as the basis for this third iteration of the project.

Although miscommunications and absences of important information will always occur to a

certain extent due to human error, this project aimed to develop a technology solution to

facilitate seamless and timely communication among team members to minimize such instances

in the labor and delivery wards. The primary objective of this project was to take the

recommendations from the work of (Lowe et al., 2019) to develop a minimum viable product

web application that serves as the foundation for future work to build upon and become an

integral part in labor and delivery wards. The recommendations that this application addressed

are (1) to design for experiences, (2) to design for context adaptability, and (3) to design for

workflow integration.

2

2. Background

2.1 UMass Memorial Labor and Delivery

The sponsoring organization for this project is the labor and delivery ward at UMass Memorial

Hospital. Currently, the transfer of information from clinician to clinician is done by reading

patient information on a handwritten whiteboard, personal paper notes, and the electronic health

record (EHR) system that they have in place. These mediums are often not up to date due to the

fast pace environment in the labor and delivery wards, and provide inefficient forms of

communication about the patients. The sign off process between shifts takes about 2 hours and

includes a verbal debriefing of the patients where despite providers’ best efforts

miscommunications and absences of important details can emerge. The whiteboard and EHR

system must be updated by the providers regularly. However, due to long shifts and fast paced

environment, often times this updating occurs long after the events and information was new or

relevant. Communication errors can have significant effects on patient care, therefore, accurate

and effective communication in hospitals is a top priority.

2.2 Development Platform Considerations

Before beginning the development of the application serious attention was made to which

development platform would be best given the constraints of the project. The main constraints of

the project were the shortness of time to develop the application (6 weeks) and the need to

continue building upon after the completion of this project. With these two constraints in mind, I

needed a fast-developing framework that was well established and scalable.

The previous project (Curtis et al., 2018) utilized the Ionic framework to develop their

application. This section will first discuss the reasons why this team chose the Ionic framework

and the shortcomings it had when it came to further development and then discuss the new

frameworks that were considered for development.

2.2.1 Ionic Framework

The original application, L&D Tracking App, was developed using an Ionic platform. The

rationale behind using Ionic was that the application could be compiled to be both compatible

with Android and IOS with only one version. A web browser preview of the app could also be

used for fast prototyping and testing. The structure of the language is similar to HTML and the

logical syntax was built on a modified version of JavaScript called Typescript; both of which the

original team felt comfortable working with. Ionic was used primarily to develop the prototype

rather than creating a full scaled deployable application (Curtis et al., 2018).

3

On the server side, the original project utilized a dedicated UNIX machine to host the application

and database. The database was written in MySQL and stored basic information about patients,

physicians and exams. They built an application program interface (API) by using Nodejs with a

MySQL plugin in and Angular syntax (Curtis et al., 2018).

As mentioned by the original development team future implementations of the applications

should “abandon the ionic framework.”(Curtis et al., 2018) Although the platform was well

equipped for quick development and backend integration, it is not easily deployable to a full

scale application as it fails in categories like user experience, notification handling and

syntactical structuring of code. Moreover, during the first phase of the project, I had to pick up

and learn a highly complicated undocumented program. Due to Ionic’s lack of clear syntax and

integration issues, workarounds and technological debt accrued to a point where further

developing the application required constant reach out to the original developers who have since

moved on from the project.

For the server portion of the project, utilizing the dedicated UNIX machine also proved to be a

challenge for developing. Although a local version of the project could be used for rapid

development, having to push the project to the virtual machine often caused unforeseen breaks

and errors that were difficult to debug since the virtual machine only had terminal capabilities.

This was particularly troublesome when working with proxied addresses for server querying

during production stages. It is evident the prior project also experienced trouble with this aspect

of the project based on comments and error logging.

2.2.2 Angular

Angular is an older JavaScript library, and its usage and popularity has been declining

(TechMagic, 2018). Angular was in part used during the previous application and unfortunately

did add to some of the complications as there were two platforms being used concurrently.

Although its documentation is comprehensive and well tested, Angular was not easy to pick up

immediately while I was attending to the old application in phase 1. The documentation for

Angular is comprehensive but unintentional naming conventions means picking up and

developing in Angular would be time consuming (Google, 2019). Given that Angular’s use is in

decline and the goal of the project is to be built upon, continuing to use Angular was ruled out.

2.2.3 Vue

Vue is a newer JavaScript library with a lot of promise and growing in popularity. Vue is an

advanced JavaScript library that provides a lot of flexibility when it comes to development

(TechMagic, 2018). Upon researching there was not a lot of examples on how to integrate Vue

with an API or backend server, particularly with MySQL. There are many programmers who

find that the learning curve for Vue was not as steep as React and thought that the design was

4

simpler to understand as it felt like HTML. But it is also worth noting that since it is a newer

library there are not as many compatible third-party libraries that speed up development time.

Vue is also not widely used in the professional world (Tarnowski, 2017). With these limitations

Vue was not chosen to be the framework to use.

2.2.4 React

React is a fast-developing JavaScript library that prides itself on being intuitive and easily

implemented. Adding React to a JavaScript program is as simple as importing the library and

adding one line of code above and below your existing project (Facebook, 2019b). React is also

still growing in its usage which lends itself nicely to development down the road when a future

group builds upon the application (Buna, 2017). React is easy to learn in large part because of its

simple design, reusable components, and use of JSX which is similar to HTML that most

programmers have experience with and can be read easily. React also has detailed documentation

that lends itself well to solving issues quickly and finding examples on how to do what you want

to do (TechMagic, 2018). Another perk to React is that it comes with great add on packages like

create-react-app which creates a boilerplate program that has deployable and local development

ability right from the start (Facebook, 2019a). This project is solely focused on creating a web

application, but should future work decide to go platform specific, React Native is quite similar

to React so going platform specific would not require much work. In fact the skills and basic

structural learning curve you gain from developing in React translate well to React Native

(TechMagic, 2018). The reason this is enticing is because React Native can be compiled into

both IOS and Android which the last project indicated as the two major native platforms that

would need to be covered in order for this application to be better used on mobile devices

(Facebook, 2019c). Since React was the best option for both the immediate work on this project

and for future work I decided to choose React at the JavaScript library to create this app in.

2.2.5 Express and NodeJS for Server Side

The only remaining portion of the project was to determine how the backend part of the project

would work. Since there already existed a well-defined database, it did not make sense to move

away from MySQL. However, an API still needed to be developed and I had little experience in

doing so. Upon researching, Express and NodeJS were coupled together for creating the server

that would host the database. I found many examples of how to create a server using create-

react-app express and Nodejs but followed the work of (Moa, 2018) when developing the

application. The previous application also used NodeJS, so I already had exposure in phase one

of the project which was invaluable to hit the ground running in phase two. Express and NodeJS

was implemented as the server portion of the project and would be queried from within the

application at a proxied address to handle all the database integration. Other middleware was

also used like Morgan and Cors for security reasons as to not expose the database to the user.

5

2.3 Deployment Using Heroku

Given the time frame of the project we decided to use an existing deployment platform to speed

up the development. Through research it was found that Heroku was easily integrated with

React. Heroku has a build pack that specifically integrates with create-react-app, a boilerplate

addon for building React applications. Using this deployment service, the application could

easily be deployed and managed by outsourcing the complexities for hosting. I utilized the step

by step guide from (Hall, 2019) on how to run the build pack on a create-react-app project.

During the scenario testing of the application by (Lowe et al., 2019) they did experience

technical difficulties that could have been attributed to stress on the server. With Heroku, the

application is now in a deployable environment that when performing a similar test would cause

no stress to the server, making it more reliable. Since this project is designed to lay the

foundation of a web application and be a prototype, outsourcing the hosting of the application

proved to be a time saving and invaluable step in developing the application quickly.

6

3. Methodology

3.1 Project Initiation and Scoping

To develop a usable and effective app, it was essential to understand the preferences and

requirements for all the clinicians in the labor and delivery ward at UMass Memorial. Prior to

my efforts as a developer, a project team researched and prioritized the needs of those clinicians

so that a sufficient app could be scoped. It was made clear through their research that above all

else, clinicians wanted an app that would be user friendly so that it didn’t interrupt their work

flow.

The app prototype before mine was used to test usability, effectiveness of EHR technology in the

workplace, and understand major roadblocks with app integration. It was determined that this

early prototype app was promising but not sufficiently developed and further development using

the Ionic platform was not feasible, however it was incredibly important in gathering information

necessary to scope the app that I developed for my project. Through wireframe testing, surveys,

and “real life” scenario simulations, the group was able to obtain valuable information about

design and feature specifics as well as quantitative data about the usability of the app. The

Systems Usability Survey yielded results reflecting that the ease of use was quite poor; 54%

(+7%) of respondents agreed that the app was not very usable (Lowe et al., 2019). Because of the

rigid nature of Ionic framework, users were unable to fluidly access their data which poses a

large roadblock for clinicians in the Labor and Delivery Ward. To improve this essential

component of an effective app, it was determined that another platform must be used.

In addition to quantitative data, the group also collected significant details about the design and

necessary features. This includes medical terminology and abbreviations, drop-down vs free text

preferences, important prompts, as well as major concerns and potential roadblocks. All this

input helps to construct an app that addresses as many requirements as possible. From the

previous groups research, my design for the app hopes to improve flow and usability while

eliminating the major roadblocks and “glitches” that came with the previous prototype.

3.2 Requirements Gathering and Prioritization

The requirements for the new application were derived mostly by the work of (Lowe et al., 2019)

who, after asking residents and clinicians at the labor and delivery ward during their scenario

testing, created tables to highlight some of the new features that the clinicians would like to see

in a future application. The second portion of the requirements came from Dr. Amir Mehdizadeh.

He and I exchanged emails and documents that would highlight and clarify the terminology and

features he and the rest of the labor and delivery ward wanted to see in the application. Tables 3,

4, 5, and 6 found in the Appendix contain, the recommendations, desired fields and elements to

be included in the application.

7

One of the most important components in this application being successful is that it makes the

jobs of the clinicians easier, not harder to use. Regardless of how it could improve

communication if no one uses the app then it serves no purpose. With that I had to prioritize

which features I would implement in the new application given my time frame to work on this

project as I would not be able to implement them all. The most important aspect I considered

while determining which features to implement was functionality and usability. The application

had to do what the clinicians wanted the app to do and it had to be intuitive in how they can get

that done. The features requested about stylistic, aesthetic and design were put on the backburner

of the project as things to implement should all before them be completed. The prioritized

features can be found in Table 1.

Table 1 Prioritized Features

Requirement Priority Complexity

All Patient Page Functionality 1 Medium

Subscribe/Unsubscribe ability 1.5 Medium

Add Patient Page Functionality 2 Medium

Add Event Page Functionality 3 Easy

Login Page Functionality 4 Hard

Medical History Page Functionality 5 Medium

Whiteboard Page Functionality 6 Medium

All Patient Page One Liner 7 Medium

Navigation Between Pages 8 Medium

Edit Patient 9 Medium

Edit Event 10 Medium

Edit Medical History 11 Medium

Style Application 12 Hard/ Time consuming

One issue that arises when working across industries is that often times the language and terms

are different and the understanding of the other industry is generally minimal. As a software

developer it is one’s goal to implement all the features that are asked but sometimes such

features are not possible or would be better implemented in other ways. To close this gap

8

between industries once the final list of prioritized features, that both came the requirements

shown in Table 1 and my realistic evaluations/modifications of them, were consolidated at the

end of phase one of this project I presented my proposed features to implement to Dr. Amir

Mehdizadeh and colleagues at UMass Memorial Hospital for approval. At the end of the

presentation we held a discussion portion where aspects of the features were fine-tuned and I was

ready to begin phase two of the project.

3.3 Development Methodology

The developed methodology that I utilized was iterative development. Each week I created task

lists for what features I was going to implement and would then present my progress for that

week to my advisor Dr. Bengisu Tulu. In these meetings we would discuss the current state of

the app and discuss what features we should tackle in the upcoming week, at times deviating

from the order of the priority list. This approach enabled the development of the app to be

adaptable because instead of seeing the requirements as a contractual obligation I used them as

the basis on which to develop the app. In doing so I was able to, when developing the

application, see that some of the requirements would be better in different views of the

application or implemented in different ways.

9

4. Results

4.1 Documentation of App

4.1.1 Overview

This application has three major components: the front end React components (client), the API

and the server. Figure 1 shows the flow of information between the user and the application.

Figure 1 User Application Information Flow

With this flow of information, the user cannot access the database or interact with the API

directly. This is a security measure intended so that the user can only access the information that

is given to them by the application. Each of the three major components will be addressed in

detail in the next subsections.

4.1.2 Client

4.1.2.1 Client Overview

The client portion of the application is where most of the project lives. The client is responsible

for taking in interactions from the user, displaying the correct information and retrieving the

information that is needed via asking the API. In many React applications it is a simple one-

page application. Although this project is still only one page, it mimics that of a multi-page

application via React Routing (more on React Routing in subsection 4.1.2.2). The client is

composed of one main component and many other subcomponents.

The main component, called App.js, is the root component of this project. It is the first

component that gets loaded and displayed. The main responsibility of this component is to

import and announce all the other react components that this project will be routing to. For this

project the App.js can be found in the “client/src” folder. This main component is established as

the root component by another JavaScript file, index.js in the same location. Figure 2 shows the

line of code where App.js is set as the root component within index.js.

10

Figure 2 Root Component

All of the components import React, but only this file imports ReactDOM(other components can

but none of the functions within ReactDOM were needed for this project). The main portion of

this snippet of code is to show how index.js imports App from ‘.App’ where App is referencing

App.js. And then when the render method is called saying “Render the App component and call

it root.”

The other subcomponents are not like subclasses within an object-oriented hierarchy. Instead

they are just as “powerful” or can be much larger than the main component. The main

component is simply special because it is loaded first and has the responsibility of importing and

announcing the components the project will use. But these subcomponents, for lack of a better

term, also must import other subcomponents when they want to use them. All these

subcomponents are found in the “client/src/components” folder. Each of the components has

their own respective folder in the components folder and these folders contain the component

JavaScript file, sometimes a “.CSS” file or other components that are used to help create a

component. Components should not be thought of as html pages but rather like a <div> tag.

Components are used in composition with other components to create a page. A page in a React

app does have a different URL Figure 2 demonstrates how a page is composed of many

components. Each rectangle in the Figure 2 is a component, including the blue rectangle that

contains the 9 inner red rectangles. It is vital to understand that breaking a page up into

components is cleaner and creates a better designed project.

A component has one major function that always needs to return, or you will get an error. This

function is the render function. A component needs to render, or it will be of no value (you can

return null but that again makes the component useless). Within this render function you are

coding in what is called JSX. JSX is just like HTML except you can inject JavaScript directly

into it by placing the JavaScript inside of curly brackets {}, as seen in Figure 3. The inner red

rectangles within the blue rectangle are created by mapping through an array of patients and for

each patient in that array we create an inner component of patient information. For now, ignore

what comes after “<Patient” just see how within the curly braces I injected JavaScript to call

another component multiple times.

11

Figure 3 JavaScript Injection in JSX

The last important concept to understand about components is that they keep variables in its

“state.” Every component has a state, although you do not need to code a state if you are not

going to use it. The state can simply be seen as instance variables that are accessed within the

rest of the component using “this.state.variable_name.” You can pass along these state variables

from parent to child components and are invaluable when composing components together.

4.1.2.2 Client Architecture

The client portion has a sequence in which the components are navigated to and from. The most

readily used component is the AllPatient component. This was the marked with a dark blue

rectangle in Figure 4. There are two other components that are part of every page: the Header

component and the NavBar component. These two components marled with the top two red

rectangles in Figure 4. Figure 5 shoes the interface structure diagram which displays how a user

can navigate the application. Note that each rectangle in Figure 5 represents a page, and the lines

connectiong each rectangle rpresents the routing between pages. However, the lading page for

our application is the Login page. This page is comprised mostly of the login component. This

component handles the username and password authentication. Currently the application simply

takes the username and password, determines if a user in the database has that username and if so

it checks to see if the passwords match. Once authenticated the corresponding physician ID

accompanied with that user is passed to the AllPatient page.

12

Figure 4 Component Composition

13

Figure 5 Client Interface Structure Diagram

The AllPatient page displays all the patients that the user is subscribed to at the top of the pafe

and all the patients they are not subscribed to at the bottom section of the page. This page also

facilitates subscribing and unsubscribing to patients. The navigation bar is the main way of going

between different pages but to add new information to the database (AddPatient, AddEvent,

AddMedicalHistory) you need to click the corresponding button on the AllPatient page. That is

why this page is seen as the main page of the application.

The way to route from one page to the next is by returning another page in the render method

within a component. The easiest I came across was to use Redirect, which is an extension to

React. Redirect simply redirects the user to a different component. Within Redirect you can

specify the variables you would like the new page to have once it loads. This is done by passing

a state, see Figure 6. Within the new component where you want to make use of these variables

you call the variable by saying “this.state.props.location.variable_name.” Example code for both

sending variables and receiving them can be seen in Figures 6 and 7.

14

Figure 6 Sending Variable with Redirect

Figure 7 Receiving Variable within Desired Component

From Figures 6 and 7 you can see that we passed along a state with a variable called “id” that

was set to “this.state.physicianID” and within the new component we set “this.state.physicianID”

to “this.props.location.stat.id.”, which syntax aside just means we copied the old “physicianID”

from the previous component’s state to the new component’s state we are now working in. In

this project, we need to constantly pass around the “physicianID”, therefore, this was done

frequently throughout the program.

4.1.2.3 Creating a New Page

To create a new page all you need to do is add the Route in App.js and create a component that

will be called when that new route is navigated to. Figure 8 shows the current routes in the

project and subsequently where a new page would need to be added.

Figure 8 Routes within App.js

The path can be thought of as the URL and the component is the main component that you will

want to be rendered. Notice how the component is within {} implying that this is JavaScript and

that those words in white are actually variables of some sort. At the top of App.js you will find

imports where we are importing the components themselves as can be seen in Figure 9

15

Figure 9 App.js Importing Components

From here on, all you need to do is (1) create a component, (2) make sure that the render

function is returning some JSX and (3) make a route to it by including something like what you

see in Figure 6 from the page that you want to redirect to your newly created page. A template

component is show in Figure 10. This template component can also be found in by navigating to

the template folder which is in the components folder.

Figure 10 Template for Making a New Component

16

4.1.3 API

The API that was created is barebones and straightforward. There is only one JavaScript file that

makes up the API and that is client>src>Database>DatabaseInteract.js. Within this class there

are three types of functions that are broken up by comments, so they are clearly defined.

The first of these functions are the internal functions. These are the functions that make the

requests to the server. There are three types of request, fetch, post and patch. So far, I have only

needed to use fetch and post but in the future patch will likely need to be used. Note, that in this

request to the server “/api” is prepended. We could have prepended it with any word so long as it

matched what our server was expecting. It simply creates proxy addresses to our server so that

we do not run into same port or unexpected issues when trying to host two separate programs

(the client and server). Figure 11 shows the internal functions that already exist in the project.

Figure 11 Internal Functions

In the internal functions, fetch is used for getting data from the server, post is for sending data

and patch is for doing updates.

The second kind of functions is the exported functions. These are the functions that the

components will call to get the information they need. These functions call the appropriate

internal functions with the correct end point while pass along the needed parameters. Figure 12

showcases what the exported functions look like.

17

Figure 12 Exported Functions

Two examples of the exported functions that I will go into detail with are “subscribeTo” and

“getPatient.” The exported function “subscribeTo” takes in two parameters, one being the

“patientID” and the other being the “physicianID”. This function is being called in “AllPatient-

Patient.js” as shown in Figure 13.

Figure 13 Exported Function Being Called

18

The variable “e” is the event handler for the slider checkbox. This bit of code then reads, if the

slider was just checked then we call subscribeTo with the “patientID” and the “physicianID.”

Back to the API exported function we send these two values to the endpoint, notice the “&”

delimiting the two variables, to the endpoint set up in the server (which is explained in detail in

the next section).

The last kind of functions are the helper functions. These are not vital but, so they help maintain

clean code. The only helper function currently is the “checkStatus” function which simply

returns the response if the request was good or returns an error if it was bad. Figure 14

showcases checkStatus.

Figure 14 Helper Functions

4.1.4 Server

The server is a bit more complicated than the API but still very manageable. The server file is

located outside of the client folder and within the project folder itself. The name of the file is

server.js. The first thing to know about the server is how to create new endpoints. Figure 15

shows how end points are created.

Figure 15 Server Endpoint Creation

19

Notice how everything starts with “app”. The reason for this is because “app” comes from our

back-end provider express from the line of code shown in Figure 16. It isn’t necessary to know

what this is doing exactly but just so you are aware where the declaration is coming from.

Figure 16 App Declaration in Server

The next thing to notice is that we are setting all the endpoints by prepending “/api” this is

consistent with what we did in the API. After that the middle portion is simply the endpoint and

can be anything that makes sense. The more intentional the better. The last thing to know about

end points is the “:” meaning. The colons represent variability with the endpoint and are going to

be passed in as essentially parameters. For example, in the endpoint “/api/select*/:table.” Table

in this case is hoping to get a table in the database and like the endpoint suggests we are going to

select all from that table. After the comma is simply the method that you would like to run when

this endpoint is hit and these functions are within the server.js file. But before we look at how

that works we need to first see how we connected to the database in the first place. The first thing

that needed to be done was import the “mysql” add on. From there we create the connection with

our database by entering the name, username, password and port and finally connecting to the

database. Figure 17 showcases all the steps to connect to the database beside importing “mysql”

which is required.

Figure 17 Connection to the Database

The const “con” is now connected to the database and we will be able to run queries on it easily.

Figure 18 shows how the “parameters” discussed with endpoints are accessed from with a

function and how this function can query the database.

20

Figure 18 Example Function Call in Server.js

The “req.params” statement is what is storing those parameters we got from the endpoint. And

once we access it by specifying which parameter we want (“/api/select*/:table.” and

“req.params[‘table’]”), we can use that like any other variable. The “con.query” statement is a

function that queries the database where the first parameter is the query and the second is a place

for you to process the results. Note how we first check to see if this request resulted in an error.

If it did not, we turn the results into json and we return it. This return will go back to the

exported function in “DatabaseInteract” which will return it directly to our component to use.

The lines of code in Figure 19 are for assisting the server to find the correct files when the app

gets deployed. You do not have to worry about these.

Figure 19 Deployment Proxying Instructions

4.1.5 Development Server

To start the application locally and develop it in real time you need to do the following. First

navigate to the project folder and run “npm start.” If you do not have npm installed, you need to

do so. You should then see that the server is running. Once you see this go to the client folder

and run “npm start” again. This time it will take longer but after it compiles will open a

development window on localhost:3000. And you’re done! Every time you save the development

localhost will refresh and you will still be able to interact with the database.

21

4.1.5 Deployment

Once you feel you have something worth deploying, navigate to the client folder and run the

following commands. Note, you will need to add Heroku CLI to your command line.

>git add .

> git commit -m “your commit message”

>git push heroku master

This will likely take a few minutes to run. Basically, what it is doing is compiling and

compressing your work into an optimized build and then deploying that to the Heroku server.

Once this finishes you will see a build successful and it will say it is ready. Enter the following

command to open your deployed app

>heroku open

4.2 Database Schema

In the database schema is illustrated in Figure 20. Tthere are 11 tables, 6 of which are the core

tables and the remaining 5 are log tables. The “users” table is the table that stores a username,

password and corresponding “physicianID” (foreign key). This is used for logging into the

application. The “Physician” table has the primary key physician ID. The physicianID is the

most widely used foreign key as it is passed around when routing between pages. The “Patient”

table has primary key “patientID” and foreign key “primaryPhysicianID”. The “Patient” table is

the core table of this project. The “MedHistory” table has primary key “medHistID” and foreign

key “patientID.”The “SubscribedPatients” table has two foreign keys “physicianID” and

“patientID.” The “PatientEvent” table has primary key “patientEventID” and two foreign keys

“patientID” and “eventCreatorID.”

Most of the fields in the database schema are intentional and should explain what values they

hold. It is worth noting however that the table PatientEvent used the foreign key eventCreatorID

which is the physicianID.

22

Figure 20 Database Schema

23

5. Recommendations and Conclusions

5.1 Future Features

The timeline for project did not lend itself to developing a fully developed application. There are

still bugs and features that are desirable to implement. The recommendations for future features

to implement are presented in Table 2. After these features are implemented, there are two

further actions that should be taken. The first is a translation into React Native and then the

implementation of platform notifications for subscribed patients. This will likely take longer than

all of the features shown in Table 2 to implement and would be a great step in getting this

application used by the hospital. The second step would be to have the application integrate with

the EHR system so that the information captured within the application can be easily transferred

to the EHR system. The app must also comply with FHIR *and HL7 standards. These are

security standards that need to be in place before the application can be integrated into the

hospital. When these two steps are finished the hospital only needs a way to deploy the

application and then it can be integrated into the daily work of clinicians.

5.2 Future Deployment

Currently the application is in its infancy development stage. It is my recommendation to

continue to iteratively develop the application using Heroku until a sufficient application is

developed. At that point it would be best to try and move the application to another host.

Previously the application was hosted on a dedicated UNIX server. This deployment has the

advantage that we can securely run field tests with the application as the entire application is

secure behind WPI servers. It does however induce stress issues when many users are using the

application at the same time. My recommendation would be to reach out to network operations at

WPI and try to come up with a strong host. In doing so the application will be hosted on an

internal secure network and still be strong enough to withstand stress. Of course, since the end

goal is to have the UMass Memorial Hospital to use the application it may also be worth seeing

how they would want the application to be deployed. If a fully developed and secure app is

created the hospital would not use a WPI server to run the application. Instead they would likely

use a deployment service. In this case a conversation with how the app should be deployed

should be had. It is more than likely the IT department of the hospital will be the ones to deploy

the application but future workers on this project will need to be part of that process for it go run

smoothly.

* https://www.hl7.org/fhir/

https://www.hl7.org/fhir/

24

Table 2 Future Features

Feature Priority Challenge Level

Edit Patient Page High Easy

Edit Event Page High Easy

Edit Medical History Page High Easy

Remove Patient Button High Easy

Fully Functional NavBar High Medium

Hashing Password into Database High Easy-Medium

Fix Login Bug† High Hard

Whiteboard High Medium

Complete Med History Page High Hard

Subscribe/Unsub Slider Fixed Medium Easy

Style AllPatient-Patient Component Medium Medium

Template Exams‡ Medium Hard

Style AddEvent Medium Easy

Style AddPatient Medium Easy

Style AddMedHistory Medium Easy

Add Main Page in App.js Medium Easy

Add GBS field to Table Patient Medium Easy

Add GBS field in AddPatient Form Medium Easy

† The bug I am referring to is if you enter an incorrect username or password and then a correct username or password you will

get a “headers” error. This error comes about because the header for the response was already sent and when the new username

and password is attempted it tries to reset the header. I did not know how to resolve this issue. See login component,

Databaseinteract and server.js to resolve this issue.
‡ Template exams are prefilled events that only show the fields relevant to that event. This was a strongly desired feature by the

clinicians

25

Make DD fields into Multiple Selects§ Medium Medium

5.3 Conclusions

The main goal of this project was to develop a web application that would serve as the

foundation for future work to iteratively develop a production ready application to use in labor

and delivery wards. Due to time constraints, this app was not tested in the field. However, this

application in its final stage does provide the functionality that the previous application had but

has far more potential in being developed and compiled into native platforms via React Native. It

is my hope that this project gets picked up and future work will be done to extend the application

until it is integrated in UMass Memorial Hospital.

§ The fields that should be multiple are listed in the table of features by Dr. Amir Mehdizadeh in the Appendix

26

References

Buna, S. (2017). Yes, React is taking over front-end development. The question is why.

Retrieved from https://medium.freecodecamp.org/yes-react-is-taking-over-front-end-

development-the-question-is-why-40837af8ab76

Curtis, R., Friedlander, S., Gelinas, A., Hammer, C., & Perullo, A. (2018). Developing A Mobile

App to Aid Communication in a Maternity Ward. Retrieved from

Facebook. (2019a). create-react-app. Retrieved from https://github.com/facebook/create-react-

app

Facebook. (2019b). Getting Started. Retrieved from https://reactjs.org/docs/getting-started.html

Facebook. (2019c). React Native. Retrieved from https://facebook.github.io/react-native/

Google. (2019). Quick Start. Retrieved from https://angular.io/guide/quickstart

Hall, M. (2019). Heroku Buildpack for create-react-app. Retrieved from

https://elements.heroku.com/buildpacks/mars/create-react-app-buildpack

Lowe, H., Nawab, S., & Servidio, T. (2019). Improving Labor and Delivery Tracking App.

Retrieved from

Moa, M. (2018). Setting up a Node.js Express Server for React. Retrieved from

https://medium.com/@maison.moa/setting-up-an-express-backend-server-for-create-

react-app-bc7620b20a61

Tarnowski, D. (2017). Angular vs React - the DEAL BREAKER. Retrieved from

https://hackernoon.com/angular-vs-react-the-deal-breaker-7d76c04496bc

TechMagic. (2018). React vs Angular vs Vue.js - What to Choose in 2019? Retrieved from

https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-

b91e028fa91d

https://medium.freecodecamp.org/yes-react-is-taking-over-front-end-development-the-question-is-why-40837af8ab76
https://medium.freecodecamp.org/yes-react-is-taking-over-front-end-development-the-question-is-why-40837af8ab76
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://reactjs.org/docs/getting-started.html
https://facebook.github.io/react-native/
https://angular.io/guide/quickstart
https://elements.heroku.com/buildpacks/mars/create-react-app-buildpack
https://medium.com/@maison.moa/setting-up-an-express-backend-server-for-create-react-app-bc7620b20a61
https://medium.com/@maison.moa/setting-up-an-express-backend-server-for-create-react-app-bc7620b20a61
https://hackernoon.com/angular-vs-react-the-deal-breaker-7d76c04496bc
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d

27

Appendix
Table 3 Design For Experience Recommendations (Lowe et al., 2019)

User

Type/Role

New feature/What they want

or prefer

Why they want it

Residents User change setting for theme

preference (light vs. dark theme)

Simply to change theme based on

preference

Attending,

Residents

Colored bar subscription marker Preferred way of seeing subscription

to patient compared to other options

suggested

OB/GYN Condensed event timeline For better viewing of information, and

wasting less space

Residents,

Attending,

Nurses,

OB/GYN

Condensed one-liner home page

with standard format

Keep information viewing as concise

and similar to current system as

possible

Residents,

Attending,

Nurses,

OB/GYN

Implementing drop-down menus

and other custom UI elements

based on information being

entered

Much easier in some cases to have

preset values to choose rather than

always using free text to enter

information

28

Table 4 Design For Context Adaptability Recommendations (Lowe et al., 2019)

User

type/Role

New feature/What they want

or prefer

Why they want it

Residents,

Attending

Be able to select milestone events

from patient timeline to see on

home page

To be able to see most important

history initially and view more if

needed later

Resident,

Attending,

OB/GYN

Have separate tab or section to

enter patient note in which whole

screen is available for free text

Important for nearly all roles to have

detailed patient notes readily

available

Postpartum

nurse

A “read” stamp of sorts to see if

messages sent are seen by the

reviewer

Know when a doctor reads a message

sent to them

Postpartum

nurses

End of shift care plan note sections To easily view nursing care and post-

delivery care plans

Postpartum

nurse

Include labs pending and

discharge events (discharges

should be flagged and approved on

the app)

To see labs that have been done to

better determine future labs.

Discharges should be approved

before patient leaves hospital so those

involved with patient are aware

Attending Alert to all attendings in

emergency cases

Cases in which one of more attending

may need to be present or the

assigned attending is in the OR and

needs coverage

Attending Add history of C sections, size of

largest vaginal baby, G+P,

gestational age

Important to have relevant patient

history readily available to know how

to better treat the patient in a more

efficient manner

Nurse

Practitioner

Add blood type, ruptured

membrane, patient’s presentation,

last time eating/drinking, GTPAL,

GBS (+/-), any penicillin

sensitivity

Information for nurse practitioners to

better treat the patient in a more

efficient manner

29

Nurse

Practitioner

Input for different types of breech

events

-Complete, Incomplete, Frank,

Footling

To be aware of orientation of the

baby and how to proceed accordingly

Nurse

Practitioner,

OB/GYN

Options list for high risk patients

(why they are high risk). Add

drop-down with; Diabetes,

Bleeding disorder, Previous C

section, Fetal Anomaly

In order to not only help distinguish

between high and low risk patients

but between high risk and other high

risk for the sake of assigning the

patient and how to properly treat

them

OB/GYN Add Drop-down (field would like

be Chief Complaint). Options

would be induction of labor (why-

term, failure to grow), SROM,

Laboring, Premature Labor,

Abrupting

Be able to choose from a list of

options why the patient is there and

what is going on with them to give

correct treatment

OB/GYN Add fetal heart rate field: choose

from category 1, 2, or 3 (alerts for

category 2 and 3 situations)

In order to know how the baby is

doing and whether the baby should be

watched more closely, or intervention

needed to improve heart rate

OB/GYN,

Attending

Search bar to find specific people

from labor and delivery and joint

departments and be able to pull up

contact info

If you would like to make contact

with a certain person to ask questions

or follow-up on a patient

Resident Notification for new event/update

to an event (pop-up or number

system similar to new message or

email on phone, possibly bold new

updates)

Keep residents aware of new patient

events and updates either during their

shift or updates that happened when

they were not working

Nurse Have patient vitals incorporated

into the app

To help with those that are not nurses

to be aware of patient vitals and

keeping track of any issues with vitals

30

Nurse Have assignments sent from

charge through the app so that

assignments do not have to be

written on paper and handed out

Improve efficiency with nursing

assignments and cut down time for

nurses meeting in nursing ed room

with the charge nurse

Family

medicine

Add gender/circumcision (baby),

pain management of mother and

list of labs

These are pieces of information that

are commonly asked multiple times

and it would be helpful to have it

available on the app

Resident Delete event button In the case that an event is no longer

pertinent or has been updated many

times, or in cases of being entered

incorrectly

31

Table 5 Design for Workflow Integration Recommendations (Lowe et al., 2019)

User

Type/Role

New feature/What they want or prefer Why they want it

Resident,

Attending,

Nurse,

OB/GYN

Integration of the app with EPIC electronic

medical records used at the hospital. Have

information entered into the app be able to be

shared with EPIC and allow the app to pull

pertinent information from EPIC when

possible.

For efficiency and ease of

use. Be able to share and

update information as

efficiently as possible.

32

Table 6 Dr. Amir Mehdizadeh Terminology and Field Recommendations

One liner

First Name Free text

Last Name Free text

OB/GYN

List of known attendings /

clinics, free text for transfer

from outside provider /

hospital

Age Numbers 10 - 60

Gravidity Numbers 1 - 99

Number of times patient has been

pregnant

Parity Term Number 0-99 Number of pregnancies >37 wks

Preter

m Number 0-99 Number of pregnancies 20 - 37 wks

Abortio

ns Number 0-99 Number of pregnancies 0-20wks

 Living Number 0-99 Number of currently living children

GBS Negative Group B Strep presence / sensitivity

 Positive

Positive clinda / erytho

sensitive

Positive clinda / erytho

resistant

Presentation -

A Vertex Presentation of Baby A

 Breech

 Transverse

Preseentation

- B N/a

In case there are twins, presentation of

baby B

 Vertex

 Breech

 Transverse

Past Medical

history

Ob History

If gravidity = N, then the use should do

the OB history for N-1 pregnancies

Outcome SVD

 LTCS

33

 classical CS

 SAB

 SAB w/ D&C

 TAB

 TAB w/ D&C

 Ectopic

 VAVD for NRFHT

 VAVD for mat. Exhaustion

 FAVD for NRFHT

 FAVD for mat. Exhaustion

Gestational

Age Number 0 - 50

Weight lb number 0-20

 oz number 0-15

Complication

s Denies

 gDM Can choose multiple

 PPH

 gHTN

 preE

 preE w/ SF

GYN Hx

STI Denies Can choose multiple

 Gonorrhea

 Chlamydia

 Herpes

 Syphilis

 HIV

 Trichomoniasis

Cervical

procedures Denies

 S/p LEEP

 S/p CKC

 S/p cryotherapy

PMH Denies can choose multiple

 cHTN

 Asthma

 Hypothyroidism

 DM1

34

 DM2

 Anxiety

 Depression

 Bipolar

 GERD

 HLD

 free text

PSH Denies Can choose multiple

 D&C

 appy (lsc) Pull in Csections and number from OB hx

 appy (open)

 chole (lsc)

 chole (open)

 myomectomy (lsc)

 myomectomy (open)

myomectomy

(hysteroscopic)

 WT

 T&A

 salpingectomy (lsc)

 salpingectomy (open)

 cystectomy (lsc)

 cystectomy (open)

 free text

Meds Denies Can choose multiple

 PNV

*need way to include dose / frequency

?free text

 iron

 zofran

 tums

 ranitidine

 sertraline

 levothyroxine

 labetalol

 nifedipine

 methyldopa

 humalog

 novalog

 regular insulin

35

 NPH

 Lantus

 Levemir

 free text

Allergies NKDA

free text should have option for med /

reaction

 free text

Social Hx

Tobacco Never smoker

 Former Smoker

 Current smoker

 free text

Alcohol Denies

 Social alcohol

 free text

Drug marijuana can choose multiple

 cocaine

 heroin

 prescription opioids

 benzodiazepines

 barbituates

 meth

 ecstasy

 LSD

FOB Name *free text*

Relatio

nship Husband

 Fiance

 Boy friend

 Sperm Donor

 No relationship

Other *free text*

Problems None can choose multiple

 pior c/s

 cHTN

 gHTN

 preE w/o SF

 preE w/ SF

36

 gDM

 DM1

 DM2

 AMA

 fetal anomaly

 IUGR

 macrosomia

 mo-mo twins

 mo-di twins

 di-di twins

 multiples (other)

 IVF

 free text

Exam

Dilatio

n 0,0.5,1,1.5 … 10 0-10 in 0.5 intervals

Efacem

ent 0,5,10,15 … 100 0-100 in 5 intervals

 Station

"-3, -2.5, -2, -1.5, -1, -0.5, 0,

+0.5" "-3 to +3 in 0.5 intervals"

Specul

um pool positive Can choose multiple

 pool negative

 fern positive

 fern negative

 visually closed

 visually dilated

 no blood

 scan old blood

 active bleeding

 herpes negative

 herpes positive

Induction Misoprostol PV Can choose multiple

 Misoprostol buccal

 Cervidil

 Cervidil out

 Pitocin

 Pitocin reduced

 Pitocin off

37

 Cooks foley

 Cervical foley

 Foley out

Membranes SROM clear Can not choose multiple

 SROM meconium

 AROM clear

 AROM meconium

Maternal

ressucitation IVF Can choose multiple

 O2

 IUPC

 Amnioinfusion

 Terbutaline

Pain Nubain Can choose multiple

 Morphine

 Fentanyl

 Epidural

 Tylenol

 Fioricet

 PCA

Antibiotics Penicilin Can choose multiple

 Ampicilin

 Cefazolin

 Clindamycin

 Vancomycin

 Gentamicin

 Unasyn

Post Partum

Hemorrhage Misoprostol Can choose multiple

 Methergine

 Pitocin

 Hemabate

 Transexmic acid

 Barki balloon

Hypertnesio

n Labetalol Can choose multiple

 Nifedpine

 Hydralazine

 Magnesium

38

 Valium

 Calcium gluconate

Prematurity Betamethasone Can choose multiple

 Nifedpine

 Indomethacin

 Magnesium

Diabetes Novalog

 Humalong

 NPH

 Insulin drip

Vitals free text

Labs free text

