WORCESTER POLYTECHNIC INSTITUTE
Department of Electrical and Computer Engineering

MAJOR QUALIFYING PROJECT

Final Report
SMART HOME SYSTEM

Submitted to the Faculty of
Worcester Polytechnic Institute
In partial fulfillment of the requirements for the
Degree of Bachelor of Science,

Electrical and Computer Engineering

By

Anh Tran

Duc Tran

Thinh Ly

Sequence Number: REL AA4H
Date: 03/02/2017

Professor Reinhold Ludwig, Project Advisor

Abstract

This project involves the design and implementation of a Smart Home system using loT
solutions. Three types of sensors, namely an occupancy sensor, a light sensor and a temperature
sensor, along with a security camera are used and incorporated with a microcontroller in a
master/slave architecture via Zigbee, a short-range network communication. The data collected
from these sensors is transmitted to a cloud-based platform through Wi-Fi for analyzing and
downloading to personal smartphones via a designated user interface. The entire system can be
controlled both by users’ smartphones and by personal computers.

Acknowledgements

We would like to dedicate special thanks to Professor Reinhold Ludwig for the meticulous
guidance and innovative instructions throughout the project. We also want to thank Professor
James P.O’Rourke and electronic technicians in ECE Shop, Mr. William Appleyard for helping
us in the equipment ordering process and for advising the packaging and modeling. We also
appreciated the assistance of the ZigBee corporation team in setting up the configuration for the
module. Finally, we would like to devote notable thanks to the Department of Electrical and
Computer Engineering at WPI for having given us the opportunity to grow and challenging us to
solve real-world problems.

Contents

AADSTTACT ...ttt h b et a e h e bbbttt neene e i
ACKNOWIEAGEMENTScuiiiieieie ettt st e et st e et e tesbe e b e steesaesbesseess e seessesseeseensessessaensesseanes ii
Lo INEFOTUCTION ...etieteeete bbbttt bbbttt b ettt b e b e enes 8
L1, IMIOTIVALION ...ttt st b ettt s bt b e s bt b et et e e e eseesenbennenneneens 8
1.2 APPHICALIONS ...ttt sttt ettt b e b bttt b e b b nnen 9
1.3. Existing Solutions and Market RESEAICHcuviriririnierieieieeeeesseeee e 9
1.3.1. INAIVIAUAT MOTUIES ...ttt 9
1.3.2. Central HUD SYSIEBM ..oueiiiceece sttt ettt st a e s teereenbesre e s e reennas 11
1.3.3. INAUSEFIAT PIOTUCTS ...ttt 13

1.4, Problem STAIEMENT.....c.coiiiieiee ettt be e be e 14

N O o] 1=ex 1)Y= USRI 17
2.1, CUStOMEr REGUITEIMENTS......ccviitieieieiteeteeteeteste et et et e e e stesreebesteessesbesasesbesreessesteessensessnensesseennas 17
2.2, ProduCt REQUITEMENTScueetictieeeiteeteete et et e e e et e st e e e e stesteebeste e s e sbesasebesreessesteessensesssensesseensas 17
2.3, PIOJECT GOAISceiueeuieiieiieieet ettt ettt b et 18

3. Design Approaches and SOIULIONSc.cecereriririerierieieteerte sttt see s 19
3.1. Short-range Communication Protocols for Home Automationccccceeveveveeveenecceesieseeenen, 19
3.1.1. BIUETOOTN LOW ENEIQY ..cuviveeeiecieeeeeteettete ettt sttt et e s be et esteevaebesraesaesbeenaesteennens 19
3.1.2. ZigBee COMMUNICALIONccviiiieiecieeteeteete ettt ste ettt te ettt e s teeaesbe e s e stesbeeaesteereenbesanenes 21
3.1.3. Z-Wave COMMUNICALION........ecurriiriiieriieieectrette ettt 21
3.1.4. IPv6 over Low-power Wireless Personal Area Networks (6LOWPAN)cccceevevevirrnenne 22
315, Wi-Fi COMMUNICALION ..ottt 22
3.1.6. Summary Short-range Communication Protocol..........c.ccceevveiinieiinieceieceece e 22

3.2, MiCrocoNntroller MOTUIESc.coveuirieiirieiieicteece et 23
3.2.1. Arduino Mega 2560 Microcontroller BOardcoceeceveeeenineerieseeeese e 23
3.2.2. TIMSP432 Microcontroller BOArd...........cceoveeeererinienienieieieeeiese et 25
3.2.3. Raspberry Pi BOard COMPULETcc.ocieiieiieiecieeeete ettt e ste e re s e easesbesanese s e ensesreesnens 26
3.2.4. Summary Microcontroller MOodUuleoooirieeee e e 27

3.3, SENSOT MOUUIES.......ccoiiiiiiete ettt 29
3.3.1. Occupancy SENSOr MOUUIEccveviieeieieeeeereeete ettt s re s 29
3.3.2. Temperature SENSOTr MOGUIEooiiiieeeeeeee ettt et 31

34, CaMEra MOQUIE.......c.eiiie ettt 33
341 ArduCam Mini MOTUIE ZMPooiiiiieieieeeee et 34
3.4.2. Raspberry Pi NOIR Camera BOArd V2..........cccovveeeviireeieeniieeesieseeeieste st sveseeeseseeseseesnnens 35

3.4.3. PIXY CMU CaMDS SENSOISouveeuieieeeieieeieeteteeeeeneesteeeestesseesestesseessesseensessesnsessesseensessesneens 36

3.4.4. Summary Camera APPrOACHcoverterieieieiee ettt 38
DeSign IMPIEMENTALIONccviieieieieeeee ettt sbe b e 39
4.1, SENSOT FUNCLIONS ..ottt sttt b ettt s et sa et b et e 39
4.1.1. OCCUPANCY SEINSONveiiurieetieieeieesteesteesrtessteeteesseesseesseessseasseesseesseesseessesssssssesssesssesssessnsesns 39
4.1.2. TEMPEIALUIE SENSOK ...ttt ettt ettt st s b e sb e sae e s e sreeasesresmeeneseeenes 40
413, CaMEra MOUUIE......ccueiiiieieieeee ettt 41
4.2. Local sensor-communication ZigBee ProtoCol...........ccceirererierieiininireseneieeeeeeese e 43
4.2.1. Zigbee Xbee Parameter Configuration...........ccceevevieieecienieeeeicseeeesie e 43
4.2.2. Zigbee Xbee — Arduin0 CONNECLIONccueeveriieieieceeie ettt st a e e 47
4.2.3. Zigbee Xbee Implementation With Arduingccecevererenieinineneseseeeee e 48
4.3. Local-server communICAtION WIFTccoiireriiiieiiiienesesese ettt 50
4.3.1. ESP8266 WiFi MOAUIE WIKING: ...cueeieieeieeiecie ettt sttt st aesre s 50
4.3.2. ESP8266 WiFi Module ConfigUration:.............cceiieieviiiiecese ettt 53
4.3.3. ESP8266 WiFi Module Implementation:...........c.cceeeevieieeciececeesteseeesre et 54
A4, USEE INTEITACE.....cuiiteetieteetetet ettt ettt b bt b et et et e s ebesbennentens 56
A5, INEEOIALION ...eeuiiiettcteet ettt ettt h bbbt st b et ettt bbbt b et et ne b b nrenaens 58
45.1. ROULErS IMPIEMENTALIONeciicieceeicee ettt sttt ere b sreeae s re b e s reereens 58
4.5.2. Coordinator IMpIEMENTALIONcoiiuieiieietecieeee ettt e s 59
45.3. Web Server IMpIEMENTAtioncccceeeeiieieierieieeseee ettt 64
RESUITS ...ttt 65
oIS I ¥ (g Tod T = LY =11 1T TS 65
5.2, CASE SUAIES....eveueteuirteiet ettt ettt b et bt b e bttt h bbbttt 69
5.2.1. Severe temperature Detection and NOITICAtioNcccccevveieiicecceccee e 69
5.2.2. Breakdown of WiFi CONNECTIONc.couiviviiiiiiiiciricrieceeee e 69
DEIIVEIADIES ... 71
LG TS I Voo 0] Lot o= Tod = Vo 1o o RSP 71
6.2. HOUSE MOUEI PIOTOLYPE ...ttt sttt ettt st e st e eneebesneeeesneeneas 73
Discussions and FULUIE WOTKS..........curiiirireecee ettt 76
7.1 INHEIAL COSE. ittt 76
7.2, SAFELY ANGIYSIS ...eviiieeeeiictieteeeeete sttt ettt te et e st e e s e beesa et e s re e besteens e teereentenreenaas 76
7.3, PriVaCy @GN0 SECUILY ...cocuieuieiiiieiere ettt ettt ettt ettt e st esbe et e tesaeetesteeneensesneeneesneeneas 77
A To% 1 - o1 | Y2 78
7.4.1. Transmission and SErver rODUSINESS.......cccoviiriririereeeeeee e 78

7.4.2. Variety of Sensing MECHANISIMS.coveriiieciereeeere ettt enees 78

7.4.3. Better User Interface and Easier Integration SChemecccoceveverenenienenciececneneeee 79

8. SUMIMAEIY ...ttt ettt st b e e bt et s bt et e b s bt e et s bt et e s b e ebe e b e sb e e st e bt smn e nesreeaneneeeneens 80
RETEIBICES. ...ttt bbbt b et bt b e bbbt b sttt b et b e 81
N o] 0 1<T o [To0 TSRS 84
Appendix 1: Server/Website USEr INTEITACEcc.eoveieieirieerererieeeee s 85
APPENTIX 2: AFQUINO COUB ..ottt sttt besae b neens 106

LIST OF FIGURES

Figure 1: LIFX (Life-X) SMart BUIDS........c.ccvciiiieiceccecteste ettt st st srn s 11
Figure 2: NEST Thermostat. NEST Learning Thermostat is an electronic, programmable and self-learning
Wi-Fi-enabled thermostat based on machine learning algorithm. It is designed by NEST LABS to help

users optimize cooling and heating of their homes and businesses. [4]......cccvvveeeriieecenecece e 11
Figure 3: Insteon Dual Mesh Network Diagram. [5]ccceererererienieiieieeeenereseseesieeeeee e 12
Figure 4: Insteon Pool Control SYSEM. [B]ccvevvieieiiiiieierie sttt st e sreens 13

Figure 5: Proposed System Block Diagram. In Sensor Area Network, Master and Slave modules
communicate by the ZigBee protocol. The Master module sends data and receives command from the
REMOTE CONIIOL. ...ttt b e sttt b st s b e s b et et et et et esesbessesbentens 15
Figure 6: Individual Module Proposed Design. Each sensor/appliance module consists of ZigBee module,
Wi-Fi module, Sensors and different appliances modules. They can interchange the roles of Master and
Slave, which makes the system more durable............ccooioeeiiiieeceeeeee e 16
Figure 7: Bluetooth. Bluetooth Smart Ready device is the center of the system, which connecting both
normal Bluetooth devices and Bluetooth Smart devices (sensors, using small bits of data, using little

01T (01 TR OO OO PSSO PSP PE PP STRRRUSOURPRPTON 19
Figure 8: MeSh NEtWOIK. [12] ..c.eoeeieieieieeieseseeee ettt sttt ettt be e nes 21
Figure 9: Arduino Mega and Genuino Mega board. [16]cccecerieieiiieeiececeeeeee e 25
Figure 10: TI MSP432 LauNCRPAG. [L7]...ccueieriirieieieieieeieet sttt 26
Figure 11: Raspberry Pi MOGE] B. [18]....cc.ccveieieieeicieeeestesteee ettt sttt e sanenes 27
FIgure 12: PIR SENSOF. [19] .. ueciiitieieeiecteeteste ettt ettt et ettt et st eaa et e e te et e s beesae st e enaentesteensensesrnenes 29
Figure 13: HC-SR04 module for UltraSonic Motion Sensor. [20]cccocveerererenenenenieieeeeeesesee e 30
Figure 14: Mercury thermometer for the measurement of room temperature. [33].....cccevveveveveeceenieenene 32
Figure 15: TRermMISTOr. [34] ..ottt ettt b sttt ettt aeebe e nes 32
Figure 16: TMP36 from Analog DeViCeS. [35].....ccuerueriririririirieriesieieiee ettt 33
Figure 17: ArduCam Mini Module 2MP. [21]...ccuooieiieeeeieceeece ettt st st 35
Figure 18: Raspberry Pi NoOIR Camera Board V2. [22]......cccvveeeerierieieseeieseeeee sttt 36
Figure 19: Pixy CMU Cam5 SENSOIS. [23] ..veeveitieieiiiiteeieitesreeciesteeteestesteeaesteeeesesreeaesresreensesteessensesseenns 37
Figure 20: Ultrasonic Wave Terminology. [38].....cc.cciiieieieieeiecie ettt ettt st st be s 40
Figure 21: Implementation of Ultrasonic Sensor HC-SROA.cocovevieievierieeeeseee e 40
Figure 22: TMP 36 — IC Temperature sensor from Analog Devices to control indoor temperature and

detect critical overheating Situation. [40]........eccveeiiieiieiiceee ettt st r et sreeae s reeraens 41
Figure 23: Implementation of temperature SeNSOr TMP3B.ccooveieiiiceciececeee e 41

Figure 24: ArduCam Mini 2MP- Camera Module for Capturing Image Compatible with Arduino
Development Board. In this image, there are only 6 pins visible, since the 5V and GND pins are female

pin headers, so they are not showed in this image. [36]ccvvvveeerierierireeere e s 42
Figure 25: ArduCam Mini 2MP Connection with Arduino Module. The ArduCam Mini 2MP module is
also provided with supporting library for Arduino Development Board. [36]cccceveveviereienienencrienen 43
Figure 26: Zighee Xhee MOUUIE. [24] ..ottt st 44
Figure 27: Sparkfun Xbee Explorer USB, which connects the Zighee Xbee to a computer with the XCTU
K01 1A L= TR 125) [SRS 44
Figure 28: Discover Xbee Module Setting in XCTU user interface.ccocevveeerereeceseseese e 45
Figure 29: Changing Xbee configuration parameters in XCTU user interface...........ccccovvveeeveneecceneeene. 46
Figure 30: Changing Xbee destination parameters in XCTU.c.cccvecvevireeviinieieesreeese e 47
Figure 31: Addressing Serial Interfacing Parameters in XCTU.cccocivirvierieeereseeiese e 47

Figure 32: Sparkfun Xbee Explorer Regulated, which has a 3.3V regulator to power Xbee from Arduino

VA o TN ST o] o] Y2 1 TR PTRSR 48
Figure 33: Connect Zighee Xbee to EXPIOrer DOAI.ccoeriverienienieieieeeenereseseeee s 48
Figure 34: BoOt LOAUET IMIENU. [A1] ..cviiveeiecieceeteee ettt ettt te e eve et s e esaestesaaesaesbeesaesresreensesteessansesrnenes 49
Figure 35: Example of Xbee Transmit Request Frame format. The example shows how to send a
transmission to device with address 0x0013A200 400114011, and message “TxDatalB”. [42]............... 50
Figure 36: ESP8266 WIiFi MOTUIE. [37]...ccviieirieieieieieeeeeitste ettt sne s e nas 51
Figure 37: ESP8266 Pin Diagram. [43]ccciveieriieietisieeeestesreerestestse s teeae e sreessesreesaessesreensesteessensesseenes 51
Figure 38: Logic Level Converter from SparkFun, The HV (High Voltage Pin) is connected to 5V source.
The LV (High Voltage Pin) is connected t0 3.3V SOUICE. [44]....ccovovrieiieieieieeiesteceee et 52
Figure 39: The connection diagram between the ESP8266 module, the logic level converter, and the
Arduino Mega 2560 MICroCONIIOIEr [45]......coviiiiiieieee et 53
Figure 40: AT Command Lists. The AT Command is divided into Layer: Basic set up ESP8266, WiFi
Layer to set up Internet Connection, and TCPIP Layer to send and receive HTTP messages [46]............ 54
Figure 41: Designed Website for User INTErfacCe..........cccveveviiieceiiciececeeeseee et 57
Figure 42: checkCommand()reads the 4th byte of the command, and turn the LED on/off....................... 58
Figure 43: Code snippet for Router 1 request response. It starts by writing “Sending” to Computer
console, then send 5-byte status message to Arduino TX pin (DIN pin on Xbee for transmission)........... 59
Figure 44: Router 2 command execution COde SNIPPEL.cceieeeeriieieeceetere et 59
Figure 45: ZigBee message format and the message that are used. The 14th to 17th bytes are the address
of the destination router, and the 5 bytes just before the last byte is the data to be sent...........cccceeevrvenene 60

Figure 46: HTTP GET message format for sending JSON data “uri” is the name of the php file that
handle receiving data on the web server. “json” is the data to be sent in json format, and “server” is the
URL Of the WED SEIVETttt 61
Figure 47: JSON data format. Each JSON object has multiple keys and values “sender” is the router that
sent the JSON data. The data “time” is a counter value that we use to keep track of sending time; and data

“value” is the temperature value from the router to the heater module.ccoecvevieieiiniecerieseece e 61
Figure 48: HTTP POST message for sending an image file date. This HTTP message indicates the

sending of binary data as a file CAM.TXT to the “userfile” folder in the web server.cccocvvvrvrenene. 62
Figure 49: Camera setup code. Due to hardware limitation, we only used image size of 640x480 63
Figure 50: readSOoNiC() TUNCLIONveriicieieee ettt ettt st e st e sneestesreensensessnenes 64

Figure 51: Data Flow in our designed system. After the data is sent to the server by the coordinator (the
master Arduino) it is processed and analyzed in the backend before being presented in the front-end
WeDSite Of the USEr INTEITACE.cccoueiiiiiiieee e 65
Figure 52: Response message from the Wifi module indicating successful delivery of JSON data. On the
left is the response message for successfully sending data to the web server. The first line indicates
establishing the TCP connection. The second line indicates the length of the HTTP message. The third
line indicates that the message has been sent. Next, the HTTP response indicates successful reception of
the message. The last line indicates the closing of the TCP connection. On the right is the sample message
for receiving commands from the web server. The first line and second line indicate reception of a
command from the webserver to turn on/off the LED in router 1. Next is the status of forwarding the
command to router 1. The fourth line indicates the time in milliseconds between sending the command
and receiving the acknowledgement message from router 1, and the last line is the acknowledgement
MESSAgE IN NEXAAECTMAL.o..eeiieieee et et b et e st e eae et e s beeneesesneenes 66
Figure 53: Example of sending request message and receiving requested information from router 1. The
first two lines, as mentioned in figure 53, indicated the time in milliseconds between sending the request
message and receiving the acknowledgement message. The third, fourth and fifth line indicates receiving

5

of requested information from router 1, with the fifth line is the message in hexadecimals. In the message,
“4152EC6B” is the MAC address for the router 1 ZigBee module, and “3130303030” is the requested
information in hexadecimals. All time measurements are in MilliSECONS.cocevirenerienieieeiinerencnene 67
Figure 54: An example of a requested message received from the coordinators at router 1. The message is
in hexadecimals. The first byte of the message (31, which is character ‘1’ in ASCII) indicates the
destination routers. The fourth byte (30, which is character ‘0’ in ASCII) is used to command the LED
turning on or off. However, the fourth byte will only be considered if the fifth byte value is 30, which
indicates command message. For this example, the fifth byte is 31, which indicates a request message. .67
Figure 55: An example of a command message received from the coordinators at router 2. The message is
in hexadecimals. The first byte of the message (32, which is character ‘2’ in ASCII) indicates the
destination routers. The fourth byte (12, which is 18 in decimal) is used to turn the fan on to decrease the
temperature to 18°C. The fourth byte will only be considered if the fifth byte value is 30, which indicates

command message. For this example, the fifth byte iS 30. ...cccveviiiirciiiceeeee e 68
Figure 56: Example of severe temperature warning Sent from SErVer.cccccveveveieeceveeceece e 69
Figure 57: Code snippet of WiFi verification with AT COmmand.c.cceceeirerenineneneieeeeeeseeseee 70

Figure 58: Example of using AT command to set Xbee configuration parameters. AT command starts
with “+++” to turn Xbee into configuration mode. It is followed by destination address. In this case,
Router 1 destination address is set to “4152ECD7”, which is the MAC address of Router 2 instead of the
Coordinator’s address. We also set the Network ID (discussed in section 4.2) to 123 (original ID) since
we notice the ID parameter got scrambled after we set the new destination address. After that, “ATWR” is
sent to save all configuration parameters to Xbee. It ends with “ATCN” to get out of configuration mode.

.. 70
Figure 59: Packaging of the camera and ultrasonic SENSOr MOAUIES...........ccveerereririerienieieieeeeeee e 72
Figure 60: Packaging of the PIR OCCUPANCY SENSON.........ccuevuiiueeierieeieetesteeeesteeeeresteeaesresreebe e esenseseeenns 73
Figure 61: Front-view Of the hOUSE PrOtOLYPE.ccveveiiiriieierierere e 74
Figure 62: Side-view Of the NOUSE PrOtOLYPE.cveveuieieiieieeiertert ettt 74
Figure 63: Another side-view of the NOUSE PrOTOLYPE.ecvviivieieciecteeeee et 75
Figure 64: Down-view Of the NOUSE PrOTOLYPE.iceeieieieieieceeer ettt s 75
Figure 65: Email warning of indoor critical temperature detected.coveveeieieceieece e 77

LIST OF TABLES

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:

Internet of Things Units Installed Base on Category (Millions of Units)ccccvvveeveviiveviennnnen. 8
Designed Applications for Home AUtOMAatioNcoevirererierienieieieeee e 9
Comparison between different MiCroCONtrollers.ooevevereieinnnereeeeeeeee e 28
Comparisons of different Motion Detection TeChnologies..........cccevvvvecerieeececeeese e, 31
Comparison of different camera MOTUIES.c.covr i e 38
Dimension of designed house model PrototyPe.......ceceevereeeeriseeere e 73
(070 00T o0 0T 0] 30 T TR 76

1. Introduction

1.1. Motivation

In recent years, the phrase “Smart Home” has been one of the most frequently searched
keywords. Since 2013, with the fast-paced development of multiple technologies, ranging from
wireless communication to the Internet and from embedded systems to micro-electromechanical
systems (MEMS), the vision of the Internet of Things (10T) has evolved substantially, leading to
the networks of physical devices, vehicles, buildings with electronics, software, sensors and
actuators. As the availability of Internet is widely spread, more devices are being implemented
with Wi-Fi capabilities, technology costs are going down and smartphone penetration is
escalating, these has created an advanced and leading edge environment for 10T. This concept
involves mapping of the physical world to a virtual world, interconnecting devices with sensing
capabilities, and passing their collective information to the cloud. In other words, the technology
enables devices to collect and exchange data, providing real-time notifications and updates for
different application purposes. Along with the indefatigable development, the technology is
widely used in a plethora of areas, including but not limited to smart grid, intelligent
transportation, smart city and home automation, each of which is not only uniquely identifiable
through its embedded computing system but also able to interoperate within the existing Internet
infrastructure. By estimations of analyst firm Gartner, Inc., IoT will consist of 6.4 billion things
in 2016, up 30 percent from 2015 and will reach more than 20 billion objects by 20204, Table 1
represents statistics for 10T units installed based on categories.

Table 1: Internet of Things Units Installed Base on Category (Millions of Units) [1]

Category 2014 2015 2016 2020
Consumer 2,277 3,023 4,024 13,509
Business: Cross-Industry 632 815 1,092 4,408
Business: Vertical-Specific 898 1,065 1,276 2,880
Total (Millions of Units) 3,807 4,902 6,392 20,797

Due to the increased need for low-power consumption, green energy and more secure
houses, there have been several improvements that can make a house smarter and more efficient.
A smart home, in fact, is where household devices and home appliances could be monitored and
controlled remotely. When these household devices connect with the Internet using the proper
network architecture and standard communication protocols, the entire system is regarded as 10T
based Smart Home. For instance, Smart Locks helps you lock or unlock your door just by a
simple tap of a button on an application in your smartphone utilizing the built-in GPS sensing in
this device. Smart lights can save you a significant amount of money and secure your home by
automatically reacting to your daily routines and preferences. You can also keep track of your
home energy bill by automatically turning down your thermostat of the A/C unit through a
simple app from your phone. A moisture sensor can effectively detect a minor leak in your home
and alert you immediately. 10T has opened endless applications in transforming homes to be
smarter, safer secur and environmental-friendly. Indeed, the technology covers a wide range of

industries and uses cases that scale from a single constrained device to massive cross-platform
deployments of embedded technologies and real-time cloud systems 1. As the trend keeps rising,
a Smart Home will certainly be one of the most innovative 10T platforms.

1.2. Applications

The Smart Home System Prototype gives home-owners the following basic
functionalities as summarized in Table 2.

Table 2: Designed Applications for Home Automation

Functionalities How

Reduce the powerconsumption Set up different modes for Smart Home
SyStem: OCCUpant, no OCCUpant

Remotely control house from a website user | Commands from website will be send to
interface central hub, which talks to the appliance

modules

Alarm when worst case scenarios (fire, | When sensors from appliance modules detect
thief, etc.) occur extreme conditions, appliance modules send a
warning to the server/hub to trigger “Hazard
Mode” and give special tasks to all modules
(camera on, heat turns off, etc.)

1.3. Existing Solutions and Market Research
To identify our project’s scopes and targets, we conducted a thorough research on the
smart home system market. We explored some of the most popular emerging products,
investigating their technologies and standards. Based on our research, we divide the existing
smart home products into two different types:

1.3.1. Individual Modules

“Individual Modules” is what we call 10T solutions that only deal with one specific
aspect of a smart home system, for example only lighting, heating or security system. Most of
these solutions provide users with a well-designed user interface, which could be installed on the
user’s PCs or smartphones, permitting them to remotely control the systems through their
Internet-connected devices.

In terms of connection structures, these solutions rely on a Master/Slave architecture.
When a system is installed, one device is chosen to be the Master. This Master device would be
in charge of receiving commands from and reporting data to users via a home internet router.
The other devices (Slave devices) in the system will communicate to the Master device using
different types of low-power, short-range wireless network protocols, such as Low Power IPv6
802.15.4 Peer-To-Peer (P2P) network, ZigBee Mesh Network, Bluetooth Low Energy (BLE),
etc. In order to do that, each device must be embedded with at least two different wireless
network protocols, one is Wi-Fi and the other can be any type of low-power, short-range wireless
network protocols.

There are several existing solutions that could be classified as an “Individual Module”.
For lighting systems, increasingly popular solution are the LIFX Smart Bulbs (in Figure 1). For
heating, there is Nest Thermostat (in Figure 2). For security system, a good example is the Nest
Protect.

We will discuss in depth the LIFX Smart Bulbs system. LIFX (Life-X) is a brand of
multi-color, Wi-Fi-enabled LED light bulbs that can be controlled by Wi-Fi-connected devices
such as smartphones or PCs. As mentioned above, LIFX Smart Bulb uses a Master/Slave
network architecture, with a Wi-Fi microcontroller embedded on each device that allows
communication between the Master bulb with router via 802.11a/802.11g/802.11n (Wi-Fi) and
between the Master bulb and the Slave bulbs via Low Power IPv6 802.15.4 Peer-To-Peer
Network. This type of connection does not require a central communication port, and therefore
offers significant amount of flexibility. If the users fail to reach the Master bulb, a Slave bulb
would be chosen to be the new Master in order to maintain the connectivity of the system.

For the LIFX Smart Bulb, the configuration is very simple as users only need to power up
their LIFX bulb, and download the user interface application to their smartphones or PCs. When
powering up, the bulb will automatically create its own local Wi-Fi access point, to which the
user interface application will automatically look for and allow user to connect the bulb to their
Internet-connected devices. The first bulb to be connected will be chosen to be the Master, and
the other bulbs are Slave bulbs.

Aside from remote controlling of the lighting system, LIFX smart bulbs also allow users
for high-level tasks such as scheduling, and cooperating operations with solutions from other
vendors. For example, users could schedule the light to automatically turn on at 7PM and turn off
at 12AM everyday by using the user interface application. LIFX Smart Bulbs could also be
integrated with NEST Protect Smoke Detector, such as when NEST Protect detect smoke or CO,
the LIFX Smart Bulbs should be flashing red to indicate dangers to users with hearing impair.

Although offering users with many different features and abilities, these “Individual
Module” systems have their limitation. The first limitation is that, since each single solution only
deals with one aspect of a house, such as lighting, heating, or security, users would need to
incorporate many different solutions from different vendors to make their entire home “smart”.
This would require users to use many different user interfaces for different solutions, make
management of their smart home relatively hard and inconvenience. Secondly, power
consumption of these systems may become an issue, since they usually incorporate
microcontrollers and sensor technologies, which may use a significant amount of power. For
example, the LIFX Smart Bulbs in Figure 1 requires 18 Watts of power consumption to produce
1000 lumens (a measure of the total quantity of visible light emitted by a source), which can be
produced using only 9-13 Watts by a normal LED light bulb.

10

https://en.wikipedia.org/wiki/802.11a
https://en.wikipedia.org/wiki/802.11g
https://en.wikipedia.org/wiki/802.11n

Figure 1: LIFX (Life-X) Smart Bulbs

Embedded inside a LIFX Smart Bulbs is a Wi-Fi Microcontroller that uses Master/Slave Concept. [3]

COOLING

75

Figure 2: NEST Thermostat. NEST Learning Thermostat is an electronic, programmable and self-
learning Wi-Fi-enabled thermostat based on machine learning algorithm. It is designed by NEST LABS to
help users optimize cooling and heating of their homes and businesses. [4]

1.3.2. Central Hub System

Along with “Individual Module” solutions, several companies in the Smart Home market
also provide complete solutions, which allow users to control their entire Smart Home using one
single solution from one single vendor. A typical example of this system is Insteon Home
Automation System.

11

An Insteon Home Automation System consists of different Insteon Smart Devices (light
bulbs, wall switches, thermostat, etc.) and an Insteon Central Hub. The connection architecture is
peer-to-peer network (each node in the network will connect to several nearby neighbor nodes
and connect to the central node), with the Insteon Central Hub as the central node. The network
protocol is an integrated dual-mesh network that combines wireless radio frequency (RF)
network protocol (such as ZigBee) and building’s existing electrical wiring. An example for the
dual-mesh network of the Insteon Home Automation System is shown in Figure 3.

I' INSTEON RF Only Device
/’)
/ *
o *
USB/RS232/Ethernet o A
7 .
¢ e "
. . RF INSTEON RF INSTEON z
-------- - Fl-=t= = nane [
INSTEON HUB INSTEON S| INSTEON
(Dual Bland Device) ' Dual Band Device » Dual Band
i I Device
[; I
] l)
o ! 5 E o o e s i
: Electrical Wiring-Phase-1 1 3 Electrical Wiring- 0
5 i Phase-2 1
Clei 1
INSTEON POWERLINE INSTEON POWERLINE
ONLY DEVICES INSTEON Network ONLY DEVICES

Figure 3: Insteon Dual Mesh Network Diagram. [5]

In this type of network as shown in Figure 3, we can see three different types of
networks. The Insteon RF only device will communicate with its nearby neighbors that also use
RF or dual-band network. The same process is applied to Insteon Powerline Only Devices. Then
these Insteon Dual Band Devices will communicate with the Insteon Central Hub using either RF
network or powerline connection. Finally, the Insteon Central Hub will send all the data received
from other devices through USB connection or Internet to user’s smartphone or PCs. Commands
from users also go through the same path in the opposite way, from user’s devices to Central
Hub, where the commands are distributed to devices via RF communication or a powerline.

Also in Figure 4 is another example of Insteon Network for Pool Control Application.
However, here the network protocol between the Central Hub and the On/Off Switch and the two
Load Controller is a RF communication (such as ZigBee), and the network protocol between the

12

Central Hub and the Internet Router is Wi-Fi. There is also a user interface application for
smartphones or PCs that allows remote control and monitor of the entire system.

L}
On'DN Swilch Peal Light
i 1
Roubear
Load Conbroller Pool Heater
SrmariphoneTablet Control INSTEQN Hub

Load Controlles Paal Pump

-

Figure 4: Insteon Pool Control System. [6]

Although allowing more flexibility and convenience when compared with “Individual
Module” solutions, the Insteon Home Automation System, as is typical for other Home
Automation System in the market, has some drawbacks. The most obvious drawback is that if in
a worst-case scenario, the connection between the Insteon Hub and the Internet router is lost
(Hardware malfunction), and users would lose control over their entire systems. The second
drawback is that these types of systems would often require a much more complex initial setting
and configuration, in comparison with the “plug and play” capability of “Individual Modules”,
which simplifies the configuration process as much as possible for users.

1.3.3. Industrial Products
Through our market research, we identified three basic characteristics for every smart
home system:

e Low Energy Consumption in compare to Traditional Home: This is one of the top
priority standards for a smart home system and the target objective of every smart
home system on the market. By incorporating sensors technology and software
solution into home appliances, these smart home systems are able to control and
optimize their power usage in compare to traditional home, and help users to cut off

13

energy use when not necessary, such as automatically turn off a light when no people
present, which is often forgotten by users in traditional home. One case
study, conducted in May 2016 by the Fraunhofer Center for Sustainable Energy
Systems CSE, and commissioned by the US Consumer Technology Association
(CTA), estimated that by switching to smart homes, users could reduce up to 10 % of
their monthly energy consumption. "1

e Automation: Smart home systems are designed to free users from everyday tasks in
their houses that are often neglected or too time-consuming. For instance, doors and
windows could be set by users to be automatically locked after a specific time; light
and heat could be automatically turned off when no people around and turned on
when detected people. Main doors would automatically open when detecting family
members, instead of having to carry a door key every time. Such operations are every
inconvenient for users to do manually every day, but could be easily done
automatically by smart home systems.

e User Control Interface and Wireless Control: This is a key requirement for every
smart home system. Users must be able to control their entire home system remotely
using a simple, user-friendly interface on their PCs or smartphones. This interface
should present users with useful information of their home (such as power
consumption, appliances status), allow users to assign tasks to their appliances and
control them wirelessly without being home.

We also identify two inherent problems with existing smart home IOT solutions:

e Lack of Combined Operations and Combined User Interfaces: Some of most
popular smart home systems in the market currently are limited in their scopes of
operation. These systems only deal with one aspect of household appliances (such as
lighting, thermostat, or security). This problem limits the user’s ability to have a
single application to control their smart home and perform complex operations that
would require multiple appliances involved.

e Central Hub: Most of the smart home systems on the market are currently dependent
on a central communication gateway for transferring data between their appliances
cloud and the server. In these systems, the appliances cloud would communicate with
the central gateway using a low power wireless protocol (ZigBee, Bluetooth, etc.) and
the central gateway would transfer the data to a server using Wi-Fi. If for some
reason, the central gateway could not be reached (connection dropped, hardware
malfunctioned, or system hacked) the users would lose control of their entire smart
home system.

1.4. Problem Statement

The problem presented to us is to design and create a low-cost, easy-to-build and
maintain, user-friendly smart home system prototype that not only brings home-owners basic
functionalities (remotely monitor thermostat, lighting, and security camera) but also includes

14

sensor fusion and software solutions to alarm and guide users on worst case scenarios (fire,
thief, etc.)

Because of the drawbacks associated with Central Hubs and Individual Module
architectures (as discussed above), we would like to explore a “System Architecture with
Centralized but Subsidiary Controllers”. This approach would effectively eliminate the problems
of the two earlier architectures, as demonstrated in Figure 5.

HOVAC- | | 110Vac Power
User Equipments 12VDC ‘ Supply
(Phones, Laptops) Adapter \
£ N
12v
Sensors Area Network
Arduino
(Slave)
e = =
h 4 TohT LED Arduino
Sensor Driver LED (Master)
Server for remote
control and data < 7 WiFi
e \ =
Sensor
 — iFi Communication
; Arduino
>
ﬁ Serial/External (Stave)
<;::> Secondary WiFi Communication:
(Only established when master failed) m ea
<:> ZigBee Communication
(mesh network)

Figure 5: Proposed System Block Diagram. In Sensor Area Network, Master and Slave modules
communicate by the ZigBee protocol. The Master module sends data and receives command from the
Remote Control.

The proposed system consists of a Sensors Area Network and an External Server. Sensors
Area Network contains a set of short-range connected sensors and appliances. The network has a
Master Hub, which establishes communication to the external server via a Wi-Fi module and a
Home Internet Router (Gateway). The Master Hub can send information from the sensor network
to the server, or it can receive commands from the server and send them to the appliances. Users
can send commands to the server from their personal laptops or smart phones. This loT
architecture has the following strengths when compared to the two existing predecessors.

The first advantage of the proposed architecture is that the separation of sensor networks
short-range communication and the Master Hub — External Server communication improves the
allocation of Internet bandwidth because short-range communication in the Sensors Area
Network is generated from low-power wireless Machine-to-Machine (M2M) technologies such
as Bluetooth, ZigBee, Internet Protocol version 6 (IPv6) over Low-power Wireless Personal
Area Network (6LoWPAN), which does not interfere with normal household Internet
connection. As a result, home-owners can have a smart home system but do not notice any

15

different in their Internet data rate since only Master Hub — External Server connection allocates
Wi-Fi and a router. This feature resolves the problem proposed from Individual Modules
architecture.

Secondly, each sensor or appliance module is designed similarly with identical
Microcontroller, Wi-Fi and ZigBee modules, as depicted in Figure 6. As a result, they can
interchange the roles of Master and Slave, and thereby effectively lessen the responsibility of the
Master Hub. If the Master Hub fails, our algorithm will set a different module as Master Hub,
which solves the problem of Central Hub architecture in earlier chapter.

Power Module
Xbee ESP8266
Zigbee K——") —— wiFi
Microcontrollers
Note: (Arduino Mega, MSP432..) prmmmmmmmmemon :
1. The Microcontrollers is able to run ' |
different program based on which i Camera '
modules it is and master or slave. ! Modul i
2. The WiFi connection would only be | oauie
active between appliances modules ! E
and server for master node. @ """""""
3. If the current master node failed,
there would be an algorithm to :
choose another appliance module as Sensors Appliances
master node. (Light, Heat)
{Z——> Serial Communication R) ! :
{ Camera | Only for Security
5V/3.3V DC Power i Module | CameraNode
{&===) Analog And Digital Pin
Connection

Figure 6: Individual Module Proposed Design. Each sensor/appliance module consists of ZigBee module,
Wi-Fi module, Sensors and different appliances modules. They can interchange the roles of Master and
Slave, which makes the system more durable.

As a result, the proposed system removes the drawbacks of existing architectures. The
proposed architecture directly addresses lack of combined operations and user interfaces from
Individual Modules architecture because users only need one user interface (can be web-
based/smart-device-based) to fully control every appliance. The separation of Sensor Area
Network and Central Hub - Server communication protocols mitigate communication traffic and
data rate competitions between modules. On the other hand, the overwhelming responsibilities of
Central Hub are reduced with interchangeable Master/Slave modules. Central Hub might fail, but

16

the system will still operate since a different appliance module will take over the Central Hub
responsibilities.

2. Objectives

2.1. Customer Requirements
From our market research, we obtained a number of requirements that the customers
would like to see in an 10T product, as well as a few implicit requirements that are not typically
mentioned. The explicit requirements are as the following:
e Energy saving

e Durable

e Automatic

e Reliable

e Environment Friendly
e Long life span

Energy saving is required because our system was designed and created to address the
energy efficiency issue. Therefore, this must be our first requirement for the project. Also, as our
system will be used both in an indoor and outdoor environment, it has to sustain harsh weather
conditions, including humidity, rain, storm, snow and hot weather. Therefore, our product must
be durable. As a smart home system, what the customers would expect is not only energy-
efficient system, but it also has to be automatic and reliable in operation, which would give
customers a convenient and easy-to-manage their home as well as ensure the customers that the
system always operates. Furthermore, due to the development of technology and the lack of
natural resources, it is imperative that products are environment friendly. A long lifespan of the
system would reduce the cost of repair and replacement in the long term.

Besides the requirements from research and survey, there also exist some implicit
requirements that the system should have to attract customers:

Aesthetic

Versatility

Low Costs

Safety for user

Obviously, the design of our system must be appealing to users and, therefore aesthetic is
one of the most important customer requirements. As it is designed for customers’ homes, the
system should be designed with a focus not only on its functionalities but also its appearances,
since it becomes part of a home. The system must have multiple functions, including but not
limited to motion detection, temperature sensing, automatic camera, ambient light sensing. For
that reason, Versatility is also an important feature for our Smart Home system. Currently, the
existing Smart Home products in the market are at a high price that customers can rarely
purchase. We would like our system is affordable and reachable to every home and to global
customers. Last but not least, the system’s safety must be guaranteed to the users so that it could
be able to withstand the severe conditions, both indoor and outdoor environments, and do not
pose a threat to the users.

2.2. Product Requirements
From our market research, discussion of existing solutions, and customer requirements
described in section 2.1, we identified some general necessities for the prototype as an entire
system and for each component, respectively.

17

For the entire system, it should meet the following three criteria:

e Low Power Consumption: The system must be power-efficient when operates, such that
its power use must be comparable to or even lower than existing smart home solution in the
market and traditional homes. This requirement is also the criteria that every existing smart home
solution system targeting to achieve. Our prototype will be scaled to 1/20 of the real system.
Assuming a real-life system consists only of one 10W light bulb, a floor fan, and a 50W security
camera. Based on data Ref [8], this system will consume roughly 46kWh per month (assuming
camera is always on), which is about 1.5kWh per day. Therefore, the power consumption limit
target for our prototype must be equal to or less than 75Wh.

e User-friendly interface on Wi-Fi connected devices: This is a very important
requirement. Users must find it easy and convenient to monitor and control their smart home
system remotely using their PCs or smartphone. The user interface must be straightforward and
easy to use for users with no technical skills or knowledge, and must be globally accessible and
controllable.

e Accessibility: The Smart Home System Prototype must be able to be accessed and
controlled remotely anytime and in any conditions. Algorithms must be developed to monitor
connectivity of the system and to prevent worst-case scenario (connection dropped, hardware
malfunction...) so that users would not lose control of their smart home. Every command issued
by the users must be performed in real-time by the targeted devices. Data from the system must
be updated frequently to the web server.

In particular, for the convenience and user friendliness, each component in our system
has to be straightforward implementation, low power consumption, affordable price, and
exemplary high quality, as discussed in more details below.

e Plug and Play: Since the time constraint of our projects, we focus on components that
would require less set-up time and lengthy customization. We prefer choosing components and
technology that would have more available resources, such as example projects, library,
academic and technical documents related, so we can have enough information and resources to
work on them.

e Price: The price of the components should not be too expensive since we have imposed
a budget constraint of 150 USD/person for the project.

e Quality: The chosen components must come from established brands/vendors on the
market, and their features must match what we need and required for our project.

2.3. Project Goals

For our project, we design and implement a fully functional prototype that contains
various features of a smart home system. For low power consumption purposes, we need to use
low-power devices, including microcontroller, sensors, and communication protocol as well as
utilize the energy efficiently. The system has to be automatic and support wireless applications.
It is also easy to use, and requires simple but elegant and attractive user interface, which is
reliable and provides real time notifications. Each module of the system will be designed and
packaged carefully for deliverable purposes. At the end of the project, we will build a home
prototype to set up our demo Smart Home system.

18

3. Design Approaches and Solutions

In this section, we discuss in detail our proposed solutions, including the communication
protocols, the microcontrollers, sensors and security cameras.

3.1. Short-range Communication Protocols for Home Automation
There are many options for short-range communication of 10T system. This section will
go through some well-known communication technologies and several new emerging
networking options. The choice of one or combination of technologies depends on application
requirements, such as range, security, data rate, and battery life.

3.1.1. Bluetooth Low Energy

Bluetooth Low Energy (BLE), or Bluetooth SMART, is a version of Bluetooth
technology operates at 2.4GHz that focuses on reducing energy consumption rather than
increasing data throughput. Classic Bluetooth problems lie in fast battery draining and frequent
loss of connection, which requires frequent pairing (requires large power consumption). BLE
overcomes these obstacles by sending small chunks of data when necessary, putting the
connection into “sleep mode” during idle periods, reducing necessity of re-pairing so it overall
reduces power consumption but it still maintains 1 Megabytes per second (Mbps) data rate.
Therefore, it has advantage in personal device areas. [10]

However, BLE is not designed for file transfer so data rate is one of its drawbacks to its
competitors. On the other hand, BLE devices need custom gateway to translate information to a
format that can be transmitted over IP. Thus, adding more devices over time becomes
cumbersome. Figure 7 shows the popularity of Bluetooth in various applications.

ﬂan 10 ﬁ%(;l

€3 Bluetoothh «—) Bluetoothh «—) Bluetooth’

Wireless devicas, straaming rich Jewices that connact with both Sansor davicas, sending small bis

content, ke video and audo t varele : 1 of data, using very little energy

Image - https: //www.bluetooth.org/

Figure 7: Bluetooth. Bluetooth Smart Ready device is the center of the system, which connecting both
normal Bluetooth devices and Bluetooth Smart devices (sensors, using small bits of data, using little

energy).

Bluetooth 4.2, the newest version of Bluetooth, enables BLE devices to access the
Internet directly via 6LOWPAN connectivity (more about 6LOWPAN will be discussed in latter

19

section). Bluetooth 4.2 also builds upon government-grade security features and increases data
transfer rate to 2.5 times faster than previous version. Mesh networking is also being developed
and hope to be release in the second half of 2016, according to Bluetooth Special Interest Group
(SIG). Nevertheless, it was release in 2014 so there is limited amount of “plug and play”
modules for our integration purpose.

20

3.1.2. ZigBee Communication

ZigBee is a wireless mesh network protocol operating at 2.4 GHz, which targets low data
rates over restricted area application such as in a home. It is based on the IEEE 802.15.4
protocol. ZigBee addresses the needs of device-to-device communication, the foundation of IoT.
It runs on a mesh topology network. Nodes are interconnected with other nodes, which enables
multiple pathways connect each node in a mesh network (see Fig 8). Connection paths between
nodes are dynamically updated and optimized. Therefore, ZigBee system is still stable if nodes
leave the network. Furthermore, it is low cost and, essentially, low power consumption, which is
suitable for sensors and battery-operated devices. [11]

Some technical specifications of the protocol are mentioned below and Figure 8
demonstrates the Mesh Network architecture of ZigBee:

e Range: 10-100m
e Data Rates: 250kbps

ZigBee

Figure 8: Mesh network. [12]

However, ZigBee devices frequently have difficulty communicating with those made by
other manufacturers, which is not the best option for seamless interoperability. ZigBee is local
area network (LAN), so it cannot connect devices directly to External Server (eventually to user)
without the help of Ethernet or Wi-Fi. On the other hand, there are numerous ZigBee
development boards with low price. Development libraries for ZigBee are also well developed,
as the technology has existed over 15 years.

3.1.3. Z-Wave Communication

Z-Wave is another wireless networking protocol. Z-Wave operates in sub-GHz band of
908.42 MHz in the US, which improves range, reliability, and provides less interference from
Wi-Fi and other wireless technologies in the 2.4 GHz range such as Bluetooth and ZigBee. It
supports full mesh networks without necessity of coordinator node and can control up to 232
devices. It also uses simple protocol, which provides faster and simpler development. The
technology also consumes extremely low power. [13]

However, Z-Wave has limited data rates of 100kbit/s and Sigma Designs is the only chip
maker compared to faster data rates and multiple sources for other wireless technologies. The
Source Routing Algorithm makes it difficult to manage mobility because rediscover neighbors is
a complicated and power-consuming process. Technical specifications include:

21

e Range: 30m
e Data Rates: 9.6/40/100kbit/s

3.1.4. IPv6 over Low-power Wireless Personal Area Networks (6LowPAN)

6LowPAN is an Internet-Protocol (IP) technology, which is an acronym for IPv6 over
Low-power Wireless Personal Area Networks. The technology is free of frequency bands and
physical layers, and as a result it can be used across multiple communication platforms, as well
as with devices that use other IP network links (Ethernet or Wi-Fi) with simple bridge device.
IPV6 is the latter version of IPv4, which provides 2128 IP addresses. It supports both star network
and mesh network. IPv4 is the first version of Internet Protocol, which limits the address space to
232 addresses and by 2020, which 50 billion connected devices, we would run out of IPv4
addresses. Therefore, the need to shift to IPv6 is crucial. [14]

6LOWPAN is very attractive since it is IP-based, but support for 6LOWPAN is limited
since it is recently developed for I0T. Development boards for 6LOWPAN are also expensive,
ranging from $150-$500.

3.1.5. Wi-Fi Communication

Wi-Fi is a wireless technology well known for connecting devices to WLAN (wireless
LAN) network, mainly using 2.4GHz and 5GHz bands. It is an obvious choice for loT because
of its pervasiveness of Wi-Fi within the home environments, and fast data transfer rate. It is also
suitable for mesh and star network architecture.

However, Wi-Fi has some drawbacks, including interference and bandwidth issues. In a
system full of Wi-Fi-connected gadgets, devices using Wi-Fi will need to compete for bandwidth
and may be slower to respond. Wi-Fi is also power hungry which makes it inappropriate for
smart devices such as sensors. On the other hand, a Wi-Fi connected mesh proves to be power-
consuming for many loT applications. Moreover, the number of devices connected to a Wi-Fi
access point is limited. To solve these problems, Wi-Fi Alliance, the organization that dictates
Wi-Fi standards, is developing Wi-Fi HaLow, which promises double the range of standard 2.4
GHz Wi-Fi, better penetrates obstacles, and most importantly, consumes less power.
Unfortunately, it will take until 2018 for the Wi-Fi Alliance to begin certifying HaLow products.
Therefore, implementing only Wi-Fi for our mesh network is not viable. Specifications for Wi-Fi
include: [15]

e Frequencies: 2.4GHz and 5GHz bands
e Range: Approximately 50m
e Data Rates:150-200Mbps

3.1.6. Summary Short-range Communication Protocol
As shown in above characteristics of popular short-range communication protocols,
Zigbee stands out as a user friendly, low-power, and reasonable range and transmission rate.
Zigbee modules are more available and easier to integrate than 6LoWPAN and BLE (more
development board options and libraries), since the latter two are being developed in recent year.

22

On the other hand, Zigbee not only has higher data rate than Z-Wave but it also avoids
bandwidth consumption problem of Wi-Fi, so users do not have to experience slow Internet
access because of their Smart Home System.

3.2. Microcontroller Modules

Since each appliance module in our system needs to communicate with several sensors
and wirelessly send and receive data from the server, a microcontroller is required at each
module. Based on our system architecture, we would analyze different requirements for our
microcontroller.

Because we plan to use both Wi-Fi and ZigBee protocol for each node, and the camera
module may require serial communication, our microcontrollers at each node must have at least
3 serial communication ports and serial communication interfaces.

Since every complex operation in our system would be performed at the web server side, a
microcontroller is not required to have very powerful computational powers. Nevertheless, since
the master node would be in charge of receiving every command from server and distributed to
slave nodes, and receiving data from slave nodes and send back to server, therefore our
microcontrollers must be capable of running multi-task or supporting internal/external software
interrupts to operate in real-time, so that distributing data at the master node will not affect other
operations.

We want to have algorithm that when the master node failed, the system would
automatically pick a slave node to be the new master node. In order to do that, the
microcontrollers must be able to store and switch between different programs. This would
require large enough memory for the microcontroller to store multiple programs. Large memory
is also required for security camera node, since this node would need to store and send high
definition image.

Each microcontroller must have a large number of I/0O pins for complex sensors and
appliances system. Moreover, it would be preferred if the microcontrollers have low power
consumption. One of the basic requirements of the 10T system is to help reduce power
consumption for households.

For our project, and since we are only attempting to produce a prototype, not actual
commercial product, we need to have a development microcontroller board available to reduce
mechanical tasks so that we could solely focus on the system architecture and application.

From the above requirements, we looked at some different options for microcontrollers.
There are several different microcontrollers that are popular in the current smart home industry,
as well as common and well-known microcontrollers that are very versatile and can be used in
many different applications. We chose to look closely at three development boards that represent
3 most popular brands of microcontrollers that we think could satisfy our requirements.

3.2.1. Arduino Mega 2560 Microcontroller Board

Arduino Mega 2560 is a microcontroller board based on the ATmega2560. This
microcontroller board is a new branch of the well-known Arduino family that is designed for
more complex projects. With 54 digital 1/0O pins, 16 analog input pins and 4 UARTS, this board
has more-than-enough communication pins to accommodate multiple sensors and wireless board

23

that are required in our system. Arduino Mega 2560 has a RAM memory of 8KB and with the
clock speed of 16MHz, provides us with a decent computational power for the nodes of our
system. Flash size of 256 KB also gives us enough memory space to store multiple programs,
which is also one of our requirements for the microcontroller.

However, there are three limitations of the Arduino Mega 2560 that we need to consider
more carefully. The first problem, which is also an inherent problem of every Arduino
development board, is its power consumption. The board required a very high input voltage of 7-
12V if powered through I/O pin, and 5V if power through micro-USB connection. The board
also draws high input currents, with 25mA of current in normal operation modes. Although the
board could be coded to operate in low power mode when not in use, however its power
consumption is still enormous in compare with other high performance but low power
microcontrollers.

The second problem with the Arduino Mega 2560 is its relatively high price in
comparison with other microcontrollers. The price of 45.95 USD is very high for a
microcontroller, if we compare with TI MSP series, which have price of lower than 20 USD, or
Raspberry Pi series, which are single-board small size computers but have the price of around
40-50USD.

The third issue, which is also the most important one that we need to consider, is that the
Arduino Mega 2560 does not support multi-tasking, which mean we could not run 2 different
programs at the same time on the Arduino Mega 2560. Although this issue could be resolved by
using interrupts and external switch/timer to changing continuously back and forth between
programs, when the system get more complex as more node involved, real-time operation could
be a really challenging issue.

Despite all of these disadvantages, Arduino Mega 2560 still has incomparable advantages.
It has one of the most user-friendly development environments, Arduino IDE, with a very high-
level programming language, Arduino language and thousands of open-source libraries that are
available to developers. Moreover, almost every sensors and modules are Arduino compatible,
with an Arduino library associated, that would help coding for each node much easier for our
project and give us more time to concentrate on the software and application side of the project.
Figure 9 below is the image of the Arduino Mega 2560 and Genuino Mega 2560 microcontroller
board.

24

Figure 9: Arduino Mega and Genuino Mega board. [16]

3.2.2. TI MSP432 Microcontroller Board

The MSP432 is a mixed-signal microcontroller family from Texas Instrument, based on
32-bit low power ARM Cortex-M4F CPU chip. With 48 digital 1/O pins, 24 analog input pins,
and 4 UARTS, the board could accommodate our very complex node system with multiple
sensors, appliances and wireless modules. It also offers decent computational power, with clock
speed of 48 MHz and 64KB RAM. Flash size of 256 KB also allows storing multiple programs,
which is an important requirement for microcontrollers in our system.

The biggest advantage of the TI MSP432 development board is that, it offers ultra-low
power consumption for its high performance. Its required power input for micro USB
connection, which mean 5V input voltage, but draw ultra-low current with only 95uA/MHz in
normal operation mode. This advantage provides us more flexibility in designing our system,
since we can power the TI MSP432 easily with batteries instead of 110V- AC main electricity.

The second advantage of the TI MSP432 is that the board is very price-competitive while
offering very good computational power. It offers higher clock speed than the Arduino Mega,
with 8 times the RAM size, with one-third the price of the Arduino Mega 2560. The TI MSP432
Launchpad is only price at 13 USD, making it a very appealing option for our prototype and also
for any actual commercial products.

The problem with the TI MSP432 is that it is difficult to use. Currently, the most common
way to configure and programmed a T1 MSP432 Launchpad is by using embedded C language in
Code Composer Studio IDE. C language is not as high-level as Arduino, and for the TI MSP432,
users have to care about ADCs configuration, UARTSs configuration... while these things can be
done automatically or have well-defined support libraries in Arduino. The Tl MSP432 also
suffers from lacking of multi-tasking ability, as also an issue in Arduino Mega 2560. Too much
I/0 communications that required multiple programs running at the same time may cause serious

25

real-time issues for the Tl MSP432 Launchpad. Figure 10 demonstrate the TI MSP432
LaunchPad from Texas Instrument.

Figure 10: TI MSP432 LaunchPad. [17]

3.2.3. Raspberry Pi Board Computer

The Raspberry Pi is a series of credit card-sized single board computer. All Raspberry Pi
model features a Broadcom System on a Chip (SoC), which include an ARM compatible CPU
and an on-chip GPU. Since Raspberry Pi is actually not a microcontroller, but a small-size and
fully functional computer, it offers very good computational powers. With CPU speed ranges
from 700 MHz to 1.2 GHz, and on-board RAM of 1GB, the Raspberry Pi is powerful enough for
every complex control operation that would be required at our nodes. Though it doesn’t have on-
board Flash Memory, an external SD card could be used instead with the capability from 2-
16GB, allows us to store multiple programs and even images from security camera module if
needed. The Raspberry Pi could also load and run Linux Operating System from microSD card.
The Linux OS allows the Raspberry Pi to do multi-tasking, which make it stands out from our 2
previous options and provide a lot of flexibility and easiness when dealing with the real-time
requirement of our system. Raspberry Pi also offers 40 general purpose GPIO pins to
accommodate multiple sensors and appliances that required in our products. Moreover, the new
version of Raspberry Pi 3 Model B provides built-in Wi-Fi, which could help us reduce a lot of
works and costs buying and installing a separate Wi-Fi module to our microcontrollers. It is also
very price competitive, with only 35 USD. The Raspberry Pi only have one UART port, however
this could be worked around since Wi-Fi is built-in for the Raspberry Pi 3 Model B, we only
need the UART port for ZigBee module.

Despite all of these advantages, The Raspberry Pi suffered from too high power
consumption. With 5V input voltage and at least 2.4A current draw, this is impossible for the

26

board to be powered by battery but only by main electricity. Since in our system, the
microcontrollers may have to run continuously 24/7, the high power consumption of the
Raspberry Pi will add up to the electricity cost of the system. Also, too high computational
power may be a waste, since our application may never exploit all of the board computational
power potentials. Figure 11 shows the newest version of Raspberry Pi, Raspberry Pi 3 Model B.

Figure 11: Raspberry Pi Model B. [18]

3.2.4. Summary Microcontroller Module
Based on these analyses, we developed Table 3 which summarizes key technical features

of three different types of microcontroller that we discussed. In the table, several interested
criteria are listed and compared, to figure out the best option for our system.

27

Table 3:

Comparison between different Microcontrollers.

Arduino Mega T1 MSP432 Raspberry Pi 3B
Model
Price 45.95 USD 12.99 USD 35.00 USD
(from Adafruit (from Texas (from Mouser)
websites) Instrument)

RAM Memory 8KB 64KB 1GB
Clock Speed 16MHz 48MHz 700MHz
UARTS serial 4 4 1

communication ports
Multitasking None None Yes
Internal/External Yes Yes Yes
Interrupts
Flash 256KB 256KB SD card 2-16GB
Input Voltage 5V (from USB) 5V 5V
Power Consumption 25mA (normal 4.5mA (normal 2.4A
mode) mode)
On-Board Network None None Built-in Wi-Fi,
Ethernet Connection,
Bluetooth Low
Energy
Integrated Development Arduino IDE Code Composer Scratch, IDLE,
Environment Studio anything with
Energia IDE LINUX supports

From the Table 4 and discussion, we decided to use the Arduino Mega board for our
system. The Arduino Mega has low power consumption advantages compared to the Raspberry
Pi 3 B Model, and is more straightforward in configuration and coding in compare to the TI
MSP432 board. Also, the Arduino board has proven compatibility with the ESP8266 Wi-Fi
module and the Xbee ZigBee module, while the compatibility of the TI MSP432 with those
modules needs to be verified and tested.

28

3.3. Sensor Modules
The system could not be considered as Smart Home without the implementation of
sensors. For our projects, we decide to apply occupancy sensor to detect the movement and light
sensor to automatically adjust the brightness in the house according to the sunlight and different
time of the day.

3.3.1. Occupancy Sensor Module

As mentioned above, an occupancy sensor is used in our Smart Home system to detect
the presence of people, vehicles, animals, objects to automatically adjust the appliances based on
the data receiving from the sensor. When the occupancy sensor detects no people or vehicle, it
will send signal to the central hub to control the system accordingly in order to save energy. We
have conducted research of three different types of occupancy sensors.

The first type of occupancy sensor that we looked at is the PIR (Passive Infrared)

Motion Sensor. PIR Motion Sensor measures infrared (IR) light radiating from objects in its field
of view, to detect motions of people and objects. The sensor is highly reliable and resilient to
false triggering. The sensor has a very low price and requires very little power of operation.
However, it also has several disadvantages. The sensor is vulnerable to “dead spots”, which are
the places that the sensor cannot detect motion although still in the detection range. Also, the
sensors couldn’t detect motions behind obstacles. Figure 12 shows the module of PIR sensor.

Figure 12: PIR sensor. [19]

The second type of occupancy sensor is the UltraSonic Motion Sensor. UltraSonic
Motion Sensor can detect movement of people or objects within a limited area. It senses motion
by analyzing sound waves in its environment like the way bats or dolphins do. This could be
used in our product to help detect people or vehicle moving around, and send signal to the
microcontroller to brighter/dimmer the LED. Typical products for UltraSonic Motion Sensor
have a very large detection range, around 6-7m in radius, which we valued most for occupancy
sensor. The price of the sensor is relatively cheap, usually less than 4 USD. The sensor can even
detect motion through obstacles. However, its main drawback is that it sensitivity could be
affected by loud noise, which would affect its sound wave analyzing. Also, changes in
environment, such as temperature, humidity, or air particles could lead to false triggering.
Ultrasonic cannot distinguish between human and non-human motion and may interfere with

29

other devices due to high intensity sound waves. Figure 13 demonstrates the module of
UltraSonic Motion Sensor.

Figure 13: HC-SR04 module for UltraSonic Motion Sensor. [20]

Lastly, the third type that we have researched is the Microphonics Sensor found by
Sensor Switch, an Acuity Brands company, which is located in Wallingford, Connecticut.
Microphonics utilizes a microphone inside sensor to hear sounds that indicate occupancy.
Microphonics technology is especially useful in obstructions. One of the great benefits of
Microphonics technology is its ability to distinguish sounds made by human activity from
ambient noise. This technology uses automatic gain control (AGC) to dynamically self-adapt the
sensor to the environment by filtering out constant background noise. Moreover, it uses
advanced digital acoustic filtering that prevents the prolonged presence of varying noise such as
television or radio from keeping the light on unnecessarily. It can also filter out periodic sounds
like clock ticking. However, since this advanced technology is new and is owned by Acuity
Brands Company, we were not able to find any available module in the market at this time.

Due to the pros and cons of each type of occupancy sensors discussed above, we decided
to apply both technologies, PIR and Ultrasonic Motion Sensor. This Dual Technology will
provide the more reliable results, preventing from false tripping, reducing interference and
saving more energy. Table 4 highlights a comparison between different motion detection
technologies.

30

Table 4: Comparisons of different Motion Detection Technologies.

PIR Ultrasonic Dual-tech
(PIR + Ultrasonic)
Power Supply 5-16V, 50pA 5V DC, 15mA SV
Range 7 meters 2cm —400cm 2—700cm
(maximum) 120-degree cone 30 degree 120 degree
Output Digital signal output | Digital signal output | Digital signal output
of 3.3V high/ 0V low
Dimension 32mm x 24mm 45mm x 20mm X
15mm
Pros = Sense the difference | = Send out the high = More reliable
between heat frequency ultrasonic | system
emitted by moving waves into a space = Better accuracy
people and and measure the
background heat reflected pattern
= Suitable for = Detect motion
enclosed space behind objects
Cons Cannot detect motion | = May interfere with More challenging in
behind obstacles other devices due to implementation
=>» Need line of sight high intensity sound
waves
= Accuracy of results
is affected by
ambient loud noise,
temperature,
humidity
Price $9.95 (Adafruit) $5.00 (Amazon) $14.95

According to the comparison above, we decide to use both technologies for our project
since we greatly consider the quality of our prototype and both sensors have reasonable prices.

3.3.2. Temperature Sensor Module

The temperature sensor is utilized for the measurement of indoor temperature to support
different applications such as control of the temperature in the house, and detection overheating
appliances. The temperature data is sent to the server and displayed in real-time. Also, the
microcontroller, after receiving data from the temperature sensor, decides either turning on/off
the fan and heating systems or switching to critical mode and warn users about overheating
situation. There exist many types of temperature sensors available in the market, categorizing
into mechanical temperature sensors (thermometer), electrical temperature sensors (thermistor)
and integrated circuit (IC) sensors.

The mechanical temperature sensor, the thermometer in particular, is a device containing a
sensor made of mercury and some means of converting the physical change into a numerical

31

value. It is widely used in industry to control and regulate processes, in study of weather, in
medicine and in scientific research. This device has existed in the early 17" century and is still
being used in today applications. However, due to the relatively large size and the incapability of
communicating to microcontroller, we decided not to use the mechanical temperature sensor for
our system. Figure 14 depicts a sample of a mercury thermometer.

Figure 14: Mercury thermometer for the measurement of room temperature. [33]

Another type of sensor is the electrical temperature sensor, the thermistor. It is a type of
resistor whose resistor is dependent on temperature, much more responsive and sensitive to
temperature than the standard resistors. This type of device was first discovered by Michael
Faraday in 1883, although commercially useful thermistors were not manufactured until 1930.
Although the thermistor provides a high degree of accuracy, it is not easy to configure the
thermistor with the microcontroller, whose responsibility was to receive the temperature data for
further process and analysis. Figure 15 shows a thermistor.

N\

Figure 15: Thermistor. [34]

The temperature sensor that is the most compatible for our project, however, is the IC
sensor, which can be easily integrated with the microcontroller in our system. We decide to
choose the analog-output temperature sensor from manufacturer, Analog Devices, the TMP36
due to its compatibility with Arduino, wide range, low power consumption and precision
centigrade. The sensor provides a voltage output that is linearly proportional to the Celsius

32

temperature and has accuracies of +1°C at 25°C and +2°C over the —40°C to +125°C
temperature range. Figure 16 demonstrates the TMP36 sensor and following is its specifications.

Figure 16: TMP36 from Analog Devices. [35]
Specifications of temperature sensor TMP36:

e Voltage input: 2.7 V to 5.5 Vdc

e 10mV/°C scale factor

e +2°(C accuracy over temperature range
e +0.5°C linearly

e Operating range: —40°C to +125°C

3.4. Camera Module

For the security camera module, we define some criteria to narrow down our options
from various existing products on the market. First, we want our camera to have at least 2MP
resolution, since high definition security image will be more appealing to users and also provide
comfort if we want to apply image processing algorithm (such as face recognition, character
recognition, etc.) on the software side of our project.

Secondly, the camera must be compatible with our microcontroller. From the product
datasheet, we must determine if our options of camera module could be used along with our
microcontroller. The communication interface on the camera module must be available on our
microcontroller (not being used by other components). For example, since there is only one serial
UARTS port on the Raspberry Pi, which is reserved for the ZigBee module, we omit all camera
options that use serial communication.

The next criterion lies in cost-effective. The price of the camera module must be
reasonable, while still offers decent quality. And the camera module must also be power-
efficient, for the same reason that we discussed with other components. The camera module must
be powered by 3.3/5V inputs DC source, so we could use one standardized power module to
power our entire system.

The other criterion is that the camera module, since it is intended to use both
indoor/outdoor, it must be able to operate in severe weather condition, such as low/high
temperature. In New England area, where the temperature could drop to -20 to -30 degree
Celsius in the winter, the camera module must be able to sustain that.

33

These are the basic criteria for the camera module to build our prototype. However, for a
better image quality for software-side image processing in any working conditions, we have
additional criteria. Night-Vision Capability is very important for security purposes, Automatic
Functions (such as automatic exposure control (AEC), automatic white balance (AWB),
automatic 50/60 Hz luminance detection, automatic black level calibration (ABLC) are desirable.

From these criteria, we limit our component options into three camera modules. We will
discuss about these modules along with their pros and cons, and decide on the most suitable
option for our project.

3.4.1. ArduCam Mini Module 2MP

The first camera module that we looked at is the ArduCam Mini Module 2MP. The
module features 2MP CMOS image sensor OV2640. This camera module also has a 5SMP
version using CMOS image sensor OV5642. Both of these image sensors have high sensitivity
for low-light operation and including several automatic image control functions (AEC, AWB,
and ABLC). The module provides user with active array size of 1600 x 1200 pixels, which is
also the resolution for still images that can be captured. Its communication can be through 8
MHz SPI for camera commands and data stream, and through 12C interface for sensor
configuration. The module is compatible with many platforms such as Arduino or Raspberry Pi
with plenty of support libraries, and can also be connected to the Wi-Fi module ESP8266 without
the needs of a microcontroller. The price of the module is also relatively reasonable, with only
25.89 USD each from eBay. Also, the output image format includes JPEG, which would be very
convenient since we don’t need any conversion on the software end.

However, there are several problems with this module. The first one is its power
consumption. In normal operation mode, it required 5V input with 70mA current draws, which is
even higher than the power consumption in normal mode of the TI MSP432 and Arduino
microcontroller. The second problem is that the module using “rolling shutter” techniques, which
could cause image distortion when capture moving objects. The third problem is that, although
its embedded camera sensor has high sensitivity for low-light operation, the module does not
have night-vision mode, which mean in other to operate in night time, we may have to
incorporate an additional flash light to our microcontroller that will illuminate the objects when
the camera capturing image. The last problem is the camera temperature ranges from -10 to 55
degree Celsius, which is clearly incompatible with the actual temperature in New England in
winter. Figure 17 shows the module of the ArduCam Mini.

34

Figure 17: ArduCam Mini Module 2MP. [21]

3.4.2. Raspberry Pi NoIR Camera Board v2

The Raspberry Pi NoIR Camera Board v2 is a new, high definition camera module that is
compatible with all Raspberry Pi models. The modules use Sony IMX 219 PQ CMOS Image
Sensor in a fixed-focus module. It offers a very high definition of 8MP (megapixel), with still
picture resolution of 3280x2464. The module could be connected to the Raspberry Pi through a
15-pin ribbon cable to the dedicated 15-pin MIP1 Camera Serial Interface (CSI-2), which provide
a 3.3V voltage to the camera module. The camera has high data transfer rate, with 30fps (frame-
per-second) for 1080p image and 60fps for 720p image. It also has automatic image control
functions, including automatic exposure control, automatic white balance, automatic band filter,
automatic 50/60 Hz luminance detection and automatic black level calibration. The camera has
built-in LED Flash, and no infrared filter, thus suitable for taking pictures in low light
environment. The price is also very competitive, with only 29.95 USD from AdaFruit websites.

The problem with this module is that it also used “rolling shutter” techniques, which may
cause image distortion if trying to capture moving objects. Moreover, we could not find any
documents about the power consumption of this module, so whether the power consumption of
the Raspberry Pi NoIR Camera Board v2 meet our requirements or not is still in question. Figure
18 demonstrates the camera module.

35

Figure 18: Raspberry Pi NoIR Camera Board V2. [22]

3.4.3. Pixy CMU Camb5 Sensors

The Pixy CMU Camb5 Sensors is a smart vision sensor object tracking camera module
developed by Charmed Labs and Carnegie Mellon University. The camera features an
OmniVision OV9715 camera sensor with image resolution of 1280x800 pixels. The camera
module has an on-board processor with RAM and Flash, which mean we could configure the
camera to perform different vision operations such as objects tracking, face recognition without
overwhelming the computational power of the microcontroller. The camera communication
interface includes UART serial, SPI, 12C or USB, allowed it to communicate with many
different microcontrollers such as Arduino or Raspberry Pi, with plenty available support library.
The camera sensor also uses an infrared filter technique, which means it can work in the low-
light condition with night vision.

The problem with the Pixy CMU Cam5 Sensors module is that, because of processor and
memory, its power consumption is enormous. It uses a 5V USB input with 140mA current
drawn. Secondly, the only known and supported way to view an image or video from this camera
is to use the developer application PixyMon. This PixyMon application also allows the users to
“teach” the camera for object tracking, or face recognition. However, if we want to get the image
to develop our own application, it would be harder and less documented. The final problem with
this module is the price of 75 USD, which is too high. The camera module is shown in Figure 19.

36

Figure 19: Pixy CMU Camb Sensors. [23]

37

3.4.4.

Summary Camera Approach
To summarize the different camera modules discussed above, Table 6 compares these

three cameras with respect to various performance criteria.

Table 5: Comparison of different camera modules.

Arducam Mini Raspberry Pi Pixy CMU Cam5
Module NolR Camera Sensors
2MP/5MP Board v2
Price 25.89 USD 29.95 USD 75 USD
(from eBay (from Adafruit (from Adafruit
websites) Websites) Websites)
RAM Memory None None 264KB
Power Consumption 5V/70mA 5VINA 5V/140mA
Communication SPI, 12C CsSlI SPI, 12C, UART,
Interfaces USB
Image Sensors 0V2640/5642 | Sony IMX 219 PQ OV9715
Image 8MHz 1080p:30 fps 720p: 50fps
Processing Speed 720p: 60 fps
Image Resolution 2MP/5MP 8MP 2MP
1600x1200 3280x2464 1280x800
Compatibility Arduino, Raspberry Pi Arduino,
Raspberry Pi Raspberry Pi
Lens field of view NA NA 75-degree horizontal
47-degree vertical

Since we have decided to use the Arduino Mega board for our system, we will eliminate
the Raspberry Pi NoIR Camera Board v2 from our camera options, because its compatibility
with the Arduino is not verified. Among the remaining 2 options, we decided to choose the
Arducam Mini Module because of reasonable price, low power consumption and availability of
supported documents and online tutorials.

38

4. Design Implementation
In this section, we discuss in detail the process of implementing different modules and
functions of the system, including sensors, communication protocols, user interface and
integration of the entire system. As we used the low-power consumption microcontroller
Arduino, the system, except for the user interface, is implemented in Arduino IDE.

4.1. Sensor Functions
As mentioned in section 3, we utilized occupancy sensor, light sensor, temperature sensor
and a camera. For each module, we implemented different function that corresponds to the
designated purpose of that sensor.

4.1.1. Occupancy Sensor

An occupancy sensor is used in our Smart Home system to detect the presence of people,
vehicles, animals, objects in order to automatically adjust the appliances based on the data
receiving from the sensor. When the occupancy sensor does not detect people or vehicles, it will
send a signal to the central hub to control the system accordingly in order to save energy. As
outlined in section 3.3.1, due to the pros and cons of the PIR sensor and the Ultrasonic sensor,
we decided to use both technologies for distinct applications. In particular, the PIR sensor, which
measures the passive infrared light radiating from objects in its field to view, is implemented for
indoor application to turn on and off the light according to the status of movement it detects. As
it provides a digital signal output, we read the value from the PIR pin digitally by the following
command in Arduino IDE:

value =_digitalRead(inputPIR);

Based on the digital value (0 and 1) of the output pin, we decided to turn off and on the
LED light correspondingly. Similar to the PIR sensor, the ultrasonic sensor also provides digital
output. As it senses the motion by analyzing the sound waves in its environment like the way
bats or dolphins do, we first needed to send a trigger signal via TRIG pin and wait for the ECHO
pin to receive back the signal. The described procedure is represented in Figure 20.

39

P
i
bl

reflected wave

Sender/] | Object

Receiver

oriainal wave'
L]

distance r

Figure 20: Ultrasonic Wave Terminology. [38]

During the time or the duration from the moment that the trigger signal leaves the sensor
until the ECHO pin receives the reflected signal, the wave has travelled twice the distance
between the sensor and the object of interest. The following code in Figure 21 is used to measure
the duration and then calculate the distance by multiplying half of the duration with the sound
velocity.

// Determine the time duration and calculate distance
// Duration
duration = pulseIn(echo, HIGH); // Count the time when echo pin is set HIGH, measured in uS

// Calculate distance in cm
distance = int((duration/2)*0.034); // d = time*velocity, which is 0.034cm/us

Figure 21: Implementation of Ultrasonic Sensor HC-SRO04.

4.1.2. Temperature Sensor

As discussed above, the temperature sensor is used for controlling the indoor temperature
by adjusting the cooling and heating system accordingly as well as detecting the critical situation
of overheating and alerting the users. The IC sensor, TMP36 from Analog Devices, is relatively
easy to use and is able to configure well with the Arduino microcontroller. For the sake of ease,
the sensor module is shown again in Figure 22.

40

Figure 22: TMP 36 — IC Temperature sensor from Analog Devices to control indoor temperature and
detect critical overheating situation. [40]

The sensor has three pins: the leftmost pin is GROUND, the pin in the middle is Vout and
the rightmost pin is connected to Vcc. After pairing and configuring the device with the Arduino
microcontroller, the following code demonstrates how to read the voltage output of the TMP36
and then convert the data into corresponding temperatures.

// Get the voltage reading from the temperature sensor
reading = analogRead(tempPin); // return a number from @ - 1023 (10 bit)

// converting the reading to voltage (for +5V)
voltage = reading*5.0/1024.0; // 5V-scale

Figure 23: Implementation of temperature sensor TMP36.

The output is established in units of degree Celsius. It can also be converted into
Fahrenheit degree. Based on the measured temperature, the Arduino will analyze and provide a
suitable response to the situation, either uploading the data to the server or powering off
appliances if the temperature is critically high and overheat is detected. This will be discussed
further in section 5.3 about case studies.

4.1.3. Camera Module

In our system, when the occupancy sensor at the coordinator module is triggered, the
camera module will capture an image of the objects that triggered the sensor. The camera module
used in our system is the ArduCam Mini 2MP, which is easy to use, provides good quality
image, and fully compatible with the Arduino development board. An image of the camera
module is shown in Figure 24.

41

Figure 24: ArduCam Mini 2MP- Camera Module for Capturing Image Compatible with Arduino
Development Board. In this image, there are only 6 pins visible, since the 5V and GND pins are female
pin headers, so they are not showed in this image. [36]

ArduCam Mini 2MP module provides 2MP resolution images in RAW, YUV, RGB or
JPEG format, with a maximum image size of 1600x1200. This module uses an 12C interface for
sensor configuration (the embedded 2MP OV2640 image sensor) and an SPI interface for camera
commands and data streams. The required power input for the ArduCam Mini 2MP camera
module is 5V. For the purpose of our system, the image file format is set to JPEG, and the image
file size is set to 640x480.

The ArduCam Mini 2MP has eight pins. The four SPI pins: CS, MOSI, MISO, and SCLK
will be connected to the corresponding four pins of the Arduino. The GND and 5V pins of the
ArduCam will be connected to the GND and 5V pins of the Arduino. The two pins SDA and
SCL (12C interface) will be connected to the corresponding SDA and SCL pins on the Arduino.
A detailed explanation of Arduino code for the camera module will be provided given in section
4.5, and the connection of ArduCam camera module with Arduino is shown in Figure 25.

42

-4 +5v

3 [No—> Arduino

o —

2 - SCL ch:‘hamke

5 - SDA > ipkit

S |e— csn Raspberry Pi

3 = mso—*1 BeagleBone Black
- SCLK

Figure 25: ArduCam Mini 2MP Connection with Arduino Module. The ArduCam Mini 2MP module is
also provided with supporting library for Arduino Development Board. [36]

4.2. Local sensor-communication ZigBee Protocol

4.2.1. Zigbee Xbee Parameter Configuration
After careful consideration, we choose Zigbee Xbee (Figure 26), an RF module provide
to cost-effective wireless connectivity to devices in a Zigbee mesh networks.

43

g

Figure 26: Zigbee Xbee Module. [24]

In order to establish Point-to-Multipoint Zigbee communication, these Xbee modules
have to be configured correctly. The central hub module’s Xbee has to be configured as
Coordinator and operated in API (application programming interface) mode, while the other two
Xbees must be configured as Routers and operated in Transparent mode. The Coordinator is the
only device type that can start a Zigbee network. It is responsible for selecting channel, network
ID, security policy, and stack profile for a network. Routers, on the other hand, must discover
and join a valid Zigbee network. When RF data is received, the APl mode helps Coordinator to
know the origin of the message since it provides ID of the sender. Transparent mode, in contrast,
only gives Xbee modules RF messages, but this mode is sufficient for simple operation of
routers.

We change the Xbees configuration parameters by using Sparkfun Xbee Explorer USB
dongle and Digi’s software XCTU. The USB dongle connects Xbee module with a computer,
and helps the configuration process through XCTU software. After we open XCTU software, we
have to discover our Xbee module (Figure 27) by choosing the right USB Serial Port, Baud Rate,
Data Bits, Parity, Stop Bits, Flow Control, and since our Xbee is a programmable module, we
have to check “The radio module is programmable”.

Figure 27: Sparkfun Xbee Explorer USB, which connects the Zighee Xbee to a computer with the XCTU
software. [25]

44

e
= i

1 Add a radic module !

Select and configure the Serial/USE port where the radio
moedule is connected to.

@ Select the Serial/USB port:

Coml2 | USE Serial Port

Refresh ports |
) Provide a port name manually:
| |
Baud Rate: 115200 .
Data Bits: |8 -
Parity: None -
Stop Bits: |1 v
Flow Control: |None -

[¥] The radic module is programmable.

Set defaults |

| Finish || Cancel

Figure 28: Discover Xbee Module Setting in XCTU user interface.

Next, if the Xbee module is successfully discovered, the software will then load the
configuration parameters from the module. All modules have to use the same PAN ID (network
ID), so “123” is set for all Xbee PAN ID. For the Coordinator, “CE” (Coordinator Enable) has to
be set to “1”.

45

Port. COML2- 11520A/NIN-AT TS oo
MAC: 0013A2004152ECD7 (v) <

Product family: XB24C

Radio Modules @ @ - 0 4:F Radio Configuration [- 0013A2004152ECD7]

Name:
B Function: ZIGBEE TH Reg o - (I) a &

i 2= o -

Write Default Update Profile

~ MNetworking
Change networking settings

Function set: ZIGBEE TH Reg

Q

Firmware version: 4059

ID PANID 122

SC Scan Channels TFFF Bitfield
SD Scan Duration 3 exponent

Z5 ZigBee Stack Profile 0

MJ Node Join Time FF x®1 sec
NW Network Watchdog Timeout 0 x1 minute
IV Channel Verification [Disabled [0 ‘]
IN Jain Notification [Disabled [0] ']
OF Operating PANID 123

OI Operating 16-bit PANID E&B3

CH Operating Channel 17

NC Number of Re...ing Children 14

CE Coordinator Enable Disabled [0] ‘]
DO Device Options 0 Bitfield
DC Device Controls 0 Bitfield

¥ Addressing
Change addressing settings

a3

400

06"
06
06
06
06
006
006
©
©
o
(S
06
006
006

Figure 29: Changing Xbee configuration parameters in XCTU user interface.

The Coordinator Destination Address High and Low are both set to 0, which means the
Coordinator module will broadcast its message to all routers in the same network. However,
routers do not have broadcast functionality, so they need to send their messages to only the

coordinator. The destination configuration is displayed in Figure 30.

As previously mentioned, the Coordinator has to be in APl mode, while routers are in
Transparent mode. These modes can be change with “AP” (APl Enable) parameter (see Figure

29).

46

i SH Senal Number High 134200
i SL Serial Number Low 4152ECDT

i MP 16-bit Parent Address FFFE

O
(S
i MY 16-bit Network Address 1CBC '9
(S

i DH Destination Address High 134200 A 9 O
i DL Destination Address Low 4152ECD4 A 06
i NI Node Identifier 06
i NH Maximum Hops 1E 9 o
i BH Broadcast Radius 0 06

i AR Many-to-One ..oadcast Time FF %10 sec 6 o
i DD Device Type Identifier A0000 06
i NT Mede Discovery Backoff 3C 1100 ms 9 O
i MNO Mode Discovery Options 0 9 O
i NP Maxmum Num..ssion Bytes 54 6

i CR PAN Conflict Threshold 3 9 O

Figure 30: Changing Xbee destination parameters in XCTU.

¥ Serial Interfacing
Change modem interfacing options

i BD Baud Rate 115200 [7] 40 60
| NB Parity [No Parity 0] - 906
i SB Stop Bits | One stop bit [0] - OO0

i RO Packetization Timeout 3 x character times 00
i D7 DIO7 Configuration | TS flow control [1] - 0
i D6 DIOG Configuration | Disable [0] - 6
i AP APIEnsble | Transparent mode [0] - © 60
i AO APIOutput Mode [Native [0] - 0

Figure 31: Addressing Serial Interfacing Parameters in XCTU.

4.2.2. Zigbee Xbee — Arduino Connection
After we are done with configuring the Xbee modules for Point-to-Multipoint
communication, we have to connect them to the Arduino board and be able to send as well as
receive simple messages.

Unfortunately, the Xbee module uses 3.3V DC power supply, which is much lower than
5V DC that Arduino can supply, so Sparkfun Xbee Explorer Regulated (see Figure 32) is

47

realized. The Explorer board has a 3.3V regulator so we can have direct access to the serial and
programming pins on the Xbee unit and be able to power it with the 5V voltage pin from the
Arduino. Moreover, the Explorer board has some basic activity indicators: Power, Received
Signal Strength Indication (RSSI), Data In (DIN), and Data Out (DOUT) activity LEDs.

Figure 32: Sparkfun Xbee Explorer Regulated, which has a 3.3V regulator to power Xbee from
Arduino 5V power supply. [39]

°
.) 29))‘J".

»,9000333000.

' »
~
(o
m
"

i

Figure 33: Connect Zigbhee Xbee to Explorer board.

4.2.3. Zigbee Xbee Implementation with Arduino
Since we are using a programmable Xbee module, the RF data received will not transfer
directly to the Arduino RX pin, they are blocked by a Freescale microcontroller inside the
module itself. Therefore, we have to bypass the Freescale microcontroller in “setup()” function,
which is carried out every time the system boots up. During booting, the Arduino writes “\n\r”’ to
Xbee (go to the next line, similar to pressing Enter), and Xbee will respond with Boot Loader
Menu (see Figure 34). Next, we will write “B” for Bypass. At this point, the Freescale

48

microcontroller is successfully bypassed, and Arduino should be able to read and RF data from
Xbee.

.B-Bypass
F-Update App

J-Timeout
M-BL Ver.
A-App Ver.
.R-Reset

Figure 34: Boot Loader Menu. [41]

In order to transmit a command from Coordinator to Routers, messages written to
Coordinator DIN pin have to follow Transmit Request frame format, which is described in
Figure 35. This frame type causes Coordinator to send payload data as RF packet to specific
Router destination. All fields require Hexadecimal value of ASCII code. Some fields are
reserved by the device: Start Delimiter, Frame type, Broadcast Radius, Options. User can use
either 64-bit destination address or 16-bit destination network address of the router. In our case,
we use 64-bit MAC address on the back of our Router Xbees, and set 16-bit destination network
address to OXFFFE (default for unused). Check sum bit field indicates the difference of OxFF and
the sum of all previous bit fields.

Frame data fields Offset Example
Start delimiter 0 0xTE
Length MSB 1 0x00
LSB 2 Oxle
Frame type 3 0x10
Frame ID 4 0x01
64-bit destination MSB 5 0x00
address 6 o0x13
0xA2
8 0x00
9 0x40
10 0x0A
11 0x01
LSB 12 0x27
16-bit destination MSB 13 0xFF
network address
LSB 14 0xFE
Broadcast radius 15 0x00
Options 16 0x00

49

RF data 17 0x54
18 0x78
19 Ox44
20 Ox61
21 0x74
22 Ox61
23 0x30
24 0x41
Checksum 25 0x13

Figure 35: Example of Xbee Transmit Request Frame format. The example shows how to send a
transmission to device with address 0x0013A200 400114011, and message “TxDatalB”. [42]

Messages sent from the Coordinator come in 2 types: routine status request and
command. A routine status request tells the Router to send back its sensors information. The
command, on the other hand, tells Router to execute a task, which ranges from turn on/off light,
to turn on the fan until the desire temperature is reached. Our RF data frame consists of 5 bytes.
The first byte indicates the Router’s number (1 or 2). The next 3 bytes are reserved for command
values (for example, temperature command from the user). The last byte shows 0 for command,
1 for routine status request. Specific messages can be found in the Appendix.

On the Router end, it will receive a purely 5-byte message from the Coordinator without
any additional information and carry out a predefined task. For example, when Router 2 receives
message “20010”, it turns a LED on since byte 0 indicates router number (2), byte 1 and 2 are
reserved for future use, byte 3 shows LED state (1 for on, O for off), and the last byte shows
request mode (0 for command, 1 for status request). Similarly, to send a message back to the
Coordinator, we only command the Arduino to write a 5-byte message to Xbee DIN pin.

The Router will send back an acknowledgement message (ACK) if it receives a message
from the Coordinator. Therefore, we need to differentiate between an ACK and an actual
response. Any response message starts with Ox7E, but the third received byte of an ACK is 0x07
while that of an actual response from Router is 0x11. Bytes 5 to 13 of the message indicate the
sender (Router) 64-bit MAC Address and bytes 15 to 20 shows the actual message from the
Router.

4.3. Local-server communication WiFi
4.3.1. ESP8266 WiFi Module Wiring:

Based on thorough research, we decided to use the ESP8266 ESP-01 module (Figure 36
and Figure 37) to provide WiFi access to our microcontroller. The ESP8266 module is a low-cost
WiFi SoC (System-on-Chip) with full TCP/IP capability and is frequently used in
microcontroller project requiring WiFi connection. For communication, the ESP8266 module has
both a SPI and an UART interface.

50

Figure 36: ESP8266 WiFi Module. [37]

3.3V
Rx @ VCC
Memory Jrerten RST
| GPI02 @ CH_PD
8266 GND Tx

Figure 37: ESP8266 Pin Diagram. [43]

The ESP8266 WiFi Module is a System-on-Chip (SoC) with integrated TCP/IP protocol to grant
any microcontroller access to the WiFi network.

51

In our system, we will connect the ESP8266 module to the coordinator Arduino in order
to send information to and to receive commands from the web server. The communication
interface UART will be used for connection. The Vcc pin of the WiFi module should be
connected to 3.3V pin of the Arduino.The CH_PD (chip_enable) pin and RST (reset) pin of the
WiFi module should also be connected to 3.3V for normal operation. The Tx pin of the ESP8266
is connected to the Rx pin of the Arduino, and the Rx pin of the ESP8266 is connected to the Rx
pin of the Arduino. Since the logic level of the ESP8266 module is OV to 3.3V, and the logic
level of Arduino Mega 2560 microcontroller is OV to 5V, we use a logic level converter to
connect these two components. The logic level converter, and the connection diagram between
the ESP8266 module, the logic level converter, and the Arduino Mega 2560 microcontroller are
shown in Figure 38 and Figure 39.

Figure 38: Logic Level Converter from SparkFun, The HV (High Voltage Pin) is connected to 5V
source. The LV (High Voltage Pin) is connected to 3.3V source. [44]

52

fritzing

Figure 39: The connection diagram between the ESP8266 module, the logic level converter, and
the Arduino Mega 2560 microcontroller [45].

4.3.2. ESP8266 WiFi Module Configuration:

To communicate with the ESP8266 WiFi module, we use the AT (ATtention) command
set. The AT commands is a set of instructions used to control a modem. The AT command
format, as well as all the commands, are summarized in Figure 40.

53

Basic WiFI layer TCPIP Layer

AT AT+CWMODE AT+CIPSTATUS
AT+RST AT+CWIAP AT+CIPSTART
AT+GMR AT+CWLAP AT+CIPSEND
AT+GSLP AT+CWQAP AT+CIPCLOSE

ATE AT+CWSAP AT+CIFSR

AT+CWLIF AT+CIPMUX
AT+CWDHCP AT+CIPSERVER
AT+CIPSTAMAC AT+CIPMODE
AT+CIPAPMAC AT+CIPSTO
AT+CIPSTA AT+CIUPDATE
AT+CIPAP +IPD

Figure 40: AT Command Lists. The AT Command is divided into Layer: Basic set up ESP8266, WiFi
Layer to set up Internet Connection, and TCPIP Layer to send and receive HTTP messages [46].

After connecting the ESP8266 WiFi module to the serial interface 2 of the Arduino as in
Figure 29, we used AT commands to configure the WiFi module from the Arduino. The
ESP8266 will return an OK message after each successful command sent. In the setup() function
of the Arduino coordinator code, we started by sending AT+RST command to reset the WiFi
module. We then used the AT+CWMODE=3 command to set up the ESP8266 to dual AP
(access point, or host) mode + station (or client) mode. This setting will configure the ESP8266
to either a WiFi access point, such that it has WiFi name and password, or a WiFi client, so the
module can be connected to a local WiFi. For our application purpose, we want to connect the
ESP8266 to our local WiFi for sending information and receiving commands. The command that
we used is AT+CWJAP = <ssid, pwd>, with ssid is the local WiFi name and pwd is the WiFi
password. And finally, after setting up the WiFi connection, we configured the ESP8266 as a
server using AT+CIPSERVER=1,80 command to open server at port 80, so it can receive
informations sent from our website. The complete list of commands that we used for set up the
ESP8266, is shown in Appendix.

4.3.3. ESP8266 WiFi Module Implementation:

After the set up phase, the ESP8266 module will be fully functional to send and receive
information through TCP/IP using AT commands. To send data to our web server, the first step
is to establish a connection between our ESP8266 open server and our webhost. We
accomplished this task using AT+CIPSTART commands. The ESP8266 will return an OK

54

message if the connection is successful, or return an ERROR message if not. After verifying the
connection, we can send data to server using AT+CIPSEND commands. The syntax of this
command is to first specify the length of our message in characters. After that, the ESP8266
module will start receiving the message. Since our webhost is constructed using HTML and
JavaScript, the message to be sent must also be written in HTML format. The length of the
message to be sent, including the HTML format, must correspond to the specified length,
otherwise errors may occur.

If the message length is correct to the specified length, and the webhost can receive the
message, then the server will return an acknowledgement (ACK) message. This ACK message is
also written in HTML format, and provides information whether or not the server can
successfully decode the message. If not, there are multiple possible reasons for the problem, but
usually this is because the HTML message is not precisely formatted, or the message length is
not greater than the specified length, so our web server received incomplete message. Otherwise,
if the sending message state is successful, indicated by the returned 200 OK ACK message from
the web server, then we can close the connection using AT+CIPCLOSE command. The complete
code to send data from ESP8266 to the server is shown in Appendix.

Receiving commands from the server to the ESP8266 is more challenging. Since the
ESP8266 is connected to the local WiFi, which has its own local IP address and a local server at
this IP address, we need to develop a method to access this local server. We used Ngrok
software, which can establish a secure TCP tunnel to our local IP address. When the Ngrok
program is running, it provides an alternate URL for our local IP address that can be used to
access the local server from anywhere. We used that URL in our webserver code to send HTML
commands to our ESP8266.

After establishing the secured tunnel, we set up an interrupt that check for every message
our ESP8266 received from the web server. If the message is the command from the web server,
we decode the message (in HTML format) to get the command. Then based on which command
the server sent, the coordinator Arduino will decide which function to perform. The code for
receiving and decoding commands sent from the server is shown in Appendix.

The complicated part of the ESP8266 module implementation is to send the result image
from camera module to server. Since the maximum length of each message using AT+CIPSEND
is only 2048 bytes, we need to break out image files into several smaller files and send them
consecutively to the web server. Because each image file is approximately 14kB to 15kB in size,
therefore the ESP8266 need to send 7 or 8 HTTP messages per image. This behavior created
certain problems, such as long delay time for other tasks while sending image and if image
sending process is interrupted, then the image file the server received could possibly be
corrupted. We attempted different ways to reduce the delay time (including, such as further
compress the image file before sending), reduce overhead tasks, in an effort to optimize the
execution time for sending each message. The complete code for sending images to the web
server is shown in Appendix.

55

4.4. User Interface

An important feature of the project is to design and create a friendly, easy-to-use,
responsive and interactive user interface for the system. This is the place where users can view
the current status of different criteria in their houses such as temperature, light luminosity,
humidity, camera sensor, etc. After the master Arduino coordinator sends data to the server, the
data is analyzed in the backend using PHP programming language and is then displayed and
represented in the front-end website in a meaningful way. Here, users can view the temperature,
light radiance and camera status in real-time over-the-air. The data received from the coordinator
is updated continuously and whenever the data is changed in the backend (the server), it will be
reflected immediately in a responsive graph at the website. To create and design a front-end
website, we use standard markup languages, HTML, CSS and Javascript for the layout of
content, style and program for the website. Especially, in order to support a dynamic and
interactive website, we use an additional Javascript framework, the AngularJS. It provides the
tools for designing reactive, responsive and beautiful charts. [32]

For reference, the link to the sample website is: http://smarthomewpi.host22.com/. This
website is different from the original website in that the data of the light luminosity, temperature
and figures of camera are hardcoded, which is not real data. In the original website, the entire
system has to be powered and the data will be updated in real-time. The current website is
designed for the use in laptop or desktop resolution. In the future, the user interface can be
significantly improved by designing responsive website specifically for smartphones and tablets.
Figure 41 demonstrates our designed user interface.

56

http://smarthomewpi.host22.com/

6 ABOUT ~ FEATURES OURTEAM CONTACTUS DASHEOARD

MAJOR QUALIFYING PROJECT

Smart Home System - AY 2016-2017

FUTURE HOME
Automatic Emvironmental Friendly Reliable Secure Energy Efficlent
Wiite some description hero Write some description hero Write some description here Wite some description hero
CURRENT FEATURES
More features are coming!
Lighting Temperature Camera
Wihite some description here

Write some description here Write some description here

WE ARE

Duc Tran

Anh Tran Thinh Ly
Eloctrical Engineer Floctrical Enginoer Eloctrcal Engincer

CONTACT US
P 5 e @
f ”,; Instituta Pack T ? &
5 Sabsoury Pak 0 Worcester '
e BELL HILL

Ingtite
o

Worcester A Museum @ 121

NEWTON
SQUARE

Figure 41: Designed Website for User Interface.

57

4.5. Integration
In this section, we will discuss how individual modules are connected together and how
they perform as a system is described. Overall, the Coordinator frequently requests data from the
Routers’ sensors, and in case it receives a command from the Web Server, the command will be
send directly to the routers to perform specific task.

4.5.1. Routers Implementation

Router 1 is the Light Module, its peripherals consist of a LED, an XBEE module, and a
PIR sensor. Router 1 turns LED on for 5 seconds if the PIR sensor detects any movement. When
it receives command from the Coordinator, it turns the LED on or off accordingly. A Helper
function “readPIR” (discussed in section 4.1.1) is developed so Router 1 can read data from PIR
sensor every loop cycle. When Arduino receives data from RX pin, we read all 5 bytes and
identify if the message is a command from the server or a status request by looking at the 5" byte
(ASCII “0” for command, ASCII “1” for request).

If a command is identified, “checkCommand” function is called to check the whether the
Router 1 should turn light on or off depending on the 4" byte. Figure 42 shows the
implementation of the “checkCommand” function.

viold checkCommand({) {
if (mesa3 == 49) | S/mesa3 = 0

LED status = HIGH; f/LED on
flag command = 1;

i =

lae if [mes33 == 48) | S/messl3 =1
LED status = LOW: f/LED off
flag_command = 0;

1

me330 = 48;

mode = ;J

1

Figure 42: checkCommand()reads the 4th byte of the command, and turn the LED on/off

If a request is identified, Router 1 sends a 5-byte message that starts with its router
number (which is ASCII “1”), two zeroes, and ends with LED status (“1” for on, “0” for off) and
PIR data (“1” if a motion is detected within 5 seconds, “0” if no motion is detected). Figure 43
depicts the code implementation for the Router 1 request response.

58

glae if (mode == 1 z& me3sl == 49) | /{ for Request me3sage

if {ack = 1) |

Serial.println("Sending™); // Print "Sending" to computer console

43); // Router number
Seriall.write(48);
Seriall.write(48);
if ((LED status == HIGH)) { // Write IED status

Seriall.write (49);
} else Seriall.y

if (({wvalue HIGH // Write PIR data

Seriall.write(49);
} else Seriall.write(48);
Serial.println{"End Data™): // Print "End Data" to coIputer console
ack = 0; /{ Beaet flag and variable for next loop
mes3ad = 527
mes30 = 48;
mode = 27

}

Figure 43: Code snippet for Router 1 request response. It starts by writing “Sending” to Computer
console, then send 5-byte status message to Arduino TX pin (DIN pin on Xbee for transmission).

Router 2 is the Heat Module, whose peripherals consist of a LED, a XBEE module, a
temperature sensor, and a small fan. Its core operation is similar to that of Router 1; however,
Router 2 can receive and execute two commands (for LED and fan), and a function to collect
temperature data. If the requested temperature is less than the current temperature from the
temperature sensor, the fan is turn on. Figure 44 demonstrates a Router 2 command execution
code snippet.

void checkCormand({) {
request temp = messd;

if (mesad»4d7) | f/1ED command if byte 4th decimal == 48 or 49 {"0" or "1")
if [mes33 == 49) LED = HIGEH; //LED on
else if (mess3 == 48) IED = LOW; //LED off
1
elze |
request temp = messd; {/read request temperature
Serial.print("Request temp = ");

Serial.println(requeat_temp};
if (request temp<temp) fan on = 1;//turn fan on if request temperature < current temperature from temperature Zensor
else fan on = 0;

.

messl = 48;

mode = 2;

Figure 44: Router 2 command execution code snippet.

4.5.2. Coordinator Implementation
As mentioned in previous chapters, the coordinator module of our system is in charge of
sending commands and receiving information from two routers module with the ZigBee module,
communicating with the webserver using the ESP8266 WiFi module, as well as capturing image
with the ArduCam camera module. Based on these primary functionalities, the coordinator
implementation can be described in three critical steps.

59

The first critical step is the ZigBee communication with two routers. It includes several
steps: receiving messages from two routers module, decoding the messages, and sending
messages to a destination router. To send messages from coordinator to routers, since the
coordinator is in APl mode, the messages must be constructed in the same format as described in
section 4.2. There are two types of messages that the coordinator uses: request message and
command message. The request message is sent from the coordinator to request information
from routers, i.e the LED status at router 1 or the temperature measured at router 2. The
command message is to command a router to execute an operation, such as turning on the LED
at router 1 or turning on the fan at router 2. Both types of messages contain 5-bytes of desired
information, and 4-bytes of destination router’s address. With defined message format, sending
message is very simple. We used the built-in function Seriall.write() in Arduino to send the
message to routers. The message format, as well as the messages that we used, are shown in
Figure 45.

byte lightl_on[23] = {@x7E, ©x00, 0x13, @x10, ©x01, 0x00, Ox13, OxAZ, Ox0@, Ox41, @x52, @xEC, @x6B,
OxFF, OxFE, 0x00, ©Ox00, 0x31, 0x30, @x30, 0x31, @x30, 0x60}; // Command message: turn light 1 on
byte lightl_off[23] = {@x7E, 0x0@, @x13, 0x10, Ox01, Ox00, Ox13, OxAZ, Ox00, Ox41, Ox52, OXEC, Ox6B,
@xFF, @xFE, @x00, 0x00, 0x31, 0x30, 0x30, 0x38, @x30, @x6l}; // Command message: turn light 1 off
byte request_light[23] = {Bx7E, @x00, Ox13, 0x10, 0x01, 0x00, Ox13, @xAZ, Ox0@, Ox41, @x52, @xEC, @x6E,
OXFF, OXFE, 0x00, Ox00, 0x31, 0x30, Ox30, 0x30, Ox31, Ox60}; // Request message:
// request information of the light module

byte lightZ_on[23] = {@x7E, @x00, 0x13, @x10, Ox01, Ox00, 0x13, OxAZ, 0x00, Ox41, Ox52, OxEC, @xD7,
@xFF, BxFE, @x00, Ox08, @x32, 0x30, 0x30, Ox31, 0x308, @xF3}; // Command message: turn light 2 on
byte lightZ_off[23] = {@x7E, @x0@, @x13, Ox10, Ox01, 0x00, 0x13, OxAZ, @x00, Ox41, Ox52, @xEC, @xD7,
OXFF, OXFE, Ox00, Ox00, Ox3Z, 0x30, Ox30, 0x3@, Ox30, OxF4}; // Command message: turn light 2 off
byte request_temp[23] = {@x7E, 0x00, @x13, @x10, Ox01, @x00, Ox13, OxAZ, 0x00, Ox41, Ox52, @XEC, @xD7,
OxFF, @xFE, Ox00, Ox00, @x32, 0x30, 0x30, 0x30, @x31, OxF3}; // Request message:
// request information of the heat module
byte command_temp[23] = {@x7E, @x00, @x13, @x10, Ox01, @x08, Ox13, OxAZ, 0x00, Ox41, Ox52, @XEC, @xD7,
OxFF, @xFE, Ox00, Ox00, @x32, 0x30, @x30, 0x30, @x30, ©@xF4}; // Command message: turn heat on
/7 to the desired temperature

Figure 45: ZigBee message format and the message that are used. The 14th to 17th bytes are the address
of the destination router, and the 5 bytes just before the last byte is the data to be sent.

For receiving a message from the routers, the only type of message that the coordinator
can receive is the messages with each router’s status. In particular, these messages provide
information of the LED (from router 1) or the fan module and the temperature (from router 2).
Therefore, for simplicity, instead of dedicating an interrupt to listen for every message from the
routers, the coordinator will send a request (as discussed above) to both routers frequently, at a
period of 5 seconds. By receiving the request message, the router will then send a response.

The respond message from the router has two different parts. The first one is an
acknowledge (ACK) message, generated by the router’s ZigBee module to indicate it has
received the request message. The second part is the actual message that contains the desired
information from router modules. As mentioned in previous chapters, a ZigBee message is
padded with several additional bytes. The actual message is only the last 5 bytes of the message,
excluding the checksum byte, and the only additional information required is the 4 bytes of
router’s address to know the origin of the message. In order to extract the exact information, the
code first checks for the ACK message. The first three bytes of the ACK message are 0X7E,
0x00 and 0xQ7. The coordinator checks for these three bytes to ensure receiving the ACK

60

response for its sent request. The length of an ACK message is always 10 bytes. Then, by
indexing byte by byte of the response message, the code will detect the 4 bytes of router address
and 5 bytes of information. The complete code for sending ZigBee message and decoding
responded ZigBee message are shown in the Appendix.

The next primary task of the coordinator is the WiFi communication with the webserver.
Communication includes two parts: send the message to, and receive message from the
webserver. There are two functions for sending message in the coordinator’s code. The first
function is for sending status data from the coordinator to webserver. We implemented this
function using the AT commands mentioned in 4.3.3. The message format is HTTP 1.1 and the
data that is embedded in the message is in JSON format. The code also checks for responding
HTTP message from the web server for each AT command to check the sending status. These
responding messages will later on be erased from serial buffer of the serial interface. The HTTP
message and the JSON data format are shown in Figure 46 and Figure 47.

string postRequestd =

"GET /" +uri + "7" + json + " HTTP/L1.1"; // first line of the HTTP Get message
String postRequestl =
"Host: " + server; // second line of the HTTP Get message

Figure 46: HTTP GET message format for sending JSON data
“uri” is the name of the php file that handle receiving data on the web server. “json” is the data to be
sent in json format, and “server” is the URL of the web server.

{"name" :"0ccupancy2" ,"sender":1,"time" :171,"value": 18},
{"name" :"0ccupancy2" ,"sender":1,"time" :172,"value" : 18},

{"name":"0ccupancy2"”,"sender":1,"time":173,"value" 1187},

Figure 47. JSON data format. Each JSON object has multiple keys and values
“sender” is the router that sent the JSON data. The data “time” is a counter value that we use to keep
track of sending time; and data “value” is the temperature value from the router to the heater module.

The second function is used to send images to the web server. The main difference
between sending images and sending JSON data is the file size. Image file sizes typically exceed
the limit of 2 kB for each AT+CIPSEND command. In our case, with 640x480 in dimensions
and 2MP resolution, the result JPEG files from the camera module are typically 14 to 15 kB.
Therefore, as mentioned before, for each image the coordinator has to send 7-8 HTTP messages.
These messages are formatted to send .txt file, and each .txt file contains a part of the binary data
of the JPEG image file. When received by the webserver, these files will be assembled into one
JPEG image file and displayed. The HTTP message format for sending image will be shown in
Figure 48.

61

start_request = start_request +
"\n--AaB@3xin" +
"Content-Disposition: form-doto; name=\"userfile\"; filename=""CAM.TXT%"\n" +
"Content-Transfer-Encoding: binaryinin”;

String postRequest® = "POST " + uriCamera + " HTTP/L.1",

String postRequestl = "Host: " + server;

String postRequest? = "Content-Type: multipart/form-data; boundary=AaB@3x",

String postRequest3 = "Content-Length: " // The message length is inputed here.

end_request = end_request + "\n--AoB@3x--\n";
/7 in file upload POST method need to specify arbitrary boundary code

Figure 48: HTTP POST message for sending an image file date. This HTTP message indicates the
sending of binary data as a file CAM.TXT to the “userfile” folder in the web server.

For receiving commands from the web server to the Arduino, we set up an interrupt on
serial interface 2 to detect incoming messages. This interrupt, in turn, will call the
httpCommand() function, which will decode the received HTTP messages and retrieved the
commands. After the commands are retrieved, according to which commands it is, the code will
send corresponding commands to the corresponding router. The complete code for receiving and
decoding HTTP messages are shown in Appendix.

The final primary task of the Coordinator is to take an image from the ArduCam camera
module. The ArduCam Mini 2MP module is provided with supporting library, and it is
connected to the Coordinator using the SPI interface. For our implementation, initially the code
open the SPI communication between ArduCam module and the coordinator using SP1.begin()
function. Then it will attempt to write a sample byte to a register on ArduCam SPI bus, and later
read the byte at that register to verify the functionality of the SPI bus. Next, setup code checks
for the register CHIPID of the camera sensor used by ArduCam module, to verify it is the correct
version OV2640. Finally, the code sets the format of the result image to JPEG, sets JPEG image
size to 640x480, initializes the camera module and clears its FIFO flags using functions provided
in the ArduCam library. The complete setup code for camera is shown in Figure 49.

62

A4 Setup for Camera, resolution 648x488, compresssed file type JPEG
pinMode(Cs, QUTPUT); 4/ set the C5 as an output:
5PI.begin(); // initialize 5PI

JfCheck 1f the ArduCaM 5PI bus is 0K
myCAM. write_reg(ARDUCHIP_TEST1, @x55);
temp = myCAM."EUG_"EG{#RELCPIP_TEST;)ﬂ
if (temp !'= @x55) {
Serial.println("SPI1 interface Error!”);
while (1D;
1

F4 Check if the camera module type is OVZ648

myCAM. wriensorRegs_B(@xff, @x@l);

myCAM. rd5ensorRegE_E(OVZ2E4@_CHIPID_HIGH, &wvid);

myCAM., rdSensorReg8_8(0VZe4@_CHIFID_LOW, &pid);

Serital.printlnCvid, HEX);

Serial.printlnCpid, HEX);

if (Cvid !'= @x26) || (pid != @x42)) {
Serital.println"Can’t find OVZ648 module!”™);
while (13);

1

else {
Serial.println"OVZedd detected."”];

1

A4 Change to JPEG capture mode and initialize the OVZ648 module
myCAM. set_format(IPEGD; myCAM. InitCAMOD;

my CAM. OVZ2648_set_JPEG_size(OVZ640_640x488);

Serial .print{"oddx488:"];

Serial.println{OVZe48_640x4887 ;

myCAM. clear_fifo_flag(); myCAM.write_reg{ARDUCHIP_FRAMES, @x@@),;

Figure 49: Camera setup code. Due to hardware limitation, we only used image size of 640x480

After being setup, taking image from ArduCam camera is straightforward. The capturing
process is, first the FIFO flags are cleared and the FIFO bus of the camera module is flushed, to
capture the new image. After the image was captured using the library function start capture on
the input ArduCam object, the code used SPI.transfer() function to read the image bytes by bytes
to the Arduino and store in a buffer. This buffer’s size, 1781 bytes, is the maximum size of data
that could be sent in each AT+CIPSEND command instead of 2048 due to the HTTP format
overhead. For each time the buffer is filled, the code will send this buffer data in .txt format to
the web server and clear the buffer. The process is repeated until the entire image has been sent.
The complete codes for capturing image, as well as sending image to the web server, are shown
in Appendix.

By predefining the primary functionalities, the coordinator’s operation becomes simple to
implement. The coordinator will send a request message for each router at 5s interval, to request
their status data and send them to the web server. The 5s interval is achieved using a Timer
object. The sending process can be interrupted if the coordinator receives a command from the
web server. Whenever there is a command from a web server is detected, an interrupt will be
raised and the coordinator will suspend other tasks to decode the message and send the
corresponding commands to the corresponding router, before resuming its current tasks.

When taking an image, whenever motion is detected by checking the distance measure
using an ultrasonic sensor, images will be captured and send to the webserver for each 2 seconds

63

with a defined number (in our code) of total images to be sent. This action also has higher
priority when it comes to sending JSON data to the web server and receiving commands from the
web server, such as when an image is sent these tasks are suspended and are only resumed when
the image sending process is finished. The code for reading distance from ultrasonic sensor is
shown in Figure 50. The loop() function code is shown in the Appendix.

vold readSonic() {
digitalWrite(trig, LOW), //trig off
delayMicroseconds(3);
digitalWrite(trig, HIGH); /7 trig on
deloyMicroseconds(1@);
digitalWrite(trig, LOW), /i trig off
duration = pulseIn{echo, HIGH);
distance = int{{duration / 2) * 8.834); // calculate distance

Figure 50: readSonic() function
The output of this function is the distance between the sensors and the detected moving object.

4.5.3. Web Server Implementation

In this section, after receiving sensor data (which includes the occupancy status) the
temperature and picture captured by the camera from the coordinator, the server processes the
data in the backend, analyzes the results, organizes and manages them into the corresponding
categories in the front-end website of the user interface. Specifically, the light luminosity and
temperature are graphically presented in a responsive graph in real-time. The image captured by
camera is updated frequently and changed whenever a new image has been sent to the server
from the coordinator. Figure 51 visually demonstrates the data flow in our Smart Home System.

64

Data Flow

Front-end user interface

Backend Server ;
¢ (HTML, CSS, Javascript,
(IQuery, PhF) — AngularJs, jQuery)
WiFi

Arduino

. ec

y (Temperature
— Module)

Coordinator - The Master
Arduino

. Arduino
i Occupanc
ZigBe, (pancy

Module)

Figure 51: Data Flow in our designed system. After the data is sent to the server by the coordinator (the
master Arduino) it is processed and analyzed in the backend before being presented in the front-end
website of the user interface.

As discuss in section 4.4, which deals with the design and implementation of the user
interface, we utilized the PHP server programming language for the server backend side and the
standard markup languages (HTML, CSS, Javascript) and Javascript framework, the AngularJS
for the front-end side. These web programming languages are the necessary tools to not only
design a fully-functional, user-friendly website, but also to create an interactive and responsive
user interface.

5. Results

5.1. Functionality Testing

The final prototype has the four main functionalities. The first one is coordinator’s ability
to receive commands from the webserver, receive information from routers and router’s
information and camera images to the webserver. The second functionalities are the web UI’s
ability to send commands to and receive information and images from the coordinator, as well as
display these information and images. The third functionalities are the routers’ ability to receive
ZigBee commands from the coordinator, and use these commands to control the corresponding
peripheral modules.

65

We conducted various functionality tests to verify the capabilities of our system. For the
first functionalities testing, we dedicated one computer as a connection host, where the ngrok
program runs to provide a secure TCP connection to the coordinator. One computer was
dedicated to open the web Ul for controlling and monitoring the system. The two routers with
peripherals were connected to 12V power supply. The coordinator module was connected to a
laptop to monitor its serial interfaces. To test the communication with the two routers, we
monitored the serial interface that connect to the ZigBee module to check for data coming from
routers every 5 seconds and verify the format and information correctness. To test the ability to
send information to the webserver, we checked for the JSON data file that continuously being
updated with data sending from the coordinator for information correctness, as well as the web
Ul display the correct information/images sending from the coordinator. To test the ability to
receive commands from the web server, we monitored the serial interface that connected to the
WiFi module to check for commands information received whenever a button is pressed. The
monitored information on the coordinator is shown in Figure 52 and Figure 53.

TCP connection ready 1
Length: 133 Get Pin Number
Packet sent 1

Send Command
+IPD,8, 267 HTTP/1.1 208 0K

Date: Sun, 19 Feb 2817 21:51:54 GMT ACK 69

Content-Type: text/html; charset=UTF-8 :
Content-Length: @ Recelve Command

Connection: keep-alive EE]_BEFE%EE
Server: awex

X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff

X-Request-ID: e9347519f9e289caf84359cf3af@8cls

CLOSED

Figure 52: Response message from the Wifi module indicating successful delivery of JSON data. On the
left is the response message for successfully sending data to the web server. The first line indicates
establishing the TCP connection. The second line indicates the length of the HTTP message. The third
line indicates that the message has been sent. Next, the HTTP response indicates successful reception of
the message. The last line indicates the closing of the TCP connection. On the right is the sample message
for receiving commands from the web server. The first line and second line indicate reception of a
command from the webserver to turn on/off the LED in router 1. Next is the status of forwarding the
command to router 1. The fourth line indicates the time in milliseconds between sending the command
and receiving the acknowledgement message from router 1, and the last line is the acknowledgement
message in hexadecimal.

66

Send Command

ACK @27

Recelve Command

Get Data

SBO13A 0415 ECEE9EF51315303830304ERouter 1
Time for receiving and decoding message:18
Total Time Spent

46

Figure 53: Example of sending request message and receiving requested information from router 1. The
first two lines, as mentioned in figure 53, indicated the time in milliseconds between sending the request
message and receiving the acknowledgement message. The third, fourth and fifth line indicates receiving
of requested information from router 1, with the fifth line is the message in hexadecimals. In the message,
“4152EC6B ” is the MAC address for the router 1 ZigBee module, and “3130303030" is the requested
information in hexadecimals. All time measurements are in milliseconds.

For the web Ul testing, we retained our testing configuration. We monitored the JSON
database files that contains information and images and verify with the information and images
sent from the coordinator. We wanted to verify if the files are updated correctly and if the stored
information is in the correct format. We also verified the consistency between the data stored in
our web database and the data displayed on the webserver.

Lastly, to test the router’s functionalities, we sent various commands from the webserver
to check if the LED in router 1 was turned on/off, the LED in router 2 was turned on/off, or the
fan module was turned on/off. We then monitored the serial interfaces of the routers, to check if
they receive the corresponding commands from the coordinator, and if they turned the
peripherals on/off. Figure 54 shows the monitored information on router 1. The monitored
information on router 2 is shown in Figure 55.

Beceive Data
3130303031
Sending

Figure 54: An example of a requested message received from the coordinators at router 1. The message
is in hexadecimals. The first byte of the message (31, which is character ‘1’ in ASCII) indicates the
destination routers. The fourth byte (30, which is character ‘0’ in ASCII) is used to command the LED
turning on or off. However, the fourth byte will only be considered if the fifth byte value is 30, which
indicates command message. For this example, the fifth byte is 31, which indicates a request message.

67

receive
3230301230
Bequest temp = 1

W]

Figure 55: An example of a command message received from the coordinators at router 2. The message
is in hexadecimals. The first byte of the message (32, which is character ‘2’ in ASCII) indicates the
destination routers. The fourth byte (12, which is 18 in decimal) is used to turn the fan on to decrease the
temperature to 18°C. The fourth byte will only be considered if the fifth byte value is 30, which indicates
command message. For this example, the fifth byte is 30.

To test the entire system, we combined the three above tests. We first monitored the
routers to check if they received the requested messages from the coordinator each 5 seconds,
and if they sent the respond message back to the coordinator. We then monitored the coordinator,
checking if the message is received and matched the monitored message on routers, and
checking if the information retrieved from the message is packaged into JSON-formatted data
and forwarded to the web server. Lastly, we checked the database file on our webhost to find the
message sent from the coordinator, and verified if the Ul has updated with the new message.

For receiving and executing commands from the webserver, when a button was pressed
on when the required temperature is entered on the web Ul, we first monitored the coordination
for this command. Then, we monitored the corresponding router module to see if the commands
are forwarded from the coordinator to the router. Finally, we checked if the light is turn on/off, or
the fan module is turned on/off based on the corresponding commands.

The testing result was encouraging and matched our expectation. The lights are correctly
turned on/off if the users press the corresponding button on the web Ul. The fan module is
correctly turned on if the users enter the required temperature if less than the current temperature
(measured by the temperature sensors) and turned off if it is higher. The web Ul is correctly
updated based on the information from routers. A link to the video that showcases the full
functionality demonstration of our system is provided in Appendix.

After verifying all functionalities, we next tested for transmission robustness of our
system. The ZigBee communication works perfectly, even if we placed each router and
coordinator in different rooms to maximize the transmission range. The data sent and received
from the ZigBee communication was always consistent, and the latency between sending a
request message, and receiving a response message, is less than 200 microseconds most of the
time.

The WiFi communication, however, still has certain issues. These issues, unfortunately,
are beyond our ability to correct or improve. The first issue is the message length limitation of
the AT commands for the ESP8266 module. Since the maximum message length is only 2048
bytes, to send an image to the webserver the image must be divided into multiple smaller files
and sent multiple times. For this reason, there is a possibility that the image received by the
server can be corrupted if the connection is interrupted between each send. The second issue is
the web server. Since we are using a free online webhost for our project, this server is not
reliable, as we can’t access the online database and our web Ul sometimes. However, aside from

68

these two issues, the overall performance of our system communication is adequately good and
meets our expectation.

5.2. Case studies
In this section, we will discuss the performance of the Smart Home System in extreme
situations: severe temperature, and WiFi module losing connection.

5.2.1. Severe temperature Detection and Notification
Smart Home System ability to detect severe temperature and notice user is suggested.
When the server collects a temperature value (from Router 2) greater than 40 degree Celsius, an
email is sent to the user to warn them of extreme temperature at their home. An example of the
extreme temperature warning can be found in Figure 56. One possible cause of this temperature
value might come from malfunction of the temperature sensor, TMP36. Therefore, users can still
go to the website and observe their houses from the security camera.

From: Home <smarthomewpi@gmail.com >
Subject: CRITICAL TEMPERATURE ALERT!
Date: February 14, 2017 at 13:29:52 EST

To: <dhtran@WPLEDU =

Sir,
The temperature is over 40C/104F!

I have turned down the heat.

Your home.

Figure 56: Example of severe temperature warning sent from server.

5.2.2. Breakdown of WiFi connection

The ability to recover from WiFi connection breakdown at the Coordinator is the main
difference between our architecture and Central Hub architecture. By providing a backup WiFi
module (ESP8266) and setting up ngrok for Router 1, the system still maintains connection to the
server, even if the WiFi module on the Coordinator fails. The code snippet in Figure 57 describes
verification of WiFi connection. If the WiFi module returns “No AP” when AT command
“AT+CWIJAP?” is issued, the WiFi connection is broken and the indicator “wifi_status™ is set to
1. Then, Coordinator will stop its normal operation and send hard-coded special messages to
Router 1 (message “11000”) and Router 2 (message “11111”) to indicate this failure mode.

69

}

vold wifi_Status(){
SerialZ.println{"AT");
delay({20a);
if (Seriall. find{"0K"3)4
wifistatus = @;

Iy
else {

wifistatus = 1;

return;
Iy
SerialZ.println{"AT+ONIAP?");
delay({20a);

if (Seriall.find("No AP")2{
wifistatus = 1;
return;

Iy

else {
wifistatus = @;

Iy

Figure 57: Code snippet of WiFi verification with AT command.

Using the same reading mechanism indicated in section 4.2, when Router 1 and Router 2
detect “WiFi failure” messages, they both changed their Xbees configuration in order to talk to
each other (Routers were originally talking to Coordinator only). Figure 58 demonstrates the
code snippet for setting new configuration for the two Routers. Router 1’s destination has to
change to Router 2, and vice versa.

T

Seriall .write ("+++");
delay (1000} 2
while (Seriall.
Seriall.write|
delay {1000} ;
while (Seriall.
Seriall.write(
delay (1000} 2
while (Seriall.
Seriall.write
delay (1000} ;
while (Seriall.availakle ()} Serial.write(Seriall.
Seriall.write ("ATCH");
delay {2000} ;

availabkle ()} Serial.write (Seriall.

"ATDL4152ECDTh\nA\E") 7

gvailable()) Serial.write(Seriall.

"RTID1Z23%nh\r"™)

gvailakle()) Serial.write(Seriall.

"ATWRADAET) ¢

read(}):
read()) s
read(}):
read(});

Figure 58: Example of using AT command to set Xbee configuration parameters. AT command starts with
“+++" to turn Xbee into configuration mode. It is followed by destination address. In this case, Router 1
destination address is set to “4152ECD7”, which is the MAC address of Router 2 instead of the
Coordinator’s address. We also set the Network ID (discussed in section 4.2) to 123 (original ID) since
we notice the ID parameter got scrambled after we set the new destination address. After that, “ATWR”
IS sent to save all configuration parameters to Xbee. It ends with “ATCN” to get out of configuration

mode.

70

WiFi module start-up operations (reset, connect to household WiFi) and “ngrok™ set up
on Router 1 are executed in “setup()” phase of the code. Router 1 will effectively be the new
Coordinator, but it still operates in transparent mode for the simplicity sake. Therefore, it will
send a 5-bytes request of command to Router 2 instead of 23-bytes message as of APl mode. All
of Router 1 messages to Router 2 are kept identical to Coordinator message (5-byte at the end
before the Check sum byte).

Moreover, Router 1 updates data on a different JSON file (“light data2.json”) on the
server. When the server detects an increase in size of this JSON file, it turns into WiFi failure
mode, and operate with “ngrok™ address of Router to plot data. It also sends an email notification
to user indicating there is a problem with the Coordinator WiFi module.

In a nutshell, Router 1 takes over the responsibilities of Coordinator in WiFi failure mode
as it sends occupancy data and temperature data to the server, and delivers commands from
server.

6. Deliverables
After successfully implementing every proposed functions and features of the Smart
Home System, it is necessary to package our system and build the prototype for demonstration.
In this section, we discuss packaging of each module as well as building a house prototype.

6.1. Modules Packaging

For the purpose of deliverable, we design and organize modules in separate boxes
depending on the functionalities of the modules. The boxes will then be put in an appropriate
position in the house prototype model. The first box contains an ultrasonic sensor and a camera,
which will be turned on by the microcontroller regarding to the status of the ultrasonic sensor.
Since the transmitter and receiver of the ultrasonic sensor are at the two front holes, we need to
design the package so that these two holes are apparent and the sensor works most efficiently.
Figure 59 demonstrates our designed box for this module.

71

Figure 59: Packaging of the camera and ultrasonic sensor modules.

Another module contains the PIR sensor and the light that can be turned on by the
microcontroller with detection data from our sensor. Similar to the ultrasonic sensor, the most
sensitive part of the sensor is at the tip of the PIR. Thus, we needed to make sure our designed
package does not block this part and that it has the clearest viewing angle to acquire reliable
results. Figure 60 captures our designed for the packaging of the occupancy sensor.

72

Figure 60: Packaging of the PIR occupancy sensor.

The last box includes the coordinator, which is the coordinator Arduino to receive data
from other microcontrollers via ZigBee communication protocol and upload to server via WiFi.
Unlike the ultrasonic sensor, the PIR sensor and the camera, which needs clear view for the
sensor parts, the coordinator, the ZigBee and the WiFi module are completely inside box.

6.2. House Model Prototype
After having gone through the designed packaging for each module, we had to make a
scaled-down house model prototype for our project demonstration. With the help from Mr.
William Appleyard and advice from Professor Ludwig, our house model is made of plain wood
and then covered by paint and decoration. Table 6 summarizes the dimensions of our designed
house model.

Table 6: Dimension of designed house model prototype

Part Dimension (inch)
Base 28 x 20
Side view 28 x 12
Front view 20x 12

Figures 61 to 64 depict different viewing angles of the designed home model prototype
for our system.

73

Figure 61: Front-view of the house prototype.

Figure 62: Side-view of the house prototype.

74

Figure 64: Down-view of the house prototype.

As seen in Figure 64, the house model is divided into three separate rooms, each of which
will contain a box of different modules described previously in section 6.1 to demonstrate the
corresponding functionalities of the project.

75

7. Discussions and Future Works

7.1. Initial Cost
This section describes the components and modules that we decide to purchase for our
project, including components, quantities, sources to buy from, and prices. For future work,
when the system is ready to be mass-produced, the total cost of the required materials as well as
the cost for the entire product is necessary to be re-considered by analyzing more deeply the
supply market, and investigating our return on investment and break-even cost point. For the
scope of our project, we would like to concentrate more on the technical implementation and,
hence, we will not go into details of the cost analysis. Table 7 summarizes the components and

modules we purchased.

Table 7: Components List

Components Quantity| Source (Price ($) per unit Total Price
ESP8266 Wi-Fi Module 3|Sparkfun 6.95 20.85
Programmable Xbee Zigbee 5|Digikey 20.25 101.25
Arduino Mega 2560 3|Sparkfun 45.95 137.85
Bidirectional Logic Level
Converter 3|Sparkfun 2.95 8.85
SparkFun XBee Explorer USB 1|Sparkfun 24.95 24.95
SparkFun XBee Explorer Regulated 3|Sparkfun 9.95 29.85
Break Away Headers - 40-pin Male 3|Sparkfun 0.75 2.25
Adafruit PIR Sensor 1| Adafruit 9.95 9.95
Ultrasonic Sensor HC-SR04 1|Amazon 52 5.2
TMP 36 Temperature Sensors 3|Digikey 1.45 4.35
USB Cable A to B - 6 Foot 4|Sparkfun 3.95 15.8
Random

Password Protected Web Server 1{Nerd 11.33 11.33
Shipping Charges 1|Sparkfun 29.4
Shipping Charges 2|Digikey 20.99 41.98

Total 443.86

7.2. Safety Analysis
As stated earlier, because of time constraint and budget limitations, we are not able to
deliver a fully-optimized, commercial version of our proposed smart home system. Instead, as
originally proposed, we have successfully designed, tested and built a fully-functional product
prototype that will be used to demonstrate our prototype architecture. As a result, in this section,
we discuss the safety aspects of our proposed system as well as current functionalities and
features that we implemented. One of the main features in our smart home system that makes us

76

different from other existing products is the low power consumption and environmental
friendliness. We chose energy-efficient Arduino microcontrollers and a low-power short-range
ZigBee communication protocol. As a result, even though all the modules are put in a plastic
cover, they are highly reliable and they are unlikely to overheat or overpower the system. As
safety for users and home owners are always our first priority, we also implemented a
notification system to alert the users and home owners if a dangerous overheating situation is
detected. This is done by sending a critical warning to the users’ email address immediately.
This could help alert the users to perform certain immediate actions to cease the danger.
Moreover, if the situation of abnormal high temperature is identified, the microcontrollers will
turn off all the appliances as well as the sensors to prevent them from being damaged. Figure 65
shows a warning email which is sent to the user’s email address whenever an overheating
situation is detected.

Home February 14, 2017 at 13:30
To:

Sir,
The temperature is over 40G/104F!

| have turned down the heat.

Your home.

Figure 65: Email warning of indoor critical temperature detected.

Also, for the future work, besides developing and extending on the hardware, we should
focus more on the security and provide safety for the user’s home information in the server. As
the world of Internet of Things is growing exponentially, the server will be able to verify the
credentials and privacy of home owners to prevent hackers and intruders. This will be discussed
further in the section 7.3.

7.3. Privacy and Security

Privacy and security are important factors in every Internet of Things system. Since there
are many inter-communications present at all different levels of an lIoT system, there is a high
risk that an attacker/eavesdropper can observe/modify/corrupt the messages being sent. The
attacker can also retrieve important information, such as WiFi password, or even take control of
the entire system by infiltrating to the 10T devices and installing their viruses. These risks are all
realistic, even in the most advanced I0oT devices from the most reputable corporations. An

77

example is an experiment where researchers successfully implanted a virus into the Phillip Hue
light bulbs system by using a drone flying outside the building [47].

For that reason, privacy and security is also one of the most important concerns for our
Smart Home 10T project. Unfortunately, due to the timing constraint and our inexperience in
security protocols, we do not implement any specific protection protocol for our system.
However, we tried to the best of our capabilities to work around this limitation, by choosing
network components that are packaged with secured communication protocols. For the
coordinator-server communication we use an ESP8266 WiFi module, which is connected to our
local WiFi router and therefore protected since WiFi is encrypted. To receive commands from
the web server, we use ngrok, an application that guarantee to provide a secure TCP tunnel to the
local IP address of the coordinator module. For the web server, we use 000webhost, a free online
webhost provider that also guarantees users with SSL certificate, the standard security
technology for establishing an encrypted link between a web server and a browser. And lastly,
for coordinator-routers communication, we used Xbee ZigBee from Digi International, which is
protected by using the AES encryption standard with a 128-bit key, as the ZigBee protocol is
based on IEEE 802.15.4 network standard.

We have to admit that our system is still insecure, as all components listed in the previous
paragraph are either free open source (and therefore not very reliable) or have some known
security issues (such as the ZigBee protocols). Also, we do not have any encryption for the
messages, they are thus vulnerable to attackers if they can exploit the ZigBee or WiFi
communications. For future development, we plan to have a more secur and reliable webhost
provider. We also need a replacement for ngrok since it is an open source project, which could
be vulnerable to hackers since it is freely available from GitHub. Lastly, we need to implement
some level of encryption for our messages, as well as for critical information such as the WiFi
name, password, or the TCP URL in our coordinator.

7.4. Scalability
This section focuses on the ability to be changed in size or scale of the Smart Home
System Prototype. In order to successfully implement the system for a reasonable sized house,
the following aspects must be taken into consideration.

7.4.1. Transmission and server robustness
As previously discussed in section 5.1, our web server is unstable since it is built around
a free resource. An unstable web server is undesirable because users can possibly lose control of
their houses. A better server, which is guaranteed to be alive 100% of the time and has data
saving feature, is necessary in order to scale up the Smart Home System.

7.4.2. Variety of sensing mechanisms
Given the scope of our MQP, we only implemented three modes of sensing: occupancy,
temperature, and camera. A desire Smart Home must have all data about its state available to its
user: water leakage, humidity condition; break-in detection, etc. Thus, one possible future
guideline for this MQP is to implement different sensors, which open up many interesting
applications. On the other hand, the quantity of single sensing mode also has to increase. For

78

example, each room needs a temperature sensor, occupancy Sensor, or security camera, in order
to present full state of its condition to users.

7.4.3. Better User Interface and Easier Integration Scheme

An easier to use, more friendly user interface and integration scheme is desired as a
means to implementing new modules. Unfortunately, our software solution currently needs
custom script for each module, which scales up the amount of work significantly as the number
of modules increases. A semi-automated integration method, which collects user need for the
module (set up as coordinator or router, create undefined task, etc.) but automatically gets
configuration parameters from Xbee connect them to the entire Smart Home Network, will
greatly improve the user experience and help the user smoothly transit into an automated house.

79

8. Summary

As engineering students who are strongly interested in the development of technology,
we are driven by the concept of Internet of Things and their expansion to smart devices that
make homes safer, more secure, less power consuming, and more environmentally friendly. In
the above sections, we have defined a smart home system. We went through the need for a smart
home system, the state of the art of existing products in the market and their limitations. We also
identified different technologies and methods that are currently researched and developed, and
selected the most feasible and applicable for our system. We also came up with a proposed
architecture and design plan, which discuss the advantages over existing products and how they
will be better solutions compared to the current state of the art.

For our project, we have first successfully implemented the Sensor Area Network. The
system contains three different nodes in the network, with two slave nodes and one master node.
Each node has an Arduino microcontroller, a ZigBee module, a Wi-Fi module, a variety of
sensors, and an appliance. The microcontroller is responsible for controlling and fetching data
from the sensors and appliances. The data is transferred either by ZigBee to the master node, or
directly from the master node to our web server by Wi-Fi. Commands from the server is sent to
the master node by Wi-Fi, and is then distributed by the master node to the slave nodes, where
the commands will be executed by the microcontroller to control the appliances. For the
appliances, as discussed in the earlier, we do not use the real appliances for our prototype.
Instead, we just mimic the real appliances with scaled products by utilizing small LED diodes
instead of real LED light bulbs, an on-board camera module instead of a real security camera and
a small fan module as a factor to adjust the temperature sensor status.

Second, we have successfully developed the Web Server. The web server keeps its role as
the gateway for communication between users and our system. Every data obtained from our
Sensor Area Network is sent directly to the web server. Every command from the users is
transferred to the web server before reaching our master node in the Sensor Area Network.
Besides acting as data storage, the web server functions as our software back end. Data
processing, algorithms for handling worst-case scenario with our system, the command structure,
algorithm for different functions that we want to include in our prototype (such as scheduling,
hazard mode, etc.), are implemented completely on the web server.

Third, and as mentioned previously, a Web-based module for the PC or Smartphone User
Interface becomes necessary for users to easily view the current status and control of their home.
The control of our final prototype is done remotely by our self-developed user interface. Because
of the time constraint, we have only developed a web-based user interface on a PC (a future user
interface for a smartphone could be one of the primary development goals). From the user
interface (UI), users should be able to access and view data on the web server in real time and
remotely control each appliance module as well as the entire system. The Ul is developed and
designed in a user-friendly, easy-to-use, interactive way. Useful data from the system is
presented in a graphical way for better visualization and interpretation of data. Controlling each
module is simplified as much as possible in the Ul, with straightforward instructions that non-
technical users could easily use in their first try.

80

References

[1] Gartner, http://www.gartner.com/newsroom/id/3165317

[2] Wikipedia, https://en.wikipedia.org/wiki/Internet of things#Early_history

[3] LIFX Smart Bulb embedded components, http://www.arm.com/innovation/products/lifx.php

[4] NEST Thermostat, https://nest.com/thermostat/meet-nest-thermostat/

[5] Insteon Home Automation System, http://www.insteon.com/insteon-hub/

[6] Insteon, http://www.dirnan.com/controlling-and-automating-pool-attachments-with-insteon/

[7] Reuter, http://www.cse.fraunhofer.org/recent-news

[8] Efficiency Vermont, www.efficiencyvermont.com

[9] 11 Internet of Things Network Protocol, http://www.rs-
online.com/designspark/electronics/knowledge-item/eleven-internet-of-things-iot-protocols-you-need-to-
know-about

[10] Bluetooth Low Energy in Internet of Things, https://www.linkedin.com/pulse/what-bluetooth-
low-energy-means-internet-things-premaratne

[11] ZigBee Wireless Standard, http://www.digi.com/resources/standards-and-
technologies/rfmodems/zighee-wireless-standard

[12] ZigBee Digi, http://www.digi.com/

[13] Z-Wave pros and cons https://iotee.wordpress.com/tag/z-wave-pros-and-cons/

[14] ZigBee Vs 6LowPan for sensor networks, https://www.lsr.com/white-papers/zighee-vs-6lowpan-
for-sensor-networks

[15] Low power Wi-Fi (Wi-Fi Halow) for Internet of Things, http://www.wired.com/2016/01/Wi-
Fi-halow-internet-of-things/

[16] Arduino, https://www.arduino.cc/en/Main/ArduinoBoardMega2560

[17] TI MSP432 Development Board, http://www.ti.com/ww/en/launchpad/launchpads-msp430-
msp-exp432p401r.html

18] Raspberry Pi, https://www.adafruit.com/products/3055?qclid=COfr9YHym88CFcsehgodnTYEMA
poerry

[19] PIR sensor, https://www.adafruit.com/product/189

81

http://www.gartner.com/newsroom/id/3165317
https://en.wikipedia.org/wiki/Internet_of_things#Early_history
http://www.arm.com/innovation/products/lifx.php
https://nest.com/thermostat/meet-nest-thermostat/
http://www.insteon.com/insteon-hub/
http://www.dirnan.com/controlling-and-automating-pool-attachments-with-insteon/
http://www.cse.fraunhofer.org/recent-news
http://www.efficiencyvermont.com/
http://www.rs-online.com/designspark/electronics/knowledge-item/eleven-internet-of-things-iot-protocols-you-need-to-know-about
http://www.rs-online.com/designspark/electronics/knowledge-item/eleven-internet-of-things-iot-protocols-you-need-to-know-about
http://www.rs-online.com/designspark/electronics/knowledge-item/eleven-internet-of-things-iot-protocols-you-need-to-know-about
https://www.linkedin.com/pulse/what-bluetooth-low-energy-means-internet-things-premaratne
https://www.linkedin.com/pulse/what-bluetooth-low-energy-means-internet-things-premaratne
http://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-wireless-standard
http://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-wireless-standard
http://www.digi.com/
https://iotee.wordpress.com/tag/z-wave-pros-and-cons/
https://www.lsr.com/white-papers/zigbee-vs-6lowpan-for-sensor-networks
https://www.lsr.com/white-papers/zigbee-vs-6lowpan-for-sensor-networks
http://www.wired.com/2016/01/wifi-halow-internet-of-things/
http://www.wired.com/2016/01/wifi-halow-internet-of-things/
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
http://www.ti.com/ww/en/launchpad/launchpads-msp430-msp-exp432p401r.html
http://www.ti.com/ww/en/launchpad/launchpads-msp430-msp-exp432p401r.html
https://www.adafruit.com/products/3055?gclid=COfr9YHym88CFcsehgodnTYEMA
https://www.adafruit.com/product/189

[20] Ultrasonic sensor, https://www.amazon.com/Arrela%C2%AE-Hc-sr04-Ultrasonic-
DistanceMeasuring/dp/BOOKKKT7YK

[21] ArduCam, http.//www.arducam.com/arducam-mini-released/arducam mini-1/

[22] Raspberry Pi NoIR, http://www.geeky-gadgets.com/raspberry-pi-noir-camera-version-1-and-2-
compared-06-06-2016/

[23] Pixy CMU Camb, https://www.adafruit.com/products/1906?qclid=COGX9-
Hcoc8CFUk8gQodbNsB3Q

[24] Zigbee Xbee, https://www.digi.com/products/xbee-rf-solutions/embedded-rf-modules-
modems/digi-xbee-zigbee

[25] Zigbee Xbee Explorer USB, https://www.sparkfun.com/products/11697

[26] 9 ways a smart home can improve people’s life
https://blog.smartthings.com/news/roundups/9-ways-a-smart-home-can-improve-your-life/

[27] “Automatic protocol configuration for dependable internet of things application”, Felix
Jonathan Oppermann, Carlo Alberto Boano, Marco Antonio Zyyiga

[28] “A survey based on Smart Homes system using Internet-of-Things”, Pranay P. Gaikwad,
Jyotsna P. Gabhane, Snehal S. Golait

[29] ZigBee vs Z-Wave vs Insteon Home Automation Protocols Comparison
http://www.digitaltrends.com/home/zigbee-vs-zwave-vs-insteon-home-automation-protocols-explained/

[30] Smart Home Challenges and Approaches to Solve Them,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.4469&rep=repl&type=pdf

[31] Electric Usage Chart Tool
https://www.efficiencyvermont.com/tips-tools/tools/electric-usage-chart-tool

[32] Angular Chart
http://jtblin.github.io/angular-chart.js/

[33] Mechanical Temperature Sensor - Thermometer
https://en.wikipedia.org/wiki/Thermometer

[34] Thermistor
https://en.wikipedia.org/wiki/Thermistor#/media/File:NTC bead.jpg

[35] Analog-output temperature sensor TMP36
https://www.sparkfun.com/products/10988

82

https://www.amazon.com/Arrela%C2%AE-Hc-sr04-Ultrasonic-DistanceMeasuring/dp/B00KKKT7YK
https://www.amazon.com/Arrela%C2%AE-Hc-sr04-Ultrasonic-DistanceMeasuring/dp/B00KKKT7YK
http://www.arducam.com/arducam-mini-released/arducam_mini-1/
http://www.geeky-gadgets.com/raspberry-pi-noir-camera-version-1-and-2-compared-06-06-2016/
http://www.geeky-gadgets.com/raspberry-pi-noir-camera-version-1-and-2-compared-06-06-2016/
https://www.adafruit.com/products/1906?gclid=COGX9-Hcoc8CFUk8gQodbNsB3Q
https://www.adafruit.com/products/1906?gclid=COGX9-Hcoc8CFUk8gQodbNsB3Q
https://www.digi.com/products/xbee-rf-solutions/embedded-rf-modules-modems/digi-xbee-zigbee
https://www.digi.com/products/xbee-rf-solutions/embedded-rf-modules-modems/digi-xbee-zigbee
https://www.sparkfun.com/products/11697
https://blog.smartthings.com/news/roundups/9-ways-a-smart-home-can-improve-your-life/
http://www.digitaltrends.com/home/zigbee-vs-zwave-vs-insteon-home-automation-protocols-explained/
http://www.digitaltrends.com/home/zigbee-vs-zwave-vs-insteon-home-automation-protocols-explained/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.4469&rep=rep1&type=pdf
https://www.efficiencyvermont.com/tips-tools/tools/electric-usage-chart-tool
http://jtblin.github.io/angular-chart.js/
https://en.wikipedia.org/wiki/Thermometer
https://en.wikipedia.org/wiki/Thermistor#/media/File:NTC_bead.jpg
https://www.sparkfun.com/products/10988

[36] ArduCam Mini Camera

ArduCAM_Mini_2MP_Camera_Shield_Hardware_Application_Note, www.arducam.com

[37] ESP8266 WiFi Module, www.sparkfun.com

[38] Ultrasonic Wave Terminology,
http://sensorwiki.org/lib/exe/fetch.php/sensors/ultrasound echo ranging.jpg?w=&h=&cache=ca
che

[39] Sparkfun Zigbee Explorer Regulated, https://www.sparkfun.com/products/11373

[40] TMP36 Analog Devices, http://www.analog.com/media/en/technical-documentation/data-
sheets/TMP35_36_37.pdf

[41] Digi Xbee Knowledge Article,
http://knowledge.digi.com/articles/Knowledge Base Article/Interact-with-Programmable-XBee-
using-XCTU/?g=programmable&Il=en US&fs=Search&pn=1

[42] Digi Xbee User Manual,
http://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf

[43] ESP 8266 guide, techtutorialsx.wordpress.com/2016/02/28/esp8266-uploading-code-from-
arduino-ide/

[44] Sparkfun Logic Level Converter, https://www.sparkfun.com/products/12009

[45] Esphant-Arduino Library, https:/libraries.io/github/laCour/esphant-arduino

[46] AT Command Lists, https://room-15.github.io/blog/2015/03/26/esp8266-at-command-
reference/

[47] Watch a drone hack a room full of smart lightbulbs from outside the window,
http://www.theverge.com/2016/11/3/13507126/iot-drone-hack

83

http://www.arducam.com/
http://www.sparkfun.com/
http://sensorwiki.org/lib/exe/fetch.php/sensors/ultrasound_echo_ranging.jpg?w=&h=&cache=cache
http://sensorwiki.org/lib/exe/fetch.php/sensors/ultrasound_echo_ranging.jpg?w=&h=&cache=cache
https://www.sparkfun.com/products/11373
http://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
http://knowledge.digi.com/articles/Knowledge_Base_Article/Interact-with-Programmable-XBee-using-XCTU/?q=programmable&l=en_US&fs=Search&pn=1
http://knowledge.digi.com/articles/Knowledge_Base_Article/Interact-with-Programmable-XBee-using-XCTU/?q=programmable&l=en_US&fs=Search&pn=1
http://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf
https://www.sparkfun.com/products/12009
https://libraries.io/github/laCour/esphant-arduino
https://room-15.github.io/blog/2015/03/26/esp8266-at-command-reference/
https://room-15.github.io/blog/2015/03/26/esp8266-at-command-reference/
http://www.theverge.com/2016/11/3/13507126/iot-drone-hack

Appendices

This section discusses the technical challenges that we have dealt, either solved or not,
throughout the project for future review and experiences. At the end, we also provided the entire
code for the system, including implementation of each module, communication protocols,
integration of the system as well as the server and user interface design.

Real-time data display for user interface:

One of the most important features for user interface in our project is to represent sensors data in
a useful way. Users should be able to view current status and control their homes via our real-
time applications. Whenever the sensor data change, including the temperature sensor, light
sensor and camera, it should be reflected in the front-end website, or the user interface. For data
received from light sensor and temperature sensor, which show the current lighting luminosity
and indoor temperature, we decide to plot the data in two graphs, respectively that should be
updated automatically. For the camera, we show the captured image whenever the server
received an updated picture. There exist different JavaScript frameworks and libraries to
represent the data in graph such as FusionChart and Angular Chart. Both of the libraries are able
to plot the data in a neat, eye-catching graph. However, only Angular Chart provides responsive
and reactive charts. Therefore, we chose Angular Chart, an extension of AngularJS, to represent
the data for real-time applications, the sensor data is then changed according to the received data
from the microcontroller and the image is also updated automatically.

Complete Code:

84

Appendix 1: Server/Website User Interface
Index.html:

src="https://maps.googleapis.com/maps/api/js?key=AIzaSyCfgDOyQX30u8wAOVPCUgZ4
75uvm54FN2c&callback=initMap"

MOP website
rel="stylesheet" type="text/css" href="w3.css"
rel="stylesheet" type="text/css"
href="https://fonts.googleapis.com/css?family=Raleway"
8 rel="stylesheet" type="text/css" href="main.css"
9

10

11

12 class="w3-top"

13 class="w3-navbar" id="myNavBar"

14 class="w3-right w3-hide-small"

15 href="#about">ABOUT

16 href="#feature" >FEATURES

17 href="#team" >OUR TEAM

18 href="#contact">CONTACT US

19 href="1live data.html">DASHBOARD

20

21

22

23

24

AS) class="bgimg-1"

AS

27

28 class="MQP">MAJOR QUALIFYING PROJECT

29 class="w3-opacity">Smart Home System - AY 2016-2017

30

31

32

33 class="w3-container w3-padding-64" id="about"

34 style="text-align: center; padding-bottom: 3%">FUTURE HOME

35 class="quarter w3-margin-bottom"

36 class="w3-card-2"

37
src="https://d30y9cdsu7x1g0.cloudfront.net/png/74467-200.png" style="padding-
top: 9%" class="about-col"

38 style="text-align: center; font-size: 150%;
padding-bottom: 12%">Automatic

39

40

41

42 class="quarter w3-margin-bottom"

43 class="w3-card-2"

44 src="houseplant.png" style="padding-top:

class="about-col"

45 style="text-align: center; font-size: 150%;
padding-bottom: 12%">Environmental Friendly

46

iy

48

49 class="quarter w3-margin-bottom"

50 class="w3-card-2"

51 src="lock a.png" style="padding-top:
class="about-col"

52 style="text-align: center; font-size:
padding-bottom: 12%">Reliable Secure

53

54

55 class="quarter w3-margin-bottom"

56 class="w3-card-2"

57 src="power.png" style="padding-top:
class="about-col"

58 style="text-align: center; font-size:
padding-bottom: 12%">Energy Efficient

59

60

61

62

63

64

65

66 style="padding-bottom: 4%"

67 class="w3-container w3-padding-64" id="feature"

68 style="text-align: center;">CURRENT FEATURES

69 class="w3-opacity" style="text-align: center; font-size: 150%">More
features are coming!

70 class="third w3-margin-bottom"

71 href="1live data.html#light"

72 src="bulb.png" class="about-col"

73

74 style="text-align: center; font-size:
150%">Lighting

75

76 class="third w3-margin-bottom"

77 href="1live data.html#temp"

78 src="temperature.png" class="about-col"
79

80 style="text-align: center; font-size:
150%" >Temperature

81

82 class="third w3-margin-bottom"

83 href="1live data.html#camera"

84 src="eye.png" class="about-col"
85

86 style="text-align: center; font-size:
150%">Camera

87

88

89

90

91

92

93 id="team" style="padding-bottom: 10%"

94 WE ARE

95 class="w3-row-padding" style="margin-top: 64px"

96 class="third w3-margin-bottom"

97 class="w3-card-2"

98

src="https://upload.wikimedia.org/wikipedia/en/1/1b/WPI logo.
style="width: 80%; padding-left: 20%; padding-top: 3%"

9g
100 Duc Tran

101 class="w3-opacity" >Electrical
Engineer

102

103

104

105 class="third w3-margin-bottom"

106 class="w3-card-2"

107

src="https://upload.wikimedia.org/wikipedia/en/1/1b/WPI logo.png"
style="width: 80%; padding-left: 20%; padding-top: 3%"

108

109 Anh Tran

110 class="w3-opacity">Electrical
Engineer

111

112

113

114 class="third w3-margin-bottom"

115 class="w3-card-2"

116
src="https://upload.wikimedia.org/wikipedia/en/1/1b/WPI logo.png"

style="width: 80%; padding-left: 20%; padding-top: 3%"
117

118 Thinh Ly

119 class="w3-opacity">Electrical
Engineer

120

121

122

123

124

125

126

127

128 style="height: 50%; width: auto;" id="contact"
129 CONTACT US

130

131 style="height: 80%; margin: 0; padding: 0;"

132 id="myMap" style="height: 100%;"

133

134

135

136

137

138 class="w3-center" style="padding-bottom: 3%;"

139 style="text-align: center;"

140 class="btn" type="button" style="margin-right:

href="index.html">Go to top

141 class="btn" type="button"

href="1live data.html">DASHBOARD

142

143

144

145

146

147 // Add Google Map into Contact Section

148 window.initMap = function () {

149 // function initMap () {

150 var myCenter = new google.maps.LatlLng (42.274148,-71.808372) ;
// set location to WPI

151 var mapProp = {

152 center: myCenter,

153 zoom: 15,

154 scrollwheel: false,

155 draggable: true,

156 mapTypeld: google.maps.MapTypelId.ROADMAP
157 i

158

159 var map = nNew

google.maps.Map (document.getElementById ("myMap"),mapProp) ;
160

161 var marker = new google.maps.Marker ({

162 position: myCenter,

163 map: map

164 b):

165

166 marker.setMap (map) ;

167 // alert ("OK") ;

168 }

169 // google.maps.event.addDomListener (window, 'load', initMap) ;
170

171

172

live_data.html:

1
2 ng-app="chartApp"
3

4
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.5.8/angular.

type="text/javascript" src="jquery.min.js"

src="Chart.js"

src="angular-chart.js"

DASHBOARD
rel="stylesheet" type="text/css" href="w3.css"
rel="stylesheet" type="text/css" href="1live data.css"
rel="stylesheet" type="text/css"
href="https://fonts.googleapis.com/css?family=Raleway"
19
20

21

22

23 class="w3-container w3-top w3-light-grey w3-large w3-padding"

24 class="topContainer">My Dashboard

25

AS

277 class="w3-top"

28 class="w3-navbar" id="myNavBar"

29 class="w3-right w3-hide-small"

30 href="index.html">HOME

31

32

33

34

35

36

37 src="https://www.soti.net/media/5694/internet-of-things.j
style="width: 100%; height: auto; margin-top: 3%;"

38

39

40

41 class="w3-sidenav w3-collapse w3-white w3-animate-left"
style="width: 250px; z-index: 3; margin-top: 10px;"

42 style="font-size: 200%; padding-left: 80px;">Menu

43 href="#1light" class="w3-hover-black" style="font-size: 120%;
padding-left: 10px;">Lighting

44 href="#temp" class="w3-hover-black" style="font-size: 120%;

padding-left: 10px;">Temperature

45 href="#camera" class="w3-hover-black" style="font-size: 120%;
padding-left: 10px;">Camera

46

Y

48

49

50 class="w3-main" style="margin-left: 250px; margin-top: lpx"

51 ng-controller="chartController" id="ngrokIDTesting"
onclick="ngrokChange ()"

52

53 class="w3-container w3-padding-64" id="light"

54 style="text-align: center; font-size: 240%;">Lighting

55 class="cl-box" ng-controller="chartController"

56 class="chart chart-line" chart-data="lightData"
chart-labels="lightLabels" chart-options="options" chart-
colors="1lightColors"

57

58 class="c2-box" ng-controller="chartController"
style="padding-top: 10%"

59 style="font-size: 200%">Light Control

60 id="1" class="led lightButton brightLi"

1

61 id="2" class="led lightButton brightLi"
2

62

63

64

) class="w3-container w3-padding-64" id="temp"

66 style="text-align: center;font-size:
240%">Temperature

67 class="cl-box" ng-controller="chartController"

68 class="chart chart-1line" chart-data="tempData"
chart-labels="tempLabels" chart-options="options" chart-
colors="tempColors"

69

70 class="c2-box" ng-controller="chartController"

71 style="text-align: center; font-size:

200%; ">Current Temperature

72 style="font-size: 300%">{{nowTemp} }

73 style="text-align: center; font-size: x-
large;">Celcius Degree

74 name="tempForm" onsubmit="return validateForm()"

75 name="tempInput" id="temp" class="temp
tempForm" placeholder="Temperature Control" style="font-size: 150%;text-
align: center;"

76 type="submit" id="submitO"
class="submit0 submitButton"

77

78

79

80

81 class="w3-container w3-padding-64" id="camera"

82 style="text-align: center;">Camera

83 class="cl-box" ng-controller="chartController"

84 ng-src="{{cameraURL}}"

85

86 class="c2-box" style="padding-top: 10%;"
87

88 id="4" src="camera-icon.png" class="camImg"

o)

89 class="subInfo">Click on camera to update
90
91
92

93

94

95 src="live data.js"

96

97 document.getElementById ("ngrokIDTesting") .innerHTML ngrokID;
98

99

100 function sendEmail () {

101 emailjs.send("default service","template iPWhGaKg", {name:"DT",

notes:"Test Email"}) .then (function (response) {

102 console.log ("SUCCESS. status=%d, text=%s",
response.status, response.text);

103 }, function (err) {

104 console.log ("FAILED. error=", err);

105 b):

106 b2

107

108

109 function validateForm() {

110 var desiredTemp

document.forms["tempForm"] ["tempInput"].value;

111

112 if (isNaN (desiredTemp) true) {

113 alert ("Enter temperature in number");

114 } else if ((desiredTemp<b5) (desiredTemp>30)) {
115 alert ("Select temperature between 5 and 30");
116 } else {

117 S (document) .ready (function () {

118 S(".submit0") .unbind () .click (function () {
119 desiredTemp

document. forms["tempForm"] ["tempInput"].value;

120

121 $S.get ("http://0.tcp.ngrok.io:16499",
{pin:desiredTemp}) ;

122

123

124

125

126

127

128

129

130 S (document) .ready (function () {

131 S("#4") .click (function () {

132 var p S(this) .attr('id'") ;

S.get ("http://0.tcp.ngrok.i10:16499", {pin:p});
}):

S (document) .ready (function () {
S("#5") .click (function () {
var p S(this) .attr('id") ;
S.get ("http://0.tcp.ngrok.i0:16499", {pin:p});
}):

S (document) .ready (function () {
var isClickedl 0;
S("#1") .click (function () {
isClickedl++;
var p S(this) .attr('id");
$.get ("http://0.tcp.ngrok.io0:16499", {pin:p});

if ((isClickedl%2)==1) {
S("#1") .removeClass ("brightLi") ;
S (this) .addClass ("brightLiOnClick") ;
} else {
S("#1") .removeClass ("brightLiOnClick") ;
S (this) .addClass ("brightLi") ;
bi
}):
})
S (document) .ready (function () {
var isClicked?2 0;
S("#2") .click (function () {
isClicked2++;
var p S(this) .attr('id'") ;
$.get ("http://0.tcp.ngrok.i0:16499", {pin:p});

if ((isClicked2%2) 1) |
S("#2") .removeClass ("brightLi") ;
$S(this) .addClass ("brightLiOnClick") ;

} else {
S("#2") .removeClass ("brightLiOnClick") ;
S (this) .addClass ("brightLi") ;
i

94

live_data.js:

1 var chartApp angular.module ("chartApp", ["chart.js"]);
2 chartApp.controller ('chartController',
3 'Sscope’',

'Sinterval',

'Shttp',

'Stimeout’',

function ($scope, $interval, S$Shttp, Stimeout) {

10 var testURL
"/Users/dhtran/Desktop/MQP/Website/script/services/test.js" "o
Date () .getTime () ;

11 Sscope.getTest function () {

12 Shttp.get (testURL, {

13 cache: false

14 }) .then (function (response) {

15 testURL
"/Users/dhtran/Desktop/MQP/Website/script/services/test.js" "o
Date () .getTime () ;

16 Sscope.content response.data;

17 if (response.data.length 1) |

18 Sscope.ngrokID "WiFi is good"

19

A

21

22

AC] var lightURL "lightData.json"
Date () .getTime () ;

24 Sscope.getLight function () {

25 Shttp.get (1ightURL, {

26 cache: false

277 }) .success (function (result, status, headers,
config) {

28 1ightURL "lightData.json" men
Date () .getTime () ;

29 val g

30 var index 0;

31 for (var i result.length 1; 1
32 val [index result[i] .value;
33 index++;

34 }i

35 Sscope.lightData

36 }):

37 ¥

38 Sscope.getLight () ;

39

40 Sinterval (function () {

41 var x Sscope.lightData[0] .shift () ;

42 Sscope.lightData[0] .push (x) ;

43 }, 1000);

44

45 Sinterval (function () {

46 Sscope.getLight () ;

47 },10000) ;

48 Sscope.lightLabels "8' ago","7' ago","6' ago","5'
ago","4' ago","3' ago","2' ago","l' ago","Now"];

49 Sscope.lightColors

50 "#££9932"

51

52

53

54

55 var tempURL "MotionSensor.json" "o (new
Date ()) .getTime () ;

56 Sscope.getTemp function () {

57 Shttp.get (tempURL, {

58 cache: false

59 }) .success (function (data, status, headers, config)
{

60 tempURL "MotionSensor.json" non (new
Date()) .getTime () ;

61 val g

62 var index 0;

63 for (var i data.length 1; i>=0; i
64 val [index datal[i] .value;

65 index+t++;

66 }

67 Sscope.tempData

68 }):

69 }i

70 Sscope.getTemp () ;
71

72 Sinterval (function () {

73 var X Sscope.tempData[0] .shift () ;

74 Sscope.tempData[0] .push (x) ;

Sscope.nowTemp %2

S

77

78 Sinterval (function () {
79 Sscope.getTemp () ;
80 },5000) ;

81 Sscope.templLabels "6' ago","5' ago","4' ago","3'
ago","2' ago","1' ago","Now"];
82 Sscope.tempColors
83 "#43db25"
84
85
86
87 var imageURL "CameraTemp. jpg";
88 Sscope.cameraURL imageURL "o
Date ()) .getTime () ;
89
90 Sscope.getImage function () {
91 Shttp.get (Sscope.cameralURL, {
92 cache: false
93 }) .success (function (data, status, headers, config)
{
94 Sscope.cameraURL "CameraTemp. jpg" "o
(new Date()) .getTime () ;
95 })
96 i
97 Sscope.intervalFunction function () {
98 Stimeout (function () {
99 Sscope.getImage () ;
100 Sscope.intervalFunction () ;
101
102 }, 5000)
103 h e
104 Sscope.intervalFunction () ;
105
106
107 } else {
108 console.log("bad. File length: %d",

Sscope.content.length) ;

109 Sscope.ngrokID "WiFi is bad";
110

111

112

113 var 1lightURL "lightData.json" e
Date () .getTime () ;

114 Sscope.getLight function () {
115 Shttp.get (1ightURL, {
116 cache: false

117 }) .success (function(result, status, headers, config)

{

118 1ightURL "lightData.json" "o
Date () .getTime () ;

119 val g

120 var index 0;

121 for (var i result.length lg i 0; 1i
122 val [index result[i].value;
123 index++;

124 b2

125 Sscope.lightData

126 });

127 b e

128 Sscope.getLight () ;

129

130 Sinterval (function () {

131 var X Sscope.lightData[0] .shift () ;
132 Sscope.lightDatal[0] .push (x) ;

133 }, 1000);

134

135 Sinterval (function () {

136 Sscope.getLight () ;
137 },10000) ;
138 Sscope.lightLabels "8' ago","7' ago","6' ago","5'

ago","4' ago","3' ago","2' ago","1l' ago","Now"];

139 Sscope.lightColors

140 "#££9932"

141

142

143

144

145 var tempURL "MotionSensor.json" non (new
Date()) .getTime () ;

146 Sscope.getTemp function () {

147 Shttp.get (tempURL, {

148 cache: false

149 }) .success (function (data, status, headers, config)
150 tempURL "MotionSensor.json" "o (new
Date()) .getTime () ;

151 val g

152 var index 0;

153 for (var i data.length 1; 1

154 val [index data[i] .value;

{

155 index++;

156 }

157 Sscope.tempData

158 }):

159 t:

160 Sscope.getTemp () ;

161

162 Sinterval (function () {

163 var X Sscope.tempData[0] .shift () ;

164 Sscope.tempDatal[0] .push (x) ;

165 Sscope.nowTemp 522
166 }, 1000);

167

168 Sinterval (function () {
169 Sscope.getTemp () ;
170 },5000) ;

171 $Sscope.templLabels "6' ago","5' ago","4' ago","3'
ago","2' ago","1' ago","Now"];

172 Sscope.tempColors

173 "#43db25"

174

175

176

177 var imageURL "CameraTemp.jpg";

178 Sscope.cameraURL imageURL "o (new
Date()) .getTime () ;

179

180 Sscope.getImage function () {

181 Shttp.get ($Sscope.cameralURL, {

182 cache: false

183 }) .success (function (data, status, headers, config) {

184 Sscope.cameraURL "CameraTemp. jpg" "o (new
Date()) .getTime () ;

185 });

186 i

187 Sscope.intervalFunction function () {

188 Stimeout (function () {

189 Sscope.getImage () ;

190 Sscope.intervalFunction () ;
191

192 }, 5000)

193 b

194 Sscope.intervalFunction () ;

});
scope.getTest () ;
Sinterval (function () {

Sscope.getTest () ;

Y1)

ngrokID 'Need to be changed';

setInterval (function ngrokChange () {

var scope angular.element ($ ("#ngrokIDTesting")) .scope () ;

console.log(scope.ngrokID) ;

setInterval (function alertTemp () {

var temp angular.element ($ ("#currentTemp")) .scope () ;

if (temp.nowTemp 20) {

100

main.css: (CSS file for styling the index.html)

{font-family: "Raleway", sans-serif}

height: 100%;
line-height 6;

.MQP {text-align: center}
.w3-opacity {text-align: center}
{
text-align: center;
}
.quarter {
width: 25%;
float: left;
padding: 0 8px;

.third {
width g
float: left;
padding: 0 8px;

.half {
width: 50%;
float: left;
padding: 0 8px;

.bgimg-1 {
background-position: center;

background-size: cover;

background-image: url ("home-main.jpg") ;
min-height: 80%;
}
.w3-navbar {
padding: 16px;
float: left;

.about-col {
width: 30%;
height: auto;
margin-left: 35%;
margin-top: 10%;

margin-bottom

text-align: center;
font-size

cursor: pointer;
border-radius <;
background-color: white;
display: inline-block;

border: 2px solid #0c

hover {

background-color: #0

color: white;

{
padding-top: 16
padding-bottom

102

live_data.css: (CSS file for styling the live_data.html)

{

font-family: "Raleway", sans-serif;

O 1 o U b w N

{
text-align: center;
}
.topContainer {
text-align: center;
}
.cl-box {
float
width
}
18 .c2-box {
19 float: left;
20 width: 30%;
21 text-align: center;
22
23 }
24 .headerDash {
25 background-position: center;
26 background-size: cover;
27 background-image
url ("http://www.eclipse.org/smarthome/img/pipes
AL
29 margin-top: 3%;
30 }
31 .w3-sidenav {
32
33 }
34 .w3-main {
35 border-left: solid;
36 border-left-color: #999%a9b;
37 border-left-width: 1px;
38 }
39 .lightButton {
40 font-size: 24px;
41 text-align: center;
42 display: inline-block;
43 webkit-transition-duration:0.4s;

44 transition-duration: 0.4s;

cursor: pointer;
border-radius: 8px;

}

.blueli {
background-color: white;
border: 2px solid #008CBA;

}

.blueli:hover {
background-color: #008CBA;
color: white;

}

.blueLiOnClick {
background-color: #008CBA;
color: white;

}

.redLi {
background-color: white;
border: 2px solid #f44336;

}

.redLi:hover {
background-color
color: white;

}

.redLiOnClick {
background-color
color: white;

}

.greenli {
background-color: white;
border: 2px solid #4CAF50;

}

.greenli:hover {
background-color
color: white;

}

.greenLiOnClick {
background-color
color: white;

}

.brightlLi {
background-color: white;
border: 2px solid black;

}

.brightlLi:hover ({

background-color: #ffff60;
color: black;

CHEN
92 .brightLiOnClick {
93 background-color: #ffff60;
94 color: black;
95 }
96 .subInfo {
97 text-align: center;
98 font-style: italic;
99 1}
100 .camImg {
101 text-align: center;
102 cursor: pointer;
103 }
104 .tempForm ({
105 width: 90
106 border: 2px solid black;

107 border-radius: 4px;
108 }

109 .submitButton ({

110 cursor: pointer;
111 font-size: 2

112 text-align: center;

113 display: inline-block;
114 border-radius 25

115 background-color: white;
116 border: 2px solid black;
117 width: auto;

118 }

119 .submitButton:hover ({

120 background-color: black;
121 color: white;

122

105

Appendix 2: Arduino Code
Coordinator Code:

/***

* FILENAME : coordinator_with_failure_mode.ino

*

* DESCRIPTION :

* Complete code for the coordinator Arduino in Smart Home IOT System
*NOTES: :

* This coordinator code using sample code from opensource ArduCam library for ArduCam
camera module

* The link to the source is provided here:
https://github.com/ArduCAM/Arduino/tree/master/ ArduCAM/examples/mini

*
*AUTHOR : THINH LY, ANH TRAN, DUC TRAN
*

**/

#include <SimpleTimer.h>
#include <ArduinoJson.h>
#include <Wire.h>
#include <ArduCAM.h>
#include <SPIl.h>

#include "memorysaver.h"

#define DEBUGGING // Enabe debug tracing to Serial port.
#define MAX_FRAME_LENGTH 64 // maximum framelength of 64 bytes.

#define CALLBACK _FUNCTIONS 1 // Define how many callback functions you have. Default
is 1.

const int CS =53; // chip select of camera

ArduCAM myCAM(0OV2640, CS);

static const size_t bufferSize = 1781; // maximum buffer size for sending images.
static uint8_t buffer[bufferSize] = {OxFF};

#define DEBUG true

106

byte lightl on[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41, 0x52,
OxEC, 0x6B, OxFF, OxFE, 0x00, 0x00, 0x31, 0x30, 0x30, 0x31, 0x30, 0x60}; // Command
message: turn light 1 on

byte lightl_off[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41, 0x52,
OxEC, 0x6B, OxFF, OxFE, 0x00, 0x00, 0x31, 0x30, 0x30, 0x30, 0x30, 0x61}; // Command
message: turn light 1 off

byte request_light[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41, 0x52,
OXEC, 0x6B, OxFF, OXFE, 0x00, 0x00, 0x31, 0x30, 0x30, 0x30, 0x31, 0x60}; // Request
message: request information of the light module

byte light2_on[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41, 0x52,
OxXEC, 0xD7, OxFF, OXFE, 0x00, 0x00, 0x32, 0x30, 0x30, 0x31, 0x30, 0xF3}; // Command
message: turn light 2 on

byte light2_off[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, OxA2, 0x00, 0x41, 0x52,
OXEC, 0xD7, OxFF, OXFE, 0x00, 0x00, 0x32, 0x30, 0x30, 0x30, 0x30, O0xF4}; // Command
message: turn light 2 off

byte request_templinfo[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41,
0x52, OXEC, 0xD7, OxFF, OXFE, 0x00, 0x00, 0x32, 0x30, 0x30, 0x30, 0x31, 0xF3}; // Request
message: request information of the heat module

byte command_temp[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41,
0x52, 0XEC, 0xD7, OxFF, OxFE, 0x00, 0x00, 0x32, 0x30, 0x30, 0x30, 0x30, 0xF4}; // Command
message: turn heat on to the desired temperature

byte wifiStatusFailed1[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41,
0x52, OXEC, 0x6B, 0xFF, OXFE, 0x00, 0x00, 0x31, 0x31, 0x30, 0x30, 0x30, 0x60};

byte wifiStatusFailed2[23] = {Ox7E, 0x00, 0x13, 0x10, 0x01, 0x00, 0x13, 0xA2, 0x00, 0x41,
0x52, OXEC, 0xD7, OxFF, OxFE, 0x00, 0x00, 0x31, 0x31, 0x31, 0x31, 0x31, OxF1};

/' WiFi SSID and Passwords

String ssid = "MySpectrumWiFia4-2G";

String password = "pinksquirrel283";

/' Web Server URL

String server = "smarthomewpi.000webhostapp.com"”;
/I PHP files for images and json data

String uriCamera = "/esp8266.php";

String uri = "esp8266b.php™;

int inp;

int mess_length = 23;

107

int cameraPosting = 0;
int wifiStatus = 0;
int changeCoordinator = 0;

int jsonPosting = 0;

/I timer for sending request message and receive feedback from router

SimpleTimer timer;

/I Arrays to get router's address and data.
int sender[8];

int data[5];

int faill = 0;

int fail2 = 0;

volatile int pinNumber = 0;
int period = 20;

int counter = 0;

int senderlID = 0;

int a[2];

int prevStatusl = 0;

int prevStatus2 = 0;

int routerl = 0;

int router2 = 0;

int datal = 0;

int data2 = 0;

int post = 0;

int start_index = 0;

int postCamera = 1;
unsigned long distance = 100;

int duration;

108

int request_temp = 0;

int temp;

unsigned long counter_camera = 0;

int camera_status = 0;

unsigned long start_time_camera = 0;

int readData_flag = 0;

int prev_camera_flag = 0;

constinttrig=8; // Set Trig pin for HC-SR04
const intecho =7; // Set Echo pin for HC-SR04
int timerID = 0;

int startindex = 0;

/I Structure for storing sent data from router
struct SensorData {
String name;
int sendFrom;
int time;
int value;
h
intt=0;
#define SENSORDATA_JSON_SIZE (JSON_OBJECT_SIZE(3))
String sendData(String command, const int timeout, boolean debug);
void postData();
[*
* Setup function for ZigBee, Camera and WiFi module
*/
void setup()
{
uint8_t vid, pid, temp;

/I starts serial communication

109

pinMode(trig, OUTPUT); // Set trig pin as output to transmit the ultrasonic wave
pinMode(echo, INPUT); // Set echo pin as input to receive the reflected wave
Wire.begin();
Serial2.begin(115200);
Seriall.begin(115200);
Serial.begin(115200);
/I Bypass the ZigBee module
Seriall.write("\n\r");
Seriall.write("B");
Seriall.printin();
Seriall.printin();
delay(1000);
if (Seriall.find("Bypass™)) {
Seriall.write("B");
}
// Boot up and configure the WiFi module
reset();
connectWifi();
sendData("AT+CWMODE=3\r\n", 1000, DEBUG); // configure as access point
sendData("AT+CIPMUX=1\r\n", 1000, DEBUG); // configure for multiple connection
sendData("AT+CIPSERVER=1,80\r\n", 1000, DEBUG); // turn on server on port 80
sendData("AT+CIFSR\r\n", 1000, DEBUG);
/I set timer for calling the function postData each 5 seconds
timerID = timer.setInterval(5000, postData);
a[0] =0;
a[1] =0;

/I Setup for Camera, resolution 640x480, compresssed file type JPEG
pinMode(CS, OUTPUT); // set the CS as an output:

110

SP1.begin(); // initialize SPI

//Check if the ArduCAM SPI bus is OK
myCAM.write_reg(ARDUCHIP_TEST1, 0x55);
temp = myCAM.read_reg(ARDUCHIP_TEST1);
if (temp 1= 0x55) {

Serial.printin("SPI1 interface Error!");

while (1);
}

/I Check if the camera module type is OV2640
myCAM.wrSensorReg8_8(0xff, 0x01);
myCAM.rdSensorReg8 8(0V2640 CHIPID_HIGH, &vid);
myCAM.rdSensorReg8 8(0V2640_CHIPID _LOW, &pid);
Serial.printin(vid, HEX);
Serial.printin(pid, HEX);
if ((vid '=0x26) || (pid = 0x42)) {

Serial.printIn("Can't find OV2640 module!");

while (1);
}
else {

Serial.printin("OV2640 detected.");
}

/I Change to JPEG capture mode and initialize the OV2640 module
myCAM.set_format(JPEG); myCAM.InitCAM();

myCAM.OV2640_set JPEG_size(OV2640_640x480);
Serial.print(*"640x480:");

Serial.printin(OV2640_640x480);

myCAM.clear_fifo_flag(); myCAM.write_reg(ARDUCHIP_FRAMES, 0x00);

111

}
[*
Check the wifi status and set the global variable wifiStatus
wifiStatus = 1 mean the ESP8266 module is not working
*/
void wifi_Status(){
Serial2.printin("AT");
delay(200);
if (Serial2.find("OK")){
wifiStatus = 0;
}
else {
wifiStatus = 1;
return;
}
Serial2.printin("AT+CWJAP?");
delay(200);
if (Serial2.find("No AP")){
wifiStatus = 1;
return;
}
else {
wifiStatus = 0;
}
}
[*
* Reset the ESP8266 module
*/
void reset() {
Serial2.printin("AT+RST");

112

delay(1000);
if (Serial2.find("OK")) {
Serial.write(Serial2.read());

Serial.printin("Module Reset");

}
}
[*
* connect the ESP8266 module to the local WiFi
*/
void connectWifi() {
String cmd = "AT+CWJAP=\"" + ssid + "\"\"" + password + "\"";
Serial2.printin(cmd);
delay(2000);
if (Serial2.find("OK")) {
Serial.printin("Connected!");
}
else {
connectWifi();

Serial.printIn("Cannot connect to wifi");

}
}
int intArraySum(int A[8]) {
int sum = 0;
for (intj=0;j<8;j++) {
sum = sum + A[j];
}

return sum;

}
void cleanBuffer() {

for (inti = 0; i < bufferSize; i++) {

113

buffer[i] = OXFF;
}
}
[*
* CAMERA
*/
[*
* Read Data From Camera To Buffer
*/
int readToBuffer(int len) {
cleanBuffer();
Serial.printIn("Reading");
byte temp_last, temp;
inti=0;
if (len >= 393216 || len > 1785) {
Serial.printIn("Over size.");
return O;
}
else if (len ==0) {
Serial.printIn("Size is 0.");
return O;
}
while (len)
{
temp_last = temp;
temp = SPl.transfer(0x00);//read a byte from spi
/[Serial.write(temp);
buffer[i] = temp;
len-=1;

i+=1;

114

if ((temp == 0xD9) && (temp_last == OxFF)) { //If find the end ,break while,
return i;
}
}

return i;

ky

[*
* Post Camera Data To Web Server
*/
void httpPostCamera(int len, bool lastPacket) {
cameraPosting = 1;
while (Serial2.available()) Serial2.read();
unsigned long start_time = millis();
Serial2.printin("AT+CIPSTART=0,\"TCP\" \"" + server + "\",80™);//start a TCP connection.
Serial.printIn("AT+CIPSTART=0\"TCP\"\"" + server + "\",80");
if (Serial2.find("OK")) { // if connection is successful
Serial.printin("TCP connection ready");
while (Serial2.available()) Serial2.read();
}
else {
postCamera = 0;
Serial2.printin("AT+CIPCLOSE=0");
if (Serial2.find("OK")) {
Serial.printin("Closed");
}

return;

¥

String start_request = ""'; String end_request = "";
if (lastPacket == true) {

115

start_request = start_request +
"\n--AaB03x\n" +
"Content-Disposition: form-data; name=\"userfile\"; filename=\"CAML1.TXT\"\n" +
"Content-Transfer-Encoding: binary\n\n";
}
else {
start_request = start_request +
"\n--AaB03x\n" +
"Content-Disposition: form-data; name=\"userfile\"; filename=\"CAM.TXT\"\n" +
"Content-Transfer-Encoding: binary\n\n";

ks

end_request = end_request + "\n--AaB03x--\n"; // in file upload POST method need to specify
arbitrary boundary code

uint16_t full_length;

full_length = start_request.length() + len + end_request.length();

byte temp, temp_last;

Serial.printin("Message Length: ™);

Serial.printin(len);

String sendCmd = "AT+CIPSEND=0,";//determine the number of bytes to be sent.
String postRequest0 = "POST " + uriCamera + " HTTP/1.1";

String postRequestl = "Host: " + server;

String postRequest2 = "Content-Type: multipart/form-data; boundary=AaB03x";
String postRequest3 = "Content-Length: ";

/l Length in bytes of the message to be sent

int postLength = postRequestO.length() + 2 + postRequestl.length() + 4 +
postRequest2.length() + 2 + postRequest3.length() + String(full_length).length() + 2 + len +
start_request.length() + end_request.length();

inti=0;

116

Serial2.print(sendCmd);
Serial.print(sendCmd);
Serial2.printin(postLength);
Serial.printIn(postLength);
unsigned long end_timel = millis();
/l Send image file byte by byte
if (Serial2.find(">")) {
Serial2.printIn(postRequest0);
Serial2.printIn(postRequestl);
Serial2.printIn(postRequest2);
Serial2.print(postRequest3); Serial2.printIin(full_length);
Serial2.print(start_request);
unsigned long end_time2 = millis();
while (len)
{
temp = buffer[i];//read a byte from spi
Serial2.write(temp);
/[Serial.write(temp);
len -=1;
i+=1,
}
Serial2.printIn(end_request);
Serial.printin(end_request);
unsigned long end_time3 = millis();
/I if sending successful
if (Serial2.find("SEND OK")) {
Serial.printIn("Packet sent");
while (Serial2.available()) Serial2.read();
}

unsigned long end_time4 = millis();

117

/I close the connection

delay(150);
Serial2.printIn("AT+CIPCLOSE=0");
if (Serial2.find("OK")) {

Serial.printin("Closed");
postCamera = 1;
cameraPosting = 0;
}
/I Measure the total time for sending each message
Serial.print("Start Time: "); Serial.printin(end_timel - start_time);
Serial.print("Find > Time: "); Serial.printin(end_time2 - end_timel);
Serial.print("Write Message Time: "); Serial.printin(end_time3 - end_time2);
Serial.print("Response Time: "); Serial.printin(end_time4 - end_time3);
}
else
{
postCamera = 0;
Serial2.printIn("AT+CIPCLOSE=0");
if (Serial2.find("OK")) {
Serial.printIin("Closed™);
cameraPosting = 0;

by

return;

/I Capture Image, Read Image Pixels To Buffer And Post Image To Server

void Camera(ArduCAM myCAM) { //reads out pixels from the Arducam mini module

118

myCAM.clear_fifo_flag();

myCAM.flush_fifo();

myCAM .start_capture();

while ('myCAM.get_bit(ARDUCHIP_TRIG, CAP_DONE_MASK));

Serial.print(“Picture captured. ");

size_t len = myCAM.read_fifo_length();
Serial.printIn("Capture Length™);

Serial.printin(len);

if (len >=393216) {
Serial.printIn("Over size.");
return;
}
else if (len ==0) {
Serial.printIn("Size is 0.");
return;
}
Serial.print("Length in bytes: "); Serial.printin(len); Serial.printin();
myCAM.CS_LOW(); myCAM.set_fifo_burst(); SPI.transfer(OXFF);
Serial.print("Length: ");
Serial.printin(len);
int numOfRound = (len - 1) / bufferSize;
Serial.print("Number Of Round: ");
Serial.printin(numOfRound);
int remainder = len - (numOfRound * bufferSize) - 1;
int blockLength = 0;
Serial.printin("Remainder: ");
Serial.printin(remainder);

inti;

119

for (i = 0; i < numOfRound; i++) {
unsigned long start_time = millis();
unsigned long end_timel,
if (postCamera ==1) {
start_time = millis();
blockLength = readToBuffer(bufferSize);
[*Serial.printin("Block Length: ");
Serial.printin(blockLength);*/
end_timel = millis();
}
if (blockLength < bufferSize) {
httpPostCamera(blockLength, true);
break;
}
else httpPostCamera(blockLength, false);
unsigned long end_time2 = millis();
Serial.print("Read Time: "'); Serial.printin(end_timel - start_time);
Serial.print("Post Time: "); Serial.printin(end_time2 - end_timel);
Serial.print("Each Round Time: "); Serial.printin(end_time2 - start_time);
}
if (remainder > 0) {
if (blockLength == bufferSize) {
Serial.printIn("Remainder");
remainder = readToBuffer(remainder);

httpPostCamera(remainder, true);

¥

}
myCAM.CS_HIGH();

/IClear the capture done flag

prev_camera_flag = 1;

120

Serial.print("prev_camera_flag =");

Serial.printin(prev_camera_flag);

¥

/*
* Send command/request message to router
*/

void sendCommand(byte message[], int routerNumber, int mode) { /mode = 0 command mode
=1 request

int flag = 0;
int total_start = millis();
while (Seriall.available()) Seriall.read();
Serial.printin("Send Command");
Seriall.write(message, mess_length);
Seriall.printin();
inti=0;
unsigned long ack_start = millis();
/I Wait for ACK message
while (Seriall.available() < 10);
unsigned long ack_end = millis();
Serial.print("ACK :");
Serial.printIn(ack_end - ack_start);
/I Get the ACK message
if (Seriall.available() > 10) {
byte dataByte0 = Seriall.read();
Serial.printIn("Receive Command");
if (dataByte0 == OX7E) {
byte dataBytel = Seriall.read();
byte dataByte2 = Seriall.read();
if (dataByte2 == 0x11) {
for (inti=0;i<18; i++) Seriall.read();

121

dataByte0 = Seriall.read();
dataBytel = Seriall.read();
dataByte2 = Seriall.read();
}
if (dataByte2 == 0x07) { // decode the ACK message
for (inta=0;a<8;at++) {
int txstatus = Seriall.read();

if ((a == 5) && (txstatus !=0)) {

return;
}
elseif(a==7) {
if (mode ==0) {
post = 0;
return;
}
}
}
Il'if

unsigned long start_time = millis();
while (millis() - start_time < 200) { // wait for the response message if request command
if (Seriall.available() > 20) {
dataByteO = Seriall.read();
dataBytel = Seriall.read();
dataByte2 = Seriall.read();
flag = 1,
break;
}
}

unsigned long end_timel = millis();
if (flag==10) {

122

while (Seriall.available()) Seriall.read();
post = 0;
return;

ks

if ((dataBytel == 0x00) && (dataByte2 == 0x11l) && (mode == 1)) { // decode the
response message

Serial.printin("Get Data™);
for (inta=0;a<18;a++) {
int mess = Seriall.read();
Serial.print(mess, HEX);
if (@>0) && (a<9)) sender[a- 1] = mess;
else if (a>11) && (a < 17)) data[a - 12] = mess;
}
/I 1dentify the original router of the response message
if (intArraySum(sender) == 671) {
if (counter ==1) {
Serial.printIn();
Serial.printIn("Fault Packet™);

post = 0;

}

else {
senderID = 0;

routerl = senderID;
datal = data[4];
Serial.print("Router 1");
post = 1;
}
}
if (intArraySum(sender) == 779) {
if (counter == 0) {
Serial.printIn();

123

post = 0;

Serial.printIn("Fault Packet™);
}
else {

senderlD = 1;

router2 = senderID;

data2 = data[4];

post = 1;

Serial.print("Router 2");
}

}
Serial.printIn();

unsigned long end_time2 = millis();
Serial.print("Time for receiving and decoding message:");
Serial.printin(end_time2 - start_time);
}
/I if message sending/receiving failed.
else {
post = 0;
for (inti=0; i< 18; i++) Seriall.read();
return;
}
}

else {
post = 0;
for (inti=0; i< 18; i++) Seriall.read();
return;
}
}

else {

124

post = 0;
while (Seriall.available()) Seriall.read();

return;

k
¥

else {
post = 0;
while (Seriall.available()) Seriall.read();
return;
}
int total_end = millis();
Serial.printIn("Total Time Spent");

Serial.printin(total_end - total_start);

}
/*
* Convert an SensorData object to JSON data type
*/
String serialize(SensorData jdata)
{
String A = /*String("\"") + */String("{") + String("\"") + String("name") + String("\"") +
String(™:") + String("\""") + String(jdata.name) + String("\"*") + String(",");

+ String("));

String C = String("\"") + String("time") + String("\"") + String(":"") + String(jdata.time) +
String(",");

String D = String("\'""") + String("value") + String("\'"*") + String(":"") + String(jdata.value) +
String("'}") /*String("\"")*/;

return A+ B + C + D;

}
/*

* Send HTTP message containing JSON data to the web server
*/

125

void httpPost(String json) {

jsonPosting = 1;

while (Serial2.available()) Serial2.read();

Serial2.printin("AT+CIPSTART=0,\"TCP\"\"" + server + "\",80");//start a TCP connection.

if (Serial2.find("OK")) { // if connection is successful
Serial.printIn(""TCP connection ready");
while (Serial2.available()) Serial2.read();

}

else { // if the connection is not successful
/I close connection
Serial2.printin("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printIn("CLOSED 1"),
while (Serial2.available()) Serial2.read();
jsonPosting = 0;

return;

String postRequest0 =
"GET /" +uri +"?" + json + " HTTP/1.1"; // first line of the HTTP Get message
String postRequestl =

"Host: " + server; // second line of the HTTP Get message

String sendCmd = "AT+CIPSEND=0,";//determine the number of bytes to be sent.;
Serial2.print(sendCmd);

/I determine the length of the JSON message to be sent

Serial.print("Length: "); Serial.printin(postRequest0.length() + postRequestl.length() + 8);
if (senderID == 0) Serial2.printIn(postRequest0.length() + postRequest1.length() + 8);
else if (senderID == 1) Serial2.printIn(postRequest0.length() + postRequestl.length() + 8);
// Send Json data

if (Serial2.find(">")) {

126

Serial2.printIn(postRequest0);

Serial2.printIn(postRequestl);

Serial2.printin();

Serial2.printin();

if (Serial2.find("SEND OK")) { // if sending is successful
Serial.printin("Packet sent");
Serial2.printin("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printin("CLOSED");
while (Serial2.available()) Serial2.read();
jsonPosting = 0;

}

else { // if sending fail
Serial2.printin("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printin("CLOSED 2");
while (Serial2.available()) Serial2.read();
jsonPosting = 0;
return;

}

}
else { // if sending fail

Serial2.printIn("AT+CIPCLOSE=0");

if (Serial2.find("OK")) Serial.printIn("CLOSED 1");
while (Serial2.available()) Serial2.read();
jsonPosting = 0;

return;

¥

* Receive Command From The Web Server
*/

127

void httpCommand() {
if (Serial2.available() && jsonPosting == 0 && cameraPosting == 0)
I check if the esp is sending a message
{
/I Specific string to identify the commands from server
if (Serial2.find("+1PD,"))
{
Serial.printin("Get Pin Number");
delay(50);
int connectionld = Serial2.read() - 48;
/I Get the ID of the TCP connection, subtract 48 because the read() function returns
Il the ASCII decimal value and 0 (the first decimal number) starts at 48
int testl, test2 = 0;

if (Serial2.find("pin=")) { // // advance cursor to "pin=", this information is the router that is
commanded to turn LED on/off

testl = Serial2.read();

test2 = Serial2.read();

if (test2 == 32) { //led command
pinNumber = testl - 48; // get the number after "pin="
Serial.printin(pinNumber);
String closeCommand = "AT+CIPCLOSE=";
closeCommand += connectionld; // append connection id
closeCommand += "\r\n";
sendData(closeCommand, 100, false); // close connection

¥

else { // advance cursor to "temp=", this information is the request temperature for router 2
to turn the

/[fan module on
pinNumber = 3;
temp = (testl - 48) * 10 + (test2 - 48);
String closeCommand = "AT+CIPCLOSE=";

128

closeCommand += connectionld; // append connection id
closeCommand += "\r\n";

sendData(closeCommand, 100, false); // close connection

k
¥

/I if there is no command can be find in the serial buffer, or if the command arrive when the
critical

/I session of sending image to web server

else {
String closeCommand = "AT+CIPCLOSE";
closeCommand += connectionld; // append connection id
closeCommand +="\r\n";

sendData(closeCommand, 100, false); // close connection

}
}
}
[*
* Interrupt On Serial Event 2
*/
void serialEvent2() {
/I Get the commands sent from the web server
httpCommand();
/I Decode the commands, forward to the corresponding router to execute
switch (pinNumber) {
// Turn LED at router 2 on/off
case 2:
{
if (prevStatus2 == 0) {
if (camera_status == 0)
sendCommand(light2_on, 2, 0);

129

prevStatus2 = 1,
}
else {
if (camera_status == 0)
sendCommand(light2_off, 2, 0);
prevStatus2 = 0;
}
pinNumber = 0;
break;
}
/I Turn LED at router 1 on/off
case 1:
{
if (prevStatusl == 0) {
if (camera_status == 0)
sendCommand(lightl_on, 1, 0);
prevStatusl = 1;
}
else {
if (camera_status == 0)
sendCommand(lightl_off, 1, 0);
prevStatusl = 0;
}
pinNumber = 0;
break;
}
/I Turn the fan module at router 2 on/off
case 3:

{

if (camera_status == 0) {

130

request_temp = temp;
command_temp[20] = request_temp;
command_temp[22] = OxF4 + 0x30 - request_temp;
Serial.printin(request_temp);
Serial.printin();
for (inti =0; i < 23; i++) Serial.print(command_temp[i], HEX);
Serial.printIn();
sendCommand(command_temp, 2, 0);
}
pinNumber = 0;
break;
}
default:
break;

}
}
[*
* Send request/command message to routers
*/
String sendData(String command, const int timeout, boolean debug)
{
String response = "";
Serial2.print(command); // send the read character to the esp8266
long int time = millis();
while ((time + timeout) > millis())

{

while (Serial2.available())

{

/I The esp has data so display its output to the serial window

char ¢ = Serial2.read(); // read the next character.

131

response += c;
}
}
if (debug)
{
Serial.print(response);
}
return response;
}
[*
* read from the ultrasonic motion sensor
*/
void readSonic() {
digitalWrite(trig, LOW); // trig off
delayMicroseconds(5);
digitalWrite(trig, HIGH); // trig on
delayMicroseconds(10);
digitalWrite(trig, LOW); // trig off
duration = pulseln(echo, HIGH);
distance = int((duration / 2) * 0.034); // calculate distance
}
[*

* Send request message to router, serialize received data into JSON format and post to web
server periodically (using timer)

*/
void postData() {
if (counter ==0) { // router 1
Il send request message
sendCommand(request_light, 1, 1);
I Serialize JSON data and send to the web server
if (post==1) {

132

SensorData jdata = {"Occupancy”, routerl, t, datal - 48};
String json;
json = serialize(jdata);
String http = String(*'jsonString1=") + String(json);
httpPost(http);

}

counter = 1;
}
else { // router 2
// send request message
sendCommand(request_templinfo, 2, 1);
/I Serialize JSON data and send to the web server
if (post==1) {
SensorData jdata = {"Occupancy2", router2, t, data2};
String json;
json = serialize(jdata);
String http = String(*'jsonString1=") + String(json);
httpPost(http);
t++;
}
counter = 0;
}
}
[*
* Main Code
*/
void loop()
{
wifi_Status();

readSonic(); // read distance from sensors

133

if ((distance < 5) && (readData_flag == 0)) { // check if the objects is in range
start_time_camera = millis();
Serial.printin("Motion Detected");
camera_status = 1;
readData_flag = 1;
}
/[start capturing and sending image.

if ((counter_camera < 1) && (millis() - start_time_camera > 2000) && (camera_status == 1)
&& (changeCoordinator == 0)) {

Serial.print("Take Image "); Serial.printin(counter_camera);
counter_camera++;
Camera(myCAM);
start_time_camera = millis();

}

else if (camera_status == 0 && changeCoordinator == 0) {
/I otherwise, run timer to send JSON data each 5s interval
timer.run();

}

I/l Sending message to routers when the ESP8266 module is disconnected

if (wifiStatus == 1 && changeCoordinator == 0){
sendCommand(wifiStatusFailedl, 1, 0);
sendCommand(wifiStatusFailed2, 2, 0);
changeCoordinator = 1;

}

if (counter_camera == 1) { // stop capturing image
counter_camera = 0;
camera_status = 0;

readData_flag = 0;

}
inp =0;
inti=0;

134

int j;

if (faill == 3) {
/I Router 1 status
Serial.printin("Router 1 fail™);
faill = 0;

}

if (fail2 == 3) {
/I Router 2 status
Serial.printin("Router 2 fail™);
fail2 = 0;

}

}
Router 1 Code:

/***

* FILENAME : router 1 0219.ino

*

* DESCRIPTION :

* Complete code for the router 1 Arduino in Smart Home IOT System

*NOTES :

* The router 1 is designated to be the alternatives coordinator when the coordinator fail.
* In normal working condition, router 1 is in charge on controlling the LED peripheral.
*

* AUTHOR : THINH LY, ANH TRAN, DUC TRAN

*

**/

#include <SimpleTimer.h>
#include <ArduinoJson.h>
#include <Wire.h>

#include <SPI1.h>

135

#define DEBUGGING // Enabe debug tracing to Serial port.
#define DEBUG true

/' WiFi SSID and Passwords

String ssid = "MySpectrumWiFia4-2G";

String password = "pinksquirrel283™;

/' Web Server URL

String server = "smarthomewpi.000webhostapp.com™;
/I PHP files for json data

String uri = "esp8266¢.php”;

/[timer for sending request message and receive feedback from router
int jsonPosting = 0;

SimpleTimer timer;

int timerID = 0;

int temperature = 0;

int senderID = 0;

int strlenght = 5;

int message[5];

int data[5];

int ack = 0;

int mode = 0; //0 for command, 1 for request

int LED =0;

int inputPIR = 2;

int PIR_delay = 0;

int outputLED = 3;

int LED_status = 0;

int value;

int request_temp = 0;

int temp;

136

volatile int pinNumber = 0;
int prevStatusl = 0;
int prevStatus2 = 0;
unsigned long duration;
int distance;
int mess3, messl, mess2 = 0;
int mess4 = 0;
int flag_command = 0;
int counter_command = 0;
int messO = 0;
int post = 0;
int mess_length = 5;
byte light2_on[5] = {0x32, 0x30, 0x30, 0x31, 0x30}; // Command message: turn light 2 on
byte light2_off[5] = {0x32, 0x30, 0x30, 0x30, 0x30}; // Command message: turn light 2 off
byte request_templnfo[5] = {0x32, 0x30, 0x30, 0x30, 0x31};
/I Request message: request information of the heat module
byte command_temp[5] = {0x32, 0x30, 0x30, 0x30, 0x30};
/I Command message: turn fan on to the desired temperature
byte wifi_fail[5] = {0x31, 0x31, 0x31, 0x31, 0x31};
int timer_id = 0;
void postData();
int wifi_on =0;
int counter = 0;
intt=0;
/I Structure for storing sent data from router
struct SensorData {
String name;
int sendFrom;
int time;

int value;

137

j
[*
* Setup function for ZigBee and WiFi module
*/
void setup() {
Wire.begin();
Serial2.begin(115200);
Seriall.begin(115200);
pinMode(inputPIR, INPUT); //Set up sensor input pin, LED output pin
pinMode(outputLED, OUTPUT);
Seriall.begin(115200);
Serial.begin(115200);
Seriall.write("\n\r"); //Bypass Xbee microcontroller
Seriall.write("B");
Seriall.printin();
delay(1000);
if (Seriall.find("Bypass")) {
Seriall.write("B");
}
/I Configure the ZigBee module by entering AT mode
Seriall.write(""+++");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATDL4152ECD4\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATID123\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATWR\n\r");

138

delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATCN");
// Boot up and configure the WiFi module
delay(1000);
reset();
connectWifi();
sendData("AT+CWMODE=3\r\n", 1000, DEBUG); // configure as access point
sendData("AT+CIPMUX=1\r\n", 1000, DEBUG); // configure for multiple connection
sendData("AT+CIPSERVER=1,80\r\n", 1000, DEBUG); // turn on server on port 80
sendData("AT+CIFSR\r\n", 1000, DEBUG);
/I set timer for calling the function postData each 5 seconds
timerID = timer.setInterval(5000, postData);
}
[*
* Reset the ESP8266 module
*/
void reset() {
Serial2.printin("AT+RST");
delay(1000);
if (Serial2.find("OK")) {
Serial.write(Serial2.read());

Serial.printin("Module Reset");

}
}
[*
* Connect the ESP8266 module to local WiFi.
*/
void connectWifi() {
String cmd = "AT+CWJAP=\"" + ssid + "\" \""" + password + "\""";

139

Serial2.printin(cmd);
delay(2000);
if (Serial2.find("OK")) {
Serial.printin("Connected!");
}
else {
connectWifi();

Serial.printIn("Cannot connect to wifi");

}
}
/*
* Send request/command message to router 2 (only when router 1 become coordinator)
*/
String sendData(String command, const int timeout, boolean debug)
{
String response = "";
Serial2.print(command); // send the read character to the esp8266
long int time = millis();
while ((time + timeout) > millis())
{
while (Serial2.available())
{
/I The esp has data so display its output to the serial window
char ¢ = Serial2.read(); // read the next character.
response += c;
}
}
if (debug)
{

Serial.print(response);

140

¥

return response;
}
/*
* read from the PIR motion sensor
*/
void readPIR() { /lread data from PIR
if (value ==0) {
if (PIR delay==1){
value = digitalRead(inputPIR);
PIR_delay = 0;
}
else PIR_delay++;
}
else {
if (PIR_delay == 5000) {
value = digitalRead(inputPIR);
PIR_delay = 0;
}
else PIR_delay++;
}
if (value==1) {
LED_status = 1;
}
else {
LED status = 0;
}
}
/*

* Check if the incoming message is command/request message

141

*/
void checkMode() {
if (mess4 == 48) mode =0; //command
else if (mess4 == 49) mode = 1; //request
}
[*
* Check of the incoming message is to turn the LED on/off
*/
void checkCommand() {
if (messl ==48) {
if (mess3 ==49) { //mess3 =1
LED status = HIGH,; /ILED on
flag_command = 1;
}
else if (mess3 == 48) { //mess3 =0
LED status = LOW; //LED off

flag_command = 0;

}

mess0 = 48;

mode = 2;
}

/1 if receive critical messsage informing coordinator fail
/I configured to be the new coordinator by changing ZigBee configuration
else {
Seriall.write("+++");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATDL4152ECD7\n\r");
delay(1000);

while(Seriall.available()) Serial.write(Seriall.read());

142

Seriall.write("ATID123\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATWR\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATCN");
delay(2000);
Seriall.write(wifi_fail, mess_length);
delay(1000);
wifi_on =1;
}
}
[*
* Send request/command message to routers
*/
void sendCommand(byte message[], int mode) { //0 command 1 request
int flag = 0;
while (Seriall.available()) Seriall.read();
Serial.printIin("Send Command");

Seriall.write(message, mess_length);

/*

* Convert an SensorData object to JSON data type
*/

String serialize(SensorData jdata)

{

143

String B = String("\"") + String("sender") + String("\""") + String(":"") + String(jdata.sendFrom)
+ String(",");

String C = String("\"") + String("time") + String("\"") + String(":"") + String(jdata.time) +
String(",");

String D = String("\"") + String("value™) + String("\""") + String(":") + String(jdata.value) +
String("}");
return A+ B+ C + D;
}
[*
* Send HT TP message containing JSON data to the web server
*/
void httpPost(String json) {
jsonPosting = 1;
while (Serial2.available()) Serial2.read();
Serial2.printin("AT+CIPSTART=0,\"TCP\" \"" + server + "\",80");//start a TCP connection.
if (Serial2.find("OK")) { // if connection is successful
Serial.printin("TCP connection ready");
while (Serial2.available()) Serial2.read();
}
else { // if the connection is not successful
/I close connection
Serial2.printIn("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printIn("CLOSED 1");
while (Serial2.available()) Serial2.read();
jsonPosting = 0;

return;

String postRequest0 =
"GET /" +uri +"?" + json + " HTTP/1.1"; // first line of the HTTP Get message
String postRequestl =

144

"Host: " + server; // second line of the HTTP Get message

String sendCmd = "AT+CIPSEND=0,";//determine the number of bytes to be sent.;
Serial2.print(sendCmd);
I/ determine the length of the JSON message to be sent
Serial.print(Length: "); Serial.printin(postRequest0.length() + postRequestl.length() + 8);
if (senderID == 0) Serial2.printIn(postRequest0.length() + postRequestl.length() + 8);
else if (senderID == 1) Serial2.printIn(postRequest0.length() + postRequestl.length() + 8);
// Send Json data
if (Serial2.find(">")) {
Serial2.printIn(postRequest0);
Serial2.printIn(postRequestl);
Serial2.printin();
Serial2.printin();
if (Serial2.find("SEND OK™)) { // if sending is successful
Serial.printIn("Packet sent");
Serial2.printin("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printin("CLOSED");
/Iwhile (Serial2.available()) Serial2.read();
jsonPosting = 0;
}
else { // if sending fail
Serial2.printIn("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printin("CLOSED 2");
while (Serial2.available()) Serial2.read();
jsonPosting = 0;
return;
}

¥
else { // if sending fail

145

Serial2.printIn("AT+CIPCLOSE=0");
if (Serial2.find("OK")) Serial.printin("CLOSED 1");
while (Serial2.available()) Serial2.read();
jsonPosting = 0;
return;
}
}
[*
* Send request message to router 2, serialize received data into JSON format and
* post to web server periodically (using timer)
* (only when router 1 become coordinator)
*/
void postData() {
if (counter ==0) {
SensorData jdata = {"Occupancy”, 1, t, LED_status};
String json;
json = serialize(jdata);
String http = String("jsonString1=") + String(json);
senderID =0;
httpPost(http);
counter = 1;
}
else {
sendCommand(request_templnfo, 1);
SensorData jdata = {"Occupancy2", 2, t, temperature};
String json;
Serial.printin(post);
/I while (post 1= 1);
Iif (post ==1) {

json = serialize(jdata);

146

Serial.printin(json);
String http = String("'jsonString1=") + String(json);
senderID =1,
httpPost(http);
t++;
I/ post = 0;
'}
counter = 0;
}
¥
[*
* Receive Command From The Web Server
*/
void httpCommand() {
//Serial.printin(*Command");
if (Serial2.available() && jsonPosting == 0) // check if the esp is sending a message
{
Serial.printIn("httpcommand”);
if (Serial2.find("+IPD,"))
{
Serial.printIn("Get Pin Number");
delay(50);
int connectionld = Serial2.read() - 48; // subtract 48 because the read() function returns
Il the ASCII decimal value and 0 (the first decimal number) starts at 48
int testl, test2 = 0;

if (Serial2.find("pin=")) { // advance cursor to "pin=", this information is the router that is
commanded to turn LED on/off

testl = Serial2.read();
test2 = Serial2.read();
if (test2 == 32) { //led command
pinNumber = testl - 48; // get the number after "pin="

147

Serial.printin(pinNumber);

String closeCommand = "AT+CIPCLOSE=";
closeCommand += connectionld; // append connection id
closeCommand += "\r\n";

sendData(closeCommand, 100, false); // close connection

ky

else { // advance cursor to "temp=", this information is the request temperature for router 2
to turn the

// fan module on
pinNumber = 3;
temp = (testl - 48) * 10 + (test2 - 48);
Serial.print("temperature =");
Serial.printin(temp, DEC);
String closeCommand = "AT+CIPCLOSE=";
closeCommand += connectionld; // append connection id
closeCommand += "\r\n";

sendData(closeCommand, 100, false); // close connection

¥
¥

/1'if there is no command can be find in the serial buffer
else {
String closeCommand = "AT+CIPCLOSE";
closeCommand += connectionld; // append connection id
closeCommand += "\r\n";

sendData(closeCommand, 100, false); // close connection

}
}
}
}
[*
* Interrupt On Serial Event 2

148

*/
void serialEvent2() {
if (wifi_on == 1) {// only executed when router 1 become coordinator
/I Get the commands sent from the web server
httpCommand();
// Decode the commands, forward to the corresponding router to execute
switch (pinNumber) {
/[Turn LED at router 1 on/off
case 1:
{
if (prevStatusl == 0) {
flag_command = 1;
Il set LED _status to turn the LED on/off
LED status =1;
prevStatusl =1,
}
else {
flag_command = 0;
LED status = 0;
prevStatusl = 0;
}

break;
}
/[Turn LED at router 2 on/off
case 2:
{
if (prevStatus2 ==0) {
sendCommand(light2_on, 2);
prevStatus2 = 1;

¥

149

else {
sendCommand(light2_off, 2);
prevStatus2 = 0;

}

break;
}
// Turn the fan module at router 2 on/off
case 3:
{
request_temp = temp;
command_temp[3] = request_temp;
for (inti = 0; 1 <5; i++) Serial.print(command_temp[i], HEX);
Serial.printIn();
sendCommand(command_temp, 2);
break;
}
default:

break;

pinNumber = 0;

}
}
[*

* Main Code

*/
void loop() {

if (flag_command ==0) {

readPIR();
}

/I Normal operation (when the coordinator is working)

150

if (wifi_on==0) {

while (Seriall.available()) {
Serial.printin("Receive Data");
delay(10);

mess0 = Seriall.read();

if (messO == 49 || mess0 == 50) {
mess1 = Seriall.read(); /Iread message from RX buffer
mess2 = Seriall.read();
mess3 = Seriall.read();
mess4 = Seriall.read();
ack = 1;
checkMode(); // Check whether message is request/command
Serial.print(mess0,HEX); /[display received message on console for debugging
Serial.print(mess1,HEX);
Serial.print(mess2,HEX);
Serial.print(mess3,HEX);
Serial.print(mess4,HEX);
Serial.printIn();
break;
}
else { // if not receive the message, or the message is not in correct format
/I clear the ZigBee buffer
Seriall.read();
Seriall.read();
Seriall.read();
Seriall.read();
mess0 = 48;

break;

151

¥

if (mode == 0 && mess0 == 49) checkCommand(); // for Command message

else if (mode == 1 && mess0 == 49) { /I for Request message
if (ack==1) {
Serial.printin("Sending"); // Print "Sending" to computer console
Seriall.write(49); /I Router number = 1
Seriall.write(48);
Seriall.write(48);
if (LED_status == HIGH)) { // Write LED status

Seriall.write(49);
} else Seriall.write(48);

if ((value == HIGH)) { /I Write PIR data
Seriall.write(49);
} else Seriall.write(48);
Serial.printin("End Data"); /[Print "End Data" to computer console
ack = 0; Il Reset flag and variable for next loop
mess4 = 52;
mess0 = 48;
mode = 2;
}
}
}

// Coordinator mode
else {
timer.run(); //Run the timer that periodically post JSON data to the web server every 5 seconds
while (Seriall.available()) {
Serial.printIn("Receive Data");
delay(10);

mess0 = Seriall.read();

152

¥

k
k

if (messO == 49 || mess0 == 50) {

mess1 = Seriall.read();
mess2 = Seriall.read();
mess3 = Seriall.read();
mess4 = Seriall.read();
ack = 1;
checkMode();
Serial.print(mess0,HEX);
Serial.print(mess1,HEX);
Serial.print(mess2,HEX);
Serial.print(mess3,HEX);
Serial.print(mess4,HEX);
Serial.printiIn();
break;

}

/I if not receive any message

else {
/I clear the ZigBee buffer
Seriall.read();
Seriall.read();
Seriall.read();
Seriall.read();
mess0 = 48;

break;

¥

/lread message from RX buffer

/[display received message on console for debugging

// turn the LED on/off based on command from web server
digitalWrite(outputLED, LED_status);

153

Router 2 Code:

/******************************'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k************************

* FILENAME : router_2_0219.ino

*

* DESCRIPTION :

* Complete code for the router 2 Arduino in Smart Home IOT System

*NOTES:

* In normal working condition, router 2 is in charge on controlling the LED and the fan
peripheral.
* When the coordinator failed, router 2 will be notified and change its default message's
destination

* to router 1

*
*AUTHOR: THINH LY, ANH TRAN, DUC TRAN
*

**/

int strlenght = 5;

int message[5];

int data[5];

intack =0;

int mode = 0; //0 for command, 1 for request
int LED =0;

int value;

unsigned long duration;
int mess4 = 0;

int mess3 = 0;

int mess2 = 0;

int messl = 0;

int mess0 = 0;

int fan_on = 0;

int outputLED = 3;

154

const int tempPin = 0; // Analog pin AQO
float deltaR = 0;
float deltaT = 0;
int temp = 0;
int request_temp = 0;
int start_time = 0;
intend_time2 = 0;
intend_timel =0;
intend_time3 =0;
I variable to check if the coordinator fail and router 1 become the new coordinator
int wifi_fail = 0;
[*
* Setup function for ZigBee module
*/
void setup() {
pinMode(outputLED, OUTPUT);
Seriall.begin(115200);
Serial.begin(115200);
Seriall.write("\n\r"); //Bypass Xbee microcontroller
Seriall.write("B");
Seriall.printin();
delay(1000);
if (Seriall.find("Bypass™)) {
Seriall.write("B");
}
/I Configure the ZigBee module by entering AT mode
Seriall.write("+++");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATDL4152ECD4\n\r");

155

/[Seriall.write("ATDL4152EC6B\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATID123\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATWR\n\r");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATCN");
delay(1000);
pinMode(LED_BUILTIN, OUTPUT);
}
[*
* Check if the incoming message is command/request message
*/
void checkMode() {
if (mess4 == 48) mode =0; //command
else if (mess4 == 49) mode = 1; //request
}
[*
* Check of the incoming message is to turn the LED on/off
*/
void checkCommand() {
request_temp = mess3;
if (mess3>47) { //LED command if byte 4th decimal == 48 or 49 (0" or "1")
if (mess3 ==49) LED =HIGH; //LED on
else if (mess3 == 48) LED = LOW,; //LED off
}

else {

156

request_temp = mess3; /Iread request temperature
Serial.print("Request temp =");
Serial.printin(request_temp);

if (request_temp<temp) fan_on = 1;//turn fan on if request temperature < current temperature
from temperature sensor

else fan_on =0;

}
mess0 = 48;
mode = 2;
}
/*
* read temperature in Celsius from the TMP36 temperature sensor
*/

void readTempC() {
int reading;
reading = analogRead(tempPin);
deltaR = 51000*reading/1024/(1-reading/1024)-50000;
deltaT = deltaR/-4800;
temp = deltaT+25; //celsius
}
[*
* Main Code
*/
void loop() {
/I read temperature
readTempC();
/I get message from either coordinator, or router 1
/1 (if the coordinator fail)
while (Seriall.available()) {
delay(50);

Serial.printin("receive");

157

mess0 = Seriall.read();
if (messO == 49 || mess0 == 50) {
mess1 = Seriall.read(); /lread message from RX buffer
mess2 = Seriall.read();
mess3 = Seriall.read();
mess4 = Seriall.read();
ack =1,
end_timel = millis();
checkMode(); // Check whether message is request/command
Serial.print(messO,HEX); //display received message on console for debugging
Serial.print(mess1,HEX);
Serial.print(mess2,HEX);
Serial.print(mess3,HEX);
Serial.print(mess4,HEX);
Serial.printIn();
break;
}
else { // if not receive the message, or the message is not in correct format
/I clear the ZigBee buffer
Seriall.read();
Seriall.read();
Seriall.read();
Seriall.read();
mess0 = 48;

break;

k
k

/I if receive critical message informing the coordinator has failed

if ((messO == 49) && (messl == 49) && (mess2 == 49) && (mess3 == 49) && (mess4 == 49)
&& (wifi_fail == 0)) {

/I Change the default message's destination to router 1 by changing ZigBee configuration

158

Seriall.write("+++");
delay(1000);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATDL4152EC6B\n\r");
delay(1000);
Serial.printin(1);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATID123\n\r");
delay(1000);
Serial.printIn(2);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATWR\n\r");
delay(1000);
Serial.printin(3);
while(Seriall.available()) Serial.write(Seriall.read());
Seriall.write("ATCN");
delay(2000);
Serial.printIn(4);
wifi_fail = 1;
mess0 = 0;
messl = 0;
mess2 = 0;
mess3 = 0;
mess4 = 0;
}
if (mode == 0 && mess0 == 50) checkCommand(); // for Command message
else if (mode == 1 && mess0 == 50) { /Il for Request message
if (ack==1) {
Seriall.write(50); /I Router number = 2
Seriall.write(48);

159

Seriall.write(48);
Seriall.write(48);
Seriall.write(temp);
Serial.printin("End Data"); // Print "End Data" to computer console
ack = 0; /I Reset flag and variable for next loop
mess4 = 52;
mess0 = 48;
mode = 2;
end_time3 = millis();
}
}
digitalWrite(outputLED, LED);
}

160

