
1

Project Number:

COMPUTER AIDED INSTRUCTION AS A TOOL TO TEACH
PROGRAMMING

An Interactive Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Sze-Wai Yam

Date: May 24, 2000

Approved:

Professor Glynis Hamel, Advisor

2

ABSTRACT

This project handles the design, implementation and evaluation of a Computer Aided

Instruction (CAI) program. The project presents the background of CAI, and suggests

ways to make CAI programs more effective. A survey was conducted to solicit input

on the factors that contribute to an effective CAI program. By investigating various

theories about learning and incorporating principles of good interface design, an

effective CAI program was built using Borland C++Builder.

3

TABLE OF CONTENTS

ABSTRACT 2
TABLE OF CONTENTS 3
TABLE OF FIGURES 5
TABLE OF TABLES 6

1 INTRODUCTION 7

 1.1 Project Introduction 8
 1.2 Project Goals 8
 1.3 Project Progression 9

2 BACKGROUND 11

 2.1 What is CAI? 12
 2.1.1 Tutorials 12
 2.1.2 Drill and Practice Exercises 12
 2.1.3 Simulations 13
 2.2 History of CAI 13
 2.3 Social Implications of CAI 14
 2.3.1 Introduction 14
 2.3.2 Advantages 15
 2.3.3 Challenges 17
 2.3.3.1 CAI in General 17
 2.3.3.2 CAI in Classrooms 18
 2.3.4 Conclusion 19

3 PROJECT DESCRIPTION 20

 3.1 Introduction 21
 3.2 Psychological Basis 21
 3.2.1 Introduction 21
 3.2.2 Learning Theories 21
 3.2.2.1 Experiential Learning 21
 3.2.2.2 Behaviorism 23
 3.2.2.3 Neuroscience 24
 3.2.2.4 Learning Styles 24
 3.3 Survey on CAI Program Design 25
 3.3.1 Description 25
 3.3.2 Results 28
 3.3.3 Conclusion 29
 3.4 Design Rationale 30
 3.4.1 Introduction 30
 3.4.2 Choice of Platform 30
 3.4.3 Choice of Programming Language 31
 3.4.3.1 Background 31
 3.4.3.2 Decision 32
 3.4.4 Software Module 32

4

 3.4.5 User Interface 33
 3.4.5.1 Goals 33
 3.4.5.2 Primitive Design 34
 3.4.5.3 Improved Design 36
 3.4.5.3.1 Advantages 39
 3.4.5.4 Further Improvements 40
 3.4.6 Quiz Questions 43
 3.4.6.1 Goals 43
 3.4.6.2 Examples 43
 3.4.7 Implementation Details 44
 3.4.7.1 Goals 44
 3.4.7.2 Object-Oriented Design in RAD 45
 3.4.7.3 Object-Oriented Programming 45
 3.4.7.4 Object Representation 46
 3.4.7.5 Polymorphism and Virtual Functions 50
 3.4.7.6 Directory and File Format 51
 3.4.7.7 Object-Oriented Design: Before and After 53

4 RESULTS 56

 4.1 Evaluating the Program 57

4.1.1 Introduction 57
4.1.2 Results 58
4.1.3 Conclusion 59

5 CONCLUSIONS 61

 5.1 Conclusions and Possible Extensions 62

APPENDIX A SURVEY RESULTS 63
APPENDIX B SOURCE CODE (Learning C++) 66
APPENDIX C SOURCE CODE (Survey Form) 106

BIBLIOGRAPHY 110

5

TABLE OF FIGURES

Figure 3.1 The Experiential Learning Cycle (Glover) 22
Figure 3.2 34 Primitive Interface – Table of Contents
Figure 3.3 35 Primitive Interface – Tutorials
Figure 3.4 36 Tutorials for the Improved Interface
Figure 3.5 Demonstrations for the Improved Interface 37
Figure 3.6 Quiz Selection Menu for the Improved Interface 37
Figure 3.7 Multiple Choice Question 38
Figure 3.8 Fill in the Blanks Question 38
Figure 3.9 Short Answer Question 39
Figure 3.10 Further Improved Interface on Tutorial 41
Figure 3.11 Further Improved Interface on Demo 42
Figure 3.12 Detailed Answers to Quiz 43
Figure 3.13 Program Flow Cycle for RAD Application 45
Figure 3.14 Class Hierarchy for the CAI Program 50

6

TABLE OF TABLES

Table 1.1 Functions of the Three Components 9

Table 3.1 Computer-Aided Instruction (CAI) Survey 28
Table 3.2 33 Functions of the Three Components
Table 3.3 Example of a Recall Question 44
Table 3.4 Example of a Challenging Question 44
Table 3.5 Object Representation for the CAI software 49
Table 3.6 Tutorial Index File Format 51
Table 3.7 The Contents of “contents.dat” 52
Table 3.8 Example of a Quiz Question Data File (q_XX.dat) 52
Table 3.9 Example of a Tutorial Index File (index.dat) 53
Table 3.10 Procedural Object-Based Programming extracted from part of
 the Second Version of the code

54

Table 3.11 Object-Oriented Programming Paradigm 54
Table 3.12 Polymorphism 55

Table 4.1 Computer-Aided Instruction (CAI) Survey 58
Table 4.2 Results on Program Evaluation Form 59

7

1 INTRODUCTION

8

1.1 Project Introduction

Computer Aided Instruction (CAI) is educational software that provides the delivery

of instructional material on a computer. The effectiveness of CAI is questionable.

Many CAI programs are no better than reference books, providing little interaction

with the user and no accommodation for various learning styles.

As computers become more prevalent, the role of computers in education becomes

more important. If CAI programs remain ineffective, a valuable educational resource

will go to waste.

This project presents the history of CAI, and suggests ways to make CAI more

effective. The project investigates various theories about learning and applies them to

the development of a CAI program. The CAI program incorporates principles of good

interface design.

1.2 Project Goals

The goals of this project are to study the criteria that contribute to the effectiveness of

CAI programs, and to design and implement an effective CAI program that teaches

C++ programming based on those criteria.

In order to be effective, the CAI program is aimed at the following areas:

• Content the content must be accurate.

• Presentation the presentation of information must be clear. Each lesson should

provide a clear objective. Also, effort should be made in reducing the memory

load for the user.

• Interaction the program should provide good interaction.

The CAI system is composed of three components: the tutorials that present the C++

material, the demonstrations that illustrate the concept using animation, and the

quizzes that test the material being taught.

9

Component Description Effect
Tutorials Concise, easy to read material

that delivers the C++
information in a simple way

Providing concise and easy to
read material helps to reduce the
memory load of the user, thus
increasing learning ability

Demonstrations Illustrate concepts from the
tutorial using animation

Using graphical visual aid helps
the user remember more
information

Quizzes Self-addressing questions for
the user to check how much
he or she has learned

By rewarding correct answers and
correcting incorrect answers, the
concept is reinforced

Table 1.1 Functions of the Three Components.

Since it was not feasible to prepare CAI material that covers all aspects of the C++

language, the subject of “looping” was chosen for the content of the tutorials. By

limiting the scope of the educational content, the project could focus more on the

design principles.

1.3 Project Progression

The project was broken into four parts: research, design, implementation, and

evaluation. During the research phase, different types of CAI materials, the history of

CAI, and the social implications of CAI including its growing potential, advantages

and challenges were studied.

Before designing the CAI program, certain learning theories that are related to the

design of a CAI program were studied, including “Experiential Learning”,

“Behaviorism”, “Neuroscience”, and “Learning Styles”. Based on these theories,

some design principles were drawn.

Also, in order to get some ideas on developing an effective CAI program, a survey

was given via an educational discussion group on the Internet. The results were useful

in indicating which aspects of the design should be of the most concern.

In designing the user interface, human-computer interaction principles were adopted.

Designing an effective user interface was a very difficult task; in this project, three

10

revisions on the interface were done. They will be presented together with a

description on why the improved interfaces are better.

The quiz questions were designed to enable the student to review the learned material

and to encourage thinking by providing more challenging questions.

The object-oriented design was done within a Rapid Application Development (RAD)

environment. In the implementation of this project, polymorphism was applied so that

system flexibility was maximized.

Also, the various index and data file formats that were used were explained to allow

for future extensions to the tutorials.

Finally, the program was evaluated and some conclusions were made. Possible

extensions to the project are suggested.

11

2 BACKGROUND

12

2.1 What is CAI?

Computer-Aided Instruction (CAI) is an “educational medium in which instructional

content or activities are delivered by a computer.” [Munden] It is also known as

computer-assisted instruction.

The types of CAI materials most commonly used today are tutorials, drill and practice

exercises, and simulations.

2.1.1 Tutorials

Tutorials are self-instructional programs or documents that present lessons on

computers in some combination of text and multimedia formats, which include

photographs, videos, animation, speech, and music. [Arnold & ETCAI] Examples

include self-instructed reading materials, pre-recorded lectures, and the visualization

of concepts. During tutorials, new concepts are presented to the student. The

interaction between the student and the computer is like that between the student and

the teacher. [Munden] The development of tutorials has been a challenge for many

years because the tutorial is fundamentally non-interactive in nature; as a result,

tutorials need to be designed with more interaction in mind, otherwise students will

become bored and quickly lose attention. [ETCAI]

2.1.2 Drill and Practice Exercises

Drill and practice exercises are materials that consolidate the knowledge learned by

the student. They require responses from the student and provide feedback. Most drill

and practice exercises are multiple-choice questions; however, fill in the blank

questions and graph-drawing questions are also possible. Drill and practice exercises

can include games such as a crossword puzzle in which the student learns spelling by

filling in the puzzle. A drill and practice exercise could also be used as an alternate

instructional tool; for example, after using a typing practice program for a while, the

student would remember the position of the keystrokes without having to memorizing

them explicitly. [Munden]

13

In drill and practice exercises, the student’s performance is often measured. The

student is rewarded for good performance. In this way the learning process is

reinforced. Also, from the performance statistics the program can decide whether or

not additional help is needed for the student.

Students often find drill and practice exercises boring. A more challenging drill and

practice exercise typically uses a random number generator to create an unpredictable

set of problems that exposes the student to more situations than is possible using a

textbook alone. [ETCAI]

2.1.3 Simulations

Simulations are used to predict the outcome or impact of an action without really

performing the action. Since the student does not pay real consequences for the action

he or she performs, simulations are often used in military and pilot training and other

possibly dangerous real-life situations.

A simulation program is often not intuitive, and so extra time is needed to learn its

operation. [ETCAI] However, unlike tutorials, the student has more control over the

learning process and therefore is more likely to be involved.

2.2 History of CAI

In the mid-1950s and early 1960s, CAI was introduced into some selected elementary

schools resulting from the collaboration between educators at Stanford University in

California and International Business Machines Corporation (IBM). At the beginning,

CAI programs presented information mainly with drill and practice exercises.

Meanwhile, the high expense of obtaining, maintaining and using computers limited

the early CAI systems. [Arnold]

In the early 1960s, the University of Illinois initiated a CAI system called

Programmed Logic for Automatic Teaching Operations (PLATO). It was later

14

developed by Control Data Corporation and was used in higher education. PLATO

consisted of a mainframe computer that supported up to 1000 terminals for use by

individual students. In the United States, over 100 PLATO systems were operating by

1985; from 1978 to 1985, there were 40 million hours of usage logged on PLATO

systems. A communication system between students was also introduced, which was

the forerunner of modern electronic mail. [Arnold]

Another CAI project developed by Mitre Corporation and Brigham Young University

in Utah was the Time-shared Interactive Computer Controlled Information Television

(TICCIT) system, which was based on personal computer and television technology.

In 1970, TICCIT was used to teach freshman-level mathematics and English classes.

[Arnold]

In the 1980s, the use of CAI increased dramatically because of the introduction of

cheaper and more powerful personal computers. By 1980, CAI systems had only been

adopted by 5 percent of elementary schools and 20 percent of secondary schools in

the United States. By 1983, both numbers had roughly quadrupled. By the end of the

decade, nearly all schools in the United States and in most industrialized countries

were equipped with CAI systems. [Arnold]

2.3 Social Implications

2.3.1 Introduction

The time for the widespread use of CAI has come. The term CAI itself implies the

importance of using computers as the teaching media. Undoubtedly, CAI can hardly

be successful if computer usage itself is not widespread. Given the advent of the

personal computer, "there was a time when computers were a luxury item for

American schools, but that time has clearly passed." [Bangert-Drowns, 1985]

Beginning in the 1970's, many schools started to use computers for instructional

purposes; according to Kinnaman, between 1981 and the end of that decade:

• American schools acquired two million computers.

15

• The number of schools owning computers increased from approximately 25

percent to virtually 100 percent.

• More than half the states began requiring, or at least recommending, pre-service

technology programs for all prospective teachers.

Indeed, “the number of computers in American schools has risen from one for every

125 students in 1981 to one for every nine students in 1996. While the United States

leads the world in the number of computers per school student, Western European

and Japanese schools are also highly computerized.” [Arnold]

In addition, the advance of computer technology has made CAI a more attractive aid

in education. For example, the introduction of the graphics display terminal has

increased the presentation power of computers and aroused educators' interest in

introducing CAI into their classrooms.

Given the facts above, it is clear to see why Kinnaman believes "the educational use

of computer technology will surely continue to grow." As computers become

increasingly popular throughout the world, it is believed that they will be fully

utilized as teaching tools. Hence, the potential of CAI should not be understated.

2.3.2 Advantages

There is no reason to use CAI as a teaching aid if it does not benefit students. But the

benefits of CAI are enormous. According to ETCAI, "CAI allows students to practice

procedures as long as required to achieve defined competencies." This ensures that

students remain focused on the topic and gives them the flexibility to learn at their

own pace [Beres, 8]. It provides students with increased instruction without putting

extra burdens on the instructor [Frith]. In addition, since students are informed of

their misconceptions through immediate feedback from the CAI program, it is

unlikely that the students would be learning the wrong concepts [ETCAI].

In order to provide positive reinforcements in the education process, "good CAI

material reward[s] students immediately for correct responses and behaviors. This

16

encourages students to confidently move to more complex concepts." [ETCAI] On

the other hand, the negative reinforcements that CAI provides are minimized because

"it does not embarrass students who make mistakes." [Cotton] "This reduction in

negative reinforcement allows the student to learn through trial and error at his or her

own pace. Therefore, positive attitudes can be protected and enhanced." [Robertson,

314]

Previous researchers conclude "the use of CAI leads to more positive student attitudes

than the use of conventional instruction." [Cotton] CAI is becoming the preferred

teaching medium because students are becoming computer-oriented and they prefer

learning in the environment the computer offers [Beres, ii & 8]. "CAI programs

insure that students pay attention and understand by constantly testing them on the

information they are being taught"; by providing the students with a feeling of control,

they acquire a feeling of self-confidence [8].

Cotton found that students who use CAI “have more of an internal locus of

control/sense of self-efficacy than conventionally instructed students", "had better

attendance", "had higher rates of time-on-task than traditionally instructed controls",

and exhibited greater cooperative and pro-social behavior.

CAI also gives students control over their schedules. Since the material in the

computer-aided tool is always accessible, CAI accommodates students who learn

better at different times of the day [Cergneux, 8].

There are other situations in which CAI proves to be useful. For example, since a CAI

program does not experience fatigue, the same material can be presented over and

over again without deterioration in teaching quality [Alessi, 5]. For situations in

which safety is a concern, CAI can be used to simulate real events [5].

How can it be proven that students really learn better by using CAI programs than by

using conventional methods? Past research finds that when CAI is used as a

supplement to traditional instruction methods, the “effects are superior to those

obtained with traditional instruction alone.” [Cotton] Researchers have found that

learning rate can be enhanced by CAI; for the same amount of material, students

17

using a CAI program learned in less time than the traditionally instructed students

[Cotton]. Similar studies found that the performance of students

receiving CAI

training is often 10 to 30 percent better than the performance of those students

receiving conventional instruction [Army].

Another study by Orlansky and String (1979, White House) showed that there was a

30 percent reduction in time for students to achieve criterion performance using CAI

in military training. While some people may worry that the faster the learning rate,

the shorter the retention, researchers found that "the retention of content learned using

CAI is superior to retention following traditional instruction alone." [Cotton]

2.3.3 Challenges

2.3.3.1 CAI in General

Although many researchers insist that teaching using CAI is more powerful than

using conventional instruction methods, there are still challenges that must be

overcome before CAI can be fully utilized as an instructional tool.

The most common criticism of CAI is that not many CAI programs are well designed.

"Many programs are simply computerized textbooks rather than interactive media."

[Beres, 15] Vockell and Schwartz concur that CAI "should exploit the full advantages

of computerized drill tutorials — otherwise, it may be better to have a teacher, tutor,

or textbook deliver the instruction." [Vockell, 63] There has also been a suggestion

that CAI should incorporate more intelligence to make it more effective [Lewis, 4];

for example, artificial intelligence could be used to generate sets of drill and practice

questions that suit students of different skill levels.

However, an effective CAI program is often expensive to produce, and it requires a

large investment of time and expertise [Frith]. A main problem in the development of

CAI is that the lifetime of a CAI program is short. As changes occur in subject matter,

the CAI programs rapidly become obsolete [9]. Thus, it is doubtful that the reward for

CAI developers would compensate for the time invested.

18

2.3.3.2 CAI in Classrooms

In order for CAI to become an effective tool in the public school system, computers

must be an integral part of the classroom, but some schools do not have sufficient

funds to afford a computer in every classroom [Beres, 15-16]. If many students are to

have frequent access to CAI programs, a large number of computers are needed, and

specialized staff are needed to maintain such facilities [Frith]. This induces a great

monetary burden on schools that want to use CAI as an instructional tool. However, it

is believed that the cost of adding CAI to a training program is adjustable; less

expensive CAI materials such as supplemental training software could be used in a

tightly budgeted school while at the same time, these CAI materials can reinforce the

existing classroom instruction [ETCAI].

There are some other considerations in determining the success of CAI in classroom

teaching. First, "the instructor's teaching style and opinions must be taken into

consideration." [ETCAI] Teachers who have a strong belief in the value of CAI will

favor the use of it in their classroom [ETCAI], whereas there are still many teachers

who are reluctant or even unable to integrate CAI into their classrooms [15]. It may

be due to the fact that "extra time is necessary for the instructor to successfully

combine a computer assisted instruction tool into the course plan." [Cergneux, 8] In

addition, CAI may restrict the instructor or user to a few fixed teaching strategies

[Kazmierczak, 9]. "Programmed instructions and drills were not a universally

accepted form of instruction since they had limited applicability to the teaching

process." [9] In order to maximize the effect of using CAI as an instructional aid,

classroom teaching must be altered [Cergneux, 8]. There are also some students who

do not feel confident about using computers; "they may not be well acquainted with

the understanding of the operation of the necessary software/hardware, which must be

perfected on their own." [8]

2.3.4 Conclusion

In short, the ubiquitous presence of computers and the technological advances in

hardware and software have made CAI a more attractive instructional tool today than

it was several years ago. There are many advantages to using CAI in education and

19

many researchers have proven that students learn effectively when CAI is used. On

the other hand, there are still many challenges that must be overcome. If these

challenges are addressed correctly, CAI will revolutionize the way people acquire

knowledge.

20

3 PROJECT DESCRIPTION

21

3.1 Introduction

The goals of this project are to study the criteria that contribute to the effectiveness of

CAI programs, and to design and implement an effective CAI program based on those

criteria.

3.2 Psychological Basis

3.2.1 Introduction

One of the goals of designing CAI software is to try to enhance learning potential by

incorporating learning theories. When these theories are correctly applied, the CAI

software will be the most successful. There are basically two questions that must be

addressed:

• How do we learn?

• How can we incorporate the answers to the above question into the design of

the CAI software?

3.2.2 Learning Theories

Learning is “any increase in knowledge, memorizing information, acquiring

knowledge for practical use, abstracting meaning from what we do, and a process that

allows us to understand.” (WAVE)

There have been many theories about how people learn:

3.2.2.1 Experiential Learning

According to Glover, we learn by continuously experiencing knowledge. The main

idea is that learning is a continuous process consisting of four elements: Experiencing,

Reviewing, Concluding, and Planning. Higher levels of learning are achieved when

we iterate the cycle:

22

Figure 3.1 The Experiential Learning Cycle (Glover).

Experiencing refers to applying learned knowledge to a life situation. By

experiencing, you know much more about what you have already learned and

eliminate some of the misconceptions. While you are experiencing, you look at the

outcome and figure out the degree of success.

Reviewing refers to the recall of previous experience, if there is any. When you are

reviewing, you try to improve the way of doing something by preventing past

mistakes from happening again.

Concluding refers to interpreting the outcome of an action. By interpreting the

outcome you understand more about what you have learned.

Planning refers to a plan of action. Based on your experience or the reflective review

of others, you develop an implicit and sub-conscious plan on what you are going to

do.

23

In conclusion, more practice results in better learning. The improvement in each cycle

is large in early stages but is dampened after each cycle.

One of the main advantages of CAI is that its drill and practice questions let the

student practice what he or she has learned during the learning process. However, we

should ensure that the system contains a reasonable number of questions so that the

student can have ample opportunity to practice. We should also endeavor to design

exercises that are related to real life situations as much as possible.

3.2.2.2 Behaviorism

Behaviorism is “

a movement in psychology that advocates the use of strict

experimental procedures to study observable behavior (or responses) in relation to the

environment (or stimuli).” (Bijou)

In Behaviorism, conditioning is regarded as a universal learning process. There are

two kinds of conditioning (On):

1. Classical Conditioning

”Classical conditioning occurs when a natural reflex responds to a stimulus.”

Humans and animals are biologically “wired” so they produce a specific response

to a certain stimulus.

2. Behavioral or Operant Conditioning

”Behavioral or operant conditioning occurs when a response to a stimulus is

reinforced… If a reward or reinforcement follows the response to a stimulus, then

the response becomes more probable in the future.”

Behaviorism relies basically on positive (reward) and negative (punishment)

reinforcements that encourage and discourage behaviors. In a CAI system this

technique could be used in the drill and practice exercises. For example, a smiling

24

face can be given to reward the student for a correct answer, whereas a sad face can

be given to the student as punishment.

3.2.2.3 Neuroscience

Neuroscience is “the study of the human nervous system, the brain, and the biological

basis of consciousness, perception, memory, and learning.” (On) In neuroscience, the

human nervous system and the brain form the basis of learning.

Neuroscience basically explains how memory is developed. Our brains are always

changing when we use them, and they strengthen certain patterns of connections,

which make the connections easier to create the next time. (On)

To apply neuroscience to the design of CAI, the system should encourage the use of

the brain. For example, the drill and practice exercises could be designed in such a

way that the answers are not intuitive to the student. In addition, the exercises should

be challenging. The more challenging the questions, the more the student’s brain

connections will be reinforced.

3.2.2.4 Learning Styles

As we perceive and process information differently, we cannot expect everyone to

learn the same way. Findings show that the amount that a person learns is closely

related to his or her learning style. In an article from On Purpose Associates, the

different learning styles are classified as follows:

1. Concrete and abstract perceivers

”Concrete perceivers absorb information through direct experience, by doing,

acting, sensing, and feeling. Abstract perceivers, however, take in information

through analysis, observation, and thinking.”

2. Active and reflective processors

25

”Active processors make sense of an experience by immediately using the new

information. Reflective processors make sense of an experience by reflecting on

and thinking about it.”

Different learning styles should be incorporated into the CAI program. For example,

demonstrations could be used to illustrate concepts in a sensible way. In addition,

special visual and audio representations like colors, animation, sound and music

could be used to enhance the learning experience.

3.3 Survey on CAI Program Design

3.3.1 Description

A survey was developed as a means of soliciting input on the factors that contribute

to an effective CAI program. The survey request was sent electronically over the

Internet through 30 random ICQ messages, and was posted on educational discussion

groups. The reason for choosing an educational discussion group was that the

participants in this group would probably be more knowledgeable in education, and

would therefore provide the most useful ideas.

The survey was an HTML document prepared using Microsoft’s FrontPage 2000. A

CGI program was written in Perl [Appendix C] so that the survey could be sent back

directly on the participants’ web browsers. This would hopefully encourage more

people to fill out the survey because of its ease of use.

The survey consisted of 10 questions [Table 3.1]. The quantity was intentionally

limited to keep the survey from being overwhelming. The first three questions

focused on those people who had used a CAI program before. The questions asked

what they thought about the CAI programs they had used, in order to provide

feedback on the effectiveness of current CAI packages.

26

The next question asked about the kinds of instructional methods people prefer. It was

included to help gauge people’s receptiveness to CAI.

Question 9 asked the participants their opinions on what constitutes a reasonable price

for a CAI program. As mentioned earlier, it is doubtful that the reward for CAI

developers would compensate for the time invested. If the reward is too little, this

could be an obstacle to the development of CAI programs.

The rest of the questions had to do with the content of CAI programs, for example,

whether the users prefer to have sound more than graphics. Also, some of the

questions asked for their opinions on how to make the programs more effective and

interesting.

Computer-Aided Instructions (CAI) Survey

Background
Computer-Aided Instruction (CAI) is an educational medium in which
“instructional content or activities are delivered by a computer.”
[Munden] This survey focuses on ideas about the design of
educational software (on a CD-ROM), and tries to find ways that make
such software packages more effective.

Source: Munden, C. Dianne. “What is Computer Assisted Instruction?”
21 Aug. 1996. http://www.auburn.edu/~mundecd/cai.html

The Survey

1. Have you ever used a CAI program?

 Yes (please specify the name of a package you have
 used:)
 No (skip to question 4)

2. On a scale of 1 to 10, where 1 means “nothing” and 10 means “I
 fully mastered the subject”, how much do you think you learned
 from the CAI program?

 1 2 3 4 5 6 7 8 9 10

3. What features did you like/dislike most about those CAI
 programs?

4. Rank the following learning materials in the order of your
 preference (1: most preferred, 2: next preferred, etc):

 Book Course Computer
 Other (please specify:)

27

5. Rank each of the following according to its order of importance
 for the overall efficacy of a CAI program (please make separate
 rankings for each category with 1 being the most important and 2
 being the second most important, etc. Put an 'X' if the item is
 not applicable):

 System

 Ease of use _____ Performance _____
 Other _____ (please specify: _______________)

 Presentation

 Text Layout _____ Color _____ Graphics _____
 Sound _____ Animation _____
 Other _____ (please specify: _______________)

 Tutorial Content

 Quantity _____ Easy to understand _____
 Meaningfully structured _____ Accuracy _____
 Other _____ (please specify: _______________)

 Drill and Practice Exercises

 Quantity _____ Review learned materials _____
 Encourage thinking _____ Feedback _____
 Other _____ (please specify: _______________)

6. What types of interaction could a CAI program provide so that
 it consistently maintains the user's interest?

7. How do you think the tutorial materials could be organized so
 that they are more interesting than the material in a book?

8. Some experts think that the drill and practice questions in CAI
 software are ineffective. Do you agree? Why? How would you
 suggest the questions be designed so that they become more
 effective?

9. What do you think is a reasonable price for a CAI program?
 (in US dollars)

 $0, should be free
 >$0 to $10
 >$10 to $20
 >$20 to $30
 >$30 to $50
 >$50 to $100
 $100 or more

28

10. What would you like to see in future CAI programs?

 Your name (optional):
 Your e-mail (optional):
 Thank you very much for your time!

Table 3.1 Computer-Aided Instruction (CAI) Survey.

3.3.2 Results

Nineteen surveys were returned with the following results [Appendix A]:

• Only 21% of the respondents had actually tried out a CAI program in the past.

• In general, people felt they did not learn a lot from using CAI programs.

• People liked CAI programs because they are user friendly and interesting. The

users respond favorably to a visually appealing interface. They liked the activities

because they were interesting. Example given was a game testing the materials

being learned.

• Respondents preferred most to learn from a course (47%), then from books (32%),

and finally from computers (21%).

• 53% of the respondents regarded computers to be the least preferred learning tool.

• A majority of respondents (79%) rated ease of use over system performance.

• In regard to presentation, most people rated text layout as the most important

element for a CAI program (53%). Graphics were also listed as being important,

while animation and sound were regarded as relatively less important.

• Most people thought it was most important for the tutorial to be easily

understandable (47%). It is also considered important that those contents be

meaningfully structured (26%). Quantity and accuracy were regarded as relatively

less important.

• Most respondents thought the drill and practice exercises that a CAI program

provides should focus on reviewing learned materials and encouraging thinking;

the quantity of exercises and feedback were considered less important.

29

• To consistently maintain the user’s interest, respondents suggested providing

feedback on the user’s performance, including a user-friendly interface with more

graphics and animation, and providing supplementary information.

• People suggested the tutorial materials should be brief and concise, and should

include a glossary.

• The most reasonable price for a CAI program was suggested to be between $10

and $20.

• In the future, people would like to see that using a computer to learn would be no

different from attending classes. Also, they are looking for CAI programs on more

advanced topics.

3.3.3 Conclusion

The survey results showed that CAI programs do not have a lot of public support.

When people want to learn about something, the first image that comes to their minds

is to take a course or to read a book. CAI programs are nearly ignored. As a result,

more work needs to be done in advertising CAI programs so that people know they

can learn from their computers as well as from traditional methods.

The survey also showed that people learn little using CAI programs. Again, it is the

effectiveness problem that the CAI program developers need to address. However, a

user-friendly and interesting CAI environment could compensate for this weakness to

a certain extent. The psychological basis discussed previously in this project is

strongly recommended in developing any CAI programs.

Generally speaking, an effective CAI program should be measured by how much the

student learns from it, rather than by how many features it provides. This suggests

that it is more valuable to make a brief and clear presentation than it is to add various

extra features like animation and sound.

Drill and practice exercises should provide a review of the tutorial materials. After

that, some challenging questions could be asked in order to encourage thinking.

30

The survey also showed that people do not wish to spend much money on buying

CAI programs.

3.4 Design Rationale

3.4.1 Introduction

The major goal of this project is to design and create an effective CAI program that

teaches anyone with a little computer experience to learn programming in C++. In

order to be effective, the CAI program is aimed at the following areas:

• Content the content must be accurate.

• Presentation the presentation of information must be clear. Each lesson should

provide a clear objective. Also, effort should be made in reducing the memory

load for the user.

• Interaction the program should provide good interaction.

3.4.2 Choice of Platform

The program could be developed under any platform. For example, it could be

developed under DOS, Windows, Linux, or even on the more recent World Wide

Web (WWW) technology. Developing a CAI program on the WWW is a good idea,

but there are some drawbacks. First, accessing CAI materials from the WWW pages

is comparatively slower than accessing them from the hard drive. If the CAI materials

contain rich multimedia presentations, the difference in speed would become obvious.

This could affect learning because people would become frustrated or annoyed with

slow display rates, and this would lead to frequent errors. (Shneiderman) On the other

hand, accessing the CAI materials on a hard drive requires less access time, so the

interaction is more realistic. The program could be put online so it could be

downloaded.

The Windows environment was chosen for the development of the CAI program for

this project. It was chosen because the interface of Windows is more suitable for

31

developing interactive media, and it is the most common operating system in the

world. However, Windows programming is quite challenging because of its interface.

For each component, the design of the user interface is equally as important as its

actual implementation.

3.4.3 Choice of Programming Language

3.4.3.1 Background

There are basically three methodologies available for writing a Windows program:

1. Application Programming Interface (API)

In early years, the only way to do Windows programming was by calling the

Windows internal API functions using C/C++. The programmer needed to be very

familiar with the internal structures of Windows before he or she could write a

Windows program. All the user interfaces had to be done by coding, which is

extremely time consuming.

2. Windows Class Libraries

Writing Windows programs using its primitive API functions is difficult because

it deals with the internal structure of Windows. As a result, people tried to find

ways that could minimize the effort of coding by abstracting some of the internal

structure. This led to various object components like Microsoft Foundation

Classes (MFC) and Borland’s Object Windows Libraries (OWL). User interfaces

like windows, buttons, menus, etc., are classified as objects. The programmer

takes care of the operations on a particular object rather than how the operations

are implemented. A strong background in object-oriented programming is

required for this method of development.

3. Rapid Application Development (RAD)

RAD has brought us the easiest method for programming under Windows. In an

32

RAD environment, the development tools provide the interface components that

can be dragged to wherever you like on a window. Since the interface appears

visually during the development process, the programmer can focus more on the

actual task rather than the interface. Examples of RAD development tools are

Microsoft Visual Basic, Borland Delphi, and Borland C++Builder.

3.4.3.2 Decision

For the aforementioned reasons, RAD was chosen as the development tool for the

CAI program. The initial development was done using Visual Basic; because the

language is simple and familiar, the hope was that the development effort could focus

more on CAI issues than syntax issues.

However, after writing a few tutorials using Visual Basic, it became apparent that

Visual Basic is not a good computer language for developing large software

applications. While the object-based feature is adequate for developing small-to-

medium-sized applications, the lack of a true object-oriented programming paradigm

makes it hard to develop large programs. As the program grew, the code started to get

messy and hard to debug.

As a result, a switch was made from Visual Basic to Borland C++Builder. It is a more

suitable language for the project because the C++ language supports object-oriented

programming intuitively, thus maintaining a good coding structure even for a very

large program.

3.4.4 Software Module

The CAI system is composed of three components: the tutorials that present the C++

material, the demonstrations that illustrate the concept using animation, and the

quizzes that test the material being taught.

Component Description Effect
Tutorials Concise, easy to read material

that deliver the C++
Providing concise and easy to
read material helps to reduce the

33

information in a simple way memory load of the user, thus
increasing learning ability

Demonstrations Illustrate concepts from the
tutorial using animation

Using graphical visual aid helps
the user remember more
information

Quizzes Self-addressing questions for
the user to check how much
he or she has learned

By rewarding correct answers and
correcting incorrect answers, the
concept is reinforced

Table 3.2 Functions of the Three Components.

3.4.5 User Interface

3.4.5.1 Goals

The design of the user interface is very challenging because a good interface arouses

the user’s interest whereas a bad interface deters the user from using the program. To

determine the criteria of a good interface, Shneiderman proposed the Eight Golden

Rules of Interface Design:

1. Strive for consistency the interface should adopt consistent sequences of

actions, identical terminology, and consistent color, layout, capitalization and font,

etc.

2. Enable frequent users to use shortcuts the interface should provide shortcuts

for frequent users so as to decrease the number of interactions and increase the

pace of interaction.

3. Offer informative feedback there should be system feedback for every user

action.

4. Design dialog yield to closure sequences of actions should be organized into

groups with a beginning, middle, and end.

5. Offer error prevention and simple error handling design the system in such a

way that it minimizes the chance of errors made by the user. If the user makes an

error, the system should detect it and offer simple, constructive, and specific

instructions for recovery.

34

6. Permit easy reversal of actions actions should be reversible so as to encourage

exploration of unfamiliar options.

7. Support internal locus of control the user should be in charge of the system.

The system responds to the user’s actions rather than the user responding to the

system actions.

8. Reduce short-term memory load the interface should be simple enough to fit

the short-term memory of the user.

3.4.5.2 Primitive Design

For the first prototype, the interface was designed using Visual Basic. Here are some

screen shots for the interface in the earliest stage:

Figure 3.2 Primitive Interface – Table of Contents.

35

Figure 3.3 Primitive Interface – Tutorials.

36

3.4.5.3 Improved Design

Because the primitive interface looked intimidating, a new interface was proposed.

The new interface, built with C++Builder, provided a great improvement over the

primitive interface.

Figure 3.4 Tutorials for the Improved Interface. By providing concise and easy to
read material, the interface helps to reduce the memory load of the user, thus
increasing the user’s learning ability.

37

Figure 3.5 Demonstrations for the Improved Interface. By illustrating the
concepts using graphical visual aids, the interface helps the user remember more than
would be possible with text alone.

Figure 3.6 Quiz Selection Menu for the Improved Interface. The user can specify
the topic to be tested on, and the type of the quiz (whether it is a practice quiz or a
scored quiz). The number of questions is also specified here.

38

Figure 3.7 Multiple Choice Question. The user chooses from a list of answers.

Figure 3.8 Fill in the Blanks Question. This kind of question requires one or more
answers.

39

Figure 3.9 Short Answer Question. The required answer is a prediction on the
program fragment output.

3.4.5.3.1 Advantages

The improved interface has a number of advantages:

• Consistency instead of separating the table of contents from the tutorials, the

improved interface integrated all the parts into one single window.

• Shortcuts shortcuts are provided for the menus and the buttons.

• Feedback for every user actions, the flow of the interface is natural and easy to

follow.

• Closure each component is grouped into separate windows with the previous

and next buttons that indicates sequences of actions.

• Error prevention and handling the interface limits the number of choices so as

to prevent the user from making errors. Also, it pops up error messages with a

brief and specific instruction for recovery.

40

• Action reversal most of the actions can be reversed, except for the quiz section,

which is intentionally designed not to be reversible. However, for actions in

which a reversal is not possible, the system will inform the user before performing

the action.

• Internal locus of control instead of the system directing the user where to go,

the user decides where he or she wants to go.

• Reduce short-term memory the interface provides a limited in a number of

choices so that it will not overwhelm the user.

3.4.5.4 Further Improvements

Further improvements were made to make the interface more natural. For example, in

the second version the demo tab popped up suddenly. Also, the table of contents was

visible while a quiz was in progress.

In the third version of the interface, the tab sheets were changed to buttons. While the

“Demo” tab popped up suddenly in the second interface, the “Demo” button in this

final interface is always visible. If there is no demonstration for a tutorial, the

“Demo” button will be grayed out rather than disappearing altogether.

Colors were added to indicate important keywords and phrases. This can help

minimize the memory load of the user by separating chunks of information in their

minds.

41

Figure 3.10 Further Improved Interface on Tutorial. The “Demo” button is always
there, and it is grayed out when it is not applicable. Also, colors are used to indicate
important keywords and phrases.

42

Instead of leaving the table of contents visible during a quiz session, in the third

version of the interface it has been removed. Hence, the interface is less distracting.

Figure 3.11 Further Improved Interface on Demo.

Also, there is a dramatic increase in efficiency in loading the demonstration images in

the improved interface. While the old interface required a few seconds to initialize the

graphics, the new interface displays the graphics immediately.

A further improvement is the addition of the explanation of the answers to the quizzes.

By providing more detailed answers the student can learn more from taking the

quizzes.

43

Figure 3.12 Detailed Answers to Quiz.

3.4.6 Quiz Questions

3.4.6.1 Goals

The design of the quiz questions focuses on the following areas:

• Review learned materials by recalling the materials, the student remembers

better.

• Encourage thinking the more challenging the questions, the more the student’s

brain connections will be reinforced (neuroscience).

• Accuracy the questions and the answers to the questions should be accurate,

otherwise it will mislead the student.

3.4.6.2 Examples

44

In order to provide some review for the learned materials, some of the quiz questions

are directly produced from the tutorial, with a keyword missing. This kind of question

is not challenging, but serves well in helping the student to recall what he or she has

learned. For example,

In a for loop, the computer tests the condition _____ it executes
the statements within the body of the loop.

Table 3.3 Example of a Recall Question.

For some challenging questions, the answers are not immediately obvious. These

kinds of questions are quite demanding, and the student may make mistakes easily;

however, the student has learned something while he or she is thinking, regardless of

the correctness of the answer. For example,

Complete the program fragment so it produces the output given:

for (int i = _____; i != _____; i += _____)
 cout << setw(5) << i + 2;

Output:
 1 4 7 10 13

Table 3.4 Example of a Challenging Question.

3.4.7 Implementation Details

3.4.7.1 Goals

At the implementation level, the design focuses on the following areas:

• Robustness the system must be robust; that is, it will not go down or crash the

computer for any software failures (e.g., tutorial file missing) or user actions (e.g.,

pressing the wrong button).

• Correctness the system should run correctly under normal situations. It should

not respond incorrectly to a user for any action.

45

• Expansibility the system components must be easily expansible; the developer

should be able to add to the CAI materials without modifying the source code.

• Speediness the response time for the system should be short.

3.4.7.2 Object-Oriented Design in RAD

In an RAD environment, the interface is comprised of objects of interface

components like buttons, text boxes, picture boxes, check boxes, etc. To program is to

specify the codes associated with an action on an object. This is called the object-

based programming. The following diagram shows the flow diagram for an

application:

Figure 3.13. Program Flow Cycle for RAD Application.

3.4.7.3 Object-Oriented Programming

Object-oriented programming is different from object-based programming. In object-

based programming, the objects represent the user interface components that are

generally pre-defined by the development tools. In object-oriented programming, the

focus is on the data representation of your program rather than that of the interface

components.

46

The mixing of object-oriented programming and object-based programming

sometimes confuses the programmer because they are used within the same program

and they are coded in a similar way.

3.4.7.4 Object Representation

The CAI program is represented mainly by the following data structures: Tutorial,

Demo, and Quiz. They are included in the following table:

Object Operation Description
Tutorial Constructor Takes a default tutorial

directory and a default
sound directory, and
creates a new object

GetDirectory Returns the default
tutorial directory

GetDemoIndexDirectoryAt Gets the name of the
index file for the i-th
demo clip

GetQuizIndexDirectoryAt Gets the name of the
index file for the i-th
quiz clip

GetNumClips Returns the total number
of clips for this Tutorial

SetCurrentClipNum Takes a clip number and
sets the clip to be the
current one

GetCurrentClipNum Returns the current clip
number

AdvanceClip Advances a clip
ReverseClip Reverses a clip
IsFirstClip Returns true if the

current clip of the tutorial
is the first one

IsLastClip Returns true if the
current clip of the tutorial
is the last one

Show Displays the current clip
of the tutorial

Demo Constructor Takes a default demo
directory and a default
sound directory, and
creates a new object

GetDirectory Returns the default demo
directory

47

GetNumClips Returns the total number
of clips for this demo

SetCurrentClipNum Takes a clip number and
set the clip to be the
current one

GetCurrentClipNum Returns the current clip
number

AdvanceClip Advances a clip
ReverseClip Reverses a clip
IsFirstClip Returns true if the

current clip of the demo
is the first one

IsLastClip Returns true if the
current clip of the demo
is the last one

Show Displays the current clip
of the demo

Quiz Constructor Takes a default quiz
directory and the number
of questions in the quiz,
and creates a new object

Destructor Used to deallocate quiz
questions

AddQuestion Take a pointer to
QuizQuestion and add
the question being
pointed to

SetCurrentClipNum Takes a clip number and
set the clip to be the
current one

GetCurrentClipNum Returns the current clip
number

IsFirstClip Returns true if the
current clip of the demo
is the first one

IsLastClip Returns true if the
current clip of the demo
is the last one

AdvanceClip Advances a clip
ReverseClip Reverses a clip
SetNumCorrect Takes a number that

represents the number of
correct answers made by
the user

SetNumIncorrect Takes a number that
represents the number of
incorrect answers made
by the user

48

GetNumClips Returns the total number
of quiz clips (questions)

GetNumCorrect Returns the number of
correctly answered quiz
questions

GetNumIncorrect Returns the number of
incorrectly answered
quiz questions

GetCurrentQuizQuestion Returns a pointer to the
current quiz question of
type QuizQuestion

ShowAnswer Displays the answer of
the current quiz question

Show Displays the current clip
of the quiz

QuizQuestion (abstract
base)

Submit Submits the answer
IsSubmitted Returns true if the

answer is submitted
SetUserAnswer (pure
virtual)

Perform dynamic
bindings through
polymorphism GetUserAnswer (pure

virtual)
GetCorrectAnswer (pure
virtual)
IsCorrect (pure
virtual)
EnableInput (pure
virtual)
DisableInput (pure
virtual)
ShowAnswer (pure
virtual)
Show (pure virtual)

MultipleChoice:
QuizQuestion

Constructor Takes a directory to the
question index file and
creates a new object

SetUserAnswer (virtual) Takes the user answer
and stores it

GetCorrectAnswer
(virtual)

Returns the correct
answer

EnableInput (virtual) Enables answer input
DisableInput (virtual) Disables answer input
IsCorrect (virtual) Returns true for a correct

answer
ShowAnswer (virtual) Displays the correct

answer
Show (virtual) Displays the quiz

question
FillInTheBlanks:
QuizQuestion

Constructor Takes a directory to the
question index file and
creates a new object

49

GetNumBlanks Returns the total number
of blanks

SetCurrentBlankNum Sets the blank number
receiving input

GetCurrentBlankNum Returns the current blank
number receiving input

AdvanceBlank Advances a blank for
input

ReverseBlank Reverses a blank for
input

IsFirstBlank Returns true if the
current blank of the input
is the first one

IsLastBlank Returns true if the
current blank of the input
is the last one

Other member functions are the same as
MultipleChoice:QuizType

ShortQuestion:
QuizQuestion

Constructor Takes a directory to the
question index file and
creates a new object

Other member functions are the same as
MultipleChoice:QuizType

Table 3.5 Object Representation for the CAI software.

The Tutorial object serves the purpose of displaying the appropriate tutorial pages.

The constructor takes a programmer-specified default tutorial directory and a default

sound directory for the corresponding index files. This provides flexibility on the

locations of the tutorial materials. Also, the IsFirstClip and IsLastClip methods are

used to determine if some of the navigator buttons need to be grayed out. The Show

method displays the current tutorial clip.

The Demo object serves the purpose of displaying the appropriate demonstration

pages. Its specification is very similar to the Tutorial object, except its member

functions manipulate a different set of object-based components.

The Quiz object is a little bit complicated. It serves the purpose of managing the

progress of the quiz and keeps its statistics. Beyond the common methods of the other

two objects, it provides the AddQuestion method that adds a quiz question to its

50

database. Also, the GetNumCorrect and GetNumIncorrect methods keep track of how

well the user is doing in answering the quiz questions.

The QuizQuestion object represents a quiz question. It is an abstract base class that

serves dynamic binding over the objects MultipleChoice, FillInTheBlanks, and

ShortQuestion. The SetUserAnswer and GetUserAnswer methods are used for storing

and retrieving user answers. They are provided for recalling the incorrect answers

given from the user in case he or she wants to see them again. The Show method

displays the quiz question according to its type. Again, the design is fully expansible

because we could define new types of quiz questions in the future.

Figure 3.14 Class Hierarchy for the CAI Program.

3.4.7.5 Polymorphism and Virtual Functions

A major trick in building a flexible system is through the use of virtual functions to

achieve polymorphism. The idea is that a pointer to a child class could be cast to a

pointer to its base class. On the other hand, while this base class pointer is de-

referenced to access the virtual member functions of the base class, the actual

member functions called would be the corresponding member functions of its child

classes, depending on the type of the pointer stored into the base class pointer.

51

In performing polymorphism, there must be at least one child object inherited from a

base object. The member functions for both the base and the child class must be

declared “virtual”. Usually, the base class serves just as an interface to the different

child classes, and therefore the member functions are declared as “pure virtual”. This

means the implementation of the member functions are left for its child. In this case,

the base class is called an abstract based class, and no instances of it could be created.

3.4.7.6 Directory and File Format

The default directories for the tutorials, demonstrations, quizzes, and sounds

databases are “Tutorials”, “Demos”, “Quizzes”, and “Sounds”, respectively. They are

relative to the base directory where the CAI software is installed. Under the

“Tutorial” directory, there is an index file named “index.dat” that stores the necessary

information for a tutorial clip. An entry for the index file is as follows:

[Clip 6]

Content File:
Looping\Do-While Loop\Example of a Do-While Loop.rtf

Sound File:
Looping\s_06.wav

Relative Quiz Directory:
Looping

Relative Demo Directory:
Looping\Example of a Do-While Loop

Table 3.6 Tutorial Index File Format.

The clip starts from 0 to any size one could make. The paths given are relative to their

default directories given in the constructors. For the relative quiz and demo

directories, they further specify the paths of the index files needed to be further

referenced.

Also, there is a “contents.dat” which stores the topics of presentation. It is merely

used by the object-based component TtreeView in C++Builder:

52

Looping
 What is a Loop?
 How many different types of Loops are there in C++?
 While Loop
 Example of a While Loop
 Do-While Loop
 Example of a Do-While Loop
 For Loop
 Example of a For Loop
 More on For Loop
 Exiting a Loop
 Skipping a Loop Iteration

Table 3.7 The Contents of “contents.dat”.

In the quiz directory, there is an index file that lists the names of the data files for the

quiz questions. This also tells the quantity of the quiz questions for a particular

section. The data files of the quiz questions are of the form q_XX.dat. Here is an

example of a quiz question data file:

Question File:
Quiz\Looping\Do-While Loop\q_02.rtf

Answer File:
Quiz\Looping\Do-While Loop\a_02.rtf

Possible type(s):
MultipleChoice
FillInTheBlanks
ShortQuestion

Correct answer(s):
after

Choices:
when
before
after
The condition is not tested

Table 3.8 Example of a Quiz Question Data File (q_XX.dat).

53

The “Question File” and “Answer File” entries tell the locations of the files. The

example shown all the three possible types that could be made from this question, but

any one or two of them could be removed.

The “Correct Answer(s)” entry specifies the correct answer in form of plain text.

Finally, “Choices” specifies a list of choices that are used only by a multiple-choice

question.

In the demo directory, there is also an index file that tells the locations of the image

and sound files for each clip of the demonstrations. Here is an example:

[Clip 1]

Image File:
Example of a Do-While Loop_01.bmp

Sound File:
Looping\Do-While Loop\s_01.wav

Table 3.9 Example of a Tutorial Index File (index.dat).

The directories are structured in such a way that a separate directory is given for

every different topic. This helps to mange the software better once its database gets

larger, and moreover this means better expansibility.

3.4.7.7 Object-Oriented Design: Before and After

Before using object-oriented methodology, the program was developed using the

object-based feature provided by C++Builder. Since there were no classes for

classifying three different types of quiz questions (multiple-choice questions, fill in

the blanks, and short questions), the traditional way of classifying was to use a switch

statement. For example,

switch (GetType()) // type of quiz question
{
 // multiple-choice questions
 case MC: FormMain->RadioGroupMC->BringToFront();
 FormMain->RadioGroupMC->Items->Clear();

54

 ...;
 break;

 // fill in the blanks
 case FIB: FormMain->GroupBoxFillIntheBlanks->BringToFront();
 ...;
 break;

 // short questions
 default: ...;
 break;
}

Table 3.10 Procedural Object-Based Programming extracted from part of the

Second Version of the code.

However, as the program grew, the number of statements for each case became larger

and larger. Because the statements are loosely related, debugging such a program was

a nightmare.

This may be one reason why the object-oriented programming paradigm is highly

recommended for developing large programs. In the object-oriented paradigm,

statements from different types are grouped into member functions naturally:

void MultipleChoice::Show() const
{
 FormMain->RadioGroupMC->BringToFront();
 FormMain->RadioGroupMC->Items->Clear();
 ...
}

void FillInTheBlanks::Show() const
{
 FormMain->GroupBoxFillIntheBlanks->BringToFront();
 ...
}

void ShortQuestion::Show() const
{
 ...
}

Table 3.11 Object-Oriented Programming Paradigm.

55

Suppose the classes MultipleChoice, FillInTheBlanks, and ShortQuestion are

inherited from a common abstract base class, QuizQuestion. Then the statements:

QuizQuestion *q[3];

q[0] = (QuizQuestion *)new MultipleChoice();
q[1] = (QuizQuestion *)new FillInTheBlanks();
q[2] = (QuizQuestion *)new ShortQuestion();

for (int i = 0; i < 3; i++)
{
 q[i]->Show();
}

Table 3.12 Polymorphism.

will call the corresponding Show functions according to their original types. This is

called polymorphism because the same variable (q[i]) is used, but different methods

are invoked.

56

4 RESULTS

57

4.1 Evaluating the Program

4.1.1 Introduction

Once the program was developed, it was evaluated by ten volunteers. In order to

obtain useful feedback from such a small group of participants, an additional

observation was made on how the people interacted with the system. This was a

simplified usability test in which each user was encourage to verbalize his or her

thoughts about the program as it was being used, and the observer looked at how the

user interacted with the system. This is called “simplified” because the test process

was not recorded.

The test was conducted using the participants’ home computers so as to minimize the

side effect generated by unfamiliar systems. It was also important to make sure the

CAI program could run on all computers that use Windows.

After using the program, a survey was given to each participant [Table 4.1]. This was

a paper survey created using Microsoft Word 2000. Again, the survey was limited to

10 questions so as to not overwhelm the participants. These questions require only

numerical answers from 1 to 10 representing the levels of agreement on certain

statements. There was a “bonus” question at the end to let the participants provide

other opinions about the program.

Program Evaluation Form

For the following, rate from (strongly disagree) 1 to 10 (strongly agree):

1. The presentation of information is clear. _______

2. The aim of the lesson is clear. _______

3. The program content is accurate. _______

4. The program is easy to use. _______

5. The interface is attractive. _______

6. The program provides good interaction. _______

58

7. The presentation rate and sequence could be controlled. _______

8. The quiz questions help to reinforce the material being taught. _______

9. I like using the program to learn C++ rather than reading a book. _______

10. The overall quality is good. _______

Do you have other opinions?

Table 4.1 Computer-Aided Instruction (CAI) Survey.

4.1.2 Results

The following table summarizes the results from the 10 respondents:

Respondent
Aspect

1 2 3 4 5 6 7 8 9 10 Average

Clear
presentation

8 8 (7) (10) 7 9 10 8 7 9 8.25

Aim of lesson 8 8 9 (10) 10 8 10 (7) 8 9 8.75
Accurate
content

9 9 - (10) 10 10 10 - (8) - 9.60

Easy to use 8 9 (10) 10 10 7 10 8 (6) 7 8.63
Attractive
interface

8 (2) 7.5 9 6 7 (10) 5 7 6 6.94

Good
interaction

9 (5) (10) 10 6.5 7 10 6 5 7 7.56

Controllable
presentation
rate and
sequence

8 (7) - (10) 9 10 10 8 7 8 8.57

Questions
reinforce
materials

8 8 (10) 10 8.5 10 10 (6) 7 10 8.94

Like using the
program to
learn than
books

8 8 9 (10) 10 10 10 8 (4) 9 9.00

Overall quality 9 8 9 (10) (7) 8 10 7 7 8.5 8.31

***: Notes

• In each cell of the table (except experience), the range of the score is from 1 to 10 inclusive. A higher
score means higher user satisfaction.

• There were 4 males and 6 females in the population, aged 19 to 23.

59

Legend

(n): Extreme data. The high and low values were discarded in calculating the average score for that category.

:

-: no response given

Table 4.2 Results on Program Evaluation Form.

The program scored the highest in accuracy of content. Most respondents agreed that

the drill and practice questions helped them to reinforce the materials being taught.

On the other hand, the program was relatively weak in the areas of user interface and

interaction. Luckily the average scores for these categories were still promising. One

problem found during the observation was that people got confused switching

between the three components of the CAI programs (tutorial, demo, and quiz

sessions).

Besides the above evaluation results, respondents also gave extra comments. In

general, they agreed that the interface was simple and user-friendly. One respondent

suggested the use of more color, and two respondents suggested the separation of

long paragraphs into shorter paragraphs.

The respondents reacted favorably to the audio aspect of the program. This showed

that the inclusion of the voice feature could catch the user’s attention.

4.1.3 Conclusion

The program generally scored high in many aspects, but there is still room for

improvement. From the survey results, a number of improvements were made to the

interface. For example, color was added to indicate important keywords and

sentences. Also, longer paragraphs were broken into sentences to further minimize

the memory load of the user [Section 3.4.6.5].

The results also showed that it is difficult to make a CAI program with sufficient

interaction. This may be one of the reasons why people prefer to learn from lectures.

60

In programming, it takes time to incorporate more interaction because it requires a lot

of multimedia presentations.

61

5 CONCLUSIONS

62

5.1 Conclusions and Possible Extensions

By studying the criteria that contribute to the effectiveness of CAI programs, a fairly

effective and extensible CAI program has been developed. The three components of

the program, tutorials, demonstrations, and quizzes, could serve as a backbone to

most instructional materials. With some knowledge about the basic structure of the

system, the contents of the tutorials could be easily extended in a cost effective way.

Also, this project has successfully incorporated knowledge about learning theories

into the design of a more effective CAI program. This provides a good basis for the

future development of CAI programs.

There are many possible extensions to this project. Due to time constraints, only a

small subset of the C++ language was covered. If there were more tutorial materials,

the program would be more useful. Also, many more quiz questions could be added

so that the user could have more practice using what they have learned.

Better graphics could lead to a better interface, and better animation would provide

added interest for visual learners.

As far as the Internet is concerned, the program could update itself from the Web.

The quiz questions could be updated periodically so that they would be more

effective. In addition, the materials could be accessed while the computer is offline.

In conclusion, if more effort is put into relating the design of CAI software to the way

people learn, CAI can revolutionize the way people acquire knowledge.

63

APPENDIX A – Survey Results

64

Survey on CAI Program Design (Results):

Number of Response = 19

Question 1:
==========
Number of people who have used CAI programs before = 4

Question 2:
==========
How much they think they have learned from those programs (out of 10):
4, 2, 3, 6

Question 3:
==========
Features that people like/dislike most about those CAI programs:
- Colorful, the activities are quite interesting
- Don't know, but dislike.
- It includes many visual representation and there is a game about testing how
much I learnt from the course.
- User unfriendly.

Question 4 & 5:
==============
 Number of people

 most preferred top 2 preferred last 2 preferred least preferred
Book 6 15 13 3
Course 9 13 9 6
Computer 4 10 15 10
Other
 Notes 0 0 1 0

 most important top 2 important last 2 important least important
System
 Easy to use 15 19 16 4
 Performance 4 18 19 15
 Other
 Memory Usage 0 0 1 1
 Self-explanatory 0 1 1 0
 Useful 0 0 1 1

Presentation
 Text layout 10 13 4 2
 Color 2 6 8 6
 Graphics 5 10 1 1
 Sound 0 1 18 8
 Animation 2 7 10 5

Tutorial Contents
 Quantity 3 5 14 12
 Easy to understand 9 15 4 2
 Meaningfully
 structured 5 11 8 3
 Accuracy 2 6 13 4

Drill and Practice Exercises
 Quantity 4 5 14 9
 Revise learned
 materials 7 13 6 2
 Encourage thinking 7 14 5 1
 Feedback 1 5 14 9

Question 6:
==========
What types of interaction could a CAI program provide so that it consistently
maintains the user's interest?

- live chat
- feedback for user's performance
- more animation and graphics
- Friendly environment
- It's better to provide more update information. It can also link to more update
related websites for providing supplementary information.
- Simple and consistent interface.

65

- Easy to navigate.
- some q&a between sessions... or interesting animations...

Question 7:
==========
How do you think the tutorial materials could be organized so that they are more
interesting than the material in a book?

- More colors, graphics (both moving and stationary), fonts, etc.
- Not really since book and computer is diff media! maybe better layout
- using animation coz this can't be available in books
- interactive between instuctor and audiences
- Easy to use and easy to understand the ideas behind it.
- less words, more practice
- After each part of content, it needs to have concise and precise summmary with many
short questions for revising (e.g. MCQ). Also, it is better including easily available
glossary for difficult words.
- Good interactive, else there is no difference than a book with extra meaningless
animation.
- customary response and feedback to answers and problems

Question 8:
==========
Some experts think that the drill and practice questions in CAI software are
ineffective. Do you agree? Why? How would you suggest the questions be designed so
that they become more effective?

- Agree to a certain extent.
- Don't understand the materials thoroughly when attempting the questions.
- More applicable and clear examples given might help.
- People not willing to think... If guide by a tutor... much better... also the diff
of media.....
- I disagree. but no idea about how to become more effective.
- i don't agree becoz whether the questions are effective or not depends on the
program producer instead on the program media
- Less pages, and more summarization with topics and ideas CAI trying to deliver to
viewers, so it will be easier to read. Reading on a computer will hurt you eyes in the
long run. Further a book is more accessible than with a computer. It's lighter and
it's not as difficult as setting up a computer to on-line.
- I don't think that's ineffective. For example, in science subjects, books cannot
provide interactive medium for us to study such as 3D graphs, concise Q and A for
revision. For those Q, it may be designed into many levels. Then, we can have more
chance as self-learning and improvement.

Question 9:
==========
Reasonable Price of a CAI program (in US dollars):

 Number of people
$0, it should be free 2
>$0 to $10 2
>$10 to $20 5
>$20 to $30 4
>$30 to $50 0
>$50 to $100 3
>$100 2
No response 1

Question 10:
===========
What else would you like to see in the future CAI programs?

- no big difference from attending a class
- VR technique is added
- CAI over the internet/mobile networks
- More graphics, and animations
- More scientific CAI programs can be available since on the market, only more basic
level CAI can be provided. Also, it's better to have it's own website so that updated
information can be provided.

66

APPENDIX B – SOURCE CODE (Learning C++)

67

About.h

//--
#ifndef AboutH
#define AboutH
//--
#include <vcl\System.hpp>
#include <vcl\Windows.hpp>
#include <vcl\SysUtils.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Graphics.hpp>
#include <vcl\Forms.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Buttons.hpp>
#include <vcl\ExtCtrls.hpp>
//--
class TFormAbout : public TForm
{
__published:
 TPanel *Panel1;
 TImage *ProgramIcon;
 TLabel *ProductName;
 TLabel *Version;
 TLabel *Copyright;
 TLabel *Comments;
 TButton *ButtonOK;
 TLabel *Label2;
 TLabel *Label1;
 TBevel *Bevel1;
 TBevel *Bevel2;
 TLabel *Label3;
 TLabel *Label4;
 void __fastcall FormClose(TObject *Sender, TCloseAction &Action);
 void __fastcall FormActivate(TObject *Sender);
private:
public:
 virtual __fastcall TFormAbout(TComponent* AOwner);
};
//--
extern PACKAGE TFormAbout *FormAbout;
//--
#endif

68

Demo.h

//---
#ifndef DemoH
#define DemoH
//---
#include <vector>
using namespace std;
//---
class Demo
{
 private:
 AnsiString Directory;
 AnsiString SoundDirectory;
 int NumClips;
 int CurrentClipNum;
 vector <AnsiString> viLocations;
 vector <AnsiString> viSoundLocations;

 public:
 // takes a default demo directory and a default sound directory
 Demo(AnsiString directory, AnsiString soundDirectory);

 // returns the default demo directory
 AnsiString GetDirectory() const;

 // returns the total number of clips for this demo
 int GetNumClips() const;

 // takes a clip number and set the clip to be the current one
 bool SetCurrentClipNum(int currentClipNum);

 // returns the current clip number
 int GetCurrentClipNum() const;

 // advance a clip
 bool AdvanceClip();

 // reverse a clip
 bool ReverseClip();

 // returns true if the current clip of the demo is the first one
 bool IsFirstClip() const;

 // returns true if the current clip of the demo is the last one
 bool IsLastClip() const;

 // displays the current clip of the demo
 void Show() const;
};
//---
#endif

69

FillInTheBlanks.h

//---
#ifndef FillInTheBlanksH
#define FillInTheBlanksH
//---
#include "QuizQuestion.h"
//---
class FillInTheBlanks: public QuizQuestion
{
 private:
 AnsiString QuestionFile;
 AnsiString AnswerFile;
 AnsiString CorrectAnswer;
 AnsiString UserAnswer;
 int NumBlanks;
 int CurrentBlankNum;

 public:
 FillInTheBlanks(AnsiString indexFile);

 // returns the total number of blanks
 int GetNumBlanks() const;

 // sets the blank number receiving input
 bool SetCurrentBlankNum(int currentClipNum);

 // returns the current blank number receiving input
 int GetCurrentBlankNum() const;

 // advances a blank for input
 bool AdvanceBlank();

 // reverses a blank for input
 bool ReverseBlank();

 // returns true if the current blank of the input is the first one
 bool IsFirstBlank() const;

 // returns true if the current blank of the input is the last one
 bool IsLastBlank() const;

 // returns the i-th blank of the user answer
 AnsiString GetUserAnswer(int index) const;

 // takes the i-th blank of the user answer and stores it
 void SetUserAnswer(int index, AnsiString userAnswer);

 // stores the given user answer
 virtual void SetUserAnswer(AnsiString userAnswer);

 // takes the user answer and stores it
 virtual AnsiString GetUserAnswer() const;

 // returns the correct answer
 virtual AnsiString GetCorrectAnswer() const;

 // enables answer input
 virtual void EnableInput() const;

 // disable answer input
 virtual void DisableInput() const;

 // returns true for a correct answer, false otherwise
 virtual bool IsCorrect() const;

 // displays the correct answer
 virtual void ShowAnswer() const;

 // displays the quiz question
 virtual void Show() const;
};
//---
#endif

70

Main.h

//---
#ifndef MainH
#define MainH
//---
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <ComCtrls.hpp>
#include <Menus.hpp>
#include <ToolWin.hpp>
#include <ExtCtrls.hpp>
#include <Buttons.hpp>
#include <MPlayer.hpp>
//---
class TFormMain : public TForm
{
__published: // IDE-managed Components
 TPanel *PanelTutorial;
 TSplitter *Splitter1;
 TPanel *PanelTutorialWindow;
 TPanel *Panel3;
 TPanel *Panel6;
 TBitBtn *BitBtnTutorialPrevious;
 TBitBtn *BitBtnTutorialNext;
 TBitBtn *BitBtnTutorialDemo;
 TBitBtn *BitBtnTutorialQuiz;
 TRichEdit *RichEditTutorial;
 TGroupBox *GroupBox1;
 TTreeView *TreeViewContents;
 TMainMenu *MainMenu1;
 TMenuItem *mnuFile;
 TMenuItem *mnuFileExit;
 TMenuItem *mnuHelp;
 TPanel *PanelQuiz;
 TPanel *PanelDemo;
 TPanel *Panel4;
 TPanel *Panel5;
 TBitBtn *BitBtnDemoPrevious;
 TBitBtn *BitBtnDemoNext;
 TBitBtn *BitBtnDemoBack;
 TPanel *Panel2;
 TImage *ImageDemo;
 TStatusBar *StatusBarMain;
 TPanel *Panel1;
 TPanel *Panel7;
 TBitBtn *BitBtnQuizPrevious;
 TBitBtn *BitBtnQuizNext;
 TBitBtn *BitBtnQuizBack;
 TMenuItem *mnuHelpAbout;
 TMenuItem *mnuOptions;
 TMenuItem *mnuOptionsSound;
 TPanel *Panel8;
 TPanel *Panel9;
 TPanel *Panel10;
 TPanel *PanelUserAnswer;
 TPanel *Panel11;
 TImage *ImageQuizResult;
 TBitBtn *BitBtnQuizSubmit;
 TPanel *Panel12;
 TGroupBox *GroupBoxShortQuestion;
 TMemo *MemoShortQuestion;
 TRadioGroup *RadioGroupMultipleChoice;
 TGroupBox *GroupBoxFillIntheBlanks;
 TEdit *EditFillInTheBlanks;
 TBitBtn *BitBtnFillInTheBlanksUp;
 TBitBtn *BitBtnFillInTheBlanksDown;
 TRichEdit *RichEditQuiz;
 TMediaPlayer *MediaPlayer;
 TBitBtn *BitBtnQuizAnswer;
 TGroupBox *GroupBoxAnswer;
 TRichEdit *RichEditAnswer;
 TSplitter *Splitter2;

71

 void __fastcall BitBtnTutorialPreviousClick(TObject *Sender);
 void __fastcall BitBtnTutorialNextClick(TObject *Sender);
 void __fastcall FormCreate(TObject *Sender);
 void __fastcall TreeViewContentsChange(TObject *Sender, TTreeNode *Node);
 void __fastcall FormActivate(TObject *Sender);
 void __fastcall BitBtnTutorialDemoClick(TObject *Sender);
 void __fastcall BitBtnDemoBackClick(TObject *Sender);
 void __fastcall BitBtnDemoNextClick(TObject *Sender);
 void __fastcall BitBtnDemoPreviousClick(TObject *Sender);
 void __fastcall FormClose(TObject *Sender, TCloseAction &Action);
 void __fastcall FormCloseQuery(TObject *Sender, bool &CanClose);
 void __fastcall mnuFileExitClick(TObject *Sender);
 void __fastcall BitBtnQuizBackClick(TObject *Sender);
 void __fastcall RadioGroupMultipleChoiceClick(TObject *Sender);
 void __fastcall BitBtnQuizSubmitClick(TObject *Sender);
 void __fastcall BitBtnQuizNextClick(TObject *Sender);
 void __fastcall BitBtnQuizPreviousClick(TObject *Sender);
 void __fastcall MemoShortQuestionExit(TObject *Sender);
 void __fastcall BitBtnFillInTheBlanksDownClick(TObject *Sender);
 void __fastcall BitBtnFillInTheBlanksUpClick(TObject *Sender);
 void __fastcall BitBtnTutorialQuizClick(TObject *Sender);
 void __fastcall mnuOptionsSoundClick(TObject *Sender);
 void __fastcall mnuHelpAboutClick(TObject *Sender);
 void __fastcall BitBtnQuizAnswerClick(TObject *Sender);
 void __fastcall EditFillInTheBlanksKeyDown(TObject *Sender, WORD &Key,
 TShiftState Shift);
 void __fastcall EditFillInTheBlanksChange(TObject *Sender);
 void __fastcall EditFillInTheBlanksEnter(TObject *Sender);
 void __fastcall MemoShortQuestionEnter(TObject *Sender);
private: // User declarations
public: // User declarations
 __fastcall TFormMain(TComponent* Owner);
};
//---
extern PACKAGE TFormMain *FormMain;
//---
#endif

72

MultipleChoice.h

//---
#ifndef MultipleChoiceH
#define MultipleChoiceH
//---
#include <vector>
using namespace std;
//---
#include "QuizQuestion.h"
//---
class MultipleChoice: public QuizQuestion
{
 private:
 AnsiString QuestionFile;
 AnsiString AnswerFile;
 vector<AnsiString> viChoices;
 AnsiString CorrectAnswer;
 AnsiString UserAnswer;

 public:
 // takes a directory to the question index file and creates a new object
 MultipleChoice(AnsiString indexFile);

 // stores the given user answer
 virtual void SetUserAnswer(AnsiString userAnswer);

 // takes the user answer and stores it
 virtual AnsiString GetUserAnswer() const;

 // returns the correct answer
 virtual AnsiString GetCorrectAnswer() const;

 // enables answer input
 virtual void EnableInput() const;

 // disables answer input
 virtual void DisableInput() const;

 // returns true for a correct answer
 virtual bool IsCorrect() const;

 // displays the correct answer
 virtual void ShowAnswer() const;

 // displays the quiz question
 virtual void Show() const;
};
//---
#endif

73

Quiz.h

//---
#ifndef QuizH
#define QuizH
//---
#include <vector>
using namespace std;
//---
#include "QuizQuestion.h"
//---
class Quiz
{
 private:
 int CurrentClipNum;
 int NumCorrect;
 int NumIncorrect;
 vector<QuizQuestion *> viQuizQuestions;
 AnsiString GetRandomQuestionType(AnsiString dataFile) const;

 public:
 // takes a default quiz directory and the number of questions in the quiz
 Quiz(AnsiString Directory, int numQuestions);

 // used to deallocate quiz questions
 ~Quiz();

 // take a pointer to QuizQuestion and add the question being pointed to
 void AddQuestion(QuizQuestion *quizQuestion);

 // takes a clip number and set the clip to be the current one
 bool SetCurrentClipNum(int currentClipNum);

 // returns the current clip number
 int GetCurrentClipNum() const;

 // returns true if the current clip of the demo is the first one
 bool IsFirstClip() const;

 // returns true if the current clip of the demo is the last one
 bool IsLastClip() const;

 // advance a clip
 bool AdvanceClip();

 // reverse a clip
 bool ReverseClip();

 // takes a number that represents the number of correct answers made by the user
 void SetNumCorrect(int numCorrect);

 // takes a number that represents the number of incorrect answers made by the user
 void SetNumIncorrect(int numIncorrect);

 // returns the total number of quiz clips (questions)
 int GetNumClips() const;

 // returns the number of correctly answered quiz questions
 int GetNumCorrect() const;

 // returns the number of incorrectly answered quiz questions
 int GetNumIncorrect() const;

 // returns a pointer to the current quiz question of type QuizQuestion
 QuizQuestion *GetCurrentQuizQuestion() const;

 // displays the answer of the current quiz question
 void ShowAnswer() const;

 // displays the current clip of the quiz
 void Show() const;
};
//---
#endif

74

QuizMenu.h

//---
#ifndef QuizMenuH
#define QuizMenuH
//---
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <ComCtrls.hpp>
#include <ExtCtrls.hpp>
//---
class TFormQuizMenu : public TForm
{
__published: // IDE-managed Components
 TPanel *Panel13;
 TLabel *Label1;
 TLabel *Label2;
 TLabel *Label3;
 TUpDown *UpDownQuizNumQuestions;
 TEdit *EditQuizNumQuestions;
 TButton *ButtonGo;
 TButton *ButtonCancel;
 void __fastcall ButtonCancelClick(TObject *Sender);
 void __fastcall ButtonGoClick(TObject *Sender);
 void __fastcall EditQuizNumQuestionsExit(TObject *Sender);
 void __fastcall FormActivate(TObject *Sender);
private: // User declarations
public: // User declarations
 __fastcall TFormQuizMenu(TComponent* Owner);
};
//---
extern PACKAGE TFormQuizMenu *FormQuizMenu;
//---
#endif

75

QuestionQuestion.h

//---
#ifndef QuizQuestionH
#define QuizQuestionH
//---
class QuizQuestion
{
 private:
 bool Submitted;

 public:
 QuizQuestion();

 // submits the answer
 void Submit();

 // returns true if the answer is submitted
 bool IsSubmitted() const;

 // virtuak functions for dynamic bindings
 virtual void SetUserAnswer(AnsiString userAnswer) = 0;
 virtual AnsiString GetUserAnswer() const = 0;
 virtual AnsiString GetCorrectAnswer() const = 0;
 virtual bool IsCorrect() const = 0;
 virtual void EnableInput() const = 0;
 virtual void DisableInput() const = 0;
 virtual void ShowAnswer() const = 0;
 virtual void Show() const = 0;
};
//---
#endif

76

QuizResults.h

//--
#ifndef QuizResultsH
#define QuizResultsH
//--
#include <vcl\System.hpp>
#include <vcl\Windows.hpp>
#include <vcl\SysUtils.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Graphics.hpp>
#include <vcl\Forms.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Buttons.hpp>
#include <vcl\ExtCtrls.hpp>
//--
class TFormQuizResults : public TForm
{
__published:
 TLabel *Label1;
 TLabel *Label2;
 TButton *ButtonOK;
 TLabel *Label3;
 TEdit *EditTotalNumQuestions;
 TLabel *Label4;
 TEdit *EditNumCorrectAnswers;
 TEdit *EditNumIncorrectAnswers;
 TLabel *Label5;
 TEdit *EditNumOmittedQuestions;
 TLabel *Label6;
 TLabel *Label7;
 TLabel *Label8;
 TLabel *LabelGrade;
 TLabel *LabelScore;
 void __fastcall FormActivate(TObject *Sender);
private:
public:
 virtual __fastcall TFormQuizResults(TComponent* AOwner);
};
//--
extern PACKAGE TFormQuizResults *FormQuizResults;
//--
#endif

77

Shared.h

//---
#ifndef SharedH
#define SharedH
//---
// maximum number of characters per line
const int MAX_NUMCHARS = 256;
//---
#endif

78

ShortQuestion.h

//---
#ifndef ShortQuestionH
#define ShortQuestionH
//---
#include "QuizQuestion.h"
//---
class ShortQuestion: public QuizQuestion
{
 private:
 AnsiString QuestionFile;
 AnsiString AnswerFile;
 AnsiString CorrectAnswer;
 AnsiString UserAnswer;

 public:
 // takes a directory to the question index file and creates a new object
 ShortQuestion(AnsiString indexFile);

 // stores the given user answer
 virtual void SetUserAnswer(AnsiString userAnswer);

 // takes the user answer and stores it
 virtual AnsiString GetUserAnswer() const;

 // returns the correct answer
 virtual AnsiString GetCorrectAnswer() const;

 // enables answer input
 virtual void EnableInput() const;

 // disables answer input
 virtual void DisableInput() const;

 // returns true for a correct answer
 virtual bool IsCorrect() const;

 // displays the correct answer
 virtual void ShowAnswer() const;

 // displays the quiz question
 virtual void Show() const;
};
//---
#endif

79

Tutorial.h

//---
#ifndef TutorialH
#define TutorialH
//---
#include <vector>
using namespace std;
//---
class Tutorial
{
 private:
 AnsiString Directory;
 AnsiString SoundDirectory;
 int NumClips;
 int CurrentClipNum;
 vector <AnsiString> viFileLocations;
 vector <AnsiString> viSoundLocations;
 vector <AnsiString> viQuizIndexes;
 vector <AnsiString> viDemoIndexes;

 public:
 // takes a default tutorial directory and a default sound directory
 Tutorial(AnsiString directory, AnsiString soundDirectory);

 // returns the default tutorial directory
 AnsiString GetDirectory() const;

 // gets the name of the index file for the i-th demo clip
 AnsiString GetDemoIndexDirectoryAt(int i) const;

 // gets the name of the index file for the i-th quiz clip
 AnsiString GetQuizIndexDirectoryAt(int i) const;

 // returns the total number of clips for this Tutorial
 int GetNumClips() const;

 // takes a clip number and sets the clip to be the current one
 bool SetCurrentClipNum(int currentClipNum);

 // returns the current clip number
 int GetCurrentClipNum() const;

 // advance a clip
 bool AdvanceClip();

 // reverse a clip
 bool ReverseClip();

 // returns true if the current clip of the tutorial is the first one
 bool IsFirstClip() const;

 // returns true if the current clip of the tutorial is the last one
 bool IsLastClip() const;

 // displays the current clip of the tutorial
 void Show() const;
};
//---
#endif

80

About.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include "About.h"
#include "Main.h"
//---
#pragma resource "*.dfm"
TFormAbout *FormAbout;
//---
__fastcall TFormAbout::TFormAbout(TComponent* AOwner)
 : TForm(AOwner)
{
}
//---
void __fastcall TFormAbout::FormClose(TObject *Sender,
 TCloseAction &Action)
{
 FormMain->MediaPlayer->Pause();
}
//---
void __fastcall TFormAbout::FormActivate(TObject *Sender)
{
 FormMain->MediaPlayer->Pause();
}
//---

81

Demo.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <fstream>
using namespace std;
//---
#include "Demo.h"
#include "Shared.h"
#include "Main.h"
//---
#pragma package(smart_init)
//---
Demo::Demo(AnsiString directory, AnsiString soundDirectory)
{
 char line[MAX_NUMCHARS];
 NumClips = 0;

 Directory = directory;
 SoundDirectory = soundDirectory;
 CurrentClipNum = 0;

 fstream fsIndex((Directory + "\\index.dat").c_str());

 // how big is the index file?
 while (!fsIndex.eof())
 {
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 viLocations.insert(viLocations.end(), AnsiString(line));

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 viSoundLocations.insert(viSoundLocations.end(), AnsiString(line));

 fsIndex.getline(line, MAX_NUMCHARS);

 NumClips++;
 }

 fsIndex.close();
}
//---
AnsiString Demo::GetDirectory() const
{
 return Directory;
}
//---
int Demo::GetNumClips() const
{
 return NumClips;
}
//---
bool Demo::SetCurrentClipNum(int currentClipNum)
{
 // invalid clip number
 if (currentClipNum < 0 || currentClipNum >= NumClips)
 return false;

 CurrentClipNum = currentClipNum;

 return true;
}
//---
int Demo::GetCurrentClipNum() const
{
 return CurrentClipNum;
}

82

//---
bool Demo::AdvanceClip()
{
 if (IsLastClip() == true)
 return false;

 SetCurrentClipNum(GetCurrentClipNum() + 1);

 return true;
}
//---
bool Demo::ReverseClip()
{
 if (IsFirstClip() == true)
 return false;

 SetCurrentClipNum(GetCurrentClipNum() - 1);

 return true;
}
//---
bool Demo::IsFirstClip() const
{
 if (CurrentClipNum == 0)
 return true;

 return false;
}
//---
bool Demo::IsLastClip() const
{
 if (CurrentClipNum == NumClips - 1)
 return true;

 return false;
}
//---
void Demo::Show() const
{
 FormMain->ImageDemo->Picture->LoadFromFile(Directory + "\\" +
viLocations[CurrentClipNum]);
 FormMain->StatusBarMain->SimpleText = AnsiString("Clip ") + (GetCurrentClipNum() + 1)
+ " of " + GetNumClips();

 if (IsFirstClip() == true)
 {
 FormMain->BitBtnDemoPrevious->Enabled = false;
 FormMain->BitBtnDemoNext->Enabled = true;
 }
 else if (IsLastClip() == true)
 {
 FormMain->BitBtnDemoPrevious->Enabled = true;
 FormMain->BitBtnDemoNext->Enabled = false;
 }
 else
 {
 FormMain->BitBtnDemoPrevious->Enabled = true;
 FormMain->BitBtnDemoNext->Enabled = true;
 }

 // play sound if it is enabled
 if (FormMain->mnuOptionsSound->Checked && viSoundLocations[CurrentClipNum] != "")
 {
 FormMain->MediaPlayer->FileName = SoundDirectory + "\\" +
viSoundLocations[CurrentClipNum];
 FormMain->MediaPlayer->Open();
 FormMain->MediaPlayer->Play();
 }
}
//---

83

FillInTheBlanks.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <fstream>
using namespace std;
//---
#include "FillInTheBlanks.h"
#include "Shared.h"
#include "Main.h"
//---
#pragma package(smart_init)
//---
FillInTheBlanks::FillInTheBlanks(AnsiString indexFile)
{
 char line[MAX_NUMCHARS];

 CurrentBlankNum = 0;

 fstream fsIndex(indexFile.c_str());

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // location of the question file
 QuestionFile = AnsiString(line);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // location of the answer file
 AnswerFile = AnsiString(line);
 fsIndex.getline(line, MAX_NUMCHARS);

 do // skip possible type(s) data
 {
 fsIndex.getline(line, MAX_NUMCHARS);
 } while (AnsiString(line) != "");

 fsIndex.getline(line, MAX_NUMCHARS);

 NumBlanks = 0;

 // read correct answer
 fsIndex.getline(line, MAX_NUMCHARS);

 while (AnsiString(line) != "")
 {
 CorrectAnswer += AnsiString(line) + (char)13 + (char)10;
 NumBlanks++;
 fsIndex.getline(line, MAX_NUMCHARS);
 }

 fsIndex.close();
}
//---
int FillInTheBlanks::GetNumBlanks() const
{
 return NumBlanks;
}
//---
bool FillInTheBlanks::SetCurrentBlankNum(int currentBlankNum)
{
 // invalid blank number
 if (currentBlankNum < 0 || currentBlankNum >= NumBlanks)
 return false;

 CurrentBlankNum = currentBlankNum;

 return true;
}
//---
int FillInTheBlanks::GetCurrentBlankNum() const

84

{
 return CurrentBlankNum;
}
//---
bool FillInTheBlanks::AdvanceBlank()
{
 if (IsLastBlank() == true)
 return false;

 SetCurrentBlankNum(GetCurrentBlankNum() + 1);

 return true;
}
//---
bool FillInTheBlanks::ReverseBlank()
{
 if (IsFirstBlank() == true)
 return false;

 SetCurrentBlankNum(GetCurrentBlankNum() - 1);

 return true;
}
//---
bool FillInTheBlanks::IsFirstBlank() const
{
 if (CurrentBlankNum == 0)
 return true;

 return false;
}
//---
bool FillInTheBlanks::IsLastBlank() const
{
 if (CurrentBlankNum == NumBlanks - 1)
 return true;

 return false;
}
//---
void FillInTheBlanks::SetUserAnswer(int index, AnsiString userAnswer)
{
 AnsiString s;

 for (int blankNum = 0; blankNum < GetNumBlanks(); blankNum++)
 if (blankNum == index) // need to replace?
 s += userAnswer/*.Trim()*/ + (char)13 + (char)10;
 else
 s += GetUserAnswer(blankNum) + (char)13 + (char)10;

 UserAnswer = s;
}
//---
AnsiString FillInTheBlanks::GetUserAnswer(int index) const
{
 int left, right;

 for (left = 0, right = left; right < UserAnswer.Length(); right++)
 // check for line feed
 if (UserAnswer.SubString(right, 1) == (char)10)
 {
 if (index-- == 0)
 return UserAnswer.SubString(left, right - left - 1).Trim();

 left = right + 1;
 }

 return UserAnswer.SubString(left, right - left).Trim();
}
//---
void FillInTheBlanks::SetUserAnswer(AnsiString userAnswer)
{
 UserAnswer = userAnswer;
}
//---
AnsiString FillInTheBlanks::GetUserAnswer() const
{

85

 return UserAnswer;
}
//---
AnsiString FillInTheBlanks::GetCorrectAnswer() const
{
 return CorrectAnswer;
}
//---
void FillInTheBlanks::EnableInput() const
{
 FormMain->EditFillInTheBlanks->ReadOnly = false;
}
//---
void FillInTheBlanks::DisableInput() const
{
 FormMain->EditFillInTheBlanks->ReadOnly = true;
}
//---
bool FillInTheBlanks::IsCorrect() const
{
 return GetUserAnswer().Trim() == GetCorrectAnswer().Trim();
}
//---
void FillInTheBlanks::ShowAnswer() const
{
 FormMain->RichEditAnswer->Lines->LoadFromFile(AnswerFile);
}
//---
void FillInTheBlanks::Show() const
{
 FormMain->GroupBoxFillIntheBlanks->BringToFront();
 FormMain->RichEditQuiz->Lines->LoadFromFile(QuestionFile);

 // Show the current blank
 for (int i = FormMain->RichEditQuiz->FindText("_", 0, FormMain->RichEditQuiz-
>Text.Length(), TSearchTypes() << stMatchCase), j = 0; i != -1; i = FormMain-
>RichEditQuiz->FindText("_", i + 5, FormMain->RichEditQuiz->Text.Length(),
TSearchTypes() << stMatchCase), j++)
 {
 FormMain->RichEditQuiz->SelStart = i;
 FormMain->RichEditQuiz->SelLength = 1;
 Graphics::TColor CurrColor = FormMain->RichEditQuiz->SelAttributes->Color;

 if (j == GetCurrentBlankNum())
 FormMain->RichEditQuiz->SelAttributes->Color = clRed;

 Graphics::TFontStyles CurrStyle = FormMain->RichEditQuiz->DefAttributes->Style;
FormMain->RichEditQuiz->SelAttributes->Style = FormMain->RichEditQuiz->SelAttributes-
>Style << fsUnderline;

 if (GetUserAnswer(j) == "")
 FormMain->RichEditQuiz->SelText = "_____";
 else
 FormMain->RichEditQuiz->SelText = GetUserAnswer(j).c_str();

 FormMain->RichEditQuiz->SelAttributes->Style = CurrStyle;
 FormMain->RichEditQuiz->SelAttributes->Color = CurrColor;
 }

 // restore previous user answer if any
 FormMain->EditFillInTheBlanks->Text = GetUserAnswer(GetCurrentBlankNum());

 // disable or enable navigation buttons
 if (IsFirstBlank() == true)
 FormMain->BitBtnFillInTheBlanksUp->Enabled = false;
 else
 FormMain->BitBtnFillInTheBlanksUp->Enabled = true;

 if (IsLastBlank() == true)
 FormMain->BitBtnFillInTheBlanksDown->Enabled = false;
 else
 FormMain->BitBtnFillInTheBlanksDown->Enabled = true;

 FormMain->EditFillInTheBlanks->SetFocus();
}
//---

86

Learning.cpp

//---
#include <vcl.h>
#pragma hdrstop
USERES("Learning.res");
USEFORM("Main.cpp", FormMain);
USEUNIT("Tutorial.cpp");
USEUNIT("Demo.cpp");
USEUNIT("Shared.cpp");
USEUNIT("MultipleChoice.cpp");
USEUNIT("Quiz.cpp");
USEUNIT("QuizQuestion.cpp");
USEUNIT("ShortQuestion.cpp");
USEUNIT("FillInTheBlanks.cpp");
USEFORM("QuizMenu.cpp", FormQuizMenu);
USEFORM("About.cpp", FormAbout);
USEFORM("QuizResults.cpp", FormQuizResults);
//---
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
 try
 {
 Application->Initialize();
 Application->CreateForm(__classid(TFormMain), &FormMain);
 Application->CreateForm(__classid(TFormQuizMenu), &FormQuizMenu);
 Application->CreateForm(__classid(TFormAbout), &FormAbout);
 Application->CreateForm(__classid(TFormQuizResults), &FormQuizResults);
 Application->Run();
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 return 0;
}
//---

87

Main.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <stdlib.h>
//---
#include "About.h"
#include "QuizResults.h"
#include "Main.h"
#include "QuizMenu.h"
#include "Tutorial.h"
#include "Demo.h"
#include "Quiz.h"
#include "MultipleChoice.h"
#include "ShortQuestion.h"
#include "FillInTheBlanks.h"
//---
#pragma package(smart_init)
#pragma resource "*.dfm"
//---
TFormMain *FormMain;
Tutorial *tutorial;
Demo *demo = NULL;
Quiz *quiz = NULL;
//---
__fastcall TFormMain::TFormMain(TComponent* Owner)
 : TForm(Owner)
{
}
//---
void __fastcall TFormMain::BitBtnTutorialPreviousClick(TObject *Sender)
{
 tutorial->ReverseClip();
 tutorial->Show();
 TreeViewContents->Selected->GetPrev()->Selected = true;
 TreeViewContents->SetFocus();
}
//---
void __fastcall TFormMain::BitBtnTutorialNextClick(TObject *Sender)
{
 tutorial->AdvanceClip();
 tutorial->Show();
 TreeViewContents->Selected->GetNext()->Selected = true;
 TreeViewContents->SetFocus();
}
//---
void __fastcall TFormMain::FormCreate(TObject *Sender)
{
 randomize();

 tutorial = new Tutorial("Tutorials", "Sounds\\Tutorials");

 // initializes content menu
 TreeViewContents->LoadFromFile(tutorial->GetDirectory() + "\\contents.dat");
 TreeViewContents->FullExpand();
 TreeViewContents->Selected = TreeViewContents->TopItem;

 tutorial->Show();
}
//---
void __fastcall TFormMain::TreeViewContentsChange(TObject *Sender,
 TTreeNode *Node)
{
 tutorial->SetCurrentClipNum(Node->AbsoluteIndex);
 tutorial->Show();
}
//---
void __fastcall TFormMain::FormActivate(TObject *Sender)
{
 mnuHelpAboutClick(Sender);
 TreeViewContents->SetFocus();
}
//---

88

void __fastcall TFormMain::BitBtnTutorialDemoClick(TObject *Sender)
{
 demo = new Demo(AnsiString("Demos\\") + tutorial-
>GetDemoIndexDirectoryAt(TreeViewContents->Selected->AbsoluteIndex), "Sounds\\Demos");
 demo->Show();
 PanelDemo->BringToFront();
}
//---
void __fastcall TFormMain::BitBtnDemoBackClick(TObject *Sender)
{
 delete demo;
 demo = NULL;
 tutorial->Show();
 PanelTutorial->BringToFront();
}
//---
void __fastcall TFormMain::BitBtnDemoPreviousClick(TObject *Sender)
{
 demo->ReverseClip();
 demo->Show();
}
//---
void __fastcall TFormMain::BitBtnDemoNextClick(TObject *Sender)
{
 demo->AdvanceClip();
 demo->Show();
}
//---
void __fastcall TFormMain::FormClose(TObject *Sender, TCloseAction &Action)
{
 delete tutorial;

 if (demo != NULL)
 delete demo;

 if (quiz != NULL)
 delete quiz;
}
//---
void __fastcall TFormMain::FormCloseQuery(TObject *Sender, bool &CanClose)
{
 switch (MessageBox(Handle, "Are you sure you want to exit this application?",
"Learning C++ - Confirmation", MB_YESNO | MB_ICONQUESTION))
 {
 case ID_YES: break;
 case ID_NO: CanClose = false;
 }
}
//---
void __fastcall TFormMain::mnuFileExitClick(TObject *Sender)
{
 Close();
}
//---
void __fastcall TFormMain::BitBtnQuizBackClick(TObject *Sender)
{
 FormQuizResults->ShowModal();
 delete quiz;
 quiz = NULL;
 tutorial->Show();
 PanelTutorial->BringToFront();
}
//---
void __fastcall TFormMain::RadioGroupMultipleChoiceClick(TObject *Sender)
{
 // stores user answer
 quiz->GetCurrentQuizQuestion()->SetUserAnswer(RadioGroupMultipleChoice->Items-
>Strings[RadioGroupMultipleChoice->ItemIndex]);
}
//---
void __fastcall TFormMain::BitBtnQuizSubmitClick(TObject *Sender)
{
 quiz->GetCurrentQuizQuestion()->Submit(); // submit the current quiz question

 if (quiz->GetCurrentQuizQuestion()->IsCorrect())
 quiz->SetNumCorrect(quiz->GetNumCorrect() + 1);
 else

89

 quiz->SetNumIncorrect(quiz->GetNumIncorrect() + 1);

 quiz->Show();
}
//---
void __fastcall TFormMain::BitBtnQuizNextClick(TObject *Sender)
{
 quiz->AdvanceClip();
 quiz->Show();
}
//---
void __fastcall TFormMain::BitBtnQuizPreviousClick(TObject *Sender)
{
 quiz->ReverseClip();
 quiz->Show();
}
//---
void __fastcall TFormMain::MemoShortQuestionExit(TObject *Sender)
{
 // stores user answer
 quiz->GetCurrentQuizQuestion()->SetUserAnswer(MemoShortQuestion->Text);
}
//---
void __fastcall TFormMain::BitBtnFillInTheBlanksDownClick(TObject *Sender)
{
 // static binding
 ((FillInTheBlanks *)quiz->GetCurrentQuizQuestion())->AdvanceBlank();
 quiz->Show();
}
//---
void __fastcall TFormMain::BitBtnFillInTheBlanksUpClick(TObject *Sender)
{
 // static binding
 ((FillInTheBlanks *)quiz->GetCurrentQuizQuestion())->ReverseBlank();
 quiz->Show();
}
//---
void __fastcall TFormMain::BitBtnTutorialQuizClick(TObject *Sender)
{
 if (FormQuizMenu->ShowModal() == mrOk) // take a quiz?
 {
 quiz = new Quiz(AnsiString("Quiz\\") + tutorial-
>GetQuizIndexDirectoryAt(TreeViewContents->Selected->AbsoluteIndex),
StrToInt(FormQuizMenu->EditQuizNumQuestions->Text));

 PanelQuiz->BringToFront();
 quiz->Show();
 }
}
//---
void __fastcall TFormMain::mnuOptionsSoundClick(TObject *Sender)
{
 mnuOptionsSound->Checked = !mnuOptionsSound->Checked;

 if (!mnuOptionsSound->Checked)
 MediaPlayer->Close();
}
//---
void __fastcall TFormMain::mnuHelpAboutClick(TObject *Sender)
{
 FormAbout->ShowModal();
}
//---
void __fastcall TFormMain::BitBtnQuizAnswerClick(TObject *Sender)
{
 quiz->ShowAnswer();
}
//---
void __fastcall TFormMain::EditFillInTheBlanksKeyDown(TObject *Sender,
 WORD &Key, TShiftState Shift)
{
 if (Key == 38) // up arrow
 {
 ((FillInTheBlanks *)quiz->GetCurrentQuizQuestion())->ReverseBlank();
 quiz->Show();
 }

90

 if (Key == 40) // down arrow
 {
 ((FillInTheBlanks *)quiz->GetCurrentQuizQuestion())->AdvanceBlank();
 quiz->Show();
 }
}
//---
void __fastcall TFormMain::EditFillInTheBlanksChange(TObject *Sender)
{
 ((FillInTheBlanks *)quiz->GetCurrentQuizQuestion())->SetUserAnswer(((FillInTheBlanks
*)quiz->GetCurrentQuizQuestion())->GetCurrentBlankNum(), EditFillInTheBlanks->Text);
 quiz->Show();
}
//---
void __fastcall TFormMain::EditFillInTheBlanksEnter(TObject *Sender)
{
 // block text
 FormMain->EditFillInTheBlanks->SelStart = 0;
 FormMain->EditFillInTheBlanks->SelLength = FormMain->EditFillInTheBlanks-
>Text.Length();
}
//---
void __fastcall TFormMain::MemoShortQuestionEnter(TObject *Sender)
{
 // block text
 FormMain->MemoShortQuestion->SelStart = 0;
 FormMain->MemoShortQuestion->SelLength = FormMain->MemoShortQuestion->Text.Length();
}
//---

91

MultipleChoice.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <fstream>
using namespace std;
//---
#include "MultipleChoice.h"
#include "Shared.h"
#include "Main.h"
//---
#pragma package(smart_init)
//---
MultipleChoice::MultipleChoice(AnsiString indexFile)
{
 char line[MAX_NUMCHARS];

 fstream fsIndex(indexFile.c_str());

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // location of the question file
 QuestionFile = AnsiString(line);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // location of the answer file
 AnswerFile = AnsiString(line);
 fsIndex.getline(line, MAX_NUMCHARS);

 do // skip possible type(s) data
 {
 fsIndex.getline(line, MAX_NUMCHARS);
 } while (AnsiString(line) != "");

 fsIndex.getline(line, MAX_NUMCHARS);

 // read correct answer
 fsIndex.getline(line, MAX_NUMCHARS);
 CorrectAnswer = AnsiString(line);

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // read choices
 fsIndex.getline(line, MAX_NUMCHARS);

 while (AnsiString(line) != "")
 {
 viChoices.insert(viChoices.end(), AnsiString(line));
 fsIndex.getline(line, MAX_NUMCHARS);
 }

 fsIndex.close();
}
//---
void MultipleChoice::SetUserAnswer(AnsiString userAnswer)
{
 UserAnswer = userAnswer;
}
//---
AnsiString MultipleChoice::GetUserAnswer() const
{
 return UserAnswer;
}
//---
AnsiString MultipleChoice::GetCorrectAnswer() const
{
 return CorrectAnswer;
}
//---

92

void MultipleChoice::EnableInput() const
{
 FormMain->RadioGroupMultipleChoice->Enabled = true;
}
//---
void MultipleChoice::DisableInput() const
{
 FormMain->RadioGroupMultipleChoice->Enabled = false;
}
//---
bool MultipleChoice::IsCorrect() const
{
 return GetUserAnswer() == GetCorrectAnswer();
}
//---
void MultipleChoice::ShowAnswer() const
{
 FormMain->RichEditAnswer->Lines->LoadFromFile(AnswerFile);
}
//---
void MultipleChoice::Show() const
{
 FormMain->RadioGroupMultipleChoice->BringToFront();
 FormMain->RichEditQuiz->Lines->LoadFromFile(QuestionFile);

 // Show the blank if any
 if (FormMain->RichEditQuiz->FindText("_", 0, FormMain->RichEditQuiz->Text.Length(),
TSearchTypes() << stMatchCase) != -1)
 {
 FormMain->RichEditQuiz->SelStart = FormMain->RichEditQuiz->FindText("_", 0,
FormMain->RichEditQuiz->Text.Length(), TSearchTypes() << stMatchCase);
 FormMain->RichEditQuiz->SelLength = 1;
 FormMain->RichEditQuiz->SelText = "_____";
 }

 FormMain->RadioGroupMultipleChoice->Items->Clear();

 for (unsigned i = 0; i < viChoices.size(); i++)
 {
 FormMain->RadioGroupMultipleChoice->Items->Add(viChoices[i].c_str());

 // restore previous user answer if any
 if (viChoices[i] == UserAnswer)
 FormMain->RadioGroupMultipleChoice->ItemIndex = i;
 }
}
//---

93

Quiz.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <fstream>
#include <string>
#include <vector>
using namespace std;
//---
#include "Shared.h"
#include "Quiz.h"
#include "Main.h"
#include "MultipleChoice.h"
#include "FillInTheBlanks.h"
#include "ShortQuestion.h"
//---
#pragma package(smart_init)
//---
AnsiString Quiz::GetRandomQuestionType(AnsiString dataFile) const
{
 char line[MAX_NUMCHARS];
 vector <AnsiString> viQuestionTypes;

 fstream fsIndex(dataFile.c_str());

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 fsIndex.getline(line, MAX_NUMCHARS);

 while (AnsiString(line) != "")
 {
 viQuestionTypes.insert(viQuestionTypes.end(), AnsiString(line));
 fsIndex.getline(line, MAX_NUMCHARS);
 }

 fsIndex.close();

 return viQuestionTypes[random(viQuestionTypes.size())];
}
//---
Quiz::Quiz(AnsiString Directory, int numQuestions)
{
 // locations of quiz question data files
 vector <AnsiString> viLocations;
 char line[MAX_NUMCHARS];
 int NumClips = 0;

 CurrentClipNum = 0;
 NumCorrect = 0;
 NumIncorrect = 0;

 fstream fsIndex((Directory + "\\index.dat").c_str());

 // how big is the index file?
 while (!fsIndex.eof())
 {
 fsIndex.getline(line, MAX_NUMCHARS);
 viLocations.insert(viLocations.end(), AnsiString(line));
 NumClips++;
 }

 fsIndex.close();

 // select the questions randomly including their types
 for (int i = 0; i < numQuestions; i++)
 {
 int selectedQuestionNum = random(NumClips);

94

 AnsiString selectedQuestionType = GetRandomQuestionType(Directory + "\\" +
viLocations[selectedQuestionNum]);

 // the destructor will take care of the memory deallocation
 if (selectedQuestionType == "MultipleChoice")
 AddQuestion(new MultipleChoice(Directory + "\\" +
viLocations[selectedQuestionNum]));
 else if (selectedQuestionType == "FillInTheBlanks")
 AddQuestion(new FillInTheBlanks(Directory + "\\" +
viLocations[selectedQuestionNum]));
 else if (selectedQuestionType == "ShortQuestion")
 AddQuestion(new ShortQuestion(Directory + "\\" +
viLocations[selectedQuestionNum]));
 }
}
//---
Quiz::~Quiz()
{
 for (unsigned i = 0; i < viQuizQuestions.size(); i++)
 delete viQuizQuestions[i];
}
//---
void Quiz::AddQuestion(QuizQuestion *quizQuestion)
{
 viQuizQuestions.insert(viQuizQuestions.end(), quizQuestion);
}
//---
bool Quiz::SetCurrentClipNum(int currentClipNum)
{
 // invalid clip number
 if (currentClipNum < 0 || (unsigned)currentClipNum >= viQuizQuestions.size())
 return false;

 CurrentClipNum = currentClipNum;

 return true;
}
//---
int Quiz::GetCurrentClipNum() const
{
 return CurrentClipNum;
}
//---
bool Quiz::IsFirstClip() const
{
 if (CurrentClipNum == 0)
 return true;

 return false;
}
//---
bool Quiz::IsLastClip() const
{
 if ((unsigned)CurrentClipNum == viQuizQuestions.size() - 1)
 return true;

 return false;
}
//---
bool Quiz::AdvanceClip()
{
 if (IsLastClip() == true)
 return false;

 SetCurrentClipNum(GetCurrentClipNum() + 1);

 return true;
}
//---
bool Quiz::ReverseClip()
{
 if (IsFirstClip() == true)
 return false;

 SetCurrentClipNum(GetCurrentClipNum() - 1);

 return true;

95

}
//---
int Quiz::GetNumClips() const
{
 return viQuizQuestions.size();
}
//---
int Quiz::GetNumCorrect() const
{
 return NumCorrect;
}
//---
int Quiz::GetNumIncorrect() const
{
 return NumIncorrect;
}
//---
void Quiz::SetNumCorrect(int numCorrect)
{
 NumCorrect = numCorrect;
}
//---
void Quiz::SetNumIncorrect(int numIncorrect)
{
 NumIncorrect = numIncorrect;
}
//---
QuizQuestion *Quiz::GetCurrentQuizQuestion() const
{
 return viQuizQuestions[GetCurrentClipNum()];
}
//---
void Quiz::ShowAnswer() const
{
 FormMain->BitBtnQuizAnswer->Enabled = false;
 FormMain->BitBtnQuizSubmit->Enabled = false;
 FormMain->GroupBoxAnswer->BringToFront();

 // call the corresponding ShowAnswer function according to the type of question
 viQuizQuestions[CurrentClipNum]->ShowAnswer();
}
//---
void Quiz::Show() const
{
 // call the corresponding Show function according to the type of question
 viQuizQuestions[CurrentClipNum]->Show();

 FormMain->StatusBarMain->SimpleText = AnsiString("Clip ") + (GetCurrentClipNum() + 1)
+ " of " + viQuizQuestions.size();

 // disable or enable navigation buttons

 if (IsFirstClip() == true)
 FormMain->BitBtnQuizPrevious->Enabled = false;
 else
 FormMain->BitBtnQuizPrevious->Enabled = true;

 if (IsLastClip() == true || GetCurrentQuizQuestion()->IsSubmitted() == false)
 FormMain->BitBtnQuizNext->Enabled = false;
 else
 FormMain->BitBtnQuizNext->Enabled = true;

 FormMain->BitBtnQuizAnswer->Enabled = true;
 FormMain->BitBtnQuizSubmit->Enabled = true;

 // display submit or answer button depend on whether the question is answered
 // also disable input if the question has already answered
 if (GetCurrentQuizQuestion()->IsSubmitted())
 {
 FormMain->BitBtnQuizAnswer->BringToFront();
 viQuizQuestions[CurrentClipNum]->DisableInput();
 FormMain->BitBtnQuizAnswer->SetFocus();

 // display result image
 if (viQuizQuestions[CurrentClipNum]->IsCorrect())
 FormMain->ImageQuizResult->Picture->LoadFromFile("Images\\Correct.bmp");
 else

96

 FormMain->ImageQuizResult->Picture->LoadFromFile("Images\\Incorrect.bmp");
 }
 else
 {
 FormMain->BitBtnQuizSubmit->BringToFront();
 viQuizQuestions[CurrentClipNum]->EnableInput();
 FormMain->ImageQuizResult->Picture = NULL;
 }
}
//---

97

QuizMenu.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include "QuizMenu.h"
#include "Main.h"
//---
#pragma package(smart_init)
#pragma resource "*.dfm"
TFormQuizMenu *FormQuizMenu;
//---
__fastcall TFormQuizMenu::TFormQuizMenu(TComponent* Owner)
 : TForm(Owner)
{
}
//---
void __fastcall TFormQuizMenu::ButtonCancelClick(TObject *Sender)
{
 ModalResult = mrCancel;
}
//---
void __fastcall TFormQuizMenu::ButtonGoClick(TObject *Sender)
{
 ModalResult = mrOk;
}
//---
void __fastcall TFormQuizMenu::EditQuizNumQuestionsExit(TObject *Sender)
{
 if (StrToInt(EditQuizNumQuestions->Text) < 1 || StrToInt(EditQuizNumQuestions->Text)
> 60)
 {
 Application->MessageBox("You can only choose between 1 to 60 inclusive", "Learning
C++ - Invalid number of questions", MB_OK);
 EditQuizNumQuestions->SetFocus();
 }
}
//---
void __fastcall TFormQuizMenu::FormActivate(TObject *Sender)
{
 FormMain->MediaPlayer->Close();
 EditQuizNumQuestions->SetFocus();
}
//---

98

QuizQuestion.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include "QuizQuestion.h"
//---
#pragma package(smart_init)
//---
QuizQuestion::QuizQuestion()
{
 Submitted = false;
}
//---
void QuizQuestion::Submit()
{
 Submitted = true;
}
//---
bool QuizQuestion::IsSubmitted() const
{
 return Submitted;
}
//---

99

QuizResults.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include "QuizResults.h"
#include "Quiz.h"
//---
#pragma resource "*.dfm"
TFormQuizResults *FormQuizResults;
extern Quiz *quiz;
//---
__fastcall TFormQuizResults::TFormQuizResults(TComponent* AOwner)
 : TForm(AOwner)
{
}
//---
void __fastcall TFormQuizResults::FormActivate(TObject *Sender)
{
 EditTotalNumQuestions->Text = quiz->GetNumClips();
 EditNumCorrectAnswers->Text = quiz->GetNumCorrect();
 EditNumIncorrectAnswers->Text = quiz->GetNumIncorrect();
 EditNumOmittedQuestions->Text = quiz->GetNumClips() - quiz->GetNumCorrect() - quiz-
>GetNumIncorrect();
 LabelScore->Caption = (int)(quiz->GetNumCorrect() / quiz->GetNumClips() * 100);

 // no negative scores
 if (LabelScore->Caption < 0)
 LabelScore->Caption = 0;

 // show grades according to the scores
 if (StrToInt(LabelScore->Caption) >= 97)
 LabelGrade->Caption = "A+ :O";
 else if (StrToInt(LabelScore->Caption) >= 93)
 LabelGrade->Caption = "A :o";
 else if (StrToInt(LabelScore->Caption) >= 90)
 LabelGrade->Caption = "A- :)";
 else if (StrToInt(LabelScore->Caption) >= 87)
 LabelGrade->Caption = "B+ :P";
 else if (StrToInt(LabelScore->Caption) >= 83)
 LabelGrade->Caption = "B :p";
 else if (StrToInt(LabelScore->Caption) >= 80)
 LabelGrade->Caption = "B- :|";
 else if (StrToInt(LabelScore->Caption) >= 77)
 LabelGrade->Caption = "C+ :|";
 else if (StrToInt(LabelScore->Caption) >= 73)
 LabelGrade->Caption = "C :(";
 else if (StrToInt(LabelScore->Caption) >= 70)
 LabelGrade->Caption = "C- :(";
 else
 LabelGrade->Caption = ":(";
}
//---

100

Shared.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include "Shared.h"
//---
#pragma package(smart_init)
//---

101

ShortQuestion.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <fstream>
using namespace std;
//---
#include "ShortQuestion.h"
#include "Shared.h"
#include "Main.h"
//---
#pragma package(smart_init)
//---
ShortQuestion::ShortQuestion(AnsiString indexFile)
{
 char line[MAX_NUMCHARS];

 fstream fsIndex(indexFile.c_str());

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // location of the question file
 QuestionFile = AnsiString(line);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 // location of the answer file
 AnswerFile = AnsiString(line);
 fsIndex.getline(line, MAX_NUMCHARS);

 do // skip possible type(s) data
 {
 fsIndex.getline(line, MAX_NUMCHARS);
 } while (AnsiString(line) != "");

 fsIndex.getline(line, MAX_NUMCHARS);

 // read correct answer
 fsIndex.getline(line, MAX_NUMCHARS);

 while (AnsiString(line) != "")
 {
 CorrectAnswer += AnsiString(line) + (char)13 + (char)10;
 fsIndex.getline(line, MAX_NUMCHARS);
 }

 fsIndex.close();
}
//---
void ShortQuestion::SetUserAnswer(AnsiString userAnswer)
{
 UserAnswer = userAnswer;
}
//---
AnsiString ShortQuestion::GetUserAnswer() const
{
 return UserAnswer;
}
//---
AnsiString ShortQuestion::GetCorrectAnswer() const
{
 return CorrectAnswer;
}
//---
void ShortQuestion::EnableInput() const
{
 FormMain->MemoShortQuestion->ReadOnly = false;
}
//---
void ShortQuestion::DisableInput() const
{

102

 FormMain->MemoShortQuestion->ReadOnly = true;
}
//---
bool ShortQuestion::IsCorrect() const
{
 return GetUserAnswer().Trim() == GetCorrectAnswer().Trim();
}
//---
void ShortQuestion::ShowAnswer() const
{
 FormMain->RichEditAnswer->Lines->LoadFromFile(AnswerFile);
}
//---
void ShortQuestion::Show() const
{
 FormMain->GroupBoxShortQuestion->BringToFront();
 FormMain->RichEditQuiz->Lines->LoadFromFile(QuestionFile);

 // Show the blank if any
 if (FormMain->RichEditQuiz->FindText("_", 0, FormMain->RichEditQuiz->Text.Length(),
TSearchTypes() << stMatchCase) != -1)
 {
 FormMain->RichEditQuiz->SelStart = FormMain->RichEditQuiz->FindText("_", 0,
FormMain->RichEditQuiz->Text.Length(), TSearchTypes() << stMatchCase);
 FormMain->RichEditQuiz->SelLength = 1;
 FormMain->RichEditQuiz->SelText = "_____";
 }

 FormMain->MemoShortQuestion->Clear();

 // restore previous user answer if any
 FormMain->MemoShortQuestion->Text = UserAnswer;

 FormMain->MemoShortQuestion->SetFocus();
}
//---

103

Tutorial.cpp

//---
#include <vcl.h>
#pragma hdrstop
//---
#include <fstream>
#include <string>
using namespace std;
//---
#include "Tutorial.h"
#include "Shared.h"
#include "Main.h"
//---
#pragma package(smart_init)
//---
Tutorial::Tutorial(AnsiString directory, AnsiString soundDirectory)
{
 char line[MAX_NUMCHARS];
 NumClips = 0;

 Directory = directory;
 SoundDirectory = soundDirectory;
 CurrentClipNum = 0;

 fstream fsIndex((Directory + "\\index.dat").c_str());

 while (!fsIndex.eof())
 {
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 viFileLocations.insert(viFileLocations.end(), AnsiString(line));

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 viSoundLocations.insert(viSoundLocations.end(), AnsiString(line));

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 viQuizIndexes.insert(viQuizIndexes.end(), AnsiString(line));

 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 fsIndex.getline(line, MAX_NUMCHARS);
 viDemoIndexes.insert(viDemoIndexes.end(), AnsiString(line));

 fsIndex.getline(line, MAX_NUMCHARS);

 NumClips++;
 }

 fsIndex.close();
}
//---
AnsiString Tutorial::GetDirectory() const
{
 return Directory;
}
//---
AnsiString Tutorial::GetDemoIndexDirectoryAt(int i) const
{
 if (i < 0 || i >= GetNumClips())
 return AnsiString();

 return viDemoIndexes[i];
}
//---
AnsiString Tutorial::GetQuizIndexDirectoryAt(int i) const
{
 if (i < 0 || i >= GetNumClips())

104

 return AnsiString();

 return viQuizIndexes[i];
}
//---
int Tutorial::GetNumClips() const
{
 return NumClips;
}
//---
bool Tutorial::SetCurrentClipNum(int currentClipNum)
{
 // invalid clip number
 if (currentClipNum < 0 || currentClipNum >= NumClips)
 return false;

 CurrentClipNum = currentClipNum;

 return true;
}
//---
int Tutorial::GetCurrentClipNum() const
{
 return CurrentClipNum;
}
//---
bool Tutorial::AdvanceClip()
{
 if (IsLastClip() == true)
 return false;

 SetCurrentClipNum(GetCurrentClipNum() + 1);

 return true;
}
//---
bool Tutorial::ReverseClip()
{
 if (IsFirstClip() == true)
 return false;

 SetCurrentClipNum(GetCurrentClipNum() - 1);

 return true;
}
//---
bool Tutorial::IsFirstClip() const
{
 if (CurrentClipNum == 0)
 return true;

 return false;
}
//---
bool Tutorial::IsLastClip() const
{
 if (CurrentClipNum == NumClips - 1)
 return true;

 return false;
}
//---
void Tutorial::Show() const
{
 FormMain->RichEditTutorial->Lines->LoadFromFile(Directory + "\\" +
viFileLocations[CurrentClipNum]);
 FormMain->StatusBarMain->SimpleText = AnsiString("Clip ") + (GetCurrentClipNum() + 1)
+ " of " + GetNumClips();

 // disable or enable navigation buttons
 if (IsFirstClip() == true)
 FormMain->BitBtnTutorialPrevious->Enabled = false;
 else
 FormMain->BitBtnTutorialPrevious->Enabled = true;

 if (IsLastClip() == true)
 FormMain->BitBtnTutorialNext->Enabled = false;

105

 else
 FormMain->BitBtnTutorialNext->Enabled = true;

 // disable or enable quiz button
 if (viQuizIndexes[CurrentClipNum] != "")
 FormMain->BitBtnTutorialQuiz->Enabled = true;
 else
 FormMain->BitBtnTutorialQuiz->Enabled = false;

 // disable or enable demo button
 if (viDemoIndexes[CurrentClipNum] != "")
 FormMain->BitBtnTutorialDemo->Enabled = true;
 else
 FormMain->BitBtnTutorialDemo->Enabled = false;

 // play sound if it is enabled
 if (FormMain->mnuOptionsSound->Checked && viSoundLocations[CurrentClipNum] != "")
 {
 FormMain->MediaPlayer->FileName = SoundDirectory + "\\" +
viSoundLocations[CurrentClipNum];
 FormMain->MediaPlayer->Open();
 FormMain->MediaPlayer->Play();
 }
}
//---

106

APPENDIX C – SOURCE CODE (Survey Form)

107

form.cgi (in Perl) [Section 3.3]

#!/usr/local/bin/perl

form.cgi - a Perl script that manipulates the online survey

use CGI qw/:standard/;

$Q1 = param(Q1);
$Q1_extra = param(Q1_specify);

$Q2 = param(Q2);
$Q3 = param(Q3);

$Q4_book = param(Q4_book);
$Q4_course = param(Q4_course);
$Q4_computer = param(Q4_computer);
$Q4_other = param(Q4_other);
$Q4_specify = param(Q4_specify);

$Q5_system_easy = param(Q5_system_easy);
$Q5_system_performance = param(Q5_system_performance);
$Q5_system_other = param(Q5_system_other);
$Q5_system_specify = param(Q5_system_specify);

$Q5_presentation_text = param(Q5_presentation_text);
$Q5_presentation_color = param(Q5_presentation_color);
$Q5_presentation_graphics = param(Q5_presentation_graphics);
$Q5_presentation_sound = param(Q5_presentation_sound);
$Q5_presentation_animation = param(Q5_presentation_animation);
$Q5_presentation_other = param(Q5_presentation_other);
$Q5_presentation_specify = param(Q5_presentation_specify);

$Q5_tutorial_quantity = param(Q5_tutorial_quantity);
$Q5_tutorial_easy = param(Q5_tutorial_easy);
$Q5_tutorial_meaningfully = param(Q5_tutorial_meaningfully);
$Q5_tutorial_accuracy = param(Q5_tutorial_accuracy);
$Q5_tutorial_other = param(Q5_tutorial_other);
$Q5_tutorial_specify = param(Q5_tutorial_specify);

$Q5_drill_quantity = param(Q5_drill_quantity);
$Q5_drill_revise = param(Q5_drill_revise);
$Q5_drill_encourage = param(Q5_drill_encourage);
$Q5_drill_feedback = param(Q5_drill_feedback);
$Q5_drill_other = param(Q5_drill_other);
$Q5_drill_specify = param(Q5_drill_specify);

$Q6 = param(Q6);
$Q7 = param(Q7);
$Q8 = param(Q8);
$Q9 = param(Q9);
$Q10 = param(Q10);

$Name = param(Name);
$Email = param(Email);

open(DATA, ">>survey.txt");

print DATA "1. Have you ever used a CAI programs?\n";
print DATA "$Q1\n";
print DATA "(Please specify: $Q1_extra)\n";

print DATA "2. On a scale of 1 to 10, where 1 means nothing and 10 means I fully
mastered the subject, how much do you think you learned from the CAI program?\n";
print DATA "$Q2\n";

print DATA "3. What features did you like/dislike most about those CAI programs?\n";
print DATA "$Q3\n";

print DATA "4. Rank the following learning materials in the order of your ";
print DATA "preference:\n(1: most preferred, 2: next preferred, etc)\n";

print DATA "Book: $Q4_book\n";

108

print DATA "Course: $Q4_course\n";
print DATA "Computer: $Q4_computer\n";
print DATA "Other: $Q4_other ";
print DATA "(please specify: $Q4_specify)\n";

print DATA "5. Rank each of the following according to its order of importance for the
overall efficacy of a CAI program (please make separate rankings for each category
with 1 being the most important and 2 being the second most important, etc. Put an 'X'
if the item is not applicable):\n";
print DATA "* System:\n";
print DATA "Easy to use: $Q5_system_easy\n";
print DATA "Performance: $Q5_system_performance\n";
print DATA "Other: $Q5_system_other ";
print DATA "(Please specify: $Q5_system_specify)\n";

print DATA "* Presentation:\n";
print DATA "Text Layout: $Q5_presentation_text\n";
print DATA "Color: $Q5_presentation_color\n";
print DATA "Graphics: $Q5_presentation_graphics\n";
print DATA "Sound: $Q5_presentation_sound\n";
print DATA "Animation: $Q5_presentation_animation\n";
print DATA "Other: $Q5_presentation_other ";
print DATA "(please specify: $Q5_presentation_specify)\n";

print DATA "* Tutorial Contents:\n";
print DATA "Quantity: $Q5_tutorial_quantity\n";
print DATA "Easy to understand: $Q5_tutorial_easy\n";
print DATA "Meaningfully structured: $Q5_tutorial_meaningfully\n";
print DATA "Accuracy: $Q5_tutorial_accuracy\n";
print DATA "Other: $Q5_tutorial_other ";
print DATA "(please specify: $Q5_tutorial_specify)\n";

print DATA "* Drill and Practice Exercises\n";
print DATA "Quantity: $Q5_drill_quantity\n";
print DATA "Review learned materials: $Q5_drill_revise\n";
print DATA "Encourage thinking: $Q5_drill_encourage\n";
print DATA "Feedback: $Q5_drill_feedback\n";
print DATA "Other: $Q5_drill_other ";
print DATA "(please specify: $Q5_drill_specify)\n";

print DATA "6. What types of interaction could a CAI program provide so that it
consistently maintains the user's interest?\n";
print DATA "$Q6\n";

print DATA "7. How do you think the tutorial materials could be organized so that they
are more interesting than the material in a book?\n";
print DATA "$Q7\n";

print DATA "8. Some experts think that the drill and practice questions in CAI
software are ineffective. Do you agree? Why? How would you suggest the questions
be designed so that they become more effective?\n";
print DATA "$Q8\n";

print DATA "9. How much think is the most reasonable price for a CAI program?\n";
print DATA "$Q9\n";

print DATA "10. What would you like to see in the future CAI programs?\n";
print DATA "$Q10\n";

print DATA "Name:\n$Name\n";
print DATA "Email:\n$Email\n";

print DATA "---\n";

close DATA;

print "Content-type: text/html\n\n";
print "<html>\n";
print "<head>\n";
print "<title>Thank you</title>\n";
print "</head>\n";
print "<body>\n";
print "<h1>Thank you</h1>\n";
print "<P>The survey has been submitted successfully. ";
print "The results of this survey will be considered seriously in creating a ";
print "more effective CAI program for the future. I truly appreciate your ";
print "effort on this survey. Thank you!";

109

print "<p>Sincerely,
";
print "Sze-Wai Yam
";
print "cwai\@wpi.edu</td>";
print "</body>\n";
print "</html>\n";

110

BIBLIOGRAPHY

Alessi, S.M.; and Trollip, S.R. "Computer-based Instruction: Methods and

Development." Prentice Hall. Englewood Cliffs, N.J. 1991.

Army Training Information Management Program; the Army Training Support

Center; and the United States Army. “Advanced Distributed Learning
Initiative Shareable Courseware Object Reference Model (DRAFT
version 0.7.3).” 4 May 1999.
http://www.atimp.army.mil/collab/sco-rm073.asp#_Toc450388105

Arnold, Douglas N. “Computer-Aided Instruction.” 29 Mar. 2000. Microsoft

Encarta Online Encyclopedia 2000.

http://encarta.msn.com

Bangert-Drowns, R. L.; Kulik, J. A.; and Kulik, C.C. "Effectiveness of Computer-
Based Education in Secondary Schools." Journal of Computer-Based
Instruction. 3 Dec. 1985: 59-68.

Beres, Marissa; Goodfellow, Lauren M; and Kassabian, Debra Shnorig. "Computer

Aided Learning for Unit Operations." Interactive Qualifying Project,
Worcester Polytechnic Institute 1999: 99D095M.

Bijou, Sidney W. “Behaviorism.” 20 April. 2000. Microsoft Encarta Online

Encyclopedia 2000.

http://encarta.msn.com

Cergneux, Maximo Jose; Ciszewski, Kevin Michael; and Dziczek, Erica Stephenia.
"Computer-Aided Learning of Binary Distillation Concepts." Interactive
Qualifying Project, Worcester Polytechnic Institute 1998: 98D086M.

Cotton, Kathleen. "Computer-Assisted Instruction." 7 Sep 1997.

www.nwrel.org/scpd/sirs/5/cu10.html (7 Oct 1999)

ETCAI Teaching Electronics Technology. "Resources for Electronics Training."

3 Sep. 1999. http://www.datasync.com/~etcai/training.htm (7 Oct. 1999)

Frith, Vera; and Heckroodt, Oelof. "Computer-assisted-learning: guidance for

non-experts." Sep. 1997. http://www.civeng.uct.ac.za/caleng/caldisad.htm
(7 Oct. 1999)

Glover, Dick. “How do we learn?”

(27 Mar. 2000)
http://context.tlsu.leeds.ac.uk/howdowe.asp

Kazmierczak, Stephen Joseph; Morin, Brian Ross and Vella, Paul Raymond.

"Computers and Education." Interactive Qualifying Project, Worcester
Polytechnic Institute 1997: 97D264I.

Kinnaman, D. E. "What's the Research Telling Us?" Classroom Computer Learning

6 Oct. 1990:31-35; 38-39

111

Lewis, R.; and Tagg E. D. "Treads in Computer Assisted Education." Blackwell
Scientific Publications. 1987: 4.

Munden, C. Dianne. “What is Computer Assisted Instruction?” 21 Aug. 1996.

http://www.auburn.edu/~mundecd/cai.html

 (4)

On Purpose Associates. “About Learning/Theories.” Funderstanding. 1998.
 http://www.funderstanding.com/theories1.html

Robertson, E. B.; Ladewig, B. H.; Strickland, M. P.; and Boschung, M. D.

"Enchancement of Self-Esteem Through the Use of Computer-Assisted
Instruction." Journal of Educational Research. 5 Aug. 1987: 314-316

Shneiderman, Ben. “Designing the User Interface Strategies for Effective

Human-Computer Interaction (Third Edition)” Addison-Wesley Longman,
Inc. 1998: 74-76.

Vockell, Edward L.; and Schwartz, Eileen M. "The Computer in the Classroom,

Second Edition" McGRAW-HILL, Inc. 1992: 63.

WAVE Technologies International, Inc. “Learning: The Critical Technology; A

whitepaper on adult education in the information age.” (9 April 2000)

White House CAI and CBT results.

http://www.whitehouse.gov/WH/New/edtech/perform.html (7 Oct. 1999)

	Project Number:
	COMPUTER AIDED INSTRUCTION AS A TOOL TO TEACH PROGRAMMING

	Professor Glynis Hamel, Advisor
	ABSTRACT
	This project handles the design, implementation and evaluation of a Computer Aided Instruction (CAI) program. The project presents the background of CAI, and suggests ways to make CAI programs more effective. A survey was conducted to solicit input on...
	TABLE OF CONTENTS
	2
	ABSTRACT
	7
	1 INTRODUCTION
	8
	1.1 Project Introduction
	8
	1.2 Project Goals
	9
	1.3 Project Progression
	11
	2 BACKGROUND
	12
	2.1 What is CAI?
	12
	2.1.1 Tutorials
	12
	2.1.2 Drill and Practice Exercises
	13
	2.1.3 Simulations
	13
	3 PROJECT DESCRIPTION
	20
	4 RESULTS
	56
	5 CONCLUSIONS
	61
	APPENDIX A SURVEY RESULTS
	APPENDIX B SOURCE CODE (Learning C++)
	APPENDIX C SOURCE CODE (Survey Form)
	BIBLIOGRAPHY

	Average

	2.2 History of CAI
	TABLE OF FIGURES
	TABLE OF TABLES
	1 INTRODUCTION 1.1 Project Introduction
	As computers become more prevalent, the role of computers in education becomes more important. If CAI programs remain ineffective, a valuable educational resource will go to waste.
	1.2 Project Goals
	1.3 Project Progression
	2.1.1 Tutorials
	2.1.2 Drill and Practice Exercises
	2.1.3 Simulations

	2.2 History of CAI
	2.3 Social Implications
	2.3.1 Introduction
	2.3.2 Advantages
	2.3.3 Challenges
	2.3.3.1 CAI in General
	2.3.3.2 CAI in Classrooms

	2.3.4 Conclusion

	3 PROJECT DESCRIPTION
	3.1 Introduction
	3.2 Psychological Basis
	3.2.1 Introduction
	3.2.2 Learning Theories
	3.2.2.1 Experiential Learning
	3.2.2.2 Behaviorism
	3.2.2.3 Neuroscience
	3.2.2.4 Learning Styles

	3.3 Survey on CAI Program Design
	3.3.1 Description
	3.3.2 Results
	3.3.3 Conclusion

	3.4 Design Rationale
	3.4.1 Introduction
	3.4.2 Choice of Platform
	3.4.3 Choice of Programming Language
	3.4.3.1 Background
	3.4.3.2 Decision

	3.4.4 Software Module
	3.4.5 User Interface
	3.4.5.1 Goals
	3.4.5.2 Primitive Design
	0TFigure 3.2 Primitive Interface – Table of Contents.
	0TFigure 3.3 Primitive Interface – Tutorials.0T 3.4.5.3 Improved Design
	3.4.5.3.1 Advantages
	3.4.5.4 Further Improvements

	3.4.6 Quiz Questions
	3.4.6.1 Goals

	3.4.7 Implementation Details
	3.4.7.1 Goals
	3.4.7.2 Object-Oriented Design in RAD
	3.4.7.3 Object-Oriented Programming
	3.4.7.4 Object Representation
	3.4.7.5 Polymorphism and Virtual Functions
	3.4.7.6 Directory and File Format
	3.4.7.7 Object-Oriented Design: Before and After

	Before using object-oriented methodology, the program was developed using the object-based feature provided by C++Builder. Since there were no classes for classifying three different types of quiz questions (multiple-choice questions, fill in the blan...
	4 RESULTS 4.1 Evaluating the Program
	4.1.1 Introduction
	4.1.2 Results
	4.1.3 Conclusion

	5 CONCLUSIONS 5.1 Conclusions and Possible Extensions
	BIBLIOGRAPHY
	Arnold, Douglas N. “Computer-Aided Instruction.” 29 Mar. 2000. Microsoft
	Encarta Online Encyclopedia 2000. 1Thttp://encarta.msn.com
	Bijou, Sidney W. “Behaviorism.” 20 April. 2000. Microsoft Encarta Online
	Encyclopedia 2000. 1Thttp://encarta.msn.com

