DECIPHERING THE ROLE OF KEKKON5 IN BMP SIGNALING AND CELL JUNCTION BIOLOGY

HARITA (HARIDAS) MENON

A Dissertation

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

In Partial Fulfillment of Requirements for the Degree

Doctor of Philosophy

April 2013

APPROVED BY:

Joseph B. Duffy, PhD Principle Advisor WPI

eel

Reeta Prusty Rao, PhD WPI

Committee Members

San

Samuel Politz, PhD WPI

Kristi Wharton, PhD Brown University

ACKNOWLEDGEMENTS

My journey in the Duffy lab started when one fine day in September, six years ago in 2006 I went to Dr. Pamela Weathers' office to talk to her about her research, exploring my options for a lab for my doctoral work. She quickly realized that I was not really interested in plant research and directed me to Duff's office down the hall, which I am very thankful for.

I would like to start by acknowledging Duff for giving me the opportunity to work in the lab. Thank you for being so critical and keeping the bar always high, being supportive at the same time. I am forever indebted to you, for you have made me a much better scientist than I was six years ago. Also many thanks for making sure I was funded through research assistantship (NSF and NIH grants) when I was not a teaching assistant. I also sincerely appreciated the rides home during snowstorms and the lunches and fruit picking trips we have had in the lab, all of which made it a fun and happening place to be.

I would like to thank my committee members Reeta Prusty Rao, Samuel Politz and Kristi Wharton for their valuable suggestions on my project during committee meetings. I greatly appreciated the friendly atmosphere that you all created during the meetings. A special thanks goes to Kristi, who came all the way from Brown University for all my meetings and for providing us with various reagents.

In addition to being my doctoral committee member, I have cherished the friendship I have built with Reeta. Thank you very much, for I found a mentor and a friend in you, and thanks for being all ears when I wanted to let some steam out.

I truly appreciate the Biology and Biotechnology department for financially supporting me through teaching assistantships for three years. I want to recognize the staff (Carol Butler, Eileen Dagostino and Alexandra Rivera) of the BBT department both past and present for taking care of all my administrative requirements so promptly. You guys are like the oil in a machine making sure that the department runs smoothly. Special thanks to Carol and Alex for being their jovial selves and for the long 'no science' discussion we have had. I am also grateful to the BBT faculty for making this place so friendly and fun to be.

I want to thank all my past and present lab members; Prachi Gupta, Cassie Leduc, Christina Ernst, Edie Plada, Annie Rankova, Debbie Afezolli, Michelle Arata, Scott Kolodzy, Tran Nguyen, Marinella Kirilova, Alex Putnam and Charu for making it a friendly place that I did not mind coming to every morning and rather actually looked forward to. I want to extend my heartfelt gratitude to Tim Evans and Diego Alvarado for helping me out with all the technical questions I have had during my time here. I am especially grateful to have had Prachi (who was my room mate also) in the same lab since she made the atmosphere very lively with her silly talks and of course scientific discussions.

I am very grateful to have found some of very close friends who have made this crazy doctoral path possible. For the \$3 movie trips on Tuesdays at West Boylston Cinema. For the girls night ins or outs. For really being true friends. Thanks a lot Charu, Prachi, Shilpa, Kathleen and Paola for keeping me sane. I sincerely hope that this friendship endures the test of time.

One of the strongest bonds that I have built here is with Charu and I know that it is going to remain that way. I remember the first time we met in Campus center where you helped me set up my wireless. Who knew that we would become such close friends? Thanks a lot for remaining by my side.

I want to thank my Peramma (Dr. Mekkara Madhavan) and Valliachan (Dr. Kornath Madhavan) for always encouraging me to study hard and pushing me for applying for a PhD in the United States. Thank you for all the encouraging letters and gifts that you sent along my way to celebrate my academic success all these years.

I am truly blessed to have loving and supportive parents who have always believed in me. Thanks Ma and Pa for being who you are and for having an open outlook towards life, which you have given me as well. Also for teaching me that one should do a given job to the fullest of their abilities and leave the rest to destiny. I am lucky to have a brother, Girish who is more of a friend to me. Thanks for being so jovial, supportive and encouraging and always knowing what to say to cheer me up.

Again I feel exceptionally fortunate to have found a great welcoming family in marriage. Thanks Mom and Dad for always being so loving and supportive and for having faith in me. Thanks Anish and Ankita for being so loving and caring. Really grateful to have family and friends in NJ and DC who make everything seem possible and fun.

Having Ashwin, my husband, in my life has made everything beautiful. Jaanu, I am thankful and truly blessed to have you by my side. Thank you for being so supportive and patient and thank you for being so crazy and silly most of the time. You have always helped me keep myself grounded. Making me realize that life is much more than the trivial things that I worry about from day to day, the 'Art of Living'.

I am truly blessed to be surrounded by wonderful people.

Last but not the least, thank you God for making me feel as if I am one of your favorites...

ABSTRACT

Precise spatial and temporal control of cellular adhesion and signal transduction events are necessary for accurate animal development. Given the necessity for cell communication in carrying out processes like cell fate specification, growth, cell migration and differentiation, it is not surprising that signaling transduction pathways, such as EGFR, BMP, Notch, Wingless and Hippo, are intimately involved. All these pathways encompass a cascade of molecular events over which there is exquisite spatial and temporal control. A wide array of mechanisms, involving a diverse set of molecules, acts to provide this regulatory control. One such molecule implicated in the BMP signaling pathway in *Drosophila* development is Kek5, a Leucine rich repeat and Immunoglobulin domain (LIG) family member. Here I show that Kek5 modulates both BMP signaling and adherens junctions. For these functions, I further demonstrate that structural elements in both extracellular and intracellular region of Kek5 are critical, providing new insight into the LIG family and their roles in signaling pathways.

TABLE OF CONTENTS

Chapter 1. Introduction: LIGs, and BMP signaling	1
LIGs: A Novel Class of Transmembrane Proteins	2
Leucine Rich Repeats	3
Immunoglobulin domain	7
LIGs – Functional insights	9
Bone Morphogenetic Protein Signaling	13
The core BMP pathway and the morphogenetic signaling	14
Regulation of BMP signaling	17
Extracellular regulation	
Intracellular regulation	19
LRR proteins in BMP pathway	20
Drosophila development	22
Wing Development	22
Scutellar bristle development	
References	
Chapter 2. Analysis of Kekkon5's role in the modulation of BMP Signaling	43
Abstract	44
Introduction	45
Results	48
Discussion	60
Materials and Methods	62
Acknowledgements	66
References	67
Chapter 3. Structure/Function Analysis of Kek5 in BMP signaling	69
Abstract	70
Introduction	71
Results	72
Discussion	
Materials and Methods	84
Acknowledgements	
References	88
Chapter 4. Kek5 and Adherens Junction Biology	89
Abstract	
Introduction	
Results	
Discussion	112
Materials and Methods	
Acknowledgements	121
кенегепсез	122
Chanton 5 A Dage Donon don't Courson for Mr. 199 61/-1-5	105
<u>Unapter 5. A Dose Dependent Screen for Modifiers of Kek5</u>	125
AUSUTACE	126
ιπιγοαυςτίοη	12/

Results	
Discussion	138
Materials and Methods	139
Acknowledgements	140
References	141
apter 6. Functional Characterization of Kek3: BMP Signaling and Kek5	142
Abstract	
Introduction	144
Results	145
Discussion	148
Materials and Methods	151
Acknowledgements	152
References	153
aclusion and future directions	154
pendix	158

LIST OF FIGURES AND TABLES

<u>Chapter 1</u>

Figure 1.1: Structure of a leucine rich repeats	3
Table 1.1: LRR proteins and associated human diseases	5
Table 1.2: Selection of <i>Drosophila</i> LRR proteins	6
Figure 1.2: Structure of the immunoglobulin domain	7
Table 1.3: Ig proteins and diseases	8
Table 1.4: Drosophila Ig containing proteins	9
Figure 1.3: Schematic representation of various LIG proteins in vertebrates and	
Drosophila	10
Table 1.5: LIG proteins and associated human disorders	11
Figure 1.4: Kekkon family of proteins in Drosophila	12
Figure 1.5: Ligands and receptors of the BMP signaling pathway	14
Table 1.6: BMP pathway components in Drosophila and vertebrate counterparts	15
Figure 1.6: Schematic representation of the BMP signaling pathway	16
Table 1.7: LRR proteins involved in BMP signaling	20
Figure 1.7: Fate map of wing imaginal disc	23
Figure 1.8: Wing development from larval to pupal stage	24
Figure 1.9: Morphogenesis of wing and its veins	25
Figure 1.10: Patterning of the Drosophila wing disc	26
Figure 1.11: Model of BMP signaling in the posterior crossvein	27
Figure 1.12: Bristle patterning in the adult fly	28

Chapter 2

Figure 2.1: Kek5 is broadly expressed in <i>Drosophila</i>	8
Figure 2.2: Kek5 is expressed in vein and intervein regions	8
Figure 2.3: RNA expression profile of Kek5	9
Table 2.1: Comparison of wing defects in original and recombinant kek5 null	
chromosomes	1
Figure 2.4: Phenotypes displayed by <i>kek5^{JDR3}</i>	1
Figure 2.5: Adult phenotypes associated with misexpression of Kek5	2
Figure 2.6: Kek5 suppresses Gbb activation of BMP signaling	3
Figure 2.7: Kek5 does not suppress activation of BMP signaling achieved through	
excess ligand (UAS-dpp)	4
Figure 2.8: BMP inhibition is rescued by loss of <i>kek5</i>	5
Figure 2.9: Effects of Kek5 on Sog mediated BMP perturbations	6
Figure 2.10: BMP pathway is altered by changes in Kek5 activity	7
Figure 2.11: DSRF expression is altered by changes in Kek5 activity	8
Figure 2.12: BMP receptors appropriately expressed in S3 cells	9
Table 2.2: Generation of tagged BMP receptors	5

Chapter 3

Figure 3.1: Schematic representation of Kek5 deletion variants	.72
Figure 3.2: Localization of Kek5 deletion variants	.74
Figure 3.3: Intracellular motifs 4 and 5 are crucial for crossvein defects induced by	
Kek5	.76
Table 3.1: C-terminal PDZ domain-binding site consensus sequence	.77
Figure 3.4: IC motif 2-4 appear to be important for scutellar bristle duplication	.78
Figure 3.5: Lethality associated with Kek5 misexpression	.79
Figure 3.6: Schematic representation of the intracellular region of Kek5 variants	
resulting in lethality	.80
Figure 3.7: Different structural elements of Kek5 are responsible for disparate BMP	
signaling related phenotypes of Kek5	.81
Figure 3.8: Model for an additive role of Kek5 motifs 4 and 5 in BMP signaling	.82
Figure 3.9: Conserved IC motifs in Kek family members	.82
Table 3.2: Primers used to generate the multi-motif deletions by stitching PCR	.84
Figure 3.10: Flowchart depicting generation of multi-motif Kek5 deletion variants by	
stitching PCR.	.85
Table 3.3: Primers used to generate the single motif Kek5 deletion variants by	
site-directed mutagenesis	.85
Figure 3.11: Scheme for generation of single motif Kek5 deletion variants by SDM	.86

Chapter 4

Figure 4.1: Comparison of <i>Drosophila</i> and vertebrate epithelial polarity	91
Figure 4.2: Architecture of <i>Drosophila</i> adherens junctions	92
Table 4.1: AJ components in Drosophila	93
Figure 4.3: Kek5 causes cell death and extrusion from the basal side in the wing disc	95
Figure 4.4: BMP receptor knockdown using RNA interference does not result in	
extrusion	96
Figure 4.5: Extrusion and cell death are independent of each other	97
Figure 4.6: Kek5 does not alter levels of the sub-apical region component EGFR	98
Figure 4.7: Kek5 does not alter components of the septate junction	99
Figure 4.8: Kek5 affects components of the adherens junctions	101
Table 4.2: Affect of Kek5 on cell junction components	102
Figure 4.9: Level of arm transcription is not affected by Kek5 misexpression	103
Figure 4.10: Kek5 misexpression results in 'Large cell'	104
Figure 4.11: Schematic representation of Kek5 deletion variants (same as Fig 3.1)	105
Table 4.3: C-terminal PDZ domain-binding site consensus sequence	107
Figure 4.12: Kek5's immunoglobulin domain is critical for Arm upregulation	108
Figure 4.13: Multiple sequence elements in the IC region of Kek5 are important for	
extrusion and large cell	110
Figure 4.14: Possible post-transcriptional reasons for Armadillo upregulation by	
Kek5	114
Figure 4.15: Different structural elements of Kek5 are responsible for disparate	
cellular phenotypes it displays	114

Figure 4.16: Model for affects of Kek5 at the adherens junctions .	
Table 4.4: Primary antibodies used in immunohistochemistry	

<u>Chapter 5</u>

Figure 5.1: Schematic diagram of the deficiency screen	129
Figure 5.2: Frequency distribution chart showing the results of the <i>ptc</i> > <i>kek5</i>	
deficiency screen	130
Figure 5.3: Overlapping deficiencies tested for stocks that enhanced the	
<i>ptc>kek5</i> bristle phenotype	131
Figure 5.4: Overlapping deficiencies tested for stocks that suppressed the	
<i>ptc>kek5</i> bristle phenotype	132
Table 5.1a: Deficiency screen looking for modifiers of scutellar bristle	
duplication phenotype displayed by <i>ptc>kek5</i> -Part I	133
Table 5.1b: Deficiency screen looking for modifiers of scutellar bristle	
duplication phenotype displayed by <i>ptc>kek5</i> -Part II	134
<u>Chapter 6</u>	
Figure 6.1: Misexpression of Kek3 causes crossvein defects	145
Figure 6.2: Kek3 misexpression alters BMP pathway activation and dSRF	
expression in the pupal wing	146
Figure 6.3: Kek3 is epistatic to Kek5	147
Table 6.1: Comparison of Kek5 and Kek3 misexpression phenotypes	148
Figure 6.4: Both Kek5 and Kek3 inhibit BMP signaling	149
Appendix	
Figure A1: Graph depicting frequency of ACV defects in the tested	
$ptc > kek5^{\Delta IC + PC}$ lines	160
Figure A2: Graph depicting frequency of crossvein defects in Kek $5^{\Delta 123}$ lines	
tested with <i>ptcGAL4</i>	162
Figure A3: Graph depicting frequency of crossvein defects in relation to	
percent viability of Kek $5^{\Delta 123}$ lines tested with <i>ptcGAL4</i>	162
Figure A4: Graph depicting frequency of ACV defects in Kek5 ^{Δ45} lines	
tested with <i>ptcGAL4</i>	164
Figure A5: Graph depicting the frequency of crossvein defects in relation to	
percent viability of the Kek5 ^{$\Delta 234$} lines tested with <i>ptcGAL4</i>	165
Figure A6: Graph depicting the frequency of crossvein defects in relation to	
percent viability of the Kek5 ^{Δ1234} lines tested with <i>ptcGAL4</i>	166
Figure A7: Graph depicting the frequency of crossvein defects in relation to	
percent viability of the Kek5 ^{Δ1} lines tested with <i>ptcGAL4</i>	169
Figure A8: Graph depicting the frequency of crossvein defects in relation to	
percent viability of the Kek5 ^{Δ4} lines tested with <i>ptcGAL4</i>	170
Figure A9: Graph depicting the frequency of crossvein defects in relation to	
percent viability of the Kek5 ^{Δ5} lines tested with <i>ptcGAL4</i>	172
Table A1: Summary of results obtained from Kek5 variant analyses	174
Figure A10: Localization of Kek5 deletion variants	175

Figure A11a: PDZ domain binding site is sufficient for Kek5 membrane localization .	.176
Figure A11b: Kek5 PDZ domain binding site appears to be a generic protein	
localization domain	.177
Figure A12: Analysis of Arm upregulation by Kek5 deletion variants	.178
Figure A13: Analysis of 'Large cell' phenotype by Kek5 deletion variants	.179
Figure A14: Analysis of extrusion by Kek5 deletion variants	.180
Table B1: Primers used for generation of various Kek5 IC deletion variants	.181
Table B2: Primers used for generation of tagged BMP receptor constructs	.181
Table C1: Components of various signaling pathways and cell adhesion	
complexes tested in <i>ptc>kek5</i> deficiency screen	.182
Table C2: Analysis of the interesting chromosomal regions for possible Kek5	
interactors	.183
Figure D1: Kek5 does not alter components of the septate junction	
Figure D2: Kek5 does not affect AJ components Shotgun and Echinoid	.186

Dedicated to my family

Jai Guru Dev