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Abstract 
Babies & Basilisks​ is a virtual reality (VR) party game featuring asymmetric, local 

multi-user gameplay which allows two categories of players to experience one game entirely 
differently. One player, wearing a VR headset and holding tracked hand controllers, builds a 
dungeon-like gameplay environment from prefabricated hallway sections and rooms, which can 
be assembled in many different configurations. Up to four additional players, viewing the game 
on a separate TV monitor in third-person perspective, use a standard gamepad to move their 
characters through the constructed environment, overcoming navigational and combat challenges 
by using abilities unique to each of the four characters. The goal of the gamepad players is to 
reach a specified endpoint, while the goal of the VR player is to thwart them by strategic 
deployment of enemies and traps, together with a “boss monster,” which the VR player directly 
controls. 

Babies & Basilisks​ was developed in the Unity game engine for Windows, and is 
primarily targeted for the HTC Vive VR headset. It features novel AI and control systems, 
custom art assets and sounds, and was playtested by 68 people as well as being exhibited at PAX 
East.  
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1. Introduction 
Virtual reality (VR) is emerging as a readily available technology, and creating games 

specifically for VR has become commercially viable. According to findings by SuperData 
Research, revenue from VR hardware and software reached $3.6 billion in 2018, and is expected 
to grow to $16.3 billion by 2022 [27]. While the high cost of a VR system and computer capable 
of its high processing requirements is still a barrier to entry, people can experience VR games in 
social settings, which gives VR games a great capacity to bring groups of friends together into a 
single space. For this reason, there is a large opportunity for VR party games, or games that can 
be played by multiple people using a single VR system and computer. Games in this category 
include ​Keep Talking and Nobody Explodes ​[1], ​Ruckus Ridge ​[2], ​Black Hat Cooperative ​[3], 
and ​Playroom VR ​[4]​ ​[23]. 

Because only one player can wear the VR apparatus at a time, VR party games require 
alternative input methods for the other players. On a computer or console, a keyboard, mouse, or 
gamepad is a good option, since many people probably own these items already. However, the 
difference in input methods leads to an interesting design challenge: these games have inherent 
asymmetry between the one player using VR (referred to as the VR player) and the rest of the 
players (referred to as the controller players). While a designer could attempt to offer the same 
gameplay to both types of players, this fails to make use of the capabilities of modern VR 
systems, especially those with precisely tracked motion controllers. 

An alternate approach is to incorporate asymmetry directly into the game by offering 
entirely different gameplay for each player type, but still including ample interaction between all 
players. This was the approach the team took when designing ​Babies & Basilisks​, an asymmetric 
virtual reality party game for the HTC Vive. In ​Babies & Basilisks​, a VR player builds an 
enemy- and trap-filled dungeon by selecting and placing prefabricated maze sections using the 
Vive’s motion controllers. Up to four controller players each choose one of several available 
characters, and attempt to navigate and survive the VR player’s maze as it is constructed. The 
controller characters, represented by toys, are dwarfed by the VR player, a baby over 20 times 
their size who serves as an imposing presence throughout the game. 

The game’s development took place over four seven-week terms. In addition to the work 
of designing the specifics of the theme and gameplay, the creation of the game required 
substantial technical, artistic, and audio development. The team created 13 character models for 
the VR player, controller players, and AI-driven enemies, as well as eight modular hallway 
sections deployed by the VR player, and 21 static objects comprising the surrounding 
environment. On the technical side, the team implemented third-person character controls and 
abilities for four distinct controller players, five enemies with different AI behaviors, a VR 
building system, a VR-controlled boss with three abilities, a per-room shared camera system for 
the controller players, and an auxiliary audio library. In addition, the team developed 61 sound 
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effects, 16 voice lines, and four music tracks, adhering to two distinct themes: a lighthearted and 
playful theme for the VR player and a dark and gritty one for the controller players. 

The team tested the game on four occasions: formally at AlphaFest and again with two 
game design classes, and informally at PAX East. With the formal sessions, there were 68 total 
playtesters, and the team was able to refine the game in response to their feedback. In addition to 
minor tweaks and design changes, the team implemented several major design changes as a 
result of observed player behavior and suggestions.  

This paper describes the process of designing ​Babies & Basilisks​, the development of art, 
tech, and audio, and the testing and refinement of the game. Chapter 2 presents the background 
and overarching inspirations for the game; Chapter 3 describes the design decisions and process; 
Chapter 4 discusses artistic development; Chapter 5 details technical implementations; Chapter 6 
describes the audio process; Chapter 7 examines playtesting results; and Chapter 8 reflects upon 
the project.  
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2. Background 
This section describes background information on games, movies, and toys that inspired 

Babies & Basilisks’​ design and art style. The three games that most inspired the gameplay were 
Panoptic ​[5], ​Garry’s Mod ​[6], and ​Overwatch​ [7], described in Section 2.1. The games that 
most inspired the art style were ​Job Simulator ​[8], ​Donut County ​[9], ​Ni No Kuni ​[10], and 
Legend of Zelda: The Wind Waker ​[11], detailed in Section 2.2.1. Additional artistic inspiration 
came from toys (Section 2.2.2) and 3D films such as ​Toy Story​ series [12], ​The Incredibles I & II 
[13], and ​The Boss Baby​ [14] (Section 2.2.3). 

2.1 Game Inspirations 
In preparation for designing ​Babies & Basilisks​, the team researched other games in order 

to determine the best practices for asymmetric VR gameplay and style, as well as for inspiration 
for design as a whole.  

2.1.1 Panoptic 

 
Figure 2.1.1a: In-Game Image from Panoptic (2017) [5] 

 
Panoptic​ [5], shown in Figure 2.1.1a, is a 1v1 asymmetrical VR/desktop game that pits a 

colossal Overseer, armed with a slow but devastating eye laser, against a tiny dissident Being 
intent on destroying the Overseer’s energy source by mimicking the movements of others to 
remain undetected. When creating ​Babies & Basilisks​, the team wanted to achieve the same level 
of immersive, asymmetric gameplay as found in ​Panoptic​. Further, the massive scale difference 
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between the VR player and the controller player was an interesting idea that the team wanted to 
explore in greater depth. 

2.1.2 Garry’s Mod 

 
Figure 2.1.2a: In-Game Image of a Deathrun Trap in Garry’s Mod (2004) [6] 

 
Garry’s Mod​ [6], Figure 2.1.2a, is a physics-based sandbox game released on PC with a 

prominent modding community and several game modes. One of these modes, deathrun, 
significantly influenced the design of ​Babies & Basilisks​. In the deathrun game mode, one 
participant  - the “death player” - activates traps in the game environment while the other players 
try to navigate the area and survive until they reach the end of the map.  
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2.1.3 Overwatch 

 
Figure 2.1.3a: Promotional Image from Overwatch (2016) [7] 

 
Overwatch​ [7], Figure 2.1.3a, is a team-based multiplayer first-person shooter. Players 

select from a roster of 30 characters, each with a unique style of play and multiple abilities. 
When designing the characters for ​Babies & Basilisks​, the team adopted this style of play, 
creating a specific role and ability set for each character. 

2.2 Art Inspirations 
A diverse range of media inspired the aesthetic design of ​Babies & Basilisks​. The initial 

goal was to create a lively, asymmetric game themed as a child’s toybox. In the 
conceptualization process, the team decided to pursue a simple, stylized art style with bright 
colors. To inform the development of this look, the team referenced several video games, vintage 
toys, and 3D film characters.  

2.2.1 Stylized Games 
Video games with a visual style similar to what the team was aiming for included ​Job 

Simulator ​[8], ​Donut County ​[9], ​Ni No Kuni ​[10], and ​Legend of Zelda: The Wind Waker ​[11]. 
Major takeaways from looking at these games were the character designs (seen in Figure 2.2.1a), 
which had minimal surface defining features, simplified real-life details, often exaggerated facial 
features, and strong silhouettes, all of which helped give their respective games a fun, lively vibe 
without being overly complex.  
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Figure 2.2.1a: Characters from Donut County (2018) [9] and Ni No Kuni (2010) [10] 

2.2.2 Vintage Toys 
Other inspirations for the game’s aesthetic came from various vintage toys, such as 

wind-up metal figures, older plush animals, and small squeaky toys. The general takeaway from 
these was strong silhouettes and clear, no-frill designs. 

2.2.3 3D Film Characters 

 
Figure 2.2.3a: Toy Characters from Toy Story (1995) [12] 

 
Possibly the biggest source of character inspiration came from 3D animated films, the 

most-referenced being the ​Toy Story​ series [12], ​The Incredibles I & II ​[13], and ​The Boss Baby 
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[14]. The ​Toy Story​ films provided a vast range of characters with various toy elements, such as 
in Figure 2.2.3a, and showed how otherwise stationary objects could move in a natural way, all 
of which helped greatly in the design of ​Babies & Basilisks’​ toy characters, some of which can 
be seen in Figure 2.2.3b.  

 

 
Figure 2.2.3b: A Few of the Toy Characters from Babies & Basilisks 

 
The Incredibles​ and ​The Boss Baby​ did not have the toy elements, but they did provide a 

great deal of inspiration for the VR character model, particularly with the head shape and facial 
details. A side-by-side comparison of this character inspiration and resulting model is shown in 
Figure 2.2.3c. 

 
Figure 2.2.3c: Inspiration from The Incredibles [13] (Left) & Resulting Model (Right) 
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3. Design 
This section details the design process of ​Babies & Basilisks​, starting with initial design 

constraints and progressing to gameplay specifics. Sections 3.1, 3.2, and 3.3 describe the 
experience goal, target audience, and original scope, respectively, all of which had to be 
determined before concrete game design could begin. Section 3.4 describes the character ability 
system for controller players, with a description of each character. Section 3.5 covers the 
modular building system used by the VR player, and all of the placeable components. Sections 
3.6 and 3.7 describe the gameplay progression for a single round for the VR and controller 
players, respectively. Finally, section 3.8 describes the end conditions for both categories of 
player. 

3.1 Experience Goal 
Babies & Basilisks’​ experience goals are to provide its players with a fun, immersive 

party game with asymmetric gameplay where the VR and controller players compete against one 
another, but also have opportunities for cooperation if they desired. The game should be a 
relatively quick--but repeatable--experience, allowing players to experiment with different 
strategies or characters as desired. 

3.2 Target Audience 
Babies & Basilisks​ is designed to cater to both younger and mature players, with the 

players themselves being able to define how competitive they want the game to be. One 
restricting factor is access to a VR setup, which may not be available to younger players. Players 
who have some experience in action games and with VR may find the game easier to pick up and 
learn.  

3.3 Original Scope 
Over the first few months of production, the team focused heavily on the general design 

of ​Babies & Basilisks​. The initial concept was an asymmetric VR game featuring ​kaijus ​(giant 
monsters). From this basic pitch, the team was given creative control over every element of the 
game, aside from the fact that it was meant to be an asymmetric VR game. Several ideas were 
considered for the direction of the game, including the initial monster theme, an internal 
computer world, and the final toybox theme. Ultimately, the team was charmed by the notion of 
a lighthearted game and decided on the toybox theme. 

Once the team had settled on the theme, discussion over how the game would look and 
play began.  The team went through several iterations for the base concept of the game, the 
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building mechanics, and the boss fight structure. During this process, many gameplay elements 
were conceived and redesigned. Part of the initial scope was to include a non-playable character 
which would act as a narrator throughout, as well as several base environments with themed 
enemies based on the environment in which the game was currently taking place. For instance, 
one environment might have been a bathroom, and within this space there would be water and 
bath-themed toys. However, having a strong overarching narrative did not ultimately fit the 
team’s goals for the game, and was discarded to focus on making a game that would be fun to 
pick up and play. The multiple rooms and themes were ultimately beyond the scope of the 
project, and the design was cut back to only include one environment with a higher level of 
polish.  

3.4 Character Designs & Abilities 
In order to diversify gameplay, the game was designed around multiple distinct playable 

characters. By allowing controller players to choose a character and offering significantly 
different gameplay based on that choice, the game would be more replayable, meaning it would 
offer more opportunities for unique gameplay experiences in each session. The model the team 
chose to follow when designing these characters was ​Overwatch ​[7]​, ​which features a large cast 
of playable characters, each with a specific role. Each character comes with a set of 
approximately three abilities, which are limited only by cooldowns and cannot be changed in any 
way. Avoiding further customization of character strengths, such as in ​Team Fortress 2​ [15], 
allows the players to quickly jump into the game without having to go through a loadout screen. 
In order to facilitate players trying different characters, a uniform control scheme was decided 
upon. Each character would have three abilities: a main attack and two special powers. In 
designing the abilities, the aim was to create a different play style for each character that was 
balanced in relation to the other characters. The controller buttons used to activate these abilities 
are the same for every character. 

Because each character would have a rigid, non-customizable role, it was important that a 
large range of roles were covered, without anything clearly lacking. Four key roles were 
identified, inspired by the roles in both ​Overwatch​ [7]​ ​and ​Team Fortress 2 ​[15]. The first role is 
the healer, a support character who can provide assistance to teammates but is not very effective 
on their own. The second role is a tank, who is good at absorbing large amounts of damage, but 
not as strong in offensive capabilities. The third role is the melee character, good at quickly 
closing the distance to enemies, hitting them with close-range attacks, then retreating. The fourth 
and final role is ranged DPS (damage per second), a character with strong offensive capabilities 
but vulnerable to damage. Images of each of these characters can be seen in Figure 3.4a. 
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Figure 3.4a: Character Line-Up, featuring (left to right) Doctor Bear, Tess, Kangaroo, & Amos 

3.4.1 Healer 
In designing the healer character, Doctor Bear, the artists wanted something that seemed 

comforting and soft. Since the game has a toy theme, a stuffed bear was a good option. To 
signify his healing role, he was given a doctor’s vest and head mirror. His main attack is 
tackling, a weak and slow melee strike that should only be used in dire circumstances. His most 
important ability is to create a healing blanket, an object that stays in one place and heals allies 
who stand on it. Finally, he can use a roar to push back nearby enemies, protecting his teammates 
and allowing them to heal in safety. 

3.4.2 Tank 
For the tank character, the team wanted to subvert the cliché of a large, muscular figure 

seen both in the Heavy class in ​Team Fortress 2 ​[15] and in characters such Reinhardt and Zarya 
in ​Overwatch ​[7]​.​ Instead, the artists decided on a small doll-like figure. From here, Tess the 
Tiny Terrors Doll was created, complete with oversized sweater, pigtails, demon horns, and an 
oversized rocket launcher. Her main attack is to fire a rocket, an ability which is somewhat slow 
but powerful. Her second ability is to taunt nearby enemies, causing them to focus all their 
attacks on her. She can pair this with her third ability, which significantly reduces the amount of 
damage she takes for a short amount of time in exchange for slower movement speed. 

3.4.3 Melee 
For the melee character, the initial design was a knight action figure who would attack 

with a sword. However, to avoid having mostly humanoid characters in the game, the design was 
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changed early on to a kangaroo wind-up toy. Boxing gloves and a helmet were added to convey 
his focus on melee combat. His primary attack is a quick punch that hits a single enemy. His 
second ability is a spinning tail attack, which can damage a group of enemies around him. 
Finally, his third ability is a quick dash, which can be used either to damage an enemy in his 
path, or to quickly escape a dangerous situation. 

3.4.4 Ranged DPS 
Finally, for the ranged DPS character, the artists decided on a cowboy action figure, who 

the team named Amos. With ​Toy Story​ [12] as a clear inspiration for the game’s overall look, it 
was important to distinguish this character from ​Toy Story’​s Woody. Therefore, he was made to 
look much older and given a gruff personality. His main attack is to shoot with his revolver. 
While this does not do as much damage as Tess’s rockets, it can be fired more quickly, giving it 
a higher overall damage per second. His second ability is to throw an explosive stick of 
dynamite, which both deals significant damage and knocks back nearby enemies, making it excel 
at crowd control. Finally, he can throw a lasso, which can either constrain enemies to a small 
space, or create a small safe area for players to stand in. 

3.5 Modular Dungeon Pieces 
Overall, there are three types of hallways that the VR player can place, and four types of 

rooms. These pieces all fit together modularly into a grid, occupying either a 1x1 or 2x2 area. 
The VR player retrieves these sections from a shelf, where they spawn automatically. 

3.5.1 Hallways 
Two of the hallway types are a simple straight section and a 90-degree elbow. While 

these do not provide gameplay in the form of combat encounters or platforming challenges, they 
can provide the spacing necessary for the VR player to design the level in whatever shape they 
want, and serve as small breaks for the controller players between challenges. The third type of 
hallway is a longer, curved section. This type of hallway has no floor, but instead features a 
series of platforms and traps for the controller players to navigate. This hallway has a camera 
that moves at a fixed speed, and the characters must keep up with this camera in order to make it 
to the end without falling and suffering damage. The VR player also has the opportunity to 
interact with the traps, such as aiming flamethrowers and adjusting the heights of saw blades, if 
they want to make the hallways more difficult. Each of these hallway types are shown in Figure 
3.5.1.a. 
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Figure 3.5.1a: The hallway sections 

3.5.2 Rooms 
The four room types the VR player has access to are a small combat room, a large combat 

arena, the end goal room, and a portal to a boss fight, depicted in Figure 3.5.2a. Both types of 
combat rooms function in the same way from the VR player’s perspective. The VR player simply 
places the room, and when the controller players enter, they will be unable to leave until all 
enemies are defeated. From the controller players’ perspectives, the small combat room 
immediately confronts the players with waves of enemies to fight. For the combat arena, the 
controller players are first presented with an elevator they all must enter in order to rise into the 
arena, but there are more waves of enemies they must fight before they can leave. The final goal 
room is straightforward as well, simply awarding the controller players with a victory screen 
once they enter. 
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Figure 3.5.2a: The room types (from upper-left to lower-right: small combat room, goal room, 

boss room, arena room) 
 

One special type of room that the VR player can place is a boss room. Once the controller 
players enter this room, all players are teleported to an open arena, which is actually a table 
located within the VR player’s environment. Here, the VR player takes control of a dragon and is 
able to have a first-person battle with the other players. The boss fight is described in section 3.6.  

3.6 Gameplay Loop: VR 
Gameplay for the VR player begins once they put on the HTC Vive. While the controller 

players configure options and select characters, the VR player can immediately begin building 
the level. The level is built out of placeable hallways and rooms, which snap together at 
doorways. Hallways provide two openings that serve as attachment points, while rooms provide 
four. Any non-connected openings of placed sections are automatically blocked by a fog wall, to 
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prevent players from falling out of the map. These fog walls were inspired by the ​Dark Souls 
[16] games by FromSoftware. An example of a completed dungeon is shown in Figure 3.6a. 

 
Figure 3.6a: Completed dungeon with two pathways through 

 
Once the controller players join the game, the VR player might choose to observe them as 

they make their way through the level, or to keep building ahead of them. When the controller 
players navigate through platforming hallways, the VR player may also choose to interact with 
the traps in an attempt to hinder the controller players, using controls such as the lever shown in 
Figure 3.6b, which moves the saw blade trap seen in the hallway. 

 
Figure 3.6b: VR player saw blade trap control (lever) 
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The VR player can also place a boss room, which, upon the controller players entering it, 
grants the VR player direct control over a boss enemy. As the boss, the VR player has three 
abilities at their disposal. They can perform slash attacks by simply swinging their arms, causing 
their in-game model’s arms to mirror their actions. If the arms are swung fast enough, damage is 
dealt if the arm collides with a controller player. This ability is shown from the VR and 
controller player perspectives in Figure 3.6c. 

 
Figure 3.6c: Boss slash attack (left: VR perspective, right: controller perspective) 
 
Their second ability is to flap their arms, causing the in-game model to hover above the 

ground and fly forward, closing distance to other players, as depicted in Figure 3.6d from the 
controller player perspective. 

 
Figure 3.6d: Boss flying ability 
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 Finally, by pulling the triggers on both motion controllers, they can breathe a stream of 
flames, which deals damage to players on hit and can more easily reach players who try to keep 
their distance from the boss. This ability is illustrated in Figure 3.6e. 

 
Figure 3.6e: Boss fire breath attack (left: VR perspective, right: controller perspective) 

 
The VR player may choose to place the goal room at any point, in order to adjust the 

difficulty. However, after five rooms are placed, other room types will become unavailable, 
forcing them to place a goal rather than make the level go on endlessly. This constraint facilitates 
fairly short game length, allowing players to change roles frequently, and VR players to 
experiment with different level designs. 

3.7 Gameplay Loop: Controller 
Gameplay for the controller players begins with the character selection screen, where 

players can view the different characters and their abilities. Once all players have selected their 
characters and choose to start the game, they are dropped into a toybox starting area. If the 
tutorial option is activated, a fog wall will cover the starting area’s exit, and each of the players 
must go over to a button on one end of the toybox and jump on the button a few times, with each 
button press briefly explaining a different aspect of the selected character. After each player has 
finished going through their character’s tutorial, the fog wall lifts and the players are able to go 
into the maze. The tutorial, displaying a message for Dr. Bear, can be seen in Figure 3.7a. 
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Figure 3.7a: Controller player tutorial 

 
Once in the maze, the players encounter a number of enemies, arena rooms, and 

trap-filled hallways. With the enemies, the players must use their unique abilities to fight back, 
and can often utilize the winding nature of the maze to backtrack and separate enemies to make 
the fight easier. In arena rooms, however, players ride an elevator to an enclosed space where 
they must defeat all of the enemies in order to return to the rest of the maze. In the trap hallways, 
players need to carefully navigate the path, utilizing platforming techniques. If a player falls or 
dies during one of these trap areas, they respawn at the end of the section. However, players that 
complete the hallway without falling are rewarded with healing. Throughout the maze, if any 
player reaches zero health, they are knocked down, and must be revived in order to continue 
playing. They may choose to revive themselves, although each player can only do this twice, or 
wait for an ally to revive them, which has no limit but is interrupted if the reviving player takes 
damage. If the downed player is not revived within a time limit, they die permanently, and have 
to sit out the rest of the game. 

Another element within the maze is the boss room. Once the controller players enter this 
area, they are teleported to a different section of the map where they must face a particularly 
strong enemy in an open arena, as seen in Figure 3.7b. This enemy is controlled by the VR 
player, and its abilities are discussed in Section 3.4. Once the boss is defeated, players will be 
teleported back into the maze.  
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Figure 3.7b: Controller player perspective of boss fight 

 
The last bit of gameplay for the controller players is finding the victory room. Once this 

room has been entered, “victory” will appear on-screen and the players will return to the 
character selection screen.  

3.8 End Condition 
Win conditions differ for the VR player and the controller players. The win condition for 

the VR player is intentionally vague, in order to best fit the experience that the VR player wants 
to create. If they are treating the game competitively, they may consider winning to be when  the 
health for each of the controller players fall to zero, and losing to be when they reach the goal 
room. The VR player could do this through placing trap-filled hallways, boss battles, and enemy 
encounters. They could also simply want to make a fun, challenging experience in which the 
controller players ultimately succeed.  

In order for the controller players to win the game, they have to battle their way through 
the VR player’s maze and make it to the victory room. If the health for all of the players falls to 
zero, they lose. When either end condition is reached, the controller players return to the player 
selection menu where they can choose to play the game again. In a party setting, this would be 
the chance for another player to take the role of the VR player, and begin building the level 
anew. 
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4. Artistic Implementation 
This section describes the artistic techniques and tools used in developing ​Babies & 

Basilisks​, including in-depth looks at asset pipelines for characters and environments. Section 4.1 
describes the complete character production pipeline, beginning with conceptualization (Section 
4.1.1), and moving through modeling (Section 4.1.2), texturing (Section 4.1.3), retopology 
(Section 4.1.4), rigging (Section 4.1.5) and finally animation (Section 4.1.6). Section 4.2 
describes the steps used to create static (non-animated) objects including environments and 
props. This section also begins with conceptualization (Section 4.2.1), and moves on to modeling 
(Section 4.2.2), UV unwrapping and texturing (Section 4.2.3), and finally lighting (Section 
4.2.4). 

4.1 Character Production Pipeline 
The art asset pipeline for characters and their animations, shown in Figure 4.1a, started 

with a quick conceptualization period before moving forward with the sculpting of the 
characters’ models in ZBrush. Once a model was fully sculpted, it was textured and optimized 
using additional ZBrush features before being rigged in 3DS Max. After the rig was fully set up 
and skinned to the model, the character was animated in 3DS Max. These animations were then 
exported as FBX files and imported into Unity. 

 

 
Figure 4.1a: Character Production Pipeline Diagram 

4.1.1 Conceptualization 
The character production pipeline began with gathering reference images of vintage toys 

and pre-existing stylized 3D models in order to better visualize the styles and forms of the 
characters. These images were used throughout the rest of the process. As an example, the toy 
designs shown in Figure 4.1.1a helped guide the design process for the kangaroo character. 
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Figure 4.1.1a: Wind-Up Kangaroo References [25][26] 

4.1.2 Modeling 
After conceptualization, the base meshes were created in Zbrush using sphere chains. 

With the rough base and shape created, the model could then be polished, and musculature and 
details could be sculpted. After the entire body for a character was finished, clothing and other 
organic pieces could be extracted from this base mesh, then edited slightly to look more accurate. 
Additional hard-surface pieces, such as metal keys and screws, were also created in Zbrush, 
using IMM brushes. Figure 4.1.2a shows the process from initial base mesh creation to polish 
and hard-surface details on Doctor Bear. 

 

 
Figure 4.1.2a: Sculpting Process for Doctor Bear (Left is rough, Middle is polished, Right is 

polished with extracted clothing) 
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One other step for some of the characters was a process the team called “toyification”, 
which helped make the models appear more like physical toys. This was especially important for 
action figure-esque models, since they needed to have visible joints and connector pieces. This 
process was accomplished by cutting apart and softening split edges on these models, as seen in 
Figures 4.1.2b and 4.1.2c.  

 

 
Figure 4.1.2b: Pre-Toyification Amos (Left) & Amos with Jointed Limbs (Right) 

 

 
Figure 4.1.2c: Close-up of Amos’ Jointed Arm Sockets 

 
Additional toyification on characters was completed by adding small plastic detailing, 

such as raised seams, higher level of surface polish, surface noise, and cleaner edges, as shown in 
Figure 4.1.2d below.  
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Figure 4.1.2d: Pre-Toyification Llama (Left) & Llama with Subtle Plastic Ridges (Right) 

 
The only character model that did not follow this exact process was the VR player model 

(the baby). We used reference images of animated babies - such as Jack Jack from ​The 
Incredibles I & II​ [13] in Figure 4.1.2e and the various babies from ​The Boss Baby​ [14] in Figure 
4.1.2f - to determine a stylized yet human look that would fit in with the toy-filled world.  

 

 
Figure 4.1.2e: Jack Jack from Disney’s The Incredibles II (2018) [13] 
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Figure 4.1.2f: Babies from Dreamworks’ The Boss Baby (2017) [14] 

 
Although the VR model did not need toyification, special considerations were required 

for its representation in VR. Because most players have vastly different proportions from a baby, 
the model would not be able to accurately track their movements. In order to avoid feeling 
disconnected, the team designed two versions of the baby model, one with the full character 
mesh, and another with just the hands. The full third-person mesh was used in the 
controller-character views, while the first-person hand models were used in the VR set-up; these 
meshes can be seen in Figure 4.1.2g. 

 

  
Figure 4.1.2g: Third-Person Mesh (Left) & First-Person Mesh (Right) 
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4.1.3 Texturing 
Once an entire character mesh and its pieces were generated, texturing in Zbrush could 

begin. This process began with basic color blocking to see how the various character designs 
would flow together. Once the basic look was satisfactory, secondary and tertiary color forms 
were added, as well as basic shading to give a slightly more realistic look. Depending on the 
model, the texturing process also involved generating surface noise on a few parts of a model. 
This gave the mesh a bumpier look, and was especially useful with characters that had cloth 
elements, such as Doctor Bear in Figure 4.1.3a.  

 

 
Figure 4.1.3a: Surface Noise & Texturing on Doctor Bear 

4.1.4 Retopology 
After all of the assets were generated for an individual character, they were retopologized 

with Zbrush’s Zremesher tool. Zremesher quickly reduced the polycount from a few million 
polygons to between five and ten thousand and produced clean edge loops, making the mesh 
friendly for rigging purposes. Following the Zremesher process, textures from the high poly 
version of the model were projected onto the low poly mesh, transferring surface details along 
with it. This projection step resulted in diffuse maps for the model, which could then be used to 
create normal, or bump, maps as well. Figure 4.1.4a below shows the difference between the 
high-poly sculpt and the optimized, game-ready version. 
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Figure 4.1.4a: High Poly of 2.8 Million (Left) versus Low Poly of 3000 (Right) 

4.1.5 Rigging 
Once characters were fully optimized, they were rigged using 3DS Max’s CAT Rig 

system. This system allowed for relatively quick rig setup, and easy transfer of bones and other 
rig data into Unity. After setting up the base CAT rig, characters were skinned according to how 
many meshes they were comprised of. For instance, characters comprised of a single mesh, like 
Tess, could have all of the bones skinned to one model, whereas characters made of multiple, 
jointed sections, such as the Arm Sharks or Amos, needed to have certain bones skinned to 
certain sections of the mesh. Once the bones were skinned to the character models, their 
envelopes were tweaked in order to guarantee proper mesh deformations. Once this 
time-consuming process was completed, an animation layer was added to the system, and the 
model was ready for animating. An example of the rigged Arm Shark can be seen in Figure 
4.1.5a. 
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Figure 4.1.5a: Rigged Arm-Shark Using 3DS Max’s CAT System 

4.1.6 Animation 
Once the rigs were completed, they were animated in 3DS Max, as seen in Figure 4.1.6a.  
 

 
Figure 4.1.6a: Animated Amos in 3DS Max 

 
The toy designs were incorporated into the animations, providing additional 

characterization for the enemies and player characters. For instance, since Doctor Bear is a plush 
character, his animations are a bit looser and floppier than the animations for a rigid character 
such as Amos.  

Each character needed a specific set of animations, but some were common among all 
characters, such as idle and walk animations. An example moveset for Doctor Bear can be seen 
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in Figure 4.1.6b. These animations were exported as FBX files and imported into Unity ready for 
use in-game. 
 

General 
Animations 

Walk Cycle Run Cycle Idle Jump 

 

Attack/ Special 
Animations 

Roar Tackle Healing Blanket 

Figure 4.1.6b: Doctor Bear Character Moveset 

4.2 Environment & Prop Production Pipeline 
The pipeline for the environmental art, shown in Figure 4.2a, began with 

conceptualization and grey-boxing the environments in Autodesk Maya and 3DS Max. This 
grey-boxing process gave the team a visual representation of the room’s basic geometry. 
Furthermore, it helped determine how large of a space was needed inside of Unity and where 
objects should be positioned for the most logical game flow. Further into the process, 
placeholder textures were applied to these environments to get a better idea for how the space 
would feel textured. After the grey-boxing stage, the placeholder geometry was replaced with 
more eloquent models. Once all the models for the environment were created, they were UV 
unwrapped and textured. Following this step, the environment was placed inside Unity for 
lighting setup.  

 

 
Figure 4.2a: Environment & Prop Production Pipeline Diagram 

4.2.1 Conceptualization & Grey-Boxing 
The environment and prop production pipeline began with gathering reference images for 

the type of space the team wanted to create, as shown in Figure 4.2.1a.  
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Figure 4.2.1a: Room Inspiration[24] 

 
This was quickly followed by conceptualization of the space in Maya through a process 

called grey-boxing, which allowed for the team to get a general sense of the environment and 
props before refining. Once the initial grey-boxed environment shown in Figure 4.2.1b was 
created, it was transferred over to Unity for some basic testing, mostly to see how the layout felt 
in-game. The conceptualization process also involved looking up examples of playrooms for 
color inspiration, which the team then tested out by applying placeholder textures to the 
grey-boxed models.  
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Figure 4.2.1b: Preliminary Grey-boxed Base Environment 

 
This conceptualization and grey-boxing process went through several iterations over the 

course of the project in order to test different furniture layouts and architectural structures. The 
final room concept, shown in Figure 4.2.1c below, took substantial influence from the room 
layout shown previously in Figure 4.2.1a, and featured a playroom rather than a bedroom, with a 
prominent window nook area as a focal point for the environment. 

 

 
Figure 4.2.1c: Final Grey-box Concept 
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4.2.2 Modeling 
The next step of creating the game’s environment was to replace the grey-box models 

with more detailed, visually appealing models, as seen in Figure 4.2.2a.  
 

 
Figure 4.2.2a: Wireframe View of New Models 

 
The team used box-modeling tools in Maya and 3DS Max to shape the various furniture 

and architectural pieces for the room, some of which are shown in Figures 4.2.2b and 4.2.2c. 
These models were then imported into Unity in a single FBX file, automatically creating a 
placeable prefab of the entire room. 

 

 
Figure 4.2.2b: Wireframe View of Window Nook Area 
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Figure 4.2.2c: Wireframe View of Toy Storage (Left) and Drawing Area (Right) 

4.2.3 UV Unwrapping & Texturing 
Before texturing could begin, the art team unwrapped the UVs for each model using 

Maya’s automatic UV unwrap tool. The unwraps were then rotated and repositioned in the UV 
space in order to best utilize the texture space available. Following the UV process, the art team 
used a combination of Photoshop and GIMP to create the texture sets for the environment pieces. 
Much like in the character texturing process, environment texturing began with basic color 
blocking and planning in order to create the desired atmosphere. In order to create a playful, 
childlike feeling throughout, the team decided on a bright color palette with orange, teal, and 
white. Secondary colorful touches were added through textures of posters and children’s 
drawings. 

4.2.4 Lighting 
The last step for creating the environment was adding lighting in Unity. Because ​Babies 

& Basilisks​ is a VR game requiring a steady 90 frames per second in order to work properly, the 
team had to be particular about the lighting, sticking only to baked lighting rather than real-time 
lighting which would be found in most games. The team used a spotlight for the primary “sun” 
effect in order to have more control than with a directional light; this light had a warm orange 
glow to it, and was angled to mimic a sunset. For additional lighting, ivory and light green point 
lights were placed around modeled light fixtures and small glow-in-the-dark stars. Once the 
lights were placed, post-processing effects were added, including color grading to improve the 
contrast range of lighting values, and ambient occlusion to create pooled shadows and further 
atmosphere. These lighting changes, as seen in Figures 4.2.4a and 4.2.4b, greatly improved the 
overall visual feel of the game. 
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Figure 4.2.4a: Before Lighting & Post-Processing 

 

 
Figure 4.2.4b: After Lighting & Post-Processing 
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5. Technical Implementation 
This chapter describes the technical systems that were implemented as part of ​Babies & 

Basilisks’​ development, and the evolution of each system. Section 5.1 provides a summary of 
these systems and the overall process of implementing them. Section 5.2 describes the player 
control systems, both for controller players (Section 5.2.1) and the VR player (Section 5.2.2). 
Section 5.3 details the VR building system and inner workings of modular components. Section 
5.4 discusses the development of AI to suit each type of enemy. Section 5.5 describes the shared 
camera system used by controller players. Section 5.6 elucidates the tutorial systems that teach 
both the VR player (Section 5.6.1) and controller players (Section 5.6.2) how to play. Finally, 
Section 5.7 details the creation of an auxiliary audio system using a third-party library.  

5.1 Overview 
Several technical aspects were vital to the design and implementation of ​Babies & 

Basilisks.​ The player controls, for both the controller and VR players, provided challenges in 
creating simple and intuitive controls for the players. The VR player’s building system was 
required for the mazes to be built effectively and in ways that made sense, such as preventing 
hallways from overlapping each other. The AI of the enemies the controller players had to face 
was also important, as it defined the combat experience of the controller players. Camera 
systems were carefully implemented to balance provide interesting views that were also effective 
in showing important parts of the scene. A tutorial system was created as well, in order to help 
the players understand what their controls were. In addition to this, a custom audio system was 
created to provide different audio output to separate sources. 

For the process of implementing the technical aspect of the game, the technical team 
divided the responsibilities and implemented them in separate branches of source control, 
rebasing the branches into the master branch when implementation was complete. Before 
rebasing, each branch was reviewed and checked for bugs by the members of the technical team. 
This minimized bugs in each iteration of the game, as well as providing the technical team 
familiarity with all aspects of the code, even ones they had not written themselves. 

5.2 Player Controls 

5.2.1 Controller 
The main challenge of designing the controls for the controller players was to make the 

characters intuitive to control, and the inputs similar enough to facilitate easily switching 
between characters across playthroughs.  
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5.2.1.1 Receiving and Interpreting Input 

Each character’s three unique abilities were implemented as methods that overrode an 
abstract attack script. Each of these abilities was assigned a cooldown timer which prevented the 
players from using that ability again until the cooldown time had passed. To receive the player 
input, input axes were entered into the Unity Input Manager for each button and control stick 
across the four controllers, as well as input axes that corresponded to any controller to allow for 
menu navigation. The Input Manager also included axes to receive input from the keyboard and 
mouse, for players who did not wish to use a controller. All of these axes were differentiated by 
adding a suffix with the controller number to the name. The input axes are read by a 
PlayerController script, which is assigned to one suffix. The controller then uses the values it 
reads to update a Channels object, which serves as intermediary storage between Controllers and 
Motors. Various Motor scripts interpret the values in the Channels, allowing them to move and 
perform actions. By using the same channels file but a different motor file specific to characters’ 
abilities, characters could react to the same forms of input in different ways. Each character was 
also assigned a second motor script for movement, and this script was the same one across all 
characters so the movement would be calculated in similar ways. 

With the initial design of the movement system, players could move using the left 
joystick of a controller or the WASD keys on the keyboard, and could jump with the A button or 
spacebar. Each of the characters’ three abilities could be activated with the Q, E, and R keys and 
the left, right, and center mouse buttons for keyboard users, or the X, Y, and B buttons for the 
controller players. The appropriate buttons for the abilities are shown at the bottom of the screen 
for each player along with icon indications of each ability, as shown in Figure 5.2.1.1a. 

 

 
Figure 5.2.1.1a: Controller Player Ability UI 

 
It was found during the team’s own testing of the game, and during formal playtesting, 

that the two characters with ranged attacks, the tank (Tess) and the ranged (Amos) characters, 
were difficult to aim with using this design, as the player had to make the character physically 
move in the direction they wanted before they could use their abilities in that direction. For these 
ranged characters, aiming independently of motion was added, with the use of the mouse or 
arrow keys for keyboard controls and the right joystick for controllers. As this was modified, the 
input for the abilities for all characters was updated to be mapped to not only the face buttons on 
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the controllers, but the back buttons as well, allowing players to aim and attack without 
removing their finger from the aiming stick on the controller. 

5.2.1.2 Disabling Input 

During some events in the game such as waiting for a hallway’s moving camera to begin, 
being grabbed by an arm shark enemy, or while amid certain player abilities, player input must 
be disabled. Initially, the controller characters’ inputs were manually enabled and re-enabled 
within the specific instances of the code. However, with this approach, multiple unrelated pieces 
of code could disable the movement controller at the same time, and re-enable it at times when it 
should be disabled. For instance, if the healer character, Dr. Bear, were in the middle of a tackle 
attack, thus disabling input for a moment, and was simultaneously grabbed by an arm shark, the 
arm shark’s grab would also disable the input. This input should remain disabled until the arm 
shark drops Dr. Bear. However, when the tackle animation completed and he was still in the Arm 
Shark’s grip, that Motor would re-activate, allowing Dr. Bear to move about even though the arm 
shark should still restrain him. To prevent this from occurring, a separate script to manage the 
player characters’ input was added to all controller characters. With this script, any code 
attempting to enable or disable the player’s input does so by calling functions in this script. With 
this modification, the script can keep track of when the input should and should not be disabled, 
and allows the player input to always be appropriately enabled or disabled, even with multiple 
influences on it. 

5.2.1.3 Implementing Abilities 

During development, character abilities were first roughly implemented using a variety of 
timers to track how long an attack should last, placing static colliders around the player objects, 
and using placeholder objects for abilities such as Dr. Bear’s healing blanket. As the art team 
created animations for the characters, the abilities of each character were further refined, using 
Unity’s animation events to trigger functions to enable and disable the attack colliders or player 
input during the use of their abilities, as well as parenting the colliders to the player characters, 
so enemies would be damaged in line with the character’s animation. With these added, it was 
easier to test how balanced the abilities were, allowing for tweaks in the length and power of the 
attacks. Additionally, the code was updated to be more elegant, relying on animation frames 
calling the functions rather than timers which had to be checked every update frame to see if they 
had expired. 

5.2.2 VR 
In designing the controls for the VR player, there were additional considerations that had 

to be made. VR games typically accomplish movement through a combination of the room-scale 
tracking capabilities of the headset, using a trackpad or joystick to move the character as in a 
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traditional first-person game, or pressing a button to teleport. Of these options, room-scale 
tracking was found by the team’s personal experience to be the least likely to induce discomfort. 
However, the movable area in the game exceeds the maximum tracking area of the Vive, which 
is four by three meters. Due to the size of the area in which the VR player must move, an 
additional movement option was necessary. Another challenge was to map the movements of the 
VR player to a 3D avatar in the game, which would be visible to the controller players. With 
only three available points of tracking (the headset and two controllers), some guesswork was 
used to achieve believable animation on this character. Finally, there was the question of how the 
VR player would interact with various elements in the game world, including placeable objects 
and a boss enemy that could be directly controlled. 

5.2.2.1 Movement and Avatar Tracking 

Initially, the VR player’s only means of locomotion was physically moving around in 
their tracking area. However, their size relative to the in-game room is much smaller than the 
actual player’s size relative to the maximum tracking area of the Vive. As a result, only a small 
part of the in-game room could be traversed using natural head-tracking movement. To remedy 
this, a teleportation system was added, allowing the VR player to point at the ground while 
holding the thumbpad on the controller, then release the button to teleport where they are 
pointing, depicted in Figure 5.2.2.1a. While this system breaks the immersion of a VR game 
somewhat, the team played multiple VR games and found that it caused less discomfort than 
joystick-based movement.  

 
Figure 5.2.2.1a: VR Teleportation 

 
For the VR player’s avatar, a placeholder humanoid rig was used, which was set up to 

follow the horizontal position and rotation of the headset. The avatar would also blend between 
standing and crouching poses based on the height of the headset, attempting to keep its head at 
the same height as the player’s head. Its hands were set up to track the location and rotation of 
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the Vive controllers using the inverse kinematics system provided by Unity for humanoid 
avatars. An example of the VR player in a crouching pose with hand tracking can be seen in 
Figure 5.2.2.1b. Details about the interaction system may be found in the “VR Building System” 
section.  

 
Figure 5.2.2.1b: VR Avatar Tracking Hands and Height 

5.2.2.2 Boss Controls 

 
The initial design to control the boss enemy was a diegetic user interface resembling a 

remote control, and consisting of a joystick for movement and four buttons for performing 
attacks, as seen in Figure 5.2.2.2a. This input system was automatically created and attached to 
the boss as soon as the players reached it. 

 
Figure 5.2.2.2a: Old Boss Controls 
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In initial user testing, however, it was found that this method of controlling the boss was 
unintuitive, and that more direct control might be better. For this reason, the existing avatar 
tracking system was adapted to enable the VR player to become the boss and control it directly. 
Instead of pressing buttons to perform different attacks, they could slash with their arms for basic 
attacks, or perform various gestures to trigger special attacks. While various attacks and gestures 
were considered, it was eventually decided that the boss would have one additional attack, the 
ability to breathe fire, as well as the ability to move by flapping their arms. The fire breath was 
initially triggered by pulling the triggers on both controllers and holding them behind one’s head; 
however, this proved to be unintuitive to testers, so the gesture was reduced to just pressing the 
triggers. Each of these abilities are shown in use in the Design chapter in Figures 3.6c, 3.6d, and 
3.6e.  

5.3 VR Building System 
Possibly the most crucial system from the perspective of the VR player was the building 

system. Since the VR player would be building the entire traversable area for the controller 
players, an intuitive and satisfying interface was needed. It was also essential to ensure the level 
the VR player creates is possible to complete, and free of places where controller players might 
be able to escape or notice inconsistent collision detection.  

5.3.1 Hallway Snapping 
It was decided that the map should be built out of rooms and hallways that snap together 

at specific points, rather than allowing the VR player to place individual walls and floors. 
Because of this, the collisions of each placeable section could be specifically designed and tested 
to line up well with adjacent sections. These map sections can be picked up by the VR player 
using the trigger on the Vive controllers. When they are held, they behave as a standard 
physics-affected object, allowing the player to drop or throw them. However, when held near 
another level section, they show a preview indicating that the two pieces can be snapped 
together. Releasing the trigger then causes the held piece to snap into place, as seen in Figure 
5.3.1a. 
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Figure 5.3.1a: A Hallway Section Snapping into Place 

 
In addition to controlling which parts of these objects could snap together, it was also 

necessary to prevent two sections from being snapped into the same physical space. To 
accomplish this, a grid system was introduced, which divides the world into a uniform grid and 
keeps track of placed objects in each cell. Before a map section can be snapped into place, it 
must first ensure all necessary grid cells are empty and insert itself into these. This system is 
represented visually in Figure 5.3.1b. 

 

 
Figure 5.3.1b: Occupied Grid Cells (blue) and Required Cell for New Piece (red) 

5.3.2 Shelf 
The final piece of the building system was a mechanism from which the VR player 

receives these placeable sections. For this, a shelf was added to spawn each type of map section, 
and can be seen in Figure 5.3.2a. 
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Figure 5.3.2a: The Shelf 

 
In the initial implementation, when the VR player picked up a placeable section and 

moved it a specified distance away, a new one would spawn. However, this led to a physics issue 
where new pieces could be spawned too soon, leading to a collision with the old piece. This 
sometimes happened without the VR player even touching the piece, causing new pieces to be 
repeatedly spawned as the old ones were pushed away. This could be remedied by increasing the 
distance that pieces needed to be moved in order to respawn, but that led to some pieces being 
placed too close to their spawn point, and a new one not spawning at all. Eventually, the shelf 
system was changed to only respawn sections after they were snapped in place, avoiding both 
previous issues. 

5.3.3 Room Types 
Since there were several room types planned (enemy encounter room, enemy arena, boss 

room, and victory room), spawning them individually would require the shelf to be quite large, 
and might confuse the VR player. To solve the problem, a piece of diegetic UI was introduced, 
similar to that used in the initial version of the boss controls, in the form of a small dial on the 
underside of a generic room template. The dial could be turned by the VR player to change what 
type of room they were holding. However, through testing, it quickly became apparent that 
turning the dial was unintuitive. Therefore, a more straightforward interaction was decided on, in 
which the VR player shakes the room once each time they want to change the type. The four 
types of rooms are shown in the Design chapter in Figure 3.5.2a.  

5.3.4 Challenge Hallways 
Finally, it was decided that the basic hallway sections would probably bore the controller 

players, as they failed to offer any challenge. To remedy this, a new type of hallway was 
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introduced. These new hallways contain a generated sequence of traps and platforms, requiring 
the controller players to carefully jump across as they avoid hazards. To create these hallways, 
the artists first modelled simple block-based components, as seen in Figure 5.3.4a. 

 

 
Figure 5.3.4a: Original Spline Hallway Components  

 
In order to give the hallways a more interesting shape than a simple straight line, the 

components were duplicated and deformed along a spline, creating a visually-appealing curve, 
seen in Figure 5.3.4b. 

 

 
Figure 5.3.4b: Generated Spline Hallway 

 
These shapes were generated dynamically using a Spline component, which was created 

by modifying code from the Cinemachine package. This script handled interpolation of points 
and rotations along the spline, and allowed for editing the control points and tangents using 
Unity’s built-in transform tools. An additional component, the SplineMesh, was then created. 
This script would take as input a sequence of meshes and a reference to a spline. It would then 
copy each vertex of these original meshes, and deform the positions and normals based on the 
spline curvature. The output was a single render mesh and separate, simplified collision mesh. 
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The hallways’ interiors were created by placing a generated sequence of traps and 
platforms along the spline. These include platforms that move or collapse when a weight limit is 
reached, as well as traps with sawblades, spikes, boulders, and flamethrowers. A fully-generated 
hallway is shown in Figure 5.2.4c. 

 

 
Figure 5.3.4c: A hallway with traps and platforms placed in it 

 
Besides offering an additional challenge and a different type of gameplay from the rest of 

the maze, these hallways could also control the speed at which controller players progress 
through the level. This was accomplished using a camera that moves through the hallway at a 
fixed rate and prevents the players from leaving its view. A view of a controller player in the 
hallway is shown in Figure 5.3.4d. 

 

 
Figure 5.3.4d: Controller player perspective in challenge hallway 

 
In order to give the VR player more opportunities to interact with the controller players, a 

system was created so that they could control the traps in these hallways manually. 
VR-intractable UI objects, including buttons, levers, and joysticks, had already been created for 

51 



the boss fight (see Section 5.2.2.2). These were repurposed to enable the VR player to activate 
the traps. These additional UI objects are shown in Figure 5.3.4d, and an example of the VR 
player interacting with them can be found in the Design chapter in Figure 3.6b. 

 

 
Figure 5.3.4d: The previous hallway with manual controls added 

5.4 Enemy AI 
In developing the behaviors of the enemies for the controller players to fight, the primary 

design considerations were to create a variety of interesting and noticeably different enemy 
behaviors which were balanced to operate in any combination against the players. 

5.4.1 State Machines 
For all AI enemies (as opposed to the VR player-controlled boss), behavior is defined in 

controller scripts which inherit from the EnemyController base class. This base class contains 
common methods used across different varieties of enemies, such as changing the targeted player 
or finding the rotation or distance to this targeted player. The behaviors specific to each enemy 
type were implemented using state machines. These state machines were created using a visual 
state machine editor developed by one of the team members, which automatically generated 
function templates to be called in each state, sub-state, transition, and transition check between 
states specified in the editor. These functions were then completed with the proper code for the 
desired behavior of the enemy at each state. Similarly to the player characters, each enemy also 
uses a channels file defining the inputs they can receive from the state machine controller script, 
with the values set in the controller being interpreted into movements and attacks with a motor 
script specialized to each enemy. One of the state machines, that of the llama enemy, can be seen 
in Figure 5.4.1a. 
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Figure 5.4.1a: Llama Enemy’s State Machine 

 
Each box represents a state, and boxes within boxes represent sub-states. Arrows show 

transitions between states. In this state machine, there are two main states: headbutting and 
spitting, representing what attack mode the enemy is in. Within these states, sub-states were 
defined, which the enemy would transition between to maintain a proper distance to the player it 
was targeting, and attack when possible. Since the headbutting state was an up-close, melee 
attack, the enemy was only concerned with getting closer to the player. However, with the 
spitting state, the enemy would attack at a range by shooting a projectile, and so would draw 
farther away if the player came closer, but also would follow the player so as not to get too far 
away. The llama would transition between the states of headbutting and spitting if the player 
became too close or far away. For instance, if the player continually runs away from the llama 
while in headbutting mode, eventually the llama falls behind and transitions to spitting mode. If 
it is in spitting mode and is backed into a corner, allowing the controller player to draw close, it 
switches to headbutting mode. 
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5.4.2 Implementing Attacks 
To perform attacks, specific colliders are enabled and disabled at certain points in the 

animation, which deal damage to the players. As animations were added, some of these colliders 
were updated to be child objects of bones on the animation rig, allowing the collider to move 
with the animation and provide a more realistic path that damages the players. For ranged 
attacks, such as the llama’s spit attack, projectiles were created and launched towards the player.  

To transition between attack states, timers were initially used to check how long an attack 
had been occurring and to signal its end. This part was designed to be easily replaced by 
animations, which allowed for updated functionality using Unity’s animation events. Instead of 
checking the time every frame, the events trigger functions at specific points in the animation. 
With this revision, the functions that ended the attacks could be called from the animation, and 
many timers could be removed from the code. 

5.5 Cameras 
One challenge present in many local multiplayer games is how to handle the camera. 

There are two broad approaches to this. The first approach uses a split-screen, where each player 
has their own camera, with a fraction of the screen dedicated to them. This approach is common 
in shooter games where the camera is tied to an individual character’s aim, as seen in Figure 
5.5a. 

 
Figure 5.5a: Split-screen multiplayer in Call Of Duty: WWII (2017) [17] 

 
The second possible approach is using a shared camera that automatically adjusts to keep 

all players on screen at all times, such as in the ​Lego Star Wars​ [18]​ ​games, as seen in Figure 
5.5b. 
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Figure 5.5b: Shared camera in Lego Star Wars: The Complete Saga (2007) [18] 

 
In deciding on which camera approach would be used, several factors were considered. 

The game would not have a focus on shooting, so precise aiming with the camera would not be 
needed. Furthermore, since VR imposes a substantial rendering cost, the additional rendering 
cost of the extra cameras would need to be kept down. 

It was decided early on that a shared camera would be used. Since the game supports up 
to four players, using a shared camera as opposed to a split-screen reduced the rendering cost 
significantly. Additionally, using an automatic or fixed camera would reduce the amount of input 
required from the players, making the game easier to learn. To implement this shared camera, the 
“Cinemachine” Unity package was used. This package makes it easy to create a camera that 
tracks multiple targets, keeping them all on screen at the same time by moving or zooming.  

5.5.1 Camera Types 
Initially, a single top-down camera set to track all of the players was used, as seen in 

Figure 5.5.1a. During the boss fight, this top-down camera would add the boss to the list of 
objects to track. This initial camera effectively conveyed necessary visual information to the 
players and kept them all on screen, but failed to provide interesting angles. 

 
Figure 5.5.1a: The top-down camera used in combat 
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In order to make the camera angles more cinematic and dynamic, it was decided that 

different types of camera would be used depending on the situation, using different angles and 
methods of tracking. For the hallways, a side-view camera provides players with a good view of 
platforms they can jump on, shown in Figure 5.5.1b.  

 

 
Figure 5.5.1b: Side-view camera used in hallways 

 
For combat scenarios, the top-down camera was kept, so that players could have a steady 

view of all threats. However, the tracking on these cameras was changed to be fixed with a 
constant view of the entire room, in order to avoid jarring camera zooms during quick 
movement. Finally, for the boss fight, an isometric view was decided on, in order to strike a good 
balance between providing enough information to the players and an exciting view of the action. 
These different cameras were specified on a per-room basis, with each activated when one player 
enters a trigger volume. The Cinemachine system created smooth transitions between these 
cameras. 

5.5.2 Camera Issues 
Some cameras required parts of the level to be hidden in order to avoid obscuring their 

view of the players. This problem was solved by separating the wall meshes from the rest of the 
rooms, and testing if a line from the camera to each player character intersects with each wall. If 
this test returns true, the wall is hidden. However, some issues of player visibility still arose with 
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the cameras. In particular, having any one player able to change the active camera by moving to 
another room was jarring, and caused the camera to lose focus on the majority of players. The 
issue was fixed by adjusting the camera to transition only when the majority of players enter a 
new room. 

5.6 Tutorial 
With a building system implemented for the VR player, it was necessary to teach them 

how to use it. Additionally, the controller players would need to be taught what challenges they 
might encounter in the level and how to deal with them. Due to the complex nature of the game, 
it would be ineffective to convey this information in a single screen. Furthermore, the nature of 
the game as a party game means that any number of players may be inexperienced, and that time 
spent teaching the mechanics should be minimized. 

5.6.1 VR Tutorial 
To accomplish this, an in-game tutorial was created that limits the VR player to building 

a specific sequence of map sections. This solution allows the VR player to observe what each 
section does, while also enabling the controller players to experience them one at a time in an 
order that makes sense. The tutorial works by creating one item at a time, and showing an 
on-screen text hint for the VR player to pick it up, as seen in Figure 5.6.1a. 

  

 
Figure 5.6.1a: VR Player Text Hint 
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Once they do so, the hint moves to show where they can place the object. Some sections 
require additional input, such as shaking a room to change its type, or interacting with a lever to 
control a trap. Instructions for these actions are also shown as text hints. 

After testing this system with users, some minor adjustments were made. It was found 
that the text hints were not noticeable enough, so they were made more evident by adding arrows 
pointing towards them when they were out of view. It was also hard for the VR player to judge 
how far away they were from the hint’s location. This was improved by adding a line from the 
ground directly up to the text hint, so that the VR player could determine its position based on 
the floor. Additionally, a phone ringing sound was attached to the text hints, to aid the VR player 
in locating these hints when looking away from them. 

5.6.2 Controller Player Tutorial 
For the controller player tutorial, a button was added in the starting room, along with a 

text prompt for the first player to jump on the button. Each time it is jumped on, the button 
changes the displayed text to tell the player about one of their abilities, including a basic 
description and what button to press. This button is shown in the Design chapter in Figure 3.7a. 
More thorough descriptions of the abilities can be found on the character selection for players 
interested in learning more, but for players who pick a character at random and do not want to 
read about the abilities, the tutorial provides a basic overview of the use of each ability. 

5.7 Audio System 
While Unity makes it easy to show different viewpoints on the computer display and VR 

headset, it does not provide a way to create separate audio outputs. SteamVR has an option to 
mirror audio to a second device, but that was insufficient for the needs of this project. Instead, an 
entirely separate audio channel was needed to play sounds relevant to the controller players 
through speakers, while the VR player would hear sounds relevant to them through headphones. 

5.7.1 Initial Implementation 
To solve this, it was determined that a third-party audio library would be needed, since 

Unity’s audio system would not provide the needed functionality. However, the built-in audio 
system does have the advantage of handling 3D spatialization and attenuation, features which are 
very important for VR immersion. Therefore, it was determined that the best solution would be 
to use the built-in audio system for the VR player and another audio library to play sounds for 
the controller players. This setup is shown in Figure 5.7.1a. 
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Figure 5.7.1a: Complete Multi-Output Audio System 

 
 Since the controller players use a shared third-person camera, spatialized audio was 

unnecessary in this system. For the external library, NAudio was chosen, as it allows the 
programmer to list available audio devices and select between them. These devices are presented 
to the controller players as a dropdown the first time they launch the game, after which their 
selection is saved. The major challenge in using this system was providing it with sound data in a 
format it could play. Since Unity stores audio files in a proprietary format, NAudio could not 
play these directly. One solution would be to distribute the sound files with the game in a 
standard format, but that would lead to unnecessary duplication of files played on both systems. 
Instead, the team created an adaptor that could read Unity’s audio assets and convert them to the 
format expected by NAudio. 

5.7.2 Refinements 
After initial creation, there were several improvements made to this system. Firstly, while 

the initial version only offered an interface to play a sound given one of Unity’s audio assets, a 
better interface was developed to mimic the one used by Unity. This interface involves 
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AudioSource2D components which automatically play a sound on the 2D audio system, and stop 
playing it when the level changes or the object is destroyed. A further refinement added 
attenuation based on distance from an AudioListener2D component. Later in development, it was 
found that rapidly playing many sounds using this system led to significant performance loss. 
The cause of this was the adaptor, which must copy the sound data from the Unity asset in order 
to use it in another thread. While there is no way to avoid this copying, the performance loss was 
improved by caching the copied data in a dictionary keyed by the Unity sound asset, to be reused 
every time that sound is played. 
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6. Audio 
This section describes the procurement of all sounds necessary for the game. Section 6.1 

provides an overview of the chapter, including overall design considerations and required 
sounds. Sections 6.2 and 6.3 describe the aesthetic and inspirations, respectively. Section 6.4 lists 
all tools used in audio production. All sounds created for the game fit into three categories: 
sound effects (Section 6.5), music (Section 6.6), and voiceovers (Section 6.7). 

6.1 Overview 
The job of the audio designer is to create or obtain any sounds that will help enhance the 

game currently being developed. In this game, sounds are used primarily for immersion and 
feedback. Looking closely at the artistic and technical sides of the game helped to decide on 
what sound would work best for each object, character, or environment, and changes were made 
based on player feedback or the needs of the game team.  

Two audio pillars were used when constructing the sound library for this game: aesthetic 
and features and systems. Audio aesthetic simplifies the theme and features of the game to a 
handful of descriptors, allowing for more focus for creating thematically similar sounds. Audio 
features and systems consist of the tools and workflows used to craft the sounds and any third 
party software used during development.  

The team required sound effects for the many character actions of the controller players 
like punching, shooting and jumping as well as any character interactions between the enemy 
and controller characters and between the VR player and the environment. Original music was 
also needed to craft a unique atmosphere for the game’s environment as well as to take 
advantage of the asymmetrical audio system.  

 

6.2 Audio Aesthetic 
 The basic description of ​Babies & Basilisks​ is “an asymmetric virtual reality party game 

for the HTC Vive that requires a VR player to build a maze and place traps and enemies that the 
controller players must then navigate and attempt to survive.” From this description, several 
features can be extracted. The use of “party” indicates co-op gameplay which requires local 
functionality and mixing refinement for multiple sounds playing at once. The aesthetic of the 
game conveyed through words such as “babies,” “basilisks,” “maze,” and “traps,” is fantasy 
mixed with reality, with fantastical objects and scenarios being placed within a real-life setting. 
Sound design was constructed around this aesthetic, and by layering sounds together, everyday 
objects had a more fantasized tone. The game mechanics for the controller players are geared 
toward action-based gameplay, meaning sounds for character interactions, enemies, weapons, 
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and abilities are vital. Due to the asymmetric nature of the game, with separate mechanics for the 
VR and controller players, different sound environments had to be created for these two different 
experiences.  

6.3 Audio Inspiration 

6.3.1 Mario Party 

 
Figure 6.3.1a: In-game graphics for Super Mario Party (2018) [21]  

 
Mario Party [21]​, in-game graphics shown in Figure 6.3.1a, is local multiplayer party 

game featuring the main Nintendo mascot Mario.​ Mario Party​ takes the form of a traditional 
board game with players taking turns to roll dice to move across a number of spaces on the board 
corresponding to the number that they roll. The ​Mario Party​ series in conjunction with its bright 
and colorful visuals has a fun and excited tone to its sound effects. Simple actions like passing a 
ball as shown in Figure 6.3.1a would sound like a small whiff of air in real life, but in ​Mario 
Party​, the sound effect is exaggerated and sounds like something that would be heard in a 
cartoon when a character slips on a banana. This sound design puts the player into a happy 
mindset and immerses them into the party theme of ​Mario Party​. The team emulated this sound 
design style for the sound effects of ​Babies & Basilisks​ by making the audio cartoon-like and fun 
to fit the bright and colorful aesthetic of the environment and characters.  
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6.3.2 The Elder Scrolls V: Skyrim 

 
Figure 6.3.2a: In-game graphics for Orcish dungeon in Skyrim (2011) [22]  

 
The Elder Scrolls V: Skyrim ​[22], shown in Figure 6.3.2a, is an action role-playing game 

where the player spends most of their time traversing through dungeons and completing quests. 
Most of the music for the dungeon crawling sections of ​Skyrim​ are melancholy to immerse the 
player in the situation of traversing a perilous tomb with no way. The team wanted to design the 
controller players’ audio around the dark and gritty backing tracks of ​Skyrim​ to fit the maze 
crawling aesthetic of the controller player characters in ​Babies & Basilisks. ​This choice was a 
major contrast to the sound design for ​Mario Party​ as ​Babies & Basilisks ​while also an enjoyable 
party game is also a dungeon crawler so using both sides of the spectrum emotional spectrum 
was necessary for the team’s asymmetrical game.   

6.4 Audio Tools 
As referenced in the overview for the sound effects and music several programs were 

used to generate the audio library for the game. Most sounds were downloaded from 
freesound.org​ and edited in ​Audacity​ or ​Adobe Audition​. Voice-lines were recorded and edited in 
Adobe Audition​. Music was developed in ​hookpad​ and moved over to ​Garageband​ to attach 
digital instruments to midi files for higher-quality sound. 
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6.5 Sound Effects 
The sounds are broken up into five categories: controller-player ability sounds, block 

connecting sounds, damage sounds, death sounds, and UI sounds. Most of the sounds in the 
game were initially sourced from ​freesound.org,​ a website where anyone can download free 
sound assets for any purpose. However, the voice lines required original recordings. The process 
of making sounds consisted of downloading the original files from freesound, editing them inside 
a DAW (Digital Audio Workstation), and layering and applying effects to them to make a unique 
sound and for mixing and mastering purposes. Some effects that were applied to these sounds 
were the multiband compressor, Fast Fourier Transform (FFT) filter, and pitch shift. The 
multiband compressor, as shown in Figure 6.5a, was used to separate tracks into different 
frequency ranges and compress them independently to eliminate any abnormalities like random 
booms or pops.  

 

 
Figure 6.5a: Multiband Compressor 
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Figure 6.5b: FFT (Fast Fourier Transform) Filter 

The FFT filter as shown in Figure 6.5b above was used for more precise equalization of 
the audio, as well as bringing out a deeper tone in voice lines by lowering the frequency. 

Figure 6.5c: Pitch Shifter 
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Along with the FFT filter, pitch shifting, as shown in Figure 6.5c, was used to bring out 

more precise frequencies for higher or lower tones for the voice lines. This effect was right to use 
since some of the recorded lines might not have been deep enough to fit the aesthetic of the 
character they were used for. 

Once the sounds were created, they were implemented into the game as a sound cue for 
an Audio Source. The secondary audio system separates the sound channels for both the VR 
player and the controller player, meaning that what the VR player hears on their headphones will 
not be heard by the controller player’s speakers (this system is described in more detail in the 
Technical Implementation: Audio System section, page 52). Leveraging this system, two 
different sound asset libraries were created, allowing for asymmetrical audio. Each sound was 
auditioned and approved by the team before implementation was finalized.  

6.6 Music 
The game has an original soundtrack which was developed mainly in hookpad and 

polished in garageband. The first step was to choose the instruments as shown in Figure 6.6a. 

 
Figure 6.6a: Instruments 

 
Once the instruments were chosen, the individual MIDI tracks were mapped to their 

instrument, and effects like reverb and panning were applied, as well as adding compression and 
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amplification parameters to raise and lower the volume at specific parts of the track. An example 
of these effects being applied in Garageband can be seen in Figure 6.6b. 

 

 
Figure 6.6b: Effects 

 
Two main themes were created to take advantage of the asymmetrical audio system. The 

controller player’s backing track is a dungeon crawling theme which gives off the atmosphere of 
a dark and melancholy experience as the players traverse the maze set up by the VR player. This 
theme was set in a minor key, which is a signature mostly used for sad tones as seen in Figure 
6.6c.  

 
Figure 6.6c: Controller Player Theme 

67 



 
The VR player’s backing track was more upbeat and fun to reflect the feeling of playing 

with toys in a child’s room. The warm feeling of the theme was inspired by the Katrina and the 
Waves’ song “Walking on Sunshine” [19]. The chord progression is the same as “Walking on 
Sunshine” but the melody is wholly original as seen in Figure 6.6d: 

 

  
Figure 6.6d: VR Player Theme 

 
The boss theme was made to be more bright and rhythmic so that the players would keep 

up their high energy while fighting. Synthesizers were the main instrument for the music while 
bass drums developed a deep sound for the beat.  

6.7 Voice Acting 
Voice lines were instrumental in adding more originality to the game’s characters. The 

voice acting was performed by Christine Flores, who voiced Tess, and Justin Harris, who voiced 
Amos and Doctor Bear. Before recording could begin, a dialog script was written and approved 
by the team. Once the script was approved, the voice actors were scheduled to meet and record 
their voice lines together. It was easier to record on a tight timeline if the voice actors were 
together rather than recording separately. Once the voice actors read over the script, the team’s 
audio designer, taking the role of voice-over director, gave direction on how the lines should be 
read, so the actors knew what emotion should be evoked and how to articulate it. Initially, the 
voice actor for Doctor Bear was asked to speak with a German accent, which he was unable to 
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do. In order to work around the strengths and weaknesses of the voice actor, the voice was 
changed to have an Australian accent, which he could more effectively mimic.  

7. Testing 
Throughout the development process, the team performed playtesting at several 

occasions to determine if the overall experience was satisfying, and to find which elements of the 
game needed the most improvement. Playtesting included the IMGD-sponsored AlphaFest event 
(section 7.1), as well as several sessions conducted in IMGD design classes (sections 7.2 and 
7.3). All playtest sessions concluded with a survey, enabling players to provide anonymous 
feedback. The game was also demonstrated at WPI’s PAX East booth, gathering informal 
qualitative data (section 7.4). 

7.1 AlphaFest 

 
Figure 7.1a: AlphaFest Playtesting 

 
AlphaFest is an event hosted by the WPI IMGD department in which students can show 

their games-in-progress to other game developers, or anyone who is interested. As seen in Figure 
7.1a, AlphaFest provided a great time to playtest our project with new faces. The team 
participated in the AlphaFest event held on Friday, November 16, 2018. At this time, the game 
was in an alpha stage, with basic, empty hallways the VR player could place, and preliminary 
versions of all rooms and enemies working. The enemies and controller players did have models, 
but only one controller player was rigged and animated. All other objects were placeholders. 
Since the game was still early in development and had not been tested by anyone outside of the 
team, Alphafest was a valuable opportunity to get feedback from players who did not know 
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anything about the game. The team administered two surveys: one for the VR player and one for 
the controller players, to help collect feedback after they had played the game. The full surveys 
are located in Appendices D and E. Testers who played as both the VR player and a controller 
player filled out both surveys. 

AlphaFest testing took place in the Foisie 221 Global Lab room, in which the team had 
previously developed the game. This meant that the team was able to make sure the game would 
work as expected on the machines prior to the event. However, while this location provided a 
large screen for the controller players to look at and plenty of room for the VR player to 
maneuver, it was across the floor from the other AlphaFest games and away from foot traffic, 
reducing the number of potential testers. To combat this, the team created posters advertising the 
game and where to find it, and placed them around the floor when AlphaFest began. When this 
proved ineffective, members of the team went to the main gathering of AlphaFest to find and 
bring interested parties to the game. In total, the team received 12 survey responses for the 
controller players and 6 for the VR player. 

7.1.1 Questions and Expectations 
The surveys were designed to gather feedback on specific parts of the game, in order to 

provide insight into whether these elements needed to be changed. The controller player survey 
was ten questions, with nine Likert scale answers requiring a rating of 1-4 and one optional short 
answer. The VR player survey was also ten questions, with three optional short answer questions 
and seven Likert scales. For the VR player, the primary goal of the survey was to determine if 
the controls for building the maze and controlling the boss were intuitive, and if there was 
enough time to build the maze with the controller players actively moving through it. The main 
goals for the controller player survey were to see if the characters were simple to control, gauge 
how difficult the enemy encounters were, and gather feedback on the current camera 
implementation. 

It was expected that the VR player would not have enough time to build the maze, as the 
team already planned to give the VR player a head start. This had not been implemented for 
AlphaFest, however, in order to determine if it was truly necessary. Given the team members’ 
own experiences with the controls, it was expected that players would find the controls to be 
intuitive overall, but they might have difficulty figuring out how to turn the dial to change the 
room type. For the controller players, the team expected that they would not find the maze 
difficult to navigate, partially because of the expectation that the VR player would not have 
enough time to build the maze before the controller players could explore it. It was anticipated 
that  the controller players would find the combat fairly simple, as the enemy behaviors were not 
polished and the health amounts of the characters and enemies were not fully balanced; however, 
it was unclear if the players would feel they had enough space to fight in. Finally, the team 
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expected that some players may take issue with the frequent movement of the camera, but that 
overall they would find it acceptable. 

7.1.2 VR Response Results 
The VR player surveys, although few, provided a clear idea of which controls were and 

were not working for the game in its current implementation. 
 

 
Figure 7.1.2a: How intuitive was it to pick up and place objects, from 1=Easy to 4=Difficult? 

 

  
Figure 7.1.2b: How Intuitive was it to set the room type, from 1=Easy to 4=Difficult? 

  
As seen in Figure 7.1.2a and 7.1.2b, most players found it easy to move and place objects 

in general, but it was more difficult for them to set the room type. Although Figure 7.1.2b does 
not indicate that any VR players had significant difficulty setting the room type, during 
AlphaFest most people had difficulty understanding that the room types could be set and how to 
turn the dial, even after having it explained. Ideally, these two figures would have results of 
mostly ones (easy), with a few twos. From this feedback, it was clear that a tutorial at the 
beginning was necessary to teach players how to interact with the game. 
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Figure 7.1.2c: How intuitive was it to control the boss, from 1=Easy to 4=Difficult? 
  
While VR players did not think the game’s maze-building controls were very difficult, 

the boss controls were exceedingly difficult for them. Figure 7.1.2c shows how players rated the 
ease of control for the boss, with four being difficult to control and one being easy to control. 
Every player found the boss difficult to control, with only one person not rating it at a four. Part 
of this issue could have arisen from the boss having to rotate before moving, which made it slow 
and clunky, as well as the lack of visual indicators on the buttons showing what the attacks were. 
Further, the controller players were quick and could easily stay out of range of attacks, and 
characters with ranged attacks were almost impossible for the boss to attack. Potential solutions 
to this included changing the existing UI to have these icons and designing a boss that would not 
have to rotate before moving. Ultimately, a completely different version of the boss fight was 
developed, as described in the Design chapter in section 3.5.2. Related to the difficulty of the 
boss, the team observed during AlphaFest that many VR players were unaware of when the boss 
fight started, and some only reached the boss controls as the boss was being destroyed by the 
controller players. The final design of the boss fight resolved this issue by putting the player 
directly into the location of the boss, leaving no ambiguity that the fight had begun. 
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Figure 7.1.2d: How well could you keep track of the controller players, from 1=Could not find 

them to 4=Could always find them? 
  

 
Figure 7.1.2e: Did you have enough time to both build the maze and monitor the players, from 

1=No time to 4=More than enough time? 
  
Figures 7.1.2d and 7.1.2e show results for how well the VR player could keep track of 

controller players in the maze and if they felt they had enough time to do so, respectively. The 
results of Figure 7.1.2d varied, but no players reported they could not find the controller players 
when they wanted to. This was perhaps due to a lack of incentive for the VR player to watch the 
controller players, indicating that the game should include more ways for the VR player to 
directly interact with the controller players. This was later improved by adding traps that the VR 
player can control when the players move through certain portions of the maze. Figure 7.1.2e 
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shows, as expected, that most players felt there was not enough time to watch the players. 
Ideally, this question would have received mostly threes and fours, indicating that the player was 
not only able to create the maze but also observe the players. This lack of time likely contributed 
to the varied responses in Figure 7.1.2d, as players could have been more focused on keeping the 
maze growing rather than watching the controller players. As anticipated, the VR player did need 
more time to begin building the maze before the controller players reached it. One change to give 
the player more time to build the maze was the addition of challenge hallways with a fixed-rate 
moving camera, so the controller players would not be able to rush through the hall before the 
VR player had the next room ready. 

 

 
Figure 7.1.2f: How much did you have to move while playing, from 1=Stationary to 4=Mobile? 

  
Figure 7.1.2f shows the responses to how often the players have to move, with one being 

stationary and four being constantly mobile. Most people rated their motion at a 2, and some 
specified in the general comments that they did not have to make use of the teleporting 
mechanism. While this result was ideal, it was likely influenced by the large space afforded by 
the demonstration area. Regardless, this is the answer the team was hoping to receive, indicating 
that the spacing of elements for the VR player was adequate for users to interact well with. 

The VR player survey included three short-response questions, asking about their most 
frequent activities (such as watching VR players or building the maze), what goal they had when 
building the maze (such as making a fun maze or trying to destroy the controller players), and 
general comments (discussed in the Shared Questions Responses section). These questions were 
optional, but all of the VR players provided responses to the two VR-specific questions. 
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For the question of the VR player’s primary activity, all players answered with one of the 
same three options: building the maze, placing enemies, or both. The results are summarized in 
Figure 7.1.2g below. 

 

 
Figure 7.1.2g: What were the VR players’ primary activities? 

  
The responses indicated in Figure 7.1.2g were similar to what the group expected. While 

half of respondents were both building and placing enemies, some concentrated mainly on 
building, while one was mainly focused on placing enemies. Combined with the feedback about 
VR players not having enough time to build the maze, it was not surprising that no other types of 
activities, such as watching the controller players, appeared in the feedback. While this feedback 
reflected what the team wanted VR players to be doing, it was also desired that the VR players 
should interact with the controller players more. Because of this, it was determined that there 
should be more ways for the player to interact with the controller players, such as manually 
operated traps. 

The question of the VR player’s goal, and if they felt there was enough of a goal provided 
from the game, obtained responses too varied to represent in a graph. Players generally indicated 
that they were confused by the lack of goal, and one commented that it was unclear “because 
there are so many things happening” for the VR player to keep track of. Some said their goal was 
to “be the game master and set up the dungeon” or “make fun for players”, and others only 
wanted to make the maze overly challenging. From this feedback, the team found that while 
players indicated confusion, most of them did mention the intended goals of presenting 
challenges and creating a dungeon. However, since there was blatant confusion, the team decided 
that it would need to make the goal much clearer, utilizing the idea of a tutorial decided upon 
earlier to explain what the VR player should be doing. 
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7.1.3 Controller Response Results 
For the controller players, the responses received by the surveys gave the team a clear 

understanding about what was and was not working well in this portion of the game. 
  

 
Figure 7.1.3a: Which character did you play as? 

  
Figure 7.1.3a shows which characters players picked. Most players played multiple times, 

and were instructed to answer based on the character they enjoyed most of the ones they played 
as. Overall, most players seemed to choose Amos the Cowboy (simply referred to as “Cowboy” 
at the time of AlphaFest) or Dr. Bear. Ideally, there would be an even spread of responses here, 
and the team determined that providing information in the character selection menu about how 
many characters there were to choose from, as well as what each character did, would help avoid 
players choosing whichever character “looked coolest” to them, or simply picking the earliest 
character in the list. This data was also used to gain more nuanced feedback in the questions 
asking about character controls, discussed next. 
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Figure 7.1.3b: How difficult was it to use abilities effectively for the character you played as, 

with 1=Easy to use and 4=Difficult to use? 
  
Figure 7.1.3b rates the difficulty of using characters’ abilities. Lower ratings indicate the 

abilities were easier to use, and higher ratings indicate the abilities were more difficult to use. 
Overall, most players found it somewhat easy to use the abilities, although several players asked 
for clarification on what abilities’ effects were during AlphaFest. The results also indicate that 
the Cowboy’s abilities were the easiest to use, with the four Cowboy players evenly divided 
between selecting 1 and 2 for the difficulty, and the only ratings of 1 belonging to the Cowboy. 
Dr. Bear also appeared to be somewhat easy to use, with three of the four responses rating the 
difficulty at 2 and only one person rating it at 3. Since only one player reported using Tess, it 
was difficult to draw conclusions on her abilities without more feedback. The Kangaroo, 
however, seemed to be the most difficult to use, with one of the Kangaroo players rating the 
difficulty at 4, which none of the other characters received, and another at 3. The team decided 
that while the other characters’ abilities could remain mostly the same, the Kangaroo would need 
more work polishing its abilities so they would be easier for players to use and understand. 
Another conclusion drawn from this question was that animations and particle effects would help 
greatly in players’ understanding of the abilities they were using. Of the characters, only the 
Cowboy had visible effects for all of his attacks, which could be linked to why he was 
considered the easiest to use. In order to reduce this difficulty, the team planned to provide brief 
descriptions of character abilities from the character selection menu. 
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Figure 7.1.3c: How difficult was it to avoid getting damaged, from 1=Easy to 4=Difficult? 

 

 
Figure 7.1.3d: Did you have enough space to move around and fight, from 1=Not enough space 

to 4=Lots of space? 
  
Figures 7.1.3c and 7.1.3d show how well players were able to maneuver in fights. Figure 

7.1.3c displays how difficult it was for players to avoid getting damaged by enemies, with 1 
being easy to avoid and 4 being difficult to avoid. The ideal response for this question would 
have been mostly 3s, so players would get hit frequently but be able to dodge attacks some of the 
time. Instead the responses received mostly 2s. From this, it was decided that the enemy AI 
should be tweaked to be more challenging, but also that, similar to player abilities, the enemy 
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animations would be necessary to help the players understand what each enemy could do and 
where it was attacking. Figure 7.1.3d indicates whether players felt there was enough space to 
move around and fight. While players were expected to not have enough room, the 
overwhelming rating was that there was quite a bit of space for them to fight, with most ratings 
being a 3. This was the ideal answer, so the team decided that the space-to-character scale was 
adequate and did not need to be changed. 

  

 
Figure 7.1.3e: Room preference for enemy encounters: elevator rooms or smaller rooms? 

  
The survey also asked players if they preferred their enemy encounters in the larger 

“elevator” rooms (named such because of the elevator bringing players into the room from a 
smaller room) or the generic smaller room. The team hoped that most would prefer the elevator 
rooms, since they were already implemented and provided the players with more space to move, 
but the question was asked to avoid the team assuming the elevator element was better simply 
because it required more programming to implement. The players, in general, did prefer the 
elevator rooms, as seen in Figure 7.1.3e, with three times as many players preferring the elevator 
rooms to smaller rooms. A few players did not go into an elevator room, although that was due to 
the VR player not placing any elevator rooms with enemies in them, most likely because the VR 
controls for room selection were unclear. From these results, the team was able to conclude that 
the elevator rooms were worth including in the game and added to the enjoyment of the game 
rather than subtracting from it. 
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Figure 7.1.3f: How confusing was it to navigate the maze, from 1=Easy to 4=Very confusing? 

  
Figure 7.1.3f shows the responses for how difficult it was to navigate the maze, with one 

being easy to navigate and four being quite confusing. While the ideal response would have been 
3s and 4s, only one player found it that difficult. This was probably due in part to the VR player 
not having time to begin building the maze before the controller players entered it. Although 
adding a delay before the players entered would have possibly solved this issue in part, the team 
decided that the significant challenge should come from completing individual maze sections, 
rather than a confusing layout. This was accomplished in part by adding hallways with traps and 
platforming challenges, as opposed to only having connectors without any challenging content. 
This shift in focus enabled the game to be simpler for the VR player, as they could create a 
linear, challenging “maze,” or have actual differing paths, without feeling pressure to create a 
complex layout which players may not fully explore. 
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Figure 7.1.3g: Were the cameras effective, from 1=Could not see well to 4=Could see 

everything? 
  
One major concern was how players would feel about the cameras, which moved and 

rotated based on which piece of the maze most of the characters were occupying. This could 
result in some sharp movements when players rounded right-angle corners. During AlphaFest, 
the team noticed several camera issues, such as hiding players behind multiple walls. Figure 
7.1.3g summarizes the results of player opinion on the camera, with a rating of 1 meaning the 
camera was ineffective, and a rating of 4 meaning they could see everything they wanted to. The 
results confirmed that significant improvement was needed, with eight of the twelve respondents 
rating the system at a 2. Because of this, the team reconsidered how the camera could operate. A 
strictly top-down camera was not desired, as this would provide a far less interesting view. 
Eventually, it was decided to keep the camera’s side-view position and instead change the 
hallways themselves to be composed of curves, which would allow the camera to rotate more 
smoothly and avoid harsh rotations from right-angle corners. 

The survey also asked for opinions on how well the current sound effects were working 
for the game. This question was not asked to the VR player since there were not many VR sound 
effects implemented yet. 
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Figure 7.1.3h: Were the sound effects satisfying, from 1=Hate the sounds to 4=Love the sounds? 
 

As indicated by Figure 7.1.3h, the responses were split, with a third of respondents giving 
a rating of 2, although a majority rated the sounds positively, with a 3 or 4. From this, the team 
determined that the sound design was effective, but that some sounds would perhaps need more 
polish. 

7.1.4 Shared Question Responses 
Both the controller and VR players were asked about the music of the game, and for 

general comments. While the music question was mandatory, for an accurate rating, the players 
had to hear the music in order to respond well. However, due to a bug in the audio system code, 
the output device had to be set with every game, and in some instances this was forgotten. While 
most players stayed for multiple rounds and were able to play at least one game with sound, two 
players indicated in their comments that they had not heard any sound. Those two responses 
were omitted from the results, for a total of sixteen responses for the question. 
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Figure 7.1.4a: Was the music satisfying, from 1=Hate it to 4=Love it? 

 
Figure 7.1.4a shows the results of the responses. Most players found the music 

acceptable, with three players loving the music and three others feeling dissatisfied with it. Since 
music is subjective and players have different individual opinions, the team considered the 
thirteen positive responses indicative that the music was working well with the game. 

The short-answer comments for both surveys were optional, and twelve out of the total 
eighteen responses included comments, with four of the responses from VR players and eight 
from controller players. These comments generally reinforced conclusions drawn from the rest of 
the information in the responses. Some comments reiterated conclusions drawn from the 
multiple-choice questions, such as mentioning jarring camera transitions, a desire for character 
ability descriptions, and confusion around boss controls. Recurring comments also mentioned 
vague goals and lack of direction for the VR player, and a need for extra time for the VR player 
to set up the maze. Despite these issues, comments were positive overall and players seemed to 
enjoy playing the game, with one player even commenting they would “love to see more of it in 
the future.” 

7.2 IMGD 2900 
The next set of playtesting was conducted with the students of Professor Moriarty’s 

Digital Game Design I class in C-Term. 25-minute long playtesting sessions were held, with four 
to five students present for each session. These sessions took place on February 20 and 25​ ​, 2019, 
in the same location as AlphaFest’s playtesting. While intermittent loss of the HTC Vive’s 
tracking hindered the VR player’s ability to interact with the game, the team was still able to 
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collect feedback from select portions of the game. Overall, there were 19 controller player 
responses and 7 VR player responses. 

7.2.1 Controller Player Responses 

 
Figure 7.2.1a: How easy it was for players to navigate the maze, with 1 = difficult and 4 = easy. 

 
Figure 7.2.1a shows the difficulty of navigating the maze, with a rating of 1 being 

difficult and 4 being easy. Most players gave the maze a medium to hard rating. This data 
suggested that the new platforming hallways added localized challenge without increasing 
overall difficulty. These values fit with the team’s expected values for the new design of the 
maze, indicating that the platforming hallways effectively provided more challenge for the 
players. 
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Figure 7.2.1b: How easy it was to see with the camera, with 1 = difficult, 4 = easy 
 
As shown in Figure 7.2.1b, players also rated the effectiveness of the camera, with a 

rating of 1 being difficult to see and a rating of 4 being easy to see what they wanted. Players 
still found the camera system difficult, and reported specific problems including the camera 
following the first person to move into a new room, as well as continuing to track players even 
after they had fallen or died. These issues were taken into consideration and remedied by the 
team. 
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Figure 7.2.1c: How easy it was to use the characters’ abilities, 1 = difficult, 4 = easy 
 
This round of playtesting also saw a change in the ease of use for character abilities, as 

seen in Figure 7.2.1c. Ratings of 1 represented difficulty in controlling the players’ abilities, 
while 4 indicated it was easy. While Dr. Bear’s rating stayed largely similar in rating, leaning 
towards easy, players using Amos seemed to find him harder to use than at AlphaFest. In the 
general comments, players explained that they felt the aiming for this character seemed slightly 
off compared to the others. The difficulty of using Tess seemed to be evenly split, while the 
Kangaroo’s ratings showed a small improvement. Overall, difficulty ratings leaned slightly 
towards difficult. 

Answers to open-response questions were consistent with notes gathered from verbal 
feedback during playtesting. The most common response was that players desired more visual 
and auditory feedback for damage dealt and taken. A few players commented on the camera 
system, suggesting a split-screen camera, or that the camera followed the majority of players 
rather than the first player to enter a new room. This latter recommendation was ultimately 
implemented into the game. 
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7.2.2 VR Player Responses 

 
Figure 7.2.2a: How difficult players found controlling the boss, 4 = easy, 1 = difficult 

 
Figure 7.2.2a shows players’ ratings of how easy the new boss implementation was to 

control, with a rating of 1 being difficult and a rating of 4 being easy. At the time, there was no 
tutorial to teach the controls of the boss to the VR player. While still difficult, results were more 
evenly split between a 1 and a 2 than AlphaFest’s overwhelming consensus of maximum 
difficulty. 

There were very few comments for the open-response questions. One player stated that 
they were “waiting for levels to appear”, indicating that either they did not notice when the next 
piece of the tutorial had appeared, or that the controller players could not traverse the tutorial 
maze as quickly as the VR player was building it. Of the players who reached the boss stage 
(some were unable due to VR tracking losses, requiring a restart of the game), some mentioned 
the desire for mobility options as the boss. The team decided this feature would be worthwhile to 
implement into the game, as it would provide more versatility when fighting the controller 
players. 

7.3 IMGD 3900 
The final formal playtesting session was conducted with Professor Moriarty’s Digital 

Game Design II class during D-Term. Unlike previous sessions, this was performed in an empty 
room on a VR-capable laptop. Overall, there were 10 controller player responses and 4 VR 
player responses. 
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7.3.1 Controller Player Responses 

 
Figure 7.3.1a: How easy it was to see with the camera, with 1 = difficult, 4 = easy 
 
Despite previous improvements, players still found the cameras difficult to use, as seen in 

Figure 7.3.1a. During playtesting, several bugs were discovered, such as incorrect camera 
transitions and characters respawning outside the camera’s view. These issues could have 
contributed to the poor ratings of the camera’s effectiveness. 
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Figure 7.3.1b: How difficult the players found the character abilities, 1 = difficult, 4 = easy 
 
In this playtesting session, players found the controller players generally easier to use, as 

seen in Figure 7.3.1b. Interestingly, most players reported using the Kangaroo, and that it was 
easy to use. With few changes having been made to character abilities, this seemingly 
contradictory result was perhaps due to the audience finding the Kangaroo’s fighting style easier 
to use than previous players had. 

In the open response sections, testers commented that the effects of abilities were still 
unclear, despite the addition of icons to represent the attacks. Players also included positive 
feedback for the new self-revive mechanic, as well as indicating that waiting for the VR player to 
build the next section of the maze was rather boring. 
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7.3.2 VR Player Responses 

 
Figure 7.3.2a: Rating of VR player’s time spent, 1 = building, 4 = watching controller players 

 
As seen in Figure 7.3.2a, VR players indicated whether they spent more time  building 

the maze or watching the controller players move through it. Since all players used the tutorial, 
which contained one point at which the VR player was given no more pieces to place until the 
controller players reached the boss room. This resulted in several long waits while controller 
players fought through enemy combat rooms to catch up to where the VR player had placed the 
boss room. Overall, players spent more time watching the players than they did building the 
maze, exactly the opposite of earlier feedback. This was likely due to enemies now spawning 
automatically in rooms when players entered, rather than having to be individually placed by the 
VR player. In a non-tutorial setting, the VR player would have been able to continue building the 
maze if they desired, suggesting that the automatically spawning enemies were effective in 
giving the VR player additional time to build the maze ahead of the controller players. 

Due to the small number of VR player survey responses, not many open-ended comments 
were received. Most prominently, players expressed confusion over learning that enemies 
spawned automatically in rooms, as well as explaining that they were confused as to what their 
attacks were during the boss fight. A tutorial for the attacks existed at this point, but the 
on-screen hints were set to follow the position of the controller players, making them unreadable 
when these players moved quickly. The team remedied this issue by having the instructions track 
the VR player’s head rotation instead. 
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7.3.3 Critique Comments and Observations 
One major issue that arose during this playtest session was the ability to create impossible 

levels. This occurred when the VR player placed the goal room before the start of a challenge 
hallway. Since the platforms of challenge hallways collapse as players move through them, it 
was then impossible for players to travel back and reach the goal room. This problem was fixed 
by adding a floor to challenge hallways, which only appears after they have been completed. 
This change allows the controller players to backtrack to any part of the level. Furthermore, it 
addresses a separate issue where controller players did not have enough room to stand upon 
completing a hallway. 

It was also noticed that the VR player was able to push controller players and enemies 
around using their head. This issue was caused by a head collider included in the SteamVR 
interaction system, which was changed to be non-solid to fix the issue. However, it was also 
commented that something like this could actually improve the game, as it would allow the VR 
player to interact more with the controller players. While no such system was implemented, 
discussion of what it might involve can be found in the Future Work section. 

Finally, it was occasionally difficult for both controller and VR players to keep track of 
where the controller player characters were. This was especially problematic in combat rooms, 
where some enemy characters are visually similar to controller players (such as the Kangaroo 
character and Wallaby enemy). To resolve this issue, and help the VR player to quickly find the 
controller players, a semi-transparent arrow was attached to the feet of all controller players. This 
arrow is always drawn on top of all other geometry, so that it can be seen through walls. 

7.4 PAX East WPI Booth 
One final opportunity the team had for playtesting was at the PAX East event in Boston 

as seen in Figure 7.4a. The event lasted for four days (March 28 - 31, 2019), and team members 
took shifts demonstrating ​Babies & Basilisks​ at WPI’s booth. Due to the fast-paced nature of the 
event and infeasibility of collecting informed consent forms, no survey was administered, and 
therefore no quantitative data could be collected. However, the booth had a near-constant stream 
of visitors, and many observations and comments were recorded in order to make final 
improvements to the game.  
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Figure 7.4a: Babies & Basilisks at the PAX East WPI booth 

7.4.1 Bugs 
The most severe bug encountered at PAX was the boss fight starting prematurely. This 

bug usually occurred when controller players were fighting enemies in the large combat arena. 
When the boss room spawned on the shelf, but before the VR player could even place it, the 
players would be teleported to the boss arena, and the boss fight would begin. However, because 
the controller players would not have completed the combat arena, the camera would stay fixed 
on their previous location, preventing them from actually fighting the boss. 

Another bug that occurred frequently at PAX was players falling out of a hallway, and 
instead of respawning at the end, they would continuously fall to the floor and take damage. If a 
solo player fell out of a hallway, the camera would additionally follow their fall instead of 
remaining in the hallway as it should have. Enemies also had a falling-related bug, where they 
would fall from a room, either by glitching through the falls and floor, or by being 
unintentionally pushed by the VR player. Since enemy encounters could not be completed until 
all of the enemies were defeated, once these enemies had fallen, the controller players could not 
progress until the VR player found the enemy on the floor and picked it up, returning it to the 
room. 
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7.4.2 Observations and Comments 
Overall, the game was received well by players at PAX. Many people asked if the game 

would be put on Steam, and some stayed for more than one round. The game seemed especially 
popular among younger visitors, suggesting the playful theme is effective. Some players were 
put off by the lack of refined lighting and placeholder UI visuals, and improvements to these 
areas were completed shortly after the event concluded. 

The team also discovered an unexpected trend in the VR player’s behavior which 
affected the subsequent design of the game. The PAX build was created shortly after the design 
decision to remove the VR player’s ability to individually place enemies into the level and 
replace it with automatically spawning enemies was implemented. While the team had made this 
change, the ability of the VR player to be able to pick up enemies was overlooked, and 
accidentally included in the PAX build. However, VR players used this mechanic to aid the 
controller players during fights by holding the enemies in place so they could not attack but the 
controller players could defeat them. Because of this unexpected but frequent cooperation 
between the VR player and controller players, the team decided to keep this functionality in the 
game and, in keeping with this spirit, updated the game so that if a VR player flung an enemy 
from the room, the controller players no longer had to defeat it to proceed. 

8. Conclusion 
The team initially set out to create a VR party game, as this fits well within the current 

state of VR technology and availability. While several game concepts were considered, a 
level-construction-based game was decided on, with one VR player building levels and up to 
four controller players navigating them. To create a lighthearted and fun feel to the game, a toy 
theme was decided on. 

The overall gameplay of ​Babies & Basilisks​ features two distinct sides. The VR player 
constructs a dungeon out of prefabricated sections, while the controller players navigate through 
this dungeon as it is built, fighting enemies and avoiding obstacles. This simultaneous, 
dual-sided gameplay creates a unique, dynamic experience. The significant scale difference 
between the two kinds of players, as well as the different audio environments, leads to very 
different experiences despite being in the same environment.  

The artists were able to create a large quantity of assets, which allowed the game to have 
four distinct controller player characters and five enemies, all of which had entirely unique 
attacks and abilities that were fully animated. These characters all fit well into the environments, 
giving the game a uniform art style despite the varied look. The programmers had to develop 
many systems for the game to work properly, integrating multiple third-party libraries and 
developing some novel solutions for which no third-party library existed. The game’s code is 

93 



clean and performs well, and there are no known major bugs in any of the game’s systems. The 
audio designer had the challenging task of creating two separate and distinct sound 
environments. These two environments work well together to convey the different experiences of 
the VR and controller players. Additionally, the inclusion of original voice lines into the game 
greatly improves the originality and personality of the characters. 

8.1 What Went Wrong 
The most significant issues occurred during playtesting. Invariably, the team tested the 

build prior to the playtesting session (on the machine itself in the sessions held in the Global 
Lab), but when the playtesting sessions were about to start, the game would usually exhibit bugs 
that required restarting the computer to fix. Furthermore, several times the usefulness of the 
playtesting was detracted from by bugs that occurred during playtesting. While discovering these 
bugs was helpful, the team had hoped to get more playtesting feedback that was not encumbered 
by buggy encounters. This perhaps could have been mitigated by more testing of the game by the 
team with many players. Despite the team consisting of five players, testing was usually only 
done with one or both of the technical team, which led to some bugs that were only encountered 
when multiple people were playing the game, which did not come up in testing. 

Another problem that occurred during development was when the technical team updated 
the version of Unity they were using from 2018.2 to 2018.3. Although the team knew the 
potential risks of changing the development platform halfway through development, the new 
version of Unity included support for prefabs, pre-made objects that could be placed or spawned 
into the level, to be nested within each other. At the point in development when Unity 2018.3 
was released, the team was working with the challenge hallways, which required traps and 
platforms, which were all prefabs, to be placed within preset sequences to load the hallway with, 
which were also prefabs. With Unity 2018.2, changing one trap prefab resulted in many more 
prefabs needing to be updated before they could be effectively tested, and so the team decided it 
would save a great amount of time to update to Unity 2018.3. While this aspect of 2018.3 did 
improve development time significantly, it also caused unexpected difficulties. For instance, the 
particle system in 2018.3 had a bug that created a memory leak specifically when using VR. This 
resulted in the team being forced to disable the particle systems so the computer running the 
game would not crash, and begin considering alternatives to using particle effects. Fortunately, 
2018.3 was eventually updated several weeks after the upgrade, fixing this issue and allowing the 
particle systems and nested prefabs to remain. 

There were also some issues implementing the art into the game for the VR player model, 
most notably for the boss. Because of the constraints given by Unity’s VR skeleton, namely that 
it needed adult humanoid proportions, the bones for these two models needed to be set up 
differently. For the VR player model (the baby), the team initially created a model which did not 
follow these constraints, causing the model to work incorrectly with the skeleton’s arms. To 
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mitigate this, the artists made the baby model’s arms longer. However, this attempted fix did not 
fully help the situation, and it was found that the VR camera would clip through the model’s 
head. The end solution for this model was to create an entirely different player model of just the 
baby’s hands for the first-person view, while keeping the full model for the third-person view 
from the controller players. For the boss rig (dragon/ basilisk), the model did not match up to the 
humanoid proportions which Unity’s skeleton needed, causing the limbs to break repeatedly. In 
order to get around this issue, the team made some tweaks to the bones once the rig was 
in-engine, and made it so the limbs worked more smoothly. 

While not disastrous, one potential misstep was using the SteamVR interaction system, 
included with the SteamVR Unity plugin. This system was developed by Valve when creating 
their early VR demo ​The Lab ​[20]. While it does contain many useful pre-made features, it also 
comes with serious limitations, such as difficulty in showing certain elements only on the VR 
player’s camera, and temporarily disabling the intractability of objects. Furthermore, it appears 
that the system is not commonly used, as there are very few questions about it on the Unity 
answers and forums sites. It would have been better to start the VR development process by 
considering other alternatives, such as just using the base SteamVR code, or VRTK (another VR 
Unity library).  

8.2 What Went Right 
Babies & Basilisks​ is a well-developed prototype of an asymmetric VR party game 

involving two separate branches of gameplay, each requiring their own systems and presenting 
their own issues. As is common in game development, many parts of the game required close 
collaboration between two or more departments, providing additional experience to all team 
members outside their area of expertise. 

Several factors contributed to the overall success of the project. While the team did not 
prepare a formal design document prior to beginning work, we did spend the term prior 
determining specifics of the design. This enabled all team members to immediately begin 
development at the start of the year, without waiting for the design to be ready. 

The composition of the team provided a highly effective distribution of skills. With two 
artists and two programmers, no one person was forced to take on one of these major portions 
alone. While there was only a single audio developer, the programmers were able to help with 
the technical aspects of audio implementation. Using tools that team members were already 
familiar with was essential as well. For example, due to previous experience in Unity, the 
programmers were able to focus on developing specific features instead of learning how to use 
the engine.  

Overall, the entire team felt that this MQP was a success, as well as a valuable learning 
experience. From an art perspective, the toy theme provided a challenge to create a wide variety 
of models with a fun, lively color scheme and visual style inspired by stylized media. From a 
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technical perspective, functionality for both VR and controller players had to be implemented, 
providing challenges in implementing two entirely different types of gameplay and polishing 
both experiences. Based on the results and feedback that the team received both in person and 
through written comments, the team felt as though the target experience goal was met and that 
this MQP was a project to be proud of.  

8.3 Future Work 
There are several ways that the game could be expanded and improved from its current 

state. From a usability perspective, it might be beneficial to make the audio device selection 
more clear, so that players know exactly how to set up both the default Windows audio output 
and the in-game output selection. Furthermore, since the game should appeal to both young and 
mature audiences, adjustable VR player height would be very helpful. The height of certain 
elements, such as hallways, the shelf, and the boss should adjust so they are accessible to players 
of any height.  

In terms of expanding gameplay, it would be beneficial to add more variety for both the 
controller and VR players. On the level building side, hallways with more varied looks could 
increase the visual appeal of levels. Combat rooms of different shapes would also be helpful, 
both in offering choice to the VR player and variety to the controller players. These rooms could 
incorporate verticality, and might have entrances at different levels so that the VR player could 
build a multi-level maze. Finally, a larger variety of enemies and bosses would greatly enhance 
the replayability of the game, especially if bosses had different abilities for the VR player to try. 

Another element that could be expanded upon is interaction between the VR player and 
controller players. Currently, the VR player can interact with the controller players directly 
though the boss fight, operating traps in the hallways, and holding enemies during combat. Some 
additional opportunities for interaction might be the ability for the VR player to pick up or push 
the controller players in a limited manner, enabling the controller players to attack the VR player 
if they get too close, and creating a way for the VR player to give commands to the AI enemies. 

In addition to these design changes, some more minor improvements could be beneficial 
as well. The certain player abilities could be improved, such as the Kangaroo. This character was 
reported by playtesters to be more difficult to use, suggesting its abilities might need refinement. 
The abilities of the boss were also difficult for some players to understand, suggesting that the 
boss tutorial needs to be improved. These improvements would help to enhance replayability and 
decrease frustration. 
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10. Appendices 

Appendix A. Tool Choices 

Game Engine 
Choosing a game engine was perhaps the most important technical decision in the 

pre-production stage of the project. Making the wrong choice here could have significantly 
hampered progress later on, or caused lots of wasted time. While for some games, especially 2D, 
there are many choices for the engine, VR games are almost exclusively made in either the Unity 
or Unreal engine, or a proprietary engine not publicly available. Both Unity and Unreal have 
been used to create many popular VR games, and have comparatively mature support for VR. 
Therefore, the team narrowed the game engine choices to these two engines. 

In choosing between Unity and Unreal, there were several considerations to be made. 
Since both engines have been extensively used in creating VR titles, it was clear that both 
engines would suit VR game development in general. The first thing that had to be considered 
outside of that was the general ease of development, and how quickly new features could be 
prototyped and iterated upon. Performance and graphics would also need to be considered, since 
the rendering requirements of the Vive are greater than those of a typical desktop or console 
game. General flexibility of the engine was important, since some engines are best suited to a 
certain genre, and game mechanics seen as unconventional may be difficult to implement. 
Outside of engine features, the experience of the programmers using each engine was an 
important factor, which could significantly speed up or slow down development. Finally, outside 
of the technical space, licensing had to be considered. As a small team working on an 
educational project, a free engine would be preferable. 

The first engine considered was Unity. Unity is a highly flexible game engine which as 
been used to create many diverse experiences in nearly every genre, from card games to VR 
experiences. The only programming language used in Unity development is C#, which can be a 
barrier to non-programmers, but makes it easy for those familiar in object-oriented programming 
to write clean-looking and robust code. The design of Unity makes it easy to quickly test and 
iterate on features, due in part to the fast compile times and lack of editor crashes that are a result 
of using C#. Performance, however, is the main drawback of Unity. While it can support 
high-end, near photorealistic graphics, the engine will struggle greatly to deliver this level of 
fidelity with stable performance. This is reflected in popular titles made in Unity, as nearly all of 
them use stylized, non-photorealistic art. Additionally, some considerations must be taken when 
using C# in game code. The use of a garbage collector means that dynamic memory allocations 
must be used sparingly, and lack of statically-allocated arrays further complicates this. For 
non-commercial projects or teams raising under $100,000 per year, all features of Unity can be 

100 



used for free. The only issue is the mandatory splash screen in the packaged game, which can be 
removed with the “Plus” version. 

Unreal Engine was considered next. Unlike Unity, games made with Unreal tend to be 
less diverse. The engine, originally developed by Epic Games for their first-person shooter series 
of the same name, is still primarily used to create first- and third-person shooters. However, it 
has been successfully used in other genres, including VR. Unreal currently offers two means of 
programming: through C++ coding or a visual scripting system called Blueprint. Blueprint, while 
great for creating simple features and one-time events, quickly becomes messy and 
unmanageable when implementing more complex systems. C++, on the other hand, has other 
problems. The compile times for C++ in Unreal tend to be long, increasing iteration times. 
Furthermore, due to the unsafe nature of C++, it is easy for simple programmer mistakes to crash 
the editor, which runs in the same process as game code. However, where Unity and C# fail in 
performance, Unreal does well. Unlike Unity, Unreal is well optimized for high-fidelity 
photorealistic graphics. Additionally, a skilled programmer can write more performant code 
using C++ than would be possible in C#, due primarily to manual memory management. Similar 
to Unity, Unreal is free for limited commercial use. However, it has the additional benefit of not 
having a mandatory splash screen. 

After carefully reviewing both game engines, Unity was selected for this project. The 
ease and speed of developing and iterating would make it invaluable for meeting the AlphaFest 
milestone. If the game was meant to be photorealistic, using Unity might lead to performance 
issues or worse-than-desired visuals. However, due to the simple art style of the game, this 
would not be an issue. In the event that the game was to be published, a Unity Plus license could 
be purchased cheaply in order to remove the splash screen. Finally, Unity makes it easy to use 
external libraries in code, which would be essential in creation of the secondary audio system, 
discussed later on. 

Source Control 
After the engine was decided, another important tech decision was the version control 

software. Three options were considered for this: Git, Unity Collaborate, and Perforce.  
Git has the advantage of being hosted for free via services such as Github and Bitbucket. 

It is used extensively in software development, including with Unity. It offers important features 
such as creating branches to work concurrently on different features, and pull requests to easily 
review code. The main drawback of git is its clumsiness when working with unknown file types. 
With text files such as source code, Git and other source control systems can easily merge 
changes. With binary files, however, Git is unable to merge changes and must discard one set of 
changes, which can lead to lost work. Some files created by Unity, such as scenes and prefabs, 
can be treated as text files, but merging them with Git is not always successful. 
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Unity Collaborate, a built in feature of Unity, is much simpler and easier to use than Git. 
It is able to more effectively merge Unity’s prefab and scene files (although it will still 
sometimes require discarding one), and does not require an external client. However, it lacks the 
branching and code review features provided by sites such as Github.  

Finally, Perforce is a less commonly used option that works well with Unity. Unlike Git 
and Unity Collaborate, it has an exclusive checkout feature where only one person can work on 
certain files at a time. This prevents the case where changes have to be discarded, but doesn’t 
actually allow merging of these files. Furthermore, unlike the other two options, Perforce would 
require the team to set up and maintain a Perforce server. This would provide hosting of the 
project, but not other services such as code review.  

Of these three options, Git was determined to be the most suitable to the project. While it 
is more complicated to use, the decided that the functionality provided by a hosting platform 
such as Github would be highly beneficial. Since the programmers were already familiar with 
Git, the complexity was less of an issue. Furthermore, it would require neither additional setup 
nor payment by the team. The binary merge issue could be largely avoided by working in 
separate scenes files, and making sure to only stage these files for commit if significant changes 
were made. 

Artistic Software 
The final tool decisions to be made were by the art team. Given the multi-step process for 

setting up fully optimized character models, multiple programs and tools would be needed at 
different stages of the process. 

For the character modeling process, Zbrush was chosen over box-modeling programs like 
Maya and 3DS Max. This was due to its focus on sculpting organic shapes, and because the 
artists had a general preference for Zbrush. For texturing, the primary consideration was how 
complex the textures should be. Initially, the artists planned to use Substance painter, due to its 
ability to create a great range of visuals and ability to realistically mimic the look of rusted metal, 
plastic, cloth, and even skin. However, as production went forward, the team decided on 
Zbrush’s polypaint tool as it would help create a more uniform look throughout the various art 
elements. Rigging for each of the characters was done in 3DS Max, utilizing the CAT Rig 
system. 3DS Max was chosen over programs like Maya and Mixamo due to the art team’s prior 
experience with Max, as well as the necessity for a variety of non-standard rig types - including 
quadrupedal characters, and models with need for secondary animation layering. Given this 
choice, animation for all of the models was done in 3DS Max as well in order to eliminate 
cross-program issues with skeleton transfer. 

For the environmental modeling process, two programs were used: Maya and 3DS Max. 
Maya was used for the grey-boxing stage, due to its simplicity and ease of use. For the finalized 
versions of the environmental models, both Maya and 3DS Max were used. As with the 
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grey-boxing process, Maya was generally easier to use for the overall shapes and starting 
models, which were then moved into 3DS Max for finishing details, largely due to 3DS Max’s 
extensive modifier library. 

Project Management 
The team used a variety of project management software in order to best facilitate clarity 

and productivity. Git was the chosen source control platform. The project’s main repository was 
hosted on Github, which provides private repositories to students. Sourcetree was used as the 
client by both programmers, due to its helpful visual interface. 

Most of the team’s written documents and progress files were hosted on Google Drive. 
Google Drive was chosen over similar platforms such as Dropbox due to ease of access and 
useful collaboration features.  

Almost all of the team’s online communication was done through Slack. This allowed the 
team to communicate quickly and effectively, as well as sharing documents when necessary. The 
communication was also divided into multiple separate channels, including Tech, Art, and 
General, so communications could be organized and multiple conversations would not clutter 
each other. 
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Appendix B. Dialogue Scripts 
Dr. Bear: 

1. “Let’s play Dr.Bear!”  
2. “Give me a hug!” 
3. “I’m the doctor and you’re my patient! Let’s hope I cut into the right part this time...” 
4. “I got my doctorate at Hugs & Kisses Medical School. My degree came with candy and 

malpractice waivers!” 
5. “My supervisor said if I bring my mortality rates down, I get a cookie!” 
6. “Oooh… my tummy hurts.” 

 
Cowboy: 

1. “A plastic rifle in one hand and a plastic whiskey in the other, it’s a toy cowboy’s 
dream.” 

2. “I’d tip my hat to ya, but it’s permanently glued to my head.” 
3. “I’m wanted in 12 toy boxes for skipping out on playtime. My bounty; 2 juice-boxes and 

nappies” 
4. “What in tarnation!” 
5. “Well, I’ll be an arm shark’s uncle!” 
6. “Want to know how I get my moustache this shape? Grit and lots of industrial adhesive!” 

 
Tess: 

1. “I got evicted from Darbie’s Dreamhouse for playing too, rough (laugh)” 
2.  “Warning, explosions may be imminent (laugh)” 
3. “Pew pew, pow, pshbuh, explosions!” 
4. “I made a bet for a weapon with an army guy. Told him he wouldn’t survive being melted 

with a magnifying glass. Did I win? Well, let’s just say I haven’t been without this rocket 
launcher since that day. ” 

 
Kangaroo: 

1. “Hello I am a Kangaroo” 
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Appendix C. Informed Consent Form 
Informed Consent Agreement for Participation in a WPI Research Study  
Investigator: Brian Moriarty, IMGD Professor of Practice 
Contact Information: 
Brian Moriarty, bmoriarty@wpi.edu, 508 831-5638 
Title of Research Study: Asymmetrical VR Game 
Sponsor: WPI 

 

Introduction: You are being asked to participate in a research study. Before you agree, however, 
you must be fully informed about the purpose of the study, the procedures to be followed, and 
any benefits, risks or discomfort that you may experience as a result of your participation. This 
form presents information about the study so that you may make a fully informed decision 
regarding your participation. 
  

Purpose of the study: The purpose of this study is to obtain playtest feedback in order to 
locate/address operational bugs, to identify opportunities for design improvement, and to gather 
data to conduct statistical analyses on to measure games effectiveness towards the experience 
goal. 
 

Procedures to be followed: You will be asked to play a 5-player game lasting less than fifteen 
minutes. After completing the game, you will be asked to complete a brief, anonymous survey 
describing your subjective experience and opinions. At no point during your play session, or in 
the survey, will any sort of personal and/or identifying information about you be recorded. 
 

Risks to study participants: One player in each play session will operate in a virtual reality (VR) 
simulation, located within a limited physical space in the testing laboratory. Virtual “walls” 
(clearly discernible within the simulation) will indicate the boundary of the corresponding 
physical space. 
 

Inadvertently crossing this boundary poses a risk of collision with real-world walls or objects, 
with a resulting potential for injury or property damage. The testing team will remove as many 
physical objects from the testing vicinity as possible, and provide verbal warnings to prevent the 
VR player from moving beyond the safe limits of the physical test space. 
 

The VR device worn during the test is connected to its associated hardware with a cable harness. 
The cable poses a potential risk if it becomes entangled as the VR player moves around the test 
area. The testing team will monitor the position of the cable, adjust it continuously to keep it 
safely positioned, and provide a verbal warning in the event of entanglement risk. 
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Virtual reality hardware is known to cause dizziness or nausea in some users after prolonged use. 
The VR player is strongly encouraged to pause or end the test session at any time if they begin to 
experience any sensation of disorientation or discomfort. 
 

Benefits to research participants and others: You will have an opportunity to enjoy and comment 
on a new game under active development. Your feedback will help improve the game experience 
for future players.  
 

Record keeping and confidentiality: Records of your participation in this study will be held 
confidential so far as permitted by law. However, the study investigators and, under certain 
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be 
able to inspect and have access to this confidential data. Any publication or presentation of the 
data will not identify you. 
 

Compensation or treatment in the event of injury: There is minimal foreseeable risk of injury 
associated with this research study. Nevertheless, you do not give up any of your legal rights by 
signing this statement. 
 

For more information about this research or about the rights of research participants, or in case of 
research-related injury, contact: 

Professor Brian Moriarty, Project Advisor: 508-831-5638, bmoriarty@wpi.edu 
Professor Kent Rissmiller, IRB Chair: 508-831-5019, kjr@wpi.edu 
Gabriel Johnson, Human Protection Administrator: 508-831-4989, gjohnson@wpi.edu 

 

Your participation in this research is voluntary. Your refusal to participate will not result in any 
penalty to you or any loss of benefits to which you may otherwise be entitled. You may decide to 
stop participating in the research at any time without penalty or loss of other benefits. The 
project investigators retain the right to cancel or postpone the experimental procedures at any 
time they see fit. 
 

By signing below, you acknowledge that you have been informed about and consent to be a 
participant in the study described above. Make sure that your questions are answered to your 
satisfaction before signing. You are entitled to retain a copy of this consent agreement. 

  
  

____________________________________  Date: ___________________ 
Study participant signature 
 

____________________________________ 
Study participant name (please print) 
 
____________________________________  Date: ___________________ 
Signature of Person who explained this study  
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Appendix D. AlphaFest Survey 

VR player 
1. How intuitive was it to pick up and place objects? 1 (hard) - 4 (easy) 
2. How intuitive was it to set the room type? 1 (hard) - 4 (easy) 
3. What goal did you have while playing the game? Did you feel there was enough of a goal 

presented by the game? 
4. How well could you keep track of the controller players? 1 (hard) - 4 (easy) 
5. How much did you have to move while playing? 1 (not at all) - 4 (lots) 
6. What activity were you primarily doing? (building, watching, placing enemies, 

controlling boss, etc.) 
7. Did you have enough time to both build the maze and monitor the players? 1 (no) - 4 

(yes) 
8. How intuitive was it to control the boss? 1 (hard) - 4 (easy) 
9. Was the music satisfying to listen to? 1 (no) - 4 (yes) 
10. Do you have any general comments or recommendations? 

Controller players 
1. Which character did you play as? (if you played more than one, pick your favorite)  

● Doctor Bear 
● Tess 
● Amos 
● Kangaroo 

2. Which did you prefer: elevator room or encountering enemies in the smaller rooms?  
● Elevator rooms 
● Smaller rooms 
● Didn’t encounter enemies in elevator rooms) 

3. How confusing was it to explore the maze? 1 (easy) - 4 (confusing) 
4. How difficult was it to avoid getting damaged? 1 (easy) - 4 (hard) 
5. How difficult was it to use abilities/attacks effectively for the character you played as? 1 

(easy) - 4 (hard) 
6. Were the cameras effective in displaying enough of the scene? 1 (no) - 4 (yes) 
7. Did you have enough space to move around and fight? 1 (not enough) - 4 (plenty) 
8. Were the sound effects satisfying to listen to? 1 (yes) - 4 (no) 
9. Was the music satisfying to listen to? 1 (no) - 4 (yes) 
10. Do you have any general comments or recommendations? 
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Appendix E. IMGD2900 and IMGD3900 Survey 

Controller Player Survey 
1. Which character did you play? If you played more than one, indicate your favorite. 

● Dr. Bear 
● Amos (Cowboy) 
● Tess (Rocket) 
● Kangaroo 

2. Which type of play area did you prefer? 
● Large Elevator Rooms 
● Small Combat Rooms 
● No Preference 

3. How easy was it to navigate the maze? 1(hard) - 4(easy) 
4. How easy was it to avoid getting damaged? 1(hard) - 4(easy) 
5. How easy was it to use the abilities of the character(s) you played? 1(hard) - 4(easy) 
6. How easy was it to see what you wanted to look at? 1(hard) - 4(easy) 
7. How adequate was the space available for moving around? 1(hard) - 4(easy) 
8. How did you feel about the background music? 1(disliked) - 4(liked) 
9. How did you feel about the sound effects? 1(disliked) - 4(liked) 
10. Is there anything you would like to see added to the game, or that you felt was missing? 

(open response) 
11. Is there anything you felt should be removed from the game? (open response) 
12. Please enter any general comments or suggestions below: (open response) 

VR Player Survey 
1. How easy was it to pick up and place objects? 1(hard) - 4(easy) 
2. How easy was it to change the room type? 1(hard) - 4(easy) 
3. How well did the game establish goals? 1(hard) - 4(easy) 
4. What goals did you establish while playing the game? (open response) 
5. How easy was it to keep track of other players? 1(hard) - 4(easy) 
6. How much did you have to physically move around while playing? 1(rarely) - 

4(frequently) 
7. Which activity was your primary focus during gameplay? 

● Watching Players 
● Building 
● Placing Enemies 
● Controlling Boss 
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● No particular focus 
8. Did you spend more time building the maze, or monitoring the players? 1(building) - 

4(monitoring) 
9. How easy was it to control the boss? 1(hard) - 4(easy) 
10. How did you feel about the background music? 1(disliked) - 4(easy) 
11. How did you feel about the sound effects? 1(disliked) - 4(liked) 
12. Is there anything you would like to see added to the game, or that you felt was missing? 

(open response) 
13. Is there anything you felt should be removed from the game? (open response) 
14. Please enter any comments or general suggestions below: (open response) 
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Appendix F. IMGD 2900 Results 

Controller Players 
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Open Response Questions 

Is there anything you would like to see added to the game, or that you felt was missing? 
● Some tutorial for what the abilities of the characters did. Some were straightforwards, but 

others (like the lasso or the rug that Doctor Bear had) weren't clear. May have just been 
because this was a test version. 

● Some feedback (either sound or visual) of when you take damage and when you damage 
an enemy. Otherwise it feels like the attacks do not have an impact. 

● A better camera view for the levels 
● Maybe onscreen control help for the toy players? 
● Split-screen; seeing the combined view made play more difficult than reasonable 
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● I wish there was something to do when the VR player was building the level. Maybe 
more rooms that did stuff on their own without the VR player next to it. 

● skill moves seemed to happen with some delay after a button press. more responsiveness 
would have helped combat 

● more information on the story of the game. Was the skeleton our friend? What were we 
trying to do? Why were the other toys attacking us? Something to do while the skeleton 
builds the maze. 

● More interaction with vr player 
● Maybe make it a bit easier to see, as well as add some sound effects for other characters 

attacks. 
● Add in animations for some of the attacks, like the bear feels stiff and lunging doesn't feel 

very good for his role. 
● We need ULTs!!! Also it would be better if you can improve the abilities of the 

kangaroo. 
● More moves or ways to see more drastic ways of damage you can do.  hard to see if my 

attack had a huge effect. 
 
Is there anything you felt should be removed from the game? 

● Switching the camera when only one player moves out of the room. Maybe have the 
camera follow where the greater amount of players currently are. 

● The room felt too big, but that might be because we didnt get to finish the whole thing 
● The skeleton seemed out of place 
● The platforming sections 
● The rocket sound was kind of annoying 

 
Please enter any comments or general suggestions below: 

● The camera was a little wonky, and it was really easy for one player to move the camera 
away from everyone else. Maybe have it so that the camera will be biased towards areas 
with more players. 

● The players were able to stack if they were standing against the wall (3 high) I'm not sure 
if that's supposed to be able to happen? The camera angles were also a little strange 
before the jumping puzzles, it was easy to die and hard to see correctly. Aside from that it 
was pretty fun! 

● I had fun! I'd have loved to be able to jump on heads though. 
● Had lots of technical difficulties so it was difficult to assess the game's full features and 

gameplay 
● it was hard to use the keyboard to move around and attack.  
● "I enjoyed that the VR user had to build a maze for the toy players. However, that did get 

a little frustrating for the toy players when the maze iddn't get built for awhile. There 
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wasn't much for us to do besides jump around and pretend to shoot things. The character 
movement was rough and the TNT, lasso, and bullet aim didn't feel very lined-up." 

● it was hard to control my character, sometimes i would press shoot and nothing would 
happen. 

● Balance the characters more I guess.  I died nearly instantly on kangaroo but Bear was 
pretty OPOP (plz nerf) 

● I like the character models. 
● Tess OP, plz nerf 
● Really enjoyed playing as the controller player. Would see about improving functionality 

on keyboard and mouse though. Aiming felt off, and abilities didn't feel too useful with 
the off aim. 

● It was fun. 

VR Players 
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Open Response Questions 

What goals did you establish while playing the game? 
● Throw as much stuff at the players as quickly as possible/destroy the players 
● move stuff around until it clicks somewhere 
● I was just trying to building things for players to keep up 
● Pick things up and put them together 
● Place rooms for the toys, move traps when they were near it 
● making a path for the players 
● Have fun. I would've appreciated to learn earlier that the goal was to set up challenges for 

the final goal room, rather than kinda improvising it on the spot. 
 
Is there anything you would like to see added to the game, or that you felt was missing? 

● More available options to throw into an area, rather than just one object. 
● I couldn't really hear any sound effects 
● More ways to move as the boss.  Wasn't hard to change levels but did not understand if I 

really was changing anything.  Add a way I can interact more. 
 
Is there anything you felt should be removed from the game? 

● Being able to teleport outside the room 
 
Please enter any comments or general suggestions below: 

● Maybe I was missing something but I felt like I needed a wall or some time to build 
things up before I let players go through I felt like I was always trying to building things 
and make enemies to keep up with players. I also had trouble telling exactly what my 
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objective was I am not sure if it was ever introduced and I missed it I felt like a DM 
almost in DND making areas for players to explore. A lot of my issues could be fixed 
with a better tutorial Also you can probably watch the video back but sometimes I would 
see my hand float off. I also liked the background music but it did get repetitive after a 
while I wish i got to test the boss because it would be interesting to see it change when I 
become the boss or something. 

● It's pretty cool but kinda buggy I think. 
● Waiting too long for levels to appear and a lot of watching. 
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Appendix G. IMGD 3900 Results 

Controller Players 

 

 

122 



 

 

123 



 

 

124 



 

 
 

Open Response Questions 

Is there anything you would like to see added to the game, or that you felt was missing? 
● Maybe a simpler more consistent camera system, like always top down (the top down 

camera parts were the only time i could clearly see what was happening). It also did not 
feel like a maze (if that was the goal) maybe give the vr player more time at start 

● It was really hard to tell what my abilities actually did from the icons that were there. 
● A more explicit tutorial, maybe an intro to explain the story/premise 
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● idle and walk animations 
● Platforming felt inconsistent, if that could be tweaked to feel better, it might improve 

everything.  
● It might be more fun if you could always see what the giant vr person was doing 

 
Is there anything you felt should be removed from the game? 

● I'm not sure how well the platforming sections gelled with the game? I had way more fun 
in the battles. 

● Ability to damage your teammates was a bit frustrating 
 

Please enter any general comments or suggestions below: 
● First of all, I wasn't able to hear the sound. So, disregard my rating for the music and 

sound effects. 
● It can be frustrating to finish a section and simply wait for the VR player to decide what 

to add, especially at the end of a hallway section waiting on little tiny platforms. 
● Revive mechanic was really good! Also, my character just disappeared during the 

elevator room and broke the game. 

VR Players 
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Open Response Questions 

Is there anything you would like to see added to the game, or that you felt was missing?  
● Polish menus and controls. Balance  
● You can spawn monsters?  
● More ways of telling the player what to do/ if what you’re doing has an impact  

 

Is there anything you felt should be removed from the game?  
● A table would pop up from time to time.  

 

Please enter any comments or general suggestions below:  
● During combat, I had no idea what my abilities or attacks were. The range of them 

weren't very well defined.  

Appendix H: Third-Party Assets 
● Humble Fantasy Game Dev Bundle, by Rexxard 
● Cartoon FX Free, by Jean Moreno 
● Simple Wall Lamp, by Flatriver 
● Skybox, by Clod 
● SteamVR Plugin, by Valve 
● VR Samples, by Unity Technologies 
● Freesound users: 

○ Westington 
○ Huggy13ear 
○ D-Sav 
○ MadamVicious 
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