

Unseeable

A Major Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Bachelor of Science

In Computer Science
And

In Interactive Media and Game Development

Authors:
Isaiah Cochran, 2018

Alexander Horton, 2018
Drew Tisdelle, 2018
Tommy Trieu, 2018

Advisors:

Professor David Brown, WPI
Professor Brian Moriarty, WPI
Professor Ralph Sutter, WPI

Date Submitted:
April 26th, 2018

1

Abstract
We designed, developed, and tested Unseeable, a browser game with the goal of having

non-colorblind individuals experience the perspective of a colorblind person in order to increase
empathy with them and recognize their daily struggles caused by their visual impairment. The
game was developed using Three.js to build the game, node.js and express.js for the server,
and MongoDB for the database used to store playtesting data.

2

Acknowledgements
This project would not have been possible without our advisors, Prof. David Brown, Prof.

Brian Moriarty, and Prof. Ralph Sutter. We would also like to thank Tim Jones, Cassandra
Salafia, and Bailey Sostek for lending their voices.

3

Authorship
Abstract Horton

Acknowledgements Horton

Authorship All

Table of Contents All

List of Figures All

List of Tables All

1. Introduction Trieu

2. Background Tisdelle, Trieu

3. Concept Tisdelle

4. Gameplay Horton

5. Design Cochran, Tisdelle, Trieu

6. Technical Implementation Horton, Tisdelle, Trieu

7. Art Cochran

8. Audio Tisdelle

9. Research Methodology Trieu

10. Results and Analysis Trieu

11. Project Promotion Tisdelle

12. Conclusion Trieu

References All

Appendices Horton, Trieu

4

Table of Contents
Abstract 1	
Acknowledgements 2	
Authorship 3	
Table of Contents 4	
List of Figures 7	
1. Introduction 9	
2. Background 10	

2.1. Color Blindness 10	
2.1.1. What Is Color Blindness? 10	
2.1.2. Why Color Blindness? 10	
2.1.3. Additional Information 11	

2.2. Empathy 11	
3. Gameplay 13	

3.1. Level 1 13	
3.1.1. Player Goals 13	

3.1.1.1. Selecting the Table 14	
3.1.1.2. Coloring the Paper 15	
3.1.1.3. Posting the Paper 16	
3.1.1.4. End of Level 16	

3.2. Level 2 16	
3.2.1. Player Goals 16	

3.2.1.1. Building the Blocko House 17	
3.2.1.2. End of Level 19	

4. Design 20	
4.1. User Analysis 20	
4.2. Task Analysis 20	
4.3. User Interface 21	

4.3.1. Main Menu 21	
4.3.2. Loading Screen 23	
4.3.3. Level 1 Interface 24	
4.3.4. Level 2 Interface 27	

5

4.3.5. End Level Screen 29	
4.4. Art Style 30	

4.4.1. Characters 31	
4.5. Level Design 31	

4.5.1. Level 1 31	
4.5.2. Level 2 38	

5. Technical Implementation 42	
5.1. Tools 42	

5.1.1. Three.js 42	
5.1.2. JavaScript 43	
5.1.3. Node.js 43	
5.1.4. Express.js 44	
5.1.5. MongoDB 44	
5.1.6. Heroku 46	

5.2. Application Flow 47	
5.3. Colorblind Filter 48	
5.4. Game Engine Design 49	

5.4.1. Main Game Program 49	
5.4.2. Rendering Engine 50	
5.4.3. Audio Engine 50	
5.4.4. User Interfaces 50	
5.4.5. Asset Pipeline 50	
5.4.6. Task Implementation 51	

5.4.6.1. Table Selection 52	
5.4.6.2. Color by Number 54	
5.4.6.3. Posting the Paper 58	
5.2.6.4. Level 2: Stacking the Blockos 59	

5.5. Logger 60	
6. Art Production Pipeline 63	

6.1. Level Objects 63	
6.2. Characters 65	

7. Audio 67	
7.1. Vocals 67	

6

7.1.1. Level 1 Vocals 67	
7.1.2. Level 2 Vocals 68	
7.1.3. Vocals Subtitles 68	

7.2. Additional Audio 69	
8. Research Methodology 70	

8.1. Data Collection Methods 70	
8.1.1. Informed Consent 70	
8.1.2. Pre-Survey 70	
8.1.3. Post-Survey 70	
8.1.4. PANAS 71	
8.1.5. IRI 71	
8.1.6. Game metrics 71	

8.2. Method Sequence 71	
8.3. Data Analysis 72	

9. Results and Analysis 73	
10. Discussion 85	

10.1. Explanation of results 85	
10.2. Potential limitations 87	

11. Project Promotion 89	
12. Conclusion 90	
References 92	
Appendices 94	

Appendix A: Informed Consent 94	
Appendix B: Pre-Survey 96	
Appendix C: Post-Survey 98	
Appendix D: PANAS 99	
Appendix E: IRI 100	
Appendix F: Technical Definitions Glossary 102	
Appendix G: Table of Critical Values for Pearson 104	
Appendix H: Player Feedback 105	

7

List of Figures
Figure 2.1: Normal Color Vision (a) and Red/Green Color Blindness (b) 10	
Figure 3.1: Level 1 Flow Diagram ... 14	
Figure 3.2: Finding the Red Table: Colorblind (a) and Normal Vision (b) 15	
Figure 3.3: Coloring the Paper: Colorblind (a) and Normal Vision (b) .. 15	
Figure 3.4: Posting the Paper: Colorblind (a) and Normal Vision (b) .. 16	
Figure 3.5: Level 2 Flow Diagram ... 17	
Figure 3.6: Block Instructions ... 18	
Figure 3.7: Building the Blocko House: Colorblind (a) and Normal Vision (b) 18	
Figure 4.1: Original Design ... 22	
Figure 4.2: Final Design .. 23	
Figure 4.3: Loading Screen .. 24	
Figure 4.4: Letterbox and Subtitles ... 25	
Figure 4.5: Side Bars and Current Objective .. 25	
Figure 4.6: Crayon Cursor and Placing Back Crayon ... 26	
Figure 4.7: Color Selection ... 26	
Figure 4.8: Paper Placement .. 27	
Figure 4.9: Blocko Building Area .. 27	
Figure 4.10: Building Instructions ... 28	
Figure 4.11: Transparent Blocko During Placement ... 28	
Figure 4.12 (a): End Level Screen (Level 1 Version) .. 29	
Figure 4.12 (b): End Level Screen (Level 2 Version) .. 30	
Figure 4.13: That Dragon Cancer (Left) and Unseeable (Right) ... 30	
Figure 4.14: Character Models ... 31	
Figure 4.15: Classroom Table .. 32	
Figure 4.16: Initial Camera Position .. 33	
Figure 4.17: Layout Iterations ... 33	
Figure 4.18: Rug ... 34	
(a)	 (b) .. 35	
Figure 4.19: Original food poster (a) and edited food poster (b) ... 35	
Figure 4.20: Paper and KRANs .. 35	
Figure 4.21: Paper and KRANs with Filter .. 36	
Figure 4.22: Color by numbers sheet progression .. 36	
Figure 4.23: Color By Numbers Wireframe ... 37	
Figure 4.24: Blockos ... 38	
Figure 4.25: Instructions ... 39	
Figure 4.26: Colorblind Filter Blocks ... 40	
Figure 4.27: Normal Vision Blocks .. 40	
Figure 4.28: Bedroom Layout ... 41	
Figure 5.1. PANAS JSON Example. ... 45	
Figure 5.2. Web Application Diagram ... 47	
Figure 5.3 No Colorblind Filter .. 48	
Figure 5.4 Colorblind Filter Applied .. 49	

8

Figure 5.5. Game Engine Design ... 49	
Figure 5.6. Table highlighting shown with the second table from the left 52	
Figure 5.7. Example of a crayon moving slightly out of its box when hovered over 55	
Figure 5.8. Mouse cursors styles default (a) and pointer (b) .. 55	
Figure 5.9. Ghost crayon appearing when hovering over box with a crayon selected 57	
Figure 5.10. Paper highlighting (a) vs. paper coloring (b) ... 58	
Figure 5.11. Log JSON with definitions .. 61	
Figure 5.12 Task JSON with definitions .. 62	
Figure 6.1: Initial Object creation .. 63	
Figure 6.2: Level 1 Wireframe .. 64	
Figure 6.3: Original photo texture (a) and texture with filters applied (b) 64	
Figure 6.4: Character Clothing .. 65	
Figure 8.1. Data collection method sequence .. 71	
Figure 9.1. Positive affect before playing game vs. after playing game (a) and negative affect

before playing game vs. after playing game (b) .. 74	
Figure 9.2. Total IRI score vs. change in positive affect (a) and total IRI score vs. change in

negative affect (b) .. 75	
Figure 9.3. IRI empathic concern score vs. change in positive affect (a) and IRI empathic

concern score vs. change in negative affect (b) .. 76	
Figure 9.4. IRI personal distress score vs. change in positive affect (a) and IRI personal distress

score vs. change in negative affect (b) .. 77	
Figure 9.5. IRI perspective-taking score vs. change in positive affect (a) and IRI perspective-

taking score vs. change in negative affect (b) ... 78	
Figure 9.6. IRI fantasy scale score vs. change in positive affect (a) and IRI fantasy scale score

vs. change in negative affect (b) .. 79	
Figure 9.7. Table selection score vs. change in positive affect (a) and table selection score vs.

change in negative affect (b) ... 80	
Figure 9.8. Color by number score vs. change in positive affect (a) and color by number score

vs. change in negative affect (b) .. 81	
Figure 9.9. Table selection difficulty rating vs. change in positive affect (a) and table selection

difficulty rating vs. change in negative affect (b) .. 82	
Figure 9.10. Color by number difficulty rating vs. change in positive affect (a) and color by

number difficulty rating vs. change in negative affect (b) .. 83	
Figure 9.11. Learning experience rating vs. change in positive affect (a) and Learning

experience rating vs. change in negative affect (b) ... 84	

9

1. Introduction
 Unseeable is a first-person game that requires players to solve a series of color-based
puzzles from the perspective of a colorblind individual. The game takes place in a three-
dimensional environment, but the controls reflect that of a two-dimensional game. The player is
asked to solve puzzles without any hints indicating the identification of colors. When the player
makes a choice or completes a puzzle, their success is reflected by the feedback they receive
from the environment.

 This Major Qualifying Project (MQP) was completed by four Worcester Polytechnic
Institute (WPI) students. The project’s artist was Isaiah Cochran, majoring in Interactive Media
and Game Development (IMGD). The project’s three programmers were Alex Horton, majoring
in Computer Science (CS), Drew Tisdelle, majoring in IMGD and CS, and Tommy Trieu,
majoring in CS.

 The goal of Unseeable was to allow non-colorblind individuals to empathize with
colorblind persons by seeing through their perspective and understanding some of the struggles
they endure in their everyday lives. The hope of the Unseeable team was that this experience
would spread awareness about color blindness and allow those without visual impairments to
understand the stress of those that suffer from them. As an IMGD and CS MQP, the developers
had a secondary goal of creating a game engine from the bottom up. This goal was necessary
in order to fulfill the technical aspect required for a CS MQP.

10

2. Background

2.1. Color Blindness

2.1.1. What Is Color Blindness?
Color blindness is a visual impairment that is an often overlooked challenge for those

afflicted with it. The visual disability affects approximately 8% of men and 0.5% of women
throughout the world. The impairment is believed to be caused by malfunctioning cones within
the eyes of those who have it, resulting in them seeing colors in ways that can be very different
from those with fully functional cones. Differences in vision include, but are not limited to: two
different colors appearing to be the same and entire colors being absent from a person’s vision.
The condition is most often passed down genetically but can be acquired through varying
diseases and old age.

 (a) (b)

Figure 2.1: Normal Color Vision (a) and Red/Green Color Blindness (b)

2.1.2. Why Color Blindness?
The focus on color blindness for Unseeable came about because this impairment affects

a significant percentage of the population, but not many people understand the struggle that
comes with the it. From both research and from personal experience provided by a colorblind
team member, when someone who is unfamiliar with color blindness first finds out that a person
is colorblind they will often start pointing at random objects and ask the colorblind person what
colors the objects are. When the colorblind person proceeds to incorrectly identify the colors,
the person who asked them to do so will often see it as “cool”, “interesting”, or “funny.” This has
become known as “the color game” to those who are colorblind, something that most colorblind
people hate.

There are also many situations in which, even after knowing a person is colorblind,
people will not be understanding of the colorblind person’s circumstances. This includes getting
frustrated with the colorblind person when trying to describe something to them using colors or
joking around about how the colorblind person cannot tell certain things apart, such as when the

11

person tries to do something as simple as pick out their favorite candy flavor since most flavors
are color coded. These situations can and do elicit a lot of stress and make those with color
blindness feel excluded because they cannot see what everyone else does. It can also make
them feel as if they have done something wrong by not being able to complete simple tasks due
to their inability to see in full color.

It is because of this lack of understanding of what color blindness actually is and how it

affects those afflicted that it was decided it would be an appropriate topic to try to shed more
light on through a game.

2.1.3. Additional Information
 While there are many different forms of color blindness, the one that is most common is
red-green color blindness, in which different hues are very hard to distinguish between.
Normally a person can see seven different hues of colors, but a person with this form of color
blindness is limited to seeing only two or three depending on the severity. It is because this form
of color blindness is one of the most common forms, and the form that the group is most familiar
with, that it was chosen to be the form of color blindness that is simulated within the game.

2.2. Empathy
Empathy can be defined as the ability to understand and share the feelings of another

individual. This definition, however, only touches the surface of what empathy is. Empathy can
be split into multiple different subcategories, each with its own unique definition. The primary
types of empathy that are usually examined are: situational, dispositional, cognitive, and
emotional (Stueber, 2013; Lawrence et al., 2004). Situational empathy encompasses the
empathic reactions of someone in a specific situation. This type of empathy is displayed in
reaction to specific events. Dispositional empathy is the opposite: dispositional empathy is
empathy as a person’s characteristic trait, meaning how empathic someone is at any time.
Besides types that cover when a person feels empathy, there are other sub-categories that
define how an individual can be empathetic towards another. Cognitive empathy is an example
of this: the understanding of someone else’s feelings/mental state. Someone experiencing
cognitive empathy will try to comprehend how another person is feeling and try to take on their
perspective. Emotional empathy, however, is an emotional response response to someone
else’s feelings. This includes either feeling the same emotion as someone else experiences it
(i.e. getting angry when someone else gets angry) or going beyond that with the same emotion
at a much higher intensity. While all of these definitions are unique, they also all fall within the
overall meaning of empathy.

Attempting to measure empathy has proven to be a unique challenge. While
understanding what empathy and its sub-definitions are can be fairly straightforward, attempting
to quantify empathetic feelings can be difficult. This is due to the fact that there are no clear,
quantifiable items corresponding to empathy that are easy to measure. Existing attempts at
measuring dispositional empathy include subjective questionnaires (Lawrence et al., 2004). A

12

large suite of these questionnaires or scales exist and have been used in empathy-related
studies.

The most well-known of these scales include, but are not limited to: the Hogan Empathy

scale, Davis’ Interpersonal Reactivity Index, the Toronto Empathy Questionnaire, the Empathy
Quotient, the Questionnaire Measure of Emotional Empathy, and the Balanced Emotional
Empathy Scale. While all of these scales are self reports that ask how someone would react in
specific situations, they differ in the way the data is scored and analyzed. For example, the
Toronto Empathy Questionnaire produces a singular score rating a person’s overall self-
reported dispositional empathy (Spreng et al., 2009). Davis’ Interpersonal Reactivity Index,
however, produces four different scores that representing fantasy, perspective-taking, empathic
concern, and personal distress (Davis, 1980, 1983). Despite these differences, all of these
scales share the same limiting factor of only measuring dispositional empathy.

Measuring situational empathy is much more appropriate in seeing how an audience

would respond to a specific situation. A scale like the Positive Affect and Negative Affect Scale
are good for measuring differences in mood after exposure to a potential stressor, but is still
limiting due to the fact that it measures mood, not empathy, and is also a self-report measure
(Watson et al., 1989). The most accurate readings on situational empathy involve measuring
real-time, physiological responses that correlate with empathy after being exposed to a specific
situation. This can be accomplished through measures such as: facial response, vocal
responses, gestural responses, heart rate (e.g. beats per minute), or skin conductance
(Stueber, 2013). The fallback of this approach is the difficulty in interacting with a participant and
gathering these metrics. Not only do the expenses for gathering some of these metrics become
rather high, but the convenience of measuring them can be rather low since a participant would
have to be connected to multiple devices in order to measure items such as skin conductance
or heart rate. Facial, vocal, and gestural responses require a single camera and microphone
with recording functionality, but analyzing this data also requires an expert in reading these
reactions. Clearly, while situational empathy can be very accurate in measuring empathetic
concern in a specific situation, it is much harder to implement than the questionnaires used to
measure dispositional empathy.

13

3. Gameplay
The game that was developed in this project, named Unseeable, is played through the

perspective of a child named Sam, who is afflicted with red-green color blindness. The game
has a color filter that simulates this color blindness. The game is split into 2 levels, one in a
kindergarten classroom and another in a child’s bedroom. All interactions in the game are
controlled with the mouse alone.

3.1. Level 1

3.1.1. Player Goals
The first level takes place in a kindergarten classroom. The level is split up into 3 tasks

that the player has to complete in order to complete the level. The first task is to find the red
table, the second task is to complete a color by numbers activity, and the last task is to place
their artwork on the board. Figure 3.1 shows the flow of the entire level.

14

Figure 3.1: Level 1 Flow Diagram

3.1.1.1. Selecting the Table
The first task that the player has to complete is to select the red table. Using the mouse,

they have the options to either pick a table by clicking on one or to look around the classroom
by moving the cursor to the edge of the screen. There are four tables in the classroom that the
player is able to choose from, and they have 3 chances to pick the correct one. Figure 3.2
shows the view during this task. In this figure, the player has the ability to select a table by
clicking on it or looking around the classroom by moving the cursor to either the left or right
edge of the screen. When they click on a table, the camera will walk over to it. If the table that
they selected is not the red table, they receive audio feedback the teacher that their choice is

15

incorrect and will have another chance to pick the red table. After three wrong attempts, the
teacher will guide the player over to the correct table and they will be seated.

(a) (b)

Figure 3.2: Finding the Red Table: Colorblind (a) and Normal Vision (b)

3.1.1.2. Coloring the Paper
Once the player is seated at the correct table, the teacher will instruct the class to color

their papers, which are color by number activities. The camera will pan down to look at the table
in front of the player. The camera angle here is fixed, so the player will not be able to look
around the classroom at all during this activity. This view is shown in Figure 3.3. On the left of
the screen is the coloring paper and on the right of the screen is the box of crayons. There are 7
different colors of crayons that the player can choose from and they have to use these crayons
to color 14 sections of paper to complete this task. The player has the ability to select and pick
up crayons by clicking on them. Once a crayon is selected, it will follow the cursor. With a
crayon selected, the player has the ability to color a section of the paper or return the crayon to
the crayon box. If the player hovers the crayon over the a section of the paper, that section is
highlighted by changing to a lighter version of the selected crayon color. Clicking a paper
section will color that section the same color as the selected crayon. If the player clicks on the
crayon box while they have a crayon selected, it will be returned to the box. During this activity,
the player will not receive feedback about whether or not they have used the correct color
crayon. Once they have colored all 14 sections of the paper, the next cutscene will start. The
camera will pan to the teacher as she instructs the class to put their papers on the board. The
screen will fade to black and then unfade to a view of the board.

(a) (b)

Figure 3.3: Coloring the Paper: Colorblind (a) and Normal Vision (b)

16

3.1.1.3. Posting the Paper
Once the screen fades in, the player will be located in front of the board. The paper that

they colored in the previous activity will be located at the cursor position on the board. Moving
the cursor will move the paper on the board. When the player clicks the mouse, the paper will
be placed on the board and the camera will zoom out, revealing the colored papers of the rest of
the class. This view can be seen in Figure 3.4.

Depending on how well the player did in the coloring activity, they will receive one of

three endings. If they colored less than 10 sections of the paper correctly, they get the worst
ending, where the children in the classroom make fun of the player where one child exclaims
“Sam doesn’t know how to color!” and the rest of the children laugh. If they colored between 10
and 13 sections correctly, they experience the ending where a child in the classroom says that
some of the colors look a little bit weird. If they correctly color all 14 sections, they are not
mocked at all and the level ends.

(a) (b)

Figure 3.4: Posting the Paper: Colorblind (a) and Normal Vision (b)

3.1.1.4. End of Level
When the player completes the level, the colorblind filter fades out showing the true

colors and the end of level menu screen fades in. The end of level menu displays the amount of
sections that the player colored correctly and buttons for the different choices that the player
can make once they have completed the level. The options that they have here are to continue
to the second level, replay the level in colorblind mode, replay the level with normal vision, and
to return to the main menu.

3.2. Level 2

3.2.1. Player Goals
The second level takes place in a child’s bedroom. The player’s goal in this level is to

build a block house without their friend getting annoyed at them for messing up too many times
and ending the level before the house is finished. Playing on the floor of the bedroom is a child
playing with blocks who invites the player over to play with them. The player will then walk over
to a pile of blocks already on the floor and sit down to play with them. The cutscene ends here

17

and the player will then have the ability to start interacting with the blocks and the instructions
that have been laid out on the bedroom carpet. Figure 3.5 shows the flow for the second level.

Figure 3.5: Level 2 Flow Diagram

3.2.1.1. Building the Blocko House
Once the cutscene is over, the player is seated right by the puzzle. Here, the player has

the ability to pick up the first page of instructions or to pick up a block. If the player clicks on the
instructions, they will be moved in front of the camera showing the current building step in better
detail. The instructions show what step the player is on, the block and color that they should
pick and, where the block should be placed. Figure 3.6 shows what the instructions look like
when they are pulled up. Clicking anywhere on the screen with the instructions in front of the
camera will return the instructions to their original position.

18

Figure 3.6: Block Instructions

Similar to the crayons in the first level, hovering over a Blocko will change the cursor and

raise the Blocko slightly. Clicking on a Blocko selects it and it will follow the cursor around. The
ghosts of the block in both the original position and where the block has to be placed to build the
house will become visible to show the player that the block could be placed in either of these
locations. When the block is moved close to one of it’s ghosts that ghost will become more
opaque to signify that clicking will place the block at that location. Clicking with the block near its
ghost at its original position will deselect it and return it to its original position. Clicking with the
block near its ghost at the final building position will attempt to place it there. If the block is not
the correct shape or color to be placed, the friend will scold the player. Figure 3.7 shows a
partially built house.

(a) (b)

Figure 3.7: Building the Blocko House: Colorblind (a) and Normal Vision (b)

The player can make 3 incorrect block attempts or 5 incorrect color attempts before the

friend gets angry and ends the level. After the first incorrect color attempt, the friend will point
out which is the correct block, but will provide no more help after this. If the block is both the
correct shape and color, it is placed in the final position and the top page of the instructions is
pulled offscreen showing the next step for building the house. There are 10 blocks that have to

19

be placed and 3 possible endings for this level. The first ending is where the friend gets
frustrated with the player and ends the level before the house is finished being built. The other
two endings are reached once the house is finished. If the player made 0-2 mistakes, then the
friend will remark that the house looks good and if they made 3-4 mistakes, then they will
remark that it took some effort to finish the house.

3.2.1.2. End of Level
When the player reaches an ending, the end of level menu will be displayed similar to

the first level. This menu will display how many of the blocks they placed correctly and the
options that they can select at the end of the level. The player will have the same options as the
first level in that they are able to replay the level with or without colorblind mode on and are able
to return to the main menu. There is no next level option here because this is the final level.

20

4. Design

4.1. User Analysis
 As mentioned before, the goal of Unseeable was to allow non-colorblind individuals to
empathize with colorblind persons by seeing through their perspective and understanding some
of the struggles they endure in their everyday lives. While anyone could play the game, this put
some limitations on the types of users being considered during data collection and analysis.

 In order to discern whether or not the game caused empathy towards the colorblind
population, a differentiation had to be made between those with the visual impairment and those
without. Non-colorblind individuals were considered as necessary participants in order to
examine their stress and empathy towards the colorblind population during and after gameplay.
Additionally, it was decided that users would be college students of any gender in the United
States. College students were the preferred population because it guaranteed that the
participant had, at a minimum, a high school level education. This minimum level of education
within the United States assumes that the participant had basic reading and English speaking
skills, which was important when listening to the audio instructions paired with the subtitles in
the game. It was also assumed that, at that education level, the participant would have
experience using a computer with a mouse and keyboard, which were the instruments required
to play the game.

Narrowing the users to college students made it easier for the team to promote the game
by allowing them to send the URL to the study to their peers. There was no restriction on gender
because the goal of the study did not focus on whether different sexes would display different
amounts of empathy towards colorblind persons.

4.2. Task Analysis
 The tasks that players completed throughout the game were designed around tasks that
appear to be normal, simple tasks to those with normal color vision but become difficult
challenges to those with color blindness. There are many situations that this applies to, but it
was decided that the tasks that should be chosen are those in which the player is able to get
feedback from non-playable characters. The reason for this is that the feedback from the non-
playable characters on the tasks the player completes would have a much larger emotional
impact on the player than if they were placed in a situation where they were alone.

The first task that was decided on was one that would involve coloring. Due to coloring
mostly taking place at a young age, it was decided that the player would be a small child. In
addition, during this time in a color blind person’s life the person and those around them are
often unaware that they are colorblind. This helped to make the scenario have a larger
emotional impact as the children at this age would be more likely to tease the color blind person
who they believe simply does not know their colors, rather than trying to understand why the

21

color blind person did not get the colors correct. The teasing the children would do in this case
would help to show how embarrassed and singled out a colorblind person can feel, which is why
the task was chosen for the game.

The second task that was decided on was one that would show how those who do not

understand color blindness can get easily frustrated with a colorblind person and can make a
colorblind person feel terrible for something that they cannot control. In order to do this, it was
decided that a scenario was needed in which the player character would need to complete a
task that a non-colorblind person would find simple with at least one other non-playable
character who could become frustrated with the player. It was decided that building with Legos,
called Blockos in our game, would be an ideal scenario. This is because building with these
blocks is a simple task, but a colorblind person would not be able to tell the different colored
pieces apart. When building with a person who does not understand color blindness, the person
can easily think that the colorblind person is placing the wrong pieces on purpose and get very
frustrated that such a simple task is being done incorrectly multiple times. It is because this
scenario is one that is quite common for those who are color blind and because it would be able
to display the emotions we wanted players to experience that we chose this task for the player
to complete.

4.3. User Interface
Throughout the development process, the user interface for Unseeable has undergone

many changes in order to make it easier for players to easily play and understand the game with
minimal information provided before starting the game. In order to successfully do this the user
interface was divided into five separate parts: the Main Menu, the Level 1 interface, the Level 2
interface, the End Level Menu, and the Credits Screen.

4.3.1. Main Menu
The original design for the main menu, pictured below in Figure 4.1, displayed the first

level of the game with half of the screen in full color vision and the second half displayed
through a colorblind filter. The thought behind this design was that it would show players the
stark contrast between how those with color blindness see the world when compared to how
those without the vision impairment see it. At the bottom of the screen the player was given the
choices to view the Credits, Replays, and Options of the game. Players were also given the
options to start the game by pressing Play and to close the game by pressing Exit.

 However, this design was not the one that was chosen for the final version of the game.
The final design, pictured below in Figure 4.2, was created due to the original design conflicting
with the goal of the game and due to features being cut throughout the development process.
The first key difference of the new main menu design is that the screen is now fully displayed
through the color blindness filter. This was done because players would be able to see the
actual colors of some of the tables in the first level, which would have given players the answer
to the first puzzle in the first level. In addition, the change was made so that players would not

22

know how different the colors would be until the end of the first level, creating a larger emotional
impact when the true colors are revealed after struggling through the level.

The other changes that can be seen in the final version of the title screen below include

the removal of the Replays, Options, Credits, and Exit buttons. The Replay button would have
taken players to the menu where they could view replays of their playthroughs of levels of the
game. However, it was determined that adding in this feature would not add much to the game
and would take a substantial amount of time to implement and therefore the idea was dropped
and button removed. The Options button would have brought up a menu where players could
change in-game options, namely the size of the screen. However, due to the game being
browser based, players only would need to resize the browser window to change the screen
size, removing the need for an options menu altogether and thus resulting the removal of the
Options button. The Credits button originally took players to a screen that showed the names of
the project group and advisors on it. This option was given only because the game did not have
an ending to display the credits after during this stage in development. Once an ending was
added to the game, the credits could be placed at the end of the game removing the need for
the Credits button. The final button, the Exit button, would have taken players back to the
website the game was going to be hosted on. However, due to the website not being
implemented due to time constraints, the Exit button was no longer needed as players could
simply close the tab the game was running in to exit the game.

Figure 4.1: Original Design

23

Figure 4.2: Final Design

4.3.2. Loading Screen
Throughout most of the development process, loading screens were not part of the

project and were not even planned to be in the game. However, as more assets were added
into the game over time, it began to take longer to load each level. The result was the first few
seconds of the level containing a black screen with individual assets suddenly appearing until all
had been fully loaded in. While this was fine during development, it was seen as very off putting
to eventual players of the game. This resulted in the idea that we should have a loading screen
put in the game so that players would not be able to see the assets as they load into the level.

The loading screen, shown below in Figure 4.3, displays a simple, crayon background to

reflect the challenge that will be faced in the first level of the game. On top of the background, a
grey loading bar is displayed which indicates the percentage of assets that have been loaded
into the game. As more assets are loaded, the percentage increases and the bar fills up until it
is completely yellow instead of grey. After the bar is fully loaded, a continue button is displayed
that the player can click in order to start the level. In addition, the loading screen contains a
short summary of the level in order to provide the player with context about the situation that
they will be put in before the level starts.

24

Figure 4.3: Loading Screen

4.3.3. Level 1 Interface
The design of the interface for Level 1 changed greatly over time in order to make the

game easier to play. Originally, the title interface consisted purely of the scene in front of the
player as well as the default cursor being displayed in order to interact with the screen. This
simple interface did not explain to players how to interact with the game. Once the basic
mechanics of the game were implemented, it was decided that the interface needed to be
changed in order to provide the player with additional information about the level.

The first change that was made to the interface was the addition of a letterbox format

(black bars at the top and bottom of the screen) to the interface in order to indicate to the player
that a cutscene is currently taking place. This change made it apparent that the player could not
currently interact with the game due to the cutscene that was taking place.

The second change that was made to the interface was the addition of vertical,

transparent black bars with arrows on the left and right side of the screen that would appear
after the first cutscene was complete. These were put in place in order to indicate to the player
that, if they move their cursor to the edges of the left and right sides of the screen, they could
rotate the camera view in order to look around the room. Once the player tried rotating the
screen for the first time, the bars would fade away so that the player could focus on the game.
Moving the cursor to the edge of the screen would make the bar visible again as they rotated
the camera.

The third change that was made to the interface was to display subtitles at the bottom of

the screen. The reason for this is that audio instructions are given to the player through the
teacher, but these instructions could potentially be misheard or the player may not be able to
hear it for a number of reasons. In order to prevent the player being unable to receive
instructions due to these reasons, it was decided the best option would be to have subtitles

25

displayed so that the player could also read the instructions in addition to hearing them. The
subtitles were placed at the bottom, center of the screen due to this being the standard for
subtitles in film and games. This iteration of the interface can be seen in Figure 4.4.

Figure 4.4: Letterbox and Subtitles

The fourth change that was made to the interface was to briefly display the current

objective at the top, center of the screen. This can be seeen in Figure 4.5. This was done in
order to make sure that the player understood what task they were supposed to be doing in the
game. It was placed at the top, center of the screen due to this being a standard among games.
After a few seconds, the objective would fade away so that the player could focus on the game.

Figure 4.5: Side Bars and Current Objective

26

The fifth change that was made to the interface was how the player interacted with the
crayons in the coloring section of the level. Originally, the player received no indication that they
could pick up a crayon, could place a crayon back, or that they had picked up a crayon. In order
to remedy this, when the cursor is over a crayon it will stick up out of the box slightly and the
cursor will change to a selection cursor to indicate that it can be selected. Once the crayon is
selected, the cursor disappears and the crayon will move to the cursor’s position in order to
indicate to the player that selected a crayon and that they are currently able to color using it.
This is shown in Figure 4.6. Finally, when the crayon is moved over the crayon box, a
transparent version of the crayon will display in the spot where it once was to indicate that it can
be returned to the box. This helped to indicate to the player how they could interact with the
crayons during this part of the level.

Figure 4.6: Crayon Cursor and Placing Back Crayon

The final change that was made to this interface was that, when the player hovers their

crayon over an uncolored section of the paper, the paper will turn a lighter shade of the crayon
color to indicate that the player can color that section of the paper. This can be seen in Figure
4.7. This allowed the player to more easily see which section they were currently over so that
they could accurately color the section of the paper that they wanted.

Figure 4.7: Color Selection

27

 Other than the changes that were made to the interface overtime, the final section of the
interface was kept relatively the same throughout development. This last section displays a
white board along with the player’s colored sheet, which becomes their cursor. Once the player
places the drawing, the camera will zoom out to show the entire board containing all the
drawings. This is shown in Figure 4.8. The interface here was designed to have a large impact
on the player as it is the point in the game where they will realize just how different their colored
sheet looks from all the others.

Figure 4.8: Paper Placement

4.3.4. Level 2 Interface
 The interface of Level 2 is very similar to the interface from Level 1. When a cutscene is
taking place, the interface will also display black bars in a letterbox format in order to indicate
that the current part of the game is a cutscene. Subtitles and level objectives will also display on
the screen in the same locations as they did in the previous level.

Figure 4.9: Blocko Building Area

28

 The first new interface element of Level 2 is that the player is able to click on the
instructions that are lying on the ground. When this is done, the top sheet will come forward and
be displayed in the center of the screen showing the player the instructions they need to follow
in order to advance in the level. This view is shown in Figure 4.10. When clicked again, the
instruction sheet will return to its previous location.

Figure 4.10: Building Instructions

The second new interface element is similar to the selection of crayons in Level 1. When

the player hovers their cursor over a Blocko, the Blocko will shift upwards and the cursor will
change into a selection cursor to indicate that the Blocko can be picked up.

 The third new interface element is that, when the Blocko is moved close to the building
area or to the place where it was picked up from, a transparent version of that Blocko will
appear in that space to indicate to the player that they can place it down in that location. This
allows the player to easily see how they can interact with the Blockos in the game. This is
shown in Figure 4.11.

Figure 4.11: Transparent Blocko During Placement

29

 The final new interface element is that, when the player makes their first mistake, the
correct Blocko will be highlighted to indicate which one was supposed to be chosen. This was
done simply to give the player one free chance at getting the correct answer when placing
pieces.

4.3.5. End Level Screen
 The end level screen is a simple interface that is displayed at the end of each level.
When the final cutscene for each level finishes, the screen will become blurred and a text menu
will appear on the screen. The reason that the image is blurred for this interface is to make the
text easier to read for the player.

 When the menu is displayed, the player will have the option to retry the the level, retry
the level with normal color vision, continue to the next level, or to return to the main menu. In
addition to these options, there are two main differences between the Level 1 and Level 2
versions of the End Level Screen. The first difference is that the Level 1 version will display the
number of correct colors on the coloring sheet that the player managed to get while the Level 2
version will instead display the number of steps in building the Blocko house that the player
managed to get through before the level ended. The second difference is that the Level 2
version contains a Continue option rather than a Next Level option. The reason for this is that
Level 2 is the final level and the Continue option will instead take them to a black screen that
says “Thank you for playing our game!”

Figure 4.12 (a): End Level Screen (Level 1 Version)

30

Figure 4.12 (b): End Level Screen (Level 2 Version)

4.4. Art Style
 Due to the fact that Unseeable was created in a custom game engine and was intended
to run in a web browser, the art style we chose was one of simplicity with a cartoon-like style.
This was chosen because we wanted the game to run quickly on lots of computers. For that
reason, it could not contain excessive amounts of geometry and textures. As a consequence,
the art was highly influenced by the game That Dragon Cancer, in which the players do not
have faces and the objects which populate the scenes are very simplistic. In Figure 4.13, the left
image comes from That Dragon Cancer and the right is from Unseeable.

Figure 4.13: That Dragon Cancer (Left) and Unseeable (Right)

We also chose this style so it did not detract from the story being told. That Dragon Cancer is a
very serious game, and its narrative conveys the message very effectively without the art style
being the main focus, which is why we chose the minimal look for Unseeable.

31

4.4.1. Characters
Each character in Unseeable was created with the aim of simplicity and diversity. Since

we had planned for there to be several characters, the characters were made in a way that
would allow for them to be produced in various different versions rather quickly. We created two
different body types and several different skin tones, as well as clothing colors and hairstyles.
Each character has no distinguishable facial features, which allowed us to mix and match the
pre-created character assets to create completely different characters quickly. A few character
examples can be seen in Figure 4.14. The clothing choices were meant to be colorful, as
children tend to wear brightly colored clothing and we wanted there to be various different colors
in a game about color blindness. The only character that is slightly different from the others is
the teacher, seen in the first level. This character, seen in Figure 4.14, does not share the same
body model as the child models, but is in the same style as the other characters.

Figure 4.14: Character Models

 4.5. Level Design
 The design of the levels, very similar to the rest of development, was an iterative
process. Various layouts, color schemes, and functionalities were considered and implemented
over the four term production period; each iteration consciously tweaked in order to ensure our
experience goal, producing a measurable amount of empathy, was achieved. We aimed to
produce a realistic narrative in order to achieve this, therefore each level was designed to be
grounded in reality, with stylistic choices that do not detract from the believability of each
scenario.

4.5.1. Level 1

32

 The first level underwent various iterations, mostly based on level layout and color
choice in order to maximize the believability of each scenario. Each iteration was aimed at
achieving our experience goal of creating situations designed for the player to feel empathy
towards those with color blindness. This level is intended to make the player experience the
confusion and potential humiliation a child with color blindness would experience in an early
childhood classroom setting.

The first interaction with the level the player has is to seat themselves at a table of a
particular color, as many American preschools and kindergarten classrooms have colored
furniture items. The correct table for the player to choose is the red table. Red was chosen due
to the fact that, in colorblind mode, it appears very yellow in hue. Yellow remains yellow in
colorblind mode, making it a 50/50 chance of the player selecting the correct table if they have
deduced that the correct one must be amongst the similarly colored tables. Blue and green were
chosen as the other colors; green appears gray, and blue stays the same. This was done under
the assumption that the player, before playing the game, had limited knowledge of the colorblind
experience and would not have any rational basis to believe that either could not be red.

Feedback from initial playtesting showed that about forty-seven percent of players could

not tell which of the four tables was the correct one on their first try. Originally, it was planned to
have the first table the player selected to always be considered incorrect in order to ensure the
experience goal of empathy. However, once playtesting data showed most players could not
select the red table first, we allowed for the chance of selecting the correct table on the first try.
If the player chooses correctly on the first try, they still experience the confusion when faced
with having to choose the red table when apparently there isn’t one on the screen, which is part
of our experience goal.

Each table top surface has a polka dot pattern in a color that corresponds to the solid
color which is seen on the sides of each table, as seen in Figure 4.15.

Figure 4.15: Classroom Table

At the height of the character, each tabletop cannot be seen, so the player must rely upon the
solid color on the table’s side when faced with selecting the correctly colored table. It is for this
reason that each chair surrounding the tables share the table’s color. The tables have been laid

33

out in a semi circle, in the center of which the player stands when tasked with making a
selection. This was done in order allow for the most unobstructed view of each table that could
be allowed without requiring to turn the camera to a different view, as seen in Figure 4.16.

Figure 4.16: Initial Camera Position

In the early iterations of the level, seen in Figure 4.17, the tables were laid out in a completely
different manner, which, at the height of the character, did not allow the player to see all of the
tables clearly and would make gameplay unnecessarily difficult.

Figure 4.17: Layout Iterations

The first level underwent various layout iterations, many of which can be seen in Figure

4.17. Much like the tables, the various other assets within the level were rearranged, and
extraneous objects were removed in order to declutter the scene and allow for better gameplay.

34

For example, the whiteboard, seen in Figure 4.17, has been relocated from the left side of the
classroom, across from the tables, to the middle wall in layout 4. This was done for two reasons,
the first of which is continuity. At the time the tables were rearranged to allow the player to see
them more clearly, the initial camera position was decided, which can be seen in figure 4.16.
From this position, the player has the option to pan the camera to see more of the room. Layout
4 allows the player to turn slightly to the left to see the board, while layout 3 would require the
player to make a 180 degree turn. If a player does not make the extended turn, as would be
required by the initial layout, and continues on with the level, the final scene which features the
whiteboard may not appear to be a part of the same level. Secondly, it was originally anticipated
the player would be allowed to see the whiteboard from their seat, and layout 4 provided the
only position the board could have been located to allow this to happen.

The layout of the room was designed to mimic a kindergarten classroom and includes
objects such as cubbies, backpacks, bookshelves, a colorful rug, and books. Many of the
objects in the scene do not serve any functional purpose in relation to gameplay, but instead are
used to populate the scene to add to the believability of the classroom setting. The colors of
each of the objects in the scene were selected with purpose, as to not give the player any hints
when faced with making color-related decisions. For example, the carpet, seen in Figure 4.18,
does not have a ROYGBIV color layout, so players cannot reference it when completing the
color by numbers activity.

Figure 4.18: Rug

If they do make the assumption that the carpet is in the standard order, they will not complete
the level correctly. Additionally, feedback allowed us to see that people were using the poster on
the wall as a hint as to which table was the correct one. The poster, the “Food Dodecahedron,”
which was designed to mimic the food pyramid seen in lots of American classrooms, contains
various items, some not food-related for humor. Amongst the items on the poster is a glass of
red wine. Lots of players deduced that since wine is typically red, the color it appears in
colorblind mode must correlate to the color of the correct table. We had been given feedback
that it was easy to choose the correct table if the player relied on the poster, so we changed the
hues of all of the objects on the poster, seen in Figure 4.19, to be inaccurate.

35

(a) (b)

Figure 4.19: Original food poster (a) and edited food poster (b)

After the player is seated at the correct table, the camera pans to the teacher who

explains the second task: to fill in a color by numbers sheet. Color by numbers is an activity that
is often utilized in early childhood education, which is why it was chosen to represent the
experience of those with color blindness at a young age. Once the player receives verbal
instructions from the teacher, the camera view shifts to view the workspace area, which
contains various crayons in a crayon box, and a sheet of paper which contains a scene of two
flowers. This can be seen in regular color mode in Figure 4.20 and in colorblind mode in Figure
4.21.

Figure 4.20: Paper and KRANs

36

Figure 4.21: Paper and KRANs with Filter

In Figure 4.20, it can be seen that the colors of the crayons are not laid out in typical ROYGBIV
order, which was done in order to prevent the player from relying on a preconceived layout to
figure out which color is which, as well as provide a level of realism to the level. The flower
scene requires the player to use every color in the crayon box, maximizing the amount of
possible error. There is a slight possibility of the player getting every color correct, but it is a
very unlikely case. 1 out of 42 people were able to complete the level with 100% accuracy.
Though the level can be completed correctly, our experience goal of empathy is still achievable
due to the fact that completing the level correctly is not an easy feat; as well as the fact that
seeing the correct colors is not possible.

 The original concept for the color by numbers sheet was a leprechaun with a rainbow
behind it, but once the scene was drawn it ended up being too complex in terms of colorable
space for the player, and proved to contain too much necessary geometry to complete within
the given timeframe. The design of the color by numbers sheet went through three iterations,
seen in Figure 4.22.

Figure 4.22: Color by numbers sheet progression

37

The second iteration was a simple geometric pattern, simply to test out the coloring functionality.
Each colorable surface and black line are made of separate pieces of 3D geometry, shown in
Figure 4.23.

Figure 4.23: Color By Numbers Wireframe

The final coloring paper contains about 30 separate objects, each piece created from Maya
primitives, namely cylinders and cubes. Each was scaled down on one axis to make them very
thin, and the back faces were deleted, as the player will never flip the paper over. The flower
petals were created using booleans so the each fit around the center of the flowers perfectly,
while the background and grass area were created with cubes. The chosen design and method
of creation allowed for a simple puzzle with accessible pieces.

In the last scene of the level, the player must place their completed paper on a board
amongst the drawings of other students in order to compare their success in coloring the paper
to their fictional peers. If colored very incorrectly it can instantly be seen that the player’s paper
is different than the others. All of the other papers are colored correctly so there is no confusion
as to which colors the player got wrong. They can then see a screen which tells them exactly
how many sections were colored correctly, but the initial shock of seeing their paper amongst
the others provides an experience that contributes to the goal of empathy we wished to achieve.

38

4.5.2. Level 2

The second level is chronologically further along than the first, where the main character,
Sam, is about 10 years old. The main goal of the level is to construct a model house using
Blockos: a take on the brand Lego. This level was designed in order to further our experience
goal by producing another scenario in which someone living with color blindness would be
presented with a challenge.

The scene begins with Sam (the camera view) entering the bedroom of a friend, who is

playing with the Blockos on an area rug. The friend then beckons Sam to join him and the
camera moves toward the rug, then ends at a set position which gives the player a view of the
whole workspace: all of the Blockos laid out from the middle to the top of the screen, directions
at the bottom left, and an empty space at the bottom right, where the Blockos are to be placed.
The Blockos are not laid out in a particular order, and are at slightly different angles to provide a
level of realism to the game, as it is likely a child would not take the time to organize and
straighten out game pieces before playing with them. They are laid out in such a way that they
do not overlap each other and are far apart enough that they player can see each individual
piece. Several of the Blockos are exactly the same, yet have different colors, as seen in Figure
4.24. It is the player’s job to guess which of the Blocko pieces are the correct colors
corresponding to the directions.

Figure 4.24: Blockos

The directions, which contain step by step instructions regarding the correct order and

color of the pieces, may be clicked upon to bring them to the center of the screen, where they
can be seen more easily. Each page of the directions contains three sections, which can be
seen in Figure 4.25, the first being the top of the page which tells the player the step number,
piece type, and color.

39

Figure 4.25: Instructions

Below this, is an orthographic view of that piece, taken at a forty-five degree angle. This was
done in order to give the player the most surface area of each piece to view, to make it easier
for them to distinguish each Blocko shape when selecting a piece off of the rug. This
orthographic view was taken as a line render, which serves two functions: the first being that it,
as well as the angle, allow for the player to distinguish the pieces more easily. Secondly, a line
render has no color to it, so the player cannot compare the color of the piece in the directions to
the color they will select from the rug. The last section of the directions is the bottom which
shows, in black and white, where the piece is to be placed. The black and white also gives the
illusion of a brand which cuts corners and is relatively inexpensive, as a “ripoff” Lego brand
would assumedly be. If the player chooses the correct piece and places it in the working area,
the current page will slide off of the screen, revealing the next set of directions.

The Blocko house that is to be constructed contains various colored pieces and can be

built in ten steps. The first piece to be placed down is the foundation, which is blue. As
previously discussed in Section 3.2 the first piece of the puzzle is highlighted for the player to
select, move, and place down in the work space. It was for this reason that there is only one
blue piece that belongs on the house; the player is explicitly told which piece is blue, and will
have that information going forward when placing other pieces. The other step that is a

40

giveaway to the player is adding the walls, which are white. There is only one set of walls for
this reason. The other pieces, however, are in different colors.

Having experienced the first level, we assumed the player will have drawn some

parallels in regards to color perception. For example, in the first level, the red table appears
yellow in colorblind mode, so player may try to use this information to solve the Blocko puzzle. It
was with this in mind, that instead of providing options that were greatly different in colorblind
mode, they were very similar in hue. For steps that required the player to choose a red piece,
for example, the three options provided for choices are red, yellow, and orange. These were
chosen due to the fact that they look very similar in colorblind mode, which is shown in Figures
4.26 and 4.27.

Figure 4.26: Colorblind Filter Blocks

Figure 4.27: Normal Vision Blocks

The level was designed keeping the age group of the main character in mind. The scene

is populated with things such as camouflage gaming chairs, a television, superhero poster, toy
chest, bunk bed, and desk, all designed to highlight the youth of the character, as the player is

41

not told how old the main character is in the level. The overall layout is shown in Figure 4.28,
which also shows that nothing in this scene can give the player a hint with the puzzle.

Figure 4.28: Bedroom Layout

Off to the side of the carpet is the Blocko box, which is in grayscale so the player cannot
reference it when trying to select the pieces. The rest of the level contains muted colors, such
as browns and blacks to not overwhelm the eye.

42

5. Technical Implementation
This section will describe the technical aspects of the project. Figure 5.1 shows an

overview of the implementation of the implementation of Unseeable. Since the game is
implemented in the browser, Three.js was used to display the levels. The 3d assets and audio
assets were loaded into a Three.js scene and an HTML color filter was layered over it to
achieve red-green colorblind vision. HTML event listeners were used to listen to mouse events
and react to user interaction. In order to deploy the game on the web, a server was
implemented using Node.js and Express.js. The server was also necessary to connect to a
MongoDB database, which was used to record game information and survey results from
playtesting. Unseeable is hosted on Heroku at unseeable.herokuapp.com. Note that all bolded
terms are defined in Appendix F.

5.1. Tools

5.1.1. Three.js
This project utilized Three.js, which is a JavaScript library for displaying 3D computer

graphics in web browsers. The original project originally proposed to create the game in Unity,
but this idea was discarded because it would detract from the programming aspect of the
project. Making the game in Unity would have required much less programming because of how
much it is capable of doing. The reason for this is that Unity completely takes care of importing
assets as well as rendering graphics on the screen. It also has many built in functions that
would have allowed us to implement many of the features that were in our game with minimal to
no programming at all. It is because of this that we decided on Three.js because we would be
able to use it to implement our own game engine.

Three.js uses WebGL, which is a JavaScript API for rendering interactive 2D and 3D
graphics in any browser. It is integrated into all major browsers. Since WebGL allows execution
on a GPU, Three.js also runs on one. The source code for Three.js is hosted and available in a
public repository on GitHub. The Three.js website includes extensive documentation for most of
its classes as well as many examples. We used these both extensively to develop many of the
features of the game: such as scenes, lights, cameras, and animation. Three.js has the ability to
load in external models, which allowed all models to be exported as FBX files which could be
easily loaded in. All that is needed to have Three.js run in a browser is to include the
“three.min.js” script in the desired web page. Other scripts that provided extra functionality, such
as “FBXLoader.js” had to be loaded in addition to this.

Three.js has performance utilities that can be used to measure how fast it is running.
Using these, we determined that it ran fastest on Google Chrome, so we decided that our game
would be developed to be played using the Google Chrome browser.

43

5.1.2. JavaScript
 The JavaScript programming language was chosen for this project due to it being the
basis for the Three.js API. JavaScript is one of the main programming languages used to
program functionality in web browsers and is employed by a majority of websites. Due to
JavaScript being widely supported, creating a browser based game would become a much
easier task by basing the entire project around it. In addition, JavaScript comes with built in
memory management, making the creation of the game easier due to not needing to make our
own memory manager in the game engine.

5.1.3. Node.js
 Node.js (or Node) was utilized in order to create the server for Unseeable. Node.js is “an
application runtime environment that allows you to write server-side applications in JavaScript”
(Rachowicz, 2017). What makes Node.js different from other server-side scripting languages
was that Node.js is its non-blocking, event-driven I/O (Capan, n.d.; Simoneau, 2010). More
specifically, Node.js operates on a single thread. Whenever an event occurs (e.g. an
xmlhttprequest), a request is sent to that thread. The request is then sent to the appropriate
processes. A callback is set up to return the data output from those aforementioned processes.
Since Node.js is non-blocking, the server will not wait for the request to finish before accepting
other requests, but will instead take the next request retrieved, send it to the appropriate
processes, and set up a callback even before the previous request has been completed. This
way the user is not waiting on multiple requests to be completed before being able to perform
other actions. Instead, the user will make requests that will be completed independently from
each other. Examples of the actions that can be performed by Node.js include: generating
dynamic page content, creating files on server, reading files on the server, collecting data,
adding database files, reading database files, modifying database files, etc. (W3Schools, n.d.).
These features make Node.js an extremely efficient environment to implement application
servers.

 It was determined during the design phase of the project that having a server
implemented was necessary for a multitude of reasons. First, the implementation of a server
was necessary in order to host the game over the web. All websites require some kind of server
side code be implemented in order to be hosted. Additionally, having a server implemented
creates a level of security. Unlike client-side code, server-side code can not be seen by the user
through the developer console. This feature can be taken advantage of in order to send more
confidential data to the server to be uploaded and retrieved later, rather than passing that data
around in the client where a user could access it through the developer console.

Lastly, but most importantly, was the database connection that a server provided. As
stated before, a server is able to read, write, and modify database files. This feature was very
important to the team because the user data was collected had to be stored somewhere to be
accessed later. Node.js allowed for a connection to a database. Through this connection, the
team was able to send user data to the database to be stored and retrieved later for analysis.
Accessing a database via the front-end is possible, but highly discouraged. Passing data that

44

way is extremely unsafe and could give malicious users the opportunity to expose these security
flaws and tamper with the data. Having a server not only grants access to a database, but also
passes the data into and out of it in a secure fashion.

 When considering how the server-side code would be implemented, it became clear to
the team that using Node.js was the correct choice. The developers of the team have completed
previous project work utilizing Node.js, so there was a substantial amount of familiarity with the
environment. The team also had prior experience with Javascript, which made coding and
debugging much easier when server-side issues appeared. Being able to use Javascript for
both the front-end and back-end of the application made the code much easier to comprehend
due to its consistency, adding another level of familiarity with the environment. If any issues
arose due to unfamiliar aspects of Node.js, the documentation could be read in order to gain a
better understanding of the problem. Due to its popularity, the documentation for Node.js is vast.
This made it relatively easy to find solutions to problems that the developers encountered.
Besides being easy to understand and use, Node.js was actually good for the team’s use case.
When playing the game, the user should not have to wait on server-side requests to finish in
order to proceed with the task they were repeating. Node’s non-blocking, event driven I/O
removes this latency so that the user can play the game while data is being collected and
uploaded to the database in real-time.

5.1.4. Express.js
We used Express.js in order to more efficiently create the architecture for the server-side

code. Express.js is defined as “a minimal and flexible Node.js web application framework that
provides a robust set of features for web and mobile application” (Holowaychuk et al., n.d.).
Using Express.js with Node.js allowed for easier management for routing and handling requests
in the server.

5.1.5. MongoDB
 MongoDB is a document-oriented, NoSQL database program (Medlock, 2017). The
documents stored in the database follow binary JSON, or BSON, format. BSON documents are
a “binary-encoded serialization of JSON-like documents” (BSON Specification, n.d.). What
makes BSON different from JSON is that BSON also contains extensions that allows for data
types that are not part of the JSON specification (e.g. the Date object type). Figure 5.1. is an
example of one of the BSON documents in the team’s own database.

45

{
 "_id": {
 "$oid": "5ab9685f0e19c80014de46a3"
 },
 "userId": "c9026bb1-05e9-42a3-b8f4-15b898f246c7",
 "answers": [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3],
 "positiveAffect": 30,
 "negativeAffect": 30,
 "__v": 0
}

Figure 5.1. PANAS JSON Example.

 The database is split into different collections in which the documents can be stored.
These collections are defined by the Unseeable team’s developers and their purpose is to add
compartmentalization to the database when necessary. For example, a retail store using a
MongoDB database could have a collection containing inventory items and and a collection
listing employees. The Unseeable project’s database was split into several collections for the
following categories: informed consent, first PANAS, IRI, pre-survey, game logs, task logs,
second PANAS, and post-survey. Descriptions of these collections are discussed in Section 8.1.

 The main feature of MongoDB databases is that they use a non-relational, or NoSQL,
data-structure (Xplenty, 2017). This means that the documents stored in a MongoDB database
do not have to have a predefined structure, and that the structure of the documents can change
without having an impact on the collection or entire data collection (MongoDB, n.d.). This was
one of the main reasons our team chose to use MongoDB as our database program; being able
to dynamically change data schemas was an important characteristic as the game and data
collected rapidly evolved. Members of Unseeable’s development team were also very familiar
with MongoDB having used it in previous projects. Additionally, Mongo’s BSON documents
were consistent with the JSON documents that Three.js produced to represent different objects,
making it much easier when integrating the two technologies.

 The team used mLab as the service to host their MongoDB database. MLab is a cloud
database service that hosts MongoDB databases (mLab documentation, n.d.). This service was
chosen over others because members of the team have had experience hosting databases for
other projects using mLab. Additionally, the service was straightforward, easy to use, and the
data was viewable through the mLab website. This ability to view data through mLab’s API
facilitated the process of testing and debugging by eliminating the need to query the database to
perform trivial tasks such as checking if the data was actually persisted to the database.

 In order to facilitate the use of MongoDB the team utilized Mongoose, an Object
Document Modeling library (Munro, 2017). Mongoose is able to translate MongoDB’s
documents into objects that can be instantiated within the code. Unlike native MongoDB,

46

Mongoose uses well-defined schemas to model data, which facilitated data validation and made
it much easier to read and maintain data due to its consistent structure. Admittedly, using
Mongoose in conjunction with MongoDB can come at the cost of performance (Shan, 2015). For
the developer’s use cases, however, this decrease in performance is negligible as it is only
noticeable when there are hundreds of users concurrently accessing the database. This makes
the utilization of Mongoose even more beneficial considering the increase in development
speed when using Mongoose. The abstraction layer that Mongoose provides removes the
overhead of creating a connection to the database, closing it, optimizing it, etc. This makes it
much easier for developers to write the code responsible for reading and writing to the database
because it is so much more intuitive. The abstraction layer also facilitates making changes to
data handling code without halting other processes.

 Besides benefits to the development process, Mongoose’s data modeling features also
made its utilization appealing to the Unseeable team. One of these features is the data
validation that Mongoose provides. Mongoose’s schemas make data validation much simpler to
implement than in native MongoDB (MongooseJS Documentation, n.d.). This feature was
important to the Unseeable developers because many of the documents in the database have
fields that require a value in order to be persisted to the database (e.g. a user ID must be
present in every document that is persistent). Mongoose also makes it simpler to declare that
fields should be unique within a collection (i.e. there can not be duplicate values in a collection
for fields marked as unique). This feature was extremely useful when applied to the user ID field
of document because it ensured that the same user could not persist multiple instances of the
same type of document to the database. With these benefits, it was clear to the team that
utilizing Mongoose was the correct choice during development.

5.1.6. Heroku
 Heroku is a cloud platform supporting multiple languages for web application
deployment. It features “Git-based, GitHub, and API deployment strategies, a large number
of services offered as add-ons, and a full API” (About Heroku, 2011). Acquired by Salesforce
in 2013, Heroku is backed by a funding amount of 13 million USD and multiple investors such
as Ignition Partners and Redpoint (Crunchbase, n.d.). Heroku’s flexible language support and
wide array of pricing options makes it a top choice for multiple developers looking to have their
applications hosted on the web.

 The Unseeable project team decided to utilize Heroku as their hosting platform because
its features fit their use cases and needs. Heroku supports Node.js applications, meaning it
integrated well with the game since its server-side code was also developed in Node.js. When
the team encountered issues with Heroku, it was relatively easy to troubleshoot and find
solutions due to the fact that the platform is so widely supported and used. Not only that, but
with Heroku’s sandbox plan, there were no expenses involved in deploying the Unseeable
application to the web. Additionally, the Unseeable developers all had prior experience
deploying Node.js applications to the web through Heroku, making the process of deploying this
application easy due to their familiarity with the platform.

47

Figure 5.2. Web Application Diagram

5.2. Application Flow
 Before discussing the implementation techniques used to create the game, an overview
of the application’s system should be understood. The system consists of two main parts: front-
end and back-end. These parts communicate with each other in order to display the game to the
user and send feedback to the database for developers to analyze later. A system diagram of
the application can be seen in Figure 5.2.

 The front-end of an application is the client-side code, responsible for visual elements
that can be seen and interacted with by the user. The front-end is where all of the assets are
loaded and rendered. Both the models (FBX files) and audio files are loaded into a level through
independent loaders. Interaction logic is also defined during load time. Three.js facilitated the
process of loading these assets into the game. All of these assets are integrated into a Three.js
scene, which, when rendered, will be displayed in the web browser for the user to see. The
color filter is applied to the entire HTML page. All of the on-screen elements and their
interactivity were created using HTML, CSS, and Javascript in conjunction with Three.js. All of
these aspects and processes are contained within the front-end.

 The back-end of an application is the server-side code. Site functionality and database
communication are the main responsibilities for the server in Unseeable. Without the server, the
application would not be able to be hosted on the cloud via Heroku. The back-end of the
application defines how the user is able to navigate between different pages. Node.js was
utilized as a server-side code environment and Express.js to facilitate routing and request
handling. Additionally, the server creates a secure connection to our database, where relevant
game and survey data is recorded for later analyses. MongoDB and Mongoose were utilized to
create the connection to the database, while MLab was the service that hosted it. The server is
the line of communication between the database and browser that keeps the site functionally
stable.

In order for the two to communicate, an AJAX call is made to the server. The server
then passes this request to the appropriate processes based on the URL provided. Once those
processes are finished, the data (if any) that results from them is sent back to the client as a

48

response if necessary. The option to send data back to the client is defined by our team of
developers.

5.3. Colorblind Filter
 One of the most important aspects of our game is the Colorblind Filter. This technical
feature, written as JavaScript functions that edit the html of the page, is the part of the game
that simulates color blindness on the screen. It does this by adding a SVG (Scalable Vector
Graphics) element, containing a filter within it that is overlaid on the screen. The SVG element is
what allows for the changing of graphical elements within the webpage. The filter then takes the
colors that are on the screen and shifts their RGB values so that they are changed to the same
hues that a person with red/green color blindness would see. The values for shifting were
determined by looking at various programs that had their own filter to simulate color blindness
for images and browser tabs. In addition, the colorblind member of our group was able to
identify the values that correctly simulated his color blindness. This was possible due to the
recently created EnChroma glasses that are able to mostly correct the vision of a colorblind
person. By looking at the filtered screen through both the EnChroma glasses and as someone
with color blindness, he was able to change the values until the filtered screen looked identical
with the glasses on or off.

 The reason that this part of the game is so important is that, without it, we would not
have been able to easily simulate the experience of being colorblind. If the filter were not
implemented, each art asset would have to have been carefully colored so that they did not
contain any hues that a red/green colorblind person could not see. This would have added on a
substantial amount of time to the development of art assets. However, thanks to the filter, we
were able to design our levels without needing to account for this since the filter handled this
aspect of the development process once it was complete.

Figure 5.3 No Colorblind Filter

49

Figure 5.4 Colorblind Filter Applied

5.4. Game Engine Design
Most game engines consist of the main game program, rendering engine, and audio

engine in order to run games. Below we will discuss how these were all implemented.

Figure 5.5. Game Engine Design

5.4.1. Main Game Program
The main game program is what controls the game logic. The logic for the game engine

can be split into two distinct parts: level loading and event listeners.

The level loading happens soon as the level script is loaded. The first step that happens

during this is the setting of all global variables. After this comes the creation of a Three.js scene.
Inside of the scene, a camera and lights are placed in their predetermined positions for the
level. A renderer is created to render the camera’ view of the scene. All external 3D FBX files
and audio files are then loaded into the scene. The implementation of loading assets is defined
in Section 5.4.5. Event listeners are initialized here.

50

Javascript event listeners were utilized to detect cursor actions. The two event listeners
that were used to control interaction were the mousedown and mousemove events. These
used raycasting extensively to determine where in 3D space the cursor was located.
Raycasting was done by using the cursor position on the screen to cast a ray outward from the
camera. This ray is used to detect if the cursor is hovering over 3D object in the scene. If the ray
intersects an object, it means that the cursor is hovering over it. The event listeners would then
call the appropriate functions.

5.4.2. Rendering Engine
The rendering engine in a game generates and renders the 3D graphics that are seen in

the game. Three.js handled all of the rendering for the engine, so it was not necessary to
implement a new rendering engine which would have been a tremendous amount of work. Only
two components had to be set differently in order to provide the best experience. One of these
was to disable shadows, since they drastically reduced performance speed on less powerful
computers and did not look believable. The other component that was changed was the use of
anti aliasing, which is a technique in computer graphics to smooth out lines in order to achieve a
smoother look.

5.4.3. Audio Engine
The audio engine is responsible for playback of audio and any other audio control within

the game. Audio files were imported into the Three.js during level loading. A global
AudioLoader was initialized that would be responsible for providing the ability to load audio
files. Using the audio file name, the AudioLoader would create an AudioBuffer that would be
passed into an instance of Three.js’ Audio object. Different parameters of the Audio object (e.g.
volume, looping, callback functions, etc.) would be set based on developer input. Once loaded,
the sounds could be later played by calling a custom function that would play a sound based on
its audio file name.

5.4.4. User Interfaces
These were created by using html and layering it over the play canvas. Three.js does not

natively support menus, so html was layered over the Three.js canvas to control interactions
whenever the player was at any of the menus.

5.4.5. Asset Pipeline
The asset pipeline is how the 3D assets were imported into the Three.js scene. A file

format that could be exported from Maya and imported into Three.js was necessary. Some file
formats contain only the 3D geometry and need to load the textures externally. Other file
formats need to be static models, while others can include animations.

The format that was decided to use was the FBX (Filmbox) file format. This was chosen

because it can include textures, animations, and multiple objects in a single file. The 3D assets
in each level were split up into multiple of FBX files: one file containing all of the static objects

51

which were not animated, files for each of the people, and separate files for each of their
animations.

Even after deciding on using the FBX file format, there were various issues importing it

correctly in the engine. The files had to be exported from Maya with the correct export settings
so that the FBX file was created in a way that the Three.js FBX loader would be able to
understand. Trying to load assets with the incorrect settings would lead to the program crashing
or the imported assets missing geometry or textures. An early issue was that if an object had
multiple textures, the loader would only apply the first texture, and ignore any others. This would
lead to objects having holes where the secondary textures should be. This was temporarily
worked around this by splitting objects apart wherever there were secondary textures, leading to
a very large increase in the number of object in levels. An update to the FBX loader that
happened later during development resolved this issue.

The largest problem that was overcome was importing animations into the Three.js

scene. There was a lot of trial and error involved in finding the correct export settings when
exporting the animations as FBX files. There were unsuccessful attempts to use different file
formats to export animations in attempts to load them into the scene. Eventually, compatible
FBX files were successfully exported by using Mixamo. This became the final solution for
getting animations into the Three.js scene.

Later on, models were able to be loaded in T-Pose and their animations were in

separate files. This allowed models that each had multiple animations. This greatly decreased
workload, because otherwise multiple models with a single animation each would have to be
loaded and take a lot of resources, while changing animations would involve swapping out
models entirely. The Three.js animation system is very good for handling objects with multiple
animations. An example of this is that it allows us to fade between animations, making it look
very natural when transitioning from one animation to another.

Besides importing models and animations with FBX files, there were some problems that

had to be addressed when importing FBX files. One of these problems was that FBX files that
contained lights in them could not be imported. This meant that any lights that were placed in
Maya had to be manually placed within the Three.js scene for each level. The splines that the
camera moves along did not import as import as splines, even though they were created as
splines in Maya. They had to be converted into splines at load time.

5.4.6. Task Implementation
Within the game’s levels are multiple tasks and puzzles that the player is required to

complete in order to reach the end of a level. The implementation of these aspects of the game
are listed and described in this section under their respective names.

52

5.4.6.1. Table Selection
 The first puzzle of the first level was to select the red table out of four possible table
options. In developing this puzzle, two important features were implemented: table highlighting
and table selection. In order implement these features, the developers took advantage of the
Three.js technology stack in order to manipulate the camera and objects themselves.

 Table highlighting occured when the user moused over one of the tables in the scene.
The purpose of highlighting the table was to inform the user that the table they were mousing
over was a selectable option in the puzzle. In initial iterations of this feature, the color of the
tabletop was changed to white in order to provide this feedback. In the most recent iteration of
this feature a white outline appeared around the table, which allowed the user to continually
view the color of the table they were mousing over it as well as know that they can select that
table as an answer to the table selection puzzle. An example of a table being highlighted is
shown in Figure 5.6.

Figure 5.6. Table highlighting shown with the second table from the left

 Creating a white outline around the tabletops was not a simple task. Since all of the
objects were in 3D, the outline also had to be implemented using the 3D tools provided by
Three.js. These outlines were created while loading the classroom model into the Three.js
scene. In order to create outlines specifically for the tabletops, the corresponding objects were
given specific names so that they could be identified when loading in all of the classroom
objects. Every object in the classroom has a name field containing a string that can be set
before loading it into the game.

53

The object was then passed into the method createOutline, a helper function containing
the logic that created the white outline around the tabletops. The createOutline method first
creates a MeshBasicMaterial instance named outlineMaterial. The color of outlineMaterial was
set to white. The “side” field was set to THREE.Backside, which caused only the back face of
the object to render. The “transparent” property was set to “true” so when the opacity was
changed the outline would actually appear transparent. The opacity was set to 0.9 to look more
aesthetically pleasing. Then a new Mesh instance was created using the geometry of the
original object, which was passed in a parameter to the createOutline method, and
outlineMaterial. The result is a clone of the original tabletop that appeared white. Since only the
back face of tabletop clone rendered, the original table’s front face appeared on top the the
clone. By scaling the size up slightly and recentering the white table, it appeared as if an a white
outline was drawn around the original table when, in reality, the original table was actually just
rendered on top of the back face of the white clone. Once the necessary parameters were
changed to make the clone appear as if it were a two-dimensional outline, its visibility field was
set to “false”, making it invisible. This was done because the highlight should only appear when
the user moused over a table, meaning that at any other time the highlight should not be
present. This clone was then added to the scene as well as to the original table as a reference
named highlight.

 The highlights were made visible wherever the user moused over a table during the
table selection task. Three.js’ raycaster class was used in order to determine which table was
being moused over. If the object intersected by the ray was a table, which was indicated through
the inclusion of the word “table” in an object’s name, then the intersected object would be saved
as a global reference to be referred to later. The previously created reference to the table’s
larger white clone would then be used to set that clone’s visibility to “true” making it visible in the
scene again and the cursor’s style would be set to “pointer”. If the cursor was not hovering over
a table, the cursor would be set to its default look and any highlights that were made visible
would have their visibility field set to “false” using the previously defined global reference. The
global reference would then be set to false, an indication that there is no table being hovered
over by the mouse.

 Selecting the table through mouse clicks was another important feature implemented in
the game. Whenever the user chose a table, their character walked from their current spot to a
spot near the table they chose. In order to implement this walk, ten paths were created in the
classroom model. Each path was a possible route the user could walk between tables or the
route between a single table and the player’s position at the beginning of the level. These paths
were loaded into the engine and converted into splines. To convert the paths into splines, an
array of vectors had to be created for each path. Each index in that array represented a point on
the spline. That array was then passed as a parameter to the constructor of Three.js’
CatmullRomCurve3 class, which creates a smooth three-dimensional spline given a series of
points.

To actually move the camera along the path to simulate walking, the spline, the direction
the camera should move in along of the spline, and the duration it should take are all passed

54

into a helper function, moveAlongSpline. This function sets the selected spline as active in a
separate module responsible for spline movement. When that spline was set to active, a
function in the renderer, which only executes code if there was an active spline, became
responsible for moving the camera along it. Using Three.js’ Clock class, a record of how long it
had been since the spline was set to active was kept. If the elapsed time was less than the
intended duration of spline movement, a new variable was created that was set to the
appropriate position on the path. This point was calculated by dividing the elapsed time by the
intended duration of spline movement, which equals the percentage of the spline the camera
should have moved along. The point was retrieved based on that percentage using the
CatmullRomCurve3 class’ “getPointAt” function, which retrieves a point on a curve based on a
parameter between 0 and 1. The camera’s x position was set to this point and this process
repeated until the elapsed time equaled the intended duration of spline movement, where the
camera would be located at the end of the spline. During this movement the camera’s y position
was also constantly changing to go up or down based on a calculated small sine wave. This
vertical motion made it seem more like the character was walking rather than gliding along the
floor.

This walking implementation would only be executed when the player clicked on a table,

where the appropriate path was selected based on the point they were currently at and the table
they chose. Raycasting was utilized to determine which table was selected. If the objects being
intersected by the ray cast from the mouse were tables, the walking logic would be executed if a
click was detected. Otherwise, nothing would happen. The developers added a fourth parameter
to the moveAlongSpline function that contained a callback function to be executed after walking
along the entire spline. This was used to play the appropriate audio based on the player’s table
choice and move forward in the level if the aforementioned choice was actually correct.

5.4.6.2. Color by Number
The implementation of the color by number task in level 1 was very involved. There were

multiple aspects, while simple to the user, that required ample amounts of work from the
developers. These aspects include: the crayon selection logic, the crayon movement logic, the
paper highlighting implementation, and the paper coloring implementation.

 The first part of the crayon selection implementation was providing feedback to the user
about which crayon they were selecting. When the player hovered over a crayon with their
mouse, that crayon would move slightly out of the box it was in, shown in Figure 5.7. This
feedback would only occur if there was no crayon currently selected by the user (e.g. there was
not a crayon in the player’s hand). In order to implement this feature, raycasting was used to
detect when the mouse hovered over an object. To filter this to specifically crayons, the team’s
artist gave crayons specific names that would differentiate them from the other objects (e.g.
Main_CrayonGreen). When the ray from the cursor intersected a crayon, that crayon’s x and z
position were offset in order to move it slightly out of the box. The mouse cursor was also
changed to a “pointer” style from its default look, which is normal feedback for indicating that an
item is selectable in a user interface. This cursor style is shown in Figure 5.8. Mousing off a
crayon would return it to its original position and return the cursor to the “default” style.

55

Figure 5.7. Example of a crayon moving slightly out of its box when hovered over

 (a) (b)

Figure 5.8. Mouse cursors styles default (a) and pointer (b)

Triggering a mouseodown event while hovered over a crayon made it the currently

selected crayon. The crayon object itself was set to a global variable “currentObject” that is used
in the paper coloring and highlighting implementation, to be discussed later. The rotation of the
crayon was changed in order to orient it as if it was being held in someone’s hand. The position
of the crayon was also offset in order to align the crayon’s tip with the mouse cursor, allowing
the user to align the crayon tip with paper section to color it similar to a real-life scenario.
Additionally, the mouse cursor’s style was set to “none” (i.e. the mouse cursor is not visible)
when a crayon was selected. In initial implementations of this feature, the crayon would actually

56

phase through the paper because it was place at the exact point of intersection between the
raycaster ray and paper. To remedy this, the crayon was placed 90% along that ray, where it
would float slightly above the paper, but appear as it was touching it due to perspective.

The implementation for moving the crayon was similar to selecting it. The only difference

was that instead of moving the crayon on a mousedown event, the crayon’s position was
changed on a mousemove event as long as there was a crayon currently selected. The position
of the mouse was set to 90%, where 100% was the point of intersection and 0% was where the
camera was, along the ray intersecting with the scene so that it would not phase through any
objects. The offsets to keep the crayon’s tip at the point of the cursor were kept the same.

The user was not able to select another crayon if they there was already a crayon

selected. To select a new crayon, the user had to place the crayon back in the crayon box first.
The user was able to place the crayon back by clicking on the box when they had a crayon
selected. In order to better inform the user that clicking on the box would return the crayon to its
original location, a ghost of that crayon would appear there when the player hovered over the
box. To implement the appearance of these ghost crayons, a clone of each of the crayons were
created when loading in the classroom. Any materials of the original crayon were also cloned
and those clones were set as the materials of the crayon clones. Clones of the material had to
be created because when a material is changed in Three.js, any object with the same material
experiences the same change. By cloning the original crayon material and setting it as the
clone’s material, any change to the clone’s material are independent of other objects. The
opacity of clones’s materials were set to 0.3 and their transparent properties were set to true.
This made the them appear transparent. Their positions and rotation were set to that of their
corresponding original crayon. The last property that was changed was their visible fields, which
were set to false so that they ghosts did not appear while there were already crayons in those
same positions.

These ghosts were added to the scene and a reference to a crayon’s corresponding

ghost was added as a field to the original crayon object. When the ray emanating from the
mouse intersects with the crayon box and there is a crayon currently selected, the visible
property of the ghost crayon will be set to “true” using the reference stored in the currently
selected crayon. If the user mouses off the of the crayon box, that property will be set to “false”
again. Clicking on the box will also set the visible property of the ghost to “false”, return the
currently selected crayon to its original position, and set the global variable for the currently
selected crayon to “null”. An example of this feature is shown in Figure 5.9.

57

Figure 5.9. Ghost crayon appearing when hovering over box with a crayon selected

In order to provide additional feedback on which section the user was mousing over with

the crayon, paper highlighting was implemented. Paper highlighting occured when the user
moused over a colorable section of paper. That section of paper would change to a lighter
version of the color of the currently selected crayon. If no crayon was selected, the paper would
not change color. In order to implement this feature, all of the colorable sections of the paper
were stored in an array. Whenever the cursor hovers over the paper, the name of the sections
of paper being hovered over will be searched for in the array. If that name is found in the array,
the paper highlighting code will execute.

To change the color a section of the paper, the material of the paper was cloned first.

The color of the currently selected crayon was then set as the new color of the paper’s material
clone. The rgb values of the color were then increased, which made the color of the material
clone lighter than the color of the currently selected crayon. Finally, the material of the paper
was set to the newly colored material. The original material of the paper was also saved to a
global variable which was used to set the paper section back to its original color when the user
moused off of it. This feature can be seen in Figure 5.10.

58

 (a) (b)

Figure 5.10. Paper highlighting (a) vs. paper coloring (b)

If the user clicked on the section of paper, however, it did not change back to its original

color when moused off it. Clicking it removed that section of paper from the array of colorable
sections,which removed the ability to color or highlight that specific piece again. The user was
made aware of this through visual feedback. When the user clicked on a colorable section of
paper, the color of that section’s material was set to the color of the crayon. Since the highlight
color was a lighter version of the actual crayon color, the user was able to view a change
between the two as an indicator that they had successfully colored in a section of paper, which
is shown in Figure 5.6. After every colorable section of paper was filled in the array became
empty, which then triggered the game to start the next cutscene and move on to the paper
posting task.

Coloring a section of paper also calls a paper scoring function, which calculated the

user’s current score and recorded what color they used to color that specific section. The
function compared the user’s choice to the actual answer, which was stored in a JSON file that
was converted into an array when loading the level. This array was accessible anywhere within
the first level’s code. If the user’s answer matched the actual answer a global integer,
colorPaperScore, was incremented by 1. At the end of the color by number task, the score and
recorded answers were packed as a JSON file and sent to the database.

5.4.6.3. Posting the Paper
 After finishing the paper coloring activity, the player is asked to place the paper on the
whiteboard amongst the other students’ papers. Since all the colorable sections of paper were
different objects, they had to be grouped in order to be moved together. To do this, the colorable

59

sections of paper were placed in an array when the level was loaded. When the game detected
that the player had colored all the sections of the paper, all of the objects in that array were
added to an instance of Three.js’ Group class, making the paper a single object. The paper was
rotated to be parallel to the whiteboard in the classroom. This logic executes during a fade out in
the cutscene before the user is asked to place the paper on the whiteboard so they do not see
the paper rotating.

The camera’s position was moved to directly in front of the whiteboard, zoomed in
enough to not be able to view the edges but still see some of the other papers. The paper was
placed where the player’s cursor was before the fade in occured. After the fade in, the player is
given the ability to move and place the paper on the whiteboard using the mouse. To move the
paper, the point where the cursor intersected the whiteboard was found using raycasting. The
paper was moved to this position with some offsets that made it so the paper’s center was
where the mouse cursor was. When the player clicks on the whiteboard, the functionality to
move the paper stops. The camera then zooms out of the view of the whiteboard to view it in its
entirety and an audio track plays based on how well the user colored the paper. To implement
the zoom out, the camera was moved from its previous position to a position whose z value was
slightly farther away from the whiteboard. The transition between the positions was created
using Three.js Tween class. The conditions that triggered the different audio tracks were if the
user colored the entire paper correctly, nine to thirteen sections correctly, or less than nine
sections correctly. The audio that played reflected how well the user performed that paper
coloring task.

5.2.6.4. Level 2: Stacking the Blockos
For the second level, all of the setup happens when the level is loaded. Once the

bedroom FBX file is loaded, there is a function that loops through all of the objects in the
bedroom, which then processes them based on their names. The names for all of the objects
were set when they were created in Maya. The objects that contained 'Blockos’ in their name
were the blocks that the player would be picking up and interacting with. Their origins are set to
the centers of their geometries in order to make their placement and rotation easier. Each of the
blocks is assigned a variable which is used to check whether or not it had been placed as part
of the house being built, so that the player will not be able to pick it up once placed. Each of
these objects and their materials are cloned in order to create the ghosts for the blocks to be
placed their original positions. The final house that the player has to build is already built and
placed in the level. The house is set to be invisible. Each of the blocks that the player can pick
up has a reference to the corresponding block in the final house set. The doors have references
set to the door in the final house and so on. These references are used in making the ghosts of
the blocks appear when blocks are picked up.

This task is controlled entirely with the cursor, and as a result raycasting is used heavily

in this level to determine what the cursor hovers over. If the cursor hovers over an unplaced
block, the block is raised slightly, similar to the crayons in the first level. Clicking on the block
picks it up. The offset of the point of the click and the center of the block is used so that the
block is moved around by the point that it was picked up from. With this offset, the block is

60

placed along the ray cast so that the point where the block was picked up from is always under
the cursor. The material of the block is copied to the material of the block in the final position so
that the color of the ghost matches the color of the picked up block.

There is a second ray that is cast from the camera to the center of the picked up block

which is used to determine how close it is to one of its ghosts. If the block is close enough to
one of the ghosts the, the ghost becomes more opaque and clicking the cursor will attempt to
place it down in that position. On an attempt to place the block in its final position, first the shape
is checked, then its color, and if both of these are correct, then the block is placed smoothly
using a tween. If either of those tests fail, then the appropriate voiceline is played for the friend’s
irritation to indicate that the block they are trying to place is not the correct one. If attempting to
place the block in its original position, there is no checking and a tween is used to return the
block to its original position.

The instructions that are laid out on the carpet have a similar initial setup as the blocks.

They also need to their origins set to the centers of their geometries for proper placement and
rotation. When they are selected, the top page is the only one that is moved. The final page
position in front of the camera is calculated by taking the camera’s position, applying the
camera’s quaternion for the rotation, and adding a small offset to distance it from the camera. A
tween is used to move the page from its initial position to this newly calculated position. If the
instructions are open, any click will start a tween to move them back to their original position.
Whenever a block is placed correctly, a tween is started to pull the top instruction page off
screen and any future interactions with the instructions will open the new top page.

There are three global variables that keep track of the player’s progress through the

level. There is one for the building step that they are currently on, which will trigger the good
ending once they complete the tenth step. The other two variables keep track of the player’s
incorrect shape and incorrect color attempts. These dictate which audio line to play when the
player attempts to place incorrect blocks and will end the level if there have been three incorrect
shape attempts or five incorrect color attempts.

5.5. Logger
 The Logger was created to record game metrics in the background of user gameplay. It
was implemented as a class that could be instantiated for different levels of the game,
containing a variety of methods that either recorded data or persisted it to the database. To
create an instance of the Logger, the constructor had to be passed a player ID and a level ID.
The constructor takes these two parameters and stored them in the instance’s log attribute, a
JSON containing level-related data: the player ID, the level ID, the date the player started the
level, the time the player started, and the total time it took the player to complete the level. An
example of the format of this JSON and the definitions of its fields can be seen in Figure 5.11.

61

{
 userId: UUID representing the player,
 levelId: the level number (e.g. 1, 2, 3, etc.),
 date: the date the player started the level,
 startTime: the time the player started the level,
 levelDuration: the total time it took to complete the level
}

Figure 5.11. Log JSON with definitions

 The player ID field was generated using an npm package that created UUIDs. This ID
was generated when the user pressed the “Play” button on the title screen and was passed
between pages using the window’s “sessionStorage” variable. The date and time fields were
generated using javascript Date class, excluding the need to pass input into the constructor for
these items. The levelDuration field was generated when the user completed the level by taking
the time (in milliseconds) they finished the level and subtracting that by the time they started the
level. To send this log, the endLog function of the Logger class was called at the end of a level,
which took the log attribute and sent it to the server through a POST request to the
“logger/createLog” address. It was then converted into a Mongoose object and sent to the
MongoDB database.

 The Logger had an additional attribute, taskStartTime, that was constantly updated to
record when a user started a task or puzzle within a level. To record task data, the name of
task, the grade the player earned, and any additional information (if any) had to be passed into
the logTask function of the Logger class. This function stored relevant task data in a JSON,
which is shown with field definitions in Figure 5.12. The userId field was set by accessing the
stored value in the window’s session storage. The levelId and name fields were manually set by
the developer (e.g. they type “1” for the level and “Color by Number” for the task name). The
duration was calculated by taking the current time (in milliseconds) and subtracting that by the
Logger class’ recordStartTime variable, which was updated to reflect the time when the task
began. The grade calculations were performed independently from the Logger class and passed
in as a parameter to the task logging function. Additional information that the developers wanted
to record were passed into the function as an array. This data was sent to the server via a
POST request to the “logger/createTask” address. The server then took the JSON data and
uploaded it to the MongoDB database.

62

{
 userId: UUID representing the player,
 levelId: the level number (e.g. 1, 2, 3, etc.),
 name: the name of the task being logged,
 duration: the total time it took to complete the level,
 grade: the score the user earned for the task as a fraction (e.g. 0.44),
 additional: any additional information to be recorded, stored in an array
}

Figure 5.12 Task JSON with definitions

63

6. Art Production Pipeline
All of the art assets were created with many constraints and factors influencing the

design, including the fact that the game was created in a custom engine, runs in a browser, and
must fit aesthetically with the chosen art style. The objects and characters followed different
production pipelines, and included various softwares in order to be completed.

6.1. Level Objects
The two levels of Unseeable were created in Maya, and initially only contained a few

placeholder objects. The scenes, one of which can be seen in Figure 6.1, were then exported in
the .fbx file format.

Figure 6.1: Initial Object creation

The .fbx format was chosen due to the fact that it allows objects to retain the information
associated with them in their initial 3D package; which was, in this case, Maya. This means
each object will retain its scaling information, smoothing information, textures, etc. once
exported. The simple scenes were then sent to the technical team which allowed them to test
the .fbx loader and make sure all of the objects loaded into the scene in the correct places.
Once confirmation was received that the objects could load correctly, the scenes were then
populated with more objects.

All of the level assets, such as tables and shelves, were created using as little extra
geometry as possible while still allowing them to fit into the cartoon-like theme discussed in
Section 4.4. Having less geometry per-object allows for faster rendering during runtime, which is

64

a concern when it comes to a game running on a web browser on various computers with
different processing capabilities. Figure 6.2 shows the polygons making up each of the objects
in the first level, and it can be seen that each object does not have much density.

Figure 6.2: Level 1 Wireframe

 In addition to simplistic geometry were simplistic materials, which were created in
Photoshop. Many textures were hand painted, such as the table tops and the rug texture; the
others are photo textures. Photo textures started with photorealistic detail, then had various
filters applied in Photoshop to achieve the desired cartoon look, as seen in Figure 6.3.

(a) (b)

Figure 6.3: Original photo texture (a) and texture with filters applied (b)

65

Most of the materials in Unseeable only contain diffuse textures, making them appear
flat. This was due to the fact that any materials with specular parameters appeared very shiny
within our game engine. Any specular parameters that were changed within a material’s settings
in Maya did not translate to 3.js, and appeared distractingly shiny in-game. It was for this reason
that very few materials have specularity values. Plastic objects, such as the chairs and the sides
of the tables in the first level, and the Blockos in the second level, all have specular values
because the items they represent are normally shiny.

6.2. Characters
The characters, seen above in section 4.4.1 were created in ZBrush using various

sphere chains then sculpted musculature. The clothing and hairstyles were also created in
ZBrush. The hair and clothing were created using a modular approach, meaning different
hairstyles could be paired up with different clothing, effectively creating entirely new characters.
The characters below in Figure 6.4 are wearing the same outfit, which are just textured
differently.

Figure 6.4: Character Clothing

After all character assets, i.e. hair, clothes, and body, were modeled, they were

retopologized in order to minimize the amount of geometry used by each. Reducing the amount
of polygons in each character was very important, as they were much denser than the other
objects in each scene. Leaving the characters at their original polygon count would make the
game run very slowly, especially when each character is animated. Once the characters were
retopologized, they were individually poly-painted in ZBrush, which creates the diffuse textures
for each.

66

The characters were then individually exported to 3ds max, where the character assets
were condensed into one object, and scaled to the correct dimensions in order to accurately fit
into the level. They were then uploaded to Mixamo, which is a service that auto-rigs biped
characters and provides various animations which can be applied to them. Due to the fact that
many characters had to be created, each with different animations, Mixamo was utilized. From
Mixamo, each character was downloaded in a T-pose and sent to the technical team who
applied the downloaded animations to each T-posed character.

67

7. Audio
 The audio elements of the game were created through a combination of free, online
sources and through recording the voices of various people for the vocal audio in the game. All
of the sounds that were used were edited in the free audio editor software Audacity. It is in this
program that the quality of the audio recorded and found was able to be improved by removing
noise and by changing various aspects for different parts of it to suite the needs of the game.

7.1. Vocals
 The choice to have characters speak within the game was done in order for the player to
receive instructions more naturally, rather than simply displaying the instructions on the screen.
This helped to add more realism to the game so that the player could further immerse themself
within the game. In addition, this decision was made in order to deliver larger emotional
feedback to the player, something that would be much harder to do by just displaying text within
the game.

7.1.1. Level 1 Vocals
 For the first level of the game it was decided that the teacher would be, other than a
couple student voice lines, the only character that would speak in the level. This was done as a
teacher would, in the situation of a classroom, be the most appropriate person to be giving
instructions to the player’s character, a student. A script was written for the teacher that would
allow the teacher to give the player instructions while still sounding natural in order to keep the
feeling of realism within the game. When the script was complete, a person was found who
could voice the teacher. The lines were recorded and edited to remove any background noise
before placing them in the game. The voice was recorded to make the teacher sound kind and
caring, but also to imply that she did not understand that the player’s character has color
blindness.

 In addition to the teacher giving instructions, there are three different voice lines that can
play at the end of the level. These were played at the end of the level to give the player
feedback about how they did on the coloring task, as well as to deliver a larger emotional impact
on the player. The first voiceline that can occur is the most common as it plays when the player
gets between one and nine colors correct. In this case, a child in the class, who is offscreen, will
declare that the player does not know how to color and the entire class will laugh at the player.
This was the main voiceline that was created to evoke more emotion out of the player by
making them feel embarrassed and humiliated, in order to have them understand that people
can be cruel to those who are colorblind. The second voiceline that can play occurs when the
player gets between 10 and 13 colors correct. In this case, a child in the class will point out that
the player’s coloring sheet seemed a bit off which was done to tell the player that, despite being
close to correct, it was still noticeable that they did not get all the colors correct during the task.
The final voiceline that can play occurs when the player gets all the colors correct. In this case,
the teacher states that the kids did a good job and tells them it’s time for a story as the level

68

ends. This was done to show the player that, even though they struggled greatly to complete the
task, it was something that all other students were able to easily do and they would get no
special reward or extra praise for completing the task.

7.1.2. Level 2 Vocals
 For the second level, it was decided that the player character’s friend would be the most
appropriate character to be voiced in this section of the game. This was done to, as with the first
level, provide instructions to the player while keeping a sense of realism within the game.
However, unlike the first level the vocals also served to provide the player with immediate
feedback on their choices as they were happening as well as gradually evoking more emotion
out of the player through the feedback. This was done by writing a script in which, if the player
tried to place the wrong colored pieces when building with the Blockos, the player character’s
friend would respond differently depending on the number of times the player had tried to place
an incorrect piece. At the first, the friend will gently say that the player is wrong and points out
which block should be used, serving as the only hint the player will get in the level. After the
player makes another mistake, the friend will start to become noticeably annoyed with the
player. The annoyance will begin turning to frustration and anger at the player until enough
mistakes are made where the friend yells at the player and says they no longer want to play with
them. This was done to make the player feel bad for getting the pieces wrong. In addition, it
serves to show the player that those who do not understand color blindness can become easily
annoyed and angry at those who are colorblind despite the fact that the colorblind person
cannot do anything about it.

When the player continually gets pieces correct, the friend will respond with some
encouraging voice lines to indicate that the player is doing well. If the player is able to complete
the task without angering the friend to the point where he doesn’t want to play anymore, the
player will be able to hear one of two different voice lines. The first occurs if the player got
between zero and two errors when building. In this voiceline, the friend will say that the player
did well and the game will come to an end. This was done in contrast to Level 1, reward the
player with a small amount of praise due to the increased difficulty of the task. The second voice
line occurs when the player gets three or four mistakes before completing the task. In this case,
the friend will be happy that the player finally finished but will remark that they didn’t think the
task should’ve taken so long as it wasn’t that difficult. This was done to show that, even if a
colorblind person is able to complete a task that is difficult for them and not others, they will still
be judged based on the standards of those who are not colorblind. The task also shows that a
colorblind person can also be expected to complete the task in the same time it takes a person
with normal color vision to complete it.

 As with the first level, a suitable person was found to voice the friend. The person was
chosen due to their ability to weave emotions into their voice, allowing for the lines to more
easily evoke emotion within the player. Once the lines were recorded, they were then edited in
Audacity to remove any background noise as well as to change the pitch and speed of the lines
to make the voice sound like that of a child’s as well as to make the pacing more natural.

7.1.3. Vocals Subtitles
 With the introduction of vocals to the game, it was decided that it would be best to add
subtitles to go with the voice lines within the game. The reason for this was to make sure that
players would not mishear the voice lines and so that those who cannot hear the voices for any

69

reason can still get instructions as well as feedback on their progress in the game. While the
subtitles do not deliver the same emotional impact as the voice lines themselves, they help to
ensure that the game is accessible to those who are unable to hear the audio within the game.

7.2. Additional Audio
 While the majority of the audio in the game is comprised of the voice lines delivered to
the player, there are some audio pieces that were inserted into the game to make it feel more
realistic and to fill in the void where no voice lines are taking place. This was done by first
adding ambient noise to each level, with the first level having the sound of kids talking and
playing in the background. This seemed to be the most logical choice as the level takes place in
a kindergarten classroom: a place that would be filled with the sounds of small children talking
and playing. The second level had the ambient sounds of a forest outside as well as the low
hum of a computer. This was done because the level takes place within a child’s room, with the
outdoor sounds being the most logical choice as well as the hum of the child’s computer being
something that is present in many rooms in current times.

 Other than the ambient sounds, various sounds to indicate that actions have occurred
were placed in the game to add a small sense of realism to it. This includes the sounds of
picking up a crayon, placing the crayon back in the box, coloring with the crayon, placing the
coloring sheet on the board, picking up a Blocko, placing a Blocko down, and the sound of
paper moving when selecting the instruction sheets in the second level. These simple sounds
were included to not only add to the realism, but to provide audio feedback to the player that an
action had been performed in order to reinforce that something had occurred.

70

8. Research Methodology
 As stated previously, the main goal of the game was to allow non-colorblind individuals
to see from the perspective of a colorblind person and understand some of the struggles they
endure in their everyday lives. This means that the participant should undergo some amount of
stress while playing the game, indicating that they themselves are experiencing struggle while
experiencing vision impairment. In order to determine whether or not the game elicited any
stress from the user, subjective surveys were given to the user to complete. These surveys
indicated their disposition towards empathic concern and changes in mood.

8.1. Data Collection Methods
 Several different methods were used order to collect use data. The type of methods
consisted of mostly surveys as well as a Logger that collected game data as the user played
through different levels.

8.1.1. Informed Consent
The informed consent document is required by the Institutional Review Board (IRB) in

order to collect data from users. The document must be sent to and approved by the IRB before
collecting any data using it. The document describes general information, procedures, risks,
benefits, compensation, and contact information related to the study. Additionally, the informed
consent explicitly states that any and all of the participant’s information will be kept confidential
and that no publicly identifiable information will be disclosed in the study. The participant is
asked to sign the consent form indicating that they have read and understand the information
provided in the document and that they are ready to participate in the experiment (i.e. take
further surveys and play the game). For ease of use, the informed consent was digitally adapted
so that the user could provide an electronic signature and continue the study through the same
browser window. The full informed consent document can be located in Appendix A.

8.1.2. Pre-Survey
The pre-survey was meant to gain some general information from the user about factors

that could influence their perception of the game (e.g. if they are already colorblind or have
close ones that are colorblind). By collecting this information it is possible to separate, or at least
identify, outliers that may exist within our data. The full-pre-survey in its digital form is located in
Appendix B.

8.1.3. Post-Survey
The post-survey was meant to collect feedback after playing the game. More specifically,

the post-survey asks questions pertaining to the general difficulty of the puzzles in the game,
whether the user feels as if they have learned more about the colorblind experience, and if they
have any feedback related to the game or experiment they would like to share. This information
was used to see whether or not the perceived difficulty of the game had any effect on the

71

participant’s mood, whether or not the participant felt they learned about color blindness, and
provide a method to receive direct feedback from the participant. The full post-survey in its
digital form can be located in Appendix C.

8.1.4. PANAS
The Positive Affect and Negative Affect Scale (PANAS) was meant to measure the

participant’s current positive mood and negative mood. The scale was given before and after
the user played through the first level. The scores of each instance of the scale were compared
in order to see how the participant’s mood changed based on this activity. The change in
positive mood is quantified by calculating the difference between the positive affect of the two
scale instances. The same process is used to quantify the change in mood using negative
affect. This change in positive and negative mood was how the team was able to examine
whether or not users felt stressed out about the game at all without having to take direct
physiological measurements. The full PANAS is located under Appendix D.

8.1.5. IRI
The Interpersonal Reactivity Index (IRI) is meant to measure empathy as a trait of an

individual based on answers to a subjective survey. Beyond that, the IRI is also capable of
measuring a subject’s disposition to perspective-taking, placing themselves in fictitious
scenarios (i.e. fantasy), and personal distress. Collecting this information allowed the team to
see if people who were generally more disposed to empathic concern had a more pronounced
difference in mood after playing the first level based on the PANAS. The full IRI is located under
Appendix E.

8.1.6. Game metrics
The description of the game statistics and how they were recorded is located in Section

5.5. Dates and times that the user played the game were kept in order to more confidently
match logs with user IDs. The time spent playing levels and completing puzzles were recorded
in order to examine any patterns in the amount of time a participant took and whether time
affected their change and mood significantly. The user’s score for each task was also recorded
in order to examine whether it had an effect on the participants mood. Additional data was
recorded only if the team thought if there were other metrics that could derive interesting
patterns (e.g. seeing if there was a pattern in colors used during the ‘Color by Number’ activity).

8.2. Method Sequence

Informed Consent → PANAS 1 → IRI → Pre-Survey → Game → PANAS 2 → Post-Survey

Figure 8.1. Data collection method sequence

Due to the nature of some of the forms and surveys there was a specific sequence in

which users had to view them. This sequence is shown in Figure 8.1. The informed consent was
the first form in this sequence. As required by the IRB, the user had to sign the informed

72

consent before any data was collected from the user. After signing the document the user was
then asked to complete the first PANAS. The PANAS had to be taken before any other survey
or playing the game so that it reflected the user’s state of mind before any part of the study
could affect their mood. The IRI immediately followed the completion of the PANAS, which was
then followed by the pre-survey. The order of the IRI and pre-survey had no real significance
besides having to be completed before the user played the game. After the pre-survey, the user
entered actual gameplay. The gameplay for different levels is described in Section 3. Game
metrics were recorded in the background as the user played through the levels. After completing
the game, the user was asked to fill out another PANAS in order to measure their mood
immediately after experiencing the colorblind perspective. Finally, the user was asked to
complete the post-survey. The post-survey was introduced last so that the user did not have
time to think or relax after a potential stressor was introduced (i.e. the game) before measuring
their mood with a second PANAS. Additionally, the post-survey was the section of the study in
which users could express any feedback they had, making it the most sensible to introduce the
survey after the user completed all the other surveys and played the game.

8.3. Data Analysis
 There was some necessary filtering that had to be done with the data before it could be
used to create any visualizations. Depending on the information being plotted, data points had
to be removed from the dataset if there was not a consistent user ID present among the
necessary sections. A user ID not being present indicates that the user began the study, but did
not complete it within a single session, where a session is defined as the period of time that the
window the game was being played on was open. For example, some PANAS data could not be
used because because users would complete the first PANAS, play the game, but then close
the window before continuing on to the second PANAS. In graphs where is was necessary to
plot the change in positive or negative affect using PANAS scores as a measure, having the
user fill out both instances of the scale was absolutely necessary. Any datasets where a similar
issue occured was filtered in a similar fashion.

 Once the data was filtered, a series of visualizations were created in order to more easily
understand the the results of the study. Scatter plots were the only type of visualization used to
represent the data. The choice was deemed the most appropriate considering that the results of
data relied on viewing the correlation between two variables (e.g. change positive affect, change
in negative affect, empathy score vs. change in positive or negative affect). Using a scatter plot
allowed for all the data points to be viewed to discern if there was a specific pattern that was
being followed based on the shape the graph. A linear regression line was generated for each
scatter plot in order to discover the overall trend of the datasets being examined, if any.

73

9. Results and Analysis
The goal of the game was to have non-colorblind individuals empathize with the daily

struggles of the colorblind population and the stress they endure. In order to determine if our
game accomplished this, the stress of the players had to be measured in some fashion. The
PANAS was utilized in order to discern if the player experienced stress. By having them take the
PANAS before and after playing the game, the team was able to analyze the data and
determine if the game caused stress, which would have been indicative through a decrease in
positive affect and an increase in negative affect.

This section not only discusses the changes in player mood after playing the game, but

also reveals correlations between those changes in mood and other measured values. All of the
visualizations in this section are scatter plots with linear regression lines. The scatter plots
allowed us to examine individual data points to look for patterns or outliers. The linear
regression line on each graph informs us of the overall trend of the data without taking away
from the examinable pattern formed by the distinct scatter plot points.

The slope-intercept equation of each line can be seen below each graph for more

detailed analyses. The correlation, r, and the sample size, n, are also displayed below each
graph in order to determine whether the correlation is significant or not. Significance is
calculated by comparing r to its critical value in a one-tailed test. (i.e. the data is expected to
move in a specific direction). The alpha value used is 0.05, meaning we were conducting a test
where the odds that the correlation was a chance occurrence is 5 percent (Trochim, 2006). The
degree of freedom (df) is n - 2. If the r value of the graph was greater than the critical value,
found in the Appendix G, or less than the negative of the critical value, then the correlation was
considered significant. If the correlation is significant, this indicates that it was likely not a
chance occurrence and can be used for prediction and confidently drawing conclusions about
the variables being compared.

74

 (a) (b)

Figure 9.1. Positive affect before playing game vs. after playing game (a) and negative affect before playing
game vs. after playing game (b)

To determine whether or not the game caused stress, the PANAS scores before and

after the game were compared. More specifically, the change in positive affect and change in
negative affect were examined. This data can be seen through the scatterplots in Figure 9.1.
The scores from the first PANAS are plotted on the x-axis, while the scores from the second
PANAS are plotted on the y-axis.

Figure 9.1.a displays the comparison of positive affect scores. The slope of the trend line

(m = 0.952) indicates that on average, there was a slight decrease in positive affect after playing
the game. With a sample size of 31, the critical value is 0.301. The correlation (r = 0.831) is
much greater than the critical value, meaning r is significant for this relationship.

The negative affect of users also decreased. Figure 9.1.b displays the comparison

between negative affect scores before and after playing the game. The slope of the trend line
(m = 0.697), indicates that there was in even lower decrease in negative affect than there was
for positive affect. Since this is greater than 0.301, the critical value, the correlation (r = 0.591) is
considered significant.

75

 (a) (b)
Figure 9.2. Total IRI score vs. change in positive affect (a) and total IRI score vs. change in negative affect (b)

The players’ dispositional empathy was measured via the IRI. This data was recorded in

order to compare it to changes in mood. The purpose of this comparison was to examine if
those more disposed to empathy or its sub-categories would be more likely to experience a
greater change in mood after playing the game (e.g. a greater increase in negative affect).
Comparisons between the total IRI score and change and mood can be seen in figure 9.2.
When viewing the graphs in figure 9.2 and any similar visualizations involving changes in
PANAS scores, it is important to note that a positive value indicates an increase in affect while a
negative number indicates a decrease in affect.

 The relationship between the players’ total IRI score and change in positive affect can be
seen in Figure 9.2.a. The slope of the trend line is approximately (m = -0.009), indicating that
users with higher IRI score showed a miniscule decrease in positive affect. The slope is so
minute, however, that any correlations that derive from is are negligible. This is confirmed by the
correlation (r = -0.023). The critical value for a sample size of 30 is -0.306. Therefore, the
correlation is not significant because the critical value is greater than r.

The trend line in Figure 9.2.b suggests that players with higher IRI scores saw a
decrease in negative affect with an approximate slope of (m = -0.024). Similar to the Figure
9.2.a, however, the data set is very scattered and the correlation (r = -0.054) is greater than the
critical value, -0.306. Therefore, the correlation is not significant and no conclusions can be
drawn from the graph.

76

(a) (b)

Figure 9.3. IRI empathic concern score vs. change in positive affect (a) and IRI empathic concern score vs.
change in negative affect (b)

After examining the overall IRI data, the changes in mood were compared to IRI scores

in its different categories: empathic concern, personal distress, perspective-taking, and fantasy.
This data was compared in order to discern whether or not more specific types of empathy
affected the stress induced by the game.

Figure 9.3.a displays the relationship between player IRI empathic concern scores and

changes in positive affect. The positive slope of the trend line (m = 0.103) indicates that users
who scored higher in this subcategory of the IRI were more likely to experience an increase in
positive mood after playing the game. The correlation (r = 0.092) , however, does not exceed
the critical value of 0.301, meaning the correlation is not statistically significant.

 The data visualized in Figure 9.3.b indicates that after playing the game users
experience a slight increase in negative affect if their empathic concern score is higher. The
slope of the linear regression line (m = 0.007) is so miniscule, however, that this correlation is
negligible. This is supported by the correlation (r = 0.006) not being significant due to its critical
value of 0.301 being larger.

77

 (a) (b)

Figure 9.4. IRI personal distress score vs. change in positive affect (a) and IRI personal distress score vs.
change in negative affect (b)

The relationship between users’ IRI personal distress scores and their change in positive

affect is visualized in Figure 9.4.a. The trend line (m = -0.010) indicates that there is a small
decrease in positive affect. The r value (r = -0.011), however, is greater than the critical value of
-0.301. As a result, the correlation is not significant.

Figure 9.4.b displays how users’ personal distress scores affect their change in positive

mood. The positive slope (m = 0.194) of the linear regression line implies that users with higher
personal distress scores are more likely to experience an increase in negative affect. This
correlation, however, is not significant because the r value (r = 0.187) is less than the critical
value, 0.301.

78

 (a) (b)
Figure 9.5. IRI perspective-taking score vs. change in positive affect (a) and IRI perspective-taking score vs.

change in negative affect (b)

Figure 9.5.a displays the relationship between users’ IRI perspective-taking score and

their change in positive affect after playing the game. Figure 9.5.b compares the perspective-
taking score against their change in negative affect. The linear regression lines (m = -0.130 and
m = -0.059) of both graphs suggest that users who have a higher perspective-taking score are
more likely to see a decrease in both negative affect and positive affect. The correlations of both
graphs (r = -0.128 and r = -0.052), however, are greater than the critical value of -0.301. This
means the correlations of both scatter plots are not significant.

79

 (a) (b)
Figure 9.6. IRI fantasy scale score vs. change in positive affect (a) and IRI fantasy scale score vs. change in

negative affect (b)

The relationship between users’ IRI fantasy scale scores and their change in positive

affect is shown in Figure 9.6.a. The negative slope (m = -0.004) of the trend line suggests that
players who score higher in their fantasy scale score are more likely to experience a decrease
in negative affect. This slope is so small, however, that this result is negligible. This statement is
supported by the small correlation (r = -0.004) being greater than the critical value of -0.301,
meaning the correlation is not significant.

Figure 9.6.b displays the comparison of the users’ fantasy score against their change in

negative affect. The linear regression line’s slope (m = -0.342) suggests that users with higher
fantasy scale scores are more likely to experience a decrease in negative affect. The r value is
equal to (r = -0.3009). The critical value is equal to -0.301. Although very close, the r value is
not less than the critical value. This means that the correlation is not significant.

80

 (a) (b)

Figure 9.7. Table selection score vs. change in positive affect (a) and table selection score vs. change in
negative affect (b)

The specific scores that users received in the different puzzles in the game were plotted

against their change in positive affect and negative affect. These values were compared in order
to discern whether or not the users’ performance directly affected their mood. The Figures in 9.7
correspond to the table selection activity in level 1 of the game. Since the recorded grade of the
user for this activity was the number of tries it took to select the correct table, a higher score
corresponds to lower performance.

Figure 9.7.a shows the relationship between the users’ table selection score and their

change in positive affect. The linear regression line (m = -1.464) indicates that users who
performed poorly in the table selection task were more likely to see a decrease in positive affect.
However, the r value (r = -0.266) is not less than the critical value, -0.301. As a result, the
correlation is not significant.

The relationship between the users’ table selection score and their change in negative

affect is shown in Figure 9.7.b. The slope of this scatter plot’s corresponding trend line (m = -
0.429) suggests that users who performed more poorly in the table selection task had a greater
chance of experiencing a decrease in negative affect. With a correlation (r = -0.068) that is
greater than -0.301, however, the correlation is determined to be not significant.

81

 (a) (b)
Figure 9.8. Color by number score vs. change in positive affect (a) and color by number score vs. change in

negative affect (b)

The scatter plots in Figure 9.8 display the relationship between the users’ score in the

color by number task and their change in mood. The scores for this task were recorded as
percentages, therefore, higher numbers in the color by number score equate to better
performance.

The scatter plot shown in Figure 9.8.a displays the relationship between the users’ color

by number task scores and their change in positive affect. The trend line’s positive slope (m =
0.056) indicates that users who performed better in this task were likely to experience a greater
increase positive affect. With a sample size of 13, the critical value for this correlation was
0.476. The r value (r = 0.230) does not exceed the critical value, making the correlation not
significant.

Figure 9.8.b plots the relationship between the users’ color by number task scores and

their change in negative affect. Users who performed poorly in this task were more likely to
experience a greater increase in negative affect, as suggested by the corresponding trend line’s
negative slope (m = -0.104). The r value (r = -0.463) is greater than the critical value, -0.476,
meaning the correlation, while close, is not significant.

82

 (a) (b)
Figure 9.9. Table selection difficulty rating vs. change in positive affect (a) and table selection difficulty rating

vs. change in negative affect (b)

The users’ subjective rating of the difficulty of each task was compared against their

change in mood. After playing the game, users were asked to rate how hard they thought a
specific task was on a scale from one to five. A value of one corresponded with “easy”, while a
value of 5 corresponded with “hard”. The graphs in Figure 9.9 show the comparison of the
users’ difficulty rating of the table selection task and their change in mood.

Figure 9.9.a displays the relationship between the users’ difficulty rating for the table

selection task and their change in positive affect. The slopes of the lines of linear regression (m
= -0.356 m = -0.337) suggests that users who thought the task was harder were more likely to
experience a decrease positive affect and negative affect. With a sample size of 31, the critical
value of both graphs is -0.301. Neither of the graphs’ correlations (r = -0.084 and r = -0.069) are
less than the critical values, making the correlations not significant.

83

 (a) (b)
Figure 9.10. Color by number difficulty rating vs. change in positive affect (a) and color by number difficulty

rating vs. change in negative affect (b)

The scatter plot shown in Figure 9.10.a plots the relationship between the user’s

difficulty rating for the color by number task and their change in positive affect. The linear
regression line’s slope value (m = -1.577) implies that users who found the task to be more
difficult experienced a greater decrease in positive affect. The correlation (r = -0.262), however,
is greater than the critical value, -0.301. Therefore, the correlation is not significant.

Figure 9.10.b shows the relationship between the user’s difficulty rating for the color by

number task and their change in negative affect. The slope of the trend line (m = 2.144)
indicates that players who found the task to be harder saw a greater increase in negative affect.
Since the r value (r = 0.310), exceeds the critical value of 0.301, the correlation is significant.

84

 (a) (b)

Figure 9.11. Learning experience rating vs. change in positive affect (a) and Learning experience rating vs.
change in negative affect (b)

After completing the first level of the game, users were asked if they felt they learned

more about the colorblind experience. They answered this question by rating how much they
learned on a scale from one to five. One corresponded with not learning anything, while five
corresponded with learning a lot. These subjective ratings were plotted against the users’
change in mood in order to derive any possible correlations between the two variables.

Figure 9.11.a displays the relationship between the users’ rating of their learning

experience and their change in positive affect. The linear regression line (m = 1.225) indicates
that users who felt they learned more about the colorblind experience after playing the game felt
a higher increase in positive affect.

Figure 9.11.b show the relationship between the users’ rating of their learning

experience and their change in negative affect. The slope of the corresponding trend line (m =
0.15) suggests that users who felt they learned more about the colorblind experience felt a
greater increase in negative affect.

The sample size for both data sets is 31, meaning they share a critical value of 0.301.

Neither of the r values (r = 0.266 and r = 0.028) of the data sets exceeds the critical values,
making their correlations not significant.

85

10. Discussion
Our original hypothesis was that positive affect would decrease and negative affect

would increase after playing the game due to the stress. This stress would have been the result
of experiencing simulated color blindness while making color-based decisions and receiving
negative feedback for incorrect actions. The initial data we examined contradicted our
hypothesis, but further analysis showed results that supported our original claim. There were
also multiple relationships examined that led to no legitimate conclusions. Many of these
contradictions and dead-ends could be explained by a multitude of potential limitations
pertaining to the project study.

10.1. Explanation of results
 When comparing the PANAS scores of users before and after they played the game the
results contradicted our original hypothesis. We stated that positive affect would decrease and
negative affect would increase due to stress. The data showed, however, that while positive
affect did slightly decrease among players, negative affect decreased significantly more after
playing the game. These correlations were tested to be significant. While positive and negative
affect are independent of each other, a potential distressor was still able to lessen negative
mood, an atypical result. Our team discerned that this result was a due to players being
interested in the game or its concept. This interest coupled with the stress induced by the game
would explain our unique results. The decrease in positive affect was lessened due to stress
being reduced by interest, while interest overwhelmingly influenced the decrease in negative
affect. Further analyses were performed after this first comparison in order to attempt to
understand these contradictions and discover correlations that matched our original hypothesis.

 The original purpose of recording IRI scores was to discern if a person’s dispositional
empathy had any effect on their change in positive or negative affect after playing the game.
Since all four subcategories of the IRI scoring system represented greater empathy of a specific
type (e.g. personal distress) for users who scored higher in those areas, we took the summation
of those scores and compared it to the change in PANAS scores first. Then, the scores for the
four separate subcategories of empathy were compared to the PANAS scores. While some
correlations made sense (e.g. players who had a higher IRI personal distress score had a
greater increase in negative affect), none of the correlations tested were significant. As a result,
no conclusions could be confidently drawn from these data sets.

 The next step in the analysis process was to determine whether or not the user’s results
directly affected their change in mood. When plotting the table selection scores against changes
in positive affect, the result matched our hypothesis: people who performed poorly saw a
decrease in positive affect, most likely due to stress. Negative affect, however, decreased,
contradicting our hypothesis. This could be explained by the type of feedback that user received
when picking the incorrect table. While they were clearly informed that their choice was
incorrect, the audio feedback received was the teacher gently informing them that their choice
was wrong, not a reprimand. This type of gentle statement could actually make the user feel

86

marginally better and decrease their negative mood, while the stress of having to choose the
correct table could still decrease their positive affect. When the correlations were tested for
significance, however, it was than determined that neither data set had a significant correlation.
Therefore, no conclusions could be confidently drawn from this data.

 Comparing the users’ color by number scores to their change in mood showed promising
results. The data showed that users who scored higher in the color by number task experienced
a decrease in positive mood and increase negative mood. This result matches our hypothesis
and is most likely due to two factors. First, this task is the hardest task in level one, so it should
have definitely caused a greater amount of stress than the table selection task. The second
factor is the type of feedback that the user received. The color by number task was designed to
give three types of feedback depending on the score the user received: positive feedback,
slightly embarrassing feedback, and extremely embarrassing feedback. Players with lower
scores received the extremely embarrassing feedback, while players with higher scores receive
the positive feedback. This feedback is the last scene the player encounters before the level
ends and they are asked to complete the next PANAS. With this information, it would make
sense that users experienced a decrease in positive affect and an increase in negative affect for
performing poorly. The reaction they experienced for being incorrect is purposely negative and
meant to cause stress. This reaction occurring at the end of the level also leaves the stress
induced from it freshly imprinted in their mind as they complete the second PANAS. While these
results support our hypothesis, the correlations were tested to not be significant. Therefore,
these conclusions cannot be confidently supported, despite having stronger correlations than
other graphs.

 We also made an effort to determine if perceived difficulty of a task affected the users’
change in mood. Similar to the table selection score analysis, a decrease in both positive affect
and negative affect was viewed when comparing subjectively rated difficulty for the table
selection task and changes in affect. We believe that this result is also due to the feedback
received by teacher. While the user is stressed about making incorrect choices, the teacher’s
gentle feedback is not severe enough to cause an increase in negative feedback. In fact, the
perceived kindness of the feedback could leave users to believe that the task is not as hard as it
actually is, further decreasing the stress induced from the activity. No conclusions could be
confidently drawn from this data, however, because none of the corresponding correlations
tested as significant.

 The relationship between perceived difficulty of the color by number task and the users’
change in mood was the same as comparing the tasks’ scores to changes in affect. Players who
thought that the puzzle was more difficult were more likely to experience a decrease in positive
affect and an increase in negative affect. This is most likely due to the same factor that caused
this pattern when comparing scores and mood: the more severe feedback. Not only that, but the
score the user receives for this activity is displayed at the end of the first level, reminding users
of how well, or poorly, they performed the task. All of this feedback can make the task seem
much harder, which is extreme considering the color by number task is the hardest task of the
first level. In this case, the correlation relating to positive affect did not test as significant, but the

87

correlation relating to negative affect did. Therefore, valid conclusions could at least be drawn
from the changes in negative affect, but it is important to note that the correlation respective to
positive affect was stronger than other tested correlations in this study.

 Players were also asked how much they felt they learned about the colorblind
experience in the Post-Survey. We decided to compare this metric to the changes in positive
and negative affect in order to see if the induced stress from the game would be incorporated
into how much the user felt they learned. Users who said they learned more showed an
increase in both positive and negative affect. This is probably due to the fact that they enjoyed
the concept of experiencing the colorblind perspective, increasing positive affect, but also
became stressed through the experience, increasing negative affect. Neither of the correlations
related to this data, however, tested as significant. As a result, no conclusions could be drawn
from the patterns in the data.

10.2. Potential limitations
 There were a multitude of potential limitations that were considered before collecting
data, and others that were considered after viewing the initial data sets. These limitations were
taken into account when constructing the study in order to minimize their effects on the data. It
was important, however, that these limitations were recognized and considered when viewing
the data and any outliers within it.

 It was entirely possible that the game, which should have decreased the users’ positive
mood as a potential stressor, actually caused the positive affect to increase. This was seen in
the data as well, where the positive affect of some users actually increased after playing the
game. This could have been due to the users’ interest in the game itself and the concept behind
it. With descriptors such as “interested” and “excited”, a user who thought that the game or its
message was enjoyable could experience higher scores with these words and other positive
emotions while completing the PANAS. Additionally, if a player achieved greater success in the
puzzles in the game, it could result in an increase in their positive emotions and also cause their
positive affect to increase through that medium.

 Besides the game, the surveys were also considered as part of the potential limitations
of the study. If a user became bored or thought the surveys were lengthy or unnecessary, their
positive mood could have decreased and negative mood may have increased. The same effect
could be achieved when considering the user was unaware of how many surveys would be
asked to take before playing the game. While this change in mood was the hypothesized result,
the surveys were not the predicted causation. When users became so opposed to taking the
surveys that they quit the study before completing it, it made a number of data points useless
that required comparison between two survey results (e.g. 8 users quit the study before
completing the second PANAS).

 The environment that the user experienced the study in could have also had a large
effect on the data. Since the application was created as a web-based game, the link to a

88

working version of it was made available via Heroku. This web-based feature, while convenient,
also meant that a user could play in any environment they desired so long as they had a
computer with a connection to the internet. The only limit to their environment was being forced
to play the game via Google Chrome. This variation in environmental factors could have
resulted in less precise or accurate data.

The computer itself is another part of the environmental factors that could negative affect
the data from the study. At times, the game required a sizable amount of resources from the
CPU. This would cause the machine the game is running on to slow down if the there were too
many CPU-heavy operations that had to completed. This could have decreased the positive
affect as compared to the first PANAS because the user became impatient with the study.

89

11. Project Promotion
Once the game was far enough along that the first level was playable, it was decided

that it was time to start promoting the game so that others could play it and provide feedback on
what had been made so far. The first place that the project was promoted was at WPI’s Alpha
Fest in which the alpha versions of games were set up in a small area where people could come
and freely try the games there while the developers observed or played games themselves.
Here, a version of the game that contained a mostly complete first level was set up on a laptop
for people to try with it being advertised as a game that “simulated what it’s like to be colorblind.”

The second way that the project was promoted was through sending out a link to the
friends and families of all group members that would let them play the game on their own
computer in the Chrome web browser. This version of the game contained a more complete
version of the first level as well as surveys that those who played would be asked to take before
and after playing. This way was done in order for a large number of people to play the game as
well as provide feedback on it without any of the group members needing to be present for it.

The third way that the project was promoted was by having it tested by an IMGD class
that one of the project advisors was teaching at the time. This was done in order to get feedback
from those who understood how games work and would be able to provide accurate information
on any bugs that were found. The version of the game that was presented to them was the
same version that was sent out in the link mentioned above.

The final way that the project was promoted was through having it displayed at WPI’s
booth at PAX East, a large gaming convention where consumers come from around the world to
play the games on display there. This was done to get the concept and name of the game out to
the general public as thousands of people would be present at the convention. This allowed for
the game to be seen by a large number of people in a very short period of time, serving as a
great way to promote it. The version of the game that was provided for this promotion was a
fully complete version of the first level without any surveys before or after it.

90

12. Conclusion
 The goal of Unseeable was to allow non-colorblind individuals to empathize with
colorblind persons by seeing their perspective and understanding some of the struggles they
endure in their everyday lives. We determined that the game should induce an ample amount of
stress in order to achieve this goal because color-blind persons experience distress when
coping with their impairment. In order to discern whether or not the game induced stress, we
recorded the users’ mood as a state before and after the game in order to examine their change
in mood through positive affect and negative affect. A number of other metrics were recorded in
order to view the relationship between them and any changes in mood that could relate to our
experience goal.

 When comparing the changes in positive affect and negative affect after playing the
game, the results contradicted our hypothesis. Positive affect did decrease slightly for players,
but negative affect decreased by a larger amount. Upon further analyses, however, we found
that plotting the change in affect against the users’ color by number task score and their
perceived difficulty of the task yielded the results we desired. Players with lower scores that
thought the game was more difficult experienced a decrease in positive affect and an increase
in negative affect, matching our original hypothesis. Although the correlations related to the
color by number task did not all test as significant, we still decided that they were important
supporting data sets. These data sets were the two pairs (i.e. comparing against positive affect
and negative affect) that had the strongest correlations in the study.

These two correlations were the most important in supporting our hypothesis because
the color by number task was the main puzzle of the first level. The color by number task was
meant to be the hardest color-based puzzle in level one. The feedback the user received from
the game was meant to be of major importance as well, being the only puzzle in the level where
the score was reported back to the user. The audio feedback the player receives is also the
harshest in content, making it the task that had the highest potential to induce the most stress in
a player. It is for these reasons that the correlations between the color by number task’s score
and its perceived difficulty with the change in positive affect and negative affect held the most
value to our team. Other correlations were drawn from analyses of the data, but the data for a
large majority of these correlations were tested to not be significant, making results stemming
from them unreliable.

Based on the correlations in the data found in comparing the users’ color by number

score and their difficulty rating of the task with change in positive affect and negative affect, we
determined that the game had accomplished its experience goal. Through the main section of
the game experience (i.e. the color by number task), players experienced induced stress that
indicated to our team that they were struggling with color identification, similar to the colorblind
population. By feeling those same emotions, the non-color blind participants were able to
empathize with colorblind people, which was our original intent. This is further supported by the
comments users provided indicating that they felt the game helped them to understand the

91

colorblind perspective. These comments can be found in Appendix H. As a result, we consider
the game and study to be a success.

Overall, the entire team felt that this MQP was a good project and a valuable learning

experience. From an art perspective, it was challenging to find a style that was aesthetically
pleasing, but did not take away from the experience of the colorblind perspective. From a
technical perspective, creating a game engine from nothing proved to be a very arduous task.
Collecting and analyzing the data to determine whether or not the game fulfilled the experience
goal was also a very in-depth process. All of these processes, while difficult, allowed us as
students to discover and learn a vast amount of information that we were able to take with us
into the future. Based on our results and the feedback we received from players both in person
and through written comments, we felt as if our experience goal had been met and that this
MQP was a project we could be proud of.

92

References
Capan, T. (n.d.). Why the hell would I use node.js? A case-by-case tutorial. Retrieved

from https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js

Crunchbase. Heroku. Retrieved from https://www.crunchbase.com/organization/heroku

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a
multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113-126.
10.1037/0022-3514.44.1.113 Retrieved
from https://search.proquest.com/docview/1295920010

Holowaychuk, T. J.Express.js. Retrieved from https://expressjs.com/

Jenny, B. (2017). Color oracle. Retrieved from http://colororacle.org/

Lawrence, E. J., Shaw, P., Baker, D., Baron-Cohen, S., & David, A. S. (2004). Measuring
empathy: Reliability and validity of the empathy quotient. Psychological Medicine, 34(5),
911-920. 10.1017/S0033291703001624 Retrieved
from http://journals.cambridge.org/abstract_S0033291703001624

Mark H. A. Davis. (1995). A multidimensional approach to individual differences in
empathy Retrieved
from http://data.theeuropeanlibrary.org/BibliographicResource/2000051616803

Medlock, J. (2017, March 30). An overview of MongoDB & mongoose. Retrieved
from https://medium.com/chingu/an-overview-of-mongodb-mongoose-b980858a8994

Miller, A. (2014, August 20). 5 things people who are colorblind (and their doctors) want you to
know. Retrieved from https://health.usnews.com/health-news/health-
wellness/articles/2014/08/20/5-things-people-who-are-colorblind-and-their-doctors-want-
you-to-know

MongoDB.MongoDB and MySQL compared. Retrieved
from https://www.mongodb.com/compare/mongodb-mysql

Munro, J. (2017). An introduction to mongoose for MongoDB and node.js. Retrieved
from https://code.tutsplus.com/articles/an-introduction-to-mongoose-for-mongodb-and-
nodejs--cms-29527

N.a. (n.d.). About heroku.

N.a. (n.d.). BSON specification. Retrieved from http://bsonspec.org/

N.a. (n.d.). mLab documentation. Retrieved from https://docs.mlab.com/

N.a. (n.d.). MongooseJS documentation. Retrieved from http://mongoosejs.com/docs/guide.html

N.a. (n.d.). Node.js introduction. Retrieved
from https://www.w3schools.com/nodejs/nodejs_intro.asp

N.a. (2015). Facts about color blindness. Retrieved
from https://nei.nih.gov/health/color_blindness/facts_about

93

N.a. (2016). Colour blind awareness. Retrieved from http://www.colourblindawareness.org/

N.a. (2018). Enchroma: Optics engineered for color vision. Retrieved
from http://enchroma.com/technology/

Rachowicz, J. (2017, February 23). When, how and why use node.js as your backend
Retrieved from https://www.netguru.co/blog/use-node-js-backend

Shan, P. (2015, June 7). Mongoose vs mongodb native driver – what to prefer? Retrieved
from http://voidcanvas.com/mongoose-vs-mongodb-native/

Simoneau, L. (2010, July 10). Node.js is the new black. Retrieved
from https://www.sitepoint.com/node-js-is-the-new-black/

Spreng, R. N., McKinnon, M. C., Mar, R. A., & Levine, B. (2009). The toronto empathy
questionnaire: Scale development and initial validation of a factor-analytic solution to
multiple empathy measures. Journal of Personality Assessment, 91(1), 62-71.
10.1080/00223890802484381 Retrieved
from http://www.tandfonline.com/doi/abs/10.1080/00223890802484381

Stueber, K. (2013). Measuring empathy. Retrieved
from https://plato.stanford.edu/entries/empathy/measuring.html

Sukin, I. (2013). Game development with three.js. Livery Place, 35 Livery Street, Birmingham,
UK: Packt Publishing Ltd.

Trochim, W. M. K. (2006). Correlation. Retrieved
from https://www.texasgateway.org/resource/124-testing-significance-correlation-
coefficient-optional

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of
positive and negative affect. Journal of Personality and Social Psychology, 54(6), 1063-
1070. 10.1037/0022-3514.54.6.1063 Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/3397865

Xplenty. (2017, September 28). The SQL vs NoSQL difference: MySQL vs MongoDB. Retrieved
from https://medium.com/xplenty-blog/the-sql-vs-nosql-difference-mysql-vs-mongodb-
32c9980e67b2

94

Appendices

Appendix A: Informed Consent
Informed Consent Agreement for Participation in a WPI Research Study

Investigator: Brian Moriarty, IMGD Professor of Practice

Contact Information:

Brian Moriarty, bmoriarty@wpi.edu, 508 831-5638
Isaiah Cochran, ilcochran@wpi.edu, 860 995-4606
Alex Horton, aihorton@wpi.edu, 617 640-3204
Drew Tisdelle, ddtisdelle@WPI.EDU, 508 965-0927
Tommy Trieu, ttrieu@wpi.edu, 860 716-8498

Title of Research Study: Unseeable

Sponsor: WPI

Introduction: You are being asked to participate in a research study. Before you
agree, however, you must be fully informed about the purpose of the study, the
procedures to be followed, and any benefits, risks or discomfort that you may
experience as a result of your participation. This form presents information about the
study so that you may make a fully informed decision regarding your participation.

Purpose of the study: The purpose of this study is to obtain playtest feedback in order
to locate/address operational bugs, to identify opportunities for design improvement,
and to gather data to conduct statistical analyses on to measure games effectiveness
towards the experience goal.

Procedures to be followed: You will be asked to play a brief game lasting less than
ten minutes. Instrumentation in the game software will anonymously record your activity
during play. Before and after completing the game, you will be asked to complete brief,
anonymous surveys describing your subjective experience, a positive and negative
affect scale, and an interpersonal reactivity index.

Risks to study participants: There are no foreseeable risks associated with this
research study.

Benefits to research participants and others: You will have an opportunity to enjoy
and comment on a new game under active development. Your feedback will help
improve the game experience for future players.

Record keeping and confidentiality: The only instance of your personal information
being recorded will be whether or not you are colorblind. Records of your participation in

95

this study will be held confidential so far as permitted by law. However, the study
investigators and, under certain circumstances, the Worcester Polytechnic Institute
Institutional Review Board (WPI IRB) will be able to inspect and have access to this
confidential data. Any publication or presentation of the data will not identify you.

Compensation or treatment in the event of injury: There is no foreseeable risk of
injury associated with this research study. Nevertheless, you do not give up any of your
legal rights by signing this statement.

For more information about this research or about the rights of research
participants, or in case of research-related injury, contact the Investigator listed
at the top of this form. You may also contact the IRB Chair (Professor Kent Rissmiller,
Tel. 508-831-5019, Email: kjr@wpi.edu) and the University Compliance Officer (Jon
Bartelson, Tel. 508-831-5725, Email: jonb@wpi.edu).

Your participation in this research is voluntary. Your refusal to participate will not
result in any penalty to you or any loss of benefits to which you may otherwise be
entitled. You may decide to stop participating in the research at any time without
penalty or loss of other benefits. The project investigators retain the right to cancel or
postpone the experimental procedures at any time they see fit.

By signing below, you acknowledge that you have been informed about and consent
to be a participant in the study described above. Make sure that your questions are
answered to your satisfaction before signing. You are entitled to retain a copy of this
consent agreement.

___________________________ Date: ___________________
Study Participant Signature

Study Participant Name (Please print)

96

Appendix B: Pre-Survey

Pre-survey with ‘Yes’ as the answer to question one.

97

Pre-survey with ‘No’ as the answer to question one.

98

Appendix C: Post-Survey

99

Appendix D: PANAS

100

Appendix E: IRI

101

102

Appendix F: Technical Definitions Glossary
AJAX call - Asynchronous Javascript and Xml call that sends a request to and can receive
responses from the server

Audio - a Three.js global audio object

AudioBuffer - objects designed to hold snippets of audio

AudioListener - virtual listener of audio effect in the scene

AudioLoader - class for loading an AudioBuffer

BoundingBox - Smallest possible box that contains the entirety of a geometry

BSON - short for binary JSON, a binary-encoded serialization of a JSON like document

Clock - keeps track of time

FBX (Filmbox) - file format that allows import and export of files between 3d animation software

Geometry - vertices, faces, colors, etc of 3D objects

Group - group of objects in Three.js used to manipulate multiple object at once

JSON - JavaScript Object Notation, data format used very often in browser-server
communication

Material - describe the appearance of an geometry, such as texture and reflectiveness

Mesh - the combination of a geometry and material

MeshBasicMaterial - simple material for drawing geometries in a flat way

Mousedown event - fired when a pointing device is pressed on an element

Mousemove event - fired when a pointing device is moved over an element

Npm package - folder containing a program described by a “package.json” file

POST request - HTTP request method that requests that a server accept the data enclosed in
the message body

103

Raycasting - casting a ray outward from the camera, intersection of the ray with objects is used
to determine what the cursor is over

SessionStorage - a property of the browser where values can be saved for as long as the
browser window is open.

Scene - a Three.js object that allows users to set up what and where is to be rendered (e.g.
objects, lights, and cameras).

Spline - smooth curve created from a series of points, used for camera movement

Tween - used in animation to generate intermediate values between two values to give the
appearance of smooth motion

UUID/GUID - Universally/Globally Unique Identifier a 128-bit number used to uniquely identify
objects in programs.

Window - the browser’s window.

104

Appendix G: Table of Critical Values for Pearson

105

Appendix H: Player Feedback
"Really good engineering wise; camera controls clean, environment interactive. A long load time
and uses a lot of memory but given the 3D work being done in a browser, that's completely
understandable. Coloring the sections according to the instructions, as I'm sure you intended, is
impossible. It doesn't show you the real colors; what's the point in reporting the user's "score"?
Expressing difficulty here is also somewhat confusing. It's like asking me to pick a card from a
deck at random, scoring me based on what card I chose, and then asking me how hard it was.
Not hard to select something from the deck, and difficulty is defined by the effort required, which
is almost none. Perhaps consider asking the user how they thought they were doing compared
to the real results? Also, does it matter which table you pick? Or is that always wrong? As an
educational piece that gives perspective, it is very good. I'm looking forward to where this goes!"

"Some of the fonts seemed a bit harder to read than normal fonts, especially those used during
the title screen."

"I found myself wondering if I liked the intro explanation font for some strange reason. I thought
it looked like some of the edges of the letters were missing, though that is probably the font.
When I was trying to compare my drawing to the other kids' drawings it seemed like the colors
for the other kids' drawings were slightly lighter. After I selected a wrong table the camera
pointed directly at another table, which I clicked assuming the game was pointing me toward the
correct table when it wasn't. I could only think of these, which don't even need to be changed. I
hope my comments were useful. It was a great game!"

"I was so close lol! great game concept"

"So the game does not allow the player to color over an area. Is that intentional? I would feel a
little more stressed if there was a time limit. Because I am not color blind, it is a little hard to be
in that situation. If the game forces me to be in that situation by any mean, it could change the
way I feel. It does not need to be a timmer. Anything that can make people agitated, which
forces them to redirect their emotion to the coloring activity."

"Ignore my survey results this time, wanted to take it twice to leave some actual feedback. -
Really would like to see actual close up of final colored version. -Really would like undo or
"eraser" for mistake sections or accidental button presses. -would be nice to have "try again"
because it is really addicting! -be able to see/switch between colorblind and not color blind
mode at end to see how colors change when looking at your drawing. good work! cant wait for
the legos!"

"Great game and survey, keep up the good work!"

"that was cool. good job!"

106

"Those two simple acts are very effective. The situation is very believable. I would only say to
add more teacher dialogue towards the end, so that there is someone defending you for a bit."

"I do not believe the stems on the flowers during the paper coloring activity were labeled with a
number, so after I had colored in everything that did have a number, I was not sure what to do.
Once I found that out and colored in the non-labeled stems, then the game continued on. That
could be a little more clear, but otherwise the game did a great job of putting you in the shoes of
a kid who is color-blind."

"the stem on the flower on the right didn't get colored in."

"I feel that a child not coloring a picture correctly would not be seen as something the other kids
would make fun of but rather it would just be interpreted as the child not following directions
properly. That being said, I understand the reasoning for why this narrative was used and it
seems to serve its purpose well."

"I wonder if the colors were that of a certain kind of color blindness or if you generated random
colors. It would be interesting if that were the case as if there was a full game and you had to
remember, blues are yellows, greens are reds, ect ect. Doing tasks in which you did not know if
you were selecting the color intended or the physical color that you see."

"One of the color regions turned back to white after I colored it, and I couldn't color it anymore. It
still let me finish the game, so I think it was just a visual bug."

"I really enjoyed the game and even though it is very short, it has a very powerful message to it
that I would likely have never thought of."

"Surprisingly effective for such a short experience. Did an excellent job at making me feel a
social pressure to fulfill an obligation I had no idea how to fulfill. Seeing the picture on the board
with all the correct pictures at the end was an especially nice touch, really made me empathize
with those that may have gone through something similar. "

"In the last scene ("Sam doesn't know how to color!"), it could be more effective if the teacher
and kids were all staring at the player."

"The only changes I would make would be to give the characters facial features and to
proofread for grammar errors in the script. Also, it seemed like at the end, the correct color
scheme shown in the other children's drawings contained colors that were not on my sheet at
all, and since I used all the crayons, that means that some of the correct crayons weren't
available to me to use."

"Interesting concept and execution."

107

"If the goal of the project was to make people see what life is like while color blind, then this
game demonstrates that incredibly well."

"I really liked that it was a short experience with a great deal of impact. It featured just a few
simple activities that I never thought about from the perspective of someone with color
blindness."

"As I am already partly color blind, I wonder if the game corrects at all for that (i.e. would
someone who indicates that they are not color blind in the pre-survey be shown different colors).
While I have difficulty distinguishing certain colors, it was interesting and mildly distressing to
see how much more difficult it is being unable to see certain colors entirely."

"Seems a little too short. Also, a little more difficult that it really would be. A color blind kid would
likely learn what colors generally look like , while we had only maybe minute of reference to
other things, with no objects be could use as reference (the sky maybe, but everything else
either has no distinct color they always have or is a mostly brown or monochrome shade (like
human skin)."

