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Abstract 

The effects of quenchant flow around a 4140 steel cylinder have been 

experimentally investigated.  An apparatus was developed to repeatably immerse a two 

inch diameter by eight inch long probe into an agitated quench tank.  The probes were 

normalized prior to quench to relieve any residual stresses.  Distortion, residual stress and 

hardness were experimentally measured.  The results verified that there was a variation of 

cooling rate in respect to quenchant flow around the cylinder.  The data showed that there 

was a higher cooling rate nearest to the quenchant flow versus a much lower cooling rate 

away from the flow.  Computational fluid dynamics are also presented to give insight into 

the behavior of the quenchant flow in the tank and around the cylinder. 
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1.0 Introduction 
The process of quenching steel refers to the rapid cooling from an austenitizing or 

solutionizing temperature to a significantly cooler temperature [1].  For steel this refers to 

heating into the austenite phase field, typically to 845°C for 4140 steel, and then rapidly 

cooling to a temperature below the martensite finish temperature.  The purpose of 

quenching steel is to produce the martensitic phase that is hard and strong, while 

minimizing distortion and residual stress.  These steels need to be tempered after 

quenching to increase the toughness.  Due to the demand for hardened steel parts an 

understanding of the mechanisms of distortion and residual stress development is 

necessary.  Further research has been conducted at the Center for Heat Treating 

Excellence at Worcester Polytechnic Institute [2,3,4,5,6] 

The most widely used practice of quenching is referred to as direct quenching [1].  

Direct quenching involves quenching the part directly from the austenitizing temperature.  

This can be accomplished by immersion in different types of media (i.e. oil, water, 

polymer solutions, etc.).  The media selected is dependant on the cooling rated desired. 

Agitation is also a key parameter that influences the cooling rate [7].  

In commercial heat treating it is necessary to achieve the desired mechanical 

properties while maintaining the dimensional tolerances.  The mechanisms involved in 

hardening and distortion are discussed in this thesis.  Two aspects to note about the 

distortion associated with quenching are: 

• Steel has a higher strength when cold than when hot 

• Steel shrinks while cooling but expands during martensite formation 
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 Coupled with distortion is residual stress development.  The manner by which 

stress is generated during a quench is complex and the stress obtained is the net effect of 

the combination of several processes [8].  There are three different mechanisms that are 

coupled during the quenching of steel, temperature effects, phase transformations, and 

stress/strain development [9].  Thermal stress generation arises from the temperature 

gradients formed because it is difficult to cool the part uniformly.  There is heat released 

during the work done in deformation.  Phase transformations are a temperature dependant 

function.  There is an associated heat release with phase transformation.  There is a 

volume change during phase transformation causing stress, and the transformation 

kinetics are effected by stress state. 

 In order to understand what is going on inside the quench tank computational 

fluid dynamics have been employed.  With the help of Michael Stratton using Fluent 6.0 

it was possible to model the tank and probe setup.  By using experimental data of the 

quenchant flow obtained with a turbine flow meter, and measured densities and 

viscosities of the quench fluid it was possible to determine the velocities and flow trends 

within the tank. 

It is the goal of this project to understand how part orientation with respect to 

quenchant flow influences distortion, and residual stress generation in 4140 steel.  

Experiments were conducted using a 2” diameter x 8” long 4140 probe. The probe was 

heated in an atmosphere of argon and subsequently quenched normal or at 45 degrees to 

the surface with horizontal agitation.  Along with empirical investigation of distortion, 

residual stress and hardness, computational fluid dynamics has been employed to 

determine how the flow around the part influences heat transfer.   
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Distortion and residual stress were measured at four points around the probe. 

Distortion was measured with a Coordinate Measuring Machine. The residual stress was 

measured using an X’Pert X – Ray Diffractometer System at Philips PANalytical, in 

Natick, MA. The hardness measurements were preformed both longitudinally and in the 

transverse direction to give insight to the formation of martenstite with respect to 

quenchant flow.  
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2.0 Literature Review 

2.1 Fundamentals of Quenching 
 The commercial heat treating of carbon and alloy steels consists of three stages, 

austenitizing, quenching and tempering.  For quench hardening of carbon and alloy steels 

austenitizing is accomplished by heating the material into the appropriate temperature 

range where it becomes austenitic.  Once the steel is austenitic it is rapidly cooled, 

typically by immersion in water, oil, polymer solution, salt bath, or high pressure gas 

[10].  In steel the rapid cooling from the austenite phase produces a hard martensite 

phase.  The degree of hardness and depth of hardness depend on cooling rates and the 

alloy of the steel.  Some ferrous materials must be cooled very rapidly from their 

austenitizing temperatures to harden significantly because of their low hardenablility (ie. 

SAE 1050 steel), while some steels can quenched slowly and become fully hardened (ie. 

SAE 8660).  [11, 12]. 

The stage of prime importance is quenching.  In this stage is where the majority of 

the transformations occur.  Various methods of quenching are available depending on the 

desired outcome.  Different methods of quenching include but not limited to: Direct 

quenching, Time quenching, Selective quenching, Spray Quenching and Gas quenching 

[11].   

1. Direct quenching is a process of direct cooling of the metal from the austenitizing 

temperature to ambient temperature.  This is the most commonly used method for 

quenching.  This process is also used for various metals that have undergone a 

solutionizing treatment [11].  
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2. Time quenching involves the cooling of the part with two or more different 

cooling rates.  This method uses one cooling rate to cool the part below the nose 

of the TTT curve and then incorporates a different cooling rate to obtain the 

desired properties.  Time quenching is normally used to minimize distortion and 

cracking associated with rapid cooling through the martensite transformation 

region [11]. 

3. Selective quenching involves cooling of specific areas of a part to produce desired 

properties of that section.  This is accomplished by insulating the remainder of the 

part to shield it from the quenching medium [11]. 

4. Spray quenching uses a pressurized stream to quench the part.  Cooling rates 

associated with spray quenching are normally very high.  The velocity of the 

stream allows for removal of bubbles and breaks down any vapor that can be 

associated with the vaporization of the quench medium [11]. 

After quenching, tempering treatments are used to create desired mechanical 

properties.  The process of tempering includes reheating the hardened steel to some 

temperature below the eutectoid temperature to decrease the hardness and/or increase the 

toughness. [10] 

2.2 Quenching and Its Stages [13] 
“Heat Treatment can be defined as an operation or combination of operations 

involving the controlled heating and cooling of a metal in the solid state for the purpose 

of obtaining specific properties”[14].   

As one of the most important heat treatment processes, quenching of steel refers 

to the cooling from the solution treating temperature, typically 845-870˚C (1550-1600˚F), 
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into the hard structure-martensite [1]. Quenching is typically performed to prevent ferrite 

or pearlite formation and to facilitate bainite or martensite formation [1]. After 

quenching, the martensitic steel is tempered to produce the optimum combination of 

strength, toughness and hardness. For a specific steel composition and heat treatment 

condition, there is a critical cooling rate for full hardening at which most of the high 

temperature austenite is transformed into martensite without the formation of either 

pearlite or bainite[14].  

As the steel is heated it absorbs energy that is later dissipated by the quenchant in 

the quenching process. It is important to understand the mechanisms of quenching and 

the factors that affect the process since these factors can have a significant influence on 

quenchant selection and the desired performance obtained from the quenching process.  

The shape of a cooling curve is indicative of the various cooling mechanisms that occur 

during the quenching process. For the liquid quenchants like water and oil, cooling 

generally occurs in three distinct stages, film boiling, nucleate boiling and convection 

stages, each of which has different characteristics. Figure 2.1 shows the cooling and 

cooling rate curves during the quenching process and the phenomena that occur during 

these three stages.  
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Figure 2.1: Cooling Mechanism [CHTE] 

 
 
Film boiling phase 

 
The first stage of cooling, which is denoted as D-E stage in Figure 2.1, is 

characterized by the formation of a vapor film around the component [1]. This vapor 

blanket develops and is maintained while the supply of heat from the interior of the part 

to the surface exceeds the amount of heat needed to evaporate the quenchant and 

maintain the vapor phase. This film acts as an insulator and starts to disappear when the 

Leidenfrost temperature, the temperature above which a total vapor blanket is 
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maintained, is reached. This is a period of relatively slow cooling during which heat 

transfer occurs by radiation and conduction through the vapor blanket. This stage is non-

existent in parts quenched in aqueous solutions with more than 5% by weight of an ionic 

material as potassium chloride sodium hydroxide or sulfuric acid.  In these cases 

quenching starts with nucleate boiling [1].  

Nucleate boiling phase 
 

Upon further cooling, stage C-D, or the nucleate boiling stage begins, until it 

reaches the maximum cooling at point C. This cooling mechanism is characterized by 

violent boiling at the metal surface. The stable vapor film eventually collapses and cool 

quenchant comes into contact with the hot metal surface resulting in nucleate boiling and 

high extraction rates.  As the part cools the boiling becomes less violent until the metal 

reaches the boiling point of the quenchant.  

Convection stage 
 

Below A is the convective cooling stage, this occurs in Figure 2.1 begins when 

the metal cools just below the boiling point of the quenching fluid [15]. As cooling 

continues, the surface temperature is below the boiling point of the quenching fluid and 

the metal surface is completely wetted by the fluid.  At this point, the cooling rate is low 

and determined by the rate of convection and the viscosity of the quenching fluid along 

with process variables such as agitation.   

During quenching the duration of the vapor phase and the temperature at which 

the maximum cooling rate occurs have a critical influence on the ability of the steel to 

harden fully. The rate of cooling in the convection phase is also important since it is 
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generally within this temperature range that martensitic transformation occurs and it can, 

therefore, influence residual stress, distortion and cracking. 

 

2.3 Distortion and Cracking 
 In general, the distortion occurring during quenching depends on the size and 

shape of the bar, bar composition and the characteristics of the quenchant employed [7].  

Regular part shapes with ratios greater than 1:4 and large parts with thin cross sections 

are more prone to distortion than parts where uniform cooling is much more obtainable.  

Parts with groves, holes or other features that would change the cooling rate in specific 

areas are also more prone to distortion.   

 The composition of the part is also crucial in whether or not distortion will occur.  

Steels with high carbon concentration or high alloy steels that have a high hardenability 

are also more prone to distortion.  On a similar note, steels with a high austenitizing 

temperature and low martensite start (Ms) temperature tend to aggravate distortion [7].   

 Cracking occurs when the localized strain exceeds the failure strain in the material 

[7].  The tendency for cracking typically decreases as the Ms temperature increases.  This 

is due to a higher degree of ductility at increasing temperatures allowing for more strain 

to be allowed.  Though this helps to prevent cracking, distortion is still possible.  To 

understand distortion and cracking it is important to understand the thermal stresses and 

strains involved in the cooling of various parts.  Section 2.4 will cover this in detail. 

2.4  Thermal Stress and Strain Generation 
In quenching, different parts of the component undergo different cooling rates; 

therefore differential thermal expansion and phase transformations within the component 

are sources for stresses [16].  Sedighi has written that there are three interacting physical 
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processes that take place in the material, temperature change, phase change and stress-

strain change.  These interactions can take place in six ways show in Figure 2.3. 

 

Figure 2.2: Coupled effects in quenching [9, pg 50] 

 
1. Thermal Stress is the stress that arises from differential rates of thermal 

contraction within the component. 
2. Heat release due to the work done in deformation is the result of plastic 

deformation of the material. 
3. Temperature dependant phase transformation describes the time and temperature 

dependant kinetics of phase transformation. 
4. Heat release with phase transformation arises from enthalpy variation between 

phases. 
5. Phase transformation effects on stress state are divided into two effects: 

a. Volumetric dilatation with phase transformation causes volumetric 
changes due to the different densities of the phases. 

b. Transformation plasticity is an irreversible deformation behavior of a 
transforming specimen under a load state with an equivalent stress lower 
than the yield stress [17]. 

6. Stress dependence of phase transformation is the effect of the stress state on 
transformation kinetics. 

 

Assuming uniform cooling, when a cylindrical part is immersed in a quenchant 

from the austenization temperature thermal gradients are formed.  First the surface is 

cooled which initially places it in tension due to the shrinkage associated with cooling.  

The center of the part is still hot at this point and is therefore placed in compressive 

stress.  As the part is further cooled and approaching ambient near the surface the tensile 

stresses are relaxed as the center cools down.  Assuming that there is no plastic flow 
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during these steps the resultant stresses would be zero across the part.  However this is a 

poor assumption because at higher temperatures the yield stress is very low and plastic 

flow will occur.  Under these circumstances the unloading referred to above is followed 

by a stress reversal, so that the residual axial stress at the end of a quench would be 

compressive at the surface and tensile at the center [8].  Figure 2.4 shows the effects of 

uniform cooling in water.  Starting out with (a) uniformly hot, (b) center portion of 

cylinder is hot upset (in compression because it has not contracted due to cooling) during 

quenching, (c) center portion of cylinder is short in tension when uniformly cold.  

Machining of the surface allows the center portion to decrease in length [18].   

 

Figure 2.3: Effects of quenching a steel cylinder in water [18] 

The purpose of a quench is to form specific microstructural changes.  These changes are 

associated with an increase in volume and occur as a function of temperature and time.  
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The martensite transformation invariably begins at the surface and continues towards the 

center, unless it is prevented by diffusional process [8].  The transformation of the 

martensitic surface region will have a greater volume than the untransformed center.  The 

described volumetric expansion occurring during quenching can be described by 

Equation 1 [19].  

)21.264.4(

)68.1()100(100)(

CV

CVVV
V

a

ac

⋅+−+

⋅⋅−⋅=⋅∆
 (1) 

Where 100)( ⋅∆
V

V is the change in volume in %; cV  is the % by volume un-dissolved 

cementite; aV is the % by volume austenite; 100- cV - aV is the by volume martensite; and C 

is the by weight of carbon dissolved in austenite and martensite.  Therefore a 

compressive stress will result at the surface and a tensile component will exist at the 

untransformed center.  This equation should only be used on a plain carbon steel.  

Research has been conducted to determine “Carbon Equivalents” for various alloying 

elements [20]. 

Rammersdorfer et al calculated the thermal stresses generated during the 

quenching of a 50mm diameter steel cylinder that was completely transformed to 

martensite during a water quench. 
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Figure 2.4: Relationship between stress and time during quenching of a fully 
hardened steel [21] 

Two important features to highlight of Figure 2.5 is the unloading of tensile stress during 

martensite formation.  At ~1 second the surface drops dramatically in stress value, this is 

when the surface reaches the Ms temperature.  The center of the probe reaches the Ms 

temperature at  ~40 seconds into the quench. 

2.5  Characteristics and TTT diagram of 4140 steel [13] 
According to their carbon content, the plain carbon steel can be categorized as 

high-carbon steel (>0.60%), medium-carbon steel (0.30-0.60) and low-carbon steels 

(<0.30%). [22] 4140 can be classified as the medium-carbon steels with the chemical 

composition of 0.38-0.43 C by weight.  

AISI 4140 steel is made with chromium and molybdenum alloy additives. 

Chromium from 0.5 to 0.95% is added with a small amount of molybdenum (from 0.13 to 

0.20%).  These small amounts of these two elements increase the strength, hardenability 

and wear resistance of the 41xx series of alloy steels [23]. 

The chemical composition and typical applications of 4140 steels are listed 

below: AISI-SAE 4140 steel has 0.40 % Carbon, 0.58% Manganese, 0.95% Chromium, 

and 0.20% Molybdenum.  Low alloy steels with chromium and molybdenum, because of 



 14

their increased hardenability, can be oil quenched to form martensite instead of being 

water quenched since the slower oil quench reduces temperature gradients and internal 

stresses due to volume contraction and expansion during quenching. Distortion and 

cracking tendencies can be minimized. 

4140 is among the most widely used medium-carbon alloy steels. Relatively 

inexpensive considering the relatively high hardenability 4140 offers. Fully hardened 

4140 ranges from about 54 to 59 HRC, depending upon the exact carbon content. 

Forgeability is very good, but machinability is only fair and weldability is poor, because 

of susceptibility to weld cracking [24].  

Figure 2.5 is CCT diagram of AISI 4140, which indicates the phase 

transformation from austenite to martensite or bainite or pearlite depending on the 

cooling rate that can be achieved from specific quenchant. Such diagram is valuable since 

the cooling curve can theoretically be superimposed upon it to predict heat-treatment 

response. The steel begins to transform at the Ms Temperature and is fully hardened at 

the Mf temperature.  

The starting and ending temperature of martensitic transformation Ms and Mf, 

which is quite critical for understanding of quenching process of 4140 steels, can be read 

from the diagram. Ms = 640oF = 338oC and Mf = 425oF = 218 oC. Also in order to get the 

complete martensite and avoid the formation of pearlite or bainite, the quenchant must be 

able to cool the component fast enough to miss the nose of the curve for pearlite and 

bainite formation. 
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Figure 2.5: CCT diagram of AISI 4140 [1, pg. 9] 

After austenitizing at 843°C and oil quenching a martensitic structure is produced 

and with subsequent tempering at 315°C, a tempered martensitic structure is the result.  

Martensite in low alloy steels consists of packets of fine units of martensite called laths 

that align themselves parallel to one another to form packets [23].  
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Quenchant flow around a 4140 steel cylinder and its 
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Abstract 

The effects of quenchant flow around a 4140 steel cylinder have been 

experimentally investigated.  An apparatus was developed to repeatably immerse a two 

inch diameter by eight inch long probe into an agitated quench tank.  The probes were 

normalized prior to quench to relieve any residual stresses.  Distortion, residual stress and 

hardness were experimentally measured.  The results verified that there was a variation of 

cooling rate in respect to quenchant flow around the cylinder.  The data showed that there 

was a higher cooling rate nearest to the quenchant flow versus a much lower cooling rate 

away from the flow.  Computational fluid dynamics are also presented to give insight into 

the behavior of the quenchant flow in the tank and around the cylinder. 
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I Introduction 
The process of quenching steel refers to the rapid cooling from an austenitizing or 

solutionizing temperature to a significantly cooler temperature [1].  For steel this refers to 

heating into the austenite phase field, typically to 845°C for 4140 steel, and then rapidly 

cooling to a temperature below the martensite finish temperature.  The purpose of 

quenching steel is to produce the martensitic phase that is hard and strong, while 

minimizing distortion and residual stress.  These steels need to be tempered after 

quenching to increase the toughness.  Due to the demand for hardened steel parts an 

understanding of the mechanisms of distortion and residual stress development is 

necessary. 

The most widely used practice of quenching is referred to as direct quenching 

[Bates].  Direct quenching involves quenching the part directly from the austenitizing 

temperature.  This can be accomplished by immersion in different types of media (i.e. oil, 

water, polymer solutions, etc.).  The media selected is dependant on the cooling rated 

desired. Agitation is also a key parameter that influences the cooling rate [7].  

In commercial heat treating it is necessary to achieve the desired mechanical 

properties while maintaining the dimensional tolerances.  The mechanisms involved in 

hardening and distortion are discussed in this thesis.  Two aspects to note about the 

distortion associated with quenching are: 

• Steel has a higher strength when cold than when hot 

• Steel shrinks while cooling but expands during martensite formation 

 Coupled with distortion is residual stress development.  The manner by which 

stress is generated during a quench is complex and the stress obtained is the net effect of 
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the combination of several processes [8].  There are three different mechanisms that are 

coupled during the quenching of steel, temperature effects, phase transformations, and 

stress/strain development [9].  Thermal stress generation arises from the temperature 

gradients formed because it is difficult to cool the part uniformly.  There is heat released 

during the work done in deformation.  Phase transformations are a temperature dependant 

function.  There is an associated heat release with phase transformation.  There is a 

volume change during phase transformation causing stress, and the transformation 

kinetics are effected by stress state. 

 In order to understand what is going on inside the quench tank computational 

fluid dynamics have been employed.  With the help of Michael Stratton using Fluent 6.0 

it was possible to model the tank and probe setup.  By using experimental data of the 

quenchant flow obtained with a turbine flow meter, and measured densities and 

viscosities of the quench fluid it was possible to determine the velocities and flow trends 

within the tank. 

It is the goal of this project to understand how part orientation with respect to 

quenchant flow influences distortion, and residual stress generation in 4140 steel.  

Experiments were conducted using a 2” diameter x 8” long 4140 probe. The probe was 

heated in an atmosphere of argon and subsequently quenched normal or at 45 degrees to 

the surface with horizontal agitation.  Along with empirical investigation of distortion, 

residual stress and hardness, computational fluid dynamics has been employed to 

determine how the flow around the part influences heat transfer.   

Distortion and residual stress were measured at four points around the probe. 

Distortion was measured with a Coordinate Measuring Machine. The residual stress was 
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measured using an X’Pert X – Ray Diffractometer System at Philips PANalytical, in 

Natick, MA. The hardness measurements were preformed both longitudinally and in the 

transverse direction to give insight to the formation of martenstite with respect to 

quenchant flow.  
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II Experimental Plan 
The experimental plan is as follows.  Six probes have been quenched according to 

Table 3.1.  Four probes were quenched in an agitated bath, and two in a stagnant bath.  Of 

the four probes quenched in an agitated bath two have been quenched at 45° and two 

have been quenched vertically.  Of the two probes quenched in the stagnant bath, one has 

been quenched at 45° and the other has been quenched vertically.  The probe numbering 

convention is shown in the table.   

Agitation 
(y/n) Orientation

Number of 
Trials Probe # 

Y 45 2 101,102 
Y Vertical 2 103,104 
N 45 1 106 
N Vertical 1 107 

Table 3.1: Test matrix of CHTE Large 4140 steel probe quench orientation trials 

The convention for the length of the probe has x = 0mm at the bottom and x = 

200mm at the top.  Another numbering convention that should be explained is how the 

probe is labeled in regards to quenchant flow (when applicable).  Figure 3.1 illustrates the 

numbering convention, with position 1 being closest to the flow outlet and position 5 

being on the backside, facing away from the flow outlet.  Positions 3 and 7 are located 

90° from position 1 and 5, and are located in a counter clockwise fashion while looking at 

the bottom of the probe, the bottom being the end that is not attached to the extension 

rod. 

 
Figure 3.1: Probe position numbering convention 
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The measurements that have been preformed on the six quenched probes are as 

follows: Residual Stress, Distortion, Longitudinal Hardness, Transverse Hardness. 

In parallel to the measurements made on the probes.  Fluid flow measurements 

were preformed.  In tank fluid velocities have been measured along with Computational 

Fluid Dynyamics of the quench tank during agitation. 
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III Experimental Procedure 
A quench probe, and quenching system have been developed that allowed 

experiments to be conducted in a repeatable manner.  The quench system is comprised of 

an atmospheric furnace, adjustable track system for insertion of the quench probe, a 

quench tank of Houghton T7A (22 gallons) with a detached pump, and a quench probe.  

A quench probe was developed based on the Liscic/NANMAC quench probe.  

The probe shown in Figure 3.2 is has been made from ground 4140 rod.  It is 8” in length 

and has a diameter of 2”.  Machining has been done to drill a hole to the geometric center 

of the probe for thermocouple placement (For cooling results see Appendix 2), and to 

allow for a 1” extension rod to be inserted.  The primary extension rod is 12” in length 

and has a fixture to position the thermocouple in contact with the center of the probe.  

The final extension rod is to hold the part in the tracks of the quenching system. 
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Figure 3.2: CHTE Large 4140 Quench Probe 

The atmospheric furnace consists of compressed argon being passed through a 

heat exchanger to preheat the argon to 400C.  The purpose of the argon is to minimize the 

decarburization of the probe during the austenitizing phase.  The reasoning behind the 

heat exchanger is to minimize the temperature gradient of the probe.  The gas is then 

passed into a closed 304 stainless tube, that is positioned in a (ThermomLyne F21135 

Tube Furnace, ThermoLyne FB1315M Box Furnace) where the probe is suspended 

vertically during heating.  

The adjustable track system allows for immersion to happen at various angles in a 

repeatable manner.  In this study immersion took place at 45 degrees from vertical and at 

vertical.  To quench the probe it is removed from the furnace and manually placed in the 

tracks.  Figure 3.3 shows the furnace set up and the Adjustable Track System, along with 

the Quench Tank of Houghton T7A.  The tank has a pump (Supreme Mag-Drive Utility 
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Pump 18A) suspended at the far end that directs the flow toward the probe.  The time for 

removal from the furnace to quench is <7seconds.  During this time the temperature of 

the center of the probe did not drop significantly, less than 1 degree C, the temperature of 

immersion was between 865C and 875C.   

 

Figure 3.3: CHTE large probe quench system 

Prior to the quenching heat treatment, the probe was marked at 90 degree 

increments, along with the above mentioned numbering convention,  in order to study the 

effects around the circumference of the probe.  Prior to quenching the probes were 

normalized with a furnace cool from 875C.  The probes were then cleaned and roughed 

with 180 grit SiC paper, to provide a surface roughness similar to previous experiments at 

CHTE [13, pg 81].  
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The experiments that were conducted were subject to the following analyses: 

CMM profiling, residual stress measurement, and Rockwell hardness measurements 

(both transverse and longitudinal).   

CMM profiling was accomplished using Worcester Polytechnic Institute’s 

Coordinate Measuring Machine (Starrett HGDC 2018-16) which measures the change in 

height along the length of the probe.  A program was written to measure the height along 

the length of the probe in a linear fashion.  Twenty measurements were made in a line to 

record distortion.  This data can be used to determine if any significant distortion has 

occurred during the quench.  For each position on the probe (1,3,5,7) the profile was 

measured by using a line scan longitudinally along the probe.   

Residual stress measurements were conducted at PANalytical using one of their 

Phillips X’Pert Pro XRay Diffractometers.  The measurements were made at mid length 

of the probe.  The stress measurement was conducted using a uni-axial stress analysis 

technique.  This technique calculates the measured normal stress sigma psi and the 

measured shear stress tau psi.  This is a classical stress analysis and is done with the Sine 

Squared Psi method.  The normal stress is evaluated from changes in peak position  with 

varying ψ  angles [25].   

Hardness values and microstructure were obtained post quenching.  Longitudinal 

hardness measurements at positions 1,3,5,7 have been measured along with transverse 

hardness measurements.  Transverse hardness measurements were made with a section 

cut out of the middle of the probe.  The probe was sectioned with a horizontal band saw 

(DoALL C-4) using a Starrett 3-10P, 1”x0.035” Carbide Tipped blade, and a water based 

lubricant.  The hardness measurement can be correlated to percent martensite[1, pg 80].  
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The Rockwell Hardness equipement (Wilson 3JR) was tested for accuracy using a series 

of test blocks.  The accuracy of the device in the 40 – 65 RC range is ±0.5 RC. 

Along with measurements conducted with the probe, fluid flow measurements 

have also been obtained.  This has been completed using a turbine flow meter (Turbo Flo 

HP-302) shown in Figure 3.4.  Fluent 6.0 a Computational Fluid Dynamics package was 

used along with the measurements obtained to understand the flow patterns in the tank.   

 

Figure 3. 4: Turbo-Flo HP-302 turbine flow meter (Scale 0 – 10 ft/s) 
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IV Experimental Results and Discussion 

Flow Measurements Made in Tank 
 The results of the fluid flow in the tank are shown in Figure 3.5.  This was used to 

determine initial velocity values in Fluent.  Figure 3.5 shows the velocity as a maximum 

leaving the pump outlet at 7.8 ft/s at 2” from the outlet.  The velocity drops to 4.5 ft/s at a 

position 2” from the front of the probe.  Behind the probe the flow is turbulent with no 

real directional flow.  The highest reading obtained was 0.2 ft/s at a position 5” off the 

back wall and 7” from the side. 

 
Figure 3.5: Measured Fluid Flow in the quench tank 

 

Computational Fluid Dynamics 45° Probe 
 To understand the effects of part orientation in regards to quenchant flow the use 

of Computational Fluid Dynamics (CFD) has been employed.  CFD gives insight into 

how the quenching fluid moves around the part, at different orientations with respect to 

fluid flow.  The code has been drawn to scale, and uses properties found by experimental 
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measurement.  The viscosity used for the code is sm
kg

⋅0685.0  , and the density used 

is mL
g763.0 .  Figures 3.6 – 3.12 represent the fluid flow in the tank and around the 

probe when the orientation is at 45 degrees.  Figure 3.6 is an overhead contour plot 

viewed at mid length of the probe.  The contour plot only shows the velocity magnitude 

of the quenchant.  The probe is positioned at the left and the pump is shown at the right, 

quenchant flow is from right to left.  

 

 
Figure 3.6: Contour plot sectioned at mid probe with a x-z plane, 45 degree probe 

In Figure 3.7, which is viewed at the same orientation as Figure 3.6, the vector plot gives 

insight to the direction of the flow, along with the velocity.  The direction is towards the 

probe and results in a swirling motion as the flow impacts the probe.  Take notice to the 

minimal flow on the back side (far left) of the probe where the flow is nearly stagnant. 
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Figure 3.7: Vector plot sectioned at mid probe with a x-z plane, 45 degree probe 

 

Figures 3.8 and 3.9 show how the flow reacts to the probe’s orientation at 45°.  The fluid 

flow impacts the probe with a slightly higher velocity at the bottom of the probe than at 

the top of the probe.  Again it is possible to see that the flow is nearly stagnant at the 

backside. 
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Figure 3.8: Contour plot sectioned at mid probe with a x-y plane, 45 degree probe 

 
 

 
Figure 3.9: Vector plot sectioned at mid probe with a x-y plane, 45 degree probe 
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Figure 3.10: Contour plot sectioned at mid probe with a x-z plane, 45 degree, close up  

 
Figure 3.10 is a closer view of a contour plot of the flow around the 45° probe.  It is 

possible to see how quickly the flow breaks away from the probe and has separated 

before it reaches the sides where position 3 and 7 are located.  This is assuming that there 

is a no slip boundary condition at the probe surface.  Figure 3.11 actually shows how the 

fluid moves around the probe, and it’s velocity.  The fluid breaks away from the probe in 

a tangential fashion to a point between positions 1 and 3, and 1 and 7, leaving minimal 

flow at the side positions. 
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Figure 3.11: Vector plot sectioned at mid probe with a x-z plane, 45 degree, close up 

 
Figure 3.12 shows how the flow moves up the probe.  With the probe being oriented at 

45° the probe can act like a ramp for the flow to move up along.  Also in this Figure it is 

possible to see that the flow is partially deflected off the bottom of the probe.  The bottom 

of the probe is with in the flow field and redirects part of the flow downward. 
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Figure 3.12: Vector plot sectioned at mid probe with a x-y plane, 45 degree, close up 
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Computational Fluid Dynamics Vertical Probe 
 Figures 3.13 – Figures 3.19 represent the fluid flow in the tank and around the 

proe whe the orientation of the probe is vertical.  The order of the Figures is identical to 

that of the 45° case.  Again the contour plot only gives insight to the magnitude of the 

velocity, whereas the vector plots show the direction of the flow.  The probe is positioned 

at the center and the pump is located at the far right, quenchant flow is from right to left. 

 

 
Figure 3.13: Contour plot sectioned at mid probe with an x-z plane, vertical probe 
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Figure 3.14: Vector plot sectioned at mid probe with an x-z plane, vertical probe 

 
Figure 3.15: Contour plot sectioned at mid probe with a x-y plane, vertical probe 
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Figure 3.16: Vector plot sectioned at mid probe with a x-y plane, vertical probe 

The flow patterns of the vertical case closely resemble the patterns in the 45° case.  There 

is still a circular flow eddie as in the 45° case,  and the velocities are close.  The flow 

breaks away at a steep angle much like the 45° case as well, shown in Figures 3.17 and 

3.18.  One major difference is that the flow does not impact the bottom of the probe 

Figure 3.19, like it does in the 45° case. 
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Figure 3.17: Contour plot sectioned at mid probe with a x-z plane, vertical, close up 
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Figure 3.18: Vector plot sectioned at mid probe with a x-z plane, vertical, close up 
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Figure 3.19: Vector plot sectioned at mid probe with a x-y plane, vertical, close up 

 
Table 3.2 shows the velocities at mid length of the probe, right near the surface.  The 

velocity at Position 1 is higher on the 45° case, than for the vertical case.  Another major 
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difference is that the velocity at the sides of the probe, positions 3 and 7 are much higher 

for the vertical quench probe as compared to the 45° probe.  Both have very low 

velocities at position 5. 

 

Measurement of Probe Distortion 
As described in the experimental plan the probes have been measured for distortion.  The 

results are shown in Figures 3.20 – 3.25, using the same convention above for positions 

1,3,5, and 7.  Though the distortions are less than 0.1mm, it is possible to observe a 

significant trend in the distortion.  In Figures 3.20 -3.23, where the quenchant was 

agitated according to Figure 3.1, the trend that developed shows that position 1 developed 

a concave bend and position 5 developed a convex bend.  There is not a significant trend 

observed for positions 3 and 7.  In Figures 3.24 and 3.25, where the quenchant was 

stagnant, there was no significant distortion. 

Position 45° Quench Vertical Quench 

1 0.5 0.36 

3 0.25 0.72 

5 0.06 0.045 

7 0.25 0.62 

Table 3.2: Velocities at specified postions on the probe surface, (in/s) 
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Figure 3.20: Probe 101 distortion measurement, quenched 45° in agitated Houghton 

T7A 
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Figure 3.21: Probe 102 distortion measurement, quenched 45° in agitated Houghton 

T7A  
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Figure 3.22: Probe 103 distortion measurement, quenched vertically in agitated 

Houghton T7A 
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Figure 3.23: Probe 104 distortion measurement, quenched vertically in agitated 

Houghton T7A 
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Figure 3. 24: Probe 106 distortion measurement, quenched 45° in stagnant 

Houghton T7A 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 120 140 160 180 200

Position (mm)

D
is

to
rt

io
n 

(m
m

)

1
3
5
7

 
Figure 3.25: Probe 107 distortion measurement, quenched vertically in stagnant 

Houghton T7A 
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Residual Stress Values Post Quench 
The residual stress was measured by X-Ray diffraction on the surface of each 

quenched probe.  Figures 3.26 and 3.27 show the residual stress results for agitated 

probes and stagnant probes respectively.  For the probes quenched in an agitated bath, 

Figure 3.8, the results show a low stress, both compressive and tensile, at position 1 and a 

large tensile stress at position 5.  The results of positions 3 and 7 show a distinct 

similarity.  Both have a similar range of tensile stresses.  Figure 9 is the results of the 

stagnant quenched probes.  Probe 106 was quenched at a 45o immersion angle and probe 

107 was quenched vertically.  The results show a large tensile force around the entire 

surface of the probe.  Probe 107 has a more uniform surface stress than that of 106.  The 

data used to calculate the residual stress can be found in Appendix 1. 
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Figure 3.26: Residual Stress measured by XRD for probes 101-104 
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Figure 3.27: Residual Stress measured by XRD for probes 106 and 107 

Table 3.3 shows the residual stress values in a tabular format.  The values are in MPa. 

Position Probe 101 Probe 102 Probe 103 Probe 104 Probe 106 Probe 107
1 5.9 -129.6 -34.5 54.5 189.9 27.3 
3 90.8 39.4 119.1 120 223.5 177.5 
5 204.9 184.7 268.6 170 291.2 246.5 
7 54.4 57.3 156 129.1 194.8 187 

Table 3.3: Residual Stress values for each probe. 
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Longitudinal Hardness Results 
The results are shown in Figures 3.28 – 3.33 in terms of Rockwell hardness and 

percent martensite vs. length.  The same numbering convention is used as in other 

sections.  For 4140 steel the maximum obtainable hardness is 57.1 Rockwell C.  In only 

one case, probe 101, the surface hardness reached the maximum obtainable hardness, and 

only did this at position 1.  The trend that developed was expected.  Position 1 has a 

higher hardness value than position 5.  One thing that was not consistent was the hardness 

for positions 3 and 7.  In some of the probes 3 and 7 had similar hardness to that of 

position 1, and in the others 3 and 7 had similar hardness to position 5.  Being able to 

relate the hardness value to the percent martensite formed gives insight into how the 

residual stresses are formed.  Table 3.4 gives the percent martensite formed for a 

particular hardness in a carbon steel of 0.42 wt% C.   

Rockwell 
Hardness (C) 

Fraction 
Martensite 

57.1 0.99 
53.4 0.95 
50.9 0.90 
47.3 0.80 
43.4 0.50 

Table 3.4: Rockwell hardness correlation to fraction martensite, ASM Heat 
Treating Handbook for 0.42wt% Plain Carbon Steel, [1, pg 80] 
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Figure 3.28: Probe 101 hardness measurement quenched at 45° in agitated T7A 
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Figure 3.29: Probe 102 hardness measurement quenched at 45° in agitated T7A 
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Figure 3.30: Probe 103 hardness measurement quenched vertically in agitated T7A 
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Figure 3.31: Probe 104 hardness measurement quenched vertically in agitated T7A 
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Figure 3.32: Probe 106 Rockwell hardness measurement, quenched 45° in stagnant T7A 
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Figure 3.33: Probe 107 Rockwell hardness measurement, quenched vertically in 

stagnant T7A 
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Transverse Hardness Results 
 The results for the transverse hardness measurements are shown in Figures 3.34 

and 3.35.  Both Figures have all six probes shown.  The measurements have been made at 

3 mm increments starting 1 mm below the surface of the probe, continuing straight across 

from position 1-5 in Figure 3.34 and from position 3-7 in Figure 3.35.  In Figure 3.34 

from position 1 it shows that there is more hardening occurring.  At a depth of 7mm from 

the surface position 1 the average hardness is 56.1 for all of the agitated samples vs. 54.9 

at 7mm from surface position 5.  Probe 6 and 7 show symmetry from one side to the 

other. 
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Figure 3.34: Transverse Hardness from position 1 across to position 5 

In Figure 3.35 the hardness values show symmetry form position 3 to position 7 working 

for the outside in.  Again for probes 6 and 7 there is symmetry.  
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Figure 3.35: Transverse Hardness from position 3 across to position 7 

 

Tables 3.5 and 3.6 are the raw data for the transverse hardness Figures 3.34 and 3.35 

respectively. 

 
   Probe 1 Probe 2 Probe 3 Probe 4 Probe 6  Probe 7 
Position 1 1 53.4 54.5 53.6 56 44.5 41.9 
 4 55 56 54.6 56 43 43.6 
 7 55.9 56 56.2 56.2 43 44.1 
 10 55.5 55.9 56.3 57 42 44.5 
 13 54.7 54 54 53.6 40.5 44.3 
 16 55.5 54.2 54.9 52 40.8 43.4 
 19 52 49.5 47 53.4 37.5 36.8 
 22 52.8 50.2 51 52.9 38.5 38 
 25 55 53.2 51.5 54.1 42.5 40.4 
 28 53.9 49.2 48.3 47.5 35.7 39.8 
 31 51.5 51.5 51 51.5 38.8 37 
 34 54.4 53.5 51.1 51 40.9 39.5 
 37 55 50 51.7 54.2 43.2 41.2 
 40 55.2 55 54.9 54.1 42.5 43 
 43 55 54.7 55 55.1 44 43.6 
 46 55 53.8 54.6 55 44.7 44.5 
Position 5 49 53.5 53 52.2 54.3 45.6 42.8 

Table 3.5: Hardness values for all probes from position 1 to position 5 
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   Probe 1 Probe 2 Probe 3 Probe 4 Probe 6  Probe 7 
Position 3 1 54.5 54 55.4 55.5 45 44.1 
 4 55.6 55.6 55.7 56.1 44 45.2 
 7 55.7 55 56.2 54.1 43.2 45.2 
 10 54.2 54.7 56.5 52.3 42 41 
 13 53.7 54.5 54 55 42.9 45.2 
 16 54.7 52.1 54.6 54.8 38.8 39 
 19 54.5 53 54 52 39.2 37.8 
 22 52 49.4 49 52.4 40.5 37.8 
 25 55 53.2 54.5 54.1 42.5 40.4 
 28 50.5 49.4 50.5 50 36.3 38 
 31 52 50.1 50.7 51.2 37 42.3 
 34 52.5 49.3 52 52 37.6 42.3 
 37 55.6 50.9 54.3 54.3 40.9 43 
 40 54.8 54.3 55 54.5 42.5 45 
 43 55.7 55 56.5 56 44.1 43.8 
 46 56 55.2 56 55.8 45.9 45.2 
Position 7 49 54.8 54.3 55 54.9 45 44.5 

Table 3.6: Hardness values for all probes from position 3 to position 7 

Results Mid - Probe 
 The results have been presented in the previous sections.  This section is intended 

to display the trends of those results.  Table 3.7 displays the results of position 1 at mid 

length for probes 101 - 107.  These results can be compared to that shown in Table 3.8 

which displays the results for position 5 for the same probes.  It is possible to see a trend 

in the results for all four specific measurements.  Starting with distortion, for position 1  

Position 
1      

  Probe XRD CMM 
Hardness 

(RC) Flow (ft/s) 
  101 5.9 -0.041 56.2 0.5 
  102 -129.6 -0.015 55.8 0.5 
  103 -34.5 -0.043 56.0 0.4 
  104 54.5 -0.026 55.2 0..36 
  106 189.9 0.000 46.0 0.0 
  107 27.3 0.012 44.8 0.0 

Table 3.7: Position 1 data for mid probe length 

the results for probes 101 – 104 the distortion is negative with an average value of            

-0.03mm.  This can be compared to that of position 5 which has an average value for 



 54

probes 101-104 of 0.05mm.  Similarly the results of the residual stress have a trend 

between positions 1 and 5.   

Position 
5      

  Probe XRD CMM 
Hardness 

(RC) Flow (ft/s) 
  101 204.9 0.065 54.5 0.06 
  102 184.7 0.024 52.5 0.06 
  103 268.6 0.062 53.0 0.05 
  104 170.6 0.054 54.0 0.05 
  106 291.2 -0.025 46.2 0.0 
  107 246.5 -0.016 45.3 0.0 

Table 3.8: Position 5 data for mid probe length 

Position 1 exhibits a very low tensile stress or a compressive stress where as position 5 

shows a fairly high tensile stress ~200MPa.  For the hardness results position 1 has a 

higher Rockwell hardness for position 1 than it does for position 5.  Looking at the results 

for positions 3 and 7 Table 3.9 and Table 3.10 respectively it is evident that the positions 

behave very similarly. 

Position 
3      

  Probe XRD CMM 
Hardness 

(RC) Flow (ft/s) 
  101 90.8 0.036 54.2 0.3 
  102 39.4 0.032 54.9 0.3 
  103 119.1 0.036 55.5 0.7 
  104 120.0 -0.018 54.5 0.7 
  106 223.5 0.006 47.0 0.0 
  107 177.5 -0.003 45.2 0.0 

Table 3.9: Position 3 data for mid probe length 
Position 

7      

  Probe XRD CMM 
Hardness 

(RC) Flow (ft/s) 
  101 54.4 0.022 54.0 0.3 
  102 57.3 0.001 55.3 0.3 
  103 156.0 -0.010 54.5 0.7 
  104 129.1 0.045 54.8 0.7 
  106 194.8 -0.030 45.2 0.0 
  107 187.0 -0.008 44.8 0.0 

Table 3.10: Position 7 data for mid probe length 
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V Summary of Results 
 
• For a 2 inch diameter 4140 steel probe, the orientation in respect to quenchant 

flow creates a nonuniform heat transfer coefficient around the probe.  The results 

of distortion, residual stress and hardness support this statement. 

 

• The results of the computational fluid dynamics show that there is a mild 

difference between the vertical orientation, and the 45° orientation of the 2 inch 

diameter cylinder.  There is a lower velocity at position 1 for the vertical case, 

versus the 45° case.  For the 45° case there is also a directional flow sweeping up 

the probe which may increase the cooling rate during the nucleate boiling phase.  

Both orientations exhibit nearly stagnant flow at position 5. 

 

• The results for distortion show that the bending that occurred during quenching 

was a result of nonuniform cooling as opposed to inhomogeneous phase 

transformation.  The thermally induced stress during the initial stages of cooling 

exceded the yield stress of the probe at those temperatures causing plastic 

defromation.  The martensite phase transformation may have occurred at different 

times during the quench, but due to the high degree of hardenablity of 4140 a 

nearly symmetrical transformation to martensite occurred, which can be seen in 

the hardness results.  There was no distortion seen in the stagnant quenches. 

 

• The residual stress is in agreement with the distortion results.  For the agitated 

quenches (probes 101- 104) there was a tensile strain seen at position 5 and nearly 
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zero strain at position 1.  The results for residual stress for the stagnant quenches 

show nearly uniform stress around the part. 

 

• There was a higher hardness recorded at position 1 versus position 5 for the 

probes quenched in an agitated bath.  Positions 3 and 7 showed similar results for 

all probes. 

 

• The agitated probes exhibit a clear trend in distortion, residual stress, and 

hardness from position 1 to 5.  At position 1 it is clear that there is a higher 

cooling rate / heat transfer rate as compared to position 5.  The results of the 

stagnant flow show that there is really no trend, with distortion, residual stress and 

hardness as to be expected. 
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VI Conclusions 
In conclusion it is apparent that quenchant flow around a cylinder does affect the 

properties produced.  Agitation that has directional properties can affect the outcome of 

the quenched parts.  When designing quench tanks it should be noted that the parts that 

are going to be quenched need to be oriented in a manner that does not favor one side 

versus the other.  
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Appendix 1 (d vs. sin2ψ) 
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Figure A1-1, Probe 101 position 1 

 
 

1.1704

1.1705

1.1706

1.1707

1.1708

1.1709

1.1710

1.1711

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d-
sp

ac
in

g 
(Å

)

sin ² (Psi)

Stress: 90.8 ± 4.2  MPa
Phi = 0.0°

 
Figure A1-2, Probe 101 position 3 
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Figure A1-3, Probe 101 position 5 
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Figure A1-4 , Probe 101 position 7 
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Figure A1-5, Probe 102 position 1 
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Figure A1-6, Probe 102 position 3 
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Figure A1-7, Probe 102 position 5 
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Figure A1-8, Probe 102 position 7 
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Figure A1-9, Probe 103 position 1 
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Figure A1-10, Probe 103 position 3 

 



 66

1.1695

1.1700

1.1705

1.1710

1.1715

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d-
sp

ac
in

g 
(Å

)

sin ² (Psi)

Stress: 268.6 ± 5.3  MPa
Phi = 0.0°

 
Figure A1-11, Probe 103 position 5 
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Figure A1-12, Probe 103 position 7 
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Figure A1-13, Probe 104 position 1 
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Figure A1-14, Probe 104 position 3 
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Figure A1-15, Probe 104 position 5 
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Figure A1-16, Probe 104 position 7 
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Figure A1-17, Probe 106 position 1 
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Figure A1-18, Probe 106 position 3 
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Figure A1-19, Probe 106 position 5 
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Figure A1-20, Probe 106 position 7 
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Figure A1-21, Probe 107 position 1 
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Figure A1-22, Probe 107 position 3 
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Figure A1-23, Probe 107 position 5 
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Figure A1-24, Probe 107 position 7 
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Appendix 2 (Cooling Data)  
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