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Design Statement 
 

In the following report, we considered the energy efficiency of SGH’s headquarter office 

in Waltham, MA. We attempted to model the energy use of the building using an energy 

simulation software, DesignBuilder. The goal of the project was to analyze the building’s current 

energy use and produce design proposals that lead to energy savings.  

The United States, responsible for approximately 17-19% of the world’s energy 

consumption, tracked one-third of its energy use back to the building sector in 2013.1 The 

building sector, including commercial and residential, took up 41% of the total U.S. energy 

consumption. Due to such high consumption of energy by buildings, there is a high potential for 

energy savings in the building sector.2 Therefore, our project focused on simulating building 

energy use and predicting the effectiveness of various energy saving measures that address the 

environmental concerns raised in building energy use. Furthermore, improving the building’s 

performance not only addresses the sustainability, but also the monetary aspect of energy 

consumption.    

Compared to the simulation results –which displayed ideal energy consumption assuming 

accurate modeling –the monthly utility data was very high. As we analyzed the monthly utility 

data and spot measurements in-depth to identify possible cause of discrepancy, we observed 

some irregularity and came to the conclusion that there could be issues with HVAC operation. 

Though we could not complete a full analysis of the building’s HVAC system due to time 

                                                 
1 “Transition to Sustainable Buildings: Strategies and Opportunities to 2050,” International Energy Agency, p. 109. 

Retrieved from: 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf 
2 Figure 2.1: D&R International, Ltd., “2011 Buildings Energy Data Book,” Building Technologies Program, 

Energy Efficiency and Renewable Energy, U.S Department of Energy, 2. Retrieved from: 

http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf
https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf
http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf
http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf
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constraints, we gained a thorough understanding of the building’s energy consumption through 

the process and provided three energy conservation measures that could result in energy savings. 

 



 

 

Professional Licensure Statement 
 

Work of engineering can be defined as “public or private service or creative work, the 

adequate performance of which requires engineering education, training, and experience in 

applying special knowledge or judgment of the mathematical, physical, or engineering sciences 

to that service or creative work.”3 Professional Licensure for engineers is a way to prove their 

credentials. Licensed engineers take on more responsibility and have authority to prepare, seal, 

and submit engineering plans. 

The process and requirements to become a professional engineer vary by state. To be 

eligible for PE in Massachusetts, one must have an ABET accredited Bachelor of Science degree 

in engineering with three years of acceptable experience or other equivalent requirements that 

satisfy the eligibility.4   

There are various views regarding professional licenses: “Practitioners of licensed 

occupations usually support licensing on the ground that it is in the public interests; many 

economists, on the other hand, feel that such licensing is designed to give monopoly power to the 

members of the occupation.”5 While it is interesting that professional licensure affects economy, 

it is difficult to view professional licensure as an unnecessary piece of paper that makes the 

profession elitist and exclusive. In general, professional license ensures a quality work for the 

consumers by “establishing minimum requirements for individuals who plan and design certain 

facilities and products used by the public.”6 Furthermore, professional license opens up 

opportunities for the engineers. As the license shows one’s competence of engineering skills and 

                                                 
3 "Is a Texas Licensed Engineer Required?" Texas Board of Professional Engineers. Web. 18 Apr. 2015 
4 "Massachusetts PE Eligibility Requirements," Professional Credential Services. Accessed March 17, 2016. 

https://www.pcshq.com/?page=engineeringandrelatedfields,umassachusettspebycomityeligibilityrequi. 
5 Thomas G. Moore, "The purpose of licensing," Journal of Law and Economics (1961): 93-117. 
6 Walesh, Stuart G. Engineering your future: The professional practice of engineering. John Wiley & Sons, 2012. 
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commitment to the career, the engineer will be “able to do higher level work, be responsible for 

more engineering projects, have access to more favorable employment opportunities, and be in a 

position to someday own and operate his or her consulting engineering or other engineering-

based business.”7 Studies have also shown that licensed engineers earn higher pay throughout 

their careers.8  

Professional licensure is integral to the safety and quality assurance of engineering. 

Professional Engineers assume responsibility for the work they approve and are expected to 

review and deliver engineering while maintaining a standard of integrity.  

                                                 
7 Walesh, Engineering your future. 
8 "Why Get Licensed?" National Society of Professional Engineers. Web. 18 Apr. 2015. 
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Abstract 
 

 The U.S. building sector is responsible for over one-third of the country's entire energy 

consumption. Because of this, efforts to reduce energy consumption in buildings can have a 

significant effect on the overall energy demand. This paper considers a case study of an office, 

provides an in-depth review of the building's characteristics and attempts to simulate the building 

in DesignBuilder. Using BES, energy consumption of the office is analyzed and ECMs are 

suggested to reduce energy usage.  
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Executive Summary 
 

Introduction 

 

Buildings comprise a significant portion of the energy consumption in the United States. 

As such, engineers, architects, and building operators should take the building’s influence on 

energy savings and reduction into serious consideration. This paper provides an in-depth energy 

analysis of an office building in Waltham, MA. The techniques of building energy simulation 

and heating-degree-day analysis are used to develop an understanding of the energy consumption 

of the office building and provide recommendations for energy reduction.  

 

Background 

 

The United States, responsible for approximately 17-19% of the world’s energy 

consumption, tracked one-third of its energy use back to the building sector in 2013.9 Within the 

building itself, the highest site energy consumption for buildings in 2010 was space heating, 

followed by water heating, space cooling, and lighting.10 The energy use in those sectors added 

up to 68% of the total building site energy consumption. 

Building Energy Simulation (BES) is a method by which engineers can study the energy 

consumption in buildings. With a model, engineers can run simulations on a variety of different 

scenarios and test the benefits and disadvantages of retrofitting existing buildings or design 

changes in new construction. BES is not a simple undertaking, and requires a significant amount 

of time and effort. The potential for error increases with each parameter, and inputting poor data 

                                                 
9 “Transition to Sustainable Buildings: Strategies and Opportunities to 2050,” International Energy Agency, p. 109. 

Retrieved from: 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf 

Note: IEA writes “roughly 17% of global final energy consumption” and the DOE considers 19%. IEA is a more 

recent publication.  
10 Book, Buildings Energy Data. "Energy Efficiency and Renewable Energy."US Department of Energy (2011). 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf
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will compromise the validity of the model. ASHRAE Guideline 14 outlines methods for 

measuring the energy and demand savings in buildings, and provides a methodology for whole 

building calibrated simulation.  

 

Case Study 

 

The case study for this project is the SGH office headquarters in Waltham, MA. The 

building, a former Raytheon complex, was originally renovated in 2002 into an office space. 

SGH, as tenants, expanded their square footage twice (2005 and 2012), such that the building is 

now as it exists today, at approximately 90,000 square feet. In the pursuit of calibrating an 

energy model of the building, we followed the methodology outlined in ASHRAE Guideline 14.  

To begin with, we developed a simulation plan involving three parts: the baseline 

scenario, the retrofit scenario, and spot and short-term measurements. For the baseline scenario, 

we collected the floor plans and utility data and conducted on-site surveys of the lighting 

systems, plug load, HVAC systems, and building envelope. We also surveyed the building 

occupants to assess the perceived comfort level, actual occupancy schedules, and the use of the 

space, and interviewed the building manager to determine the operation of the building. Using 

this information, we developed a model of the building in DesignBuilder software. 

For the retrofit scenario, we conducted a small parametric study on the baseline model. 

Though we were unable to calibrate the model, we still could analyze the effects of different 

parameters on the energy consumption of our simulated building. By testing different retrofit 

scenarios, we were able to determine a set of energy conservation measures (ECMs) that we 

suggested for implementation.  
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 The other aspect of our plan included spot and short-term measurements of the building 

to increase the accuracy of our data. These measurements included confirming the geometry of 

the building –floor plans as compared to as-built measurements– as well as temperature and 

humidity sensors for capturing data in varying locations across the office. 

 

Energy Conservation Measures 

 

The design case study for this project involved implementing the energy conservation 

measures (ECMs) into our baseline model and testing their effects. There were three ECMs that 

we decided to pursue, two of which we modeled, and one that we suggested (though could not 

model). The latter of these is weather forecasting. Throughout the course of this study, we were 

able to collect temperature data on the building during a period in which the HVAC system was 

offline. The building performed well, and as such, we believe that the office should take better 

advantage of optimal weather. Weather forecasting could involve the installation of a smart 

building automation system which receives forecasted weather data that allows the HVAC to be 

proactive rather than reactive.  

The two other ECMs we considered were radiant floor heating and increased air 

tightness. Radiant floor heating was studied due to the geometry of the building and comfort of 

the occupants. The building has high ceilings and a large, mostly flat floor plan. Radiant floor 

heating would keep the heat closer to the occupants and reduce the risk of heating unused space. 

The third ECM was to increase the air tightness of the building. Though an air-blower door test 

conducted on the office showed that it was relatively tight, the simulated model output revealed 

that one of the largest contributors to heat loss was air infiltration. Using the model, we were 

able to implement a different air changes per hour value, and test the outcome. The energy 
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reduction was significant, especially because heating is the largest contributor to energy 

consumption for the building.  

 

Conclusion and Recommendations 

 

 In this paper, we have initially reviewed various methods of energy analysis for the 

project site, SGH office headquarters, located in Waltham. DesignBuilder, a plug-in for 

EnergyPlus, was concluded to be suitable for the case study. ASHRAE Guideline 14, 

Measurement of Energy and Demand savings, was used to properly conduct an energy analysis 

on DesignBuilder. We have collected building data for building geometry, building envelope, 

lighting, plug loads, HVAC, utility data and spot measurements. Furthermore, a user survey was 

conducted to ensure better understanding of the occupant behaviors. While inputting the 

collected data in the software, and calibrating the model to monthly utility data, we observed 

some irregularity in the office’s monthly utility data. Heating Degree Days analysis was 

conducted on the utility data and it was observed that the building’s energy use, especially 

HVAC operation, did not display any noticeable trend that is expected from buildings located in 

similar environment.  

Though the DesignBuilder model could not be calibrated to the utility data, the closest 

model produced using measured inputs was used to identify possible energy conservation 

measures. Out of three considered methods–weather forecasting, radiant floor heating with 

natural ventilation, and increased air tightness–weather forecasting and increased air tightness 

seemed to be most effective, with weather forecasting being more applicable.  

Due to a lack of data and time constraints, we could not further our study in identifying 

the cause of the oddity in the HVAC system and evaluating energy conservation measures. 

Therefore, this report recommends further work to: 
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 collect more information on every HVAC unit with the spot measurement devices 

 collect more detailed utility data through sub-metering units 

 gain better understanding on the system such as location of thermostats, etc 

 research further the claim that increasing air tightness and weather forecasting are 

effective energy conservation measures. 

Establishing the validity of this claim could impact the energy use of SGH's office 

headquarters in Waltham. 



x 

 

Table of Contents 
 

Design Statement ............................................................................................................................ ii 

Professional Licensure Statement .................................................................................................... i 

Abstract .......................................................................................................................................... iii 

Acknowledgments.......................................................................................................................... iv 

Executive Summary ........................................................................................................................ v 

Table of Contents ............................................................................................................................ x 

Table of Figures ............................................................................................................................ xii 

Table of Tables ............................................................................................................................ xiv 

1. Introduction ............................................................................................................................... 15 

1.1 SGH Case Study ................................................................................................................. 17 

1.2 Scope of Study .................................................................................................................... 18 

2. Background ............................................................................................................................... 19 

2.1 Building Energy Use ........................................................................................................... 19 

2.2 Energy Modeling- pros/cons/uses ....................................................................................... 21 

2.2.1 Bin Calculation ............................................................................................................ 24 

2.2.2 COMcheck ................................................................................................................... 24 

2.3 EnergyPlus and DesignBuilder ........................................................................................... 25 

2.4 Standards ............................................................................................................................. 27 

2.4.1 Energy Efficiency ........................................................................................................ 27 

2.4.2 Software Validation ..................................................................................................... 27 

2.4.3 Calibrated Models ........................................................................................................ 28 

3. Problem Statement & Objective ............................................................................................... 35 

4. Scope of Study .......................................................................................................................... 36 

5. Data Collection and Relevant Analysis .................................................................................... 38 

5.1 Building Geometry.............................................................................................................. 39 

5.2 Monthly Utility Data/ Weather Data ................................................................................... 41 

5.2.1 HDD Analysis of Monthly Utility Data ....................................................................... 41 

5.2.2 Utility Data vs. Weather Data Analysis ....................................................................... 45 

5.3 On-Site Surveys .................................................................................................................. 48 

5.3.1 Lighting ........................................................................................................................ 48 

5.3.2 Plug Loads ................................................................................................................... 49 

5.3.3 HVAC .......................................................................................................................... 51 



xi 

 

5.3.4 Envelope ...................................................................................................................... 55 

5.4 Occupant Interview ............................................................................................................. 65 

5.4.1 User Profile .................................................................................................................. 66 

5.4.2 HVAC comfort............................................................................................................. 68 

5.4.3 Lighting Comfort ......................................................................................................... 70 

5.5 Spot and Short-Term Measurements .................................................................................. 71 

5.5.1 Phase 1 ......................................................................................................................... 73 

5.5.2 Phase 2 ......................................................................................................................... 73 

5.5.3 Phase 3 ......................................................................................................................... 75 

5.5.4 Phase 4 ......................................................................................................................... 76 

5.5.5 Phase 5 ......................................................................................................................... 77 

5.5.6 Data Logger Analysis .................................................................................................. 78 

6. Simulation ................................................................................................................................. 84 

6.1 Input .................................................................................................................................... 84 

6.2 Results ................................................................................................................................. 98 

7. Proposed Energy Conservation Measures .............................................................................. 104 

7.1 Weather Forecasting ......................................................................................................... 104 

7.2 Radiant Floor Heating ....................................................................................................... 105 

7.3 Increased Air Tightness .................................................................................................... 107 

8. Conclusion .............................................................................................................................. 109 

8.1 Difficulties Encountered ................................................................................................... 109 

8.2 Conclusions and Recommendations ................................................................................. 110 

9. References ............................................................................................................................... 112 

10. Appendix A: Site Photos ....................................................................................................... 116 

11. Appendix B: Electricity Consumption Data ......................................................................... 119 

12. Appendix C: Spot Measurements ......................................................................................... 142 

13. Appendix D: RTU Nameplate Data ...................................................................................... 145 

14. Appendix E: User Survey results .......................................................................................... 153 

15. Appendix F. DesignBuilder results ....................................................................................... 166 

16. Appendix G. DesignBuilder ECM results ............................................................................ 173 

16.1 Infiltration Model ............................................................................................................ 173 

16.2 Radiant Floor Heating Model ......................................................................................... 180 

 



xii 

 

Table of Figures 
 

Chapter 1 

Figure 1.1: SGH Office, Waltham, MA ........................................................................................ 17 
Figure 1.2: SGH Office Orientation .............................................................................................. 18 
 

Chapter 2 

Figure 2.1: Energy Consumption Breakdown of 2010 ................................................................. 19 
Figure 2.2: Building Site Energy Consumption by End Use in 2010 ........................................... 20 
Figure 2.3: Energy Savings Potential in the Residential and Services Building Sector ............... 21 
Figure 2.4: DesignBuilder Capabilities by Version ...................................................................... 26 
Figure 2.5: General Approach....................................................................................................... 31 

 

Chapter 5 

Figure 5.1: Southeast Façade of SGH Office Building................................................................. 40 
Figure 5.2: Cross Section of SGH Office ..................................................................................... 40 

Figure 5.3: SGH Office Zones ...................................................................................................... 41 
Figure 5.4: Energy Use Over 2013-2014 of Different Zones of the Building .............................. 42 

Figure 5.5: HDD Graph of the Front Bay (HVAC) ...................................................................... 43 
Figure 5.6: HDD of Electric Use per Square Foot of Various Zones ........................................... 44 
Figure 5.7: 2012, 2013, 2014 Monthly Utility Data (kWh) .......................................................... 46 

Figure 5.8: Average Monthly Weather Data near SGH Office (°F) ............................................. 47 
Figure 5.9: Relative Location of Rooftop Packaged Units ........................................................... 51 

Figure 5.10: A Section of Construction Specification of the HVAC Units Plans ........................ 52 

Figure 5.11: Packaged Rooftop Air Handling Unit on SGH Roof ............................................... 53 

Figure 5.12: Different Elements of SGH Office Building Envelope ............................................ 56 
Figure 5.13: Hole in Interior Wall of SGH Office ........................................................................ 56 

Figure 5.14: Photo from during original building renovation, SGH............................................. 56 
Figure 5.15: Wall Cross Section ................................................................................................... 57 
Figure 5.17: SGH Roof EPDM ..................................................................................................... 58 

Figure 5.16: Roof Cross Section ................................................................................................... 58 
Figure 5.18: SGH Foundation from Plans .................................................................................... 59 

Figure 5.19: Percentage of Survey Participants by Zone .............................................................. 66 
Figure 5.20: Occupant schedule of the users broken down into 15 minute interval ..................... 67 
Figure 5.21: Activity Level of the Survey Participants ................................................................ 68 
Figure 5.22: Thermal Comfort of the Occupants in Cold Weather by Zone ................................ 69 
Figure 5.23: Thermal Comfort of the Occupants in Hot Weather by Zone .................................. 69 

Figure 5.24: Occupant satisfaction ............................................................................................... 70 
Figure 5.25: Data Logger Locations ............................................................................................. 71 

Figure 5.26: Clarification of Logger “4” and “iv” Locations ....................................................... 72 
Figure 5.27: Average Temperature of Data Loggers (Phase 2-5) ................................................. 79 
Figure 5.28: Location of Logger v on HVAC Unit ...................................................................... 80 
Figure 5.29: Phase 5 Logger Data for January 4-8, 2016 ............................................................. 81 
Figure 5.30: Phase 5 Data for Loggers i, ii, and iii (January 4-8, 2016) ...................................... 83 

  

https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446155975
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446155976
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft.docx#_Toc445990222
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft.docx#_Toc445990223
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft.docx#_Toc445990224
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft.docx#_Toc445990225
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft.docx#_Toc445990226
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530526
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530527
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530528
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530529
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530530
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530531
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530532
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530533
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530534
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530536
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530537
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530538
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530539
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530540
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530541
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530542
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530543
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530544
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530545
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530547
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530548
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530549
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530550
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530551
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530552
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530553
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530554
file:///C:/Users/Allyson/SkyDrive/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.23.1.docx%23_Toc446530555


xiii 

 

Chapter 6 

Figure 6.1: Creating a New Project in DesignBuilder .................................................................. 85 
Figure 6.2: Importing the CAD Floor Plan into DesignBuilder ................................................... 85 
Figure 6.3: Three Main Building Blocks of SGH Office .............................................................. 86 

Figure 6.4: DesignBuilder Rendered Model of SGH Office ........................................................ 87 
Figure 6.5: DesignBuilder Zones .................................................................................................. 87 
Figure 6.6: Major Building Block with Fenestration .................................................................... 88 
Figure 6.7: Window Template in DesignBuilder .......................................................................... 88 
Figure 6.8: Construction Tab of DesignBuilder Project ............................................................... 89 

Figure 6.9: SGH Roof Build-up in DesignBuilder ....................................................................... 90 
Figure 6.10: SGH Wall Build-up in DesignBuilder...................................................................... 90 
Figure 6.11: SGH Floor Build-up in DesignBuilder ..................................................................... 90 
Figure 6.12: Lighting Input Tab from DesignBuilder .................................................................. 91 

Figure 6.13: Lighting Schedule of SGH Building ........................................................................ 92 
Figure 6.14: HVAC Tab of DesignBuilder ................................................................................... 93 

Figure 6.15: SGH’s HVAC Schedule for DesignBuilder ............................................................. 94 
Figure 6.16: SGH Occupant Schedule used to determine DHW and Activity Level in Office .... 94 

Figure 6.17: SGH Occupant Schedule During a Weekday ........................................................... 95 
Figure 6.18: SGH Occupant Schedule During the Weekend ........................................................ 96 
Figure 6.19: Activities Tab of DesignBuilder............................................................................... 97 

Figure 6.20: 2002 Utility Data vs. DesignBuilder Output ............................................................ 99 
Figure 6.21: Energy Use Breakdown by End Uses Illustrated by Percentage ............................ 101 

Figure 6.22: Building Site Energy Consumption of a Typical Building by End Use, DOE ...... 101 
Figure 6.23: Heating Design of the Project from DesignBuilder ............................................... 103 

 
Chapter 7 

Figure 7.1: The Heating Design Results from DesignBuilder for Radiant Heat Floor System .. 106 
Figure 7.2: Energy Use Comparison Between Initial Results and Radiant Floor ...................... 107 
Figure 7.3: Heating Design Results of Air Tight Scenario from DesignBuilder ........................ 108 

Figure 7.4: Comparison Between Total Energy Use, Heating Energy Use, and Cooling Energy 

Use of Initial Simulation and Simulation with Higher Air Tightness Value .............................. 108 

  

https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156158
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156159
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156160
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156161
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156162
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156163
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156164
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156165
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156166
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156167
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156168
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156169
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156170
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156171
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156172
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156173
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156174
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156175
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156176
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156177
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156178
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156179
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156180
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156181
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156182
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156183
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156184
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156184


xiv 

 

Table of Tables 
 

Chapter 2 

Table 2.1: Summary of ASHRAE Guideline 14 Approaches....................................................... 22 
Table 2.2: Considerations in Selecting a Compliance Path .......................................................... 30 
Table 2.3: Criteria for Calibrated Simulation ............................................................................... 34 

 

Chapter 5 

Table 5.1: 2012, 2013, 2014 SGH Monthly Utility Data (kWh) .................................................. 46 
Table 5.2: Average Monthly Weather Data near SGH Office (°F) .............................................. 47 
Table 5.3: SGH Plug Loads .......................................................................................................... 50 

Table 5.4: HVAC Schedule .......................................................................................................... 52 
Table 5.5: Energy Efficiency Data of the SGH HVAC Units ...................................................... 55 

Table 5.6: COP Values by Zone ................................................................................................... 55 
Table 5.7: EIFS Wall Composition ............................................................................................... 57 
Table 5.8: Roof Composition ........................................................................................................ 58 
Table 5.9: Floor Composition ....................................................................................................... 59 

Table 5.10: SGH Window Information ........................................................................................ 60 
Table 5.11: Building Envelope Requirements .............................................................................. 62 
Table 5.12: Building Envelope Requirements .............................................................................. 64 

Table 5.13: Building Envelope Requirements: Fenestration ........................................................ 65 
Table 5.14: Data Logger Locations and Time Durations ............................................................. 72 

Table 5.15: Phase 1 Spot Measurement Results ........................................................................... 73 
Table 5.16: Phase 2 Spot Measurement Results ........................................................................... 74 
Table 5.17: Phase 3 Spot Measurement Results ........................................................................... 75 

Table 5.18: Phase 4 Spot Measurement Results ........................................................................... 76 

Table 5.19: Phase 5 Spot Measurement Results ........................................................................... 77 
Table 5.20: Overall Summary of Logger Data, Averages, Medians, Highs, and Lows ............... 79 

 

Chapter 6 

Table 6.1: SGH Energy Consumption (Utility Bill) 2002-2003 ................................................... 98 

Table 6.2: Energy Use Breakdown by End Uses ........................................................................ 100 

 

Chapter 7 

Table 7.1: Weather Data for 11/25-28/2015 ............................................................................... 105 

https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft.docx#_Toc445990416
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156210
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156218
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156219
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156220
https://d.docs.live.net/504669e6e9d58a80/MQP/Smith%20and%20Sohn%20MQP%20Draft%203.18.docx#_Toc446156227


15 

 

1. Introduction 

  

Engineers, architects, and energy assessors use Building Energy Simulation (BES) in 

order to reproduce unobserved situations in a computerized model.11 Energy models have the 

ability to both calculate and visually represent energy consumption in buildings, and provide 

valuable data in many phases of a building's life, from design to operation. For existing 

buildings, engineers can use BES to determine Energy Conservation Measures (ECMs).12 ECMs 

are methods that can lead to a reduction in energy consumption, and thus energy cost savings. 

Engineers use BES during the design phase of new building construction to study the potential 

energy consumption of a building. Determining energy usage of a building before it is 

constructed can alert engineers of ECMs while it is easier to adjust the design. Considering the 

energy consumption of existing buildings is also important, as implementing an energy reduction 

strategy can not only reduce costs but also benefit the environment.13  In addition, BES is utilized 

as a tool for determining how well a building fits into the energy requirements of programs like 

LEED (Leaders in Energy and Environmental Design).14 More and more programs like LEED 

are pushing for reduction in energy usage, giving a lot of weight (points) to energy aspects of 

building design and operation.  

BES, however, is not used to its fullest capacity because of two main complications: 

modeling and calibration.15 Garbage in, garbage out, otherwise referred to as GIGO, is the 

                                                 
11 Daniel Coakley, Paul Raftery, and Marcus Keane. "A review of methods to match building energy simulation 

models to measured data." Renewable and Sustainable Energy Reviews 37 (2014): 123-141. 
12 Paul Raftery, Marcus Keane, and James O’Donnell. "Calibrating whole building energy models: An evidence-

based methodology." Energy and Buildings 43, no. 9 (2011): 2356-2364. 
13 Daniel Daly, Paul Cooper, and Zhenjun Ma. "Understanding the risks and uncertainties introduced by common 

assumptions in energy simulations for Australian commercial buildings." Energy and Buildings 75 (2014): 382-393. 
14 Energy and Atmosphere credit, LEED v4 
15 Coakley, Raftery, and Keane. 



16 

 

concept that if the user inputs incorrect data, the output will be incorrect too. While it seems 

simple enough to fix, the trouble with energy simulation software is that sometimes not all of the 

data is available. This is often the case with existing buildings seeking an energy analysis. If the 

owner wishes to model and simulate the current system and a proposed retrofitted system to 

determine potential cost savings, the modeller may run into some trouble. For example, 

simulating older mechanical equipment is often difficult, and some of the existing conditions 

might be unknown (especially if opening up a wall is not an option) or the plans are no longer 

available for the building. Other issues arise with the location of the building, such as limited 

availability of weather data files.16 When data is available, the weather stations are often located 

at more remote airports that might not be the best representation of the building’s site. 

 Beyond simulation complications, calibration brings a whole new set of uncertainties that 

makes accurate prediction of a building’s energy consumption difficult even though physical 

characteristics and operation data may be available.17 Calibration is the measure of model 

accuracy.18 Engineers can calibrate BES models by following the methods outlined in ASHRAE 

Guideline 14.19 This paper considers the Whole Building Calibrated Simulation approach as 

described in ASHRAE Guideline 14.  

                                                 
16 Yun Kyu Yi and Ning Feng, “Dynamic integration between building energy simulation (BES) and computation 

fluid dynamics (CFD) simulation for building exterior surface,” (School of Design, University of Pennsylvania) 20 

January 2013. 
17 Daniel Daly, Paul Cooper, and Zhenjun Ma. "Understanding the risks and uncertainties introduced by common 

assumptions in energy simulations for Australian commercial buildings." Energy and Buildings 75 (2014): 382-393. 
18 Mohammad Royapoor and Tony Roskilly. "Building model calibration using energy and environmental data." 

Energy and Buildings 94 (2015): 109-120. 
19 Coakley, Raftery, and Keane. 
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1.1 SGH Case Study 
  

The Simpson, Gumpertz, and Heger (SGH) Office Headquarters is located in Waltham, 

MA. Previously used as a Raytheon Complex, the owner converted the building into an office 

space in 2002. The exterior brick envelope was updated with EIFS (exterior insulation and finish 

system). The existing office footprint (~90,000 sq. ft.) is the culmination of three projects: the 

initial office (2002) 48,000 sq. ft., a 15,000 sq. ft. expansion (2005) and a 27,000 sq. ft expansion 

(2012). The majority of the floor plan is single level, open office; however there are three 

mezzanine level spaces, as well as enclosed offices and conference rooms of varying sizes.  

The official hours of operation are 8:00am to 5:00pm; however, employees arrive before 

and leave after these official times. The office is also conditioned and open to employees from 

6:00am to 12:00pm on Saturdays. There are approximately 150 employees.  

The building footprint is NE/SW. There is no glazing on the NE wall of the office as it 

abuts another office space. At the time of this study, the space on the other side of the wall was 

being renovated. We are unsure of the effect of the adjacent space and when it has (and has not) 

Figure 1.1: SGH Office, Waltham, MA 
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been conditioned. The SW wall is the entrance to the office space and features a fully-glazed 

entry-way. The remaining portion of the SW façade is brick with 3'x8' double glazed windows. 

Figure 1.2 shows an aerial view of the office and its orientation. 

  

There are 14 Air Handling Units (AHUs). Two of the AHUs service the seminar space in 

the third expansion zone. One is dedicated for the laboratory, and another for the main cafeteria 

area. The server rooms have separate mechanical equipment from the rest of the building.  

   

1.2 Scope of Study 
  

The main focus of this paper is a case study of the Simpson, Gumpertz, and Heger office 

headquarters in Waltham, MA. In addition to developing a simulated energy model of the 

building, we also reviewed relevant codes and standards, and recommended energy conservation 

measures to the tenant.  

Figure 1.2: SGH Office Orientation, photo courtesy of Google Maps 
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2. Background 
 

 In this chapter we discuss several topics related to building energy use, energy modeling, 

and relevant standards. A significant portion is dedicated to ASHRAE Guideline 14: 

Measurement of Energy and Demand Savings.   

  

2.1 Building Energy Use 
  

The United States, responsible for approximately 17-19% of the world’s energy 

consumption, can track one-third of its energy use back to the building sector.20 In Figure 2.1, the 

charts breaks down energy consumption by country, by United States zone, and by energy type 

used in the commercial and residential building zones. 21 The building sector, which included 

commercial and residential, takes up 41% of the total U.S. energy consumption. Due to such 

high consumption of energy by buildings, there is a high potential for energy savings in the 

building sector.   

  

                                                 
20 “Transition to Sustainable Buildings: Strategies and Opportunities to 2050,” International Energy Agency, p. 109. 

Retrieved from: 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf 

Note: IEA writes “roughly 17% of global final energy consumption” and the DOE considers 19%. IEA is a more 

recent publication.  
21 Figure 2.1: D&R International, Ltd., “2011 Buildings Energy Data Book,” Building Technologies Program, 

Energy Efficiency and Renewable Energy, U.S Department of Energy, 2. Retrieved from: 

http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf 

Figure 2.1: Energy Consumption Breakdown of 2010, DOE 2011 Buildings Energy Data Book 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf
http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf
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According to data provided by the Department of Energy, the highest site energy 

consumption for buildings in 2010 was space heating, followed by water heating, space cooling, 

and lighting.22 The energy use in those sectors adds up to 68% of the total building site energy 

consumption as can be seen in the pie chart distribution in Figure 2.2. Because of this 

distribution, energy consumption reduction strategies focused on those sectors could have the 

largest influence.  

The International Energy Agency (IEA) reiterates the importance of energy savings in the 

heating, cooling, and lighting sectors.23 In its publication “Transition to Sustainable Buildings: 

Strategies and Opportunities to 2050,” the IEA writes that “Improvements in electrical end-use 

efficiencies, space heating equipment and building envelopes are expected to contribute a major 

portion of energy savings….”24 Figure 2.3, taken from the “Transition to Sustainable Buildings” 

report, shows the energy savings potential in the residential and services building sector from 

                                                 
22 Book, Buildings Energy Data. "Energy Efficiency and Renewable Energy."US Department of Energy (2011). 
23 “Transition to Sustainable Buildings: Strategies and Opportunities to 2050,” International Energy Agency, p. 111. 

Retrieved from: 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf 
24 “Transition to Sustainable Buildings: Strategies and Opportunities to 2050,” IEA, p. 111 

Figure 2.2: Building Site Energy Consumption by End Use in 2010, 

DOE 2011 Buildings Energy Data Book 

https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Buildings_2013.pdf
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2010 to 2050. The residential graph displays that space heating, water heating, as well as 

building envelope, which is directly related to space heating, are predominant factors in energy 

savings. For services, appliance and other equipment, which include electrical end-uses, account 

for the greatest energy savings; however, space heating, building envelope, lighting, as well as 

water heating, play considerable role in energy savings.  

   

2.2 Energy Modeling- pros/cons/uses 
 

Building Energy Simulation (BES), while not a new tool for the building engineering 

industry, has seen many improvements in the past forty-plus years.25 These changes can be 

attributed to developments in computer technology as well as the algorithms used in 

simulation.26 This paper does not attempt to provide a history of, nor a thorough analysis of the 

types of simulation programs now available, but does acknowledge that the use of BES is 

                                                 
25 Tamami Kusuda, “Early History and Future Prospects of Building System Simulation,” IBPSA Conference 

Proceeding, 1999. 
26 Sukjoon Oh, “Origins of Analysis Methods in Energy Simulation Programs Used for Higher Performance 

Commericial Buildings,” Thesis, Texas A&M University, August 2013. 

Figure 2.3: Energy Savings Potential in the Residential and Services Building Sector, 

International Energy Agency 
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becoming more common in the industry.27 As such, we consider the benefits and disadvantages 

to the use of whole building energy simulation for determining the energy consumption of 

buildings. Particular focus is given to existing buildings, as this is most relevant to our case study 

of the Simpson, Gumpertz, and Heger (SGH) office headquarters in Waltham, MA. 

Whole Building Energy Calibrated Simulation is one of three approaches outlined by 

ASHRAE Guideline 14 Measurement of Energy and Demand Savings.28 The other two options 

include the Whole Building Approach and the Retrofit Isolation Approach. Each of these three 

methods have strengths and weaknesses, and should be selected on a case-by-case basis. It is up 

to the user to determine which one is most appropriate. The three approaches are summarized in 

Table 2.1 below:29 

Table 2.1: Summary of ASHRAE Guideline 14 Approaches 

Approach Summary 

Whole Building One main meter measures the energy flow (electric, gas, thermal, or oil). 

Compare energy flow from pre- and post-retrofit situations, often through 

study of monthly utility bills or more accurate records. 
Retrofit 

Isolation 

Meters to isolate different subsystems affected by ECMs. Data recorded at 

minimum, once before and once after retrofit, although continuous/frequent 

monitoring is also a possibility. Measured energy savings can be assumed to 

be similar for other unmetered systems within the same facility as long as 

they share the same characteristics. 
Whole Building 

Calibrated 

Simulation 

A computer model of the building is simulated in software under pre-retrofit 

conditions and outputs are calibrated against actual measured data. Inputs 

are modified to simulate post-retrofit conditions and the two scenarios are 

compared.  

                                                 
27 For commercial building example, see, Paul Raftery, Marcus Keane, and Andrea Costa, “Calibrating whole 

building energy models: detailed case study using hourly measured data,” Energy and Buildings 43 (2011), 3666-

3679.  

For Industrial Hall example, see Bruno Lee, Marija Trcka, and Jan L. M. Hensen. 2014. Building energy simulation 

and optimization: A case study of industrial halls with varying process loads and occupancy patterns. Building 

Simulation 7 (3): 229-36.  

For Residential example, see Mathieu Barbason, and Sigrid Reiter, “Coupling building energy simulation and 

computational fluid dynamics: Application to a two-storey house in a temperate climate.” Building and Environment 

Volume 75, May 2014, P 30-39. 
28 ASHRAE Guideline 14-2002, page 10.  
29 ASHRAE Guideline 14-2002, page 10.  
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 The benefits of the Whole Building Calibrated Simulation approach, and building energy 

simulation in general, stem primarily from the ability to test many parameters. With a calibrated 

energy model, the user can experiment with a variety of different retrofit scenarios, and 

determine potential cost savings before actual work has started. When a model is calibrated off 

of existing data, and thus simulated results match actual data, the model becomes much more 

valuable. Parametric studies can then be conducted: the effects of increasing insulation R-values, 

shading, air infiltration, and, for new construction additional parameters like building orientation.   

While energy modeling provides a convenient means of energy use estimation, there are 

limitations that cause difficulty in simulation. There are three major types of limitations: 

dynamic, stocastic, and probabilistic.30 Dynamic limitations relate to fabric properties and 

HVAC systems. Hygrothermal software, such as WUFI, provide more accurate data than 

programs like DesignBuilder which assume properties of building material as constants in their 

models. Stocastic limitations refer to occupant uses. Because many input parameters in 

DesignBuilder are based on occupancy, correct measurement of occupant use of the building is 

necessary. Lastly, probabilistic limitations such as accuracy of weather data cause difficulty in 

energy modeling. Unless a weather station is located on the project site, it is highly likely that the 

weather data from nearby weather station--usually located at the airport--would differ from 

weather on site. 

With given limitations, there are chances that the initial modeling results created by 

energy simulation software will contain errors. There are two major types of errors: measurement 

error embedded in the actual data and modeling error due to the simulation process.31 

Measurement error, such as equipment performance, can be addressed by referring to equipment 

                                                 
30 Mohammad Royapoor and Tony Roskilly, “Building model calibration using energy and environmental data.” 
31 Royapoor, et. al. “Building model calibration.” 
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manufacturer literature or conducting equipment calibration. Modeling error caused usually by 

inaccurate specification of building fabric and systems, over-simplification of reality, and 

imprecise parameterization can be addressed by more detailed modeling and calibration of the 

model. 

  

2.2.1 Bin Calculation 

 

The Bin Calculation method for energy consumption uses historical weather data. The 

method starts by selecting an exterior weather parameter and dividing it into discrete ranges, or 

bins, to sort the number of hours in a year that falls under the designated ranges. The parameter 

used for bin calculation is dry bulb temperature. After selection of a parameter, an average value 

of the parameter in each bin is calculated for energy calculations. To calculate loads of each bin, 

first, the energy use load for the bin should be specified. Then, the load should be multiplied by 

hours of occurrence of the bin to calculate total energy used for the bin. Lastly, the calculated 

loads should be summed to evaluate the total load.32 Bin method allows prediction of energy use 

without the use of any software. However, since it only calculates HVAC consumption, it is not 

possible to evaluate whole building energy analysis with bin calculation. 

 

2.2.2 COMcheck 
  

COMcheck facilitates the compliance check of buildings with codes such as IECC or 

ASHRAE Standard 90.1. COMcheck currently provides code compliance in three sectors of the 

building: envelope, lighting, and mechanical. Only basic information such as basic building 

geometry, orientation, thermal properties of walls and windows, fixture information, are 

                                                 
32 Celeste Cizik, "Tips and Tricks for Estimating Energy Savings." Building Commissioning Association. Accessed 

February 29, 2016. http://www.bcxa.org/ncbc/2009/docs/Cizik_NCBC09.pdf.  
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necessary to conduct COMcheck.33 Compared to complex building simulation, there are 

relatively less parameters to input, making the process much simpler and easier. Furthermore, 

COMcheck is freeware, making it available for many professionals in the building industry. 

However, due to over simplification, it is difficult to accurately predict complicated 

computational data such as detailed energy use or hourly temperature variance with COMcheck. 

    

2.3 EnergyPlus and DesignBuilder 
   

EnergyPlus is a building energy simulation software developed by the U.S. Department 

of Energy (DOE) in 2001.34 The program provides the opportunity to simulate an entire building 

and all of its MEP (Mechanical, Electrical, and Plumbing) systems. This allows the user to 

determine the characteristics of a fully integrated building in all phases of construction. Through 

this software, realistic data can be extracted to perform accurate energy analysis and calculate 

realistic MEP loads. 

EnergyPlus itself does not have a user-friendly interface. As such, there are a variety of 

different third-party software packages that use EnergyPlus as a platform and provide a graphical 

interface. For example, DesignBuilder, Simergy, AECOsim Energy Simulator, and many 

others.35 These programs allow the user to follow a series of steps to model and input data about 

his building. The more data that the user can provide, the more accurate the results.  

DesignBuilder is a user-friendly 3-dimensional, energy modeling software that runs on 

EnergyPlus.36 Currently in its fourth version, DesignBuilder is useful for architects, engineers, 

                                                 
33 Rose Bartlett and Pam Cole. "COMcheck Basics," Energy Efficiency and Renewable Energy. Accessed March 2, 

2016. http://www.neo.ne.gov/home_const/iecc/pdf/comcheckbasics.pdf.  
34 “EnergyPlus Energy Simulation Software,” DOE, December 11, 2015. 

http://apps1.eere.energy.gov/buildings/energyplus/pdfs/energyplus_fs.pdf 
35 For a full list, please refer to: https://energyplus.net/interfaces 
36 “DesignBuilder – Simulation Made Easy,” DesignBuilder. http://www.designbuilder.co.uk/content/view/43/64/ 

http://apps1.eere.energy.gov/buildings/energyplus/pdfs/energyplus_fs.pdf
https://energyplus.net/interfaces
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and energy assessors. Using EnergyPlus as its backbone, DesignBuilder makes visualization of 

energy an easier and more intuitive process.  

The software has various capabilities, and is available in multiple forms depending on the 

end-user. DesignBuilder is useful at all phases of design, and as we plan to use it, for existing 

buildings. In addition to the 3-d modeling capacity, DesignBuilder has nine other modules: 

visualization, certification, simulation, daylighting, HVAC (Heating, Ventilation, Air 

Conditioning), cost, LEED, optimization, and CFD (Computational Fluid Dynamics).37 Figure 

2.4, as found on the DesignBuilder website, depicts the three user class types, and the modules 

available to each software package. 

 

 

 

 

 

                                                 
37 “DesignBuilder Software Product Overview,” DesignBuilder. 

http://www.designbuilder.co.uk/content/view/144/223/ 

Figure 2.4: DesignBuilder Capabilities by Version, DesignBuilder Website 



27 

 

2.4 Standards 

This paper considers several different standards, including ASHRAE 90.1, ASHRAE 

Standard 140, and ASHRAE Guideline 14. 

2.4.1 Energy Efficiency 

  

ASHRAE 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings, 

provides minimum requirements for energy-efficient design of buildings.38 It describes the 

minimum energy requirements that need to be met by newly constructed buildings and the 

systems it is consisted of, as well as the newly installed systems in existing buildings. The 

standard also describes the criteria for compliance with the requirements in detail. 

The standard provides both a prescriptive path and performance path for meeting the 

requirements, providing flexibility for its users. For the prescriptive path, the standard 

encompasses building envelope, HVAC, DHW, power, lighting, and other equipment with 

significant energy demand.39 For performance path, a baseline Energy Cost Budget (ECB) is 

provided based on the building size and program. The ECB is determined from a baseline 

building, which meets prescriptive code requirements, with a similar scope as the project 

building. Then, the ECB is compared with the cost budget of the project building, modelled with 

building energy simulation.  

  

2.4.2 Software Validation  
  

The purpose of ASHRAE Standard 140: Standard Method of Test for the Evaluation of 

Building Energy Analysis Computer Programs is to specify "test procedures for evaluating the 

                                                 
38 K. Gowri, M. A. Halverson, and E. E. Richman. "Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for 

the State of New York." Richland, WA: Pacific Northwest National Laboratory (2007). 
39 ASHRAE 90.1. 
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technical capabilities and ranges of applicability of computer programs that calculate the thermal 

performance of buildings and their HVAC systems."40 The procedures are not all encompassing; 

however, they are useful for determining major flaws or limitations in the capabilities of the 

program. Standard 140 separates test cases into two Classes: I and II. Class I cases are more 

detailed programs with simulation time step capabilities of hourly or sub-hourly. Class II test 

cases can be used for all software packages and have no minimum time-step requirement.41  

For this study, we will be using DesignBuilder, a software program that is validated by 

Standard 140 (2004 version).42 It used the Class I test procedures. Standard 140 allows for 

programs in question to be compared against approved programs (whether it is a previous 

version or different program). DesignBuilder compares its newer versions against the version 

that went through the 140 procedure.43 

   

2.4.3 Calibrated Models 
  

ASHRAE developed Guideline 14, Measurement of Energy and Demand Savings to set a 

standard for "reliably measuring the energy and demand savings due to building energy 

management projects."44 When determining energy savings because of an Energy Conservation 

Measure (ECM), the calculation is not as simple as baseline minus post-retrofit energy usage. 

Several other factors have an influence on energy usage, like occupancy and weather conditions. 

                                                 
40 ASHRAE Standard 140-2014: Standard Method of Test for the Evaluation of Building Energy Analysis Computer 

Programs, page 7. 
41 ASHRAE Standard 140-2014, page 4. 
42  “ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests,” DesignBuilder, 2006. 

http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdf 
43  “ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests,” DesignBuilder, 2006. 

http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdf 
44 ASHRAE Guideline 14-2002, page 4 

http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdf
http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdf
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In order to account for this, Guideline 14 considers how to project the baseline case into the 

conditions of the post-retrofit scenario. With this in mind, ASHRAE gives the formula:  

 (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒 𝑜𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑃𝑜𝑠𝑡 𝑟𝑒𝑡𝑟𝑜𝑓𝑖𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) 

−                                                                (𝑃𝑜𝑠𝑡 𝑟𝑒𝑡𝑟𝑜𝑓𝑖𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒 𝑜𝑟 𝑑𝑒𝑚𝑎𝑛𝑑)

                                                                                                                                𝑆𝑎𝑣𝑖𝑛𝑔𝑠
45 

One of the difficulties with determining energy savings stems from variable factors like 

weather and occupancy. The relationship between variable factors and energy savings can never 

be definitively defined.46 But users can reduce the amount of uncertainty. However, it is key to 

note that with greater certainty comes greater potential cost (time and effort), which might 

outweigh the returns. ASHRAE provides a method for calculating quantifiable uncertainties in 

Section 5.2.11 of Guideline 14-2002. 

As previously discussed, there are three approaches outlined in ASHRAE Guideline 14: 

Whole Building, Retrofit Isolation, and Whole Building Calibrated Simulation. While all three of 

the approaches share some of the same requirements, there are also four unique compliance 

paths.47 Of these, there are three "performance paths" that vary in the method of measuring actual 

energy use and demand and one "prescriptive path." The prescriptive path is intended for use 

with the whole building approach for situations under which the conditions require no 

uncertainty analysis.48  Table 2.2, from ASHRAE Guideline 14-2002, gives the considerations 

for each of the compliance paths.49  

 

                                                 
45 ASHRAE Guideline 14-2002, page 4. 
46 ASHRAE Guideline 14-2002, page 5. 
47 ASHRAE Guideline 14-2002, page 6. 
48 ASHRAE Guideline 14-2002, page 6. 
49 ASHRAE Guideline 14-2002, page 20. 
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The general approach of Guideline 14 for all three options is summarized in Section 3.5.3 

Minimum Requirements for Compliance with this Guideline. Figure 2.5, as found in ASHRAE 

Guideline 14, describes the general approach and is shown below for the convenience of the 

reader.50 In addition, it is important to note that Guideline 14 specifies that for each of three 

performance paths, "the level of uncertainty shall not be greater than 50% of the annual reported 

savings (at the 68% confidence level)."51  

                                                 
50 ASHRAE Guideline 14-2002, page 7. 
51 ASHRAE Guideline 14-2002, page 7. 

Table 2.2: Considerations in Selecting a Compliance Path, ASHRAE Guideline 14-2002 
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For the purpose of this research, we will be following the guidelines set forth for the 

Whole Building Calibrated Simulation approach. The following information however, 

summarized from Section 5: Requirements and Common Elements, can be applied to any three 

of the approaches. ASHRAE Guideline 14 defines weather as one of the most important 

independent variables to assessing energy use and demand.52 Variables like temperature, 

humidity, and wind can all affect energy usage. Occupancy, infiltration, and schedules are other 

key factors. It is important to determine the variables that have the greatest influence on the 

                                                 
52 ASHRAE Guideline 14-2002, page 10. 

Figure 2.5: General Approach, ASHRAE Guideline 14 
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energy use and demand for the building being studied. Section 5.2.1 writes, "All reasonable 

variables should be tested, using such parameters as the "t-test" to determine which variables are 

substantive."53  

Guideline 14 specifies that there are several factors that should go into determining the 

baseline period. The closer the baseline is to the retrofit, the less human error or bias from 

operating staff trying to remember the conditions.54 In addition, the baseline period should be 

established as a designated interval of time, whether it is yearly, seasonal, monthly, etc. In most 

cases, more data is better. If the user has data for 13 months, they should only use 12 in order to 

avoid over representing a specific time period. Documenting the conditions of the baseline 

period is essential to determining energy savings. ASHRAE lists several items that should be 

documented, including but not limited to: occupancy pattern, density, schedule; spot 

measurements under known operating conditions; non-routine functions of the facility, dates, and 

impacts on operations; and equipment nameplate data. 

The equipment being used to measure the energy use should also be considered as a 

source of error. That is, there is error inherent in the equipment, which may factor into the energy 

savings calculations.55 Weather data, as previously mentioned, is another source of error. For this 

particular case-study, an onsite weather station is available. However, in instances where an on-

site weather station is not an option, choosing data from the nearest site is next best, followed by 

a site with similar conditions although not nearby. It is recommended in Guideline 14 that on-site 

weather data be checked periodically against other data collected from a nearby station. In 

                                                 
53 ASHRAE Guideline 14-2002, page 11. 
54 ASHRAE Guideline 14-2002, page 11. 
55 ASHRAE Guideline 14-2002, page 11. 
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addition, the weather station's location should not be altered during pre- and post-retrofit 

periods.56  

When calculating energy savings, there should be a single set of conditions that both the 

baseline and retrofit cases are subject to. The Guideline lists three different sets of conditions:  

1.) use the actual post-retrofit conditions,  

2.) use a standard set of general or average conditions,  

3.) use the baseline period conditions.57  

Depending on which set of conditions is chosen, the calculation of energy savings will 

vary slightly. Guideline 14’s method of analysis is mostly curtailed to follow with condition #1.58 

When adjustments to baseline conditions need to be made, they should be documented in order 

to keep track of uncertainty. Adjustments may be necessary in situations where changes other 

than ECMs result in different conditions between the baseline and post-retrofit scenarios.  

  When determining whether or not to use the Whole Building Calibrated Simulation 

approach, ASHRAE recommends considering a variety of criteria. Table 2.3, Criteria for 

Calibrated Simulations, summarizes when to use and when not to use the calibrated simulation 

technique.  

 

 

 

 

 

 

                                                 
56 ASHRAE Guideline 14-2002, page 11. 
57 ASHRAE Guideline 14-2002, page 12. 
58 ASHRAE Guideline 14-2002, page 13. 
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Table 2.3: Criteria for Calibrated Simulation 

When to use Calibrated Simulation When to NOT use Calibrated Simulation 

Either pre-retrofit or post-retrofit whole-building 

metered electrical data are not available. 

Measures that can be analyzed without building 

simulation. 

Savings cannot be easily determined using 

before-after measurements. 

Buildings that cannot be readily simulated. 

Measures interact with other building systems, 

and it is desired to account for those interactions, 

and retrofit isolation methods are not readily 

feasible. 

HVAC systems that cannot be simulated. 

 

Only whole-building energy use data are 

available but savings from individual retrofits are 

desired.  

Retrofits that cannot be simulated. 

 

Baseline adjustments needs.  Project resources are not sufficient to support 

calibrated simulation. 

 Future improvements  

  

ASHRAE Guideline 14-2002 requires that for Whole Building Calibrated Simulation, the 

user must "explicitly model at least the following:"59 

Taken directly from ASHRAE: 

 8,760 hours per year 

 Thermal mass effects 

 Occupancy and operating schedules that can be separately defined for each day of 

the week and holidays 

 Individual setpoints for thermal zones or HVAC components 

 Actual weather data 

 User-definable part-load performance curves for mechanical equipment 

 User-definable capacity and efficiency correction curves for mechanical equipment 

operating at non-rated conditions.  

  

The methodology for the Calibrated Simulation approach will be outlined in the next 

section of this report.   

  

                                                 
59 ASHRAE Guideline 14-2002, page 18. 
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3. Problem Statement & Objective 
  

This paper considered an energy analysis of an approximately 90,000 square foot office 

in Waltham, MA. The building is single-story, with office occupancy as its primary use; 

however, there is an active laboratory. Renovated from a Raytheon complex into an office space 

in 2002, SGH, the building tenant, contracted two additional renovations in 2005 and 2012 

(15,000 and 28,000 square feet, respectively) to bring the office to its current size. The purpose 

of the project was to simulate and analyze the energy consumption of the office, and then 

propose possible energy conservation measures.  
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4. Scope of Study 
 

In order to follow the steps outlined in ASHRAE Guideline 14, the first step for Whole 

Building Calibrated Simulation was to develop a plan. The following was the intended plan for 

this case study. 

1. The Baseline Scenario 

In order to determine the baseline scenario for the SGH office in Waltham, MA, we 

collected floor plans and utility data and conducted on-site surveys of the lighting systems, plug 

loads, HVAC systems, and building envelope. We surveyed the building occupants to assess 

perceived comfort level, actual occupancy schedules, and use of the space. To understand 

operation of the building, we interviewed the facilities operator. With all of this information, we 

developed an energy model and attempted to calibrate it to monthly measured data in 

DesignBuilder, Version 4.2.0.054.  

2. The Retrofit Scenario 

The proposed retrofit scenario was determined after conducting a parametric study on the 

baseline model. We investigated which parameters had the greatest influence on energy 

consumption in the building, and researched possible modifications in order to reduce energy 

use. Considering all of the data, we suggested energy conservation measures (ECMs) that will, in 

theory, reduce the energy consumption of the building. These ECMs involved modifications to 

the building itself and changes to the operation and management of the building.    

3. Spot and Short-Term Measurements 

We conducted spot and short-term measurements of the building to increase the accuracy 

of our data. These measurements included confirming the geometry of the building– floor plans 

as compared to as-built measurements– as well as temperature and humidity sensors for 
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capturing data in varying locations across the office. We used HOBOware technology, 

specifically the UX100-011 series of data loggers and the UA-002 series. UX100 technology 

records temperature and relative humidity data and is stationary, while UA-002 is wearable 

technology that records temperature and light levels.60  

 

                                                 
60 For UX100, see http://www.onsetcomp.com/products/data-loggers/ux100-011 

For UA-002, see http://www.onsetcomp.com/products/data-loggers/ua-002-08 

http://www.onsetcomp.com/products/data-loggers/ux100-011
http://www.onsetcomp.com/products/data-loggers/ua-002-08
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5. Data Collection and Relevant Analysis 
 

We followed ASHRAE Guideline 14 Section 6.3.3.2 to collect necessary data for energy 

simulation. The section specifies to collect building plans, utility data, on-site surveys, occupant 

interviews, spot and short-term measurements, and weather data. On-site surveys include surveys 

of lighting systems, plug loads, HVAC systems, building envelope, and building occupants. 

To conduct the case study, we first collected information about building geometry using 

building plans. Then we collected monthly utility data of the building. We compared the utility 

data with the weather data. We surveyed lighting, plug loads, HVAC, and envelope. Through 

occupant interviews, we surveyed building occupants. Finally, with data loggers, we collected 

spot and short-term measurements.  

 Building geometry 

 Monthly utility data and weather data 

 On-site surveys 
o Lighting 
o Plug loads 
o HVAC 
o Envelope 

 Occupant Interview 

 Spot and short-term measurements 
Though this section mainly focuses on the data collection to be used as simulation inputs, 

some analysis apart from simulation had to be conducted to validate the collected or measured 

data. To study the validity of the utility data, HDD analysis as well as utility vs. weather data 

analysis was conducted. To further this study, the spot and short-term measurement results were 

analyzed. These analyses not only facilitated the understanding of the building for simulation 

input purposes, but also expanded the understanding of building management and performances.  
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5.1 Building Geometry 

 

We obtained the building plans of 41 Seyon St. Waltham, MA from the tenant (SGH). 

The documents consisted of three separate, incomplete plans of the building. A full set 

(Architectural, Structural, and MEP) were available, though not-to-scale, for the original office 

space (48,000 square feet), another set for the 15,000 square foot addition, and a final set for the 

second addition (27,000 square feet). CAD files were only available for the MEP drawings of the 

27,000 square foot renovation. A complete drawing file of the entire office space as it existed in 

September 2015 was not available. It was our understanding that the drawings were lost in one of 

the three transfers of ownership of the building.   

In order to confirm the accuracy of the drawings, we confirmed the geometry of the 

building using spot measurements (tape measurer and laser range finder). We considered using 

Bluebeam software to calibrate the CAD file to scale, however we determined that using actual 

measurements would be more accurate. The spot measurements included the dimensions and 

spacing of the fenestration, lengths and heights of interior massing, and ceiling heights 

throughout the space. We also photographed the exterior elements of the building to determine 

any significant shading or massing elements.  
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We found that the building is approximately 180 feet in width, and the office comprises 

roughly 484 feet in length. Looking northwest towards building’s front entrance (southeast 

façade) in Figure 5.1, one can see that there are two distinct heights, excluding the minor slope of 

the roof. The central portion of the building with the clerestory window peaks at approximately 

28 feet and the two sections on either side reach just over 19 feet, when measured from the 

interior foundation to the ceiling. 

 A cross section (Figure 5.2) of the building shows the height difference. There is an 88” 

height difference between the top of the side portion of the building and the bottom slope of the 

center portion’s roof. This is where the clerestory windows span the length of the building. The 

clerestory windows are 55” high by 58” wide, with a 2” frame.  

Figure 5.1: Southeast Façade of SGH Office Building 

Figure 5.2: Cross Section of SGH Office 
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5.2 Monthly Utility Data/ Weather Data 

 

In following section, collected monthly utility data (available in Appendix B) was 

compared to the weather data of Waltham. First, the HDD analysis was conducted to gain a 

general understanding of the validity of the utility data. Then, more in-depth analysis was 

conducted, comparing the utility data to weather per each month, to have a better understanding 

of the building's energy use. 

We divided the office into several zones as shown in Figure 5.3. We reference these 

zones throughout the rest of the report.  

5.2.1 HDD Analysis of Monthly Utility Data  

Monthly utility data, provided by the SGH’s facilities manager, was analyzed by heating 

degree days (HDD) method. The complete documentation of the monthly utility data starting 

from fall of 2002 is available in Appendix B. 

Figure 5.3: SGH Office Zones 
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First, energy use over time graph on a monthly basis was plotted (Figure 5.4). The graph 

revealed that the energy use does not have any relation to the weather. If the energy use 

correlated to the weather, it would show a sinusoidal pattern. However, the graphs plotted had no 

pattern to them. Generally, buildings in cold weather would have more energy consumption over 

the winter season that requires more heating. In SGH's building, energy consumption in Front 

Bay HVAC and other loads, as well as Back Bay revealed a more or less flat trend. While 

Middle Bay graph showed some variance, the cooling season's energy load is more prominent 

than the other seasons.  

As the result of the weather trend analysis was concerning, heating degree day analysis 

was conducted to gather more detailed information regarding the correlation of utility bill and 

weather. The weather data of the city of Waltham was gathered from the Weather Underground 

website.61 After heating degree days for each monthly period were determined, energy use versus 

                                                 
61 Weather Forecast & Reports - Long Range & Local | Wunderground | Weather Underground. Accessed March 02, 

2016. https://www.wunderground.com/.  

Figure 5.4: Energy Use Over 2013-2014 of Different Zones of the Building 
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heating degree days graphs of various regions of SGH building were charted. In each of these 

graphs, the linear trend line was plotted and the linear equations in the form of y = ax+b were 

recorded. In these equations, "y" corresponds to the energy use, "x" corresponds to the heating 

degree days, the constant "a'' is the gradient of the trend line, and the constant ''b'' represents the 

intersection point that represents the base load of the energy use.62 Finally, R2 value was 

determined for the graph, which measures how good the correlation is. In general, R2 value 

ranging from 0.75-1 is considered acceptable.  

With the above information, the Front Bay's HVAC electric use over heating degree days 

graph should have an intercept of 0kWh, as the sub-meter should have only recorded HVAC use 

and therefore have no base load (Figure 5.5). However, the Front Bay's HVAC graph has an 

intercept of 36,804 kWh, which shows that on the days that do not require heating, the electric 

use is unnecessarily high. Also, on all the graphs it can be observed that R2 values are extremely 

low–with highest being below 0.4. This trend shows that the energy use does not correlate with 

the weather.  

 

                                                 
62 "Linear Regression Analysis of Energy Consumption Data." BizEE. Accessed March 02, 2016. 

http://www.degreedays.net/regression-analysis.  

Figure 5.5: HDD Graph of the Front Bay (HVAC) 
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For further understanding of the energy use, more HDD graphs of electric use per square 

foot were evaluated. For Middle and Back Bay, the intercepts would represent the base loads. 

Though Middle Bay graph showed some upward slope correlating to the weather, Back Bay 

graph showed a horizontal graph which showed that either the space is not heated properly 

during the winter, or the office used more energy for some other reason during warmer days. 

Overall, none of the graphs showed upward sloping trend lines that has reliable R2 values. 

Furthermore, compared to Front Bay total –which would include sum of HVAC and HVAC 

exclusive– and Middle Bay energy use –which would be around 2.5 kWh –Back Bay's energy 

use was abnormally lower (refer to Figure 5.6). 

 

 

 

Figure 5.6: HDD of Electric Use per Square Foot of Various Zones 
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After talking to SGH representatives, it was noted that Front Bay has lab equipment that 

use significant amount of power. Though that might explain the lack of trend (upward slope) and 

correlation of R2 value of Front Bay graphs, as HVAC of the Front Bay energy use is measured 

and analyzed separately, the lab equipment use does not explain the HVAC data's skewed 

results. As the Middle Bay and Back Bay are not metered separately, HDD analysis of HVAC 

data for those sections could not be obtained.  

5.2.2 Utility Data vs. Weather Data Analysis 

 

In order to develop a stronger understanding of SGH’s energy use, we considered three 

years of recent utility data (2012, 2013, 2014). The office was operating at its full capacity, and 

its current square footage during these years. Table 5.1 details the energy use in kWh per month 

for each year. When this data was graphed (Figure 5.7), it was easy to see the variation in energy 

usage, not only by month, but by year as well. While some months experienced relatively 

correlated data (e.g. March, April, May and June for 2012/2013) other months showed drastic 

differences (e.g. January, November). To consider this data more closely, we recorded the 

average temperature weather data from a nearby station for each month in 2012, 2013, and 2014. 

Table 5.2 lists these values, and Figure 5.8 shows them visually. The largest temperature range 

for any particular month was March, with a range of 11.1°F, averaging 36.4°F (2014), 41.6°F 

(2013), and 47.5°F (2012). February had the next largest range at 6.8°F, then January and 

December, both with 5.6°F.  
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Month 2012 2013 2014 Range 

January 127,470 187,188 230,755 103,285 

February 136,853 202,298 234,258 97,405 

March 178,256 183,523 194,969 16,713 

April 204,395 208,568 199,739 8,829 

May 172,333 171,481 187,051 15,570 

June 192,615 191,716 145,343 47,272 

July 188,345 199,364 196,189 11,019 

August 213,433 187,808 188,808 25,625 

September 209,439 206,325 156,451 52,988 

October 183,150 170,440 186,815 16,375 

November 160,356 202,142 195,011 41,786 

December 203,673 199,515 154,522 49,151 

Table 5.1: 2012, 2013, 2014 SGH Monthly Utility Data (kWh) 

 

Figure 5.7: 2012, 2013, 2014 Monthly Utility Data (kWh) 
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Weather Data 2012 2013 2014 Range 

January 36.5 35.7 30.9 5.6 

February 39 35.8 32.2 6.8 

March 47.5 41.6 36.4 11.1 

April 55 53.2 52.2 2.8 

May 65 63.7 63 2 

June 71.6 74.5 73.2 2.9 

July 79.9 81 78.9 2.1 

August 78.8 74.3 74.4 4.5 

September 68.3 68.4 68.6 0.3 

October 60.1 58.7 59.7 1.4 

November 44.9 44.4 45.8 1.4 

December 41.6 36 41.1 5.6 

Table 5.2: Average Monthly Weather Data near SGH Office (°F), 

WeatherUnderground (KMAWALTH6) 

Figure 5.8: Average Monthly Weather Data near SGH Office (°F), WeatherUnderground 
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Taking a closer look at the month of January, consider the years 2013 and 2014, when the 

building was certainly operating at full capacity. The average temperature in 2013 was 35.7°F 

and in 2014, 30.9°. So, as 2014 was on average colder, its energy consumption should be higher- 

which it was: 230,755 (2014) versus 187,188 (2013) for a difference of roughly 43,500 kWh. But 

consider June, in 2013 the office used 191,716 kWh of energy, and in 2014, 145,343 kWh, for a 

difference of approximately 46,400 kWh. The difference in average temperature: 1.3°F. As 

heating is the largest part of the energy bill each year, there should not be such a discrepancy in 

June. June 2012 and 2013 energy consumption was within a 1,000 kWh of each other. But 2014 

was well below both of these. September was another month in which the variation in energy 

consumption wass noteworthy. Weather should not be considered a factor, as the average 

temperatures were 68.3°F, 68.4°F, and 68.6°F for 2012, 2013, and 2014 respectively. The range 

in energy consumption: ~53,000 kWh.  

 With these discrepancies in mind, we found that calibrating our energy model to the 

utility data was an impossible task.  

 

5.3 On-Site Surveys 

 

On-site surveys of the building's lighting system, plug loads, HVAC system, and 

envelope were conducted to collect necessary data for building simulation according to 

ASHRAE Guideline 14.  

 

5.3.1 Lighting 

 

In order to survey the lighting system, we conducted a review of the electrical drawings. 

As previously mentioned, there was not a complete set of as-built drawings available for the 

office. Because of this, the main item that we took from the drawings was the fixture types and 
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nameplate data. Fixture counts were performed on site and cross checked with the drawings for 

accuracy. We used the data that we collected through the RH/light sensors to determine the 

typical lighting schedule for the building. This was achieved because the individuals in 

possession of the sensors would leave them at their desk and the amount of light intake would 

decline significantly after office hours. In addition to surveying of the system, we interviewed 

building manager, who gave us the operation schedule. 

There are two sets of schedules for the lights: the fluorescent 4' fixtures turn on at 8AM 

and off at 7PM; the aisle and track lights turn on at 10AM and off at 7PM. The lights are off on 

weekends and holidays although employees can control at the switch or via office phone. Also, 

there are several fluorescent 4' fixtures that are on 24/7 as night-lights per code. 

 

5.3.2 Plug Loads 

 

Because the building is operated as an office, it has a considerable amount of plug loads 

from typical office equipment such as computers, copying machine, and plotters. As the energy 

consumption of plug loads can be significant, accurate estimation of energy consumption by this 

equipment was essential. Furthermore, they also contribute heat to the space, which needs to be 

accounted for modeling of heating and cooling loads. 

In order to account for the plug loads, we received a list of the quantity and load of large 

office equipment. We then took an estimation of the “load” of each employee, taken as having a 

desktop computer and modem. The large plug loads are listed in Table 5.3: SGH Plug Loads. 
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Table 5.3: SGH Plug Loads 
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5.3.3 HVAC 

 

We observed the HVAC system over the course of multiple visits. In order to obtain the 

nameplate data for the rooftop packaged units, we went on top of the roof and systematically 

recorded the relative location and corresponding nameplate data for each of air handling units. 

There are a total of 14 rooftop air handling unit packages that condition the office building. All 

the units are a part of variable air volume HVAC system. Facilities staff informed us that four of 

the fourteen larger units were designated for certain areas of the building: the lab, the cafeteria, 

and one for each of the two seminar rooms in the final expansion. Figure 5.9 shows the relative 

location of the rooftop units as compared with the office floor plan. The units written in blue are 

smaller units. SGH RTU-14 is dedicated for the lab space, SGH RTU-1 is for the cafeteria, and 

SGH RTU-7 and 9 are dedicated to the seminar spaces. We have included the nameplate data in 

APPENDIX D. 

 

We used a combination of data from the HOBOware sensor and facilities staff knowledge 

to determine the schedule for the mechanical equipment. By placing the data sensor beneath an 

air supply outlet, we determined when the HVAC system was in use, what the setback air 

Figure 5.9: Relative Location of Rooftop Packaged Units 
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temperature was, and what the normal ambient temperature was for the building. Table 5.4 

summarizes the HVAC schedule for the SGH office.  

 

 

5.3.3.1 Construction Specification and Name Plate Data of Air Handling Units 
 

As well as collecting nameplate data from rooftop and consulting with facilities manager, 

we found construction documents for the mechanical system. As the mechanical system was 

designed over three phases due to building expansion, the mechanical drawings were difficult to 

piece together. Figure 5.10 is an excerpt from the mechanical drawings for the office. 

Furthermore, only ten units out of fourteen main units were identified in the drawings. Due to the 

discrepancies between nameplate data and the construction drawings, the analysis and simulation 

were based on the nameplate data and not the construction drawings.  

 

 
Figure 5.10: A Section of Construction Specification of the HVAC Units, SGH Mechanical Plans 

5.3.3.2 Packaged Air Handling Units 

 
An Air Handling Unit (AHU) serves as the center point of the air-conditioning system 

that distributes the conditioned air to various parts of the building through the ventilation 

  Table 5.4: HVAC Schedule 

Schedule Time  Cooling Setpoint Heating Setpoint 

Monday to Friday 6:30-19:00 74°F 70°F 

Saturday 7:00-12:00 74°F 70°F 

Sunday/Unoccupied - 82°F 63°F 
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ductwork.\ While air-handling units come in various types and sizes, the ones being used in SGH 

office building are packaged air handling units. Packaged air handling units serve as all-in-one 

solution to conditioning of the building; it serves for both heating and cooling. The air-handling 

unit is housed within a framing casing and insulated panels. Within the casing, it has filtration 

section, heat transfer component and fan.63 These units are assembled by the manufacturer off-

site and installed as a single unit.64 The AHU units at the SGH are variable air volume units. 

Figure 5.11 is a picture of one of the units on SGH’s roof. Variable air volume (VAV) is a type 

of HVAC system that supplies airflow at a variable temperature. VAV conditions air by both 

controlling ventilation and temperature. Compared to constant air volume units (CAV) that 

supplies airflow at constant temperature, VAV is known to be more energy efficient. By 

allowing the supply of airflow to have varying temperature, it enables zone-specific supply of 

air, and thereby increasing energy savings as well as user comfort. This flexibility also enables to 

respond quickly to changing load conditions.  

                                                 
63 "Air Handling Unit - Definition and Configuration Types - AHUmagazine." AHUmagazine. February 12, 2015. 

Accessed March 02, 2016. http://www.ahumagazine.com/air-handling-unit-definition-and-configuration-types/.  
64 Air Conditioning Principles and Systems: An Energy Approach. 4th Edition. Edward G. Pita, p. 7 

Figure 5.11: Packaged Rooftop Air Handling Unit on SGH Roof 
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5.3.3.3 SEER/EER and COP values from IECC 

 

To measure the energy efficiency of the HVAC units, we found the energy efficiency 

ratio (EER) and seasonal energy efficiency ratio (SEER). With the found values, we calculated 

Coefficient of Performance (CoP) values to be used in energy simulation.  

While heating CoP values were readily available from the nameplates of the units, the 

efficiency for cooling was not. EER value is defined as net capacity divided by power input.65 

While the net capacity of the units were listed on the nameplates, as the power input for the units 

were not individually sub-metered, EER values could not be calculated. As the manufacturer, 

Carrier, did not provide detailed data on the outdated models,66 SEER values from IECC code 

were used in the DesignBuilder model. Based on the size, category and year of purchase, SEER 

values were retrieved from IECC codes from 2000, 2003 and 2009.67 From the SEER values, 

CoP values were calculated by dividing SEER by 3.41, conversion factor from BTUH to kW, as 

summarized in Table 5.5. For energy simulation, COP per zone was calculated by taking 

weighted average of the corresponding units (Table 5.6). 

 

 

 

 

 

 

                                                 
65 "HVAC Efficiency Definitions." US Air Conditioning. Accessed March 2, 2016. http://www.usair-

eng.com/pdfs/efficiency-definitions.pdf.  
66 "Product Data." HVACpartners.com. Accessed March 2, 2016. 

http://dms.hvacpartners.com/docs/1005/Public/02/48_50A-5PD.pdf.  
67 "International Energy Conservation Code." International Code Council. Accessed March 02, 2016. 

http://publicecodes.cyberregs.com/icod/iecc/.  
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Table 5.5: Energy Efficiency Data of the SGH HVAC Units 

SGH# Model# Year Nominal 

Capacity 

(Tons) 

Total net 

(MBH) 

Thermal 

efficiency 

Weighted 

Thermal 

efficiency 

SEER 

values 

from IECC 

CoP 

from 

SEER 

1 48AKD040 2001 40 480000 0.81 32.4 8.5 2.49 

2 48A3S020A1 2010 20 240000 0.81 16.2 9.5 2.78 

3 48AKD040 2001 40 480000 0.81 32.4 8.5 2.49 

4 48AKD040 2001 40 480000 0.81 32.4 8.5 2.49 

5 48TFD012 2001 12 144000 0.8 9.6 8.5 2.49 

6 48AKD025-P 2005 25 300000 0.81 20.25 9.5 2.78 

7 48HCRB07A2A6A0F5CO 2011 6.25 75000 0.82 5.125 10.3 3.02 

8 48AKD025-P 2005 25 300000 0.81 20.25 9.5 2.78 

9 48HCRB07A2A6A0F5C0 2011 6.25 75000 0.82 5.125 10.3 3.02 

10 48A3S020A1 2010 20 240000 0.81 16.2 9.5 2.78 

11 48A3S020A1 2010 20 240000 0.81 16.2 9.5 2.78 

12 48A3S020A1 2010 20 240000 0.81 16.2 9.5 2.78 

13 48AKD040 2001 40 480000 0.81 32.4 8.5 2.49 

14 48TMD028 2001 28 336000 0.81 22.68 8.5 2.49 

  
Table 5.6: COP Values by Zone 

  CoP 

Zone 1: Front Bay 2.491 

Zone 2: Kitchen 2.491 

Zone 3: Middle Bay 2.784 

Zone 4: Back Bay 2.784 

Seminar Room 3.019 

 

5.3.4 Envelope 

 

SGH does not own the building nor has access to the plans that describe the building 

envelope. As such, we investigated the envelope through observation and made predictions based 

on the minimum code requirements at the time of renovation. The following pages describe five 

different parts of the building envelope. The five elements are EIFS walls, roof, floor, 

foundation, and window. Figure 5.12 depicts the location of these elements on a cross section of 

the building.  
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1.) EIFS Walls, 2.) Roof, 3.) Floor, 4.) Foundation, 5.) Windows/Clerestory 

 

1. EIFS Walls 

 

To determine the thickness of the walls with exterior insulation finish system (EIFS), we 

measured the width of the wall in a doorway. We found this thickness to be 18-1/8”. A hole in 

the interior portion of the wall (Figure 5.13) allowed us to determine that from the inside out, the 

wall was composed of 5/8” gypsum wall board, a plastic layer, 3” fiberbatt wool insulation, and 

then an air cavity of 1”. From the outside, we measured 4.5” of EIFS. In addition, we considered 

photographs taken during the original renovation of the building into an office space (Figure 

5.14).  

Figure 5.12: Different Elements of SGH Office Building Envelope 

Figure 5.13: Hole in Interior Wall of SGH Office 

 

Figure 5.14: Photo from during original building renovation, SGH 
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Figure 5.15 shows a cross section of the wall. Using typical insulation values, we 

developed Table 5.7.68,69,70  

 

 

 

 

 

 

 

 

 

 

                                                 
68 "R-Value of EIFS." PAREXUSA. Accessed March 2, 2016. http://www.parex.com/tech-

bulletins/common/TB004-R-VALUEOFEIFS.pdf.  
69 "Exterior Insulation." Saturn Resource Management. 2011. Accessed March 02, 2016. http://blog.srmi.biz/energy-

saving-tips/insulation-air-sealing/exterior-insulation/.  
70 "R-values of Insulation and Other Building Materials - Archtoolbox.com." Archtoolbox.com. Accessed March 02, 

2016. http://www.archtoolbox.com/materials-systems/thermal-moisture-protection/rvalues.html.  

Table 5.7: EIFS Wall Composition 

Assembly Thickness (in) R-value range (per inch) R-value 

Exterior air film N/A N/A 0.17 

EIFS 4.5" 3.8-4.4 18 

Brick 9" 0.2  1.8 

Air 1" 1 1 

Insulation/studs 3" 6.6 19.8 

Gypsum 5/8" N/A 0.5625 

Interior air film N/A N/A 0.68 

Figure 5.15: Wall Cross Section 
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2. Roof 

  

With the assistance of SGH, we confirmed the roof assembly to be as follows from inside 

to outside: Metal roof deck, 3” polyisocyanurate insulation71, ½” wood fiberboard72,73, and 60 

mil EPDM membrane (Figure 5.16). Figure 5.17 shows a cross section of the roof build-up.  

Table 5.8 depicts the breakdown with typical insulation values.74,75 

 

 

                                                 
71 "Info-502: Temperature Dependence of R-values in Polyisocyanurate Roof Insulation." Building Science 

Corporation. April 12, 2013. Accessed March 02, 2016. http://buildingscience.com/documents/information-

sheets/info-502-temperature-dependent-r-value.  
72 Except on the clerestory roof for the office expansion beyond the Newmark room.  
73 "R-values of Insulation and Other Building Materials - Archtoolbox.com." Archtoolbox.com. Accessed March 02, 

2016. http://www.archtoolbox.com/materials-systems/thermal-moisture-protection/rvalues.html. 
74 "Carlisle's Roofing Systems." Nvelop. Accessed March 2, 2016. 

http://www.carlislenvelop.com/pdfs/CarlisleRoofingsystem.pdf.  
75 "Table of Insulation R-Values and Properties for Various Insulation Materials & Building Materials." 

InspectApedia. Accessed March 02, 2016. http://inspectapedia.com/insulation/Insulation_Values_Table.php.  

 

Table 5.8: Roof Composition 

Assembly Thickness (in) R-Wood value range (per inch) R-value 

Roof membrane- Carlisle 2.36" N/A N/A 

Wood fiberboard 0.5” 0.62 per ½” 0.62 

Insulation board 3" 6 18 

Steel decking N/A N/A N/A 

Acoustical Insulation 1" 3-3.85 3.5 

Figure 5.16: SGH Roof EPDM 

Figure 5.17: Roof Cross Section 
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3. Floor 

 

 When SGH first occupied the building, the original flooring was 6” concrete slab. SGH 

added an additional 4” of concrete slab, above the system of perforated piping used for 

dehumidification of the concrete slab. Parts of the office have carpeted floors and the rest have 

exposed concrete as the floor. As the exact mixture of the concrete is unknown, the insulating 

value of the floor is difficult to estimate.76 The R-value was selected assuming both concrete  

slabs are normal-weight, non-insulating concrete. This information is summarized in Table 5.9. 

 

 

 
 

4. Foundation 

The foundation of the building is concrete footing foundation. Figure 5.18 shows the 

construction detail of the foundation system. As the insulation is discontinuous from the wall to 

the floor, the foundation is susceptible to thermal bridging. 

                                                 
76 "Structural Concrete." Norlite Lightweight Aggregate. Accessed March 02, 2016. 

http://www.norliteagg.com/structuralconcrete/insulation.asp.  

 

Table 5.9: Floor Composition 

Assembly Thickness (in) R-value range (per inch) R-value 

Concrete flooring 4" 0.065-0.11 0.26 

Concrete slab 6" 0.065-0.11 0.39 

Figure 5.18: SGH Foundation from Plans 
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5. Window 

 

SGH’s office building’s walls are composed of approximately 47% glazing. The windows on 

the main level are taken to be 8225TL fixed windows by KAWNEER. The majority of these 

windows are about 3’ wide by 8’ tall, with the exception of a few. SGH modeled the window in 

THERM software. Table 5.10 summarizes the key information from the THERM simulation 

output. The clerestory windows have similar properties. 

Table 5.10: SGH Window Information 

Window U-Factor Solar Heat Gain Coefficient Shading Coefficient 

KAWNEER 8225TL 0.291 0.392 0.450 
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5.3.4.1 Minimum Code Requirements  

 

 To evaluate the building envelope’s code compliancy, two different codes were used: 

Massachusetts Building Code and IECC. SGH's building was renovated circa 2002. This is 

before the state adopted other energy codes as part of its legislation. Therefore, we adopted the 

6th Basic Code Edition of Massachusetts to investigate the thermal performances of unknown 

assemblies in this project. 

Within the code, Chapter 34 applies to Repair, Alteration, Addition and Change of Use of 

Existing Structures. As the building was remodeled for office use, SGH's office would have had 

to comply with this chapter. 780 CMR3407.2, which is the compliance clause of energy 

provisions of existing buildings, redirect the readers to Chapter 13, which addresses Energy 

Conservation. Chapter 13 covers the thermal performance requirement in great detail. This 

information is charted in tabular format in Tables 1304 2.1 through 2.12 based on the climate 

zone and glazing area of the façade walls. Based on Table 1303.1, Waltham (Middlesex County) 

is considered as climate zone 13a. Therefore, based on the glazing area of the building itself, 

Table 1304.2.6, 7, or 8 will be used to estimate the thermal performance of the unknown 

assemblies. 

The original masonry walls are finished on the inside with sheetrock supported by a metal 

frame. Assuming standard brick was used, approximately 17.7 bricks that weigh 4.5 lbs compose 

one square foot section of the wall.77 Therefore, according to Table 1304.2.8, we need R-11 

insulation on top of R-3 of continuous insulation. For windows, the structure has projection 

factor (PF) value of 0, calculated by dividing the distance measured horizontally from the 

extremity of any overhang to vertical surface of the glazing by the distance measured vertically 

                                                 
77 "Brick Dimension Guide." The Belden Brick Company. 2013. Accessed March 02, 2016. 

http://www.beldenbrick.com/brick-dimensions-guide.asp.  
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from the bottom of the glazing to the underside of the overhang, as there is no overhang or eave 

on the windows (Section 1304.2.3). Therefore, the windows require to have a solar heat gain 

coefficient (SHGC) value of 0.4 and U-value of 0.4. For the roof assembly, it is highly likely that 

it consists of metal purlins without thermal break, meaning that it needs R-30 insulation between 

framing and R-24 continuous insulation. Finally the floor is made out of concrete slabs and 

therefore requires R-17 continuous insulation. We included Table 1304.2.8: Building Envelope 

Requirements as Table 5.11 for the convenience of the reader.  

 

The building’s exterior wall composition has R-value of 19.8 in between the studs and 

continuous insulation of R-18, which surpass the code requirements. The window assemblies' 

SHGC value does not meet the code's requirement, by 0.006, which is an insignificant value. It 

Table 5.11: Building Envelope Requirements, Chapter 13, 6th Basic Code Edition of Massachusetts 
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has a much lower U value (0.291) than the code requirement of 0.4. The roof assembly only has 

R-18 of continuous insulation as to required R-24. Though the acoustical insulation adds to the 

total insulation value, it is not enough to make up for the difference. Finally, the floor assembly 

lacks the continuous insulation of R-17 and therefore also fails to meet the code requirement. 

Regarding IECC 2006 and 2009 as the minimum code requirement for building envelope, 

Table 502.2(1) (in text, Table 5.12) was used to evaluate building envelope performance. 

Massachusetts falls under climate zone 5 according to IECC's classification. As the roof's 

continuous insulation is entirely above deck, R-20 would be required for both versions of IECC. 

The roof assembly has continuous board insulation of roughly 3" which provides R-18, which 

does not suffice the requirement or R-20 of continuous insulation. However, the discontinuous 

acoustical insulation attached at the interior side adds to the roof's insulation value. For walls, the 

office has a brick wall, which requires R-7.6 of continuous insulation for 2006 version and 9.5 

for 2009 requirement. The EIFS installed on the façade has R-18, which meets the requirement. 

For slab-on-grade floor, there is no requirement for insulation.  
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IECC provides a separate table for fenestration, Table 502.2 (in text, Table 5.13). For 

window assemblies, the U-factor of 0.35 is required for general windows without metal frames, 

0.45 for curtain wall, 0.80 for entrance door and 0.55 for any other kind of assemblies. For the 

SHGC, with PF=0 due to no overhang or eaves, the building requires the SHGC of 0.4. These 

values apply for both IECC 2006 and 2009 versions. As with the MA building code requirement, 

SGH’s window passes the U-value requirement but not the SHGC requirement. 

Table 5.12: Building Envelope Requirements, IECC 
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5.4 Occupant Interview 

 

To gain a better understanding of occupant use of the building, a user survey was 

conducted. The survey was divided into three major sections: user profile, HVAC comfort and 

lighting comfort evaluation. For the user profile, we collected user related information such as 

their location throughout work day, the type of office (open or closed ceiling), time they come in 

and out of the office, and activity level, etc. This information was used to better understand user 

behaviors and to create a schedule for typical office hours for the weekdays and weekends. 

Furthermore, with the participants' provided locations within the building, the comfort level of 

the occupants could be assessed at zone level. The HVAC comfort section of the survey 

Table 5.13: Building Envelope Requirements: Fenestration, IECC 
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collected user's comfort level in hot and cold weather, the time of day they feel the discomfort in, 

and the cause of the discomfort. With this information, the overall trend of the discomfort caused 

by HVAC was assessed. Finally, the lighting comfort section evaluated the user satisfaction of 

lighting level, visual comfort level as well as the cause of the discomfort.  

5.4.1 User Profile 

The survey received responses from about 80 people, which is about 45 percent of the 

occupants. Therefore, we received responses from a broad range of the occupants, which made it 

possible to assess the user comforts at each zone. Figure 5.19 shows the percentage of the 

occupants from varying zones of the building. As Front Bay has largest floor area, most of the 

participants were located in the Front Bay. We had considerable amount of participants from 

Middle Bay and Back Bay as those zones also have considerable amount of floor area. Finally 

we had some participants from IT, lab, HR office, and etc. As participants were from varying 

zones of the building, the HVAC discomfort at zone level could be analyzed precisely. 

Figure 5.19: Percentage of Survey Participants by Zone 
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By analyzing SGH employees' arrival times and departure times, an occupant schedule 

was formulated (Figure 5.20) Most of the occupants would arrive by 8:30 AM and at the latest 

by 9:00 AM. Most of the occupants would start to leave around 5:00 PM and few occupants 

would stay until after 6:30 PM. The occupant schedule shown below was inputted into the 

DesignBuilder software by first setting overall occupancy with occupant per sq. ft. and then 

creating a schedule with percentage of occupants present per time span of 30 minutes.  

Finally, the activity levels of the occupants were evaluated with the survey. With 0 being 

very sedentary and 6 being very active, Figure 5.21 shows that a majority of the occupants are 

sedentary. As the sedentary occupants would have lower metabolism than active occupants, the 

building would have to be suitable for the majority occupants that does not generate heat by 

being active.78 

                                                 
78Weisenberger, Jill. "Understanding Calories." InnerBody. Accessed March 02, 2016. 

https://www.innerbody.com/nutrition/understanding-calories.  

Figure 5.20: Occupant schedule of the users broken down into 15 minute interval 
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Figure 5.21: Activity Level of the Survey Participants 

 
  

5.4.2 HVAC comfort 

The HVAC comfort survey results showed that the occupants of the building were 

generally cold throughout the year. The results, broken down by zones, are shown in the graphs 

below. Though very few occupants expressed that they were hot in the building in hot weather, 

the majority of the occupants expressed that they were cold even in hot weather. While being 

cold in cold weather could be explained by not enough heating, the building too cold during hot 

weather raises concerns for HVAC management (Figure 5.23 and Figure 5.22). Furthermore, 

about 40 percent of the occupants expressed that they were always uncomfortable within the 

building and 30 percent expressed that they were uncomfortable in the morning, and the other 

30% in the afternoon. The majority of the occupants that were expressing discomfort with the 

HVAC system said that either the vented air was too cold (56.2%), or the workspace is colder 

than the rest of the office (32.8%) (APPENDIX E). The occupants expressed their discomfort 

even though the set point was at 70F in winter and 74F in summer, within the comfort range set 
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by ASHRAE 5579. However, an ASHRAE journal written by Steve Tom suggests that people 

tend to be more productive between 72°F and 77°F.80  

  

                                                 
79 Richard J de Dear, and Gail S. Brager, "Thermal comfort in naturally ventilated buildings: revisions to ASHRAE 

Standard 55," Energy and buildings 34.6 (2002): 549-561. 
80 Steve Tom, "Managing energy and comfort," ASHRAE Journal 50.6 (2008): 18-27. 

Figure 5.23: Thermal Comfort of the Occupants in Hot Weather by Zone 

Figure 5.22: Thermal Comfort of the Occupants in Cold Weather by Zone 
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5.4.3 Lighting Comfort 

The lighting survey consisted of two major questions: satisfaction regarding amount of 

light and visual comfort. Below charts show the occupants' answers ranging from the scale of 0-6 

with 0 being very dissatisfied and 6 being very satisfied (Figure 5.24). The results showed that, 

overall, the occupants are either neutral about the lighting, if not more satisfied. The concerns 

regarding lighting comfort included the glare from clerestory for some users and lack of natural 

lighting in some zones of the building (APPENDIX E). 

Figure 5.24: Occupant satisfaction regarding amount of light and visual comfort in the workplace 
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5.5 Spot and Short-Term Measurements  

 

In order to gain a better understanding of the interior building environment, we ran 

several iterations of spot measurements. There were five different phases of spot measurement 

data, which were taken using three types of instruments. Phase 1 used HOBOware UA-002 

pendant loggers that measured temperature and light. These loggers were worn by five members 

of the staff. Phase 2, 3, 4 used HOBOware UX100-011 stationary loggers that recorded 

temperature and relative humidity (RH). Phase 5 used Veriteq Spectrum 2000 loggers, which 

also recorded temperature and relative humidity.  Figure 5.25 depicts the location of the loggers 

and Table 5.14 lists their location, as well as their start and end date.  

 

 

 

 

 

Figure 5.25: Data Logger Locations 
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Table 5.14: Data Logger Locations and Time Durations 

 

 

 For clarification, Figure 5.26 details 

the location of loggers “4” and “iv”. In 

Phase 2, Logger 4 was placed on top of a 

partition wall beneath the HVAC supply 

air duct and its diffuser plate. In Phase 5, 

Logger iv was placed on top of the 

diffuser plate and directly exposed to the 

HVAC supply air temperature.  

 
 

 
 
 

                                                 
81 The logger was moved from Location “A” to “a” from 11-25-2015 to 11-30-2015 
82 The logger was moved from Location “C” to “c” from 11-25-2015 to 11-28-2015 

PHASE LOGGER LOCATION START DATE END DATE 

PHASE 2 

1 Front Desk 09-24-2015 10-28-2015 

2 Large Cafeteria 09-24-2015 10-28-2015 

3 Office Space 09-24-2015 10-28-2015 

4 *HVAC Damper  09-24-2015 10-28-2015 

PHASE 3 

A Conference Room 11-04-201581 12-06-2015 

B Truss in Front Bay 11-11-2015 12-06-2015 

C Window Sill 11-04-201582 12-06-2015 

D Seminar Room B 11-04-2015 12-06-2015 

PHASE 4 
a Slab by Lab 11-25-2015 11-30-2015 

c Slab in Office Space 11-25-2015 11-28-2015 

PHASE 5 

i HR Office 12-21-2015 02-10-2016 

ii Office Space 12-21-2015 02-10-2016 

iii Truss in Back Bay 12-21-2015 02-10-2016 

iv *HVAC Damper 12-21-2015 02-10-2016 

v  SGH RTU-4 12-21-2015 02-10-2016 

Figure 5.26: Clarification of Logger “4” and “iv” Locations 
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5.5.1 Phase 1 

 

Five participants wore the wearable loggers around the office for two weeks [9/24/2015-

10/08/2015]. The participants were chosen from diverse locations around the building. We had a 

participant from front lobby [Peggy], IT mezzanine [Ben], the Middle Bay [Jason], the Back Bay 

[Emily], and finally the Front Bay [Steve, who also continuously moved around within the 

office]. Table 5.15 summarizes the collected data. 

Table 5.15: Phase 1 Spot Measurement Results 

    Emily Ben Jason Steve Peggy 

Temp (°F) Highest 96.17 97.14 88.47 87.92 90.68 

  Lowest 69.45 72.03 69.28 68.59 63.28 

  Average 72.75 76.59 73.16 74 73.98 

  Median 71.86 74.96 72.54 73.41 73.41 

Intensity Highest 128 3968 18432 20480 3968 

  Lowest 0 0 0 0 0 

  Average 7.7 25.2 5.38 13.47 8.76 

  Median 2 0 0 2 0 

 

5.5.2 Phase 2 

 

The second phase of spot measurements occurred from 9/24/2015 until 10/28/2015. 

Logger 1 was placed in the front lobby. This area of the building is exposed to a significant 

amount of light due to the full glazing of the entry. It is also subject to the opening and closing of 

doors, which although there is a vestibule, still brings in some outdoor air. The occupancy of the 

space is generally just that of the secretary, although there is some foot traffic throughout the day 

as people come and go.  

Logger 2 was placed in the largest cafeteria, located in the original office space. This 

particular space experiences varying levels of occupancy throughout the day. There is a glazed 
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garage door as well as an exit door that open directly to the outside. The exit door is used by 

employees throughout the day to come and go from the building.  

Logger 3 was set up in the Front Bay of the building on an office desk. Most of the 

occupants in the space are sedentary. The desk was located in the central part of the office, and 

therefore exposed to some light from the clerestory windows. The intention of Logger 3 was to 

provide better understanding of user comfort of most of the office workers.  

Logger 4 was installed on the mezzanine between the Front Bay and the Middle Bay. Its 

location, as depicted above in Figure 5.26, is on top of a wall partition near the HVAC supply. 

We intended to use this to verify the HVAC schedule for the building. Logger 3 and Logger 4 

were placed relatively close to each other, though at varying heights. The intention was to 

understand the varying temperature in vertical manner. Table 5.16 summarizes the collected 

data. 

Table 5.16: Phase 2 Spot Measurement Results 

    Logger 1 Logger 2 Logger 3  Logger 4 

Temp (F) Highest 86.22 78.09 77.96  82.45 

  Lowest 67.93 68.06 68.15  67.55 

  Average 72.92 70.88 71.99  72.31 

  Median 72.49 70.77 72.06  72.1 

RH (%) Highest 79.32 81.76 67.4  66.55 

  Lowest 16.35 17.47 18.08  16.53 

  Average 39.07 41.42 41.27  39.55 

  Median 38.87 40.97 41.43  39.7 
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5.5.3 Phase 3 

 Phase 3 occurred from 11/04/2015 until 12/06/2015, although it is important to note that 

Phase 4 displaced Phase 3 for a short period. Phase 3 used the stationary HOBOware UX100-011 

loggers. Logger A was placed in the front conference room. This room has multiple sets of large 

doors that are left open when the space is not in use. This conference room is one of the larger 

meeting spaces in the office. Logger B was initially located on the IT Mezzanine; however, the 

majority of its logging period was spent on top of a truss in the Front Bay to record temperature 

data close to the roof. Logger C was set on a window sill in the Middle Bay. The intention was to 

collect data close to an outside wall/windows. Logger D was installed in Seminar Room B. 

Seminar Room B is located in the Back Bay area, and experiences varying occupancy levels 

depending on events. Table 5.17: Phase 3 Spot Measurement ResultsTable 5.17 summarizes the 

results of Phase 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.17: Phase 3 Spot Measurement Results 

     Logger A   Logger B Logger C Logger D 

Temp (F) Highest  79.62  78.17 76.65 73.09 

  Lowest  70.08  69.13 53.04 63.14 

  Average  74.03  73.54 65.68 69.56 

  Median  73.87  73.44 65.79 69.44 

RH (%) Highest  55.61  46.24 64.84 56.80 

  Lowest  13.03  13.62 16.83 18.15 

  Average  28.56  26.02 38.28 32.35 

  Median  26.69  24.62 38.48 31.07 
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5.5.4 Phase 4 

 The fourth phase occurred within Phase 3, from 11/25/2015 to 11/28,30/2015. Phase 4 is 

best described as the period during which the HVAC system was shut down for the office. We 

coordinated this shutdown with the facilities manager for the Thanksgiving holiday. The purpose 

of the shutdown was to collect data from the building over a period of time in which there was 

no HVAC use. This would theoretically allow us to model the building without HVAC 

equipment and calibrate the simulated scenario.  

 Loggers B and D remained in their Phase 3 location while Loggers A and C were moved 

to locations “a” and “c”. Logger a was moved to the slab outside of the lab, close to the 

conference room. Logger c was removed from the window sill and placed on the floor in a more 

interior location. Table 5.18 summarizes the data collected during Phase 4. 

 

Table 5.18: Phase 4 Spot Measurement Results 

     Logger a  Logger B Logger c Logger D 

Temp (F) Highest  72.96  77.08 69.78 69.74 

  Lowest  69.22  69.13 65.49 68.36 

  Average  70.86  71.95 67.78 69.09 

  Median  70.85  71.63 67.85 69.05 

RH (%) Highest  40.00  37.48 47.81 37.29 

  Lowest  19.86  19.41 24.13 23.49 

  Average  30.15  29.67 37.73 30.12 

  Median  30.25  31.14 41.17 31.63 
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5.5.5 Phase 5 

 

  The final period of data logging occurred between 12/21/2015 and 2/10/2016. Unlike 

Phases 2-4, Phase 5 used Veriteq 2000 data loggers. Five loggers were used. Logger i was 

installed in the HR office space. This location was chosen as a result of the user survey (5.4). 

Occupants in the HR office space felt this area was colder than other spaces. Logger ii was 

placed on a desk in the Front Bay office space, similar in location to Logger 3, in order to give us 

ambient office space data. Logger iii was located on top of a beam in the Back Bay, near the rear 

wall (which separates the SGH office from other portions of the building). Logger iv was set on 

the HVAC diffuser plate in the Front Bay, and Logger v was placed on the corresponding HVAC 

unit outside. Logger iv gave us data regarding the air leaving the HVAC supply air duct, while 

Logger v supplied information from about the conditions entering the mechanical system. The 

data collected during Phase 5 is summarized in Table 5.19. 

 

Table 5.19: Phase 5 Spot Measurement Results 

     Logger i  Logger ii Logger iii Logger iv  Logger v 

Temp (F) Highest  75.66  76.01 74.73 90.17  105.43 

  Lowest  67.66  67.67 66.25 57.64  19.92 

  Average  71.31  70.71 70.75 70.23  45.16 

  Median  71.11  70.75 71.23 70.52  43.46 

RH (%) Highest  59.00  58.70 51.80 75.90  94.50 

  Lowest  8.10  6.90 8.90 3.90  2.20 

  Average  20.74  21.02 21.18 19.93  46.84 

  Median  18.90  19.10 19.10 17.10  46.70 
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5.5.6 Data Logger Analysis 

 

The average temperature of the data loggers (excluding Logger v which was placed 

outside) are shown in Figure 5.27. The range of temperatures is 65.68 to 74.03°F, or 8.35°F, with 

the lowest average being Logger C which was located on the window sill, and the highest 

average Logger A which was located inside the front conference room. This data should be 

considered carefully however. As is detailed in Table 5.14, the loggers were not all installed 

during the same time frame. Though most of the logging periods occurred during the heating 

season, Loggers 1, 2, 3, and 4, were installed during the month of October which did experience 

some cooling days. Referring back to Table 5.4, the HVAC schedule depicts that the cooling 

setpoint is 74°F and the heating setpoint is 70°F during occupied times (which is the majority of 

time logged, 82°F and 63°F are the cooling and heating setpoint, respectively, for unoccupied 

time). With this in mind, all of the loggers fall within this range except C, D, and c. We can 

reason that Logger C is low due to its proximity to the window and its placement on the sill. 

Upon inspection of this location, we found the sill to be significantly colder than other portions 

of the exterior wall due to the low thermal resistance of the window, as well as potential thermal 

bridging. Logger D’s lower average temperature can also be explained by its location in Seminar 

Room B. This room is kept at a lower temperature because when there are greater numbers of 

people in the room, it requires more cooling. It is important to note that the survey showed that 

many employees found the seminar rooms to be overcooled. Logger c can be explained because 

of both time and location. That is, Logger c only recorded data from 11/25/2015 to 11/28/2015. 

This was the period that the HVAC system was shutdown, the office was unoccupied, and 

therefore the building’s indoor environment was not mechanically regulated. Logger c is still 

within the temperature range indicated by the setpoints for unoccupied periods. Table 5.20 
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summarizes the average, median, high, and low data values for all of the loggers, and includes 

the time and day of highs and lows.  

Logger

Average 

Temp (°F)

Median 

Temp (°F)

High 

Temp (°F) Time Day

Low 

Temp (°F) Time Day

1 72.92 72.49 86.22 14:30 9/27/15 67.93 5:50 10/19/15

2 70.88 70.77 78.09 14:10 9/24/15 68.06 6:30 10/19/15

3 71.99 72.06 77.96 17:30 9/27/15 68.15 5:40 10/19/15

4 72.31 72.10 82.45 18:00 9/27/15 67.55 5:30 10/27/15

A 74.03 73.87 79.62 15:00 11/6/15 70.08 5:20 11/25/15

B 73.54 73.44 78.17 14:40 11/20/15 69.13 7:20 11/26/15

C 65.68 65.79 76.65 9:50 11/5/15 53.04 4:10 12/1/15

D 69.56 69.44 73.09 16:40 11/5/15 63.14 8:50 11/17/15

a 70.86 70.85 72.96 17:00 11/25/15 69.22 8:00 11/26/15

c 67.78 67.85 69.78 17:00 11/25/15 69.78 17:00 11/25/15

i 71.31 71.11 75.66 10:50 12/21/15 67.66 5:10 1/5/16

ii 70.71 70.75 76.01 11:09 12/21/15 67.67 3:29 1/12/16

iii 70.75 71.23 74.73 11:18 12/21/15 66.25 4:38 1/28/16

iv 70.23 70.52 90.17 6:58 12/28/15 57.64 12:38 1/20/16

v 45.16 43.46 105.43 8:35 1/24/16 19.92 4:15 1/5/16

Table 5.20: Overall Summary of Logger Data, Averages, Medians, Highs, and Lows 

Figure 5.27: Average Temperature of Data Loggers (Phase 2-5) 
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To gain a better understanding of the HVAC performance, spot temperature/RH loggers 

were installed on top of the diffuser plate, the corresponding HVAC unit, and nearby occupant 

area. By comparing data from these three locations, general observations regarding the HVAC 

performance were made. 

Unfortunately, the logger located on the HVAC unit for outside air intake temperature 

was located directly below two relief dampers, causing the outside air to spike to high 

temperatures when the damper was on. Figure 5.28 depicts the location of the logger, the relief 

dampers, and the outside air intake. Other than occasional outliers when the relief damper is on, 

the data was reliable. 

 

 

 

 

Figure 5.28: Location of Logger v on HVAC Unit 
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Figure 5.29 shows the data from Monday through Friday from one week in January. On 

Monday through Thursday, the unit is blowing cooler air into the occupant area; the temperature 

at diffuser is lower than the temperature at occupant space. For the set point temperature of 73°F 

to be met, the fan blows cool air into the building during the day time. Throughout the night, the 

fan runs continuously and the ambient temperature stays consistent with the supply air 

temperature near the setback temperature of 70°F. During the day, as the building gains heat 

from the sun and internal load, the ambient office temperature rises to 73°F and HVAC 

introduces cool air into the system to maintain the temperature. On Wednesday and Thursday, 

when the outside temperature was warmer than other days, the fan blows air as low as 62°F in 

the building. Though the outside temperature is relatively warm, occupants could feel 

uncomfortable with the supply temperature of 62°F in winter.  

Figure 5.29: Phase 5 Logger Data for January 4-8, 2016 
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Furthermore, the HVAC system experiences short cycling issues. On Friday, the supply 

air temperature graph is very noisy. The heater continuously turns on and off, alternating 

between warm air and cool air. The short cycling could be due to the thermostat location or 

sensitivity of the control system. It could also be due to an oversized unit. If the issue is due to an 

oversized unit, changing the orifice on the gas supply could reduce the capacity of furnace to 

avoid short cycling. To better understand the system, we tried to identify the location of the 

thermostat to see if the thermostat setting was related to the short cycling. However, the 

thermostats could not be found.  

 Figure 5.30, which considers the office temperature, shows spot temperature measure data 

from the same dates as the HVAC temperature data. The graph shows that overall, the 

temperature during the daytime stays between 72°F and above. According to the user survey, the 

occupants of the HR section have reported to experience more discomfort from the cold. Based 

on the graph, the temperature in HR is often higher than the other sections of the office (Logger 

ii is in office space in Front Bay, Logger iii is in Back Bay). However, this could mean that the 

HVAC unit that correlates to the HR office would put out cooler air than the rest of the office 

space to lower the temperature to the set point of 73°F. More spot measures would have to be 

installed and studied to gain a better understanding of the HVAC system as a whole. 
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Figure 5.30: Phase 5 Data for Loggers i, ii, and iii (January 4-8, 2016) 
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6. Simulation 
 

Steps listed in the following section describe how the simulation was modeled. Though 

calibration of the model was not possible based on the analysis made in Section 5, we used the 

collected data to make the model as accurate as possible. We compared the simulation data to the 

utility data to identify the discrepancies. Finally, we compared SGH’s simulated energy 

consumption with that of a typical office building. 

 

6.1 Input 

 

 While creating a baseline model, we ran into some issues such as lack of data on 

electrical use (not broken down into detailed use) and skeptical performance of HVAC system. 

Due to such issues, we could not follow through our initial calibration plan involving a 

parametric study of the baseline model. However, with available data that was collected, we 

followed through the simulation guideline to have the baseline model as similar to the actual 

building as possible.  

The first step to modeling was to create a project in DesignBuilder. We specified 

Laurence G Hanscom Airport in Bedford, MA (42.41°, -71.29°) as the location, as that was the 

closest available location template from Waltham office (42.37°,-71.21°) (Figure 6.1). Though 

we understand that Bedford's weather would have numerous discrepancies due to the nature of 

its location (i.e Bedford’s weather station is located at an elevation of 134.5 feet versus the 12 

feet above sea level at the SGH office), the weather file is the most readily available. We decided 

to run our initial model with Bedford weather data.  
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After the project was set up, we modelled the geometry of the model based on the CAD 

floor plan. The .dxf file was imported into DesignBuilder, with inches as base unit (Figure 6.2). 

With imported .dxf as a reference, building site location and site details such as site orientation 

(310°) were adjusted. Google maps and AutoCAD were used to make necessary measurements. 

The next step was to create a building. For building templates, office-building template 

was chosen. Various inputs regarding this template such as HVAC load and electronic load were 

calibrated later based on further observation/documentation of the office use and thorough 

surveys.  

Figure 6.1: Creating a New Project in DesignBuilder 

Figure 6.2: Importing the CAD Floor Plan into DesignBuilder 
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Similarly, for the default data, we put in rough estimate of building type that provided 

template values of wall types and glazing type. These values were corrected with actual values as 

more data of the SGH office building were collected. 

After the template was created, the building was modeled using three main blocks (Figure 

6.3). The blocks were named Center Main, NW Main, and SE Main for convenience based on 

their actual orientation. The NW and SE Main blocks were modeled at 16.7 feet in height, and 60 

feet in width. The longest length of the building was approximately 484 feet. The Center Main 

was modeled at 26.55 feet. In the original iterations of the model, the sloped roof was included in 

the model geometry; however, due to difficulties with the program considering the sloped roof 

block as floor space, we removed them for convenience purposes. Holes were drawn in the 

building blocks to connect the three to create a single indoor space, which we later divided into 

zones using partitions.  

 
Figure 6.3: Three Main Building Blocks of SGH Office 
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Figure 6.4 is a rendered view of the DesignBuilder model. We decided to simplify the 

building into 10 zones (Figure 6.5). The simplification was based on the layout of the HVAC 

system. Five major zones were Front Bay, Middle Bay, Back Bay, Cafeteria, and the Seminar 

Room. The rest of the zones were taken up by zones that have different HVAC requirements 

such as server rooms and restrooms.  

Figure 6.4: DesignBuilder Rendered Model of SGH Office 

Figure 6.5: DesignBuilder Zones 
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Next, we inputted the openings (Figure 6.6).Kawneer Fixed Window (Figure 6.7). Refer 

to Section 5.3.4 of this report for the building and glazing information.   

After the window information was saved, project construction information was inputted 

(Figure 6.8). The major three components the building has are wall, roof and floor, which were 

manually inputted. Based on the results from building investigation (Section 5), the build-up and 

thermal properties of each component were modeled. Figure 6.9 shows the roof build-up, Figure 

6.10 depicts the wall build-up, and Figure 6.11 details the floor build-up. The model infiltration 

value was calculated with air exchange rate of 0.278 cfm/sf that was measured and confirmed 

with blower door test.   

Figure 6.6: Major Building Block with Fenestration 

Figure 6.7: Window Template in DesignBuilder 
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Figure 6.8: Construction Tab of DesignBuilder Project 
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Figure 6.9: SGH Roof Build-up in DesignBuilder 

Figure 6.10: SGH Wall Build-up in DesignBuilder Figure 6.11: SGH Floor Build-up in DesignBuilder 
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With the data and analysis from Section 5.3.1, the lighting schedule was created and the 

lighting energy measured in watts per square foot was calculated and inputted. As the minimum 

requirement for office lighting level in ASHRAE 90.1 is 0.9 W/sqft, 1.0 W/sqft appeared to be a 

reasonable assumption for an office building Figure 6.12).83 The lighting schedule of the SGH 

building shows how emergency light is left on for the entire night, and some lights come on 

during 8-10 AM period while the rest are turned on later (Figure 6.13). More detailed 

descriptions about the system are available in Section 5.3.1.    

 

                                                 
83 Standard, A. S. H. R. A. E. "90.1 2007.―Energy Standard for Buildings Except Low-Rise Residential Buildings." 

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc (2010). 

Figure 6.12: Lighting Input Tab from DesignBuilder 
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The next tab that was modeled was the HVAC control (Figure 6.14). The building's 

HVAC system, identified to be similar to VAV with fan-assisted terminal reheat, was altered 

with new HVAC schedule and CoP values identified from Section 5.3.3.3. The SGH HVAC 

schedule was formulated based on the SGH technician's input (Figure 6.15). For project DHW 

schedule, we created an SGH Occupant Schedule to find out when the occupants would use hot 

water in the project building. The schedule, created based on the user survey results from Section 

5.4, shows percentage of the occupants present over time (Figure 6.16). The weekday schedule 

varies from weekend schedule (Figure 6.17 and Figure 6.18). As the majority of the survey 

participants answered that they rarely come to work on Sundays, the Sunday schedule was 

modeled as off.  

Figure 6.13: Lighting Schedule of SGH Building 
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Figure 6.14: HVAC Tab of DesignBuilder 
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The system operates during 6:30 AM to 7:00 PM in weekdays and 7:00 AM to 12:00 PM 

on Saturday. The system is turned off on Sundays but the employees can override the system if 

they were to work during the hours HVAC system is turned off. 

 

Figure 6.15: SGH’s HVAC Schedule for DesignBuilder 

Figure 6.16: SGH Occupant Schedule used to determine DHW and Activity Level in Office 
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Figure 6.17: SGH Occupant Schedule During a Weekday 
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Finally, the activity tab of the software was modeled (Figure 6.19). With General Office 

Area template as a starting point, several options including occupancy, environmental control, 

and office equipment were modeled. The occupancy density was calculated by dividing the total 

number of employees by building's total area. The occupancy schedule used for DHW was used 

again to describe the occupants’ activity level. The heating and cooling set point temperatures 

were inputted based on the building's operation. Lastly, the office equipment input calculated 

from Section 5.3.2 was modeled. 

Figure 6.18: SGH Occupant Schedule During the Weekend 
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Figure 6.19: Activities Tab of DesignBuilder 
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6.2 Results 

 

One of the scenarios that we considered when running our simulation was looking at the 

base building in 2002 and its utility data. The weather file DesignBuilder used to run the 

simulation was based off of weather data from 2002. Also, for the original building, the utility 

bill separates the HVAC and plug load energy consumption, allowing us to take a closer look at 

where the bulk of our error was located. There are only three months of utility data available for 

the year 2002, and the readings are shown in Table 6.1.  

Table 6.1: SGH Energy Consumption (Utility Bill) 2002-2003 

 

We took the full building model as it exists today and used the cut tool to remove the two 

expansions from the simulation. Then we ran the simulation and recorded the output. What we 

found was that the overall energy consumption from September 10, 2002 until December 13, 

2002 was simulated as 683,296 kBtu, which converts to 217,471 kWh. The utility data readings 

give a total of 376,414 kWh for the three months. Because we have separate energy consumption 

data for HVAC and plug loads, we then considered the individual values of the simulation 

output. For all loads besides heating and cooling, DesignBuilder’s output showed 92,694 kWh, 

versus the 103,455 kWh from the utility (~10.4% difference). DesignBuilder recorded 124,777 

Electricity Consumption
Period Meter Prior Reading Current Reading kWh Usage

2002 - 2003
9/10 - 10/10 Dpw 4a2 (HVAC) 145,842 223,201 77,359

Dpw 4a1 24,111 64,236 40,125

117,484

10/10 - 11/08 Dpw 4a2 (HVAC) 223,201.0 322,806 99,605

Dpw 4a1 64,236.0 93,226 28,990

128,595

11/08 - 12/13 Dpw 4a2 (HVAC) 322,806.0 418,801 95,995

Dpw 4a1 93,226.0 127,566 34,340

130,335
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kWh for the three months as a result of heating and cooling loads. The utility recorded 272,959 

kWh. The difference: approximately 54.3%. The breakdown is shown in Figure 6.20. This 

supported our findings that the simulated HVAC was not an accurate representation of the actual 

system; however, it flagged the issue that the HVAC system may not be operating properly, or as 

intended. 

For the main simulation considering the full year, total energy consumption was 

6,220,423 kBTU. Though the simulation underpredicts the energy use, especially the HVAC 

sector, to consider energy conservation measures and model various options, we accepted the 

values from the simulation results. The energy use breakdown by end uses from the simulation 

results showed that the majority of the energy consumption was for heating (Table 6.2 and 

Figure 6.21). With cold New England weather, it was not surprising to see such a high amount of 

energy spent for heating in a building with a huge volume to surface area ratio like SGH's office 

Figure 6.20: 2002 Utility Data vs. DesignBuilder Output 
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building.84 Compared to the end use of a typical building provided by DOE (Figure 6.22), the 

SGH building uses a lot of its energy on space heating, As the building heating system skews the 

SGH's energy use percentage, it is difficult to determine if energy spent on the other sectors are 

reasonable.85 Water systems in SGH takes up mere 2 percent of total energy use, which correlates 

with the 6 percent use in general buildings by percent magnitude. For interior equipment in 

simulation, electronic (7 percent), refrigeration (4 percent), computers (4 percent), and cooking 

(2 percent) falls under the category, adding up to 17 percent of total use of an average office 

building. This percent value correlates with SGH's interior equipment energy use of 17 percent 

of its total use. Cooling varies slightly by 3 percent difference in magnitude (10 percent in SGH 

simulation and 13 percent in DOE's data). The lighting takes up significantly less percentage of 

energy in SGH's building compared to the average commercial building. However, this could be 

an unfortunate side effect of skewed heating consumption in the SGH building.    

Table 6.2: Energy Use Breakdown by End Uses 

End Uses Energy Use (kBTU) 

Heating 3524444.4 

Cooling 645942.72 

Interior Lighting 858007.36 

Interior Equipment 1090449.4 

Water systems 101579.39 

Total 6220423 

                                                 
84 Behsh, Basam. "Building form as an option for enhancing the indoor thermal conditions." In Building Physics 

2002-6th Nordic Symposium, 2002. 
85 DOE (U.S. Department of Energy) 2009. 2009 Building Energy Data Book. Available from: 

http://buildingsdatabook.eren.doe.gov/ 
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Figure 6.21: Energy Use Breakdown by End Uses Illustrated by Percentage 

Figure 6.22: Building Site Energy Consumption of a Typical Building by End Use, DOE 
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From comparing the simulation data with published data from DOE, we established that 

the overall energy use trend in simulation is acceptable, as our energy simulation results are 

comparable to the average commercial energy use. To identify the specific cause of the skewed 

space-heating load, DesignBuilder's heating design was studied (Figure 6.23). From heating 

design graph, it was identified that the external infiltration was causing significant amount of 

heat loss in the building. The building was losing –1820.07 kBtu/h due to external infiltration. 

While the controlled external vent was causing heat loss of –535.61 kBtu/h and conduction 

through poorly insulated roof was causing –385.18 kBtu/h, the amount of heat loss due to 

external infiltration was significant. While pressure imposed by building's HVAC system affects 

some external infiltration, in most cases, the windward face experience wind-driven infiltration.86 

With buildings with huge volume and fenestration like SGH's building, more surface area is 

exposed to the wind-driven infiltration, causing the significant amount of heat loss due to 

external infiltration. One of the energy conservation measures was based on the reduction of 

infiltration to consider how much external infiltration affects heating design.  

                                                 
86 Infiltration modeling guidelines for commercial building energy analysis. USA: Pacific Northwest National 

Laboratory, 2009. 
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Figure 6.23: Heating Design of the Project from DesignBuilder 
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7. Proposed Energy Conservation Measures 
 

We considered three energy conservation measures strategies: incorporating weather 

forecasts into HVAC controls, changing the heating system to radiant floor heating, and 

increasing air tightness.  

 

7.1 Weather Forecasting 

 

One method to consider for reducing the energy consumption of the building was 

combining HVAC operation with weather forecasts. That is, if the HVAC operation can be 

connected to predictive weather data from a local station, then the units can be proactive rather 

than reactive. Most systems are reactionary: the inside of the building is hot, cold air is supplied. 

There have been a few studies that have considered this approach.87 One smaller scale study 

conducted in Sweden found energy savings up to 20kWh/m2 (1.86 kWh/ft2).88 The technique 

applied in the project used “equivalent temperature” (ET), which considers a combination of 

factors: outside air temperature, solar radiation, and wind, and how these factors contribute to the 

building’s indoor environment.  

 SGH could consider regulating its HVAC system through a similar technique 

incorporating a smart building automation system, where the HVAC could be controlled by local 

weather forecasts (and overridden at a local level if needed). When considering the shutdown 

(November 25-28, 2015) of the mechanical equipment during our investigation, the building 

                                                 
87 Frauke Oldewurtel, Allesandra Parisio, Colin N.  Jones, et al. “Use of model predictive control and weather 

forecasts for energy efficient building climate control,” Energy and Buildings 45, 15-27. 

http://infoscience.epfl.ch/record/176005/files/frauke_eab_2012.pdf 
88 “Local weather forecasts control building HVAC system,” Caddet Energy Efficiency, IEA, 2001. 

http://gundog.lbl.gov/dirpubs/caddet_weath.pdf 

Note: the building in this study did not have a cooling system, so potential savings could be greater. 
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performed quite well without the assistance of HVAC. The lowest temperatures for the four 

loggers actively recording during the shutdown were: Logger a [69.22°], Logger B [69.13°], 

Logger c [65.49°], and Logger D was actually coldest while the HVAC system was active on 

November 17, at 8:50AM. The outdoor temperature for the days during this shutdown are shown 

in Table 7.1. 

Table 7.1: Weather Data for 11/25-28/2015, WeatherUnderground 

Day High Low Average 

11-25-2015 51° 28° 38.4° 

11-26-2015 63.3° 34.5° 50.1° 

11-27-2015 68.5° 54.5° 60.7° 

11-28-2015 61.3° 43.5° 52.5° 

  

The average temperatures for these days were below the unoccupied setpoint 

temperature, although the building still maintained temperatures above the setpoint. If SGH 

monitored weather forecasts, even if they did not implement an automated building system that 

regulated HVAC based off of the predictive data, they could manually turn off the system during 

optimal weather. That is, the user survey showed that many of the occupants were cold 

throughout the year, regardless of the temperature outside. If the weather were considered more 

closely, then potential savings could be reached by reducing the chance of overcooling the 

building. Also, making use of the operable windows during optimal weather and just using fans 

to move the air could also show energy savings.  

 

7.2 Radiant Floor Heating 

 

We decided to consider radiant floor heating because of the geometry of the building. 

There is a lot of a floor space, and radiant floor heating could cover this, without necessarily 

losing heat to the high ceiling along the center of the building. To incorporate radiant floor 

heating system in the simulation, the template with underfloor heating system and natural 
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ventilation was used. The CoP of the system we modelled was 4.89 The natural ventilation was 

set to have 3 ac/h per template. Though the new heating system was much more effective with 

higher CoP, due to excessive amount of heat loss through uncontrolled natural ventilation with 

no heat recovery system, the heating load was not reduced by significant amount (Figure 7.1 and 

Figure 7.2). Furthermore, due to lack of cooling system, temperature control in summer months 

were at risk. If the separate cooling system were to be installed and maintained, it would offset 

the pros of the radiant floor heating. Therefore, unless remedies for natural ventilation and 

cooling is proposed, use of radiant floor heating is not recommended for the system.    

 

 

                                                 
89  "Air Tightness to Avoid Structural Damages." Passive House Air Tightness. September 16, 2006. Accessed 

February 29, 2016. http://passiv.de/former_conferences/Passive_House_E/airtightness_06.html.  

Figure 7.1: The Heating Design Results from DesignBuilder for Radiant Heat Floor HVAC System 

http://passiv.de/former_conferences/Passive_House_E/airtightness_06.html
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7.3 Increased Air Tightness 

 

As pointed out in Section 4.1 Initial Analysis of Results, the external infiltration was a 

major cause of heat loss in the building. The initial input of 0.83 ach was halved to 0.4 ach to 

evaluate how much the external infiltration value affect the simulation results. The Heating 

Design results provided from the simulation showed that the energy lost due to external 

infiltration was reduced to –877.14 kBtu/h from –1820.07 kBtu/h (Figure 7.3). This reduced the 

zone sensible heating requirement from 2957.06 kBtu/h to 2014.13 kBtu/h. This reduction in 

heat loss almost halves the amount of energy used for space heating in the SGH building (Figure 

7.4). Any external infiltration values below 0.4 ach is irrational, as 0.6 ach is the passive house 

requirement for external infiltration.90 Though 0.4 ach is an impractical value for an office 

building like SGH's office, the difference in energy consumption for heating between given 

scenarios highlight the effects infiltration have on the model. Though the cooling load was 

                                                 
90 "Air Tightness to Avoid Structural Damages." Passive House Air Tightness. September 16, 2006. Accessed 

February 29, 2016. http://passiv.de/former_conferences/Passive_House_E/airtightness_06.html. 

Figure 7.2: Energy Use Comparison Between Initial Results and Radiant Floor Heating Model 
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slightly reduced from the infiltration input change, the magnitude of change was insignificant 

compared to the change in heating load. 

 

 

 
 
  

Figure 7.3: Heating Design Results of Air Tight Scenario from DesignBuilder 

Figure 7.4: Comparison Between Total Energy Use, Heating Energy Use, and Cooling 

Energy Use of Initial Simulation and Simulation with Higher Air Tightness Value 
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8. Conclusion 

The following section covers the challenges encountered throughout the project, from 

data collection to simulation. The section is followed by conclusion as well as recommendation 

for further research. 

 

8.1 Difficulties Encountered 

 

Several challenges were encountered in the study that limited its findings. This section is 

dedicated to acknowledging these difficulties and the limitations that we experienced as a result.  

To begin with, a complete set of as-built drawings for the completed building (included 

the original renovation, plus the two expansions) were not available. In addition, CAD files with 

drawings to scale were also not available. This extended the amount of time we dedicated to 

confirming the building geometry, as well as the building envelope. Because SGH is not the 

owner of the building, but a tenant, we did not have access to all of the plans, and thus did not 

have drawings depicting the exterior wall composition, or the roof. We investigated these both, 

and with the assistance of SGH employees were able to determine the build-up which we 

implemented into DesignBuilder. 

DesignBuilder and our access to computer files, limited our ability to simulate actual 

weather data from the site, as well as from a year other than 2002. We were unable to use the 

weather data provided from the SGH weather station, and the closest weather file we could find 

was located in Bedford, MA. The SGH weather file also did not include a years’ worth of data. 

Whole building calibrated simulation as a concept in general is difficult to perform and 

time consuming. According to ASHRAE Guideline 14, one of the minimum requirements for the 
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Whole Building Calibrated Simulation approach is five years’ computer simulation experience 

and the understanding of simulation data by non-technical personnel is described as “difficult.”91 

Unreliable utility data also proved a difficulty. We were unable to calibrate the model for 

a variety of reasons, but the utility data was a definite factor. The discrepancies in energy usage 

from year to year, as well as the lack of sub-metered data made it difficult to determine whether 

or not the error was located in the simulation or in an irregularity in the utility data.  

8.2 Conclusions and Recommendations 
 

  In this paper, we have initially reviewed various methods of energy analysis for the 

project site, SGH office headquarters, located in Waltham. DesignBuilder, a plug-in for 

EnergyPlus, was concluded to be suitable for the case study. ASHRAE Guideline 14, 

Measurement of Energy and Demand savings, was used to properly conduct an energy analysis 

on DesignBuilder. We have collected building data for building geometry, building envelope, 

lighting, plug loads, HVAC, utility data and spot measurements. Furthermore, a user survey was 

conducted to ensure better understanding of the occupant behaviors. While inputting the 

collected data in the software, and calibrating the model to monthly utility data, we observed 

some irregularity in the office’s monthly utility data. Heating Degree Days analysis was 

conducted on the utility data and it was observed that the building’s energy use, especially 

HVAC operation, did not display any noticeable trend that is expected from buildings located in 

similar environment.  

Though the DesignBuilder model could not be calibrated to the utility data, the closest 

model produced using measured inputs was used to identify possible energy conservation 

measures. Out of three considered methods–weather forecasting, radiant floor heating with 

                                                 
91 ASHRAE Guideline 14-2002, p. 17, 20. 
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natural ventilation, and increased air tightness–weather forecasting and increased air tightness 

seemed to be most effective, with weather forecasting being more applicable.  

Due to a lack of data and time constraints, we could not further our study in identifying 

the cause of the oddity in the HVAC system and evaluating energy conservation measures. 

Therefore, this report recommends further work to: 

 collect more information on every HVAC unit with the spot measurement devices 

 collect more detailed utility data through sub-metering units 

 gain better understanding on the system such as location of thermostats, etc 

 research further the claim that increasing air tightness and weather forecasting are 

effective energy conservation measures. 

Establishing the validity of this claim could impact the energy use of SGH's office 

headquarters in Waltham. 
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10. Appendix A: Site Photos 
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11. Appendix B: Electricity Consumption Data 
  

Electricity Consumption   

Period Meter 

Prior 

Reading Current Reading kWh Usage 

2002 - 2003       

9/10 - 10/10 Dpw 4a2 (HVAC) 145,842 223,201 77,359 

 Dpw 4a1 24,111 64,236 40,125 

    117,484 

10/10 - 11/08 Dpw 4a2 (HVAC) 223,201.0 322,806 99,605 

 Dpw 4a1 64,236.0 93,226 28,990 

    128,595 

11/08 - 12/13 Dpw 4a2 (HVAC) 322,806.0 418,801 95,995 

 Dpw 4a1 93,226.0 127,566 34,340 

    130,335 

2003         

12/13 - 1/10 Dpw 4a2 (HVAC) 418,801.0 480,089 61,288 

 Dpw 4a1 127,566.0 154,494 26,928 

    88,216 

1/10 - 2/13 Dpw 4a2 (HVAC) 480,089.0 565,827 85,738 

 Dpw 4a1 154,494.0 190,705 36,211 

    121,949 

2/13 - 3/12 Dpw 4a2 (HVAC) 565,827.0 621,424 55,597 

 Dpw 4a1 190,705.0 218,374 27,669 

    83,266 

3/12 - 4/10 Dpw 4a2 (HVAC) 621,424.0 664,122 42,698 

 Dpw 4a1 218,374.0 247,821 29,447 

    72,145 

4/10 - 5/9 Dpw 4a2 (HVAC) 664,122.0 706,195 42,073 

 Dpw 4a1 247,821.0 275,362 27,541 

    69,614 

5/9 - 6/10 Dpw 4a2 (HVAC) 706,195 754,095 47,900 

 Dpw 4a1 275,362 292,231 16,869 

    64,769 

6/1 - 7/1 Dpw 4a2 (HVAC) 754,095 803,337 49,242 

 Dpw 4a1 292,231 309,422 17,191 

    66,433 

7/1 - 8/7 Dpw 4a2 (HVAC) 803,337 859,893 56,556 

 Dpw 4a1 309,422 329,878 20,456 

    77,012 

8/7 - 9/11 Dpw 4a2 (HVAC) 859,893 902,579 42,686 
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 Dpw 4a1 329,878 345,251 15,373 

    58,059 

9/11 - 10/10 Dpw 4a2 (HVAC) 902,579 944,587 42,008 

 Dpw 4a1 345,251 361,496 16,245 

    58,253 

10/10 - 11/11 Dpw 4a2 (HVAC) 944,587 990,221 45,634 

 Dpw 4a1 361,496 377,754 16,258 

    61,892 

11/11 - 12/12 Dpw 4a2 (HVAC) 990,221 1,039,943 49,722 

 Dpw 4a1 377,754 392,658 14,904 

    64,626 

2004         

12/12/03 - 2/2/04 Dpw 4a2 (HVAC) 1,039,943 1,158,366 118,423 

 Dpw 4a1 392,658 421,782 29,124 

 Warehouse 0 4,779 4,779 

    152,326 

2/2- 3/3 Dpw 4a2 (HVAC) 1,158,366 1,214,537 56,171 

 Dpw 4a1 421,782 438,069 16,287 

 Warehouse 4,779 13,072 8,293 

    80,751 

3/3-4/6 Dpw 4a2 (HVAC) 1,214,537 1,276,001 61,464 

 Dpw 4a1 438,069 451,599 19,530 

 Warehouse 13,072 20,951 7,879 

    88,873 

4/6 -5/4 Dpw 4a2 (HVAC) 1,276,001 1,316,534 40,533 

 Dpw 4a1 451,599 473,259 15,660 

 Warehouse 20,951 26,280 5,329 

    61,522 

5/4 - 6/4 Dpw 4a2 (HVAC) 1,316,534 1,316,534 46,386 

 Dpw 4a1 473,259 490,027 16,768 

 Warehouse 26,280 31,192 4,912 

    68,066 

6/4 - 7/2 Dpw 4a2 (HVAC) 1,316,534 1,403,865 40,945 

 Dpw 4a1 490,027 505,034 15,007 

 Warehouse 31,192 35,877 4,685 

    60,637 

7/2 - 8/10 Dpw 4a2 (HVAC) 1,403,865 1,459,513 55,648 

 Dpw 4a1 505,034 525,393 20,359 

 Warehouse 35,877 40,411 4,534 

    80,541 

8/10 - 8/31 Dpw 4a2 (HVAC) 1,459,513 1,491,382 31,869 
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 Dpw 4a1 525,393 536,279 10,886 

 Warehouse 40,411 43,246 2,835 

    45,590 

8/31- 10/04 Dpw 4a2 (HVAC) 1,491,382 1,540,160 48,778 

 Dpw 4a1 536,279 553,815 17,536 

 Warehouse 43,246 48,239 4,993 

    71,307 

10/04 - 11/3 Dpw 4a2 (HVAC) 1,540,160 1,582,868 42,709 

 Dpw 4a1 553,815 571,925 18,110 

 Warehouse 48,239 53,928 5,689 

    66,508 

11/3 - 12/01 Dpw 4a2 (HVAC) 1,582,868 1,625,877 43,009 

 Dpw 4a1 18924* 35,484 16,560 

 Warehouse 53,928 60,694 6,766 

    66,335 

12/01 - 12/30 Dpw 4a2 (HVAC) 1,625,877 1,682,634 56,757 

new meter installed Dpw 4a1 35,484 79,615 44,131 

 Warehouse 60,694 68,918 8,224 

    109,112 

2005         

     

12/30 - 1/3 Dpw 4a2 (HVAC) 1,682,634 1,750,152 67,518 

 Dpw 4a1 79,615 130,830 51,215 

 Warehouse 68,918 78,565 9,647 

    128,380 

1/31 - 2/28 Dpw 4a2 (HVAC) 1,750,152 1,806,572 56,420 

 Dpw 4a1 130,830 179,613 48,783 

 Warehouse 78,565 89,191 10,626 

    115,829 

2/28 - 4/7 Dpw 4a2 (HVAC) 1,806,572 1,866,690 60,118 

 Dpw 4a1 179,613 235,993 56,380 

 Warehouse 89,191 100,038 10,847 

    127,345 

4/7 - 5/04 Dpw 4a2 (HVAC) 1,866,690 1,907,278 40,588 

 Dpw 4a1 235,993 280,189 44,196 

 Warehouse 100,038 107,650 7,612 

    92,396 

5/4 - 6/30 Dpw 4a2 (HVAC) 1,907,278 1,949,452 42,174 

 Dpw 4a1 280,189 325,209 45,020 

 Warehouse 107,650 114,944 7,294 

    94,488 
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6/3- 7/8 Dpw 4a2 (HVAC) 1,949,452 2,011,075 61,623 

 Dpw 4a1 325,209 380,064 54,855 

 Warehouse 114,944 122,854 7,910 

    124,388 

7/8 - 8/9 Dpw 4a2 (HVAC) 2,011,075 2,074,147 63,072 

 Dpw 4a1 380,064 433,073 53,009 

 Warehouse 122,854 127,837 4,983 

    121,064 

8/9- 9/1 Dpw 4a2 (HVAC) 2,074,147 2,116,183 42,036 

 Dpw 4a1 433,073 470,391 37,318 

 Warehouse 127,837 130,762 2,925 

 

SGH West 

(expansion) 0 2 2 

    82,281 

9/1 - 10/6 Dpw 4a2 (HVAC) 2,116,183 2,174,840 58,657 

 Dpw 4a1 470,391 527242 56,851 

 Warehouse 130,762 135766 5,004 

 

SGH West 

(expansion) 2 2 0 

    120,512 

10/6 - 11/9 Dpw 4a2 (HVAC) 2,174,840 2,231,398 56,558 

 Dpw 4a1 527,242 585,724 58,482 

 Warehouse 135,766 141,201 5,435 

 

SGH West 

(expansion) 2 4 2 

    120,477 

11/9 - 12/09 Dpw 4a2 (HVAC) 2,231,398 2,289,669 58,271 

 Dpw 4a1 585,724 636,708 50,984 

 Warehouse 141,201 145,329 4,128 

 

SGH West 

(expansion) 4 4 0 

    113,383 

12/5 - 12/23 Dpw 4a2 (HVAC) 2,289,669 2,319,176 29,507 

 Dpw 4a1 636,708 663,926 27,218 

 

SGH West 

(expansion) 4 4 0 

 Warehouse 145,329 148,744 3,415 

    60,140 

2006         

     

12/23 - 1/31 Dpw 4a2 (HVAC) 2,319,176 2,389,069 69,893 

 Dpw 4a1 663,926 732,565 68,639 

 

SGH West 

(expansion) 4 12,119 9,184 
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 Warehouse 148,744 157,928 12,115 

    159,831 

1/31 - 3/6 Dpw 4a2 (HVAC) 2,389,069 2,452,717 63,648 

 Dpw 4a1 732,565 792,173 59,608 

 

SGH West 

(expansion) 12,119 85,540 73,421 

 Warehouse 157,928 168,220 10,292 

    206,969 

3/6 - 4/3 Dpw 4a2 (HVAC) 2,452,717 2,498,765 46,048 

 Dpw 4a1 792,173 841,883 49,710 

 

SGH West 

(expansion) 85,540 141,314 55,774 

 Warehouse 168,220 176,245 8,025 

    159,557 

4/3 - 5/10 Dpw 4a2 (HVAC) 2,498,765 2,559,631 60,866 

 Dpw 4a1 841,883 911,056 69,173 

 

SGH West 

(expansion) 141,314 214,674 73,360 

 Warehouse 176,245 184,859 8,614 

    212,013 

5/10 - 6/9 Dpw 4a2 (HVAC) 2,559,631 2,605,625 45,994 

 Dpw 4a1 911,056 963,573 52,517 

 

SGH West 

(expansion) 214,674 273,268 58,594 

 Warehouse 184,859 190,934 6,075 

    163,180 

6/9 - 7/18 Dpw 4a2 (HVAC) 2,605,625 2,681,634 76,009 

 Dpw 4a1 963,573 1,036,752 73,179 

 

SGH West 

(expansion) 273,268 352,548 79,280 

 Warehouse 190,934 197,469 6,535 

    235,003 

7/18 - 8/7 Dpw 4a2 (HVAC) 2,681,634 2,724,860 43,226 

 Dpw 4a1 1,036,752 1,077,000 40,248 

 

SGH West 

(expansion) 352,548 393,142 40,594 

 Warehouse 197,469 200,362 2,893 

    126,961 

8/7 - 9/7 Dpw 4a2 (HVAC) 2,724,860 2,786,501 61,641 

 Dpw 4a1 1,077,000 1,136,661 59,661 

 

SGH West 

(expansion) 393,142 458,169 65,027 

 Warehouse 200,362 204,430 4,068 

    190,397 

9/7 - 10/4 Dpw 4a2 (HVAC) 2,786,501 2,839,262 52,761 
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 Dpw 4a1 1,136,661 1,185,787 49,126 

 

SGH West 

(expansion) 458,169 525,279 67,110 

 Warehouse 204,430 207,978 3,548 

    172,545 

10/4 - 11/3 Dpw 4a2 (HVAC) 2,839,262 2,899,906 60,644 

 Dpw 4a1 1,185,787 1,243,595 57,808 

 

SGH West 

(expansion) 525,279 614,012 88,733 

 Warehouse 207,978 212,296 4,318 

    211,503 

11/3 - 12/4 Dpw 4a2 (HVAC) 2,899,906 2,953,187 53,281 

 Dpw 4a1 1,243,595 1,298,500 54,905 

 

SGH West 

(expansion) 614,012 695,653 81,641 

 Warehouse 212,296 215,938 3,642 

    193,469 

12/4 - 1/2 Dpw 4a2 (HVAC) 2,953,187 3,009,526 56,339 

 Dpw 4a1 1,298,500 1,351,494 52,994 

 

SGH West 

(expansion) 695,653 788,388 92,735 

 Warehouse 215,938 220,011 4,073 

    206,141 

2007         

Jan Dpw 4a2 (HVAC) 3,009,526 3,087,154 77,628 

1/2 - 2/9 Dpw 4a1 1,351,494 1,421,292 69,798 

 

SGH West 

(expansion) 788,388 907,615 119,227 

 Warehouse 220,011 226,466 6,455 

    273,108 

Feb Dpw 4a2 (HVAC) 3,087,154 3,139,387 52,233 

2/9 - 3/5 Dpw 4a1 1,421,292 1,465,570 44,278 

 

SGH West 

(expansion) 907,615 987,079 79,464 

 Warehouse 226,466 230,827 4,361 

    180,336 

Mar Dpw 4a2 (HVAC) 3,139,387 3,201,052 61,665 

3/5 - 4/4 Dpw 4a1 1,465,570 1,523,698 58,128 

 

SGH West 

(expansion) 987,079 1,080,613 93,534 

 Warehouse 230,827 236,386 5,559 

    218,886 

Apr Dpw 4a2 (HVAC) 3,201,052 3,251,661 50,609 

4/4 - 5/1 Dpw 4a1 1,523,698 1,576,600 52,902 
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SGH West 

(expansion) 1,080,613 1,158,259 77,646 

 Warehouse 236,386 241,434 5,048 

    186,205 

May Dpw 4a2 (HVAC) 3,251,661 3,323,972 72,311 

5/1 - 6/5 Dpw 4a1 1,576,600 1,646,454 69,854 

 

SGH West 

(expansion) 1,158,259 1,229,168 70,909 

 Warehouse 241,434 245,841 4,407 

    217,481 

Jun Dpw 4a2 (HVAC) 3,323,972 3,390,650 66,678 

6/5 - 7/5 Dpw 4a1 1,646,454 1,708,854 62,400 

 

SGH West 

(expansion) 1,229,168 1,277,736 48,568 

 Warehouse 245,841 250,132 4,291 

    181,937 

Jul Dpw 4a2 (HVAC) 3,390,650 3,462,293 71,643 

7/5 - 8/8 Dpw 4a1 1,708,854 1,772,599 63,745 

 

SGH West 

(expansion) 1,277,736 1,309,110 31,374 

 Warehouse 250,132 254,082 3,950 

    170,712 

Aug Dpw 4a2 (HVAC) 3,462,293 3,518,418 56,125 

8/8 - 9/5 Dpw 4a1 1,772,599 1,827,936 55,337 

 

SGH West 

(expansion) 1,309,110 1,333,951 24,841 

 Warehouse 254,082 257,583 3,501 

    139,804 

Sep Dpw 4a2 (HVAC) 3,518,418 3,575,587 57,169 

9/5 - 10/5 Dpw 4a1 1,827,936 1,888,052 60,116 

 

SGH West 

(expansion) 1,333,951 1,359,553 25,602 

 Warehouse 257,583 265,419 7,836 

    150,723 

Oct Dpw 4a2 (HVAC) 3,575,587 3,633,310 57,723 

10/5 - 11/7 Dpw 4a1 1,888,052 1,957,976 69,924 

 

SGH West 

(expansion) 1,359,553 1,389,189 29,636 

 Warehouse 265,419 270,400 4,981 

    162,264 

Nov Dpw 4a2 (HVAC) 3,633,310 3,705,076 71,766 

11/7 - 12/20 Dpw 4a1 1,957,976 2,047,669 89,693 

 

SGH West 

(expansion) 1,389,189 1,469,423 80,234 

 Warehouse 270,400 278,361 7,961 
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    249,654 

Dec Dpw 4a2 (HVAC) 3,705,076 3,741,382 36,306 

12/20 - 1/8 Dpw 4a1 2,047,669 2,090,530 42,861 

 

SGH West 

(expansion) 1,469,423 1,514,155 44,732 

 Warehouse 278,361 282,897 4,536 

    236,579 

2008         

Jan Dpw 4a2 (HVAC) 3,741,382 3,797,732 56,350 

1/8 - 2/12 Dpw 4a1 2,090,530 2,158,651 68,121 

 

SGH West 

(expansion) 1,514,155 1,593,013 78,858 

 Warehouse 282,897 290,606 7,709 

    211,038 

Feb Dpw 4a2 (HVAC) 3,797,732 3,857,753 60,021 

2/12 - 3/13 Dpw 4a1 2,158,651 2,226,296 67,645 

 

SGH West 

(expansion) 1,593,013 1,668,482 75,469 

 Warehouse 290,606 297,462 6,856 

    209,991 

Mar Dpw 4a2 (HVAC) 3,857,753 3,899,379 41,626 

3/13 - 4/11 Dpw 4a1 2,226,296 2,286,340 60,044 

 

SGH West 

(expansion) 1,668,482 1,723,262 54,780 

 Warehouse 297,462 303,248 5,786 

    162,236 

Apr Dpw 4a2 (HVAC) 3,899,379 3,955,247 55,868 

4/11 - 5/13 Dpw 4a1 2,286,340 2,356,467 70,127 

 

SGH West 

(expansion) 1,723,262 1,777,037 53,775 

 Warehouse 303,248 309,392 6,144 

    185,914 

May Dpw 4a2 (HVAC) 3,955,247 4,010,008 54,761 

5/13 - 6/13 Dpw 4a1 2,356,467 2,420,870 64,403 

 

SGH West 

(expansion) 1,777,037 1,788,676 11,639 

 Warehouse 309,392 313,076 3,684 

Jun    134,487 

6/13 - 7/14 Dpw 4a2 (HVAC) 4,010,008 4,064,487 54,479 

 Dpw 4a1 2,420,870 2,489,265 68,395 

 

SGH West 

(expansion) 1,788,676 1,806,507 17,831 

 Warehouse 313,076 317,056 3,980 

    144,685 
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Jul Dpw 4a2 (HVAC) 4,064,487 4,117,224 52,737 

 Dpw 4a1 2,489,265 2,554,141 64,876 

 

SGH West 

(expansion) 1,806,507 1,825,568 19,061 

 Warehouse 317,056 322,017 4,961 

    141,635 

Aug Dpw 4a2 (HVAC) 4,117,224 4,171,539 54,315 

 Dpw 4a1 2,554,141 2,620,178 66,037 

 

SGH West 

(expansion) 1,825,568 1,882,146 56,578 

 Warehouse 322,017 326,955 4,938 

    181,868 

Sep Dpw 4a2 (HVAC) 4,171,539 4,219,399 47,860 

 Dpw 4a1 2,620,178 2,689,170 68,992 

 

SGH West 

(expansion) 1,882,146 1,960,581 78,435 

 Warehouse 326,955 331,049 4,094 

    199,381 

Oct Dpw 4a2 (HVAC) 4,219,399 4,271,732 52,333 

 Dpw 4a1 2,689,170 2,760,675 71,505 

 

SGH West 

(expansion) 1,960,581 2,068,424 107,843 

 Warehouse 331,049 336,380 5,331 

    237,012 

Nov Dpw 4a2 (HVAC) 4,271,732 4,321,859 50,127 

 Dpw 4a1 2,760,675 2,817,493 56,818 

 

SGH West 

(expansion) 2,068,424 2,163,193 94,769 

 Warehouse 336,380 342,229 5,849 

    207,563 

Dec Dpw 4a2 (HVAC) 4,321,859 4,395,460 73,601 

12/15 - 1/20 Dpw 4a1 2,817,493 2,890,908 73,415 

 

SGH West 

(expansion) 2,163,193 2,300,935 137,742 

 Warehouse 342,229 350,546 8,317 

    293,075 

2009         

1/20 - 2/9 Dpw 4a2 (HVAC) 4,395,460 4,438,396 42,936 

 Dpw 4a1 2,890,908 2,936,928 46,020 

 

SGH West 

(expansion) 2,300,935 2,386,264 85,329 

 Warehouse 350,546 355,829 5,283 

    179,568 

2/10 - 3/13 Dpw 4a2 (HVAC) 4,438,396 4,484,273 45,877 
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 Dpw 4a1 2,936,928 2,996,234 59,306 

 

SGH West 

(expansion) 2,386,264 2,482,284 96,020 

 Warehouse 355,829 362,510 6,681 

    207,884 

3/14 - 4/14 Dpw 4a2 (HVAC) 4,484,273 4,532,772 48,499 

 Dpw 4a1 2,996,234 3,061,097 64,863 

 

SGH West 

(expansion) 2,482,284 2,573,554 91,270 

 Warehouse 362,510 369,562 7,052 

    211,684 

4/15 - 5/19 Dpw 4a2 (HVAC) 4,532,772 4,586,226 53,454 

 Dpw 4a1 3,061,097 3,125,701 64,604 

 

SGH West 

(expansion) 2,573,554 2,649,751 76,197 

 Warehouse 369,562 375,081 5,519 

    199,774 

5-20 - 6/12 Dpw 4a2 (HVAC) 4,586,226 4,626,473 40,247 

 Dpw 4a1 3,125,701 3,173,022 47,321 

 

SGH West 

(expansion) 2,649,751 2,703,776 54,025 

 Warehouse 375,081 378,741 3,660 

    145,253 

6/13 - 7/14 Dpw 4a2 (HVAC) 4,626,473 4,684,327 57,854 

 Dpw 4a1 3,173,022 3,243,827 70,805 

 

SGH West 

(expansion) 2,703,776 2,779,829 76,053 

 Warehouse 378,741 383,977 5,236 

    209,948 

7/15 - 8/19 Dpw 4a2 (HVAC) 4,684,327 4,746,147 61,820 

 Dpw 4a1 3,243,827 3,310,610 66,783 

 

SGH West 

(expansion) 2,779,829 2,842,771 62,942 

 Warehouse 383,977 389,138 5,161 

    196,706 

8/20 - 9/15 Dpw 4a2 (HVAC) 4,746,147 4,793,556 47,409 

 Dpw 4a1 3,310,610 3,363,900 53,290 

 

SGH West 

(expansion) 2,842,771 2,897,864 55,093 

 Warehouse 389,138 393,568 4,430 

    160,222 

9/16 - 10/19 Dpw 4a2 (HVAC) 4,793,556 4,845,434 51,878 

 Dpw 4a1 3,363,900 3,434,976 71,076 

 

SGH West 

(expansion) 2,897,864 2,970,707 72,843 
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 Warehouse 393,568 399,915 6,347 

    202,144 

10/20 - 11/17 Dpw 4a2 (HVAC) 4,845,434 4,884,306 38,872 

 Dpw 4a1 3,434,976 3,493,060 58,084 

 

SGH West 

(expansion) 2,970,707 3,017,576 46,869 

 Warehouse 399,915 404,650 4,735 

    148,560 

11/17 - 12/18 Dpw 4a2 (HVAC) 4,884,306 4,934,569 50,263 

 Dpw 4a1 3,493,060 3,555,014 61,954 

 

SGH West 

(expansion) 3,017,576 3,068,416 50,840 

 Warehouse 404,650 410,365 5,715 

    168,772 

12/18 - 1/14/10 Dpw 4a2 (HVAC) 4,934,569 4,986,313 51,744 

 Dpw 4a1 3,555,014 3,607,554 52,540 

 

SGH West 

(expansion) 3,068,416 3,121,989 53,573 

 Warehouse 410,365 415,322 4,957 

    162,814 

2010         

1/15 - 2/17 Dpw 4a2 (HVAC) 4,986,313 5,048,567 62,254 

 Dpw 4a1 3,607,554 3,680,728 73,174 

 

SGH West 

(expansion) 3,121,989 3,186,001 64,012 

 Warehouse 415,322 421,396 6,074 

    205,514 

2/18 - 3/17 Dpw 4a2 (HVAC) 5,048,567 5,093,258 44,691 

 Dpw 4a1 3,680,728 3,767,563 86,835 

 

SGH West 

(expansion) 3,186,001 3,228,066 42,065 

 Warehouse 421,396 425,938 4,542 

    178,133 

3/17 - 4/16 Dpw 4a2 (HVAC) 5,093,258 5,142,122 48,864 

 Dpw 4a1 3,767,563 3,805,469 37,906 

 

SGH West 

(expansion) 3,228,066 3,270,475 42,409 

 Warehouse 425,938 430,771 4,833 

    134,012 

4/16 - 5/13 Dpw 4a2 (HVAC) 5,142,122 5,182,872 40,750 

 Dpw 4a1 3,805,469 3,861,827 56,358 

 

SGH West 

(expansion) 3,270,475 3,301,529 31,054 

 Warehouse 430,771 434,761 3,990 
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    132,152 

5/13 - 6/15 Dpw 4a2 (HVAC) 5,182,872 5,238,347 55,475 

 Dpw 4a1 3,861,827 3,932,454 70,627 

 

SGH West 

(expansion) 3,301,529 3,342,057 40,528 

 Warehouse 434,761 439,868 5,107 

    171,737 

6/15 - 7/16 Dpw 4a2 (HVAC) 5,238,347 5,301,203 62,856 

 Dpw 4a1 3,932,454 3,995,113 62,659 

 

SGH West 

(expansion) 3,342,057 3,377,399 35,342 

 Warehouse 439,868 442,860 2,992 

    163,849 

7/16 - 8/13 Dpw 4a2 (HVAC) 5,301,203 5,357,644 56,441 

 Dpw 4a1 3,995,113 4,051,683 56,570 

 

SGH West 

(expansion) 3,377,399 3,408,789 31,390 

 Warehouse 442,860 446,587 3,727 

    148,128 

8/13 - 9/15 Dpw 4a2 (HVAC) 5,357,644 5,412,059 54,415 

 Dpw 4a1 4,051,683 4,116,123 64,440 

 

SGH West 

(expansion) 3,408,789 3,449,807 41,018 

 Warehouse 446,587 451,097 4,510 

    164,383 

9/15 - 10/14 Dpw 4a2 (HVAC) 5,412,059 5,454,746 42,687 

 Dpw 4a1 4,116,123 4,174,406 58,283 

 

SGH West 

(expansion) 3,449,807 3,484,525 34,718 

 Warehouse 451,097 456,095 4,998 

    140,686 

10/14 - 11/15 Dpw 4a2 (HVAC) 5,454,746 5,498,873 44,127 

 Dpw 4a1 4,174,406 4,240,241 65,835 

 

SGH West 

(expansion) 3,484,525 3,522,593 38,068 

 Warehouse 456,095 460,863 4,768 

    152,798 

11/15 - 12/20 Dpw 4a2 (HVAC) 5,498,873 5,548,838 49,965 

 Dpw 4a1 4,240,241 4,309,828 69,587 

 

SGH West 

(expansion) 3,522,593 3,567,142 44,549 

 Warehouse 460,863 466,845 5,982 

    170,083 

12/20 - 1/19/11 Dpw 4a2 (HVAC) 5,548,838 5,619,726 70,888 

 Dpw 4a1 4,309,828 4,379,242 69,414 
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SGH West 

(expansion) 3,567,142 3,635,563 68,421 

 Warehouse 466,845 472,485 5,640 

    214,363 

2011         

1/19 - 2/16 Dpw 4a2 (HVAC) 5,619,726 5,684,127 64,401 

 Dpw 4a1 4,379,242 4,441,275 62,033 

 

SGH West 

(expansion) 3,635,563 3,693,905 58,342 

 Warehouse 472,485 477,455 4,970 

    189,746 

2/16 - 3/15 Dpw 4a2 (HVAC) 5,684,127 5,777,082 92,955 

 Dpw 4a1 4,441,275 4,495,907 54,632 

 

SGH West 

(expansion) 3,693,905 3,738,343 44,438 

 Warehouse 477,455 481,743 4,288 

    196,313 

3/15 - 4/15 Dpw 4a2 (HVAC) 5,777,082 5,831,275 54,193 

 Dpw 4a1 4,495,907 4,562,360 66,453 

 

SGH West 

(expansion) 3,738,343 3,758,917 20,574 

 Warehouse 481,743 486,708 4,965 

    146,185 

4/15 - 5/16 Dpw 4a2 (HVAC) 5,831,275 5,873,756 42,481 

 Dpw 4a1 4,562,360 4,628,299 65,939 

 

SGH West 

(expansion) 3,758,917 3,777,387 18,470 

 Warehouse 486,708 489,827 3,119 

    130,009 

5/16-6/20 Dpw 4a2 (HVAC) 5,873,756 5,930,937 57,181 

 Dpw 4a1 4,628,299 4,703,960 75,661 

 

SGH West 

(expansion) 3,777,387 3,800,054 22,667 

 Warehouse 489,827 495,550 5,723 

    161,232 

6/20 - 7/18 Dpw 4a2 (HVAC) 5,930,937 5,983,347 52,410 

 Dpw 4a1 4,703,960 4,764,392 60,432 

 

SGH West 

(expansion) 3,800,054 3,815,370 15,316 

 Warehouse 495,550 498,774 3,224 

    131,382 

7/18 - 8/24 Dpw 4a2 (HVAC) 5,983,347 6,048,249 64,902 

 Dpw 4a1 4,764,392 4,844,258 79,866 

 

SGH West 

(expansion) 3,815,370 3,843,569 28,199 
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 Warehouse 498,774 502,594 3,820 

    176,787 

8/24 - 9/16 Dpw 4a2 (HVAC) 6,048,249 6,077,652 29,403 

 Dpw 4a1 4,844,258 4,893,507 49,249 

 

SGH West 

(expansion) 3,843,569 3,864,100 20,531 

 Warehouse 502,594 506,010 3,416 

    102,599 

     

9/16 - 10/17 Dpw 4a2 (HVAC) 6,077,652 6,111,160 33,508 

 Dpw 4a1 4,893,507 4,962,551 69,044 

 

SGH West 

(expansion) 3,864,100 3,894,311 30,211 

 Warehouse 506,010 510,947 4,937 

    137,700 

10/17 - 11/17 Dpw 4a2 (HVAC) 6,111,160 6,138,910 27,750 

 Dpw 4a1 4,962,551 5,126,481 163,930 

 

SGH West 

(expansion) 3,894,311 3,922,590 28,279 

 Warehouse 510,947 516,423 5,476 

    225,435 

11/17 - 12/16 Dpw 4a2 (HVAC) 6,138,910 6,166,977 28,067 

 Dpw 4a1 5,126,481 5,195,994 69,513 

 

SGH West 

(expansion) 3,922,590 3,963,912 41,322 

 Warehouse 516,423 520,797 4,374 

    143,276 

2012         

12/16 - 1/17/12 Dpw 4a2 (HVAC) 6,166,977 6,213,134 46,157 

 Dpw 4a1 5,195,994 5,220,607 24,613 

 

SGH West 

(expansion) 3,963,912 4,008,227 44,315 

 Expansion II  12,385 12,385 

 Warehouse 520,797 526,636 5,839 

    133,309 

1/17 - 2/17 Dpw 4a2 (HVAC) 6,213,134 6,253,247 40,113 

 Dpw 4a1 5,220,607 5,237,351 16,744 

 

SGH West 

(expansion) 4,008,227 4,048,101 39,874 

 Expansion II 12,385 52,507 40,122 

 Warehouse 526,636 531,333 4,697 

    141,550 

2/17 - 3/16 Dpw 4a2 (HVAC) 6,253,247 6,293,734 40,487 

 Dpw 4a1 5,237,351 5,298,748 61,397 
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SGH West 

(expansion) 4,048,101 4,088,234 40,133 

 Expansion II 52,507 88,746 36,239 

 Warehouse 531,333 535,319 3,986 

    182,242 

3/16 - 4/18 Dpw 4a2 (HVAC) 6,293,734 6,336,561 42,827 

 Dpw 4a1 5,298,748 5,372,591 73,843 

 

SGH West 

(expansion) 4,088,234 4,134,559 46,325 

 Expansion II 88,746 130,146 41,400 

 Warehouse 535,319 539,757 4,438 

    208,833 

4/18 - 5/18 Dpw 4a2 (HVAC) 6,336,561 6,371,895 35,334 

 Dpw 4a1 5,372,591 5,436,666 64,075 

 

SGH West 

(expansion) 4,134,559 4,174,378 39,819 

 Expansion II 130,146 163,251 33,105 

 Warehouse 539,757 544,666 4,909 

    177,242 

5/18 - 6/18 Dpw 4a2 (HVAC) 6,371,895 6,414,623 42,728 

 Dpw 4a1 5,436,666 5,509,274 72,608 

 

SGH West 

(expansion) 4,174,378 4,214,152 39,774 

 Expansion II 163,251 200,756 37,505 

 Warehouse 544,666 549,506 4,840 

    197,455 

6/18 - 7/18 Dpw 4a2 (HVAC) 6,414,623 6,472,990 58,367 

 Dpw 4a1 5,509,274 5,575,982 66,708 

 

SGH West 

(expansion) 4,214,152 4,242,683 28,531 

 Expansion II 200,756 235,495 34,739 

 Warehouse 549,506 553,691 4,185 

    192,530 

7/18 - 8/17 Dpw 4a2 (HVAC) 6,472,990 6,536,742 63,752 

 Dpw 4a1 5,575,982 5,657,755 81,773 

 

SGH West 

(expansion) 4,242,683 4,272,246 29,563 

 Expansion II 235,495 273,840 38,345 

 Warehouse 553,691 558,331 4,640 

    218,073 

8/17 - 9/19 Dpw 4a2 (HVAC) 6,536,742 6,594,987 58,245 

 Dpw 4a1 5,657,755 5,740,198 82,443 

 

SGH West 

(expansion) 4,272,246 4,303,413 31,167 

 Expansion II 273,840 311,424 37,584 
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 Warehouse 558,331 562,666 4,335 

    213,774 

9/19-10/19 Dpw 4a2 (HVAC) 6,594,987 6,637,948 42,961 

 Dpw 4a1 5,740,198 5,808,505 68,307 

 

SGH West 

(expansion) 4,303,413 4,338,187 34,774 

 Expansion II 311,424 348,532 37,108 

 Warehouse 562,666 567,643 4,977 

    188,127 

10/19-11/16 Dpw 4a2 (HVAC) 6,637,948 6,682,544 44,596 

 Dpw 4a1 5,808,505 5,864,811 56,306 

 

SGH West 

(expansion) 4,338,187 4,364,450 26,263 

 Expansion II 348,532 381,723 33,191 

 Warehouse 567,643 573,549 5,906 

    166,262 

11/16-12/19 Dpw 4a2 (HVAC) 6,682,544 6,738,519 55,975 

 Dpw 4a1 5,864,811 5,934,090 69,279 

 

SGH West 

(expansion) 4,364,450 4,403,169 38,719 

 Expansion II 381,723 421,423 39,700 

 Warehouse 573,549 581,442 7,893 

    211,566 

2013         

12/19- 1/17 Dpw 4a2 (HVAC) 6,738,519 6,793,384 54,865 

 Dpw 4a1 5,934,090 5,991,746 57,656 

 

SGH West 

(expansion) 4,403,169 4,440,306 37,137 

 Expansion II 421,423 458,953 37,530 

 Warehouse 581,442 588,071 6,629 

    193,817 

1/17-2/1 Dpw 4a2 (HVAC) 6,793,384 6,820,828 27,444 

 Dpw 4a1 5,991,746 6,020,835 29,089 

 

SGH West 

(expansion) 4,440,306 4,458,769 18,463 

 Expansion II 458,953 481,618 22,665 

 Warehouse 588,071 591,932 3,861 

    101,522 

2/1-2/15 Dpw 4a2 (HVAC) 6,820,828 6,850,233 29,405 

 Dpw 4a1 6,020,835 6,052,002 31,167 

 

SGH West 

(expansion) 4,458,769 4,478,551 19,782 

 Expansion II 481,618 505,901 24,283 

 Warehouse 591,932 593,068 1,136 
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    105,773 

2/15 - 3/15 Dpw 4a2 (HVAC) 6,850,233 6,900,073 49,840 

 Dpw 4a1 6,052,002 6,110,148 58,146 

 

SGH West 

(expansion) 4,478,551 4,511,497 32,946 

 Expansion II 505,901 548,492 42,591 

 Warehouse 593,068 604,517 11,449 

    194,972 

3/15-4/18 Dpw 4a2 (HVAC) 6,900,073 6,953,707 53,634 

 Dpw 4a1 6,110,148 6,183,054 72,906 

 

SGH West 

(expansion) 4,511,497 4,550,010 38,513 

 Expansion II 548,492 592,007 43,515 

 Warehouse 604,517 614,408 9,891 

    218,459 

4/18 - 5/18 Dpw 4a2 (HVAC) 6,953,707 6,996,753 43,046 

 Dpw 4a1 6,183,054 6,246,254 63,200 

 

SGH West 

(expansion) 4,550,010 4,581,624 31,614 

 Expansion II 592,007 625,628 33,621 

 Warehouse 614,408 620,801 6,393 

    177,874 

     

5/18 - 6/17 Dpw 4a2 (HVAC) 6,996,753 7,048,243 51,490 

 Dpw 4a1 6,246,254 6,317,819 71,565 

 

SGH West 

(expansion) 4,581,624 4,614,249 32,625 

 Expansion II 625,628 661,664 36,036 

 Warehouse 620,801 627,168 6,367 

    198,083 

6/17-7/16 Dpw 4a2 (HVAC) 7,048,243 7,116,336 68,093 

 Dpw 4a1 6,317,819 6,386,787 68,968 

 

SGH West 

(expansion) 4,614,249 4,640,080 25,831 

 Expansion II 661,664 698,136 36,472 

 Warehouse 627,168 631,907 4,739 

    204,103 

7/16-8/16 Dpw 4a2 (HVAC) 7,116,336 7,175,469 59,133 

 Dpw 4a1 6,386,787 6,455,701 68,914 

 

SGH West 

(expansion) 4,640,080 4,664,690 24,610 

 Expansion II 698,136 733,287 35,151 

 Warehouse 631,907 638,001 6,094 

    193,902 
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8/16-9/19 Dpw 4a2 (HVAC) 7,175,469 7,240,470 65,001 

 Dpw 4a1 6,455,701 6,531,756 76,055 

 

SGH West 

(expansion) 4,664,690 4,688,809 24,119 

 Expansion II 733,287 774,437 41,150 

 Warehouse 638,001 645,256 7,255 

    213,580 

9/19-10/17 Dpw 4a2 (HVAC) 7,240,470 7,290,304 49,834 

 Dpw 4a1 6,531,756 6,597,198 65,442 

 

SGH West 

(expansion) 4,688,809 4,709,441 20,632 

 Expansion II 774,437 808,969 34,532 

 Warehouse 645,256 650,194 4,938 

    175,378 

10/17-11/19 Dpw 4a2 (HVAC) 7,290,304 7,348,473 58,169 

 Dpw 4a1 6,597,198 6,672,326 75,128 

 

SGH West 

(expansion) 4,709,441 4,742,842 33,401 

 Expansion II 808,969 844,413 35,444 

 Warehouse 650,194 655,842 5,648 

    207,790 

11/19-12/19 Dpw 4a2 (HVAC) 7,348,473 7,419,399 70,926 

 Dpw 4a1 6,672,326 6,738,038 65,712 

 

SGH West 

(expansion) 4,742,842 4,784,046 41,204 

 Expansion II 844,413 866,086 21,673 

 Warehouse 655,842 660,978 5,136 

    204,651 

2014         

12/19-1/17 Dpw 4a2 (HVAC) 7,419,399 7,484,918 65,519 

 Dpw 4a1 6,738,038 6,801,247 63,209 

 

SGH West 

(expansion) 4,784,046 4,826,273 42,227 

 Expansion II 866,086 925,886 59,800 

 Warehouse 660,978 665,242 4,264 

    235,019 

1/17-2/18 Dpw 4a2 (HVAC) 7,484,918 7,556,397 71,479 

 Dpw 4a1 6,801,247 6,880,245 78,998 

 

SGH West 

(expansion) 4,826,273 4,867,901 41,628 

 Expansion II 925,886 968,039 42,153 

 Warehouse 665,242 672,489 7,247 

    241,505 

2/18-3/18 Dpw 4a2 (HVAC) 7,556,397 7,613,936 57,539 
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 Dpw 4a1 6,880,245 6,948,675 68,430 

 

SGH West 

(expansion) 4,867,901 4,900,975 33,074 

 Expansion II 968,039 1,003,965 35,926 

 Warehouse 672,489 679,812 7,323 

    202,292 

3/18-4/18 Dpw 4a2 (HVAC) 7,613,936 7,672,093 58,157 

 Dpw 4a1 6,948,675 7,021,709 73,034 

 

SGH West 

(expansion) 4,900,975 4,932,433 31,458 

 Expansion II 1,003,965 1,041,055 37,090 

 Warehouse 679,812 687,084 7,272 

    207,011 

4/18-5/20 Dpw 4a2 (HVAC) 7,672,093 7,731,125 59,032 

 Dpw 4a1 7,021,709 7,089,016 67,307 

 

SGH West 

(expansion) 4,932,433 4,959,495 27,062 

 Expansion II 1,041,055 1,074,705 33,650 

 Warehouse 687,084 691,872 4,788 

    191,839 

5/20-6/13 Dpw 4a2 (HVAC) 7,731,125 7,777,982 46,857 

 Dpw 4a1 7,089,016 7,141,569 52,553 

 

SGH West 

(expansion) 4,959,495 4,977,450 17,955 

 Expansion II 1,074,705 1,102,683 27,978 

 Warehouse 691,872 695,051 3,179 

    148,522 

6/13-7/15 Dpw 4a2 (HVAC) 7,777,982 7,836,079 58,097 

 Dpw 4a1 7,141,569 7,212,739 71,170 

 

SGH West 

(expansion) 4,977,450 4,998,384 20,934 

 Expansion II 1,102,683 1,148,671 45,988 

 Warehouse 695,051 699,195 4,144 

    200,333 

7/15-8/15 Dpw 4a2 (HVAC) 7,836,079 7,882,512 46,433 

 Dpw 4a1 7,212,739 7,283,566 70,827 

 

SGH West 

(expansion) 4,998,384 5,019,305 20,921 

 Expansion II 1,148,671 1,199,298 50,627 

 Warehouse 699,195 703,401 4,206 

    193,014 

 storage 431 5 6 1 

 storage 432 233 463 230 

 storage 433   0 
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8/15-9/12 Dpw 4a2 (HVAC) 7,882,512 7,921,260 38,748 

 Dpw 4a1 7,283,566 7,343,429 59,863 

 

SGH West 

(expansion) 5,019,305 5,037,181 17,876 

 Expansion II 1,199,298 1,239,262 39,964 

 Warehouse 703,401 707,356 3,955 

 storage 431 6 6 0 

 storage 432 463 616 153 

 storage 433    

    160,559 

9/12-10/14 Dpw 4a2 (HVAC) 7,921,260 7,961,893 40,633 

 Dpw 4a1 7,343,429 7,415,679 72,250 

 

SGH West 

(expansion) 5,037,181 5,062,024 24,843 

 Expansion II 1,239,262 1,288,351 49,089 

 Warehouse 707,356 712,914 5,558 

 storage 431 6 6 0 

 storage 432 616 789 173 

 storage 433  557 557 

    193,103 

10/14-11/17 Dpw 4a2 (HVAC) 7,961,893 8,006,319 44,426 

 Dpw 4a1 7,415,679 7,490,016 74,337 

 

SGH West 

(expansion) 5,062,024 5,093,774 31,750 

 Expansion II 1,288,351 1,332,849 44,498 

 Warehouse 712,914 718,143 5,229 

 storage 431 6 8 2 

 storage 432 789 997 208 

 storage 433 557 1,165 608 

    201,058 

11/17-12/12 Dpw 4a2 (HVAC) 8,006,319 8,048,382 42,063 

 Dpw 4a1 7,490,016 7,546,794 56,778 

 

SGH West 

(expansion) 5,093,774 5,120,972 27,198 

 Expansion II 1,332,849 1,361,332 28,483 

 Warehouse 718,143 722,722 4,579 

 storage 431 8 8 0 

 storage 432 997 1,138 141 

 storage 433 1,165 1,946 781 

    160,023 

2015         

12/12-1/14 Dpw 4a2 (HVAC) 8,048,382 8,100,540 52,158 
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 Dpw 4a1 7,546,794 7,612,700 65,906 

 

SGH West 

(expansion) 5,120,972 5,158,761 37,789 

 Expansion II 1,361,332 1,394,509 33,177 

 Warehouse 722,722 728,517 5,795 

 storage 431 8 9 1 

 storage 432 1,138 1,308 170 

 storage 433 1,946 3,656 1,710 

    196,706 

1/14-2/16 Dpw 4a2 (HVAC) 8,100,540 8,165,629 65,089 

 Dpw 4a1 7,612,700 7,683,241 70,541 

 

SGH West 

(expansion) 5,158,761 5,199,210 40,449 

 Expansion II 1,394,509 1,436,172 41,663 

 Warehouse 728,517 734,851 6,334 

 storage 431 9 9 0 

 storage 432 1,308 1,493 185 

 storage 433 3,656 7,023 3,367 

    227,628 

2/16-3/16 Dpw 4a2 (HVAC) 8,165,629 8,223,068 57,439 

 Dpw 4a1 7,683,241 7,744,225 60,984 

 

SGH West 

(expansion) 5,199,210 5,230,597 31,387 

 Expansion II 1,436,172 1,467,512 31,340 

 Warehouse 734,851 739,898 5,047 

 storage 431 9 9 0 

 storage 432 1,493 1,638 145 

 storage 433 7,023 9,169 2,146 

    188,488 

3/16-4/14 Dpw 4a2 (HVAC) 8,223,068 8,282,013 58,945 

 Dpw 4a1 7,744,225 7,807,969 63,744 

 

SGH West 

(expansion) 5,230,597 5,264,655 34,058 

 Expansion II 1,467,512 1,497,053 29,541 

 Warehouse 739,898 745,052 5,154 

 storage 431 9 9 0 

 storage 432 1,638 1,797 159 

 storage 433 9,169 10,629 1,460 

    193,061 

4/14-5/15 Dpw 4a2 (HVAC) 8,282,013 8,334,754 52,741 

 Dpw 4a1 7,807,969 7,874,056 66,087 

 

SGH West 

(expansion) 5,264,655 5,289,588 24,933 

 Expansion II 1,497,053 1,525,780 28,727 
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 Warehouse 745,052 750,483 5,431 

 storage 431 9 10 1 

 storage 432 1,797 1,972 175 

 storage 433 10,629 11,597 968 

    179,063 

5/15-6/15 Dpw 4a2 (HVAC) 8,334,754 8,383,870 49,116 

 Dpw 4a1 7,874,056 7,942,709 68,653 

 

SGH West 

(expansion) 5,289,588 5,309,708 20,120 

 Expansion II 1,525,780 1,553,570 27,790 

 Warehouse 750,483 755,759 5,276 

 storage 431 10 0 -10 

 storage 432 1,972 2,128 156 

 storage 433 11,597 12,509 912 

    172,013 

6/15-7/20 Dpw 4a2 (HVAC) 8,383,870 8,446,169 62,299 

 Dpw 4a1 7,942,709 8,022,768 80,059 

 

SGH West 

(expansion) 5,309,708 5,333,271 23,563 

 Expansion II 1,553,570 1,590,429 36,859 

 Warehouse 755,759 761,440 5,681 

 storage 431 0 10 10 

 storage 432 2,128 2,301 173 

 storage 433 12,509 13,532 1,023 

    209,667 

7/20-8/21 Dpw 4a2 (HVAC) 8,446,169 8,494,358 48,189 

 Dpw 4a1 8,022,768 8,086,877 64,109 

 

SGH West 

(expansion) 5,333,271 5,355,705 22,434 

 Expansion II 1,590,429 1,620,746 30,317 

 Warehouse 761,440 766,722 5,282 

 storage 431 10 10 0 

 storage 432 2,301 2,446 145 

 storage 433 13,532 14,318 786 

    171,262 

8/17-9/21 Dpw 4a2 (HVAC) 8,494,358 8,551,983 57,625 

 Dpw 4a1 8,086,877 8,167,391 80,514 

 

SGH West 

(expansion) 5,355,705 5,385,127 29,422 

 Expansion II 1,620,746 1,659,384 38,638 

 Warehouse 766,722 774,432 7,710 

 storage 431 10 10 0 

 storage 432 2,446 2,608 162 
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 storage 433 14,318 15,313 995 

    215,066 
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12. Appendix C: Spot Measurements 
 

Due to space constraints, and the sheer volume of data, we have only included a select 

portion of the data collected from the loggers. Please contact smithsohnian@wpi.edu or 

svandessel@wpi.edu in order to retrieve the complete Excel and other data files. 

 

 

mailto:smithsohnian@wpi.edu
mailto:svandessel@wpi.edu
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The following tables depict the high and low temperature values recorded at each of the 

15 logger locations. Weather data collected from Weather Underground (wunderground.com) 

recorded from a nearby station (KMAWALTH6) were added to the tables.  

Logger High Temp (°F) Time Day Outside Weather (°F) 

1 86.22 2:30 PM 9/27/2015 74.8 

2 78.09 2:10 PM 9/24/2015 57.5 

3 77.96 5:30 PM 9/27/2015 70.1 

4 82.45 6:00 PM 9/27/2015 70.0 

A 79.62 3:00 PM 11/6/2015 76.0 

B 78.17 2:40 PM 11/20/2015 62.0 

C 76.65 9:50 AM 11/5/2015 70.6 

D 73.09 4:40 PM 11/5/2015 74.4 

a 72.96 5:00 PM 11/25/2015 45.9 

c 69.78 5:00 PM 11/25/2015 45.9 

i 75.66 10:50 AM 12/21/2015 52.0 

ii 76.01 11:09 AM 12/21/2015 52.3 

iii 74.73 11:18 AM 12/21/2015 52.3 

iv 90.17 6:58 AM 12/28/2015 37.9 

v 105.43 8:35 AM 1/24/2016 35.0 

     

Logger Low Temp (°F) Time Day Outside Weather (°F) 

1 67.93 5:50:00 AM 10/19/2015 33.9 

2 68.06 6:30:00 AM 10/19/2015 34.1 

3 68.15 5:40:00 AM 10/19/2015 34.1 

4 67.55 5:30:00 AM 10/27/2015 35.9 

A 70.08 5:20:00 AM 11/25/2015 29.1 

B 69.13 7:20:00 AM 11/26/2015 41.8 

C 53.04 4:10:00 AM 12/1/2015 31.2 

D 63.14 8:50:00 AM 11/17/2015 39.6 

a 69.22 8:00:00 AM 11/26/2015 43.5 

c 65.49 5:00:00 PM 11/25/2015 45.6 

i 67.66 5:10:00 AM 1/5/2016 11.1 

ii 67.67 3:29:00 AM 1/12/2016 26.1 

iii 66.25 4:38:00 AM 1/28/2016 27.4 

iv 57.64 12:38:00 PM 1/20/2016 32.2 

v 19.92 4:15:00 AM 1/5/2016 11.4 



144 

 

Another point of interest is the range of temperature experienced by each logger. This is 

detailed in the following table. Most of the loggers experienced a range of 10°F or less, though 

some were greater. Logger iv and v’s ranges should not be of great concern, as both of these 

locations experienced varying conditions: iv is affected by the supply air, and v is subject to 

outside conditions. 

 

Logger Range (°F) 

1 18.29 

2 10.03 

3 9.81 

4 14.90 

A 9.54 

B 9.04 

C 23.61 

D 9.95 

a 3.74 

c 4.29 

i 8.00 

ii 8.34 

iii 8.48 

iv 32.53 

v 85.51 
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13. Appendix D: RTU Nameplate Data 
 

 

MODEL 48TMD028--- SERIES 600AA SERIAL 5001F28141 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 10 75 26.8 LBS 12.2 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 19.6 125     R-22 LO 150 PSI 1034 kPa 

COMPR 1 460 3 60 19.6 125 25.6 LBS 11.6 KG   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 6 460 1 60 0.85 0.5 0.4 MIN CIRCUIT AMPS 64 

INDOOR               MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 1 460 3 60 14.6 10 7.5 80 FUSE OR HACR BKR 

Outlet               PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 1 460 1 60 0.3 0.06 0 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-14 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 206,000 275,000 223,000 

Kw 60.3 80.5 65.3 81% 
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MODEL 48AKD040--- SERIES 600ED SERIAL 4901F26996 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 25.6 120 51.5 LBS 23.4 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 28.8 173 49.5 LBS 22.5 KG R-22 LO 150 PSI 1034 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 4 460 3 60 2.7 1 0.75 MIN CIRCUIT AMPS 112 

OUTDOOR               MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

INDOOR 1 460 3 60 27 20 14.9 125 FUSE OR HACR BKR 

OTHER 4 460 1 60 3.2 1 0.75 PERMISSIBLE VOLTAGE AT UNIT 508 MAX 414 MIN 

COMBUST 2 460 1 60 0.25 0.06 0.05 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-13 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 300,000 400,000 324,000 

Kw 87.93 117.24 94.96 81% 

             

MODEL 48TFD012--- SERIES 601GA SERIAL 4501G04684 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 7.9 64 7.4 LBS 3.3 KG R-22 HI 401 PSI 2761 kPa 

COMPR 1 460 3 60 7.9 64 8.0 LBS 3.6 KG R-22 LO 150 PSI 1034 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 1 60 0.7     MIN CIRCUIT AMPS 22.6 

OUTDOOR               MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

INDOOR 1 460 3 60 3.4     125 FUSE OR HACR BKR 

OTHER               PERMISSIBLE VOLTAGE AT UNIT 508 MAX 414 MIN 

COMBUST 1 460 1 60 0.3     EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-05 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 120,000 180,000 96,000/144,000 

Kw 35.2 52.7 28.1/42.2 80% 
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MODEL 48AKD040--- SERIES 600ED SERIAL 4901F26989 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 25.6 120 51.5 LBS 23.4 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 28.8 173 49.5 LBS 22.5 KG R-22 LO 150 PSI 1034 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 4 460 3 60 2.7 1 0.75 MIN CIRCUIT AMPS 112 

OUTDOOR               MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

INDOOR 1 460 3 60 27 20 14.9 125 FUSE OR HACR BKR 

OTHER 4 460 1 60 3.2 1 0.75 PERMISSIBLE VOLTAGE AT UNIT 508 MAX 414 MIN 

COMBUST 2 460 1 60 0.25 0.06 0.05 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-01 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 300,000 400,000 324,000 

Kw 87.93 117.24 94.96 81% 

             

MODEL 48AKD025-P SERIES 611HM SERIAL 1305F11244 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 11 90 33.5 LBS 15.2 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 13.5 95 17.5 LBS 7.9 KG R-22 LO 150 PSI 1034 kPa 

COMPR 1 460 3 60 13.5 95       

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 3.3 1 0.75 MIN CIRCUIT AMPS 87 

INDOOR 1 460 3 60 21 15 11.19 MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 4 460 1 60 3.15 1 0.75 100 FUSE OR HACR BKR 

Outlet 1 115 1 60 3.5     PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 2 115 1 60 1.1 0.1 0.07 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-06 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 262,500 350,000 283,500 

Kw 76.9 102.6 83.1 81% 
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MODEL 48A3S020A1 SERIES 611HK SERIAL 0510U02028 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 2 460 3 60 10.6 75 26.2 LBS 11.9 KG R-410A HI 650 PSI 4482 kPa 

COMPR 1 460 3 60 14.7 95 18.8 LBS 8.5 KG R-410A LO 477 PSI 3289 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 3.3 1 0.75 MIN CIRCUIT AMPS 73 

INDOOR 1 460 3 60 14 10 7.46 MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 4 460 1 60 3.15 1 0.75 80 FUSE OR HACR BKR 

Outlet               PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 2 115 1 60 1.1 0.1 0.07 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-02 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 262,500 350,000 283,500 

Kw 76.9 102.6 83.1 81% 

             

MODEL 48HCRB07A2A6A0F5CO SERIES   SERIAL 4411G10237 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 9.7 62 22.5 LBS 10.2 KG R-410A HI 650 PSI 4482 kPa 

COMPR   460 3 60         R-410A LO 450 PSI 3103 kPa 

COMPR   460 3 60           

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 0.8     MIN CIRCUIT AMPS   

INDOOR 1 460 3 60 3.4     MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh               80 FUSE OR HACR BKR 

OTHER 1 115 1 60 2.2     PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 1 460 1 60 0.25     EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-07 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 90,000 125,000 103,000 

Kw 26.4 36.6 30.2 82% 
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MODEL 48HCRB07A2A6A0F5C0 SERIES   SERIAL 4411G10236 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 9.7 62 22.5 LBS 10.2 KG R-410A HI 650 PSI 4482 kPa 

COMPR   460 3 60         R-410A LO 450 PSI 3103 kPa 

COMPR   460 3 60           

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 0.8     MIN CIRCUIT AMPS   

INDOOR 1 460 3 60 3.4     MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh               80 FUSE OR HACR BKR 

OTHER 1 115 1 60 2.2     PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 1 460 1 60 0.25     EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-09 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 90,000 125,000 103,000 

Kw 26.4 36.6 30.2 82% 

             

MODEL 48A3S020A1 SERIES 611HK SERIAL 0510U02029 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 2 460 3 60 10.6 75 26.2 LBS 11.9 KG R-410A HI 650 PSI 4482 kPa 

COMPR 1 460 3 60 14.7 95 18.8 LBS 8.5 KG R-410A LO 477 PSI 3289 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 3.3 1 0.75 MIN CIRCUIT AMPS 73 

INDOOR 1 460 3 60 14 10 7.46 MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 4 460 1 60 3.15 1 0.75 80 FUSE OR HACR BKR 

Outlet               PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 2 115 1 60 1.1 0.1 0.07 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-11 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 262,500 350,000 283,500 

Kw 76.9 102.6 83.1 81% 
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MODEL 48A3S020A1 SERIES 611HK SERIAL 0510U02030 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 2 460 3 60 10.6 75 26.2 LBS 11.9 KG R-410A HI 650 PSI 4482 kPa 

COMPR 1 460 3 60 14.7 95 18.8 LBS 8.5 KG R-410A LO 477 PSI 3289 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 3.3 1 0.75 MIN CIRCUIT AMPS 73 

INDOOR 1 460 3 60 14 10 7.46 MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 4 460 1 60 3.15 1 0.75 80 FUSE OR HACR BKR 

Outlet               PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 2 115 1 60 1.1 0.1 0.07 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-12 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 262,500 350,000 283,500 

Kw 76.9 102.6 83.1 81% 

             

MODEL 48A3S020A1 SERIES 611HK SERIAL 0510U02027 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 2 460 3 60 10.6 75 26.2 LBS 11.9 KG R-410A HI 650 PSI 4482 kPa 

COMPR 1 460 3 60 14.7 95 18.8 LBS 8.5 KG R-410A LO 477 PSI 3289 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 3.3 1 0.75 MIN CIRCUIT AMPS 73 

INDOOR 1 460 3 60 14 10 7.46 MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 4 460 1 60 3.15 1 0.75 80 FUSE OR HACR BKR 

Outlet               PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 2 115 1 60 1.1 0.1 0.07 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-10 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 262,500 350,000 283,500 

Kw 76.9 102.6 83.1 81% 
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MODEL 48AKD025-P SERIES 611HM SERIAL 1305F11247 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 11 90 33.5 LBS 15.2 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 13.5 95 17.5 LBS 7.9 KG R-22 LO 150 PSI 1034 kPa 

COMPR 1 460 3 60 13.5 95       

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 2 460 3 60 3.3 1 0.75 MIN CIRCUIT AMPS 87 

INDOOR 1 460 3 60 21 15 11.19 MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

Pwrexh 4 460 1 60 3.15 1 0.75 100 FUSE OR HACR BKR 

Outlet 1 115 1 60 3.5     PERMISSIBLE VOLTAGE AT UNIT 506 MAX 414 MIN 

COMBUST 2 115 1 60 1.1 0.1 0.07 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-08 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 262,500 350,000 283,500 

Kw 76.9 102.6 83.1 81% 

             

MODEL 48AKD040--- SERIES 600ED SERIAL 4901F26995 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 25.6 120 51.5 LBS 23.4 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 28.8 173 49.5 LBS 22.5 KG R-22 LO 150 PSI 1034 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 4 460 3 60 2.7 1 0.75 MIN CIRCUIT AMPS 112 

OUTDOOR               MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

INDOOR 1 460 3 60 27 20 14.9 125 FUSE OR HACR BKR 

OTHER 4 460 1 60 3.2 1 0.75 PERMISSIBLE VOLTAGE AT UNIT 508 MAX 414 MIN 

COMBUST 2 460 1 60 0.25 0.06 0.05 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-04 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 300,000 400,000 324,000 

Kw 87.93 117.24 94.96 81% 
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MODEL 48AKD040--- SERIES 600ED SERIAL 4901F26991 FACTORY CHARGED 

  QTY  VOLTS AC PH HZ RLA LRA REFRIGERANT/SYSTEM TEST PRESSURE GAGE 

COMPR 1 460 3 60 25.6 120 51.5 LBS 23.4 KG R-22 HI 410 PSI 2827 kPa 

COMPR 1 460 3 60 28.8 173 49.5 LBS 22.5 KG R-22 LO 150 PSI 1034 kPa 

COMPR                   

FAN MTRS QTY  VOLTS AC PH HZ FLA HP kWout POWER SUPPLY 
460 

V 
3 PH 60 HZ 

OUTDOOR 4 460 3 60 2.7 1 0.75 MIN CIRCUIT AMPS 112 

OUTDOOR               MAX OVERCURRENT PROTECTIVE DEVICE AMPS 

INDOOR 1 460 3 60 27 20 14.9 125 FUSE OR HACR BKR 

OTHER 4 460 1 60 3.2 1 0.75 PERMISSIBLE VOLTAGE AT UNIT 508 MAX 414 MIN 

COMBUST 2 460 1 60 0.25 0.06 0.05 EQUIPPED FOR USE WITH NATURAL GAS 

SGU RTU-03 

  INPUT MIN INPUT MAX OUTPUT CAP 
THERMAL 

EFFICIENCY 

  

Btu/Hr 300,000 400,000 324,000 

Kw 87.93 117.24 94.96 81% 
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14. Appendix E: User Survey results 
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1 BB No 2 3 Afternoon No   

Before 

6:30 6:30 No   3 

Open 

office Yes 1 50 4 

2 BB Yes 4 3 Afternoon No 

Workspac

e hotter 

than other 

sections 

of the 

office, 

lack of 

ventilation 7:00 6:30 No 

lack of 

ventilation 3 

Enclosed 

office No 2 30 2 

3 BB No 3 2 Morning No   7:45 5:45 No   5 

Open 

office 

No, but I 

would if I 

had one 4 40 3 

4 BB No 1 2 Always No 

Vented air 

being too 

cold 8:00 6:00 No   4 

Open 

office No 3 45 2 

5 BB No 1 1 Morning No 

Vented air 

being too 

cold 8:00 5:00 No 

the seminar 

rooms are 

freezing 6 

Open 

office No 6 40 0 
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6 BB No 3 3   No   8:00 5:00 No   2 

Open 

office 

No, but I 

would if I 

had one 1 45 1 

7 BB No 1 0 Always 

I 

would 

Workspac

e colder 

than other 

sections 

of the 

office 8:15 6:00 No   2 

Open 

office 

No, but I 

would if I 

had one 2 25 2 

8 BB Yes 1 0 Morning No 

Vented air 

being too 

cold, 

Workspac

e colder 

than other 

sections 

of the 

office 9:00 6:00 No   3 

Open 

office No 4 35 0 

9 BB No 1 3   No   9:00 

After 

6:30 No None 5 

Open 

office 

No, but I 

would if I 

had one 5 40 2 

1

0 BB No 1 1 

I haven't 

noticed a 

trend No   9:00 

After 

6:30 No 

I am often 

chilly, need 

a polarfleece 

in the office 

even in 

summer 3 

Open 

office No 5 35 2 

1

1 BB No 3 3 

Morning, 

Weekends No   7:15 5:30 No 

Certain 

conference 

rooms / 

seminar 

rooms will 

be extremely 

hot or cold.   4 

Open 

office No 4 45 4 

1

2 BB Yes 1 1 Always No 

Vented air 

being too 

cold 8:30 

After 

6:30 No   2 

Open 

office No 2 

50-

60 3 
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1

3 BB No 1 1 Always No 

Workspac

e colder 

than other 

sections 

of the 

office 8:30 6:30 No   3 

Open 

office 

No, but I 

would if I 

had one 2   3 

1

4 BB Yes 1 0 Always No 

Workspac

e colder 

than other 

sections 

of the 

office 6:45 5:30 No 

overall 

setpoint 

seems too 

cold - i 

always wear 

sweaters or a 

jacket in the 

office - year 

round 2 

Enclosed 

office No 2 50 2 

1

5 BB No 1 2 Afternoon No 

Vented air 

being too 

cold 7:30 5:45 No   3 

Open 

office No 3 45 3 

1

6 BB No 0 0 Afternoon No 

Vented air 

being too 

cold 7:30 6:00 No   5 

Open 

office No 3 35 2 

1

7 BB Yes 4 1 

often 

during 

cold 

months No 

Workspac

e colder 

than other 

sections 

of the 

office 6:30 5:00 No 

I sit at back 

wall, my feet 

are near the 

bottom if the 

wall and are 

usually cold 5 

Open 

office No 5 35 1 

1

8 BB No 1 1 Always No 

Vented air 

being too 

cold, 

Workspac

e colder 

than other 

sections 

of the 

office 7:30 6:00 No   3 

Open 

office No 2   1 

1

9 BB Yes 3 2   No   7:30 5:00 No   5 

Open 

office 

No, but I 

would if I 

had one 5 30+ 2 
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2

0 BB No 2 2 

Always, 

Except 

during 

times of 

direct 

sunlight 

(approx. 

20 mins 

each AM 

and PM) 

We do 

not 

have 

them 

in the 

back 

Vented air 

being too 

cold 7:30 6:15 No   5 

Open 

office No 5 25 3 

2

1 BB No 3 3   No   9:00 6:00 No   3 

Open 

office Yes 2 40 2 

2

2 FB No 3 2   No   7:00 5:30 No   6 

Enclosed 

office 

No, but I 

would if I 

had one 2 30 3 

2

3 FB Yes 0 0 Always No 

Too much 

air 

movement

, Vented 

air being 

too cold 6:30 5:15 No 

needing to 

wear 

jacket/labcoa

t 2 

Open 

office Yes 1 

too 

many

.  

50+/- 1 

2

4 FB No 1 0 Afternoon Yes 

Vented air 

being too 

cold 

Before 

6:30 3:30 No   2 

Open 

office No 2 40 1 

2

5 FB No 0 0 Always No 

Vented air 

being too 

cold, 

Noise 8:00 

After 

6:30 No   1 

Open 

office No 2 50 4 

2

6 FB No 2 3   Yes   7:45 

After 

6:30 No 

Seminar 

rooms are 

very VERY 

cold 5 

Open 

office No 5 55 1 

2

7 FB No 3 3   Yes   6:45 6:00 No   3 

Open 

office No 3 40 4 
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2

8 FB Yes 3 2 Afternoon No 

Vented air 

being too 

cold 7:45 5:30 No   4 

Open 

office Yes 2 40+ 2 

2

9 FB No 1 1 

Morning, 

Afternoon Yes   8:00 5:00 No   0 

Open 

office No 1 35 1 

3

0 FB No 1 2 

Morning, 

Holidays, 

Monday 

Mornings, 

Evenings No 

Vented air 

being too 

cold, air 

too dry 

and noise 7:30 6:30 No   0 

Open 

office Yes 3 35 1 

3

1 FB No 6 0 Always No   7:15 4:30 No 

Constant 

sneezing 

only at 

office 5 

Open 

office No 5 43 2 

3

2 FB No 1 0 Always No 

Vented air 

being too 

cold 8:15 6:30 No   3 

Open 

office 

No, but I 

would if I 

had one 3 

45-

50 3 

3

3 FB No 2 2 Always No 

Vented air 

being too 

cold 8:00 6:00 No   6 

Open 

office No 6 50   

3

4 FB No 2 2   No   8:30 5:45 No   3 

Open 

office No 3 44 1 

3

5 FB No 3 3   No   8:30 5:30 No   2 

Open 

office No 4 45 2 

3

6 FB Yes 2 2   No noise 8:45 

After 

6:30 No   5 

Open 

office No 2 35 2 
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3

7 FB Yes 0 1 Afternoon No 

Vented air 

being too 

cold 9:00 6:15 No 

The air 

conditioning 

is much too 

cold in the 

summer time 6 

Open 

office No 5 40 2 

3

8 FB Yes 1 1 Afternoon Yes   9:00 4:30 No 

Sometimes I 

am very 

cold, but it 

depends on 

the day. 6 

Open 

office No 5 

6 

Hour

s 1 

3

9 FB No 4 3 Weekends No 

Workspac

e hotter 

than other 

sections 

of the 

office 8:00 6:00 No 

stale air in 

enclosed 

office 1 

Enclosed 

office 

No, but I 

would if I 

had one 1 50 0 

4

0 FB No 3 3   No   9:00 6:00 No   4 

Enclosed 

office No 5 40 5 

4

1 FB No 1 2 Always No 

Vented air 

being too 

cold 9:00 6:00 No   3 

Open 

office Yes 3 42 2 

4

2 FB No 3 3   No 

Too much 

air 

movement

, Vented 

air being 

too cold 8:30 6:30 No   1 

Enclosed 

office Yes 1 20 0 

4

3 FB No 2 2 Afternoon No Noise 8:00 6:30 No   3 

Enclosed 

office No 3 50 2 

4

4 FB No 0 0 Always No 

Too much 

air 

movement

, Vented 

air being 

too cold 8:00 

After 

6:30 No   0 

Enclosed 

office No 2 70 1 

4

5 FB No 0 1 Always Yes 

Too much 

air 

movement 9:00 6:30 No cold feet 4 

Open 

office No 2 

30-

40 0 
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4

6 FB No 0 0 Always 

I 

would 

Too much 

air 

movement

, Vented 

air being 

too cold 9:00 

After 

6:30 No   3 

Open 

office No 2 

50-

60 2 

4

7 FB No 2 3   No   8:00 5:30 No   4 

Enclosed 

office No 4 40 2 

4

8 FB Yes 2 2 Afternoon No 

Vented air 

being too 

cold 9:00 6:00 No   2 

Open 

office 

No, but I 

would if I 

had one 3 25 1 

4

9 FB No 1 1 Always No 

Workspac

e colder 

than other 

sections 

of the 

office 8:30 6:00 No 

Not always, 

but most of 

the time it's 

cold. 

Especially 

summer - 

why do I 

need a 

sweatshirt in 

summer. 2 

Open 

office 

No, but I 

would if I 

had one 4 35 3 

5

0 FB No 2 1 

Not a 

predictabl

e pattern No 

Too much 

air 

movement

, Vented 

air being 

too cold, 

Workspac

e colder 

than other 

sections 

of the 

office 9:00 5:00 No 

Inconsistent 

and hard to 

predict 3 

Open 

office 

No, but I 

would if I 

had one 2 30 4 

5

1 FB Yes 3 3   No 

The heat 

due to 

sunlight 8:00 5:30 No   5 

Open 

office No 5 40 1 
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5

2 FB No 2 2 Always No 

I find the 

temperatu

re 

maintaine

d too cool 

for 

activity 

level but 

wear a 

fleece 

jacket to 

stay warm 7:00 5:30 No   3 

Open 

office No 3 

35 to 

45 

hours 1 

5

3 HR No 1 1 Always No 

Too much 

air 

movement

, I've had 

the blower 

above my 

workspace 

turned off 

because it 

blows out 

too strong 7:30 3:00 No 

FYI - many 

of us in the 

HR suite use 

a space 

heater 3 

Open 

office No 6 30 0 

5

4 HR No 3 1 Morning No 

Workspac

e colder 

than other 

sections 

of the 

office 8:00 5:30 No   3 

open 

cube in 

HR suite 

(partially 

enclosed

) No 4 

42-

45 4 
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5

5 Lab Yes 0 0 Always   

Too much 

air 

movement

, Vented 

air being 

too cold 6:30 5:15 Yes 

one room of 

the lab has 

its own ac 

system due 

to equipment 

in the room.  

folks are 

always 

messing 

with the 

controls 

becuase of 

unbalanced 

equipment 

heat 

generation 

and the high 

velocity air 

coming from 

the ac unit.  

the system is 

a bad idea.   

Open 

office     

too 

much 2 

5

6 Lab Yes 4 1 Morning No 

Too much 

air 

movement

, Vented 

air being 

too hot, 

Vented air 

being too 

cold 8:45 6:00 No   3 

Open 

office No 3   4 

5

7 Lab Yes 1 5 

Monday 

Mornings No 

The heat 

due to 

office 

equipment 7:00   Yes   5 

Open 

office No 5 5 6 

5

8 MB No 3 3   No   8:30 5:30 No   2 

Open 

office 

No, but I 

would if I 

had one 5 40 4 

5

9 MB No 3 2 

Morning, 

Afternoon

, Monday 

Mornings No 

Workspac

e colder 

than other 

sections 

of the 

office 6:45 4:00 No   5 

Open 

office 

No, but I 

would if I 

had one 2 

45-

50 5 
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6

0 MB No 2 2 

Morning, 

Always No 

Vented air 

being too 

cold 7:30 4:30 No   3 

Open 

office No 3 40 3 

6

1 MB No 0 1 

Morning, 

Afternoon No 

Vented air 

being too 

cold 7:30 5:00 No   5 

Open 

office 

No, but I 

would if I 

had one 5 30 1 

6

2 MB Yes 3 1 Always No 

Workspac

e colder 

than other 

sections 

of the 

office 8:00 4:30 No   3 

Enclosed 

office 

No, but I 

would if I 

had one 3 32+ 1 

6

3 MB Yes 2 2   No   8:00 5:30 No 

Meeting 

rooms very 

cold 2 

Open 

office No 2 45 3 

6

4 MB No 2 2 

Morning, 

Afternoon No 

Vented air 

being too 

cold, 

Workspac

e colder 

than other 

sections 

of the 

office 8:00 5:00 No 

Temperature 

in 

Conference 

Rooms A 

and B is way 

too low. 

Lunch talks 

are 

uncomfortab

le. 6 

Open 

office No 6 40 3 

6

5 MB No 1 2 Always No 

Vented air 

being too 

cold 7:45 4:45 No 

Cold in 

Seminar 

Rooms A & 

B 5 

Open 

office No 5 42 3 

6

6 MB No 0 0 Always No 

Vented air 

being too 

cold 7:30 4:00 No   1 

Open 

office 

No, but I 

would if I 

had one 1 43 2 

6

7 MB Yes 1 1 Afternoon   

Vented air 

being too 

cold 8:00 5:00 No 

its generally 

just cold in 

the office 6 

Open 

office No 6 

25 to 

30 2 
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6

8 MB No 2 2 Morning   

Workspac

e colder 

than other 

sections 

of the 

office 8:30 5:00 No   4 

Open 

office 

No, but I 

would if I 

had one 3 

37-

40 5 

6

9 MB Yes 1 3 Morning No 

Workspac

e colder 

than other 

sections 

of the 

office 7:30 6:30 No   1 

Enclosed 

office 

No, but I 

would if I 

had one 2 8-Jul 2 

7

0 MB No 3 3 

When I 

walk 

around it's 

cold No 

I need a 

sweater 

when I 

walk 

somewher

e else   6:00 No 

I'm fine in 

my 

workspace, 

but need a 

sweater to 

walk 

anywhere 1 

Open 

office No 1 

30-

40 

hours 2 

7

1 MB No 0 0 Always No 

Vented air 

being too 

cold, 

Workspac

e colder 

than other 

sections 

of the 

office 9:00 6:00 No 

Hands stiff 

due to cold 6 

Open 

office No 6 45 2 

7

2 MB No 1 0 

Afternoon

, Always No 

Vented air 

being too 

cold, 

Workspac

e colder 

than other 

sections 

of the 

office 9:00 

After 

6:30 No   3 

Open 

office No 5 40 1 

7

3 MB Yes 3 1 Always No 

Workspac

e colder 

than other 

sections 

of the 

office 8:00 4:30 No   3 

Enclosed 

office 

No, but I 

would if I 

had one 3 32+ 1 
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7

4 FB Yes 3 3   No   9:00 6:00 No none 5 

Open 

office No 5 30 4 

7

5 

Libr

ary No 1 1 Morning No 

Too much 

air 

movement 7:45 5:00 No   3 

Open 

office No 5 40 3 

7

6 MB No 3 3   No   8:30 5:30 No   2 

Open 

office No 5 

40 

hrs 2 

7

7 MB No 1 1 Always No 

Workspac

e colder 

than other 

sections 

of the 

office 6:30 3:30 No   3   Yes 3 45 3 

7

8 FB No 2 2   No   6:30 3:00 No   5 

Enclosed 

office No 5 24 1 

7

9 IT No 3 4 Afternoon Yes   7:45 5:30 Yes   5 

Open 

office 

No, but I 

would if I 

had one 5 30 4 

8

0 FB No 3 3 Morning No 

Too much 

air 

movement 7:15 5:30 No   5 

Open 

office No 5 20 4 

8

1 FB No 1 4 

Morning, 

Afternoon No 

Workspac

e hotter 

than other 

sections 

of the 

office, 

Workspac

e colder 

than other 

sections 

of the 

office 9:00 6:30 No   2 

Open 

office No 3 40 2 
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8

2 MB No 5 3 Morning 

We 

don't 

have 

them 

where 

I sit. 

The heat 

due to 

sunlight, 

Workspac

e hotter 

than other 

sections 

of the 

office, 

Asymmetr

ical 

heating 

(one side 

of body 

warmer 

than 

other) 7:00 6:00 No   3 

Open 

office No 2 30 0 

8

3 BB No 4 1 

Morning, 

Afternoon

, 

Weekends No   8:30 6:30 No   3 

Open 

office Yes 2 45 4 
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15. Appendix F. DesignBuilder results 
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16. Appendix G. DesignBuilder ECM results 

16.1 Infiltration Model 
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16.2 Radiant Floor Heating Model 
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