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Abstract 
This Major Qualifying Project (MQP) designed and manufactured a vehicle for the Formula SAE 

Michigan collegiate competition. The Formula SAE (FSAE) competition is an annual collegiate 

design series that challenges teams all over the world to conceive, design, fabricate and develop 

formula style vehicles, which are validated through competition. The team built upon a vehicle 

intended for the 2012 FSAE collegiate competition. Through baseline testing and component 

evaluations, systems of the car were identified as areas that reduced performance and prohibited 

predictable vehicle dynamics. These systems were the car’s rear suspension, component 

packaging/ergonomics, continuously variable transmission (CVT), air intake, and exhaust. By 

reducing vehicle weight in numerous areas and through modifying components and sub-systems, 

the team was able to design and construct a more intuitively controlled vehicle. As a result, the 

vehicle’s performance in static and dynamic competition events was improved while reducing 

cost. An innovative approach was achieved utilizing an exoskeleton wrap for the vehicle body. 

All components and sub-systems were designed and validated using computer-aided modeling 

and simulation techniques.  



 

3 

 

Table of Contents 

Abstract ................................................................................................................................................... 2 

List of Figures ......................................................................................................................................... 6 

List of Tables .......................................................................................................................................... 9 

List of Equations ................................................................................................................................... 10 

Summary of Formula SAE Competition ................................................................................................ 11 

Analysis of 2012 Vehicle ....................................................................................................................... 11 

Baseline Testing and Evaluation ........................................................................................................ 11 

Testing Procedure Defined by Formula SAE .................................................................................. 12 

Actual Testing Procedure ............................................................................................................... 14 

Modifications of Baseline Vehicle ................................................................................................. 15 

Results ........................................................................................................................................... 17 

Conclusion .................................................................................................................................... 18 

Goals and Objectives ............................................................................................................................. 19 

Intake and Throttle Body ....................................................................................................................... 21 

Introduction ....................................................................................................................................... 21 

Previous Designs ............................................................................................................................... 21 

Intake ............................................................................................................................................ 21 

Throttle Body ................................................................................................................................ 23 

Research & Design ............................................................................................................................ 24 

Throttle Body ................................................................................................................................ 24 

Intake ............................................................................................................................................ 24 

Manufacturing ................................................................................................................................... 26 

Throttle Body ................................................................................................................................ 26 

Restrictor & Intake ........................................................................................................................ 27 

Conclusion ........................................................................................................................................ 28 

Exhaust System ..................................................................................................................................... 29 

Previous Exhaust Design ................................................................................................................... 29 

Exhaust Research .............................................................................................................................. 30 

Exhaust Primary Research ............................................................................................................. 30 

Calculations ................................................................................................................................... 30 



 

4 

 

Muffler Preliminary Research ........................................................................................................ 32 

Exhaust System Design ..................................................................................................................... 32 

Primary Exhaust Design Specifications .......................................................................................... 32 

Primary Exhaust Design................................................................................................................. 33 

Muffler Design Specifications ........................................................................................................ 34 

Muffler Design .............................................................................................................................. 34 

Exhaust System Fabrication ............................................................................................................... 36 

Primary Exhaust Fabrication .......................................................................................................... 36 

Muffler Fabrication ........................................................................................................................ 36 

Exhaust System Conclusion ............................................................................................................... 37 

Engine Position ..................................................................................................................................... 38 

Previous Design................................................................................................................................. 38 

Design of Engine Mounts .................................................................................................................. 39 

Fabrication of Engine Mounts ............................................................................................................ 46 

Engine Mount Conclusions ................................................................................................................ 47 

Rear Suspension .................................................................................................................................... 47 

2012 Vehicle’s Suspension Characteristics ........................................................................................ 47 

Suspension Design Goals ................................................................................................................... 48 

Investigating Solid-Axle Rear Suspension Solutions .......................................................................... 48 

Investigating Independent Rear Suspension Solutions ........................................................................ 52 

Semi-trailing Arm .......................................................................................................................... 53 

Unequal Length Control Arm (Double A-Arm) .............................................................................. 56 

Design Selection ............................................................................................................................ 58 

Shock Actuation ................................................................................................................................ 59 

Spring Medium .................................................................................................................................. 62 

Manufacturing ................................................................................................................................... 63 

Conclusions ....................................................................................................................................... 63 

Intuitive Vehicle Operation ............................................................................................................ 63 

Serviceability ................................................................................................................................. 64 

Minimize Overall Weight .............................................................................................................. 64 

Adjustability .................................................................................................................................. 64 

Implications ................................................................................................................................... 65 



 

5 

 

Packaging and Ergonomics .................................................................................................................... 66 

Pedal Plate ......................................................................................................................................... 66 

CAD Model ....................................................................................................................................... 67 

Engine CAD ...................................................................................................................................... 68 

Body Design ...................................................................................................................................... 68 

Fuel, Oil, and Coolant Tanks ............................................................................................................. 70 

Seat ................................................................................................................................................... 74 

Sway Bar ........................................................................................................................................... 76 

Conclusions ........................................................................................................................................... 79 

Intake, Exhaust, & Engine Position .................................................................................................... 79 

Rear Suspension ................................................................................................................................ 79 

Packaging and Ergonomics ................................................................................................................ 80 

Continuously Variable Transmission ................................................................................................. 80 

References............................................................................................................................................. 81 

Appendix A: Baseline Testing ............................................................................................................... 82 

Appendix B: Intake Calculations ........................................................................................................... 85 

.............................................................................................................................................................. 85 

 

  



 

6 

 

List of Figures 
Figure 1: FSAE Skid-Pad Layout (2013 Formula SAE Rules) ................................................................ 13 

Figure 2: Actual Endurance Track Layout .............................................................................................. 15 

Figure 3: DashDAQ XL’s Data Display ................................................................................................. 16 

Figure 4: Physical Mounting of DashDAQ XL ...................................................................................... 17 

Figure 5 - 2012 FSAE Intake & Throttle Body ....................................................................................... 22 

Figure 6 - 2009/2011 Throttle Body ....................................................................................................... 23 

Figure 7 - 2013 Throttle Body and Restrictor ......................................................................................... 27 

Figure 8 - Completed 2013 Intake .......................................................................................................... 28 

Figure 9: Primary Exhausts on the 2012 FSAE Car ................................................................................ 29 

Figure 10: Final Exhaust Header Design ................................................................................................ 33 

Figure 11: Final Exhaust Headers .......................................................................................................... 34 

Figure 12: Final Muffler Design ............................................................................................................ 35 

Figure 13: Muffler Entrance and Exit Faceplates.................................................................................... 36 

Figure 14: 2012 Engine Mounts ............................................................................................................. 38 

Figure 15: Right Engine Mount ............................................................................................................. 40 

Figure 16: Left Engine Mount................................................................................................................ 40 

Figure 17: Engine Mount Setup ............................................................................................................. 41 

Figure 18: 2013 Jackshaft ...................................................................................................................... 41 

Figure 19: Stress under Lateral Load ..................................................................................................... 42 

Figure 20: Deflection under Lateral Load .............................................................................................. 43 

Figure 21: Stress und Acceleration Load ................................................................................................ 43 

Figure 22: Maximum Deflection under Acceleration Load ..................................................................... 44 

Figure 23: Stress under Downward Load ............................................................................................... 44 

Figure 24: Deflection under Downward Load ........................................................................................ 45 

file:///C:/Users/Dylan/Documents/MQP/Final%20Report/FINAL/FSAE%20MQP%20Paper.docx%23_Toc354480538


 

7 

 

Figure 25: Max Stress under Torque Load ............................................................................................. 45 

Figure 26: Displacement under Torque Load ......................................................................................... 46 

Figure 27: Water Jetted Engine Mount Components .............................................................................. 46 

Figure 28: Semi-Trailing Arm Mounting Points (Material Between Points for Visual Purposes Only) .... 55 

Figure 29: Determining Semi-Trailing Arm Instant Center Location ...................................................... 55 

Figure 30: Length of Control Arms ........................................................................................................ 56 

Figure 31: Camber Gain Under Bump and Droop .................................................................................. 57 

Figure 32: Location of Instant Center and Roll Center ........................................................................... 57 

Figure 33: Final Rear Suspension Geometry .......................................................................................... 58 

Figure 34: Pushrod Actuated Shocks Mounted Within Rear Sub-Frame ................................................. 59 

Figure 35: Rocker Shape - (Left to Right) Pushrod Mount, Pivot, Shock Mount ..................................... 60 

Figure 36: Motion Ratio Over Wheel Travel – Progressive & Approximately Linear ............................. 61 

Figure 37: 2012 Pedal Plate FEA Deflections ........................................................................................ 66 

Figure 38: 2013 Pedal Plate FEA Deflections ........................................................................................ 67 

Figure 39: 2012 Full CAD Assembly ..................................................................................................... 67 

Figure 40: 2012 Engine    Figure 41: 2013 Engine............................................................................... 68 

Figure 42: 2012 Vehicle Fuel Tank Shape ............................................................................................. 70 

Figure 43: Final Fuel Tank Design Sectioned to show baffling and clearance ......................................... 71 

Figure 44: Fuel, Oil, and Coolant tank assembly .................................................................................... 72 

Figure 45: View of tank assembly showing mounting rails & clips ......................................................... 73 

Figure 46: Tank assembly mounted to chassis members ......................................................................... 73 

Figure 47: Percy positioning in 2012 seat............................................................................................... 74 

Figure 48: Percy in 2012 Seat ................................................................................................................ 75 

Figure 49: Percy in New Seat with Tanks Assembly. ............................................................................. 75 

Figure 50 Initial Sketch for Sway Bar Positioning With Front Suspension.............................................. 76 

Figure 51 Sway Bar Shape and End Hookup Design .............................................................................. 77 



 

8 

 

Figure 52 1.0" Sway Bar Displacement Analysis ................................................................................... 78 

Figure 53 0.75" Sway Bar Displacement Analysis ................................................................................. 78 

Figure 54 0.50" Sway Bar Displacement Analysis ................................................................................. 78 

  



 

9 

 

List of Tables 
Table 1: 2012 Intake Calculations .......................................................................................................... 22 

Table 2: Calculated Intake Runner Lengths ............................................................................................ 26 

Table 3: FEA Test Data ......................................................................................................................... 39 

Table 4: Estimated Solid-Axle Suspension Weights ............................................................................... 50 

Table 5: Ranking of Solid-Axle Suspensions ......................................................................................... 51 

Table 6: Endurance Baseline Testing Results ......................................................................................... 83 

Table 7: Acceleration Baseline Testing Results ...................................................................................... 83 

Table 8: Skid-Pad Baseline Testing Results ........................................................................................... 84 

 

  



 

10 

 

List of Equations 
Equation 1 ............................................................................................................................................. 25 

Equation 2 ............................................................................................................................................. 25 

Equation 3 ............................................................................................................................................. 26 

Equation 4 ............................................................................................................................................. 31 

Equation 5 ............................................................................................................................................. 31 

Equation 6 ............................................................................................................................................. 53 

Equation 7 ............................................................................................................................................. 53 

Equation 8 ............................................................................................................................................. 54 

Equation 9 ............................................................................................................................................. 59 

Equation 10 ........................................................................................................................................... 62 

Equation 11 ........................................................................................................................................... 62 

Equation 12 ........................................................................................................................................... 62 

Equation 13 ........................................................................................................................................... 62 

Equation 14 ........................................................................................................................................... 62 

Equation 15 ........................................................................................................................................... 62 

  



 

11 

 

Summary of Formula SAE Competition  
The Formula SAE (FSAE) competition is an annual collegiate design series that challenges 

teams to conceive, design, fabricate, develop and compete with formula style vehicles. FSAE 

teams are to assume that they work for a design firm that is designing, fabricating, testing and 

demonstrating a prototype vehicle for the nonprofessional, weekend, competition market. 

Competition rules state that the primary challenge to the design team is to develop a prototype 

car that best meets the FSAE vehicle design goals and which can be profitably marketed. 

To this end, the vehicle should have very high performance in terms of acceleration, braking and 

handling and be sufficiently durable to successfully complete all static and dynamic competition 

events. In evaluating vehicle designs FSAE judges also consider other design factors including: 

aesthetics, cost, ergonomics, maintainability, manufacturability, and reliability. 

Analysis of 2012 Vehicle 
Worcester Polytechnic Institute (WPI) last entered the Formula SAE Michigan competition with 

a car that was designed and built between 2009 and 2011. This car was powered by a Yamaha 

Phazer snowmobile engine and its continuously variable transmission (CVT). This car also 

utilized a swing axle rear suspension and lacked a rear differential. During the 2011 Formula 

SAE Michigan competition judges praised the car’s design for its relatively low weight and 

mechanical simplicity. However, the judges also criticized the rear suspension and drivetrain’s 

handling characteristics.  

In 2012 a new Formula SAE vehicle was created by a WPI team using the existing engine, CVT, 

rear suspension, and drivetrain from the 2009-2011 car. The design philosophy of low weight 

and mechanical simplicity was carried into the design of the 2012 car; however it was 

significantly different than its predecessor. Notable changes were made to numerous components 

including the chassis, front suspension, intake, and exhaust. The 2012 FSAE team intended to 

compete with this car in the 2012 Formula SAE Michigan event but an engine failure during 

vehicle testing prevented this. As a result, the 2012 chassis is eligible for competing  in the 2013 

Formula SAE Michigan event. Subsequently, the purpose of this project was to optimize the 

2012 vehicle using the existing chassis and engine. 

Baseline Testing and Evaluation 

The 2013 FSAE MQP team performed baseline testing and evaluation of the 2012 vehicle to 

identify its driving characteristics and to measure the performance of its various components. 

This information was used in conjunction with past input from FSAE competition judges to 
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identify areas of the 2012 vehicle that would benefit from a redesign. The purpose of our project 

was to improve the 2012 FSAE vehicle for use in the Formula SAE Michigan competition. As 

such, our testing and evaluation procedure was structured to reflect the dynamic events of this 

competition. 

Testing Procedure Defined by Formula SAE 

Formula SAE organizes the dynamic portion of the Michigan competition into separate tests for 

acceleration, autocross, skid-pad, and endurance. 

Acceleration 

Formula SAE regulations describe the acceleration test as an evaluation of the car’s acceleration 

in a straight line on flat pavement. According to the 2013 competition rules, the acceleration 

course length will be 75.00m (82.00yd) from starting line to finish line. The course will be at 

least 4.90m (16ft) wide as measured between the inner edges of the bases of the course edge 

cones. The 2013 rules also state that cones are placed along the course edges at intervals of about 

5 paces (approximately 20.00ft). The time it takes the vehicle to travel from the starting line to 

the finish line is recorded and a two second penalty is given for disturbed cones.    

Autocross 

Formula SAE defines the autocross event as an evaluation of the car's maneuverability and 

handling characteristics on a tight course without the hindrance of competing cars. The autocross 

course combines the performance features of acceleration, braking, and cornering into one event. 

The time it takes the vehicle, at rest, to travel from the starting line to the finish line is recorded. 

A two second penalty is added for each disturbed cone. The course layout is governed with the 

following definitions of track features: 

 Straights: No longer than 60.00m (200.00ft) with hairpins at both ends (or) no longer than 45.00m 

(150.00ft) with wide turns on the ends. 

 Constant Turns: 23.00m (75.00ft) to 45.00m (148.00ft) diameter. 

 Hairpin Turns: Minimum of 9.00m (29.50ft) outside diameter (of the turn). 

 Slaloms: Cones in a straight line with 7.62m (25.00ft) to 12.19m (40.00ft) spacing. 

 Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc. The minimum track width 

will be 3.50m (11.50ft). 

Endurance 

The endurance event is designed to evaluate the overall performance of the car and to test the 

car’s durability and reliability. The event measures how long it takes the vehicle to complete a 
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pre-determined number of laps on an endurance course. The course layout is governed with the 

following definitions of track features: 

 Straights: No longer than 77.00m (252.60ft) with hairpins at both ends (or) no longer than 61.00m 

(200.10ft) with wide turns on the ends.  

 Constant Turns: 30.00m (98.40ft) to 54.00m (177.20ft) diameter. 

 Hairpin Turns: Minimum of 9.00m (29.50ft) outside diameter (of the turn). 

 Slaloms: Cones in a straight line with 9.00m (29.50ft) to 15.00m (49.20ft) spacing 

 Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc. The standard minimum 

track width is 4.50m (14.76ft). 

Skid-Pad 

Formula SAE defines the skid-pad event as an evaluation of the car’s cornering ability on a flat 

surface while making a constant-radius turn. In this event two drivers each perform two laps of 

the entire figure eight back to back. The time it takes the vehicle to travel each left and right turn 

of the skid-pad track is recorded. Each cone disturbed during the event results in a 0.25 second 

penalty. The skid-pad course consists of two pairs of concentric circles in a figure eight pattern. 

The centers of these circles will be 18.25m (59.88ft) apart. The inner circles will be 15.25m 

(50.03ft) in diameter, and the outer circles will be 21.25m (69.72ft) in diameter. The driving path 

will be the 3.00m (9.84ft) path between the inner and outer circles. The cars will enter and exit 

through gates on a 3.00m wide path that is tangential to the circles where they meet. The line 

between the centers of the circles defines the start/stop line. A lap is defined as traveling around 

one of the circles from the start/stop line and returning to the start/stop line. This course is 

marked with sixteen cones around the inside of each inner circle thirteen cones positioned around 

the outside of each outer circle. This layout can be seen in Figure 1 below.  

 
Figure 1: FSAE Skid-Pad Layout (2013 Formula SAE Rules) 
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Actual Testing Procedure 

Worcester Regional Airport hosted the dynamic baseline testing for the 2013 MQP team.   The 

space provided for the testing was approximately 90.00yd by 30.00yd of paved asphalt. The area 

was relatively flat and elevation change did not significantly affect course layout or data 

collection. However, the size of this space restricted our ability to perform dynamic events as 

outlined in the Formula SAE rules. The adjustments made to each dynamic test are discussed 

below. 

Acceleration 

Formula SAE regulations specify an 82.00yd long acceleration course. However, due to the size 

of our testing facilities we reduced the length of the course by 7.00yd to allow for braking. This 

resulted in an acceleration course which was 75.00yd long, 91.5% the length specified by 

Formula SAE rules. Using a stopwatch, the time it took the vehicle to travel this 75.00yd course 

from a standing start was recorded. The number of runs recorded was restricted by the limited 

testing time.  

Autocross and Endurance 

The size of our testing facilities restricted the ability to construct a full-size endurance course. 

The course layout meets the specifications defined by Formula SAE and stated in the sections 

above. However, endurance course layouts at Formula SAE Michigan competitions are generally 

longer overall, contain more turns, have longer slaloms, and longer straights. As a result, the 

endurance course layout more closely resembled that of the autocross course seen at Formula 

SAE Michigan competitions. Due to this similarity and time restrictions, the two events were 

combined into on event so simplify testing.  The purpose of the autocross event is to evaluate the 

car's maneuverability on a tight course. The designed course layout, as seen below in Figure 2, 

offers a hairpin turn and tight chicane. These tight features resemble those found in the Formula 

SAE autocross competition and therefore measure the car’s handling characteristics on a tight 

course. The layout also included a wide, decreasing radius turn and a long slalom with 32.00ft 

spacing. Both of which are features commonly found on Formula SAE Michigan competitions’ 

endurance courses. The straight measures 176.00ft, which is between the lengths found on 

common Formula SAE autocross and endurance courses. Since the layout contained features 

from both autocross and endurance courses, it was an adequate evaluation of handling 

characteristics for both events. However, the purpose of the endurance event is also to measure 

the car’s reliability and dependability. In order to accomplish the endurance/autocross test was 

performed over an extended period with each lap time recorded. This is a compromise between 

the autocross, in which a standing start lap time is recorded, and the endurance event, in which 
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only an elapsed time is recorded. This process of recording lap times allows for evaluation of the 

car’s handling characteristics while keeping the car running for an extended period of time. 

Therefore, this event also evaluated the car’s reliability and dependability. The number of laps 

recorded was restricted by limited time at the testing facilities. 

 

Figure 2: Actual Endurance Track Layout 

Skid-Pad 

The size of the testing facilities restricted the ability to construct a full-size skid-pad course. The 

diameter of each circle was reduced by 10.00ft to fit into the allotted space. This created an outer 

diameter of 60.00ft and inner diameter of 40.00ft rather than the competition’s specifications of 

roughly 70.00ft and 50.00ft, respectively. This maintained the 10.00ft track width between inner 

and outer diameters. This adjustment modified the radius of the skid-pad’s turns but this radius 

remained constant. This course layout therefore accomplishes the event’s purpose of evaluating 

the car’s cornering ability on a flat surface while making a constant-radius turn. The time taken 

for the vehicle to travel three laps of the course was recorded. Each lap consisted of two turns, 

both left and right. Sets of three laps were recorded because in competition the driver completes 

each lap continuously without interruption. With one stopwatch it was not possible to record the 

time taken to travel each turn. Therefore, only an elapsed time was recorded. The number of sets 

recorded was restricted by limited testing time. 

Modifications of Baseline Vehicle 

Before testing could be performed, the 2012 vehicle was modified for reliability and data 

acquisition. These changes did not affect vehicle performance. They served only to record data 

and to ensure that the vehicle’s dependability allowed it to complete an endurance test. 

Data Acquisition 

The 2012 Formula SAE car used an Innovate DL-1 device to log various data parameters. During 

testing in 2012, this device had intermittent success in logging the desired data. The DL-1 was 

also only loaned to the team for use in 2012. As such, there was no data logging device installed 
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on the car for the 2013 project. The group decided that a data acquisition unit was necessary for 

baseline vehicle testing. A data acquisition unit was considered desirable because it allowed for 

monitoring of engine functions and ensured that the vehicle was running safely. These data logs 

also assisted in trouble shooting vehicle malfunctions.  

The installed data logger is a Drew Technologies DashDAQ XL unit. This device was chosen 

because it was compatible with the CAN signal used by the car’s Haltech ECU data stream.  It 

also provided two digital inputs and two analog inputs capable of logging all parameters 

exported by the Haltech ECU. This combination of inputs allowed for future expansion and 

additional sensors. The applicable parameters logged by the DashDAQ XL on the vehicle are as 

follows: 

 Air-fuel ratio 

 Battery voltage 

 Engine RPM 

 Ignition Advance 

 Injector DC 

 Intake air temperature 

 Manifold pressure 

 Oil Pressure 

 Oil temperature 

 Water temperature 

 Throttle position 

In addition to the DashDAQ XL’s technical ability to log data, it was also chosen for its user-

friendly interface, real time display, and recording medium. The unit uses a 4.30in touchscreen 

interface that allows the driver to quickly and easily operate the device. This lets the driver start 

and end logging without taking off their gloves or any other safety equipment. The large display 

shows data in real-time via a digital set of gauges, as seen in Figure 3. This display, in 

conjunction with the unit’s audio alerts, allowed the driver to monitor potential malfunctions 

while driving. Lastly, the DashDAQ XL records to a removable SD card. This allows logs to be 

transferred to and from the vehicle without removing the device. 

 
Figure 3: DashDAQ XL’s Data Display 
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The car’s existing wiring for the Innovate DL-1 was used to power the DashDAQ, through its 

accessory port. To connect the DashDAQ XL with the Haltech ECU a ten pin connector usually 

reserved for OBD-II interfaces on production vehicles. Four pins of this connector were used to 

wire the DashDAQ XL to CAN LO, CAN Hi, ground, and 120 Ohm terminating resistor loop 

pins on the ECU. 

To mount the DashDAQ XL to the car a new dash unit was manufactured, as seen in Figure 4. 

The new dash was designed to retain all existing switches and warning lights. This component 

also utilized existing dash mounting points on the secondary roll hoop. The new dash extended 

horizontally to include a frame for the DashDAQ, angling the unit towards the driver. This 

design was modeled in Solidworks and the final product was laser cut from acrylic.  

 

Figure 4: Physical Mounting of DashDAQ XL 

Results 

Endurance 

The team completed thirty-eight laps of the endurance course we constructed at Worcester 

Regional Airport. Driving time during this test was divided between two drivers. Alessandro 

Aquadro lapped the course thirty times and Dylan Barnhill finished the last eight. The car 

averaged a lap time of 23.10s while Alessandro was driving with a fastest time of 18.30s and a 

slowest of 56.30s. This large difference in times is due to excessive over-steer and occasional 

spinning of the car. The median lap time during this session was 19.70s. The car averaged a lap 

time of 19.50s during Dylan’s eight laps. This session had a fastest time of 18.10s and a slowest 

of 25.2.0s with a median time of 18.90s. These lap times cannot be compared with recorded 

times from previous competitions since track layouts change significantly from year to year. This 

data recorded driver performance and observations made during this test were used for analysis 

of the existing vehicle. The full results of the baseline acceleration test can be seen in Appendix 

A. 

 



 

18 

 

Acceleration 

Eighteen acceleration runs were completed over a 75yd course with one driver. The average time 

for this test was 5.27s, which corresponds to an overall average speed of 29.10mph. The fastest 

time recorded for acceleration was 4.26s and the slowest was 6.03s. The 2012 Formula SAE 

Michigan competition’s acceleration event recorded a maximum time of 6.60s and a minimum 

time of 4.10s. During the 2011 Formula SAE Michigan competition WPI’s car achieved a fastest 

acceleration time of 6.20s using the same engine and transmission. However, our baseline 

acceleration test track was 91.5% the length of the competition’s specified track length. 

Adjusting for this difference in distance, our average pass time would have been approximately 

5.78s. This is 0.44s faster than WPI’s 2011 car, but still 1.68s slower than the fastest time and 

0.43s slower than the average time set during the 2012 Michigan competition and. The full 

results of the baseline acceleration test can be seen in Appendix A. 

Skid-Pad 

Twelve sets of the skid-pad course were completed with one driver and each set consisting of 

three laps. The average lap time for this test was 6.23s with a fastest time of 6.03s and slowest of 

6.56s. In the 2012 Formula SAE Michigan competition’s skid-pad event the fastest recorded lap 

time was 5.30 seconds and the slowest was 6.63s. However, our skid-pad track was 80.60% 

shorter than that specified by competition specifications. Adjusting for this difference in 

distance, WPI’s 2012 FSAE vehicle recorded an average lap time of 7.73s. This is 1.17s slower 

than the slowest recorded time during the 2012 competition. 

Conclusion 

The FSAE Michigan competition’s acceleration and skid-pad track layouts are identical each 

year. As such, the baseline skid-pad and acceleration lap times can be directly related to lap 

times recorded during competition. During the baseline skid-pad test the 2012 WPI vehicle 

averaged a lap time 1.17s slower than the slowest recorded time during the 2012 Michigan 

competition. Furthermore, this vehicle was 2.43s slower than the fastest time set during the 2012 

competition. Since this event is an evaluation of cornering ability, the car’s slow pace implied 

poor performance of the vehicle’s handling characteristics. 

Although the baseline acceleration test showed a 0.44s improvement over WPI’s 2011 vehicle, 

our average pass time was 1.66s slower than the fastest time set in the 2012 Michigan 

competition and 0.43s slower than the average time recorded. This shows that there is certainly 

room for improvement in the vehicle’s acceleration capabilities. Additionally, those who drove 

the car during the acceleration tests noted that the vehicle was difficult to launch. The drivers 

observed that while launching the car there was only a very small window of induced throttle 
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positions that resulted in a successful launch. If the driver applied slightly too little throttle 

before launching, the transmission and engine would slow below the power band, reducing the 

car’s initial ability to produce power. On the other hand, if the driver applied marginally too 

much throttle the transmission would engage harshly and over power the rear tires. This narrow 

margin of successful initial throttle positions required drivers to be both precise and consistent 

with vehicle control inputs. Lastly, drivers noted a perceived lack of torque and throttle response 

from the 2012 car when compared to FSAE cars with alternative power-plants. 

Track layouts for autocross and endurance events differ between each FSAE Michigan 

competition. As a result, it is impossible to draw conclusions from only the car’s baseline lap 

times during these events. For these tests driver feedback and general observations of the 

vehicle’s behavior were used to draw conclusions. Throughout these dynamic events it was 

observed that, during turn in, the vehicle would begin to under-steer. As the driver increased 

steering angle to compensate, the car’s inside rear tire would begin to lift. The unloading of the 

inside tire would then cause the car to rotate through mid-corner and induce an over-steer effect. 

Drivers described this sharp transition between under-steer and over-steer as counterintuitive, 

unpredictable, and difficult to control. The vehicle’s turn-in and mid-corner handling 

characteristics required the driver to respond quickly to steering feedback while, again, being 

extremely precise and consistent with vehicle control inputs. 

Goals and Objectives 
The goal of this project was to optimize the 2012 FSAE car for performance in dynamic and 

static FSAE Michigan competition events. 

FSAE competition vehicles are defined by SAE to be prototype racecars for nonprofessional 

weekend drivers. A nonprofessional target consumer is an inexperienced, amateur driver. 

Therefore, the analysis of the 2012 FSAE vehicle by was accomplished by investigating systems 

and components that could be more intuitively operated. However, an amateur driver still 

requires a competitive vehicle. As such, use we also studied systems that could be optimized to 

improve performance in the competition’s dynamic events by providing reductions in weight, 

increases in power, and improved handling characteristics.  

Through baseline testing and evaluations, five sub-systems of the car were identified as areas 

which prohibited intuitive vehicle control and reduced performance during baseline testing. The 

project’s primary objectives were to improve each of these sub-systems for performance in the 

FSAE Michigan competition. These objectives, then, were to improve the car’s rear suspension, 
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component packaging and ergonomics, air intake, exhaust, and continuously variable 

transmission (CVT) for performance in FSAE competition events. 

The 2012 car exhibited unpredictable handling characteristics during corner entry and lacked 

comparable pace in the baseline skid-pad test. The swing-axle design and lack of a rear 

differential, in particular, were major contributors to these effects and have previously been 

criticized by FSAE competition judges. Consequently, these were the most closely investigated 

components of the rear suspension and drivetrain. This project sought to reduce the rear 

suspension’s unsprung weight, to increase the amount of independent rear tire camber gain, and 

to allow the rear tires to rotate at independent speeds.  

The perceived lack of power, torque, and throttle response during testing was substantiated by 

ECU data logs which showed the car to be running a rich air-fuel ratio and un-optimized ignition 

tables. In addition, the intake manifold was poorly sealed with fiberglass and the exhaust was a 

heavy unit adapted from a Ducatti 748 motorcycle. The exhaust and intake systems were also not 

easily capable of being packaged with a radically redesigned rear suspension. As a result, the 

project investigated the engine’s mounting position, the air intake, and the exhaust systems for 

gains in power and reductions in vehicle weight. The project sought to increase clearance 

between the engine and air intake to decrease bend angles of the intake runners. The project also 

sought to reduce the weight of both the intake and exhaust systems while allowing them to be 

packaged with the new rear suspension and drivetrain. 

The packaging and ergonomics of the vehicle were investigated due to their apparent poor 

layout. During testing shorter drivers noted that the pedals were difficult to reach while taller 

drivers complained of having no place to rest their left foot while they were not braking. The oil 

and gas tanks also suffered from leaks and fluid reservoirs were difficult to access. Additionally, 

the 2012 vehicle did not have a functioning body and cockpit covering as required by FSAE 

regulations. Therefore driver ergonomics, serviceability, and reliability due to component 

packaging were identified as areas of potentially significant improvement. This project sought to 

increase pedal plate stiffness, provide more room for the driver’s left foot, create a lightweight 

body, relocate fluid tanks within the car’s frame, and allow the driver’s seat to be packaged with 

the new engine position. 

The 2012 car used a CVT to allow for simple vehicle operation. However, the engagement 

characteristics observed during the acceleration baseline testing and the subsequent low 

acceleration times identified the transmission as an area that could potentially be improved. This 

project sought to decrease the CVT’s engagement speed and to maintain an operating speed 

consistent with the intake and exhaust systems’ intended operating engine speed. 
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Intake and Throttle Body  

Introduction 

In order to limit the power produced by FSAE Teams, the FSAE competition rules state that a 

20mm restrictor must be placed in line with the intake system. The restrictor is used so that 

student teams are unable to make unreasonable amounts of power for the competition. This 

restrictor, as a result, heavily influences engine intake design along with engine performance. 

Due to the restrictor, the engine cannot get sufficient air mass at higher RPMs.  Therefore, the 

engine must be tuned to perform optimally at a RPM lower than designed for as stock. 

The Intake system this year was optimized for a specific RPM of 7500; an RPM which past 

MQP Research has shown to be below the point where the air passing through the restrictor 

affects power generated by the Genesis 80 FI engine. Due to the fact that a CVT transmission is 

being used, we can tune the transmission, engine and all accessory components associated with 

both systems to perform best at 7500 RPM. This type of transmission will allow the engine to 

hold at one specific RPM during acceleration, allowing for the engine to run in peak performance 

range over the entire acceleration period. Being able to tune for a specific RPM is a preferred 

method by tuners. This is due to the pressure wave tuning done when designing the intake. The 

CVT allows us to hold near that specific range for the longest period of time, taking full 

advantage of a tuned intake. 

Previous Designs 

Intake 

The intake designed and manufactured for the 2012 car was effective for its basic design intent, 

to funnel air into the engine, yet it fell short of a few goals. The 2012 team had four goals for 

their design, the first of which was to perform calculations for the intake manifold using a range 

of engine speeds from 7500 RPM to 8000 RPM. In this, the group was successful and produced 

numbers for the intake runner diameters, lengths and volume. Although the calculations are 

apparent, the actual sources for the calculations used are missing. This missing requires that the 

calculations to be done again for the existing car. The calculated data used in the design of the 

2012 car is listed in Table 1 on the next page. 
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Intake Parameter Result 

Runner Cross-section Diameter of 1.28 in. 

Runner Length Option 1 33.53 in. 

Option 2 16.44 in. 

Option 3 10.78 in. 

Option 4 7.90 in. 

Option 5 6.19 in. 

Plenum Volume 1497cc 

Table 1: 2012 Intake Calculations 

The second goal for the 2012 vehicle’s intake was to perform calculations verifying that the 

restrictor is not causing choked airflow at the desired RPM range stated above. These 

calculations will be used to once again to provide validity to the RPM range which the team is 

using this year. These calculations can be found in Appendix B. 

The Third goal was to perform calculations that showed the fuel injectors could provide 

sufficient fuel capacity for the engine. This calculation proved that the injectors were in fact 

sufficient although that is to be expected because the engine will not be operating in the higher 

RPM range that was possible from the factory due to the restrictor. These Calculations can be 

found in Appendix B. 

The last goal that the group set out to accomplish with their intake design was to accommodate 

various packaging options. Although the true purpose or result of this goal is unclear, the group 

attempted to design the intake so that it could be adjustable during testing.  This adjustable intake 

design is not uncommon in Formula SAE projects due to the discord between theoretical and 

practical intake equations. Their design initially allowed for both runner length and plenum 

volume to be adjustable. Unfortunately due to issues in manufacturing, these ideas had to be 

scrapped in order to achieve a more basic need – a sealed intake manifold that did not allow air 

to enter the intake from anywhere other than the throttle body. These issues were cause by the 

manufacturing technique which was used, Fused Deposition Modeling (FDM) – a rapid 

prototyping technique.  

Due to the high 

tolerances and the 

porosity of the 

material, dimensions 

were not precise 

enough to create seals 

Figure 5 - 2012 FSAE Intake & Throttle Body 



 

23 

 

and the gaps in the surface allowed for air to travel through the connections. As a result, a 

fiberglass layer had to be added to ensure the design would be properly sealed, thus not allowing 

the intake to adjustable thereafter. This fiberglass layer also adds unnecessary weight to the 

intake system. 

Throttle Body 

The current throttle is a barrel style unit produced for the 2009/2011 Formula SAE vehicle. This 

design allows for excellent air flow at wide open throttle (WOT). Unfortunately, the unit 

produced is bulky and actuates slightly too far. This over-opening inhibits airflow and ultimately 

the power potential of the engine. Other potential designs include a butterfly style throttle body 

which is commonly found in the automotive industry. This style provides excellent control and 

smooth transfer through throttle positions. The smooth acceleration provided by the butterfly 

valve style throttle body makes it very appealing in automotive industry due to the needs of the 

everyday buyer. The butterfly valve style is not optimal for our purposes due to the obstruction 

remaining in the path of the air even at WOT. Therefore, it was chosen that the throttle body also 

be redesigned. 

 

Figure 6 - 2009/2011 Throttle Body 
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Research & Design 

Research for the 2013 FSAE Project began with the review of past designs and understanding the 

purpose of an intake. The intake serves many purposes for the engine. First, it is critical that the 

air be delivered to the engine efficiently and mixed properly with fuel. The intake also needs to 

supply the engine with a sufficient immediate amount of air – usually slightly more than enough 

for one firing cycle for each cylinder. The throttle body also must be designed with a vacuum 

fitting so that the engine management system can calculate the airflow mass entering the engine. 

Beyond these basic needs, a properly designed intake can also help increase the volumetric 

efficiency of the engine by taking advantage of the pressure waves of air created by the rapid 

opening and closing of the intake valve. 

The intake is made up of a few critical components. The air travels through the throttle body 

which is opened a certain amount by the throttle position designated by the driver. The next 

piece is the restrictor which is unique to the Formula SAE rules and is 20mm maximum in 

diameter. From the restrictor, the air travels into the plenum, which is a holding area for the air to 

be fed into the intake runners. These runners divide the air from the plenum and feed each 

cylinder independently. The intake also is made up of the necessary mounting hardware to hold 

the injectors at a spot that allows for the injected fuel to mix well with the air and atomize 

quickly upon hitting the hot intake valve. 

Throttle Body 

The design of the throttle body was based around a few design specifications. First, the throttle 

body had to have zero impedance in the air flow at WOT. Second, the design had to simple – 

containing a minimal amount of components – therefore, reducing manufacturing cost, time and 

complexity. Third, the throttle body must have an adjustment for the idle air flow so that tuning 

can be completed at idle throttle. Fourth, the throttle body must be designed so that the throttle 

cable can act without the possibility of binding therefore causing a risk to the driver’s safety. 

This year’s MQP utilized a rotational slide style throttle body. A spring retained slide will be 

actuated by the pedal. This style throttle body satisfied the requirements of the design 

specifications. 

Intake 

The design of the intake focused on a few guiding design parameters. First, in order for the 

intake to operate properly, the design must be based around the calculations above for runner 

diameter and runner length. It is also important that the runner lengths be equal so that the 

pressure wave tuning is not different from one cylinder to another. Keeping with the design 
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intent of the car, cost effective and simple, the intake manifold must be a relatively simple design 

and be easy and cheap to manufacture. Lastly, any components that will be exposed to fuel in 

any way must be produced from a metal due to the possibility of degradation from plastic 

components that are continuously exposed to fuel. Also, the point at which any two components 

come together must be sealed by two gaskets to ensure a complete seal between the inside of the 

intake and the atmosphere. 

Calculations for the intake manifold follow equations taken from “How to Build Horsepower” by 

David Vickers, a text often referred to by Formula SAE teams.  The text mathematically 

simplifies equations used to take advantage of resonate frequencies inside the intake to increase 

the pressure of air at the time the valve opens to take in new air for the next cycle. The first 

dimension calculated was the inner diameter of the intake runners. The equation below was used 

to calculate the diameter: 

  √                           

Equation 1 

For Equation 1, D is the intake diameter in inches, RPM is the target RPM for which you are 

tuning for, and VE is the volumetric efficiency that the engine is thought to run at. This equation 

resulted in a diameter of .96in when applied to the 2013 vehicle.  This varies from last year’s 

1.2in. This years’ change will increase the velocity of the air entering the engine. 

Before calculating runner lengths, the Effective Cam Duration (ECD) was defined. This value 

measures the amount of time that the valve is closed which is needed to determine the distance 

that the pressure wave will travel before returning to the valve just as it opens. In order to find 

the number of degrees that the engine rotates while the intake valve is open, the team measured 

and recorded multiple sessions of observation. It was found that the valve remains open for 

299deg. ECD is calculated as shown below: 

              
Equation 2 

Equation 2 depends on the Effective Cam Duration (ECD), the speed of sound and which 

reflective wave pulse the intake will be tuned for. The key is to get the positive pressure wave to 

arrive at the intake valve just as it begins to open, forcing air into the cylinder and improving the 

amount of fresh air available for combustion.  
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Upon calculating the inner diameter of the intake runners and the ECD, the length of the intake 

runners was then calculated. Equation 3 was used for calculating the length of the intake runners. 

  
[                       ]

      
 

 

 
 

Equation 3 

This calculation resulted in the table of values below: 

Reflective Wave # Length (in) 

1 38.125 

2 18.823 

3 12.389 

4 9.172 

Table 2: Calculated Intake Runner Lengths 

The intake design for the 2013 vehicle focused on either the 2
nd

 reflective wave pulse which 

entails building a longer intake but allows for a greater effectiveness than using a higher number 

of reflective wave. 

Lastly, plenum volume must be considered with the design as changing the size drastically will 

impede throttle response. If the intake plenum becomes too large, there is a discord between the 

time the driver depresses the gas pedal, and the time the engine actually responds. If the plenum 

becomes too small, the engine does not have enough air immediately available to accelerate and 

lags while the plenum must be refilled. The plenum volume was chosen to be 2.5 times the 

engine displacement, a common choice among FSAE Teams. 

Manufacturing 

Throttle Body 

The two major components of the throttle body were made out of aluminum. These two parts are 

the back plate of the intake and the rotating slide. Aluminum was chosen because of its low cost, 

ease of machining, non-permeable nature, and low surface friction. These components were 

manufactured in Washburn Laboratories at Worcester Polytechnic Institute by the students on the 

team. CAM software was created using Esprit and machining was performed by the team using 

CNC mills. To reduce friction between the components, the components were buffed and de-

burred. 

The last components of the throttle body served to ensure the throttle position sensor would 

properly read the position of the rotational slide. Due to the small forces these components would 
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be subject to, they were made form a rapid prototyping process. These components were made 

off-site by a team sponsor, Synergeering. The finalized throttle body can be seen below with the 

restrictor attached. 

 

Figure 7 - 2013 Throttle Body and Restrictor 

Restrictor & Intake 

The restrictor, which must be a maximum of 20mm in diameter, will take a slightly different 

approach from the 2012 MQP manufacturing strategy. Previously, the restrictor was made of 

rapid prototype ABS on-site, a light and quick method of production. This choice however leads 

to poor build quality and resulted in a restrictor that measured less than 19mm in diameter. For 

the 2013 car, the restrictor will be once again made by a rapid prototyping process performed by 

the team sponsor Synergeering. Their manufacturing expertise with this method has resulted in a 

restrictor built to specification with a surface roughness much lower than the previous design. 

This approach was chosen over machining a restrictor due to cost and time restraints from the 

members of team. The restrictor can be seen in Figure 3.  

Previous Formula SAE MQPs used a rapid prototyping method for producing their intake 

manifolds. The same technique will be used for many of the components this year but will be 

handled off-site by a sponsor who specializes in rapid prototyped intakes. This will help the team 
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avoid the issues the plagued the previous’ team manufacturing perils. The rapid prototyping 

process used by Synergeering was Selective Laser Sintering. For the components that are to be 

machined from metal, aluminum was chosen over steel due to its lower cost and ease of 

machining. The aluminum components for the intake are being produced off-site by a team 

vendor SpecMaster in Denver, Colorado. The finalized intake and throttle body can be seen 

below. 

 

Figure 8 - Completed 2013 Intake 

Conclusion 

The intake for this year will use the resonating “supercharging” effect of pressure waves, use a 

smaller plenum size as the 2012 design, and include a new restrictor and throttle body. The 

manufacturing techniques used to produce the intake manifold maintained tighter tolerances and 

avoided FDM rapid prototyping. The 2013 intake focused on minimizing restriction of airflow 

into the engine while maintaining tuned dimensions. With the tuned effects of the intake and 

exhaust the engine will hopefully operate closer to 100% volumetric efficiency and therefore a 

power that will allow the car to be successful at competition. 
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Exhaust System  

Previous Exhaust Design 

The exhaust designed for the 2012 FSAE vehicle was based on a maximum engine speed of 

8,000 RPM. Based on exhaust cam duration of 242deg, the primary lengths were determined to 

be 50in, 24in, or 16in. Due to packing constraints on the 2012 vehicle, the group chose to make 

the primary headers 24 in. in length. Through background research, the team determined that a 

two into one exhaust collector would not be ideal for the car’s Yamaha Genesis 80fi engine. 

Since the Genesis 80fi is an odd firing engine, the pressure pulse does not line up the same way 

as an even firing engine. This creates a scavenging effect that must be considered when tuning 

exhausts for an odd-firing engine. This effect reduces the engine’s performance when compared 

with the use of two singular primaries. With this knowledge the team investigated the use of an 

exhaust plenum similar those used by other Formula SAE teams. After weighing both options, 

the team decided to use to individual primaries with two separate mufflers, despite the additional 

weight.  

The primaries were designed to fit behind the engine and in front of the rear axle. This was 

accomplished through the use of mandrel bends. The exhaust headers were comprised of four 

pipes welded together. Mid-bend cuts are almost impossible to make perpendicular to the pipe 

and were avoided in the design. To avoid this, the team attempted to keep bends at 90deg and 

180deg. The final design included one 70deg bend that connected to the mufflers. The 2012 car’s 

primaries can be seen in Figure 9. 

 

Figure 9: Primary Exhausts on the 2012 FSAE Car 
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The mufflers chosen for the 2012 car are from a Ducati 748 motorcycle. The team had originally 

planned to fabricate straight through mufflers with absorptive material. However, due to time 

constraints, this did not occur. The Ducati mufflers were able to meet their task specifications by 

muffling the exhaust to less than 110dB at 16in. from the exhaust exit at full throttle. The only 

negative aspect of these mufflers is their relatively high weight. In retrospect, the team wanted to 

provide something that would be slightly louder but weigh a considerable amount less. 

Exhaust Research 

Exhaust Primary Research 

The exhaust system is essential to ensure that the exhaust gasses exit the engine cylinders as 

quickly as possible. When considering an engine used in a race application, tuning the exhaust at 

a specific engine speed can have a large impact on engine performance
1
. Tuning the exhaust is 

achieved by syncing pressure pulses so that the exhaust gasses are pulled from the engine. An 

engine’s pressure pulses have both a compression and expansion wave. When the engine fires 

and the exhaust valve opens, a compression wave instantly bursts out of the cylinder and travels 

down the exhaust pipe. As the compression wave reaches a significant change in pipe cross 

sectional area and pressure, an expansion wave is then sent back toward the cylinder. An 

expansion wave is an inverted wave of the compression wave. The time at which the expansion 

wave reaches the exhaust valve is crucial to scavenging the exhaust gasses. If the expansion 

wave reaches the valve while it is still open, the wave can force exhaust gasses back into the 

cylinder which will reduce engine performance. If the wave reaches the exhaust valve while it is 

closed, the reflected wave will help push the exhaust gases out of the exhaust system
2
. The 

appropriate primary lengths and pipe diameter can be determined through a series of equations 

based on engine speed and valve timing
3
.  

Calculations 

After a preliminary research was done on general exhaust function, the focus turned to 

calculating the primary pipe lengths. Alexander Graham Bell published Performance Tuning in 

Theory and Practice, a book that outlines a series of equations that determine pipe length and 

diameter. The first equation was used to determine the primary length and can be seen in 

Equation 4. 

                                                
1 Vizard, David. How to Build Horsepower. North Branch: SA Desgin 

 
2 Blair, Gordon P. Design and Simulation of Four-stroke Engines. Warrendale, PA: Society of Automotive 

Engineers, 1999 
3 Bell, A. Graham. Performance Tuning in Theory and Practice. Sparkford, Yeovil, Somerset, England: Haynes 

Pub. Group, 1981. 
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Equation 4 

                                                                       

The desired engine speed of the Genesis 80fi engine for this application is 7500 RPM. The 2012 

MQP measured the valve timing, however to make sure these timings were correct; the 2013 

MQP also measured the timing. This process was done by designing a degree wheel in 

SolidWorks and fabricating it with WPI’s laser cutter. This degree wheel was then placed on the 

crankshaft. When the cylinder is at top dead center (TDC) the degree on the valve timing is 

considered to be 0 and 360. Bottom dead center (BDC) is at 180deg and 540deg. To measure the 

valve timing, the crankshaft was manually rotated until the cam made contact with the intake 

valve and when the valve starts opening. This value on the Genesis 80fi opens 30deg before 

TDC. The crankshaft was then rotated until the intake valve closes. The Genesis 80fi intake 

valve closes at 269deg. The exhaust valve was then done through the same process. The exhaust 

valve opens at 487deg and closes at 47deg after TDC.  This means that the exhaust valve opens 

53deg before BDC. Applying the known information to Equation 4, the Genesis 80fi will have a 

primary runner with the length of 23.41in. 

After the primary length has been determined, the inside diameter of the pipe can be determined. 

This equation depends on the displacement as well as the length of the primary runners. The 

equation for the inside diameter can be seen in Equation 5
4
. 

                 √
  

        
     

Equation 5 

                                                 

                                       

The displacement of the Genesis 80fi is 499.00cm
2
. Since the Genesis 80fi is a two cylinder 

engine, the displacement of one cylinder is 249.50cm
2
. As determined above the primary length 

is 23.41in. Plugging in the know information gives an inside diameter of 1.29in. for the exhaust 

                                                
4 Bell, A. Graham. Performance Tuning in Theory and Practice. Sparkford, Yeovil, Somerset, England: Haynes 

Pub. Group, 1981. 
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primary. Knowing both the inside diameter and the primary length allows for the exhaust 

primaries to be designed within the car. 

Muffler Preliminary Research 

A muffler or silencer is a device that reduces noise from an engine. The two major types of 

mufflers are a reactive muffler and an absorptive muffler. A reactive muffler uses expansion 

chambers to lower sound pressure within the muffler. This type of muffler also has perforated 

inlet and outlets that are not in a straight line. This helps allow the pressure pulses to disperse 

through the expansion chamber. An absorptive muffler uses a perforated steel pipe surrounded 

by insulation. The insulation is then held together by an outer casing. As the pressure waves 

move through an absorptive muffler, the perforated steel allows for the waves to disperse into the 

insulation, deadening the sound.  

Absorptive mufflers are usually a straight through pipe which is better for fluid flow through the 

exhaust. Reactive mufflers generally create a higher pressure in the muffler which slows down 

the flow of exhaust gases and reduces engine performance. However, reactive mufflers reduce 

the sound created by pressure waves more than an absorptive muffler. Reactive mufflers are 

generally used as a stock muffler in automotive applications as driver comfort is the primary 

concern over engine performance. When applied on a Formula SAE car, the primary concern is 

engine performance. The only requirement for Formula SAE is that the mufflers attenuate the 

sound to a maximum of 110dB at 19.68in. from the exhaust opening at a 45deg angle with the 

outlet in the horizontal plane. Considering these rules and engine performance, an absorptive 

muffler is ideal for the 2013 Formula SAE car
5
.  

Exhaust System Design 

Primary Exhaust Design Specifications 

 The primary exhaust must be tuned to match the Genesis 80fi at 7500 revolutions per 

minute.  

 There must be one primary for each cylinder and must be packaged to fit around the 

independent rear suspension designed for the 2013 FSAE vehicle. It must also not 

interfere with the CVT secondary, mounts, shaft or sprocket. 

 The paths of the primaries must be designed for the best flow of exhaust fluids through 

the pipe while still adhering to the packaging constraints.   

 The primary exhaust must allow room for the mufflers to be added to the end. 

                                                
5 Potente, Daniel. "General Design Principles for an Automotive Muffler." (2005): n. pag.Day Design. 
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Primary Exhaust Design 

When designing the exhaust headers, the most important aspect was to make sure that the length 

and pipe inside diameter was accurate to the calculated values. Allow though fluid flow is 

important, packaging the headers within the limitations of the 2013 FSAE rules is a requirement. 

With this in mind, the pipe length was kept the same and packaged to fit within the requirements. 

The process to design the headers utilized SolidWorks to package the determined pipe size into 

the 2013 vehicle.  

Keeping fabrication in mind, it was important to make sure that all bends and lengths of pipe 

segments were within the means of the MQP to manufacture. This meant keeping the bends 

square to the vertical and horizontal planes. The final design included two 90deg bends and one 

180deg bend.  The inside pipe diameter on the headers was 1.33in. and final length was 23.39in. 

This allowed the headers to meet the packaging requirements as well as the tuning requirements. 

The final design of the headers can be seen in Figure 10. The same design was used for both 

cylinders of the engine. 

 

Figure 10: Final Exhaust Header Design 

The two headers within the overall car model can be seen in Figure 11. The header mounts to the 

engine were added after the swept paths had been determined. This allowed for an accurate 
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placement of the mounts on the round tubing. With this an angle it was easy to weld the headers 

onto the mounts and making sure that they were packaged correctly. 

 

Figure 11: Final Exhaust Headers 

As can be seen, the headers avoid the engine mounts, the jackshaft and sprocket, CVT 

secondary, and the drive sprocket on the axle. The header design also leaves enough room for the 

muffler design, which will be discussed in the next section.  

Muffler Design Specifications 

 The muffler must produce a sound less than 110dB at 19.68in. from the outlet and at an 

angle of 45deg in the horizontal plane at its highest engine speed. 

 The exhaust outlet must not exceed 17.70in. behind the centerline of the rear axle. 

 The exhaust outlet must not exceed a height of 23.60 in. from the ground. 

 The muffler must weigh 25% less than the muffler on the 2012 FSAE vehicle. 

Muffler Design 

The most important aspect of the muffler design is to maximize engine performance while 

reducing exhaust noise. In the case of the 2012 car, the MQP team was able to significantly 

reduce the sound produced by the engine but the Ducati mufflers on the vehicle are extremely 

heavy and there was room for improvement. The design for the 2013 was a single absorption 

muffler with two inlets and two outlets. It contained two straight through steel perforated pipes 

with sound deadening material on all sides. The casing for the muffler was an oval shape to 



 

35 

 

allow for both straight through pipes. The inlets were the same inside diameter as the outside 

diameter of the primary pipes. The cross sectional area of the perforated steel pipe had a 60% 

larger cross sectional area than the cross sectional area of the primary pipes. The reason for this 

increase in cross sectional area was to allow the pressure pulses to reflect the expansion wave at 

the tuned length that was calculated. If the perforated steel pipes had the same cross sectional 

area as the primaries, the expansion wave would not be created until the pressure wave reached 

the outlet at atmospheric pressure. This would add another 17.63in. to the primary length and 

cause a significant loss in engine performance. The final design of the muffler can be seen in 

Figure 12. 

 

Figure 12: Final Muffler Design 

The outlets of the muffler were 15.50in. behind the center of the rear axle, which is well within 

the requirements of the FSAE requirements. Similarly, the muffler height was 22.93in. above the 

ground that is also within the FSAE requirements. The headers entered the muffler 3.25in. apart 

from each other and the muffler was attached to the headers through two small segments of 

piping that slipped over the headers and were welded onto the muffler. This muffler was packed 

with fiberglass as a sound deadening material and attenuated the sound below the maximum 

required by FSAE. 
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Exhaust System Fabrication 

Primary Exhaust Fabrication 

The material purchased for the exhaust headers was a six foot long AISI 4130 steel round tubing. 

With this the headers were cut to the length of each segment shown in the CAD model. Then 

steel tubing was sent to a muffler shop in Worcester for bending. After the components were 

bent, the header mounts could be made and welded. The header mounts were designed so that 

they could be made using the CNC machines in Washburn Shops. These were made out of 1/8in 

AISI 4130 steel. Once this was completed they were tack welded to the headers to ensure they 

would meet the packaging requirements set by the rear suspension. Once the confirmation of the 

packing occurred, the headers were TIG welded with the header mounts. 

Muffler Fabrication 

The faceplates of the muffler were made out of 1/8in. AISI 4130 steel plate. They were made 

using the CNC machines located in Washburn Shops. These faceplates can be seen in Figure 13. 

Once the face plates had been CNC’d, the perforated steel tubing that had been purchased for the 

2012 FSAE MQP was welded to the front faceplate. The casing that wraps around the faceplates 

was 1/16in. AISI 4130 steel. Once the perforated steel was attached, the 1/16in. steel was cut to 

length and then wrapped and welded to the front faceplate.  

With the casing around the front faceplate, the muffler was then packed with fiberglass as a 

sound deadening material. This was done in steps in order to have the correct amount of sound 

deadening material. If there was too much material, there would be excess weight in the muffler 

and if there was too little material the muffler would not perform to the FSAE specifications. 

Once the correct amount of material was placed into the muffler, the exit faceplate was welded 

onto the muffler and the muffler system was complete.  

 

Figure 13: Muffler Entrance and Exit Faceplates 
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Exhaust System Conclusion 

The main reason for redesigning the exhaust system was to compensate for the new rear 

suspension design, as well as the redesign of the engine mounts. The new sub frame design 

would not allow for the old header design because the old headers traveled down below the rear 

axle where the sub frame currently sits. On top of this, a major design goal of the engine mounts 

was allow more room for the intake between the seat and engine. This meant that the engine 

needed to move backwards, which would have made the old headers incompatible with the old 

rear suspension.  

Beyond this, the exhausts were tuned to 7500 RPM, which is 500 RPM less than the previous 

MQP. The reason for this is that it is unlikely that the Genesis 80fi will be able to run higher than 

7500 RPM. On top of this, the ECU was tuned for 7500 RPM. By using 7500 RPM for tuning 

yielded different header lengths, and tube diameter than the previous year. The mufflers from last 

year left a lot of room for improvement. At the last minute the MQP from 2012 used Ducati 

mufflers on the 2012 car. While these mufflers did a great job of attenuating the sound produced 

by the engine, they were quite heavy. The design goal with the 2013 mufflers was to meet the 

FSAE requirements for sound level while being significantly lighter than the 2012 mufflers. 

With a two into one muffler design, the 2013 muffler achieved the task specifications. 

There were two small issues in redesigning the exhaust headers. The first of these was the 

packaging with the rear suspension. Because of some redesign in the rear suspension, the exhaust 

headers had to be redesigned multiple times to meet the packaging needs. Also, because the 

engine was moved back two inches toward the rear axle, the exhaust system had two less inches 

to be packaged behind the engine. Although two inches does not seem like a lot, it makes 

packaging quite a bit more difficult. This is what caused such severe bends in the headers, 

because there needed to be room for the muffler to sit behind them. Overall, the exhaust system 

achieved its task specifications for the 2013 FSAE car.   
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Engine Position 

Previous Design 

The engine mount design must account for a few forces in order to ensure that the engine 

remains positioned securely throughout a race event. The 2012 MQP determined that the engine 

mounts should be able to withstand the weight of the engine, a 1,440 lb force for acceleration 

and breaking, and the torque created by the engine. By analyzing the 2011 engine mounts, the 

team determined that the 2011 setup would not work. New engine mounts were designed and can 

be seen in Figure 14. 

 

Figure 14: 2012 Engine Mounts 

These engine mounts include a “banana,” “claw,” and a chassis mount. The claw connected to 

the engine both in the front and back and it connected to the chassis at 3 points, which can be 

seen in Figure 14. The banana connected to the engine in one place and the chassis in two places. 

This can also be seen in Figure 14. The final front engine mounting point was mounted to the 

chassis. 

Finite element analysis (FEA) was performed on both the banana and the claw to verify that the 

mounts could withstand all of the necessary forces. The first FEA test simulated the torque 

created by the engine on each piece of the engine mounts. This torque was determined to be 80 

foot pounds applied to the holes that were being mounted to the engine. The banana had a 

maximum stress of 826,525 N/m
2
 with a minimum safety factor of 332.70. The maximum 

displacement was 3.29E10
-3

 mm. The claw had a maximum stress of 1,540,494.90 N/m
2
 with a 

maximum displacement of 1.09 mm. It passed the test with a safety factor of 1.20.  
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The next FEA test was to determine whether the engine mounts could withstand the weight of 

the engine. The weight of the engine due to gravity is approximately 65.00lb. The banana passed 

with a maximum stress of 4,883,529.5 N/m
2
 and a maximum deflection of 3.29E10

-3
 mm. The 

safety factor given by this was 56.31. The claw passed the FEA test with a maximum stress of 

6,754,867.5 N/m
2 

and a maximum deflection of 3.03E10
-2 

mm. It passed with a safety factor of 

40.70. 

The final FEA test was to determine whether the engine mounts could withstand a force created 

by accelerating or braking. This force was determined to be 1,400lb. under heavy braking or 

acceleration for the entire engine mount system. The banana passed with a maximum stress of 

64,562,852 N/m
2 

and a maximum displacement of 1.53mm. It passed with a maximum safety 

factor of 1.92. The actual load placed on the banana was 700lb. The claw passed with a 

maximum stress of 222,036,128 N/m
2 

and a maximum displacement of 1.09mm. The engine 

mounts were manufactured based on these results. The engine mounts were sent out to a 

manufacturer to be water jetted. 

Design of Engine Mounts 

The engine mounts are a significant factor in how the car is packaged. Depending on the location 

of the engine, the rear suspension, CVT, intake and exhaust are all affected. In the 2012 MQP, 

there was not a lot of room between the back of the seat and the intake ports. This caused the 

intake to be designed within a very limited space. More space between the engine and seat was 

desirable so that a less restricted intake could be designed. In order to accomplish this, the 2013 

MQP designed new engine mounts. These engine mounts were required to increase the distance 

between the seat and the engine by two inches. The engine mounts must do so while still 

withstanding all of the forces that occur during a race event. In order to accomplish this, FEA 

tests were created to investigate the strength of the engine mounts. The FEA tests can be seen in 

Table 3. 

Table 3: FEA Test Data 

FEA Test Parameters Force (N)/Torque (Nm) Dynamic Factor 
Safety 

Factor 
Total Force (N)/Torque (Nm) 

Vertical Upward Force 0   N/A 0 

Vertical Downward Force 290 2 3 1740 

Lateral (+/-) Force 290 1.5 3 1305 

Engine Torque 108 1 3 324 

Acceleration 290 2 3 1740 

Deceleration 290 2 3 1740 
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Beyond moving the engine back two inches the engine mounts also needed to attach to support 

the sub frame of the new suspension and have a mount for the jackshaft to attach through the 

engine mounts. The two pickup points from the 2012 FSAE car were utilized and then a third 

pick up point was added to the sub frame to support it. The model of the two new engine mounts 

can be seen in Figure 15 and Figure 16.  

 

Figure 15: Right Engine Mount 

 

Figure 16: Left Engine Mount 

Along with these two engine mounts is a third piece of steel that runs across the front of the 

engine that holds the front two engine mounting points. The overall engine mounting set up can 

be seen in Figure 17. 
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Figure 17: Engine Mount Setup 

Previously, the jackshaft was attached off center of the car to the left so that it could drive the 

sprocket on the solid rear axle. In the 2013 FSAE car, this could not be done. Because of the 

independent rear suspension, the drive sprocket needed to be placed in the center of the rear 

suspension attached to the differential. This meant that the jackshaft had to be placed between 

the engine mounts and the best way to do this was to incorporate and mount the jackshaft to the 

engine mounts. Two holes were placed into each engine mount allowing for a bearing to be press 

fit into each one. A new jackshaft was designed in order fit the new dimensions behind the 

engine. The new jackshaft can be seen in Figure 18. 

 
Figure 18: 2013 Jackshaft 

This new jackshaft allows for play in the left and right directions so that the jackshaft sprocket 

and driveshaft sprocket can line up perfectly, as well as the CVT primary and secondary. The 
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same spline sizes were used from the old jackshaft so that they fit the CVT secondary and the 

jackshaft sprocket from the previous year could be used. 

After the packing of the engine mounts was complete, the strength of the new engine mounts had 

to be tested. Several iterations were made until the mounts met the requirements given by the 

dynamic and static factors calculated. The FEA tests that were used are described below.  

The first FEA test showed that the engine mount designs could withstand the lateral forces that 

are experienced while cornering the car. This number was determined to be 1,305N due to the 

engine’s approximate weight of 290N and multiplied by a dynamic factor of 1.50. Under race 

conditions there wouldn’t be more than 1.50G’s through a corner. The dynamic factor was 

therefore determined to be 1.50G’s. Lastly, the safety factor of three was multiplied by the 

dynamic factor to get 1,305N. The lateral FEA test can be seen on the left engine mount in 

Figure 19 and Figure 20. As seen with the acceleration test, the left engine mount also passes the 

lateral FEA test. The maximum stress acting on the mount was 282,921,216 N/m
2
 and the 

maximum deflection was 3.12mm. 

 

 

Figure 19: Stress under Lateral Load 
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Figure 20: Deflection under Lateral Load 

The next test that was performed simulated the forces experienced by the mounts under 

acceleration and braking. The magnitude of this force was determined to be 1,740N. This value 

was given by the weight of the engine, which is approximately 290N and multiplied by a 

dynamic factor of two to account for the G forces that are applied to the mounts under 

acceleration and deceleration. Finally, the magnitude of this force was multiplied by a safety 

factor of three. This final value allows for error manufacturing to ensure that the engine is 

securely on the car. The FEA results of the acceleration test on the left engine mount can be seen 

in Figure 21 and Figure 22. The left engine mount passed this test with a maximum stress of 

37,132,688 N/m
2
 and a maximum deflection of 0.21mm. Under heavy acceleration and 

deceleration this steel link would be strong enough to hold the engine in place with a safety 

factor of three. 

 

Figure 21: Stress und Acceleration Load 
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Figure 22: Maximum Deflection under Acceleration Load  

The next test verified that the engine mount designs could support the weight of the engine. This 

value was determined to be 209N multiplied by a dynamic factor of three and the safety factor of 

three. This gave a total force of 1740N to place downward on the engine mounts. The analysis of 

the left engine mount can be seen in Figure 23 and Figure 24. The left engine mount again 

passed the downward force test. There was a maximum stress of 39,343,680 N/m
2 

and a 

maximum deflection of 0.16mm. 

 

Figure 23: Stress under Downward Load 
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Figure 24: Deflection under Downward Load 

The final engine mount FEA test analyzed the effects of torque created by the engine. This 

moment was determined to be 324Nm by the engine producing approximately 108Nm while 

running and a safety factor of 3 was used in calculating the total value. The analysis of the left 

engine mount is shown in Figure 25 and Figure 26. The left engine mount passed with a 

maximum stress of 21,635,964 N/m
2
 and a maximum deflection of 0.66mm.                                                                                                                                                                                      

 

Figure 25: Max Stress under Torque Load 
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Figure 26: Displacement under Torque Load 

The FEA tests stated above were done to each component of the engine mount set up. Just like 

the left engine mount, the right engine mount and the steel tubing mount passed the FEA tests. 

These engine mounts accomplish the desired task specifications under all conditions described. 

Fabrication of Engine Mounts 

The left and right engine mounts were sent out to Westar Manufacturing in Wisconsin. These 

two pieces were water jetted to the cad models shown above. In order to get a proper press fit on 

the bearings, the holes for the jackshaft were left smaller than desired so that they could be 

machined to the proper size for the bearings and then the bearings were press fit into the engine 

mounts. The water-jetted components can be seen in Figure 27. 

 

Figure 27: Water Jetted Engine Mount Components 
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The steel tubing component of the engine mounts was built by cutting an AISI 4130 Steel tube to 

the width of the chassis at the main roll hoop and notching it to fit around the chassis tubes. It 

was then welded to the chassis. Then the two vertical pieces were cut to length to mount to the 

front mounting points of the engine. They were welded to the horizontal crossbeam mentioned 

previously. Finally a horizontal tube was cut to the length of the distance between the two front 

mounting points of the engine and welded to the vertical pieces. 

Engine Mount Conclusions 

There were three primary reasons for redesigning the engine mounts. The first of these reasons 

was to create more space between the seat and the engine. This was accomplished with the 

engine being two inches further back than the 2012 car. The second of these reasons was to add 

more support to the rear suspension. There was some concern with the strength of the rear sub 

frame through finite element analysis, and to fix this lack of rigidity the engine mounts were 

designed to add vertical support to the sub frame. The engine mounts were designed to attach to 

the sub frame and also support any loads that may be exerted from the sub frame. Finally, the 

engine mounts were designed to contain to jackshaft to transfer the engine power to the drive 

sprocket. It was important to account for the precision of press fit bearings as well as making 

sure that the CVT secondary and primary would line up properly as well as the jackshaft 

sprocket and the drive sprocket. 

All of the goals stated above were accomplished with the redesign of the engine mounts. The 

redesign of the engine mounts made it significantly easier to package the rear end and allowed it 

to be more balanced. The only negative impact of redesigning the engine mounts was the 

increase of weight from the old engine mounts to the new. Adding the extra support for the rear 

sub frame allowed no room for weight to be taken out of the engine mounts. Over all the engine 

mounts weigh more (7.26lb), but the gain in adding an independent rear suspension is much 

greater than gaining 3.43lb. in the engine mounts. 

Rear Suspension 

2012 Vehicle’s Suspension Characteristics 

The 2012 vehicle utilized a swing axle rear suspension and used no differential. The goals of this 

original design were to maximize mechanical simplicity, minimize cost, and minimize vehicle 

weight. However, a swing axle design suffers from poor handling characteristics due to large 

jacking forces, uncontrollable camber gain, and axle hop. The swing axle’s large amount of 

unsprung mass also inhibited the suspension’s movement due to inertial forces. At the Michigan 

Formula SAE competition in May 2011, this same rear suspension was used on WPI’s Formula 
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SAE car. During this competition the design judges criticized the swing axle for providing sub-

par handling characteristics without significantly reducing overall vehicle weight. Due to the 

major drawbacks of the 2012 vehicle’s swing axle, we determined that there is more potential 

performance to be gained by improving the rear suspension than in the front. In order to best use 

the team’s limited resources, our scope was limited to investigating improvements for the rear 

suspension only.  

During the project’s baseline testing and evaluation the 2012 FSAE car exhibited under-steer on 

turn in and snap over-steer through midcorner. These observations, indicative of poor handling 

performance, were substantiated by below average lap times during skid-pad testing. Drivers also 

noted that quick under-steer to over-steer transitions made the vehicle difficult to control. This is 

undesirable as an FSAE car is to be marketed to the nonprofessional driver, individuals who do 

not possess precise and consistent vehicle control skills. These characteristics were used in 

analyzing the existing rear suspension and developing goals for a new design.  

Suspension Design Goals 

The primary objective for the new rear suspension design was to improve the vehicle’s 

performance in FSAE Michigan competition events, both static and dynamic. The primary goal 

in achieving this was to make the vehicle more intuitive to operate for nonprofessional drivers. 

This would better match the needs of our marketed buyer while improving a racer’s 

competitiveness in dynamic events. This would, thereby, increase performance in both static and 

dynamic events. The team also sought to maintain serviceability, minimize overall vehicle 

weight, and allow for simple adjustability of suspension dynamics. 

Investigating Solid-Axle Rear Suspension Solutions 

The team first investigated a minor redesign of the existing solid-axle type suspension. Such a 

design could potentially avoid increasing vehicle weight and mechanical complexity while 

retaining existing suspension pick-up points. Doing so would increase manufacturability and 

decrease cost. A solid-axle would also not require a rear sub-frame, a component which would 

have been necessary were an independent suspension implemented. In light of the potential 

benefits of a solid-axle design, an analysis of such suspension designs was completed. Three 

solid-axle suspension types were considered based upon their ability to be packaged with the 

car’s existing engine and frame. These suspension types are an improved swing-axle, a three link 

with panhard bar, and a De Dion tube structure. 
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These designs were evaluated on the following criteria: 

 Unsprung weight 

 Overall weight 

 Cost 

 Independent suspension motion 

 Independent wheel speeds 

 

Suspension types were evaluated both with and without the addition of a differential since 

including this component could significantly impact a design’s functionality. Each design 

parameter was given a weight between zero and one with the sum of their weights equal to one. 

The suspension types were then ranked in each design parameter on a scale of one to five with 

one being the worst and five being the best. To determine design rankings of unsprung and 

overall weight, an estimation of the physical weight of each design was completed. This was 

done using measured weight of a differential and 3D modeling of potential mounting links in 

Solidworks. These estimated weights can be seen in Table 4 below. The lowest weight was then 

designated with a ranking of five and the highest weight was defined as a ranking of one. Linear 

interpolation defined values between these minimum and maximum weights. Other design 

parameter rankings were estimated using material properties and known characteristics of 

suspension types as described in publications such as Milliken Research Associates’ Race Car 

Vehicle Dynamics
6
. Our evaluation of each design can be seen in Table 5 on the next page. 

  

                                                
6
 Milliken, William F., and Douglas L. Milliken. Race Car Vehicle Dynamics. Warrendale, PA, 

U.S.A.: SAE International, 1995. Print. 
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Design Unsprung Weight (lb) Overall Weight (lb) 

Swing Arm With Differential 46.00 46.00 

Swing Arm With No Differential 38.00 38.00 

Three Link With Differential: Spring above axle 46.80 56.80 

Three Link With Differential: Spring above lower control arm 49.80 49.80 

Three Link With Differential: Pushrod/rocker to spring 46.80 48.80 

Three Link With No Differential: Spring above axle 38.80 48.80 

Three Link With No Differential: Spring above lower control arm 40.80 40.80 

Three Link With No Differential: Pushrod/rocker to spring 38.80 40.80 

De Dion Tube: Spring above axle 64.10 70.80 

De Dion Tube: Spring above lower control arm 62.80 62.80 

De Dion Tube: Pushrod/rocker to spring 60.80 62.80 

Table 4: Estimated Solid-Axle Suspension Weights 
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Design Parameter 
Unsprung 
Weight 

Overall 
Weight Cost 

Vertical 
Wheel 

Motion  
Independent 
Wheel Speeds 

Weighted 
Total 

Value Weight 0.25 0.10 0.05 0.30 0.30 1.00 

Swing Arm With Differential 3.77 4.03 4.00 1.00 5.00 3.35 

Swing Arm With No 

Differential 5.00 5.00 5.00 1.00 1.00 2.60 

Three Link With Differential: 
Spring above axle 3.62 2.70 4.00 5.00 5.00 4.38 

Three Link With Differential: 

Spring above lower control 
arm 3.15 3.55 4.00 5.00 5.00 4.34 

Three Link With Differential: 

Pushrod/rocker to spring 3.62 3.66 4.00 5.00 5.00 4.47 

Three Link With No 

Differential: Spring above axle 4.85 3.66 5.00 5.00 1.00 3.63 

Three Link With No 
Differential: Spring above 

lower control arm 4.54 4.64 5.00 5.00 1.00 3.65 

Three Link With No 
Differential: Pushrod/rocker to 

spring 4.85 4.64 5.00 5.00 1.00 3.73 

De Dion Tube: Spring above 
axle 1.00 1.00 3.00 5.00 5.00 3.50 

De Dion Tube: Spring above 

lower control arm 1.42 1.97 3.00 5.00 5.00 3.70 

De Dion Tube: Pushrod/rocker 

to spring 1.15 1.97 3.00 5.00 5.00 3.63 

Table 5: Ranking of Solid-Axle Suspensions 

This decision chart indicates that the most favorable solid axle suspension design is a three link 

with differential and non-direct acting springs. However, modeling this type of system in 

conjunction with the redesigned engine mounts presented major issues with packaging. The 

upper control arm (third link) would interfere with the proposed exhaust design and a panhard 
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bar would interfere with the drivetrain. In addition, the team sought to reduce unsprung weight 

through rear suspension design. However, any solid-axle design with a differential would 

increase unsprung weight by at least 8.50lb (weight of the differential). As a result, the team 

decided to further investigate only independent rear suspension designs. 

Investigating Independent Rear Suspension Solutions 

In an effort to minimize unsprung weight and resolve packaging issues the group analyzed the 

design implications of independent rear suspension designs. Minimizing unsprung mass was a 

key objective in the design since the resulting weight creates additional inertial damping effects. 

Independent suspension designs would all allow the differential to be mounted as sprung rather 

than unsprung weight, which is, therefore, desirable. Specifically, mounting a differential to the 

chassis would remove approximately 8.50lb of unsprung weight from the rear suspension, as 

mentioned in the previous section. Since at least a portion of the existing suspension pickup 

points could be used, the only additional weight in this design would be due to differential 

mounting. However, the weight of links large enough to mount the differential would weigh less 

than 10lbs, as calculated using a SolidWorks parametric 3D model. 

Since the primary goal of the rear suspension design was to create a more controllable vehicle, 

the team also analyzed an independent suspension’s ability to produce consistent handling 

characteristics that promote tire grip and vehicle stability. Consistency would make vehicle 

behavior more predictable to the nonprofessional driver. Improved rear tire grip and stability 

raise the vehicle’s potential performance during dynamic events. Unlike the existing swing-axle 

and other non-independent suspensions, all independent rear suspension designs allow the 

wheels to move independently. This allows the rear tires to gain and lose camber regardless of 

the other’s motion. During cornering, the car’s chassis will roll, unloading the inside tire and 

loading the outside. With a non-independent suspension this will cause both wheels to lean 

towards the outside of the car relative to the corner. This will induce unnecessary negative 

camber on the inside tire, which is now unloaded, and induce positive camber on the outside tire. 

Inducing positive camber on the outside tire reduces grip by causing the tire to be at a non-

perpendicular angle to the track. Rough track surfaces have a similar effect on handling 

dynamics due to the loading and unloading of wheels during suspension jounce and rebound. 

The ability to independently control tire camber, then, is a major benefit of implementing an 

independent rear suspension. 

This project investigated possible semi-trailing arm and unequal length control arm (double A-

arm) rear suspension designs. Other designs, such as a five link, were not included in the study 

because they require additional links, ball joints, and space. These systems would increase both 



 

53 

 

cost and mechanical complexity, therefore not meeting the performance specifications and 

objectives laid out in the Suspension Design Goals section above. In contrast, common semi-

trailing arm and double A-arm designs use only a few links and offer simple, low cost solutions. 

Semi-trailing Arm 

A semi-trailing arm system consists of one link at each wheel. Because of this reduced number 

of links, cost and mechanical complexity is kept to a minimum. The cost of this design is roughly 

equivalent to a 3-link or swing axle suspension and the overall weight would only be increased 

by approximately 10.00lb, as discussed in the previous section. A semi-trailing arm design could 

also have utilized the existing suspension pickup points on the chassis with the use of small 

adapter plates, as seen in Figure 28 below. This would further reduce cost as the chassis would 

not have to be modified to be compatible with the new suspension. 

A semi-trailing arm is often considered an evolution of the swing-axle suspension. As such, it 

offers significant improvement in handling over a solid-axle suspension. A semi-trailing arm 

allows each wheel to gain camber independently, which increases traction on the inside tire 

during cornering. This design would also reduce jacking forces, since the roll center could be 

positioned much lower to the ground. However, since a semi-trailing arm uses only one link, 

camber gain between droop and bump cannot be controlled independently. This means that if the 

car gains one degree of negative camber for one inch of travel in bump, the car will also gain one 

degree of positive camber in droop. This is undesirable because positive camber decreases the 

size of a tire’s contact patch both in a straight line and in a corner. Negative camber is desired 

because it allows the tire to remain perpendicular with the ground due to the chassis’ body roll. 

In designing a proposed semi-trailing arm rear suspension the front view swing arm length was 

manipulated until an acceptable camber gain rate was achieved. The camber gain rate on a semi-

trailing arm is defined as: 

                       
    

                              
 

Equation 6 

With an instant center which is 70.89 in from the wheel and a front view swing arm length of 

68.30in, the camber gain rate was calculated as: 

                       
       

       
 

Equation 7 

  = 0.83 deg/in 
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The Formula SAE regulations state that the suspension must provide 1 inch of suspension travel 

in droop and 1 inch in bump. With a total of 2 inches of suspension travel, the camber gained 

then is:  

                                                
Equation 8 

      = 2.00 in x 0.83 deg/in 

      = 1.68 deg 

Therefore, this semi-trailing arm design would provide 1.70deg in camber change over our entire 

suspension travel. Since the typical drop off of lateral force gain per degree in camber of these 

tires is between 1.50deg and 2.00deg, this is an acceptable amount of camber gain. 

Once the camber gain was determined, the team adjusted the vertical pick up point of the outside 

arm until a low instant center height was achieved. The instant center’s height was determined by 

projecting the front view swing arm length and extending the trailing arm through its pick up 

points, as seen in Figure 28. The intersection of these two projected lines is the instant center’s 

location in the front view. The height of the instant center primarily determines the amount of 

scrub produced in the suspension. An instant center above ground will produce scrub out on 

jounce and an instant center below ground will produce scrub in on jounce. The minimum 

amount of scrub is produced when the instance center intersects in the ground plane. By staying 

above ground scrub-out will be created rather than scrub-in. Scrub-out increases the rear track of 

the vehicle on jounce which is more desirable than making the distance between the rear wheels 

more narrow. Therefore, the goal was to achieve a low instant center which does not cross the 

ground plane. With one side of the trailing-arm 0.25in lower than the other, an instant center 

height of 0.74in above ground was produced. This small distance will produce a negligible 

amount of scrub. 

These characteristics define the mounting points of the semi trailing arm. The final proposed 

shape is shown in Figure 28. This consists of the trailing arm and two adapters which allow it to 

mount to the existing pick up points on the chassis. 
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Figure 28: Semi-Trailing Arm Mounting Points (Material Between Points for Visual Purposes Only) 

 

Figure 29: Determining Semi-Trailing Arm Instant Center Location 
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Unequal Length Control Arm (Double A-Arm) 

Unequal length control arm suspensions consist of two primary links at each wheel. This 

includes an upper and lower control arm. The group decided to investigate the use of unequal 

length control arm designs because, unlike a semi-trailing arm, this allows for independent 

control of camber gain in bump and droop. Such a suspension design would not utilize the 

existing pick up points on the chassis. Rather, the control arms would attach to a sub-frame that 

also supports a differential, springs, and shocks. 

The group developed an unequal length control arm suspension by determining the necessary 

lengths and positions of each control arm. In order to increase vehicle stability during suspension 

travel, the lower control arm should be as long as possible. Packaging restraints created by the 

mounting of the differential and other drivetrain components requires that the lower control arm 

be no longer than 18.00in. Therefore, an 18.00in lower control arm was chosen. The lower 

control arm was angled parallel to the ground plane to ensure a low roll center, which reduces 

jacking forces on each wheel. The outer pickup points of both upper and lower control arms were 

defined by the spacing between upper and lower ball joints. The distance between these ball 

joints was made as large as possible in order to reduce the load on each control arm. Due to the 

size of the vehicle’s wheels, the distance between ball joints and the control arm’s outer 

mounting points was defined as 8.00in. The lower control arm, then, was now fully defined with 

a length, angle, and mounting point. Packaging restraints around the differential and the desired 

camber gain determined the location of the upper control arm’s inner pickup point. It is desired 

to gain negative camber under bump and reduce camber gain under droop. As such, the upper 

control arm should be shorter than the lower. Practical mounting solutions for the upper control 

arm allowed it to be 11.60in. When placed at a 15.00deg angle from horizontal, as shown in 

Figure 30. This results in an upper control arm which is 64% the length of the lower. Milliken & 

Milliken’s Race Car Vehicle Dynamics recommends a control arm length ratio of between 50% 

and 80%. 

 

Figure 30: Length of Control Arms 
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In addition, the position of the control arms as described results in a relatively short front view 

swing arm length. As a result, a total of 3.84deg of camber change occurs over the suspension’s 

two inch motion. Due to the difference in control arm lengths, this translates to -2.06deg of 

camber in bump and +1.79deg of camber in droop, as seen in Figure 31. This allows the car to 

gain negative camber as the suspension compresses through a corner, providing a larger contact 

patch. Positive camber under droop is also significantly less than the negative camber gained in 

bump. This helps prevent reduction of the contact patch as the suspension is unloaded. The 

instant center for this design was determined by the intersection of each projected control arm. 

The roll center was then determined by projecting a line from the center of the contact patch 

through the instant center. The intersection of this line and the vehicle’s center line defined the 

roll center’s location. As seen in Figure 32, the resulting roll center is low, minimizing jacking 

forces on suspension components. Figure 32 also shows an instant center which is close to the 

ground but does not intersect the ground plane. A low instant center height reduces scrub and an 

instant center above ground produces scrub out rather than scrub in. This characteristic increases 

track width under jounce, thus producing more stable driving dynamics. The position of control 

arms defined above then was considered desirable. The final unequal length control arm 

suspension geometry can be seen mounted to the car in Figure 33. 

 

Figure 31: Camber Gain Under Bump and Droop 

 

Figure 32: Location of Instant Center and Roll Center 
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Figure 33: Final Rear Suspension Geometry 

Design Selection 

The primary goal of the rear suspension redesign was to improve predictability of vehicle 

dynamics to the driver. We also sought to improve general vehicle performance in static and 

dynamic competition events by reducing weight and minimizing cost. 

A double-A arm type suspension offers camber control under both compression and droop that is 

independent between the two rear wheels. This allows the tire’s contact patch to be fully utilized 

during cornering as chassis roll causes the vehicle loads to act at a non-perpendicular angle to the 

track. As a result, rear tire grip is approximately linear and limited only by tire performance. A 

double A arm suspension also offers adjustability of the lower and upper control arms. By 

changing these lengths the total amount of camber gained through suspension travel can be 

increased or decreased, depending on track conditions. 

Semi trailing arms would be able to utilize half of the existing rear suspension pick up points. As 

a result, this design could potentially use a smaller rear sub-frame than a double A-arm system. 

However, adapting semi-trailing arms to the existing chassis would require additional sub-frame 

members to locate shocks, springs and the differential. As a result, a semi-trailing arm 

suspension would require a similarly sized rear sub-frame as a double wishbone suspension. This 

negates any weight advantage a semi-trailing arm design may have over a double wishbone. In a 

semi-trailing arm design the wheel also pivots about a fixed axis. This does not allow control of 

camber in both compression and droop, thereby making the vehicle more difficult to drive. Such 

a design would create a large amount of positive camber under droop, reducing vehicle stability 

and making driving dynamics unpredictable.  

Based on this analysis, the team identified a double wishbone rear suspension as the most 

beneficial suspension design. This is because such a design offers increased vehicle stability and 

predictable handling characteristics without suffering from additional sprung or unsprung mass. 
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Shock Actuation 

Both pushrod and direct acting rear shock actuation methods were explored. Direct acting shock 

actuation would locate the bottom of the shock on the lower control arm. The lower control arm 

extends 18.00in away from the rear sub-frame. Due to this large distance the shock’s top mount 

would either be located far from the sub-frame or induce an equally large moment on the lower 

control arm. A larger than necessary moment induced by the shock would require a stronger 

control arm to prevent excessive stress and compliance. This would be very undesirable as a 

stronger control arm would require more mass and thus increase the vehicle’s unsprung weight. 

However, reducing this moment by mounting the shock close to the upright would also require 

additional aluminum tubing to locate the top of the shock. Doing so would avoid adding 

unsprung weight but at the expense of overall vehicle weight. By implementing a push rod 

system the springs and shocks could be located within the sub-frame. This allows the shocks to 

be directly mounted to the portion of the sub-frame that locates the rear differential, as seen in 

Figure 34. Therefore, a push rod system would require less material than a direct acting system 

as it is not necessary to extend shock mounts out toward each rear wheel. By reducing the 

quantity of necessary tubing vehicle weight and cost can be minimized and manufacturability 

can be increased. Similar motion ratio curves could be achieved with both direct acting and 

pushrod systems. As such, the team decided to pursue a pushrod type solution due to the design’s 

unsprung and overall vehicle weight benefits. 

 

Figure 34: Pushrod Actuated Shocks Mounted Within Rear Sub-Frame 

Motion ratios of the rear suspension were investigated to optimize the performance of our rear 

shocks. The suspension’s motion ratio is defined by: 

             
            

            
 

Equation 9 

The vehicle’s wheel travel is determined by FSAE regulations which state that the suspension 

must be capable of traveling 1.00in in compression and 1.00in in droop. The maximum travel of 
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the car’s existing Cane Creek shocks is also 2.25in. An acceptable motion ratio then, must 

comply with these limiting conditions and cannot be lower than 0.89. A low motion ratio also 

allows frictional forces within the shock’s seals to significantly impact the shock’s resistance to 

motion. Additionally, most shocks suffer from poor performance and reduced durability above 

motion ratios of 2.00. To promote consistent damping effectiveness and shock durability, we 

sought to generate a motion ratio between 1.00 and 2.00. We also sought to minimize an increase 

in motion ratio as the suspension compresses since this produces a digressive effective spring 

rate. This is a trait that would cause the suspension’s behavior to be non-linear and therefore be 

unpredictable to the driver. 

The team’s motion study was performed through the manipulation of 3D sketches and design 

tables in Solidworks. By measuring the distance between the shock’s rocker and sub-frame 

mounts we were able to record shock travel. Likewise, wheel travel was measured respective to a 

ground plane with suspension compression indicating a positive displacement and zero travel 

measured at ride height. Suspension droop, then, is represented by negative wheel travel.  

Packaging constraints determined the location of the shocks and the length and position of the 

pushrod. As a result, final adjustments to the motion ratio were determined through the rocker’s 

shape and position. The average motion ratio over the suspension’s travel was produced by 

positioning the rocker’s pivot nearer to the wheel than the shock, generating a lever effect. The 

net change in motion ratio was controlled through the height of shock and pushrod mounts on the 

rocker. As a result, these three points, the rocker’s pivot, pushrod mount, and shock mount, 

determined the general shape of the rocker, as seen in Figure 35. The resulting motion ratio curve 

can be seen below in Figure 36. As seen in this graph, the motion ratio stays above 1.00 and 

below 2.00 while remaining extremely linear under droop and somewhat linear under 

compression. This design then, meets the requirements outlined above. 

 

Figure 35: Rocker Shape - (Left to Right) Pushrod Mount, Pivot, Shock Mount 
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Figure 36: Motion Ratio Over Wheel Travel – Progressive & Approximately Linear 
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Spring Medium 

Since the new rear suspension design was to utilize the car’s existing rear shocks, our choice in 

spring mediums was limited to 2” by 8” coil springs. The only variable to be determined was the 

desired spring rate for our new design. Spring rates were determined through the following sets 

of equations: 

                                                 
Equation 10 

          
           

                
   (                                         

Equation 11 

                      
           

                 
  

Equation 12 

            
             

            
 

Equation 13 

                                   
Equation 14 

                                       
Equation 15 

The total weight on the rear of the vehicle is 295.00lb with driver. Of this weight, 30.22lb is 

unsprung and 132.39lb is sprung. Calculating for our car then: 
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  ⁄        
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The ideal spring rate for the rear suspension, then, would be 123.76     ⁄ . However, springs in 

this size are sold in spring rates between 100   
  ⁄  and 400     ⁄  with 25     ⁄  increments. 

Therefore we can either choose a 100     ⁄   spring which is 23.76   
  ⁄   “too soft” or a 125     ⁄   

spring which is 1.24   
  ⁄  “too stiff”. A 125   

  ⁄  spring, then, is closer to our suspension’s ideal 

state. Using a slightly stiffer spring also insures that the car’s minimum ride height will not be 

lowered. Additionally, the rear ride frequency will remain lower than that of the front. This aids 
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the front wheels’ transient response, allowing the driver to more easily control the car’s “turn in” 

motions and perform mid-corner corrections. As a result, the team decided to utilize 125   
  ⁄  

steel coil springs in conjunction with the existing Cane Creek Double Barrel shocks. 

Manufacturing 

The rear sub-frame and suspension components were designed to be simply manufactured, with 

geometries determined by differential and control arm locations. This was to both aid in 

concurrent production and to increase the vehicle’s performance in static FSAE events.  

Manufacturability is a judged criterion for the Design static event in the FSAE Michigan 

competition. As such, increasing the manufacturability of the rear sub-frame and suspension 

improved the vehicle’s performance for competition events. 

The sub-frame was designed for and manufactured from 6061-T6511 aluminum square tubing. 

This tubing was CNC notched and cut to length within 0.0005in tolerance.  The sub-frame was 

then jigged and fully TIG welded. The control arms were designed for and manufactured from 

4041 Chromoly steel, which was cut, notched, and fully TIG welded for strength. All of the 

welded components were outsourced to be heat treated. This was done to relieve internal stresses 

generated during the welding process. Lastly, the rear uprights and hubs were CNC machined 

from of solid pieces of 6061-T6511 aluminum.  

Conclusions 

The rear suspension design sought to improve the vehicle’s performance in FSAE Michigan 

competition events. To achieve this, the design sought to accomplish four goals. These were to 

provide more intuitive vehicle operation, to maintain serviceability, to minimize overall vehicle 

weight, and to allow for simple adjustability of suspension dynamics. 

Intuitive Vehicle Operation 

Intuitive vehicle operation was achieved by incorporating both independent suspension 

geometries and a differential into the design. A double A-arm suspension allowed the rear tires’ 

motion, and specifically camber, to be completely independent of one another. This design 

offered up to -2.00 deg of camber throughout full wheel travel. This maintained rear tire grip 

during chassis roll and during rear suspension travel, allowing the driver to remain in control of 

the vehicle. Replacing a swing-axle with a sub-frame and independent suspension also reduced 

unsprung weight by approximately 30.00lb. This minimized the inertial damping effects due to 

suspension mass and thereby increased vehicle stability on unsmooth driving surfaces. Doing so 

also provided room for driver error by allowing quicker changes in direction. As a result, over-

steer and under-steer can now be more easily controlled through mid-corner steering and throttle 
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input corrections. Allowing for such corrections permits non-professional drivers to produce 

competitive cornering performance.     

The addition of a differential allowed the rear tires to rotate at different rates while the vehicle 

cornered. By allowing the outside wheel to rotate faster than the inside, under-steer was reduced 

during corner entry, improving turn in response. Doing so allows the driver to make mistakes, 

such as missing braking points and following an un-ideal racing line, without detrimentally 

affecting lap times. This compliance for driver error maximized the potential for a non-

professional racer to be competitive in the autocross and endurance events. 

Serviceability  

Serviceability of the vehicle was maintained by implementing a removable rear sub-frame into 

the rear suspension. The sub-frame was attached to the chassis using a minimal number of 

mounting points and standard removable hardware. Once the drive chain is separated from the 

sprocket only six hex bolts must be removed to separate the sub-frame and chassis, allowing for 

quick and easy disassembly for maintenance and repairs.  

Minimize Overall Weight 

The vehicle’s overall weight was maintained despite the addition of a more complex suspension 

geometry and differential. The rear sub-frame, differential, and suspension are approximately 

equal in weight to the swing-axle they replaced. This was achieved by utilizing an aluminum 

sub-frame, tubular control arms, and a compact differential. The result is a rear suspension which 

offers improved handling characteristics while minimizing overall vehicle weight.  

Adjustability 

The team intended to add adjustability to the rear suspension design by utilizing adjustable 

length lower control arms. The lower control arms would extend by several inches, offering up to 

-3.00deg of static negative camber. This would allow the driver to optimize static camber 

settings during competition, increasing performance potential for the acceleration, autocross, 

endurance, and skid-pad events. However, the team decided that the advantages gained by 

producing adjustable control arms would not be justified by the resulting compromises in 

manufacturability, cost, and suspension geometry. Consequently, adjustable lower control arms 

were not produced. The rear suspension design retained the ability to adjust the shock’s rebound 

and compression damping rates and to physically replace springs. This was achieved by using 

dual-barrel shocks that support a standard 2.00in by 8.00in spring.  



 

65 

 

Implications  

By providing intuitive vehicle operation and serviceability, minimizing overall weight, and 

allowing for some basic adjustability, the rear suspension improved the vehicle’s potential for 

performance in competition events. Adding compliance for driver errors allowed non-

professional drivers to remain competitive during the autocross, endurance, and skid-pad 

competitions. Allowing simple disassembly of the rear sub-frame also improved the ease with 

which repairs and maintenance can be performed with hand tools. In addition, adjustable shocks 

and spring rates allow basic optimization for various dynamic events, improving the 

suspension’s effectiveness on various track layouts. This was all accomplished while minimizing 

vehicle weight and cost, thereby improving the vehicle’s general performance in both the static 

and dynamic competitions.  
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Packaging and Ergonomics 
The packaging sub-group of the 2013 Formula SAE MQP was responsible for improving driver 

ergonomics, increasing serviceability, and reducing overall vehicle weight. To accomplish this, 

the pedal plate was redesigned to reduce deflection and relocate the brake pedal for improved 

ergonomics. A CAD model has been created based on an existing assembly of the 2012 car. This 

model has aided the packaging of various vehicle components by providing an accurate 

representation of part locations. 

The packaging sub-group will also be responsible for designing and manufacturing the 2013 

vehicle’s body mounts, new seat, and fuel, oil, and coolant tanks. 

Pedal Plate 

Previous driver experience indicated that the 2013 Formula SAE vehicle’s pedal plate deflected 

under hard braking. Since this plate locates both the brake and accelerator pedals, such a 

deflection repositions driver controls. This makes operating the vehicle slightly awkward and 

decreases driver ergonomics.  

 

Figure 37: 2012 Pedal Plate FEA Deflections 

One of the root causes of this deflection was the lack of fixed geometry in the design. The only 

solid connection between the plate and the chassis were at four small tabs that are welded to the 

chassis tubing. To remedy this, the previous design was altered to decrease this deflection. The 
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profile of the plate was extended to lie over the members of the chassis to the sides and front. 

These members support the new design, creating more static geometry in addition to the original 

supporting tabs welded to the chassis. 

 

Figure 38: 2013 Pedal Plate FEA Deflections 

CAD Model 

There is an existing basic assembly of the 2012 Formula SAE car that was produced in the 

SolidWorks CAD program. However, the assembly’s design was poorly executed and its 

assembly mates would often break or cause errors.  

To start the process towards having a usable and up-to-date assembly of the car, a new file was 

built from the ground up. Most of the CAD models created and acquired by last year’s group 

were used, and were put together using sensible sub-assemblies and component groups. The 

redesigned vehicle assembly can be seen below in Figure 39. 

 

Figure 39: 2012 Full CAD Assembly 
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Engine CAD 

One of the models used in the car assembly last year that was of concern was that of the engine. 

The model created by last year’s group was highly simplified in appearance and function, and 

looked out of place among the level of detail in the rest of the assembly. In addition, it wasn’t 

clear whether the mounting points were properly positioned. Because of this, engine model was 

recreated from scratch, with a higher level of detail. A side-by-side comparison of the old model 

and the recreation of the engine can be seen below in Figure 40 and     Figure 

41. 

 

Figure 40: 2012 Engine    Figure 41: 2013 Engine 

Body Design 

A key component used in ensuring efficient movement of air around the car as it travels is an 

aerodynamic body kit. A body kit can contain any number of pieces, including an aerodynamic 

nose cone, and a ‘wing’ in the front or rear to provide down-force. For our project, we decided 

we would only be using a nose cone, which covers the impact attenuator in the front of the car, 

and extends back to the driver cockpit.  

Traditionally, the majority of teams entering cars in the FSAE competition choose to construct 

the pieces of their body kit out of fiberglass. However, the process required to do this is quite 

extensive, involving the creation of a positive form of the body’s shape, followed by a negative 

that fits around this shape. The negative is then used in the forming and curing of the fiberglass 

in the shape of the body. 

Because of the difficulty and time involved with such a process, it was decided that an 

alternative design for the nosecone was necessary.  
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The final design arrived upon involves the construction of a wireframe skeleton to act as the rigid 

structure, rather than a resin-covered fabric. Formed in the desired shape of the body, the 

skeleton is manufactured by bending, and welding sections pieces of 1/8” aluminum rod stock 

together to achieve this shape.  

Initially, the plan was to create the body in multiple sections, with one over the impact 

attenuator, one over the driver’s legs, and one on each side of the driver’s legs. However, this 

design was modified when it was determined that this modular design would be too difficult to 

attach with the possibility for easy removal for judging. The final design has the same overall 

shape of the previous, however the pieces will all be incorporated into a single large structure, 

minimizing the number of places where it needs to be attached to the chassis of the car. The 

wireframe can be seen in the model below, highlighted in red. 

 

The other holes in the chassis frame not covered by this nose cone are separate from it for two 

reasons. First, their removal is not necessary during judging at competition. Therefore, they can 

be attached to the chassis separately. The convenient part about this is the fact that these 

connections can then be essentially be permanent ones, which are easier to accomplish. 
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Fuel, Oil, and Coolant Tanks 

The fuel tank of the 2012 vehicle, while effective, had much room for improvement.  Due to 

manufacturing issues, the seat was not designed with a mounting strategy, and tabs needed to be 

welded onto it to fasten it to the car, causing misalignment with the mounting tabs and leaks in 

the tank.  Due to the tank’s misalignment, it was physically fastened to the chassis by only a 

single bolt.  The final tank that was fitted to the car was ultimately patched and barely fastened to 

the car, so the packaging sub-group decided it would be subject to redesign. 

 

Figure 42: 2012 Vehicle Fuel Tank Shape 

With the fuel tank prompting a redesign, it allowed for an attempt to improve upon the overall 

packaging and accessibility of the car’s components behind the seat firewall.  In altering the 

dimensions of the fuel tank, it was possible to create a combined package of the fuel, oil, and 

coolant tanks.  The oil and coolant overflow tanks were mounted to the 2012 vehicle by tabs 

located high on the roll hoop, at or above the height of the driver’s shoulders.  By moving the oil 

and coolant tanks inboard and lower in relation to the car, components of the engine and other 

systems of the car would be made more accessible.   

The initial conceptual iteration of the tank package consisted of a single tank in a prism shape, 

compartmentalized into three cells, one each for fuel, oil, and coolant.  Each cell would be 

separated by a single pane wall, welded along its perimeter to the interior of the tank shell. 

Further consideration of this concept revealed that it would run the risk of cross-contamination if 

the welds were not sufficient or leaked.  A double-walled design was then considered, employing 

the same concept of a single tank divided into cells, using a double-wall between them to 

eliminate the cross-contamination risk.  The design, while eliminating the contamination risk, 

would have proven difficult to manufacture, as the walls would each have to be welded while 

inside the folded sheet metal shell. 

The double-walled design ultimately provided inspiration for the final tank design package, 

building off of the double-walled concept.  Instead of packaging three cells into a single tank, 
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three tanks were designed to be tack welded together. Each fluid gained its own self-contained 

tank, but physically packaged into a single unit to be easily mounted to the vehicle. 

The fuel tank forms the base of the unit, utilizing a wedge shape based off of the dimensions of 

the original fuel tank.  While maintaining a similar shape, the dimensions of the fuel tank were 

modified to increase clearance between it and the seat, allowing for the incorporation of the 

coolant and oil tanks. The fuel tank’s shape was shortened in height and widened appropriately 

to maintain the same volume of fuel contained by the original 2012 tank.  The widened fuel tank 

would allow for more lateral movement of the fuel, creating an unbalanced weight transfer as the 

car turns, dynamically affecting the car’s performance by shifting more weight to the outside of 

the turn. To slow this weight transfer, an X-shaped baffling was added to the interior of the tank, 

affixed to the upper face of the tank, leaving a 0.40in gap between it and the bottom face.   This 

gap allows for proper drainage of fuel as its level approaches empty, as rule IC2.4.5 states the 

fuel system must have a provision for emptying the tank if required. 

 

 

 

Figure 43: Final Fuel Tank Design Sectioned to show baffling and clearance 
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The oil and coolant tanks’ volumes were taken from the existing tanks on the car, and then a 

design was produced for each one.  Each tank was angled to fit neatly on top of the fuel tank and 

add 2.00in to the overall height of the assembly.  The inlet and outlet ports for each tank were 

located at optimal points to conduce flow.  The front edge of each tank, at the physical lowest 

point, locates the outlet ports, and the inlet points on the upper rear edge.  The location of these 

ports allows for gravity to assist in the fluid flow within the tanks.  The final tank design was 

sourced to Assabet Valley Technical High School for manufacture.  Students there used 1/8in Al 

3003 aluminum sheet cut by a CNC plasma table.  The pieces were then folded and welded 

together as needed to complete assembly of the tanks.  The students at Assabet Valley then 

pressurized each tank to 30 psi to test for leaks, and all three tanks passed. 

 

Figure 44: Fuel, Oil, and Coolant tank assembly 

The widened footprint of the tank assembly required reassessment of the assembly’s mounting 

strategy.  The 2012 tank was intended to be mounted on tabs welded to the chassis and tank after 

it was manufactured.  As previously stated, the mounting strategy of the tank was ineffective 

with the tank as it was manufactured; only mounted by a single bolt.  To mount the new tank 

assembly, a flexible mounting strategy was considered, fastening the tank assembly to the outer 

chassis members.  Two cross bars were welded to the front and rear edges of the fuel tank.  

Instead of modifying the chassis by welding more tabs to it, the cross bars were fastened to the 

chassis by stainless steel circular clamps in neoprene sleeves.  These clamps are clipped over the 

chassis members, then fastened to the cross beams by bolts. 



 

73 

 

 

 

Figure 45: View of tank assembly showing mounting rails & clips 

 

 

 

Figure 46: Tank assembly mounted to chassis members 
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Seat 

The vehicle’s seat serves two purposes, as a firewall between the driver and engine, and as a 

support for seat inserts to accommodate multiple drivers.  FSAE rules specify that the driver’s 

cell (without inserts) must conform to regulations accommodating a 95
th
 percentile adult male 

with a racing helmet.  Dimensions for a template fitting this description are specified by the 

FSAE 2013 rules, hereafter referred to as “Percy”: 

 A circle of diameter 200.00mm (7.87in) will represent the hips and buttocks. 

 A circle of diameter 200.00mm (7.87in) will represent the shoulder/cervical region.  

 A circle of diameter 300.00mm (11.81in) will represent the head (with helmet). 

 A straight line measuring 490.00mm (19.29in) will connect the centers of the two 200 mm circles. 

 A straight line measuring 280.00mm (11.02in) will connect the centers of the upper 200 mm circle 

and the 300.00mm head circle. 

In designing the driver’s cell, Percy’s helmet must remain a minimum of 2.00 from the line 

formed between the highest points of the front and rear roll hoops.   

 

Figure 47: Percy positioning in 2012 seat 

The seat of the 2012 car and the position of the engine left a small space between the seat and the engine 

in which to create the intake manifold.  As part of the team’s goals, the engine and packaging teams both 

worked to create more space between the engine and the seat to allow for a new air intake design.  The 

new design of the seat needed to move the driver’s back forward to increase distance between the seat and 

the engine while maintaining compliance with Percy’s required positioning.  To achieve this, the bottom 

floor of the seat was decreased in length, moving Percy’s hips forward.  In doing so, Percy’s position 

became more reclined, allowing for addition of two inches to the top shelf of the seat, moving the driver’s 

position forward.  Combined with the repositioning of the engine, these extra inches allowed for more 

flexibility in the redesign of the intake manifold. 
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Figure 48: Percy in 2012 Seat 

 

 

 

Figure 49: Percy in New Seat with Tanks Assembly.  
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Sway Bar 

With the redesign of the vehicle’s rear suspension setup, a close look needed to be taken at the 

front suspension as well.  The major issue that arose with the front suspension, in converting the 

rear setup from a solid axle to independent, was a loss of the total system’s roll stiffness about 

the front-to-rear axis of the vehicle. 

In the swing axle setup, the front suspension was fully independent, simply A-arms connected to 

the springs and dampers, incorporating no components connecting the two sides of the vehicle.  

The rear suspension made up for the lack of roll stiffness in the front suspension by having the 

swing axle act as a sway bar for the entire car.  The purpose of a sway bar is to slow down the 

transfer of weight under cornering, so that the weight of the car can stay more evenly distributed 

among all four wheels as its center shifts under directional changes.  Due to the lack of roll 

dynamics in the swing axle, it served this purpose by having both rear wheels directly connected 

along the solid axle.  The elimination of the swing axle setup in the rear eliminated the entirety 

of the roll stiffness present in the 2012 vehicle’s suspension setup, prompting the need for a sway 

bar to be incorporated into the front suspension’s setup. 

The major problem presented by the incorporation of a sway bar into the existing front 

suspension of the car was the desire of the group to maintain the existing geometry and 

components of the 2012 vehicle’s setup.  Ideally, a sway bar is incorporated into the 

suspension’s linkage setup through a rocker arm or tie rods connecting to a straight bar, allowing 

for purely torsional stress in the sway bar.  Without redesigning the entire front suspension setup, 

a sway bar needed to be designed around the existing suspension components. 

 

Figure 50 Initial Sketch for Sway Bar Positioning With Front Suspension 
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The design of the sway bar for the 2013 vehicle departs from the ideal straight bar design, 

instead incorporating a stepped design to allow the sway bar to be positioned around both the 

driver’s cell and the existing components of the front suspension.  The main shaft of the bar runs 

beneath the driver’s cell, mounted to the vehicle by similar clips used to mount the tank 

assembly.  These clips allow for the bar to have rotational freedom while maintaining its 

positioning in relation to the chassis. Outside the chassis, the bar curves vertically, then 

horizontally again to extend above the A-arms for the end link connections.   

 

Figure 51 Sway Bar Shape and End Hookup Design 

The end link hookups incorporate multiple holes to allow for adjustability in the position of the 

end link in relation to the bar.  This variation in the distance between the link’s mounting point 

and the rotational axis of the bar allows for tuning of the bar’s effective stiffness.  Mounting the 

end link farther from the axis of rotation allows the end link to exert a higher force moment on 

the bar, decreasing its effective stiffness, while the closer the link is mounted to the axis, 

increasing its effective stiffness.   

Once the sway bar’s basic shape was designed and test fit to the SolidWorks model of the front 

suspension, a material was chosen and Finite Element Analysis in SolidWorks Simulate was 

conducted to determine the bar’s size.  With the dynamic loading the bar would be subjected to, 

an alloy of steel was determined to be ideal, as a lighter weight aluminum bar was determined to 

be subject to fatigue failure too quickly.  Iterations of the simulation were conducted using 1.00”, 

0.75”, and 0.50” bar diameters, all with a .120” wall thickness.  
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Figure 52 1.0" Sway Bar Displacement Analysis Figure 53 0.75" Sway Bar Displacement Analysis 

 

Figure 54 0.50" Sway Bar Displacement Analysis 

 

 

For a 500lb force located at the furthest position from the axis of rotation, the .05” bar showed 

approximately 13cm maximum displacement. Feedback from the drivers determined that the 

ideal size would be to err on the side of lower stiffness and higher displacement, as the vehicle 

would then be less prone to under-steer.  The final bar was manufactured using bent 4400 series 

alloy steel tubing. 
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Conclusions 
The goal of this project was to optimize the 2012 FSAE car for performance in dynamic and 

static FSAE Michigan competition events. This was accomplished by designing and 

manufacturing new components and sub-systems for the existing car. By improving these sub-

systems and accomplishing the project’s objectives, the team was able to improve the car’s 

performance for FSAE competition. 

Intake, Exhaust, & Engine Position 

This project developed an intake which utilizes a “supercharging” effect of pressure waves. This 

design reduced the intake’s plenum size and includes a new restrictor and throttle body. By using 

FDM rapid prototyping the new intake was manufactured to tighter tolerances than the previous 

component. This manufacturing technique produced the intake runners to equal length within 

.005in. Repositioning the engine also generated 2.00in of additional clearance between the 

firewall and intake. This allowed the intake runners to be less severely angled than on the 

previous component. Lastly, the intake’s weight was reduced from 3.32lb to 2.01lb, a 39% 

reduction.  

The redesigned exhaust system is packaged with the new engine position, rear drivetrain, and 

rear suspension, thus accomplishing the design’s primary objective. The exhaust was also 

designed to operate at 7500 engine RPM rather than the original 8000 RPM in order to increase 

power production. The exhaust design utilizes mandrel bent tubing rather than a production 

motorcycle exhaust. This allowed the system to meet FSAE sound requirements while reducing 

weight compared to the previous component. 

Rear Suspension 

The rear suspension design increased maximum independent rear tire camber gain by -2.00deg. 

The new rear suspension and drivetrain systems also reduced unsprung weight by 30lbs, a 79% 

reduction. The rear drivetrain was manufactured to utilize a limited slip differential, allowing the 

rear tires to spin at independent speeds while cornering. Lastly, by incorporating a removable 

rear sub-frame, the vehicle’s original serviceability was maintained. The new rear suspension 

provides intuitive vehicle operation and serviceability while reducing both sprung and unsprung 

weight, therefore improving the vehicle’s performance in competition events.  
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Packaging and Ergonomics 

This project manufactured a new pedal plate that relocated driver controls, allotting enough 

additional space for a driver to rest their foot on the plate. The vehicle and engine were also 

accurately modeled in SolidWorks, allowing other components to be designed and manufactured 

with improved packagability. Such components included a vehicle body, driver’s seat, fluid 

tanks, and a front sway bar. The design and production of these components allowed them to be 

packaged with the new engine, intake, exhaust, and suspension positions. The fluid tanks were 

also positioned under the driver’s seat, improving serviceability and lowering the vehicle’s 

center of gravity.  

Continuously Variable Transmission 

This project originally sought to reduce the CVT’s engagement speed and lower the engine’s 

operating speed. However, limited resources prevented the team from addressing these 

objectives and placed the CVT outside of this project’s scope. It is recommended that future 

teams address the design and tuning of the CVT in order to further improve the vehicle’s 

performance in FSAE Michigan competition events.    
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Appendix A: Baseline Testing  
 

Baseline Endurance 

Driver: Alessandro  Driver: Dylan 

Lap Number Lap Time  Lap Number Lap Time 

1 21.6  1 19.2 

2 19.7  2 18.05 

3 26.1  3 19.7 

4 21.1  4 18.6 

5 27.9  5 19.3 

6 41.4  6 25.2 

7 18.6  7 18.2 

8 19.7  8 18.06 

9 21.3  Avg time 19.5 

10 26.4    

11 19.7    

12 27.6    

13 19.4    

14 19.7    

15 18.9    

16 56.3    

17 18.5    

18 26.9    

19 18.1    

20 22.5    

21 19.2    

22 18.4    

23 18.8    

24 21.3    

25 29.3    

26 19.8    

27 18.3    

28 18.8    

29 19.3    

30 18.6    

Avg time 23.1    
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Table 6: Endurance Baseline Testing Results 

Baseline Acceleration 

Lap  Time(s) 

1 4.73 

2 6.03 

3 5.28 

4 5.85 

5 5.38 

6 5.24 

7 5.17 

8 5.12 

9 5.23 

10 5.29 

11 5.43 

12 5.12 

13 5.34 

14 5.51 

15 5.27 

16 5.38 

17 4.26 

18 5.26 

Average 5.27 

Table 7: Acceleration Baseline Testing Results 
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Baseline Skid-Pad 

Lap Time (s) 

1 37.72 

2 37.33 

3 36.99 

4 39.37 

5 38.53 

6 36.76 

7 36.15 

8 38.09 

9 37.08 

10 36.49 

11 36.67 

12 37.34 

Average 37.38 

Table 8: Skid-Pad Baseline Testing Results 
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Appendix B: Intake Calculations 
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