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Abstract

This thesis describes a real-time software-defined-radio implementation of a two

source distributed beamformer. The technique in this thesis can be used to syn-

chronize the carriers of two single antenna wireless transmitters (i.e. “sources”)

with independent local clocks so that their bandpass transmissions arrive in-phase

at an intended receiver (i.e. “destination”). Synchronization is achieved via: (i) an

unmodulated beacon transmitted by the destination to the sources and (ii) a pair

of secondary unmodulated beacons between the sources. No explicit channel state

information is exchanged between the sources and/or the destination. Using this

method, it is possible to realize a two-source distributed beamformer that provides

a reduction in overall transmit energy and increased security due to the direction-

ality of the transmitted signal. System characterization results are provided along

with experimental results for both time-invariant and time-varying channels. The

experimental results in this thesis confirm the theoretical predictions and also pro-

vide explicit guidelines for a real-time implementation of a two-source distributed

beamforming system.
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Chapter 1

Introduction

Transmit beamforming [2] is a technique where an array of antennas is used to

simultaneously transmit multiple copies of a bandpass transmission, each with a

particular phase, in order to control the directivity of the signal. By controlling the

phase of the signal at each antenna element in an antenna array, a gain in signal

strength can be achieved in one or more desired directions and nulls can be steered

to minimize radiation in undesired directions.

Transmit beamforming is an attractive technique for many applications due to

its resource efficiency and reduced susceptibility to capture by unintended receivers.

The requirement of an antenna array, however, is a physical constraint that precludes

the use of beamforming in scenarios where the transmitter must have small size,

e.g. cellular handsets. Recently, researchers have considered this problem in the

context of multiuser communication systems in which there are multiple single-

antenna transmitters. In these types of systems, transmitters can (with appropriate

hardware and protocols) form “partnerships” to pool their antenna resources to form

a distributed beamformer. If the transmitters can be appropriately synchronized,

the distributed beamformer can offer many of the gains of “real” antenna arrays to
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multiuser communication systems with single-antenna sources.

This thesis considers the problem of how to synchronize single-antenna transmit-

ters in order to facilitate distributed beamforming. Each transmitter in the system

is assumed to have an independent clock. Distributed beamforming is possible only

if the sources can synchronize the frequency of their carriers and adjust the phase

of their transmissions so that the signal is steered in a desired direction.

Traditional network synchronization approaches including “mutual synchroniza-

tion” [3], “master-slave” [4], and hybrid approaches [5], have been shown to be ef-

fective at clock synchronization but do not address the problem of phase alignment

at the destination. Frequency and phase synchronization for distributed beamform-

ing was considered in [6] where coherent combining at an intended destination is

achieved through a master synchronization beacon and precise placement of both

the source and destination nodes in order to equalize all round-trip propagation

times. Mobility is not permitted in this system.

A distributed beamforming synchronization scheme was also proposed in [7]

where a beacon is used to measure round-trip phase delays between each trans-

mitting node and the destination. The destination estimates and quantizes these

phase delays and transmits them to the appropriate nodes for local phase pre-

compensation. While this system does allow for some node mobility, the amount

of mobility is restricted by the time required to estimate, quantize, deliver, and

implement the phase pre-compensation estimates.

Recently, a new approach to carrier synchronization for a two-source distributed

beamformer was proposed in [1]. The synchronization technique described in [1]

requires the destination to transmit a master beacon signal and the sources to each

use a pair of phase locked loops to synchronize to the master beacon as well as a

secondary beacon signal transmitted by the other source. This method was shown
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to offer several advantages with respect to [6] and [8] including not requiring explicit

estimation, exchange, and quantization of channel state information as well as suc-

cessful operation in systems with high rates of source and/or destination mobility.

While [1] analyzed the performance of this two-source distributed beamformer in

a variety of channel models, it did not provide implementation details beyond certain

guidelines for the design of the PLLs to avoid phase ambiguity. This thesis describes

one potential real-time implementation of this distributed beamforming technique

using the software-defined-radio paradigm. This technique is implemented, char-

acterized and analyzed using TMS320C6713 DSK boards to create source nodes as

well as channels with and without mobility to confirm the analytical results from [1].
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Chapter 2

Background

This chapter provides the necessary background knowledge for the information pre-

sented in this thesis. This includes concepts such as beamforming, phase-locked

loops, software radio and real-time digital signal processing.

2.1 Conventional Beamforming

Conventional beamforming as described in [2] is commonly used in wireless commu-

nication systems that contain antenna arrays. It is a technique that modifies the

individual phases of the transmissions from two or more antennas in an array so

that they align at a desired destination. Using this method it is possible to produce

a directional radiation pattern from a given antenna array instead of an omnidi-

rectional radiation pattern that occurs from certain types of antennas (i.e. cellular

telephone towers).

Directionality appears because the transmission from each individual antenna

in the array is set up to be phase aligned at a specific destination, which causes

constructive interference in the direction of the destination and also in the oppo-

site direction. This type of interference increases the overall signal amplitude in
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comparison to a single transmission. In all other directions, the individual antenna

transmissions cause destructive interference, which decreases the signal amplitude.

Figure 2.1 shows a block diagram representation of a conventional beamformer.

Source Destination

Figure 2.1: Block diagram of a conventional beamformer.

Conventional beamforming is an attractive technique in many applications. It

allows for spatial diversity gains, which lead to advantages such as increased energy

efficiency and decreased outage probability as shown in [2]. In [9], conventional

beamforming is shown to decrease the overall power needed in a given system while

maintaining the same coverage area as a single antenna by a factor of N1−n/2 where

N is the number of antennas and n is the path loss exponent of a simple power law

path loss model. The power of an individual antenna is then reduced by a factor

of Nn/2. The overall energy is reduced because the line-of-sight channel is more

frequently available and less energy is spent in other channels.

2.2 Overview of Distributed Beamforming

Distributed beamforming as described in [1] and [2] works off of the same principles

as conventional beamforming, but does not assume that the transmit antennas are

physically located together. Thus, sources that only contain a single antenna (i.e.

cellular telephones) could be used together to form a virtual antenna array that

would allow for benefits similar to conventional beamforming. Figure 2.2 shows a

block diagram representation of a distributed beamformer.

The same overall energy reduction as conventional beamforming can be achieved
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Source

Destination

Source

Figure 2.2: Block diagram of a distributed beamformer.

in distributed beamforming as described in [9]. The challenge when using distributed

beamforming is in how to force the transmissions from different sources to align their

phases at a given destination. The system provided in this thesis uses phase-locked-

loops to achieve two source carrier synchronization, which then allows for distributed

beamforming of the two sources to occur.

2.3 Phase-Locked-Loops

A phase-locked-loop (PLL) is a device that is used to internally synchronize to the

precise frequency and phase of an incoming signal. The input signal is typically a

band-limited sinusoidal with an unknown frequency and phase. The major compo-

nents of a PLL are: a phase detector, a loop filter, and a voltage controlled oscillator

(VCO) as shown in Figure 2.3.

phase 

detector

loop 

filter
VCOU1(t)

U2(t)

U3(t) U4(t)

Figure 2.3: Block diagram of a generic PLL.
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2.3.1 Phase Detector

The phase detector of a PLL can be defined in several ways. The four main types

of phase detectors are: the linear (four-quadrant) multiplier, EXOR gate, edge trig-

gered JK-flipflop, and phase-frequecy detector (PFD). Each detector type performs

an operation on the phase difference between the input signal U1(t) and the feed-

back signal U2(t). This thesis considers PLLs that operate using the linear multiplier

phase detector.

The linear multiplier phase detector is used solely in linear phase-locked loops

(LPLLs). The output of this type of phase detector is simply the product of the

two input signals. Thus, the input to the LPLL is

U1(t) = cos(Φ1) (2.1)

and the feedback signal is

U2(t) = cos(Φ2) (2.2)

where

Φ1 = ω1t + φ1 (2.3)

Φ2 = ω2t + φ2 (2.4)

Thus, the generalized output equation for the multiplier phase detector is

U3(t) = KdU1(t)U2(t) =
Kd

2
[cos(Φ1 + Φ2) + cos(Φ1 − Φ2)] (2.5)

where Kd is the gain of the phase detector with units in [rad/V]. When

ω1 = ω2 (2.6)
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and

φ1 = φ2 +
π

2
(2.7)

we say that the LPLL is in a “locked state” and the output of the multiplier phase

detector is

U3(t) =
Kd

2
[1 + cos(Φ1 + Φ2)] (2.8)

where U3(t) is also the input to the loop filter.

As seen in (2.7), there is a π
2

phase offset between the two input signals when

the LPLL is in a locked state. This phase offset is due to the cosine function being

equal to zero when the phase difference between the two signals is ±π
2

as seen in

Figure 2.4.

The location where the phase difference is π
2

is an unstable fixed point whereas

the −π
2

location is a stable fixed point. When the output of the of the phase detector

is positive, the VCO speeds up, which causes the phase difference to decrease. When

the output is negative, the reverse occurs, thus the phase detector output is as seen

in (2.8) when in a “locked state.”

2.3.2 Loop Filter

The loop filter of a PLL is typically a low pass filter with a large (ideally infinite)

DC gain. For this thesis, a second order active proportional integral (PI) loop filter

of the form

F (s) =
1 + s(τ2 + τ3)

sτ1(1 + sτ3)
(2.9)

is used, where τ1, τ2, and τ3 are chosen to achieve a certain loop bandwidth and

phase margin. The active PI filter has a pole at s = 0, thus it acts like an integrator,

which in theory should provide infinite DC gain. This is necessary to insure that the

8



Φ1 − Φ2

Ū3

−π π−π
2

π
2

Kd

2

−Kd

2

Figure 2.4: Graphical representation of the average phase detector output voltage
versus the phase difference of the two input signals.
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PLL eliminates the phase error between the input signal and the internal feedback

signal.

The loop filter also suppresses the high frequency term in (2.8), thus approxi-

mately leaving only the DC term to control the VCO such that

U4(t) ≈
Kd

2
(2.10)

when the PLL is in a “locked state.” This means that the input signal to the VCO

is constant, which allows the PLL to increment its phase to continue operating in a

“locked state.”

2.3.3 Voltage Controlled Oscillator (VCO)

A voltage controlled oscillator (VCO) is an oscillator that is controlled by its input

voltage. A positive/negative control voltage to the VCO indicates that the input

frequency is higher/lower than that of the center frequency of the PLL. The VCO

changes its radian frequency in accordance to

ωV CO(t) = ωcenter + K0U4(t) (2.11)

where K0 is the gain and ωcenter is the center frequency of the VCO. This is how the

PLL increases or decreases its phase in accordance to the input signal of the PLL.

2.3.4 Software-Defined Frequency Synthesis Phase-Locked

Loop (FS-PLL)

Software-defined frequency synthesis phase-locked loops (FS-PLLs) are different in

two ways from typical PLLs. The FS-PLLs in this thesis are implemented using pro-
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grammable digital signal processors (DSP). Using this method we are able to achieve

different PLL designs without changing single purpose hardware components. Also,

frequency synthesis is achieved, which refers to a shift in frequency from the input

to the output of the PLL, while still remaining in a “locked state.”

phase

detector

loop

filter
VCO

cos( )

outin sin( )
phase

N

Figure 2.5: Block diagram of a frequency synthesis phase-locked loop.

Figure 2.5 shows a block diagram of a FS-PLL, which now includes a few new

components in comparison to Figure 2.3. The frequency synthesis multiplier takes

the phase from the output of the VCO and multiplies it by an integer value, which

is then converted from a phase to a sinusoidal signal to be output. The phase from

the VCO is also converted to a cosine signal, which is then compared to the input

signal of the PLL at the phase detector. By using the sine of the VCO phase as the

output of the PLL and the cosine of the VCO phase as the feedback signal, we are

able to eliminate the π
2

phase shift induced by the phase detector.

2.4 Real-Time Digital Signal Processing (DSP)

As technology continues to progress, the presence of digital signal processors (DSPs)

in everyday life is increasingly apparent. DSPs are used in devices such as cellular

telephones, global positioning systems, and computers. These types of devices are

constantly receiving, analyzing, and modifying data in real-time to perform their

given task. In this thesis, five identical DSPs are used to perform completely different

tasks from one another. It is possible to implement the system presented in this
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thesis using single purpose hardware, but with decreased versatility to test different

designs within seconds.

2.4.1 TMS320C6713 DSK

The system described by this thesis is accomplished using five TMS30C6713 Digital

Starter Kits (DSKs) from Spectrum Digital. Each of the DSKs has a TMS320C6713

DSP chip operating at 225 MHz, a TLV320AIC23B codec, 16MB SDRAM, four DIP

switches, four LEDs, and four 3.5 mm audio jacks (microphone, line-in, speaker,

line-out). For more information on the TMS306713 DSK please see [10].

2.4.2 Code Composer Studio Integrated Developement En-

vironment (IDE) 3.1

The programming of the TMS320C6713 DSK is achieved using the Code Composer

Studio (CCS) Integrated Development Environment (IDE) 3.1. The CCS IDE al-

lows a user to connect, program in C, and run the TMS320C6713 DSK through a

graphical user interface. Also, a user is able to view the memory contents of the

TMS30C6713 and profile the execution time for pieces of their code all in real-time.

This is the means by which the system presented in this thesis is implemented in

conjunction with the TMS320C6713 DSK.

12



Chapter 3

System Model

This thesis considers the two-source, one-destination system model shown in Fig-

ure 3.1. The destination (D) and the two sources (S1 and S2) are assumed to each

have independent local clocks and a single antenna. The channels are modeled as

linear (possibly time varying) systems with gij(t, τ) denoting the response of the

channel at time t to an impulse at time t− τ . The impulse response of each channel

in the system is assumed to be reciprocal in the forward and reverse directions.

source

node 1

source

node 2

destination

g01(t, τ)

g02(t, τ)

g12(t, τ)

Figure 3.1: Two-source one-destination system model.

While the channels in Figure 3.1 allow for multipath and/or time varying be-

havior, the intuition behind the carrier synchronization technique described in [1] is

best exposed under the temporary assumption that all of the channels in the system

13



are single-path and time-invariant, so

gij(t) = δ(t − τij), ij ∈ {01, 02, 12} (3.1)

In this case, the total propagation time for the circuit D → S1 → S2 → D can be

calculated as

τtot = τ01 + τ12 + τ02 (3.2)

If the destination were to transmit a signal x(t) to S1, then S1 relayed this signal

to S2, and S2 subsequently relayed this signal back to the destination, the signal

received at the destination from S2 could be expressed as

r(t) = x(t − τtot − ∆1 − ∆2) (3.3)

where ∆i is the relaying latency of the ith source node. Similarly, since the signal

x(t) transmitted by the destination is also received by S2, it can be relayed by S2

to S1, and subsequently relayed by S1 back to the destination. Recognizing that

the total propagation time for the circuit D → S2 → S1 → D is also τtot, the signal

received by the destination from S1 will be identical to (3.3).

The equivalent round-trip propagation times for both circuits is the key feature

of the carrier synchronization technique described in [1]. The destination begins the

synchronization process by transmitting a continuous sinusoidal master beacon at

frequency ω0 [rad/s] to both source nodes. The ith source node, as seen in Figure 3.2,

receives the continuous master beacon and employs a frequency-synthesis1 PLL [11]

(denoted as FS-PLL i1 and tuned to the master beacon frequency ω0) to synthesize

1Frequency synthesis is employed to avoid transmission and reception on the same frequency.

This “half-duplex” constraint is commonly imposed due to the limitations of echo cancelers in

wireless transceivers.

14



a secondary sinusoidal beacon that is phase locked to the master beacon. The

secondary beacon is at frequency ωi = Ni1ω0 where Ni1 is an integer frequency

multiplier. Figure 2.5 shows a block diagram of a typical frequency synthesis PLL.

The ith source node simultaneously receives the secondary beacon transmitted by

the jth source node and employs a secondary frequency synthesis PLL (denoted as

FS-PLL i2 and tuned to ωj = Nj1ω0). This synthesizes a carrier signal at frequency

ωc = Ni2ωj that is phase locked to the received secondary beacon signal. The phase-

locked carriers of each source are then used to modulate the baseband signals for

bandpass transmission of information to the destination. When the PLLs are locked,

both sources’ bandpass transmissions arrive with identical phase and coherently

combine at the destination.

FS-PLL

FS-PLL

inout

inout

Source node

baseband signal

i1

i2

i

ω0ωi

ωjωc

Figure 3.2: Block diagram of ith source node in the distributed beamforming tech-
nique described in [1].

While [1] analyzes the performance of this two-source distributed beamformer in

both single-path and multi-path channels, it does not provide implementation details

beyond certain guidelines for the design of the PLLs to avoid phase ambiguity. The

following sections of this thesis describe one potential real-time implementation of

this distributed beamforming technique using the software-defined-radio paradigm.
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Chapter 4

Implementation

The implementation described in this thesis is achieved by using five TMS320C6713

DSK boards. Three DSK boards are used to model the six channels and two DSK

boards are used to model the two sources as shown in Figure 4.1.

The master beacon is simulated using a function generator while the receiver at

the destination is an oscilloscope, which allows the user to see the two source nodes’

transmissions at the destination. Each TMS320C6713 DSK board has one line-level

stereo input and one line-level stereo output that are the means in which the DSK

boards are connected to other DSK boards or components. The following sections

describe the particular implementation details for the source nodes and channels.

4.1 Source Node Implementation

Each source is implemented using one DSK board that runs two 3rd order software-

defined FS-PLLs simultaneously at a sampling frequency (fs) of 44.1 kHz. One

FS-PLL is running on the left channel while the other FS-PLL is operating on the

right channel. This choice of fs allows for real-time execution of the FS-PLL code

on the TMS320C6713 DSK while still being well above the Nyquist rate for the
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In Out

TMS320C6713 DSK

Channel 12/21

In Out

TMS320C6713 DSK

Source 1

In Out

TMS320C6713 DSK

Source 2

In Out

TMS320C6713 DSK

Channel 02/20

In Out

TMS320C6713 DSK

Channel 01/10

Oscilloscope

Function Generator

Figure 4.1: Implementation block diagram where the dotted and solid lines each
represent a different signal wired path.
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frequencies used to test and characterize the system.

A block diagram of the FS-PLL used in this implementation is shown in Fig-

ure 2.5 and consists of five major components: (i) a phase detector, (ii) a loop

filter, (iii) a voltage controlled oscillator (VCO), (iv) a frequency multiplier and (v)

two trigonometric functions. The FS-PLLs were designed by converting the analog

linear PLL design described in [11] to C source code to run on the DSK boards.

4.1.1 Phase Detector Implementation

The phase detector we use is a frequency multiplier (type I) with unity gain. When

the FS-PLL is locked, this type of phase detector creates a 90o phase offset between

the input to the FS-PLL and the output as discussed in Chapter 2.3.1. The offset

can be easily eliminated in a software defined FS-PLL by using the cosine of the

VCO phase as a feedback signal and the sine of the VCO phase as an output signal,

which can be seen in Figure 2.5. In a programming language such as C, a unity gain

type I phase detector can be realized by the multiplication of the input signal and

the internal feedback signal as

1 FQout_left[n] = fleftchannel[n] * w2_left[n] * Kd;

2 FQout_right[n] = frightchannel[n] * w2_right[n] * Kd;

where n is the current sample index. The channel of the TMS320C6713 DSK that

a given variable is associated with is denoted using _left or _right for the left

and right channels respectivly. The variables FQout_left[n] and FQout_right[n]

store the value of the output of the phase detector where n is again the cur-

rent sample index. The current input signal is stored as fleftchannel[n] and

frightchannel[n], the phase detector gain as Kd, and the feedback signal as

w2_left[n] and w2_right[n]. The two feedback variables are stored as double

precision floating point values, while the rest are single precision floating point val-

ues.
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4.1.2 Loop Filter Implementation

We use a second order low pass active PI loop filter of the form

F (s) =
1 + s(τ2 + τ3)

sτ1(1 + sτ3)
(4.1)

where τ1, τ2, and τ3 are chosen to achieve a 10 Hz loop bandwidth and a 55o phase

margin to mirror the RF design given in [1]. Using the bilinear z-transform

F (z) = F (s)|
s= 2(z−1)

T (z+1)
(4.2)

where T = 1
44100

, we are able to create our discrete time loop filter from (4.1) . The

loop filter is then implemented using single precision floating point variables as

1 if (n==0){

2 LPFout_left[n] = numd_left[0]*FQout_left[0] + numd_left[1]*

3 FQout_left[N-1] + numd_left[2]*FQout_left[N-2] - dend_left[1]*

4 LPFout_left[N-1] - dend_left[2]*LPFout_left[N-2];

5 LPFout_right[n] = numd_right[0]*FQout_right[0] +

6 numd_right[1]*FQout_right[N-1] + numd_right[2]*

7 FQout_right[N-2] - dend_right[1]*LPFout_right[N-1] -

8 dend_right[2]*LPFout_right[N-2];

9 }

10 if (n==1)

11 {

12 LPFout_left[n] = numd_left[0]*FQout_left[1] + numd_left[1]*

13 FQout_left[0] + numd_left[2]*FQout_left[N-1] - dend_left[1]*

14 LPFout_left[0] - dend_left[2]*LPFout_left[N-1];

15 LPFout_right[n] = numd_right[0]*FQout_right[1] +

16 numd_right[1]*FQout_right[0] + numd_right[2]*

17 FQout_right[N-1] - dend_right[1]*LPFout_right[0] -

18 dend_right[2]*LPFout_right[N-1];

19 }

20 if (n>=2)

21 {

22 LPFout_left[n] = numd_left[0]*FQout_left[n] + numd_left[1]*

23 FQout_left[n-1] + numd_left[2]*FQout_left[n-2] - dend_left[1]*

24 LPFout_left[n-1] - dend_left[2]*LPFout_left[n-2];
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25 LPFout_right[n] = numd_right[0]*FQout_right[n] +

26 numd_right[1]*FQout_right[n-1] + numd_right[2]*

27 FQout_right[n-2] - dend_right[1]*LPFout_right[n-1] -

28 dend_right[2]*LPFout_right[n-2];

29 }

where LPFout_left[n] and LPFout_right[n] are the outputs of the loop filters for

the current sample index. The numerator and denominator coefficients of the loop

filter are stored in numd and dend respectively.

4.1.3 VCO Implementation

The VCO is controlled by the output of the loop filter U4(t); if the output of the

loop filter is positive or negative, then the VCO increases or decreases its phase

respectively. If the output is constant, then the VCO frequency does not change as

we are then in a “lock” state where x and x̂ are at the same frequency and 90o out

of phase. The VCO phase output (φvco) is governed by

fvco(t) = f0 +
K0U4(t)

2π
(4.3)

φvco = φvco−previous +
2πfvco

fs
(4.4)

where K0 is the VCO gain with units [rad/s · V], and f0 is the free running frequency

of the VCO in [Hz/s]. In (4.3) and (4.4), φvco−previous is the phase of the VCO that

was calculated during the previous sampling period. Using this definition, the VCO

is achieved using

1 f2_left = f0_left + (Ko*oneovertwopi) *

2 LPFout_left[n];

3 f2_right = f0_right + (Ko*oneovertwopi) *

4 LPFout_right[n];

5 if(n+1>N-1) {
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6 vco_phase_left[0] = vco_phase_left[N-1] +

7 2*pi*(f2_left*invfs);

8 vco_phase_right[0] = vco_phase_right[N-1] +

9 2*pi*(f2_right*invfs);

10 while(vco_phase_left[0]>2*pi)

11 vco_phase_left[0] += -2*pi;

12 while(vco_phase_left[0]<0)

13 vco_phase_left[0] += 2*pi;

14 while(vco_phase_right[0]>2*pi)

15 vco_phase_right[0] += -2*pi;

16 while(vco_phase_right[0]<0)

17 vco_phase_right[0] += 2*pi;

18 w2_left[0] = sindp(vco_phase_left[0]+pi_half);

19 w2_right[0] = sindp(vco_phase_right[0]+pi_half);

20 w3_left[0] = -sindp(fmult_left*vco_phase_left[0]);

21 w3_right[0] = -sindp(fmult_right*vco_phase_right[0]); }

22 else {

23 vco_phase_left[n+1] = vco_phase_left[n] +

24 2*pi*(f2_left*invfs);

25 vco_phase_right[n+1] = vco_phase_right[n] +

26 2*pi*(f2_right*invfs);

27 while(vco_phase_left[n+1]>2*pi)

28 vco_phase_left[n+1] += -2*pi;

29 while(vco_phase_left[n+1]<0)

30 vco_phase_left[n+1] += 2*pi;

31 while(vco_phase_right[n+1]>2*pi)

32 vco_phase_right[n+1] += -2*pi;

33 while(vco_phase_right[n+1]<0)

34 vco_phase_right[n+1] += 2*pi;

where invfs and oneovertwopi are the inverses of the sampling frequency and the

value of 2π respectively. Pre-calculating the inverse of these two values allows for

faster execution time of the code in C because there is no requirement to compute

the reciprocal in real-time. Lines 1-4 perform the operation seen in (4.3). The VCO

sensitivity is denoted as Ko, VCO center frequencies as f0_left and f0_right, and

low-pass filter outputs as LPFout_left and LPFout_right. The feedback signals

for the left and right channels are stored as w2_left and w2_right while the output

signals are stored as w3_left and w3_right. The multipliers used for frequency
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synthesis are fmult_left and fmult_right. Lines 6-9 and 23-26 compute (4.4)

while lines 10-17 and 27-34 wrap the phase of the VCO back into the range [0, 2π]

since the sine function is periodic on that interval. The VCO sensitivity, VCO

center frequencies, low-pass filter outputs, and the frequency synthesis multipliers

are stored as single precision floating point values, while the rest are stored as double

precision floating point values.

4.1.4 FS-PLL Multiplier Implementation

The master beacon frequency for this implementation is chosen as 907 Hz which

is approximately of equal wavelength in acoustics to the master beacon RF signal

in [1] of 800 MHz. We use acoustic range frequencies due to the limitation of the

hardware available. The wavelength λ of a signal at frequency f in Hertz can be

calculated as

λacoustic =
c

f
(4.5)

where c is 340 [m/s] for acoustic frequencies and 3∗10ˆ8 [m/s] for radio frequencies.

For our implementation, f0 is chosen based on the incoming frequency to a given

FS-PLL as shown in Table 4.1, where f0 is shown in Hertz.

FS-PLL f0 [Hz]
11 907
12 2721
21 907
22 1814

Table 4.1: Center frequencies (f0) of each FS-PLL in Hertz.

Source 1 and source 2 have a frequency multiplier of 2 and 3 respectively, which is

achieved by a multiplication of their respective VCO phase by the given multiplier
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value, which is shown in Figure 2.5. This implementation allows for the master

beacon, the two cross beacons, and the transmission back to the destination to

operate at different frequencies to avoid interfering with one another.

The input and output of the TMS320C6713 DSK by default have sign inversions,

which is strictly due to the hardware and must be corrected for in software since

we are interested in the phase of the input signal. Also, we must invert the desired

signal at the output so that it is of the correct sign when leaving the TMS320C6713

DSK. This inversion is not an issue for the channel simulators, which are discussed

in the following section.

4.2 Channel Implementation

The scope of this thesis is to investigate the implementation of the system in [1] with

high SNR single-path channels. The channels may be time-invariant or time-varying

depending on the application.

Single-path channels can be modeled as a time delay where

delay =
distance

speed of propagation
(4.6)

and the speed of propagation is determined by the medium in which the type wave-

form travels through. Using air as a medium (at sea level and under normal at-

mospheric conditions), the speed of propagation for an acoustic (sound) wave is

approximately 343 [m/s].

4.2.1 Time-invariant Single-path Channel Implementation

The time-invariant single-path channel simulators operate at a sampling frequency

(fs) of 96 kHz. The TMS320C6713 DSK boards incur approximately a 152 µs
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channel delay from their stereo input to output at this sampling frequency, which

is shown in Section 5.1.

Delays from approximately 152µs up to 60s (due to the memory limitations of the

TMS320C6713 DSK) are be attained by buffering the input signal and delaying its

output by an integer number of sampling periods corresponding to the desired delay.

This is achieved by using a j index to keep track of the current input sample location

in the input buffer and then storing the next sample in the j+1 location. The sample

that is output is determined by a second index, k, which is equal to j minus the

desired integer number of samples delay. The desired delay is determined by the

user and can be changed on the fly using the DIP switches of the TMS320C6713

DSK.

4.2.2 Time-varying Single-path Channel Implementation

The time-invariant single-path channel simulators operate at a sampling frequency

(fs) of 96 kHz. They differ from the time-invariant channel simulators because they

allow for non-integer sample delays to be realized through interpolation. A non-

integer sample delay occurs when the desired propagation delay through a channel

does not correspond to the exact sampling time of the TMS320C6713 DSK. Cubic

interpolation as described in [12] is used in this thesis to realize these delays as

f(x0+p) =
−p(p − 1)(p − 2)

6
f−1+

(p2 − 1)(p − 2)

2
f0−

p(p + 1)(p − 2)

2
f1+

p(p2 − 1)

6
f2

(4.7)

where p is the fractional sample delay in addition to the integer sample delay caused

at index x0 in relation to the current sample index. More complicated interpolation

methods such as spline could be used to achieve a greater accuracy for the non-
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integer delay case. Since the channel simulators are sampling at approximately nine

times the Nyquist rate, cubic interpolation yields acceptable accuracy.

The time-varying channel simulators incorporate a “mobility script” that allows

for a delay to be computed as a function of time based off of a desired distance. The

distance d(t) that the channel simulates is based on the current velocity v(t) and

acceleration a(t), which is calculated as

d(t) = v(t) ∗ t (4.8)

v(t) = a(t) ∗ t (4.9)

The distance is then translated to a propagation delay using (4.6). The delay is

realized through sampling the input and storing it in a buffer then outputting the

delayed signal at a later sampling period that corresponds to the desired time delay

in the same manner as the time-invariant channels.

Two different channel models are considered: piecewise constant position and

piecewise constant velocity. For a piecewise constant position channel, the desired

distance is calculated using

1 distance = distance_script[state]

where distance_script[state] is the predetermined desired distance as defined in

the “mobility script.” For a piecewise constant velocity channel, the desired distance

is calculated using

1 distance += velocity_script[state]*fs_inv;

wherefs_inv is the inverse of the sampling frequency. Once the desired distance is

determined, the number of samples delay required is calculated as
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1 delay = distance*0.00294117647;

2 samples_delay = delay*fs;

3 k = (int)samples_delay;

where 0.00294117647 is the inverse of the speed of an acoustic wave (340 [m/s]).

The variable k is the floor of the desired number of samples delay. These values are

then used in conjunction with (4.7) to determine the proper output. The code in

its entirety can be seen in Appendix A.3

Using this implementation we can now discuss its performance versus the theo-

retical predictions in [1]. The next chapter delves into the characterization of this

implementation using the TMS320C6713 DSK boards.
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Chapter 5

DSK Characterization Results

Practical systems are subject to nonidealities that are not present in theoretical sys-

tems. The implementation presented in this thesis is not immune to such drawbacks.

Thus, it is important to understand where these nonidealities exist to properly ana-

lyze the given system. Both the methods for and the results of several experiments

that were conducted to characterize the performance of the TMS320C6713 DSK are

given in this chapter and use the following equipment:

• 1 - HP33120A 15 MHz function generator

• 1 - TDS3014 four channel digital phosphor oscilloscope

• 1 - TMS320C6713 DSK board [10]

• 1 - Marantz PMD671/U1B solid state audio recorder (24-bits @ 96 kHz)

• Various RCA and BNC connectors and cables for interconnection between the

electronic components’ inputs and outputs
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5.1 Characterization of Channel DSKs

In order to understand the exact delay from input to output of a given TMS320C6713

DSK running at an arbitrary frequency, one should first know the approximate delay

that is expected. An estimate of the time delay from the input of one channel of the

TMS320C6713 DSK to the output of the same channel was acquired using a simple

loop program that samples both channel inputs then outputs the same data through

both of the channel outputs of the TMS320C6713 DSK. The loop program used in

this test, is the same one that is used to simulate the single-path time-invariant

channels in the overall system presented in this thesis.

While the loop program is running, the “burst” function of an HP33120A func-

tion generator is used in conjunction with the “single sequence” function of a Tek-

tronix TDS3014 Oscilloscope. The test setup is shown in Figure 5.1 and is completed

using both the 96 kHz and 44.1 kHz sampling frequencies of the TMS320C6713 DSK.

Function Generator Oscilloscope

In Out

TMS320C6713 DSK

running “timeinvariantchannel.c”

Figure 5.1: Test setup for preliminary characterization.

The “burst” function of the function generator can be used to output a particular

number of cycles of a sine, square, or triangle wave with a set amplitude, frequency

and starting phase. The “single sequence” function of the oscilloscope is able to

record up to four input waveforms for a duration of 4 ns to 10 s in various steps

once a predetermined input amplitude threshold (trigger level) is exceeded. For
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this experiment, the HP33120A function generator’s “burst” function was set up to

output a 5.4 kHz sine wave with approximately a 1 volt amplitude and zero start-

ing phase for two cycles. The Tektronix TDS3014 Oscilloscope’s “single sequence”

function was setup using a threshold of 4 mV with a duration of 1 ms and 2 ms for

the 96 kHz (channel simulators) and 44.1 kHz (source nodes) sampling frequencies

respectively.

Using the test setup in Figure 5.1, the results shown in Figure 5.2 and Figure 5.3

were acquired.

in out

152µs

Figure 5.2: Oscilloscope plot to find approximate DSK input/output delay at a
sampling frequency of 96 kHz.

When the TMS320C6713 DSK is running a basic stereo loop function at 96 kHz

and 44.1 kHz, these results show that there is a propagation delay of approximately

152 µs and 1002 µs respectively. These results can be used as an estimation of the

time delay of a given TMS320C6713 DSK running either a channel simulator or

source node at a specific sampling frequency, but can not be used for sub-degree
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in out

1002µs

Figure 5.3: Oscilloscope plot to find approximate DSK input/output delay at a
sampling frequency of 44.1 kHz.

timing accuracy. Also, these results can not be used to determine propagation delay

as a function of frequency. Thus, we will need to conduct more accurate experiments

to determine a precise analytical result.

For the next tests, we assume that the TMS320C6713 DSK causes an identical

delay from the input to the output of the left channel as it does to the right channel.

This is reasonable because the architecture of the hardware for the DSK and the

symmetry of the software program. Although all channels are characterized, only

one of the three channel simulators in the overall system needs to be discussed, since

the other two operate at identical frequencies in each signal path of the overall sys-

tem, thus induce the same propagation delay. The channel simulator that operates

between the two source nodes requires further investigation. In one direction, the

channel simulator operates at 1814 Hz and in the opposite direction it operates at

2721 Hz. The test setup in Figure 5.4 is used to determine the time delay for each
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channel operating at their given frequency. The results for this test as well as the

frequencies used can be found in Table 5.1.

Recorder

In Out L

R

TMS320C6713 DSK

running “timeinvariantchannel.c”

Function Generator

f

ff

Figure 5.4: Test setup used to find propagation delay difference for the cross beacon
channel.

f [Hz] Delay [µs]
907 170.2
1814 176.2
2721 177.4
5442 177.9

Table 5.1: Results from the test setup shown in Figure 5.4.

The time difference between the two channels is calculated using the maximum

likelihood estimation (MLE) for both frequency and phase as described in [13]. This

allows us to now have a more accurate measurement for the delay through a given

channel than the approximation that the oscilloscope previously yielded. The MLE

of the phase of a discrete signal x[n] at frequency ω [rad/sec] and of N samples in

length is given as
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φ̂ = − arctan ∗

N−1
∑

n=0

x[n] sin(ωn)

N−1
∑

n=0

x[n] cos(ωn)

(5.1)

where the MLE for the frequency ω can be found by maximizing the likelihood

function

I(ω) =
1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

x[n] exp(−jωn)

∣

∣

∣

∣

∣

2

(5.2)

and then using the ω value that maximizes (5.2) in (5.1). From this, one can easily

describe the effective propagation delay τ by

τ =
φ̂ ± m2π

2π
T (5.3)

where T is the period of the signal, φ̂ is in radians, and m is an integer that results

in the time delay that is closest to the approximations found in Figure 5.2 and

Figure 5.3. The integer m is required because the MLE phase estimate is defined

between −π and π and the propagation delay induced by the TMS320C6713 DSK

is multiple periods in time of the incoming signal.

For the test setup in Figure 5.4, the MLE estimation shows that the two signal

paths of the distributed beamformer will not have identical propagation times, thus

inducing an error into the overall system. This can be seen in Table 5.2 and shows

that from the channel delays alone there is a 2.4 degree phase shift at the destination,

which is caused by the different propagation delays in the cross beacon channels.

Signal path 1 has the cross beacon frequency of 1814 Hz and signal path 2 has the

cross beacon frequency of 2721 Hz.

To further characterize the beamforming system, we will next look at the four
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Signal path 1 [µs] Signal path 2 [µs] Phase difference [deg]
524.3 525.5 2.4

Table 5.2: Overall signal path results from the test setup shown in Figure 5.4.

FS-PLLs to determine their effect on the overall beamforming system.

5.2 Characterization of FS-PLL DSKs

To characterize the FS-PLLs in this system, we need to use different techniques to

those used for the cross-beacon channel simulator because the TMS320C6713 DSK

input frequency (fin) does not equal the output frequency (fout) as it did in the tests

involving the channel simulators. The overall goal is to quantify the propagation

delay of each individual FS-PLL in the locked state to determine any potential

discrepancies leading to phase offset at the destination.

The delay induced by a given TMS320C6713 DSK is again assumed to be in-

dependent from which channel of the DSK’s input and/or output is used due to

the symmetrical hardware architecture of the DSK and the software running on it.

Also, the Marantz solid state recording device is assumed to be ideal. The setup for

this test is shown in Figure 5.5 using the values given in Table 5.3.

TMS320C6713 DSKDVD-Player Recorder

In OutL

R

L

R

fleft

fright

fright

Figure 5.5: Test setup for determination of specific FS-PLL delays.

The four tests using the setup in Figure 5.5 yield four independent equations with
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DVD-Player FS-PLL
Left channel (fleft) [Hz] Right channel (fright) [Hz] Center Frequency [Hz] “N” Multiplier

907 1814 907 2
907 2721 907 3
1814 5442 1814 3
2721 5442 2721 2

Table 5.3: Values used to determine individual FS-PLL delays.

relation to the propagation time of the fleft path with respect to the propagation

time of the fright path. The propagation delay differences are all calculated using

the MLE of the phase as previously discussed and converting the phase φ̂ to a time

delay τ using (5.3).

The delay induced by the interconnection cables is negligible, thus the delay in

the path starting from the right channel of the DVD-player is approximately zero.

The delay induced by the output circuitry of the DVD-player at a given frequency is

denoted by τDV D−f where f is the frequency of the signal being output. The delay

of a given FS-PLL is denoted by τNxPLL−f , where N is the frequency synthesis

multiplier and f is its center frequency.

We can then describe the time delay difference between the two paths as a system

of equations in matrix form such that

Ax = b (5.4)

where the A matrix describes the combination of the unknowns in the x vector

while the b vector contains the actual measurements of the time difference between

the fleft path in Figure 5.5 and the fright path in milliseconds. For this set of tests,

the unknowns are
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(5.5)

It is important to note that there is no unique solution to (5.5). To solve for

the propagation delay induced by a given FS-PLL (τNxPLL−f), more information is

needed. One way to solve this problem is to perform additional experiments that

involve only the DVD-player and the recorder.

The DVD-player outputs signals with negligible phase offsets between its left

and right channels while at the same frequency. This is shown by analyzing the test

given in Figure 5.6 where the DVD-player and the recorder are modeled as having

both an ideal part and a non-ideal delay that they induce. The results are shown

in Table 5.4.

DVD-Player Output Frequency (fleft and fright) [Hz] Phase Difference (∆φ) [deg]
907 -0.0573
1814 -0.0525
2721 -0.0615
5442 -0.1026

Table 5.4: DVD-Player Output Frequency vs. Time Delay Difference Measured

The phase difference in degrees between the left and right channels is computed
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Ideal Signals Delays

DVD - Player Recorder

Ideal RecorderDelays

10101

10101

τf−left

τf−right

τr−left

τr−right

Figure 5.6: Test setup for calculating DVD-player phase offset.

as

∆φ =
(τf−left + τr−left) − (τf−right + τr−right)

T
∗ 360 (5.6)

using the MLE of the phase where τf−left and τf−right are the time delays caused

by the respective channel of the DVD-player at a given frequency and τr−left and

τr−right are the time delays caused by the given channel of the recorder. Also, T is

the period of the signal at fleft and fright. Since the recorder is assumed to be ideal,

τr−left and τright are both zero and ∆φ reduces to

∆φ =
τf−left − τf−right

T
∗ 360 (5.7)

Although the DVD-player is able to produce identical signals at the output of

the two channels while at the same frequency, the same is not true when the two

channels are at different frequencies. To determine the time difference between two

output waveforms at different frequencies, the test setup in Figure 5.6 was again

used, but for the values given in Table 5.5, where a negative time delay is where the

left channel is slower than the right channel.

As can be seen in Table 5.5, the propagation delay caused by the DVD-player is
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fleft [Hz] fright [Hz] Time Difference [µ s]
907 1814 -2.428
907 2721 -5.722
907 5442 -4.017
1814 2721 -3.361
1814 5442 -1.691
2721 5442 -1.590

Table 5.5: Left and right channel frequency versus phase difference

substantial when the two channels are at different frequencies. The overall test can

then be described in matrix form where C is the combination of the unknowns in

y and d contains the actual measurement results from the recordings and the MLE

of the phase, which is then converted to a time delay using (5.3).

Cy = d (5.8)
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































1 −1 0 0

1 0 −1 0

1 0 0 −1

0 1 −1 0

0 1 0 −1

0 0 1 −1



















































τDV D−907

τDV D−1814

τDV D−2721

τDV D−5442



















=

































−2.482

−5.722

−4.017

−3.361

−1.691

−1.590

































(5.9)

The actual measurements in d are given in microseconds. This is an over de-

termined system, which has no unique solution, but allows us to determine the

individual FS-PLL delays by combining (5.4) and (5.8) to obtain
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Ex = f (5.10)
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(5.11)

and where the individual measurements in f are in microseconds. The final results

shown in Table 5.6 were attained by solving (5.11):

FS-PLL delay Time delay in milliseconds
τ2xPLL−907 1.15726
τ3xPLL−907 1.15627
τ3xPLL−1814 1.15444
τ2xPLL−2721 1.15740

Table 5.6: Individual FS-PLL time delay results

Using the individual component delays for each signal path we are able to de-

termine the propagation delay of both entire signal paths (including channels and

source nodes) and thus the phase difference between the two paths at the destina-
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tion. This is shown in 5.7.

Signal path 1 [µs] Signal path 2 [µs] Phase difference [deg]
2836.0 2839.2 6.3

Table 5.7: Overall beamformer characterization results.

These results are critical to the overall system performance because the round

trip propagation time between the two paths in the distributed beamformer will

no longer be equivalent and a static phase offset of 6.3 degrees between the two

sources’ transmissions will be present. Thus, the overall system performance is

negatively effected, which will be discussed as well as the overall system performance

in Chapter 6.
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Chapter 6

System Performance Results

This chapter provides analysis and experimental results of the distributed beam-

former system presented in this thesis. Results are given for both single-path time-

invariant and time-varying channels. The theoretical predictions presented in [1] are

also confirmed in this chapter.

6.1 Lock Example

The experiment in this section shows the typical operation of the overall system when

going from an “unlocked state” to a “locked state”. An “unlocked state” is one in

which each of the source nodes’ FS-PLLs are operating in a free-running manner.

This could be due to the absence of a master beacon signal or the characteristics of

the channels affecting the sources. For this case, the reason that the FS-PLLs are

considered free-running is that the master beacon signal from the function generator

is not present until some time, which is denoted as zero carrier cycles. Once the

master beacon signal turns on, the sources’ FS-PLLs “lock” to their respective

incoming signals and form a distributed beamformer. The coherently combined

transmission of the sources at the destination both before and after the master
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beacon is present is shown in Figure 6.1.
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Figure 6.1: Example of two-source carrier synchronization as described in [1].

Another way to see that the two sources are coherently combining is to look at

their phase difference over time. Figure 6.2 shows the cosine of the phase difference

between the two sources at the destination. Using this method, it is clear that the

distributed beamformer is operating to its fullest capacity when the phase difference

is zero or a multiple of 2π, thus the cosine of this value is unity.

The phase approximate difference over time is computed in MATLAB using a

sliding window of ten samples and the Hilbert transform as

phase(n) = -angle(sum(hilbert(source1(n:n+window-1)).*source2(n:window-1)))

where window is the length of the sliding window and n is the current sample index.

The vectors source1 and source2 are the recorded signals at the destination that

have already been normalized to have approximately unit amplitude. The hilbert

function shifts the positive frequencies of the signal by -90◦ and the negative fre-

quencies by +90◦. For more information on the Hilbert transform see [14].
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Figure 6.2: The cosine of the phase difference of the carrier transmissions at the
destination.

Figure 6.3 shows the phase difference in degrees between the two sources’ phases

at the destination. This result shows a phase offset between the two sources’ trans-

missions at the destination, which is predicted by the difference in propagation time

for the two signal paths in Chapter 5.

The Hilbert transform method is used to find the phase difference of signals at

the same frequency. Another way to realize the phase offset regardless of frequency

is to find the MLE for both the frequency and phase of each source’s transmission.

From their respective phases, one could conclude the phase difference between the

two signals. This technique is discussed in Chapter 5 and yields a phase difference

of 6.4 degrees, which confirms the results found in Section 5.2.

As can be seen in Figure 6.3, the two sources are coherently combining to their

full potential in less than five thousand carrier cycles due to converging into a “lock

state.” Once the system is in a “lock state”, it remains in this state unless there is

a change in one or more of the channels in the system. Channels of this nature can
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Figure 6.3: Difference between the two sources’ phases at the destination.

be considered as time-varying and are discussed in the following sections.

6.2 Piecewise Constant Position Channel

The first type of single path time-varying channel that is investigated is a piecewise

constant position channel. This type of channel has a constant delay for a given

time, which is equivalent to a constant position that is then instantaneously changed

to a different time delay. For this simulation, the position of the g01 channel is

instantaneously changed periodically while the g02 and g12 channels are modeled as

single-path and time-invariant. The instantaneous position change results in both

an infinite velocity and acceleration. The goal of this section is to show that the

system presented in this thesis is able to reconverge to a “locked state” when forced

into an “unlocked state.”

Figure 6.4 shows both the relative position in carrier wavelengths of the g01

43



channel and the effect on the coherently combined signal at the destination. Relative

position refers to the change in position in comparison to the effective length of the

channel due to the constant propagation delay of the TMS320C6713 DSK.
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Figure 6.4: Example of a peicewise constant position change in the g01 channel.

Similar results to those in Figure 6.4 can be attained by making the g02 channel

time-varying instead of the g01 channel. A variation of the g12 channel results in no

change in performance on the overall system because any variation in that channel

occurs on both source’s secondary FS-PLL, thus having no effect in the difference

of overall propagation delay between the two signal paths.

Figure 6.4 shows that when an instantaneous position change occurs, the co-

herently combined signal at the destination is negatively effected for less than five

thousand carrier cycles as the system enters a brief “unlock state.” This shows how

robust this system is even when in an extremely unrealistic situation.

Figure 6.5 shows the cosine of the phase difference between the sources’ trans-

missions over time. It is apparent that the performance of the beamformer is only
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degraded for a few thousand carrier cycles before returning to a “lock state.”
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Figure 6.5: The cosine of the phase difference of the carrier transmissions at the
destination.

Figure 6.6 shows the phase difference in degrees between the sources’ transmis-

sion over time. The phase offset between the two sources’ transmissions using the

MLE is 8.6 degrees, which is not equal to the steady state error as predicted by the

characterization results of the system. Thus, we must now look at the delay induced

by the time-varying channel based on input/output frequency. Using the test setup

shown in Figure 5.4, the single-path time-varying channel is characterized. The

results are shown in Table 6.1.

f [Hz] Delay [µs]
907 169.2
5442 178.2

Table 6.1: Single-path time-varying channel characterization results.

It is apparent that the delay induced based on frequency is not the same for
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Figure 6.6: Difference between the two sources’ phases at the destination.

the single-path time-invariant and time-varying channels. Using the results from

Table 6.1 in conjunction with the results presented in Chapter 5, we are now able to

accurately predict a static phase offset of 8.7 degrees as shown in Table 6.2, which

agrees closely with the MLE method.

Signal path 1 [µs] Signal path 2 [µs] Phase difference [deg]
2835.0 2839.4 8.7

Table 6.2: Overall system signal path results while using a piecewise constant posi-
tion channel.

The reason that the single-path time-invariant and single-path time-varying

channel delays are not equal is not currently known and needs to be investigated at

a later time. Nevertheless, we are able to predict the static phase offset from the

individual component delays.

The results in this section show that the distributed beamformer system can

return to a “locked state” when forced to fall out of lock. The next section discusses
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the effect of a single-path time-varying velocity channel.

6.3 Piecewise Constant Velocity Channel

The channel models thus far have investigated fixed or instantaneously changing

channels. This section discusses the effect of a single-path time-varying velocity

channel in the system. The g01 channel is used as the time-varying channel, but a

similar discussion could be had using the g02 channel. The goal of this section is to

show that the distributed beamformer is not gravely affected when a time-varying

velocity channel is introduced.

Figure 6.7 shows both the relative position in carrier wavelengths of the g01

channel and the effect on the coherently combined signal at the destination. For

this case, the velocity in the g01 channel is either 0 [m/s], 0.3 [m/s], or -0.3 [m/s] and

is instantaneously changed at a given time. This instantaneous change in velocity

is equivalent to an infinite acceleration.

It is apparent in Figure 6.7 that the performance of the distributed beam-

former system is negatively effected at the points where the velocity instantaneously

changes, but returns to a “locked state” within a few thousand carrier cycles, which

agrees with the results in [1]. The MLE results are shown in Table 6.3.

Velocity [m/s] Phase Offset [deg]
0.0 8.5
0.3 13.1
-0.3 4.0

Table 6.3: Single-path time-varying velocity channel MLE experimental results.

In order to determine the actual time delay difference caused by a piecewise

constant velocity channel we first consider the case of an impulse δ(t − t0) through

one path of the system. The output is given as
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Figure 6.7: Example of the carrier synchronization performance in a single-path
time varying velocity channel.

y(t) = x(t − ∆(t)) (6.1)

where

∆(t) = ∆0 + βt (6.2)

and ∆0 is the delay through channel while β is the slope of the propagation delay

due to velocity versus time given by

β =
v

c
(6.3)

where v is the velocity simulated by the channel in [m/s] and c is the speed of

propagation, which is 340 [m/s] for an acoustic wave. We can now write the output

as
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y(t) = δ((1 − β)t − t0 − ∆0) (6.4)

Solving for the effective delay (t − t0) through the channel

t − t0 =
βt0 + ∆0

1 − β
(6.5)

The propagation delay offset caused by the velocity channel in the two paths can

then be calculated as

∆t =
βtL + ∆L

1 − β
−

βtR + ∆R

1 − β
(6.6)

where β is the slope of the effective propagation delay of the time-varying channel

due to velocity versus time. Also, ∆L and ∆R are the fixed delays of the left and

right velocity channels. Lastly, tL and tR are the left and right signal path delays

prior to the signal entering the time-varying channel.

Using (6.6) and the previously determined propagation delays, we are now able

to calculate the expected overall phase offset in the system. Table 6.4 shows the

predicted phase offset of the two sources’ transmissions at the destination based on

a given velocity in the g01 channel.

Velocity [m/s] Phase Offset [deg]
0.0 8.6
0.3 13.4
-0.3 3.8

Table 6.4: Single-path time-varying velocity channel predicted results using the
system characterization results.

The cosine of the phase difference and the phase difference between the two

sources’ transmissions during this experiment can be seen in Figure 6.8 and Fig-
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ure 6.9 respectively. Both show that the two sources do indeed fall into an “unlocked

state,” but then quickly reconverge into a “locked state.”
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Figure 6.8: The cosine of the phase difference of the carrier transmissions at the
destination.

Figure 6.9 shows that velocity does indeed cause the overall beamformer perfor-

mance to be degraded, which is consistent with the predicted results as shown in

Table 6.4. Figure 6.8 shows that even though velocity is present in the g01 channel,

the effect on the overall beamformer performance is negligible. These results show

that this system works even when is mobility present, but also that the amount of

mobility must be considered. The current system simulates acoustic signals, but

could be implemented in RF, which would lessen the effect of velocity in a channel

on the overall beamformer performance.
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Figure 6.9: Difference between the two sources’ phases at the destination.
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Chapter 7

Conclusions

This thesis provides specific guidelines, performance analysis, and system charac-

terization of a real-time software-defined-radio implementation of a two source dis-

tributed beamformer. This technique can be used to synchronize the carriers of

two signal antenna wireless transmitters that each have independent local clocks so

that their bandpass transmissions arrive in phase at an intended receiver to create

a distributed beamformer.

Two sources nodes were implemented using two TMS320C6713 DSK boards.

Each node encompasses two FS-PLLs that are implemented in the C programming

language in order to lock to both a master beacon signal and a cross-beacon signal

from the other source node.

Three channels nodes were also implemented using three TMS320C6713 DSK

boards. Single path time-invariant and two types of single path time-varying (PCP

and PCV) channels were investigated. The system performance analysis confirms

the theoretical predictions in [1] for both time-invariant and time-varying channels.

System characterization results are also provided to quantify the practical non-

idealities that exist in the TMS320C6713 DSK and the experimental equipment.
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These results can also be used in an extension of this system or other future re-

search pertaining to the TMS320C6713 DSK.

System performance results are presented that show how the overall beamformer

operates in both single-path time-invariant and time-varying channels. These results

show that a practical system in both the acoustic and radio frequency range is

feasible and what implementation problems may arise.

7.1 Future Research Opportunities

The results of this thesis have revealed several other research opportunities that can

be considered in the future. The system provided herein was implemented using

wired channels, which could be modified to incorporate wireless channels. This

would then lead to the possibility of creating individual nodes that are portable,

which could be tested in various real-life environments.

This thesis was implemented using the C programming language, therefore, it

could be easily ported to other compatible platforms in addition to DSP chips. Also,

other types of carrier synchronization techniques such as time-division multiplexing

could be implemented using the presented platform.

Another topic that could be considered is the effect of a single-path time-varying

piecewise constant acceleration (PCA) channel. This type of channel is difficult

to analyze due to three different components that induce error into the overall

beamformer, which include the static system phase offset due to the TMS320C6713

DSKs, the error caused by a frequency ramp on the input of a FS-PLL, and the

error from a constantly changing velocity.

The static phase offset has been discussed and characterized throughout this

thesis. It has to always be considered when analyzing the presented system. This
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offset could possibly be corrected in software if further analysis of an individual

TMS320C6713 DSK was conducted. One way of doing such investigation would be

to characterize each component of the entire system over every possible frequency

below the Nyquist rate.

The second error caused by acceleration in a channel is due to the frequency ramp

that is seen at the input of the FS-PLL that operates on that channel. A FS-PLL is

able to modify its output frequency and phase based on a static incoming frequency

and changing phase, but a phase error occurs when an increasing or decreasing

frequency ramp is present at the input. The larger the frequency ramp (positive

or negative), the greater the phase error at the output of the FS-PLL as discussed

in [1]. Thus, we have a second component that adds error into the overall system

when an acceleration channel is present.

The final component adding error into the overall beamformer is the same effect

as seen in Table 6.3. The only difference is that the velocity is continuously changing,

which means that analysis needs to be completed at every point in time to properly

characterize the expected performance.

From the piecewise constant velocity channel results, we can conclude that as

velocity in a channel increases, the phase offset of the overall system due to velocity

increases. Thus, considering the three components adding to error in a piecewise

constant acceleration channel, we can conclude that over time the phase offset of

the beamformer will increase indefinitely at any constant acceleration.
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Appendix A

System Source Code

This section provides the source code for both the FS-PLLs and the channel simu-

lators that are presented in this thesis.

A.1 Software-Defined Frequency Synthesis Phase-

Locked-Loop (FS-PLL)

The following code is used to implement both source nodes in the system. If DIP

switch zero is depressed when the program executes, the TMS320C6713 DSK will

operate as a source with frequency synthesis multipliers equal to 3. Otherwise, it

will operate as a source with frequency synthesis multipliers equal to 2. The center

frequencies of the FS-PLLs for a given source assume that the other source is oper-

ating at a master beacon frequency of 907 Hz with frequency synthesis multipliers

opposite to that of its own.
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1 /*************************************************************************

2 * Interrupt based universal FS-PLL

3 * James McGinley

4 * Jan. 5, 2007

5 * DIP0 = up --> source 1 (x2 FS-PLLs)

6 * DIP0 = down --> source 2 (x3 FS-PLLs)

7 *************************************************************************/

8
9 #define CHIP_6713

10
11 #include <stdio.h>

12 #include <c6x.h>

13 #include <csl.h>

14 #include <csl_mcbsp.h>

15 #include <csl_irq.h>

16 #include "dsk6713.h"

17 #include "dsk6713_aic23.h"

18 #include "stdio.h"

19 #include "fastmath67x.h"

20 #define N 10

21 #define MAX 32768

22 #define PI 3.14159265358979323846

23
24 /*********************************************************

25 * Start of Declare Variables

26 *********************************************************/

27 // Used for codec read/write

28 union {Uint32 combo; short part[2];} data1;

29 union {Uint32 combo; short part[2];} data2;

30
31 // Index

32 int n=0;

33
34 // Used for scaling

35 float invMAX = 0.000030517578125;

36
37 // Left/right input buffers

38 float fleftchannel[N]={0.0};

39 float frightchannel[N]={0.0};

40
41 // Left/right FS-PLL center frequencies [Hz]

42 float f0_left = 907.0;

43 float f0_right = 2721.0;

44
45 // Current VCO frequency left/right [Hz]

46 double f2_left = 0.0;

47 double f2_right = 0.0;

48
49 // Pi

50 double pi = PI;

51
52 // Pi/2

53 double pi_half = 0;

54
55 // VCO sensitivity [Hz/(V*s)]

56 float Ko = 15.70797;

57
58 // Phase detector gain

59 float Kd = 1;

60
61 // Feedback signal left/right [rad/sec]

62 double w2_left[N] = {0.0};

63 double w2_right[N] = {0.0};

64
65 // Output signal [rad/sec]
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66 double w3_left[N] = {0.0};

67 double w3_right[N] = {0.0};

68
69 // VCO phase left/right [rad]

70 double vco_phase_left[N] = {0.0};

71 double vco_phase_right[N] = {0.0};

72
73 // Sampling frequency

74 float Fs = 44100.0;

75
76 // Inverse of sampling frequency

77 double invfs = 0;

78
79 // 1/(2*pi)

80 double oneovertwopi = 0;

81
82 // Four quadrant phase detector output left/right

83 float FQout_left[N] = {0.0};

84 float FQout_right[N] = {0.0};

85
86 // Low-pass filter output left/right

87 float LPFout_left[N] = {0.0};

88 float LPFout_right[N] = {0.0};

89
90 // Frequency synthesis multiplier left/right

91 float fmult_left = 2;

92 float fmult_right = 2;

93
94 //PLL with bandwidth of ~ 5 Hz

95 float numd_left[3] = {0.00711163489605, 0.00000101316410, -0.00711062173194};

96 float dend_left[3] = {1.00000000000000, -1.99644443584300, 0.99644443584300};

97
98 float numd_right[3] = {0.00711163489605, 0.00000101316410, -0.00711062173194};

99 float dend_right[3] = {1.00000000000000, -1.99644443584300, 0.99644443584300};

100
101 // Codec configuration with default settings

102 DSK6713_AIC23_CodecHandle hCodec;

103 DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

104 interrupt void serialPortRcvISR(void);

105
106 /*********************************************************

107 * End of Declare Variables

108 *********************************************************/

109
110
111 void main()

112 {

113 // Initialize index to 0

114 n=0;

115
116 // Compute additional variables

117 invfs = 1/(float)44100;

118 oneovertwopi = 1/(2*pi);

119 pi_half = pi/2;

120
121 // Initialize output to 0

122 data2.combo = 0;

123
124 // Initialize the board support library, must be called first

125 DSK6713_init();

126
127 // open codec and get handle

128 hCodec = DSK6713_AIC23_openCodec(0, &config);

129
130 // initialize the DIP switches
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131 DSK6713_DIP_init();

132
133 // initialize the LEDs

134 DSK6713_LED_init();

135
136 // Configure buffered serial ports for 32 bit operation

137 MCBSP_FSETS(SPCR1, RINTM, FRM);

138 MCBSP_FSETS(SPCR1, XINTM, FRM);

139 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

140 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

141
142 // set codec sampling frequency

143 DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_44KHZ);

144
145 // interrupt setup

146
147 // Globally disables interrupts

148 IRQ_globalDisable();

149
150 // Enables the NMI interrupt

151 IRQ_nmiEnable();

152
153 // Maps an event to a physical interrupt

154 IRQ_map(IRQ_EVT_RINT1,15);

155
156 // Enables the event

157 IRQ_enable(IRQ_EVT_RINT1);

158
159 // Globally enables interrupts

160 IRQ_globalEnable();

161
162
163 // Check DIP0 to determine which source to operate as

164 // Check if DIP0 is up

165 if (DSK6713_DIP_get(0) == 0)

166 {

167 // turn LED 0 on

168 DSK6713_LED_on(0);

169
170 // Center frequency (right)

171 f0_right = 1814.0;

172
173 // Define VCO phase multiplier (left)

174 fmult_left = 3;

175
176 // Define VCO phase multiplier (right)

177 fmult_right = 3;

178 }

179
180 // enter infinite "while" loop and wait for interrupt

181 while(1)

182 {

183 }

184 }

185
186 interrupt void serialPortRcvISR()

187 {

188 // Read input from left/right channels

189 data1.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

190
191 // Store input to float, scale, and negate for inversion correction

192 fleftchannel[n] = -((float)data1.part[1])*invMAX;

193 frightchannel[n] = -((float)data1.part[0])*invMAX;

194
195 //=======================================================================================================
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196 // START: Four Quadrant Phase Detector

197 //=======================================================================================================

198
199
200 FQout_left[n] = fleftchannel[n] * w2_left[n] * Kd;

201 FQout_right[n] = frightchannel[n] * w2_right[n] * Kd;

202
203 //=======================================================================================================

204 // END: Four Quadrant Phase Detector

205 //=======================================================================================================

206 //=======================================================================================================

207 // START: Loop Filter (LF)

208 //=======================================================================================================

209
210 if (n==0)

211 {

212 LPFout_left[n] = numd_left[0]*FQout_left[0] + numd_left[1]*FQout_left[N-1] + numd_left[2]*

213 FQout_left[N-2] - dend_left[1]*LPFout_left[N-1] - dend_left[2]*LPFout_left[N-2];

214 LPFout_right[n] = numd_right[0]*FQout_right[0] + numd_right[1]*FQout_right[N-1] + numd_right[2]*

215 FQout_right[N-2] - dend_right[1]*LPFout_right[N-1] - dend_right[2]*LPFout_right[N-2];

216 }

217 if (n==1)

218 {

219 LPFout_left[n] = numd_left[0]*FQout_left[1] + numd_left[1]*FQout_left[0] + numd_left[2]*

220 FQout_left[N-1] - dend_left[1]*LPFout_left[0] - dend_left[2]*LPFout_left[N-1];

221 LPFout_right[n] = numd_right[0]*FQout_right[1] + numd_right[1]*FQout_right[0] + numd_right[2]*

222 FQout_right[N-1] - dend_right[1]*LPFout_right[0] - dend_right[2]*LPFout_right[N-1];

223 }

224 if (n>=2)

225 {

226 LPFout_left[n] = numd_left[0]*FQout_left[n] + numd_left[1]*FQout_left[n-1] + numd_left[2]*

227 FQout_left[n-2] - dend_left[1]*LPFout_left[n-1] - dend_left[2]*LPFout_left[n-2];

228 LPFout_right[n] = numd_right[0]*FQout_right[n] + numd_right[1]*FQout_right[n-1] +

229 numd_right[2]*FQout_right[n-2] - dend_right[1]*LPFout_right[n-1] - dend_right[2]*LPFout_right[n-2];

230 }

231
232 //=======================================================================================================

233 // END: Loop Filter (LF)

234 //=======================================================================================================

235 //=======================================================================================================

236 // START: Voltage Controlled Oscillator (VCO)

237 //=======================================================================================================

238
239 // Calculate VCO frequency left/right

240 f2_left = f0_left + (Ko*oneovertwopi) * LPFout_left[n];

241 f2_right = f0_right + (Ko*oneovertwopi) * LPFout_right[n];

242
243 // Increment VCO phase angle left/right and handle phase wrap

244 if(n+1>N-1)

245 {

246 vco_phase_left[0] = vco_phase_left[N-1] + 2*pi*(f2_left*invfs);

247 vco_phase_right[0] = vco_phase_right[N-1] + 2*pi*(f2_right*invfs);

248
249 while(vco_phase_left[0]>2*pi)

250 vco_phase_left[0] += -2*pi;

251 while(vco_phase_left[0]<0)

252 vco_phase_left[0] += 2*pi;

253 while(vco_phase_right[0]>2*pi)

254 vco_phase_right[0] += -2*pi;

255 while(vco_phase_right[0]<0)

256 vco_phase_right[0] += 2*pi;

257
258 // Feedback signal left/right

259 w2_left[0] = sindp(vco_phase_left[0]+pi_half);

260 w2_right[0] = sindp(vco_phase_right[0]+pi_half);
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261
262 // Output signal left/right, negate for inversion correction

263 w3_left[0] = -sindp(fmult_left*vco_phase_left[0]);

264 w3_right[0] = -sindp(fmult_right*vco_phase_right[0]);

265 }

266 else

267 {

268 vco_phase_left[n+1] = vco_phase_left[n] + 2*pi*(f2_left*invfs);

269 vco_phase_right[n+1] = vco_phase_right[n] + 2*pi*(f2_right*invfs);

270
271 while(vco_phase_left[n+1]>2*pi)

272 vco_phase_left[n+1] += -2*pi;

273 while(vco_phase_left[n+1]<0)

274 vco_phase_left[n+1] += 2*pi;

275 while(vco_phase_right[n+1]>2*pi)

276 vco_phase_right[n+1] += -2*pi;

277 while(vco_phase_right[n+1]<0)

278 vco_phase_right[n+1] += 2*pi;

279
280 // Feedback signal left/right

281 w2_left[n+1] = sindp(vco_phase_left[n+1]+pi_half);

282 w2_right[n+1] = sindp(vco_phase_right[n+1]+pi_half);

283
284 // Output signal left/right, negate for inversion correction

285 w3_left[n+1] = -sindp(fmult_left*vco_phase_left[n+1]);

286 w3_right[n+1] = -sindp(fmult_right*vco_phase_right[n+1]);

287
288 }

289
290 // Set data2 to zero (output)

291 data2.combo=0;

292
293 // Setup left/right channel outputs (including scaling)

294 data2.part[1] = (short)(MAX*w3_left[n]*0.99);

295 data2.part[0] = (short)(MAX*w3_right[n]*0.99);

296
297 //=======================================================================================================

298 // END: Voltage Controlled Oscillator (VCO)

299 //=======================================================================================================

300 // now output the left/right channels to the codec

301 MCBSP_write(DSK6713_AIC23_DATAHANDLE,data2.combo);

302
303 // increment buffer index and handle wraparound

304 n++;

305 if (n>=N) n=0;

306 }

307
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A.2 Single-Path Time-Invariant Channel Simula-

tor

The following code is used to implement single-path time-invariant channel sim-

ulators. The user can change the delay induced by the channel at any point by

depressing any combination of the four DIP switches. Each DIP switch induces

twice the delay of the previous starting with DIP switch zero that increases the

delay in the channel by 50 µs. The channel delay can be no less than approximately

152 µs as described in Section 5.1.

1 /*************************************************************************

2 * Interrupt based time-invariant channel simulator

3 * James McGinley

4 * Dec. 1, 2006

5 * All DIP switches up = 152 microsecond delay

6 * DIP0 = down --> +50 microseconds delay

7 * DIP1 = down --> +100 microseconds delay

8 * DIP2 = down --> +200 microseconds delay

9 * DIP3 = down --> +400 microseconds delay

10 *************************************************************************/

11
12 #define CHIP_6713

13 #define N 1024 // buffer size

14 #define DELAY_0 5 // Delay = 50 microseconds

15 #define DELAY_1 10 // Delay = 100 microseconds

16 #define DELAY_2 21 // Delay = 200 microseconds

17 #define DELAY_3 42 // Delay = 400 microseconds

18 #define MAX 32768

19 #include <stdio.h>

20 #include <c6x.h>

21 #include <csl.h>

22 #include <csl_mcbsp.h>

23 #include <csl_irq.h>

24 #include "dsk6713.h"

25 #include "dsk6713_aic23.h"

26
27 // ------------------------------------------------------------

28 // Global declarations

29 // ------------------------------------------------------------

30 // index

31 Uint16 i=0;

32
33 // index

34 Uint16 j=0;

35
36 // index

37 Uint16 k=0;

38
39 // for codec read

40 union {Uint32 combo; short part[2];} data1;
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41
42 // for codec write

43 union {Uint32 combo; short part[2];} data2;

44
45 // Used for scaling

46 float invMAX = 0.000030517578125;

47
48 // test string to see if DIP was previously on

49 short test[4] = {0, 0, 0, 0};

50
51 // delay string

52 short DELAY[4] = {DELAY_0, DELAY_1, DELAY_2, DELAY_3};

53
54 // buffer

55 short leftchannel[N]={0};

56
57 // buffer

58 short rightchannel[N]={0};

59 // codec handle

60 DSK6713_AIC23_CodecHandle hCodec;

61
62 // codec configuration with default settings

63 DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

64 interrupt void serialPortRcvISR(void);

65
66 void main()

67 {

68 // Initialize the board support library

69 DSK6713_init();

70
71 // initialize the DIP switches

72 DSK6713_DIP_init();

73
74 // initialize the LEDs

75 DSK6713_LED_init();

76
77 // open codec and get handle

78 hCodec = DSK6713_AIC23_openCodec(0, &config);

79
80 // configure buffered serial ports for 32 bit operation

81 MCBSP_FSETS(SPCR1, RINTM, FRM);

82 MCBSP_FSETS(SPCR1, XINTM, FRM);

83 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

84 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

85
86 // set sampling frequency

87 DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_96KHZ);

88
89 // globally disables interrupts

90 IRQ_globalDisable();

91
92 // enables the NMI interrupt

93 IRQ_nmiEnable();

94
95 // maps an event to a physical interrupt

96 IRQ_map(IRQ_EVT_RINT1,15);

97
98 // enables the event

99 IRQ_enable(IRQ_EVT_RINT1);

100
101 // globally enables interrupts

102 IRQ_globalEnable();

103
104 // enter infinite "while" loop and wait for interrupt

105 while(1)
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106 {

107 }

108 }

109
110 interrupt void serialPortRcvISR()

111 {

112 // read left/right channels from codec

113 data1.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

114
115 // test DIP switches

116 for (i=0; i<=3; i++)

117 {

118 // DIP switch is on

119 if (DSK6713_DIP_get(i) == 0)

120 {

121 if (test[i] == 0)

122 {

123 DSK6713_LED_on(i);

124 j=j + DELAY[i];

125 test[i] = 1;

126 }

127 }

128 // DIP switch is off

129 if (DSK6713_DIP_get(i) == 1)

130 {

131 if (test[i] == 1)

132 {

133 DSK6713_LED_off(i);

134 j = j - DELAY[i];

135 test[i] = 0;

136 }

137 }

138 }

139 // Store input to float, scale, and negate for inversion correction

140 fleftchannel[j] = ((short)data1.part[1])*invMAX;

141 frightchannel[j] = ((short)data1.part[0])*invMAX;

142
143 // clear output variable

144 data2.combo=0;

145
146 // Setup left/right channel outputs (including scaling)

147 data2.part[1] = (short)(MAX*w3_left[k]*0.99);

148 data2.part[0] = (short)(MAX*w3_right[k]*0.99);

149
150 // increment buffer index and handle wraparound

151 j++;

152 if (j==N) j=0;

153 k++;

154 if (k==N) k=0;

155
156 // write left/right channels to codec

157 MCBSP_write(DSK6713_AIC23_DATAHANDLE,data2.combo);

158 }

159
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A.3 Single-Path Time-Varying Channel Simula-

tor

The follow code is used to implement single-path time-varying channel simulators.

At the start of the program, the user is able to determine which of the three time-

varying channels (PCP, PCV, or PCA) that will be implemented by using DIP

switches zero and one as described in the code documentation.

1 /*************************************************************************

2 * Interrupt based universal time-varying channel simulator

3 * James McGinley

4 * Jan. 5, 2007

5 * DIP0 = down, DIP1 = up --> piecewise constant position channel

6 * DIP0 = up, DIP1 = up --> piecewise constant velocity channel

7 * DIP0 = up, DIP1 = down --> piecewise constant acceleration channel

8 *************************************************************************/

9
10 #include <c6x.h>

11 #include <csl.h>

12 #include <csl_mcbsp.h>

13 #include <csl_irq.h>

14 #include "dsk6713.h"

15 #include "dsk6713_aic23.h"

16 #include "stdio.h"

17 #include "math.h"

18 #define N 1000

19 #define T 95999

20 #define MAX 32768

21 // -------------------------------------------------------------------------

22 // Global declarations

23 // -------------------------------------------------------------------------

24
25 // Indexes

26 int i=0;

27 int j=0;

28 int k=0;

29 int t=0;

30
31 // Determine channel mode (PCV is default)

32 int mode = 1;

33
34 // Determines where in the "mobility" script we are

35 int state = 0;

36
37 // Check to see if mode has been selected

38 int check = 0;

39
40 // Stores desired delay

41 float delay = 0.0;

42
43 // Desired distance [m]

44 double distance = 0.0;

45
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46 // Desired velocity [m/s]

47 float velocity = 0.0;

48
49 // Used for wrap around

50 float counter = 0.0;

51
52 // Length of mobility

53 float times = 1.0;

54
55 // Desired delay in samples

56 float samples_delay = 0;

57
58 // Cubic interpolation variables

59 int M1,M2,M3,M4;

60 float kfrac = 0.0;

61 float lslope, linterp, rslope, rinterp;

62 float w1 = 0.0;

63 float w2 = 0.0;

64 float p = 0.0;

65 float psm1 = 0.0;

66 float lc[4] = {0.0,0.0,0.0,0.0};

67 float rc[4] = {0.0,0.0,0.0,0.0};

68
69 // Sampling frequency and inverse

70 float fs = 96000.0;

71 float fs_inv = 0.0000104166666666666;

72
73 // Input/output gain scale factor

74 float invMAX = 0.000030517578125;

75
76 // Mobility scripts

77 float distance_script[8] = {0, 0, 1.9538773, 1.9538773,

78 3.3404998, 3.3404998, 4.97923558, 4.97923558};

79 float velocity_script[8] = {0.0, 0.3, 0.3, 0.0, 0.0, -0.3, -0.3, 0.0};

80 float acceleration_script[8] = {0 , 5, -5, -5, 5, 0, 0, 0};

81
82 // Codec read/write variables

83 union {Uint32 combo; short part[2];} data1;

84 union {Uint32 combo; short part[2];} data2;

85
86 // Left/right channel input buffers

87 float leftchannel[N]={0};

88 float rightchannel[N]={0};

89
90 // Codec configuration with default settings

91 DSK6713_AIC23_CodecHandle hCodec;

92 DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

93 interrupt void serialPortRcvISR(void);

94
95
96 // -------------------------------------------------------------------------

97 // End of Declare Variables

98 // -------------------------------------------------------------------------

99
100
101 void main()

102 {

103 // Initialize the board support library

104 DS6713_init();

105
106 // Open codec and get handle

107 Codec = DSK6713_AIC23_openCodec(0, &config);

108
109 // Set codec sampling frequency

110 DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_96KHZ);
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111
112 // Configure buffered serial ports for 32 bit operation

113 MCBSP_FSETS(SPCR1, RINTM, FRM);

114 MCBSP_FSETS(SPCR1, XINTM, FRM);

115 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

116 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

117
118 // Check DIP switches to determine which channel to operate as

119 while(check==0)

120 {

121 // DIP0 is down, DIP1 is up, turn on LED0, PCP channel

122 if (DSK6713_DIP_get(0) == 0 && DSK6713_DIP_get(1)==1)

123 {

124 DSK6713_LED_on(0);

125 mode = 1;

126 check = 1;

127 }

128 // DIP0 is up, DIP1 is up, turn on LED1, PCV channel

129 if (DSK6713_DIP_get(0) == 1 && DSK6713_DIP_get(1)==1)

130 {

131 DSK6713_LED_on(1);

132 mode = 2;

133 check = 1;

134 }

135 // DIP0 is up, DIP1 is down, turn on LED2, PCA channel

136 if (DSK6713_DIP_get(0) == 1 && DSK6713_DIP_get(1)==0)

137 {

138 DSK6713_LED_on(2);

139 mode = 3;

140 check = 1;

141 }

142 }

143
144 // Setup interrupt

145 IRQ_globalDisable();

146 IRQ_nmiEnable();

147 IRQ_map(IRQ_EVT_RINT1,15);

148 IRQ_enable(IRQ_EVT_RINT1);

149 IRQ_globalEnable();

150
151 // Main loop, do nothing and wait for interrupt

152 while(1)

153 {

154 }

155 }

156
157 interrupt void serialPortRcvISR()

158 {

159 // Read left/right channels from codec

160 data1.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

161
162 // Store left/right input to buffers

163 leftchannel[j]=(float)(data1.part[1])*invMAX;

164 rightchannel[j]=(float)(data1.part[0])*invMAX;

165
166 // We are in state 0

167 if(counter < times)

168 state = 0;

169
170 // We are in state 1

171 if(counter > times - 1 && counter <= 2*times-1)

172 state = 1;

173
174 // We are in state 2

175 if(counter > 2*times-1 && counter <= 3*times-1)
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176 state = 2;

177
178 // We are in state 3

179 if(counter > 3*times-1 && counter <= 4*times-1)

180 state = 3;

181
182 // We are in state 4

183 if(counter > 4*times-1 && counter <= 5*times-1)

184 state = 4;

185
186 // We are in state 5

187 if(counter > 5*times-1 && counter <= 6*times-1)

188 state = 5;

189
190 // We are in state 6

191 if(counter > 6*times-1 && counter <= 7*times-1)

192 state = 6;

193
194 // We are in state 7

195 if(counter > 7*times-1)

196 state = 7;

197
198 // piecewise constant position channel

199 if (mode==1)

200 {

201 distance = distance_script[state];

202 }

203
204 // piecewise constant velocity channel

205 if (mode==2)

206 {

207 distance += velocity_script[state]*fs_inv;

208 }

209
210 // piecewise constant acceleration channel

211 if (mode==3)

212 {

213 velocity += acceleration_script[state]*fs_inv;

214 distance += velocity*fs_inv + 0.5*acceleration_script[state]*

215 fs_inv*fs_inv;

216 }

217
218 // Calculate desired delay

219 delay = distance*0.00294117647;

220 samples_delay = delay*fs;

221 k = (int)samples_delay;

222
223 // --------------------------------------------------------

224 // START: Cubic Interpolation

225 // --------------------------------------------------------

226 p = (k+1)-samples_delay;

227 psm1 = p*p-1;

228 M1 = j-(k+2);

229 M2 = j-(k+1);

230 M3 = j-k;

231 M4 = j-(k-1);

232
233 while (M1<0) M1 += N;

234 while (M1>N-1) M1 -= N;

235 while (M2<0) M2 += N;

236 while (M2>N-1) M2 -= N;

237 while (M3<0) M3 += N;

238 while (M3>N-1) M3 -= N;

239 while (M4<0) M4 += N;

240 while (M4>N-1) M4 -= N;
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241
242 for (i=0;i<=3;i++)

243 {

244 if (M1+i>N-1) M1 -= N;

245 lc[i] = (float)leftchannel[M1+i];

246 rc[i] = (float)rightchannel[M1+i];

247 }

248
249 linterp = -p*(p-1)*(p-2)*(float)leftchannel[M1]/6 + (p*p-1)*(p-2)*

250 (float)leftchannel[M2]/2 - p*(p+1)*(p-2)*(float)leftchannel[M3]/2 +

251 p*(p*p-1)*(float)leftchannel[M4]/6;

252 rinterp = -p*(p-1)*(p-2)*(float)rightchannel[M1]/6 + (p*p-1)*(p-2)*

253 (float)rightchannel[M2]/2 - p*(p+1)*(p-2)*(float)rightchannel[M3]/2 +

254 p*(p*p-1)*(float)rightchannel[M4]/6;

255
256 // --------------------------------------------------------

257 // END: Cubic Interpolation

258 // --------------------------------------------------------

259
260 // Set data2 to zero

261 data2.combo=0;

262
263 // Setup left/right channel output

264 data2.part[1] = (short)(MAX*linterp*0.99);

265 data2.part[0] = (short)(MAX*rinterp*0.99);

266
267 // increment buffer index and handle wraparound

268 j++;

269 if (j>=N)

270 {

271 j-=N;

272 }

273 t++;

274 if(t>=T)

275 {

276 t-=T;

277 counter = counter + 1;

278 if(counter == 8*times) counter = 0;

279 }

280
281 // Output left/right channels to codec

282 MCBSP_write(DSK6713_AIC23_DATAHANDLE,data2.combo);

283 }

284
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Appendix B

Maximum Likelihood Estimation

The following MATLAB code is used to determine the maximum likelihood esti-

mation of frequency and phase for both channels of a stereo *.wav file recording as

described in [13].

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Maximum likelihood estimation (MLE) for frequency and phase

3 % James McGinley

4 % Dec. 1, 2006

5 % Example for a *.wav file with a left/right channel frequency

6 % of 1814/2721 respectively

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8
9 % clear all variables and the command window

10 clear all;

11 clc;

12
13 % read in a *.wav file

14 [x,fs,nbits] = wavread(’z:\Thesis\Phase Stuff\1290.wav’);

15
16 % estimate left/right channel frequency

17 f_est_left = 1814;

18 f_est_right = 2721;

19
20 % define range of frequencies to check

21 range_left = 0.001;

22 range_right = 0.001;

23
24 % define desired precision

25 frequency_per_left = 0.0000005;

26 frequency_per_right = 0.0000005;

27
28 % separate left/right channels and clip

29 x1r = x(2.0e5 : 2.8e5, 1)’;

30 x2r = x(2.0e5 : 2.8e5, 2)’;

31
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32 % scale left/right to have equal amplitudes

33 x1r = x1r-mean(x1r);

34 x2r = x2r-mean(x2r);

35 x1r = x1r/sqrt(sum(x1r.*x1r))*sqrt(sum(x2r.*x2r));

36
37 % setup vectors

38 N = length(x1r);

39 n = 0:N-1;

40
41 % setup test vectors

42 ftest_left = f_est_left*(1+[-range_left:frequency_per_left:range_left]);

43 I_left = zeros(size(ftest_left));

44
45 ftest_right = f_est_right*(1+[-range_right:frequency_per_right:range_right]);

46 I_right = zeros(size(ftest_right));

47
48 % Find value that maximizes I (left and right)

49 wb = waitbar(0,’Please wait as I calculate frequency, phase, and time delay...’);

50 for k = 1:length(ftest_left),

51 I_left(k) = (1/N)*abs(x1r*exp(-j*2*pi*ftest_left(k)/fs*n(:)));

52 waitbar(k/(length(ftest_left)+length(ftest_right)),wb)

53 end

54
55 for k = 1:length(ftest_right),

56 I_right(k) = (1/N)*abs(x2r*exp(-j*2*pi*ftest_right(k)/fs*n(:)));

57 waitbar((k+length(ftest_left))/(length(ftest_left)+length(ftest_right)),wb)

58 end

59 close(wb)

60
61 % find index where I is maximized (left and right)

62 [value_left,index_left] = max(I_left);

63 [value_right,index_right] = max(I_right);

64
65 % find MLE frequency (left and right)

66 frequency_left = ftest_left(index_left)

67 frequency_right = ftest_right(index_right)

68
69 % find MLE phase (left and right), convert to degrees, and output to command window

70 phi_hat_left = -atan(sum(x1r.*sin(2*pi*frequency_left/fs*n))/sum(x1r.*cos(2*pi*frequency_left/fs*n)));

71 phase_estimate_left = phi_hat_left/2/pi*360

72
73 phi_hat_right = -atan(sum(x2r.*sin(2*pi*frequency_right/fs*n))/sum(x2r.*cos(2*pi*frequency_right/fs*n)));

74 phase_estimate_right = phi_hat_right/2/pi*360

75
76 % output the phase difference between the two channels to the command window

77 phase_difference = phase_estimate_left-phase_estimate_right

78
79 % determine time delay difference between channels

80 t_left = phase_estimate_left/360*(1/frequency_left);

81 t_right = phase_estimate_right/360*(1/frequency_right);

82
83 % output the time difference between the two channels to the command window

84 time_difference_us = (t_left - t_right)*1e6

85
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