
 CURRENCY TRADING SYSTEM DEVELOPMENT 1

Currency Trading System Development

An Interactive Qualifying Project Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
In Partial fulfillment of the requirements for the

Degree of Bachelor of Science

By
 Jake Barefoot [REL 1805]

 Michael Cullen [REL 1803]
 Aung Khant Min [REL 1807]

Submitted to

Professor Reinhold Ludwig
Professor Gbetonmasse Somasse

Date: 30 April, 2019

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree

requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more

information about the projects program at WPI, see ​http://www.wpi.edu/Academics/Projects​.

http://www.wpi.edu/Academics/Projects

 CURRENCY TRADING SYSTEM DEVELOPMENT 2

Abstract

In a rapidly evolving world of market dynamics, it has become increasingly difficult to

consistently gain an investment edge. The goal of this IQP is to develop an automated trading

system in the Metatrader platform. The project includes three individually developed algorithmic

trading systems and one combined system that merges the three individually developed systems.

Each system is optimized over a number of recent years in order to maximize the return on

investment. The approach allows the combined system to be a broad consolidation of the

individual system performances.

 CURRENCY TRADING SYSTEM DEVELOPMENT 3

Table of Contents

Abstract 2

Table of Contents 3

1. Introduction 6
1.1 Problem Statement 6
1.2 Project Description 7

2. Understanding The Currency Market 8
2.1 Trading vs Investing 8
2.2 Currency markets 9

2.2.1 Who is involved 10
2.2.2 Advantages and disadvantages 10
2.2.3 Currency pairs 12
2.2.4 Trading times and markets 13
2.2.5 Pips/Lots 14
2.2.6 What affects currency rates 14

3. Trading Systems 16
3.1 What is a Trading System? 16
3.2 Trading platforms 16

3.2.1 Metatrader 17
3.3 Trading styles 17
3.4 Exit conditions 17
3.5 Types of analysis 19
3.6 Technical analysis indicators 19

3.6.1 Moving Averages 19
3.6.2 Moving Average Convergence Divergence 20
3.6.3 Relative Strength Index 22
3.6.4 Stochastic Indicator 23
3.6.5 Parabolic SAR 24
3.6.6 Average True Range 25
3.7.7 Bollinger Bands 26

4. Optimizing and Analyzing Trading Systems 28
4.1 Backtesting With Metatrader 5 28
4.2 Optimization Criteria 30

 CURRENCY TRADING SYSTEM DEVELOPMENT 4

4.3 Monte Carlo Analysis 31
4.4 Risk 33
4.5 Profitability Metrics 33
4.6 System Monitoring 34

5. Results 35
5.1 Individual System 1 (Jake Barefoot) 35

5.1.1 Methodology 35
5.1.2 Program Flow 36
5.1.2 Inputs 38
5.1.3 Optimization 38
5.1.4 Results 41

5.2 Individual System 2 (Michael Cullen) 43
5.2.1 Methodology 43
5.2.2 Program Flow 43
5.2.2 Inputs 45
5.2.3 Optimization 46
5.2.4 Results 47

5.3 Individual System 3 (Aung Min) 49
5.3.1 Methodology 49
5.3.2 Program Flow 50
5.3.3 Optimization 53
5.3.4 Results 54

6. Combination of Systems 57
6.1 Methodology 57
6.2 Program Flow 57
6.3 Operating Conditions 59
6.4 Results 60

7. Conclusions and Recommendations 63
7.1 Conclusions 63

7.1.1 System 1 (Jake Barefoot) 63
7.1.2 System 2 (Michael Cullen) 64
7.1.3 System 3 (Aung Min) 65
7.1.4 Combined System 66

7.2 Future Recommendations 67
7.2.1 System 1 (Jake Barefoot) 67
7.2.2 System 2 (Michael Cullen) 68
7.2.3 System 3 (Aung Min) 68

 CURRENCY TRADING SYSTEM DEVELOPMENT 5

7.2.4 Combined System 69

References 70

Appendix A: System 1 Code 73

Appendix B: System 2 Code 83

Appendix C: System 3 Code 84

Appendix D: System 1 Yearly Results (Jake Barefoot) 92

Appendix E: Combined System Code 95

Appendix F: Combined System Yearly Results 120

Appendix G: System 3 Backtesting Data 125

 CURRENCY TRADING SYSTEM DEVELOPMENT 6

1. Introduction

1.1 Problem Statement

The recent widespread use of the internet has drastically changed the financial industry

landscape for investors. The average person now has unprecedented access to a vast amount of

information that can be used to gain wealth. With the ease and speed of data access, any potential

investor can access financial reports, market indicators, and press releases for any company,

currency, or commodity.

The development of the internet has also led to drastic changes for brokers. The people

who facilitate the transactions traditionally had high commission rates, because the client was

paying for access. The tech boom caused an increase in the amount of brokers leading to ultra

competitive commission rates. Brokers now don’t even need to be human. Online brokers are

now a viable way to invest in financial markets. The commission rates are very low, and the

transactions can be completed in milliseconds.

The amount of new participants in the financial world create a hyper competitive space,

where a prospective trader needs to have a novel approach in order to achieve success.

Developing a novel system requires research on what has been achieved in the past, and what

factors affect the price of an asset. Personal traders can develop systems that rely on price data,

financial reports, consumer sentiment, and up to date news. Traditional money managers are still

a viable option, but achieving financial independence can be done with a solid understanding of

what changes the price of a stock, currency, bond, option, etc. Once a trader has developed their

 CURRENCY TRADING SYSTEM DEVELOPMENT 7

system it needs to be tested to determine its viability. The problem for traders is implementing a

strategy in a way that can be consistently recreated, and generate useful results to help

understand if the trading system is worth pursuing.

1.2 Project Description

The goal of our project was to create an integrated system of three individual automated

currency trading systems that can be used as a baseline for future trading. The advantages of

using automated trading systems include the ability to evaluate performance on historical data,

and to limit the introduction of human bias in individual trades. To develop the systems, we

researched the structure of the foreign exchange market, trading styles, and analytical

methodologies used in the field. We then chose a trading platform and learned the coding

language to develop and test three individual systems. Lastly, the systems were integrated into

one consolidated “system-of-systems” in an attempt to outperform the individual systems. The

results of each approach were recorded and analyzed.

 CURRENCY TRADING SYSTEM DEVELOPMENT 8

2. Understanding The Currency Market

The first step in reaching the goals of this project was to develop a detailed understanding

of the currency market, as well as understand the options of gaining wealth in financial markets.

2.1 Trading vs Investing

The two broad philosophies to gain wealth in financial markets are investing and trading.

Investors attempt to build wealth by holding financial assets for an extended period of time. The

underlying reasoning is that markets usually mature over time, so an investor will buy stocks

then reinvest profits to continue gaining wealth. The time frame for investors can vary, but

certain assets can be held for decades if the outlook is promising. Investors will generally attempt

to look at investment factors that will affect long term performance for the asset such as the

management structure, profitability, long-term company goals, trade balances, or political

sentiment. There are many types of investing such as value investing which looks at lower price

yet well performing assets, and growth investing which looks at emerging assets with potential,

but they all share the same goal of having assets grow over time (Chan, 2004).

Traders employ a different method to gain wealth. Traders look for ways to buy a stock,

or currency, and sell quickly when there is an imbalance in the price of an asset. Traders look to

make smaller profits in the short term that will add up to more than what can be made by just

holding the asset. Traders can make money on both sides of the market by buying on an uptrend

and selling on a downtrend. The time frame for traders is shorter than investing, but can vary

significantly. Some traders keep positions for weeks or months, and some only hold positions for

 CURRENCY TRADING SYSTEM DEVELOPMENT 9

a few seconds. Successful traders look at various technical indicators that indicate short term

performance such as, oscillators, moving averages, and others that will be discussed in Chapter

3.

It is important to understand two significant differences between investing and trading

before participating in financial markets. The first difference is the higher time commitment for

trading. In order to be a successful trader, positions can be opened and closed on a daily basis.

This means a trader needs to be vigilant with their positions, while an investor should monitor

their positions less frequently and focus on long term growth. The time commitment for trading

can be mitigated with an automated system. Another major difference is risk. Investing involves

possibly smaller payoffs, with lower risk than trading. Most financial markets see a consistent

growth year to year, meaning an investor benefits from that growth by constantly staying in the

market. A trader can earn a significantly larger percentage, but relies on less predictable short

term movements which increases risk significantly. These factors can help a new financial

prospector determine which portfolio management strategy suits their financial situation and

personality.

2.2 Currency markets

Forex is the global market that allows the exchange of one currency for another. The

market facilitates transactions that allow the investor to take advantage of the varying exchange

rates of the different currencies. If used correctly the $5 trillion forex market can be a very

profitable venture (Forex Market Overview, 2019). In currency markets, the dominant earning

strategy is trading. This is for the simple reason that currencies do not have the same upward

 CURRENCY TRADING SYSTEM DEVELOPMENT 10

trend as stock trading. For example, If you traded 100 US Dollars for Euros in 1994, those Euros

you purchased would be worth the same 100 US Dollars in 2017. To understand how money can

be made in the currency market it is important to know what groups are involved in the forex

market.

2.2.1 Who is involved

Forex is unique because it is a decentralized market where anyone can participate. This

decentralization allows for different banks, and brokers, to offer different prices for the currency.

Even though currency quotes are not fixed, brokers almost always offer the best price because of

the extremely high competition. Even with the openness of the forex market there is still a

hierarchy for trading. The super banks are at the top of the market. These large banks set the

spreads and make a massive amount of trades per day. At the bottom of the ladder are the

speculators. Speculators comprise 90% of the trading volume and are comprised of individuals

with varying amounts of currency (Forex Market Overview, 2019). Anyone can participate in the

forex market with as little as $50 in an account.

2.2.2 Advantages and disadvantages

Table 1 highlights some of the advantages and disadvantages of creating a trading system for the

forex market.

 CURRENCY TRADING SYSTEM DEVELOPMENT 11

Table 1: Advantages and Disadvantages of the Forex Market

Advantages Disadvantages

Little/No Commissions Increased Risk with Leverage

No Fixed Lot Sizes Low Volatility

Hard to Influence the Market Government Intervention

Less Volatile

24-Hour Trading

Leverage

There are many advantages to trade in the forex market. One advantage is there are no

commissions because most brokers make money through the ‘bid/ask’ spread. Forex is great for

smaller investors for a number of reasons. There are no fixed lot sizes, meaning an investor can

spend as little as $50 to make an account. It is also difficult for a single institution to heavily

influence the market because of how much currency is traded. For smaller investors this means

less volatility, and more security for investments. The last key advantage for forex trading is all

day activity. There are different markets all around the world that are constantly trading

currency, so investors with day jobs can trade during their off hours. In the stock world, the

popular markets have a more narrow trading time frame.

With all these advantages there are some disadvantages. One possible disadvantage

would be the increased risk when trading with high leverage. Leverage is when you are given the

buying power more than the value of your account. This allows you to buy more currency than

you can afford. The result could mean big profits, or draining an account to zero. Forex markets

allow the user higher leverage than stocks because of the fixed profit that brokers can make.

 CURRENCY TRADING SYSTEM DEVELOPMENT 12

Another disadvantage would be low volatility. Currency pairs only shift a few hundredths or

tenths of a percentage point in a day. This little price movement can make it difficult for

someone without large capital to see any real profits without using leverage. Another

disadvantage would be intervention by governments. The forex market is not fully governed by

the free market, the currencies are controlled by governments that will have the option to raise

interest rates, or transfer funds.

2.2.3 Currency pairs

This massive market of global currencies primarily trades eight major currency pairs.

Any currency trading in the forex market must be done in pairs because the investor is essentially

selling one currency to buy another. There are seven major pairs that trade the US Dollar (USD)

and many minor crosses that trade various other currencies. The major forex currency pairs are

shown below in Table 2.

Table 2: Seven Major Currency Pairs (Major Currency Pairs, 2017)

 CURRENCY TRADING SYSTEM DEVELOPMENT 13

The currency pair is represented by two three letter symbols of the currency. The first is

the base currency and the second is the quote currency. The base currency is is how much of the

quote currency is needed to get one unit of base currency. For example, a EUR/USD is 1.5. This

means you would have to give 1.5 USD to get 1 EUR.

2.2.4 Trading times and markets

As mentioned before, the forex market is open all day during the week, however there are

different markets open at different times. For example, New York is open 8:00 AM – 5:00 PM,

and London is open 3:00 AM – 11:00 AM. There is currency moving all hours of the day, but the

most active sessions are London and New York. There is also higher trade activity during market

overlap times. This means the best time to trade currency on the east coast is from 8:00 AM –

11:00 AM when the New York and London markets are active. It is important to note that

markets have higher liquidity during the middle of the week. Table 3 below shows the session

times for popular forex markets.

Table 3: Forex Trading Times (Forex trading sessions table, 2017)

 CURRENCY TRADING SYSTEM DEVELOPMENT 14

2.2.5 Pips/Lots

A percentage increment point, or pip, is the smallest unit of measurement to express the

change in value between two currencies. Because there is not much volatility in currency

markets, a pip is usually the last decimal place in the quote and is usually four decimal places out

for most currencies, and two places out for Japan. Knowing the value of a pip determines how

much money an investor made from a position. The formula for calculating pip value is shown in

Equation 1.

(Value change in counter currency) x (Exchange rate ratio) = pip value in base currency (Eq. 1)

It is important to know how pip values are calculated, but any electronic trading platform

will calculate pip value, and total trade profit, for the user.

It is also vital to know that currency is traded in lots. It is very unusual, and impractical to

just buy a couple units of currency, because there will be no realizable profit with normal

currency movement. A standard lot is 100,000 units of currency. Most trading platforms will

allow the user to trade smaller sizes such as 10,000 units, or even 100 units. Leverage can also be

used to trade with larger lot sizes than your account would normally be able to purchase, but as

discussed previously this requires increased risk.

2.2.6 What affects currency rates

There are many factors that can change a currency ratio. The main four would be:

● Interest rates ​- ​Higher interest rates mean higher increase in value for foreign

investments. If the interest rate is high compared to another country the currency value

increases. Vice versa for low interest rates (Froot, 1990).

 CURRENCY TRADING SYSTEM DEVELOPMENT 15

● Inflation​ -​ purchasing power of a currency is equally important as interest rates. As

inflation increases the amount of goods purchasable with a currency decreases, and

attractiveness decreases for foreign investors, vice versa for decreases in inflation where

the real value of a currency increases (Froot, 1990).

● Trade balance​ - ​difference of value for exports and imports. A positive trade balance for a

country implies desire for the country's goods and foreign countries are forced to

exchange more currency for domestic currency. As a result the currency value increases

with positive trade balance and currency value decreases with a deficit (Fischer, 1993).

● Government debt​ -​ debt owed by the central government. Higher government debt can

lead to inflation with less purchasing power for a currency. Inflation will cause investors

to leave. Higher government debt generally leads to a decrease in currency value (Patel,

2014).

There are other factors that could change the currency ratio such as trade terms between

countries, political changes, unemployment, natural disasters, gross domestic product, etc. These

factors are backed by macroeconomic theory and are responsible for a large portion of forex

movement, but there are also changes cause by the speculators mentioned above. Some price

movements caused by the currency traders are in response to other technical analysis tools

discussed in Chapter 3.

 CURRENCY TRADING SYSTEM DEVELOPMENT 16

3. Trading Systems

This Chapter explores the concept of trading systems, how to develop a trading system,

and the factors that contribute to a successful system.

3.1 What is a Trading System?

A trading system is an established set of rules which are used to consistently make trades

that maximize profit and limit risk. A trading system will have entry and exit conditions based on

technical, fundamental, or analytical tools. Because of the amount of traders participating in the

forex market, traders need to develop an edge with their system. An edge would be a novel set of

rules and analytical tools that help to overcome the somewhat random movement of a market. In

theory, the market price is completely random, but in reality it is determined by a large number

of factors including human emotion. A trader with an edge in the market will be able to exploit

unique non-random factors that produces a positive outcome in a somewhat random market.

3.2 Trading platforms

There are a lot of trading platforms to choose from such as Ally Invest, TradeStation, TD

Ameritrade, Interactive Brokers, Charles Schwab, EOption and Metatrader. Trading platforms

are applications that allow users to look at price, or fundamental data for different assets.

Typically trading platforms will offer the ability to make manual trades or allow the user to

develop automated trading strategies. For this project, the focus will be on Metatrader as it is the

largest forex broker, and allows for automatic trading system development.

 CURRENCY TRADING SYSTEM DEVELOPMENT 17

3.2.1 Metatrader

Metatrader has been adopted by the forex market as the standard market trading platform.

Hundreds of brokers around the world have been using it since November 2000 (MetaQuotes,

2019). Metatrader offers a stable platform with enhanced security so that the trader can open and

close forex positions without worry. Also, the Metatrader platform provides advanced

technology for its users. For instance, it has over fifty technical indicators pre-installed. The user

can choose from nine different time frames and three different chart times in order to fit their

own trading style.

3.3 Trading styles

Trading support and resistance levels can be divided in two ideas: the bounce and the

break. When playing the bounce, it is wise to tilt the odds in the favor of the trader and find some

sort of confirmation that the support or resistance will hold instead of setting the entry order right

on the line. When the break occurs, there are two ways to go at it: the aggressive way and the

conservative way. The aggressive way is to buy or sell whenever price passes convincingly

through a support or resistance zone. The conservative way is to hold on to the trade, wait for

price to make a “pullback” to the broken support or resistance level and enter after the price

bounces.

3.4 Exit conditions

A successful forex trader also needs to address exit conditions for an order. The first exit

condition is a stop loss. A stop loss is a price point that that is set to limit the potential loss of an

 CURRENCY TRADING SYSTEM DEVELOPMENT 18

order. A stop loss is initially set in the opposite direction of an order, in case of a price shift that

would negatively affect the return. There are many strategies that can be used to set stop losses

that maximize return. A basic option would be to use a fixed stop loss. An example of a fixed

stop loss would be setting a stop loss 20 pips below the price of a currency. This basic strategy

limits risk, but stop losses can be made more robust. Another stop loss strategy would be to place

a stop loss based on certain trends in price. The placement could be made based on resistance

levels, range of recent prices, or recent pull backs (Grimes, 2012). A third strategy could be to

have a trailing stop loss that can increase or decrease based on trends. This might mean setting a

stop loss, having an order initially succeed causing the stop loss to rise above the take profit

point. Stop loss strategies that are based on price movement help to further limit risk of an order.

Another exit condition for an order is a take profit. A take profit is a price that is set as a

point to exit the order that results in a profit. A take profit is used useful to a trader to limit the

risk of continuously staying in the market. A basic strategy would be to have a fixed take profit.

This carries the dame disadvantages as a fixed stop loss, but is more valuable than no profitable

exit condition. Other logical take profit strategies could include setting an exit at resistance or

support levels, a defined risk/reward level, or specific time.

A trader does not have to set stop losses, or take profits when creating an order, but exit

conditions do have to be set. The specific values do not have to be given when opening a trade

with Metatrader, or any other trading platform. A trader can choose to exit the market based on

market indicators that will be discussed later. Analyzing market indicators can help to increase

chances of determining price movement. No matter what exit conditions a trader chooses, the

 CURRENCY TRADING SYSTEM DEVELOPMENT 19

rules needed to be followed diligently to increase consistency and reliability of the trading

system.

3.5 Types of analysis

There are three basic types of forex market analysis: Technical analysis, fundamental

analysis, and sentiment analysis. Technical analysis is a very subjective way of looking at

historical price movements and determining the current trading conditions and potential price

movements. Fundamental analysis looks at factors such as economic, social, and political forces

that could potentially affect the supply and demand of the product. Sentiment analysis is using a

trader’s own opinion or understanding of the market to either follow it or go against it.

3.6 Technical analysis indicators

There are a multitude of technical analysis indicators that are used to try to predict the

future price of a commodity. These indicators can also help a trader determine entry and exit

conditions. Some common technical indicators used in forex markets are described below.

3.6.1 Moving Averages

A moving average is an indicator used in technical analysis that helps smooth out price

action by filtering the noise from the price (Grimes, 2012). The two most common forms of

moving averages are simple or exponential. Simple moving averages are calculated by averaging

the previous x closing prices. Exponential moving averages have a more difficult formula that

still averages the previous x periods, but adds weight to more recent values. Adding more price

 CURRENCY TRADING SYSTEM DEVELOPMENT 20

periods to these averages smooths the curve, but these longer averages are more prone to market

lag.

One of the most common ways to utilize moving averages would be to plot a shorter

moving average and a longer moving average on the same plot. The shorter moving average

would react quickly to the market price, while the longer average would show general trends.

Investors then determine when to buy or sell based on the crosses of these two lines . The first

cross would be when the shorter average crosses above the longer moving average. This would

signal that the market is going to rise so an investor would want to buy. The second cross would

be when the shorter average crosses below the longer average. This would signal that the market

is going to fall, so an investor would want to sell. There are many ways to utilize moving

averages by adding lines, or changing the length of the averages. The versatility of moving

averages have made them an extremely popular economic indicator.

3.6.2 Moving Average Convergence Divergence

The moving average convergence divergence (MACD) indicator is a momentum

indicator that shows the relationship between two moving averages of price. The value is

determined by subtracting a longer moving average from a shorter moving average. Then a third

average is used as a signal line that help determine when to buy and sell. Different investment

platforms allow the user to select different ranges for three averages, but no matter the amount of

periods, the investment strategy remains the same. Shown in Figure 1 is an example of MACD.

 CURRENCY TRADING SYSTEM DEVELOPMENT 21

Figure 1: MACD (Moving Average, 2019)

There are three patterns that come from the MACD that can signal an investor to buy or

sell. The convergence pattern is when the two averages cross. The implications of these crosses

are similar to the crosses described in the moving averages section. The next pattern is

divergence. Divergence is when the market price moves away from the MACD. One example

would be if the current price is rising, but the MACD is falling. In this case, the investor would

want to sell because the market price is predicted to fall. On the other hand, if the market price is

falling and the MACD is rising, the prediction is the market price will rise in the future. The third

pattern would be a dramatic rise in the MACD. If this happens, the shorter average has vastly

increased compared to the longer average. The prediction would be the market price has been

overbought and will return to a more normal level. In this case, an investor would want to short

the market until the market price levels out (Grimes, 2012). The MACD is a very popular

indicator because its historical accuracy and graphical intuitiveness.

 CURRENCY TRADING SYSTEM DEVELOPMENT 22

3.6.3 Relative Strength Index

The relative strength index is a momentum indicator that measures the speed and change

of price movements. The RSI uses trends of price changes to determine a “score” of market price

that ranges from​ 0 to 100 (Bauer, 1999). A score of 100 signifies an extreme bull market where

the market is constantly rising. A score of 0 signifies an extreme bear market where the market is

constantly falling. Investors tend to use the scores of 30 and 70 to determine when to buy or sell.

An example of RSI is shown by the blue line in Figure 2.

Figure 2: RSI (Relative Strength Index, 2019)

An RSI of 70 would mean the market is overbought. When a market is overbought the

prediction would be the market price is about to fall in the future. The conclusion for the investor

would be to short the market. An RSI of 30 would mean the market is oversold. When a market

is oversold the prediction would be the market price is about to rise in the future. The conclusion

for an investor would be to long the market. Because RSI is a relative measure, the exact levels

of overbought and oversold can be altered depending on investment strategy.

 CURRENCY TRADING SYSTEM DEVELOPMENT 23

3.6.4 Stochastic Indicator

The stochastic indicator is a momentum indicator that shows the location of the close

price relative to the high-low range over a number of periods (Bauer, 1999).The highest high and

lowest low are determined by the price over the defined number of periods. The user and

investment strategy determines the time frame used. An investor can measure the price of a

market over hours, or days, with longer time periods being used for more conservative investors.

The stochastic indicator does not follow price or volume of a market, it follows the momentum

of the price. The thought behind following the momentum of price is that it will change before

the actual price does. Figure 3 shows an example of the Stochastic indicator in red.

Figure 3: Stochastic Indicator (Double Smoothed Stochastic, 2019)

Much like RSI, the stochastic indicator ranges from 0 to 100, and set levels help

determine when to buy or sell. Because both indicators are bounded, the investment logic is very

similar. When a market is overbought an investor should buy, and when a market is oversold an

investor should sell. Although the overbought and oversold levels vary, common levels would be

 CURRENCY TRADING SYSTEM DEVELOPMENT 24

80 and 20 respectively. The stochastic indicator is best used in conjunction with

support/resistance levels as well as moving averages to broaden the scope of analysis.

3.6.5 Parabolic SAR

The parabolic stop and reverse, SAR, is an indicator used to determine the direction of an

asset as well as when to enter or exit the market (Drakopoulou, 2016). The SAR is visualized as

a set of dots either above or below the price. The dots also follow the recent trend of the market,

with stronger trends leading to steeper slopes in dots. Eventually the dots will meet the price of

the asset, causing the dots to flip and quickly move away from the price. Shown below in Figure

4 are SAR dots plotted with example price data.

Figure 4: SAR (Parabolic SAR, 2011)

When trading with the SAR, a long trade would be placed when the dots switch from

above an asset to below. This would signal that an uptrend has started. When placing a short

trade, the dots should switch from below the price of an asset to above. Like all technical

 CURRENCY TRADING SYSTEM DEVELOPMENT 25

indicators, SAR can be used in a variety of ways. Some examples include using other indicators

such as long term averages and SAR for confirmation of an entry, or determining stop losses

based on the current SAR dot. It is also important to note that SAR is not very valuable in a

sideways market because the dots will frequently flip with no clear price direction.

3.6.6 Average True Range

The average true range (ATR) is a technical analysis indicator that measures market

volatility by decomposing the entire range of an asset price for a specific period (Cohen, 2016).

Normally, it is derived from a 14 day moving average of a set of true range indicators. In order to

calculate average true range, equation 2 is used. Figure 5 shows an example of the ATR in the

bottom portion of the price graph.

TR = max[(high - low), abs(high - close​previous​), abs(low - close​previous​)] (Eq. 2)

Figure 5: Average True Range indicator in Metatrader

 CURRENCY TRADING SYSTEM DEVELOPMENT 26

Figure 5 shows how the average true range indicator is shown in the Metatrader

platform. It mainly ranges from 0.002 to 0.0001. As the value of the average true range is

directly proportional to the volatility of the market, the traders can use this indicator for detecting

when to go in and out of trades based on the value of the indicator.

3.7.7 Bollinger Bands

Bollinger Bands are used to indicate whether the price of an asset is relatively high or

low, and do not give an absolute buy or sell signal (Bollinger, 1992). The bands themselves are

plotted two standard deviations above and below a moving average. The bands form an envelope

around the current price based on previous movement. Shown below in Figure 6 is a bollinger

band envelope with the bands, and moving average labeled.

Figure 6: Bollinger Bands (What are Bollinger Bands, 2019)

When trading with Bollinger Bands, it is important to focus on the points when the price

approaches either of the bands. When the price is relatively high it will approach the upper band,

and when the price is low it will approach the lower band. Bollinger Bands are best used as a

confirmation combined with other indicators. For example, if other indicators are signaling sell

 CURRENCY TRADING SYSTEM DEVELOPMENT 27

and the Bollinger Bands signal that the price is relatively high, it would be a good decision to

sell.

These are just a few of the many technical indicators that can help predict trends,

momentum, overbought, and oversold conditions of an asset.

 CURRENCY TRADING SYSTEM DEVELOPMENT 28

4. Optimizing and Analyzing Trading Systems

This Chapter explains the steps needed to optimize and analyze automatic trading

systems including backtesting, input optimization, risk management, profitability metrics, and

program monitoring. These categories are explored in the context of Metatrader, as many of

these topics can vary slightly based on the chosen trading platform.

4.1 Backtesting With Metatrader 5

Backtesting allows a trader to test their developed system on real historical data. One of

the greatest benefits of using Metatrader is the ability to backtest easily in their Strategy Tester .

The backtesting is performed in the Metatrader Strategy Tester interface. In Strategy Tester, the

user can specify multiple inputs that can determine what data is used to test the automatic trading

program, referred to in Metatrader as an expert advisor. Figure 7 is the user interface for the

Strategy Tester.

Figure 7: Metatrader Strategy Tester

 CURRENCY TRADING SYSTEM DEVELOPMENT 29

As seen above, the currency pair, trading time frame, historical time period, initial

deposit, etc. can all be varied when backtesting. Once the variables have been determined, the

user can start the backtest to get the results of the program over the desired time period.

Depending on the time period being tested, and complexity of the program, the Strategy Tester

can use all available computational resources (Strategy Testing, 2019). As a result of being CPU

dependent, running a test can take a significant amount of time and even slow a computer down.

After the test has completed, a new tab is created which stores the result of the backtest.

Figure 8 shows the output of backtesting on an example Metatrader program using the same

parameters defined in Figure 7.

Figure 8: An example of Metatrader Backtest

The outputs of the backtest are very detailed and include total profit, percentage of trades

won, total trades, as well as other profitability and risk metrics which help to determine the value

of the automated trading program.

 CURRENCY TRADING SYSTEM DEVELOPMENT 30

4.2 Optimization Criteria

The backtesting tool is very convenient, but a problem occurs when trying to test a

program multiple times with different input criteria. Input criteria could be any numeric variable

that can be changed in the program that would result in a different output. Some examples

include amount of lots traded, or variables used in coding the technical indicators. Metatrader

allows the user to add input criteria and perform optimization testing. Figure 9 shows the inputs

of an example Metatrader program.

Figure 9: Metatrader Inputs

The inputs have an initial value that the program will use if run only once. The step value is how

much each input is increased in each run of the test. If optimization is enabled in Metatrader

Strategy Tester, the application will run all different combinations of the inputs beginning from

the Start value, increment by the Step value, and end at the Stop value. In Figure 9, Lots would

have 91 steps, Take Profit would have 451 steps, etc. Metatrader would have to run 91 x 451 x

271 x 28 x 19 x 235, or 1.39 x iterations of the program. This is a prohibitive number of1012

tests when running on a personal computer because of the time needed to run each test.

 CURRENCY TRADING SYSTEM DEVELOPMENT 31

Metatraders solution was to add another option in Strategy Tester which implements a

genetic based algorithm, rather than testing every option. The genetic algorithm picks two

random populations, backtests those populations individually, then performs some crosses

between populations to determine optimal results (Optimization Types, 2019). Using the

algorithm drastically reduces the time needed to run all desired steps. The results of optimization

are not as detailed as one backtest, but they show the number of trades, profit, and input criterion

used in that test run. This data can then be used to select the best inputs for the automatic trading

program.

4.3 Monte Carlo Analysis

Monte Carlo simulation is used mainly for probability simulation that measures impact of

risk and uncertainty variables in terms of forecasting or financial situations. The way to employ

the simulation is to model the possible movements on currency prices. There are two

components to price movements: drift and random input. Drift is a constant directional

movement and the random input would represent market volatility. To determine the drift,

standard deviation, variance, and average price movement, we would need to analyze historical

price data. Luckily, there are websites that use randomized historical data to account for market

variations as well as randomly skip position entry to account for execution problems. Figure 10

shows the original data for EURUSD prices starting from 2017-08-03 01:55 to 2017-11-08

13:35. Figure 11 shows the monte carlo simulation of the very data.

To project one possible priceline, we need to use historical price data to generate a series

of daily returns. The equations used in Monte Carlo simulation are shown below.

 CURRENCY TRADING SYSTEM DEVELOPMENT 32

eriodic daily return n(day s price / previous day s price)p = l ′ ′ (Eq. 3)

rif t average daily return (variance/2) d = − (Eq. 4)

andom value standard deviation NORMSINV (RAND())r = * (Eq. 5)

ext day s price today s price e n ′ = ′ * (drif t+random value) (Eq. 6)

Each equation gives the set value for each of the variables that are necessary for each

separate line. Different random values result in different price trajectories. As you can see in

Figure 11, each different random value results in a different colored line.

Figure 10: Original data of EURUSD chart

Figure 11: Monte Carlo simulation on EURUSD chart

 CURRENCY TRADING SYSTEM DEVELOPMENT 33

4.4 Risk

One of the most important factors in financial trading is risk management. In order for the

traders to end up on top of the trades, the trader needs to manage his risks because even a few

oversized losses can outweigh the winnings of many other trades. For handling such situations,

the trader should add the stop-loss and take profit conditions in their programs to reduce

maximum loss, and prevent additional loss while they are on the winning side of the trade. In

order to handle how much return the trader receives for the extra volatility you endure for

holding a riskier asset, a measure called Sharpe’s ratio is formed. To calculate Sharpe’s ratio use

equation 7 shown below.

 T​S (x) = (r​x​ - R​f​) / StdDev (x) (Eq. 7)

In equation 7, x is the investment, r​x​ is the average rate of return of x, R​f​ is the best

available rate of return of a risk-free security, and StdDev(x) is the standard deviation of r​x​.

4.5 Profitability Metrics

Determining whether a system does well or not depends on several factors. One obvious

factor would be “does it make money?” However, this is not as simple as it may seem. A system

may make a profit over one year, but over several years it may lose money. Typically portfolios

are tracked over a 10-year period. This time frame tends to level out sudden drops or spikes in

price and usually gives a balanced market trend. If a system is consistently profitable over 10

years, then the system can be considered successful.

 CURRENCY TRADING SYSTEM DEVELOPMENT 34

Not all systems that break even over 10 years are considered profitable. Generally a

system needs to perform at a certain level to be considered a contender in the financial industry.

A good way of measuring the profitability of a system is to compare it against indexes. The most

popular comparison index is the S&P 500. If a system can outperform the S&P 500, the system

is profitable. Combining this with the 10-year period, if a system can outperform the S&P 500

over a 10-year period, the system is trending towards being financially stable and profitable,

which is what investors look for in a fund.

4.6 System Monitoring

Because of the nature of a completely autonomous system, mistakes are bound to occur.

As such, it is imperative that the user regularly monitors the program to ensure nothing fails.

There are measures in place that aim to prevent loss, such as stop-losses, but these are not perfect

and sudden price changes may interfere with them. One such problem may result from a news

article or press release, which can cause prices to rise or fall dramatically in a short period of

time. If a user sees such an event, it would be wise to close all trades in progress and wait until

the market levels out.

 CURRENCY TRADING SYSTEM DEVELOPMENT 35

5. Results

This Chapter describes the functionality and resulting predictions of each of the three

individual systems created including the program methodology, inputs, optimization, and

backtesting process. The results of each individual system are presented and analyzed to

determine the systems quality.

5.1 Individual System 1 (Jake Barefoot)

5.1.1 Methodology

The goal of this system was to use a plus/minus combination of different indicators that

look at momentum, trend, and overbought/oversold indicators to determine positioning. The

indicators used include Parabolic SAR, Triple Exponential Moving Average(TRIX), MACD,

RSI, and Bollinger Bands. The TRIX indicator is an exponential moving average of an

exponential moving average of an exponential moving average. This would give a smoothed and

recently weighted version of a standard moving average. Each of these indicators tell one

particular condition of the market such as momentum or trend. The combination of these

indicators can help determine the optimum time to trade in a market. If there are multiple buy

signals from all different types of indicators it should in theory be an opportune time to buy.

This system was designed and tested in Metatrader 5 with the following parameters. The

program would be trading with EURUSD. Because EURUSD is such a frequently traded

currency pair, the price swings are less drastic and less volatile than other pairs. Less movement

does mean less potential for profit, but the price patterns are more predictable and stable.

 CURRENCY TRADING SYSTEM DEVELOPMENT 36

Another parameter used was the 30 minute trading time frame. The employed indicators are

calculated using this time frame because the trading system was designed to get in and out of the

market quickly. A faster time frame compared to the daily and weekly time frames, shows more

accurately the current state of the market. The last parameter set for this program was the deposit

volume of $1,000,000. The specific amount is not extremely important because the program will

be evaluated based on percentages rather than totals. The main advantage of keeping the initial

amount in a multiple of $100,000 is the convenience of buying multiple lots in Metatrader.

5.1.2 Program Flow

The program was created using the MQL5 coding language on the MetaEditor platform

and designed to run with the parameters specified above. Shown in Figure 12 is the program

flow diagram of the system.

 CURRENCY TRADING SYSTEM DEVELOPMENT 37

Figure 12: Program Flow Diagram of System 1

The program runs in a main loop that is controlled by the currency market. The tick block

represents the start of the loop that initiates every time there is a registered price change of

EURUSD. Once there is a detected change in price, the program will then check all of the

indicators to determine if the buy or sell condition has been met. If the buy condition is met, then

the signal variable will be incremented. If the sell condition is met, then the signal variable will

be decremented. After all indicators have been checked, the program observes the signal variable

to determine whether to buy, sell, or close a trade. For either a buy or sell trade, all previous

trades are closed. It is also important to know that the position size of a trade depends on the buy

 CURRENCY TRADING SYSTEM DEVELOPMENT 38

signal. When a trade is executed, the program will create an order with the amount of lots as the

signal value. For example if the signal is -4, the program will close previous orders and open a

new sell trade with a position size of 4 lots. After the trading decisions have been made, the

trailing stop loss value will be checked. If there is still an active trade, the stop loss for that trade

is augmented if necessary. The full system code for this program can be found in Appendix A.

5.1.2 Inputs

As seen in Appendix A there are 15 inputs for this program. The inputs represent

different indicator values and trade parameters. For each indicator, there are a certain numeric

values that change the indicator output. For example, The TRIXperiod input is the number of

previous bars used for the triple exponential moving average indicator. This value is set to be 18

in the final program meaning that the moving average will look at the 18 previous 30 minute

price points to create the indicator. Changing any of these indicators can drastically alter how the

program makes a trade, so it is extremely important to find the values that produce the best

results. In order to do this, optimization needed to be performed on the program to find the ideal

input values.

5.1.3 Optimization

As discussed in Chapter 4, optimization is convenient in Metatrader because of its access

to historical data. The first step in the optimization process is determine the range of values we

want to look at for each input. Shown in Figure 13 are the different values used for optimization

of this program.

 CURRENCY TRADING SYSTEM DEVELOPMENT 39

Figure 13: Optimization Input of System 1

The start, step, and stop values are shown for the optimization process. Even though there

are only a few steps for each variable, the total number of combinations for these inputs is over

25 billion. This would take months to run on a desktop computer if testing every combination.

To quicken the process we will use the genetic algorithm offered by Metatrader, as well as the 1

minute Open, High, Low, Close (OHLC) price option. Using 1 minute OHLC quickens the

testing process by looking at price data over one minute bars, rather than individual ticks. The

next step was to determine what data the program would be tested on. Shown in Figure 14 are

the settings used for the optimization of this system.

Figure 14: System 1 Optimization Settings

These settings will be consistent throughout the optimization, except for the dates fields.

The decision was to test on the first half of the current decade for a total of 4 years from

 CURRENCY TRADING SYSTEM DEVELOPMENT 40

2010-2013. Each year was tested from January 1 to December 5. This allows for downtime that

can be attributed to code maintenance, or manual exit from the market based on upcoming news

events. After performing optimization there were 4 tables ordered by profit with approximately

5,000 simulations performed each year.

In order to determine the best value for each input, the average profit for all simulations

across years was determined for each step value of all inputs. The step value for each input with

the highest profit was chosen for the final program. Table 4 below shows the final input values

chosen and their average return value based on over 20,000 simulations performed.

Table 4: Best Input Values for System 1

Input Choice
SARstep 0.03
SARmax 0.3

TRIXperiod 18
MACDfast 11
MACDslow 25
MACDsignal 10

RSIperiod 8
RSIupper 60
RSIlower 40

BANDperiod 16
BANDsd 2

Takep 400
Stopl 100

SLSmover 350
SLBmover 250

After finding the best values for the inputs, the program was complete and ready to be

tested on other historical data.

 CURRENCY TRADING SYSTEM DEVELOPMENT 41

5.1.4 Results

After performing optimization, the results of the program needed to be determined using

a new set of data. The time frame chosen for backtesting was 2014-2018. These years were

chosen because of the high data history quality in Metatrader. Some older years had less accurate

price data. The percentage return for each year is summarized in Table 5.

Table 5: System 1 Return

Year Program Return
2014 11.24%
2015 20.15%
2016 11.40%
2017 8.10%
2018 21.39%

Average 14.46%

The average return for this system over the five year testing period was 14.46%. There

are a few key takeaways based on the return values. One takeaway is that there were consistently

positive returns with the lowest yearly return being 8.10% and the highest return being 21.39%.

This level of return is great for an automated system.

There are other indicators that can signal the quality of a system besides just total profit.

Shown in Table 6 are a few of the other testing outputs from the backtests performed.

 CURRENCY TRADING SYSTEM DEVELOPMENT 42

Table 6: System 1 Measurements

Year Sharpe Ratio Total Trades Average Profit Average Loss Profit Trade %
2014 0.13 10209 $ 67.56 $ 42.07 48.42%
2015 0.13 10800 $ 101.19 $ 70.56 51.94%
2016 0.1 10561 $ 72.09 $ 60.25 53.68%
2017 0.09 10593 $ 61.84 $ 48.31 51.26%
2018 0.21 10917 $ 77.99 48.45 53.82%

Average 0.132 10616 $ 76.13 $ 53.93 51.82%

This Table highlights how a system that trades extremely quickly can impact profitability

and risk metrics. The system has shown to be very profitable returning nearly 14.5% a year, but

the average sharpe ratio is only .132. This would signify that the system is extremely risky, but

that is somewhat misleading. There were an average of 10,616 trades made each year, meaning

each trade is only active on average for less than 25 minutes. In each of those trades

$300,000-$500,000 is being risked. In reality, a currency pair will never drop to $0, or increase

infinitely, unless a government completely fails, and EUR/USD will never have extremely

volatile swings in such a short time. This means we are not actually risking the total trade value.

Additionally, with a 100 pip trailing stop the most a trade can possibly lose is $5,000 or .5% of

the initial deposit. Even though some of these metrics are not ideal for a trading system, there

were steps taken to mitigate the risk, such as the trailing stop.

One area of concern is the percentage of trades that were profitable. Over all the years

tested only 51.82% of trades earned a profit. The total system was so profitable because the

average profit trade earned 34.1% more than the average loss trade value. Maintaining more

consistent profitability per trade would be a key area of focus when implementing future changes

to the system. The full testing data for this system can be found in Appendix D.

 CURRENCY TRADING SYSTEM DEVELOPMENT 43

5.2 Individual System 2 (Michael Cullen)

5.2.1 Methodology

Having no coding experience, for me this project was mostly learning how to trade forex,

learning the MQL5 language, and experimenting with different systems I created. Therefore my

methodology for this project were based on trial and error.

Once I had a basic understanding of foreign exchange trading, I looked into a broad

selection of indicators to help give me an idea of what I was working with and what would be

beyond my reach.

The main problem I encountered was learning the MQL5 language. Since it is a relatively

new programming language, and Metatrader is the only platform that uses it, there are very few

tutorials. Luckily, R. Bauer (Bauer) has an extensive video tutorial series covering basics of

forex trading, the Metatrader system, and hundreds of videos explaining how to create various

indicators within MetaEditor, Metatrader’s code editing program. From these, I created roughly

two dozen codes containing variations of these indicators, each of these having gone through

dozens of edits to create a working code with varying success.

5.2.2 Program Flow

My program flow was not a typical program flow. Specifically, the process of deciding

which system to utilize was based on trial and error of many different types of programs, which

are outlined in Figure 15.

 CURRENCY TRADING SYSTEM DEVELOPMENT 44

Figure 15: Forex Test Log

During the trial period, 65 test were recorded. Many additional tests were conducted, but

many did not run or did not complete any trades and these were omitted. I started experimenting

with RSI, but they consistently proved to lose drastic amounts of money. I then tried SAR with a

stop loss and take profit, which needed refining. Initial testing yielded some success, but mostly

due to a well-timed backtesting timeframe. Other tests broke even. I then tried a RVI, followed

by a RVI combined with a SAR which seemed promising. I added a ADX, which gave results of

approximately 4%, but the win/loss ratio was only 31%. I abandoned the idea for a while and

started at the beginning with a basic simple moving average code, which gave a profit of up to

6.8%. However, this again was due to the timeframe and did not work on other years.

 CURRENCY TRADING SYSTEM DEVELOPMENT 45

After these initial tests, I decided that SAR seemed the most promising and focused

heavily on getting the code to work. Trading SAR on the long and short did not seem to work

well as they cancelled each other out. I had to focus on only long trades. I added a trailing stop

loss parameter, which did not do much. I then supplemented the code with a RSI because it

seemed the code was trading even when the market was ranging. Unfortunately the RSI effect

was too great, because it did not trade enough. I tried replacing the RSI with envelopes, but it did

not trade at all.

At this point I re-wrote the code because it seemed the program itself was not trading

enough. However, since I discovered this was not the case, I then tried varying the timeframes,

the period, the ticks, and different stop loss values without success. I decided to abandon the

SAR idea and return to the SMA approach, which had performed decently. I decided to use a

double SMA to help mitigate false signals and had relatively consistent results of roughly 3%.

However, when backtested over 10 years, there was a slight loss overall. I then realized the code

had an error, which required a retest.

5.2.2 Inputs

The code itself is relatively simple. First, the program creates arrays for the short and

long moving averages and creates a series for each of the arrays. Then it creates a buffer from the

array and series to determine which values it uses. The main protocol in the code is determining

when to buy or sell the code. It will buy when the short moving average passes above the long

moving average and sell when the short moving average passes below the long moving average.

The full code for my system can be found in Appendix B.

 CURRENCY TRADING SYSTEM DEVELOPMENT 46

The adjusted inputs in the system code are “SMATimeframe” for the short moving

average timeframe, “LMATimeframe” for the long moving average timeframe, “StopLossValue”

for the stop loss value, and “TakeProfitValue” for the take profit value.

5.2.3 Optimization

I started the optimization process very broad and slowly refined it. The first step was to

test each parameter at extreme values and slowly bracket the value in. Standard short moving

average timeframes are between 3 and 20 intervals, long moving average timeframes are

between 30 and 80, and I took guesses at stop loss and take profit values.

Figure 16: First Optimization Step

After several optimization runs, Figure 17 represents the final optimization values. The best

values were as follows: SMA of 14, LMA of 37, SL of 250, and TP of 280. This yielded 118%

from Jan 1, 2017 to Jan 1, 2018.

 CURRENCY TRADING SYSTEM DEVELOPMENT 47

Figure 17: Final Optimization Step

5.2.4 Results

This code has the potential to be very profitable. From Jan 1, 2016 to Jan 1, 2017, the

initial deposit was more than doubled. Figure 18 shows the balance and equity of the system

from January 2016 to January 2017.

Figure 18: 2016-17 Balance/Equity Graph

Based on a total profit of $11,802 with a 1:100 leverage and 2046 trades, 56.17% of the

1127 short trades won and 61.15% of the 919 long trades won. As shown in Figure 19, 1195

trades won and 851 trades lost.

 CURRENCY TRADING SYSTEM DEVELOPMENT 48

Figure 19: 2016-17 Backtesting Results

2017-2018 was very similar, except the history quality was relatively low. The system

still made 61.29%, but that may be due to history errors. Figure 20 shows the history error in the

red block in the green history bar.

Figure 20: 2017-18 Backtesting Results

However, the code is also very risky. During certain years the system would generate a

return of over 100%, while during other years it could lose up to 90%. Specifically, 2015-16 was

a particularly bad year where 99% of the deposit was lost. Figures 21 and 22 show the results of

the system from January 2015 to January 2016.

Figure 21: 2015-16 Backtesting Results

 CURRENCY TRADING SYSTEM DEVELOPMENT 49

Figure 22: 2015-16 Balance/Equity Graph

Over 10 years, from Jan 1, 2007 to Jan 1, 2017, the system lost essentially the entire

account. Figure 23 displays the equity and balance over this timeframe. It is also clear in this

chart that as the balance drops, deposit load goes up. This is due to the system trading the same

lot size despite there not being enough equity in the account.

Figure 23: 10-Year 2007-17

The poor performance may also be due to history quality, as longer timeframes have

poorer history quality, but I feel it may be due to years where huge losses occur. Overall, the

system seems to be completely random based on the years themselves rather than the system. A

possible way to fix this would be to add a market strength indicator such as RSI or RVI to help

prevent bad trades. It may also help to add some position close parameters other than a simple

 CURRENCY TRADING SYSTEM DEVELOPMENT 50

take profit or stop loss. Also, in order to prevent total loss of the account, a system should only

trade a certain percentage of the deposit instead of a fixed lot size.

5.3 Individual System 3 (Aung Min)

5.3.1 Methodology

The main purpose of creating this system is to perfect a program that buys and sells based

on the trends of the basic forex indicators solely optimized for the EURUSD currency pair. The

indicators involved within this trading bot are Relative Strength Index, Stochastic Indicator, and

Average True Range. RSI and ATR values are based on the last 14 periods, Stochastic D-value is

based on the last 5 periods, and Stochastic K-value is based on the last 3 periods using 30 minute

time-frame. With initial deposit set to $10000, the program will determine whether to buy or sell

0.1 lot depending on the indicators listed above.

5.3.2 Program Flow

The logic behind this trading program is that it would check the volatility of the currency

pair using the ATR indicator, as well as checking the overbought and oversold values based on

both the RSI and Stochastic indicators simultaneously in an effort to determine a buy or a sell

condition. Figure 24 depicts the overall coding approach that was adopted to develop the

program described above.

 CURRENCY TRADING SYSTEM DEVELOPMENT 51

Figure 24: The Flowchart of Aung’s Trading Program

The on tick function will run as a loop for this program. Every update to the price of

EURUSD on Metatrader 5 will trigger this function to work. First off, the program will initialize

the values for the RSI array, ATR array, Stochastic D-value and K-value arrays. After

initializing, it will extract the most recent values from the arrays and use them to check the

 CURRENCY TRADING SYSTEM DEVELOPMENT 52

conditions listed above in Figure 24. The conditions RSI value is greater than 70 and Stochastic

value is greater than 80 are used for checking the oversold value of the currency. If they are both

signaling oversold, and ATR shows that there is enough market volatility, it is a decent time to

enter the market. Although the conditions are proven to be correct, it is always better to check

whether the momentum of the price by checking the K-value and D-value shown in condition 2

of the Figure 24. When the momentum shows that the price is going to fall back, it will

inevitably sell. The same goes for the selling part of the system. First, the program will check

whether the RSI value is less than 30 and the Stochastic value is less than 20. If the conditions

are satisfied, the program will check the volatility of the market. If all these conditions passed, it

is a clear indication of having an overbought situation in the market. Just like the selling logic,

the K-value and D-value of stochastic will be checked as shown in condition 4 of Figure 24. If

the momentum is going up, the program will make a buy order of 0.1 lot. A trailing stop-loss is

implemented to modify the buy or sell position based on a stop-loss that changes by the current

price. The trailing stop-loss() function runs every time there is a tick so that the program checks

at every price point whether to increase or decrease the price of the buy or sell order.

5.3.2 Inputs

The inputs for this system would be ten thousand dollars starting amount and 1 minute

OHLC data that is fed into the system for it to trade based on. In order to get the values of the

indicators, the time-frame that is inputted into the system is thirty minutes apart. The indicators

inputted into the system are Stochastic, RSI, and ATR.

 CURRENCY TRADING SYSTEM DEVELOPMENT 53

5.3.3 Optimization

In trading, every value associated with the indicators has its own purpose. It would be

very ideal to be able to optimize every value due to the lack of computing power. The variables

in Figure 25 were identified manually due to their importance to the system. SLI and SLImover

variables are mainly for the indication of when to have the stop loss to start. SLI is for buy order

and SLImover is for sell orders. RSI_Upper and Stoch_Upper are for optimizing the oversold

conditions of the RSI and Stochastic indicators for buy orders and RSI_Lower and Stoch_Lower

are for optimizing the overbought conditions of the RSI and Stochastic indicators for the sell

order. The ATR_Value is for picking the best volatility value for the program to enter the

market. The stoplossvalue variable is mainly for optimizing the amount of pips that should be set

as stop-loss for both buy and sell orders.

Figure 25: Optimization Inputs of the System

After optimization, the data from each year is then manually entered into pivot tables to

calculate the output for the system. Figure 26 shows the result of the optimization done. Each of

the calculated by getting the average value from each year then averaging the nine average

values across nine years.

 CURRENCY TRADING SYSTEM DEVELOPMENT 54

Figure 26: Optimization Results from 2010 to 2019

Figure 26 indicates that the optimized RSI value from 2010 to 2019 would be the lower

bound of 35 and upper bound of 65, the optimized stochastic value would be lower bound of 20

and upper bound of 60, and finally the ATR value would be greater than 0.001. The last pivot

table is mainly for take profit value. Take Profit value and stop loss are optimized together into

one table. It shows that the most profitable take profit value would be 200 and the most

profitable stop loss value is 150.

5.3.4 Results

After optimizing, the program is run using the values from the optimization. Table 7

shows the return value from each year from 2010 to 2019.

 CURRENCY TRADING SYSTEM DEVELOPMENT 55

 Table 7: Generated return from year 2010 to 2018

Year Profit Value

2010 to 2011 18%

2011 to 2012 28%

2012 to 2013 15%

2013 to 2014 23%

2014 to 2015 10%

2015 to 2016 30%

2016 to 2017 21%

2017 to 2018 14%

2018 to 2019 21%

It is gratifying to observe that the program shows a significant and consistent return over

almost 9 years. Figure 27 shows how the program would perform if a person were to run the

program across 2010 through 2019.

Figure 27: Results from Optimization run across 2010 through 2019

 CURRENCY TRADING SYSTEM DEVELOPMENT 56

As Figure 27 indicates, after having performed 16846 trades with 9103 short trades and

7743 long trades over nine years there is a net profit of $18270.02. If the total profit were to be

divided by nine, it would be approximately $2030 per year. As we started from $10000, the

program shows that an average of 20% return from each year. Appendix G shows the complete

detail of the trades and the parameters used for the program.

 CURRENCY TRADING SYSTEM DEVELOPMENT 57

6. Combination of Systems

This Chapter describes the functionality of the combined system of systems including the

program methodology, program flow, operating conditions, and backtesting process. The results

of the combined system are presented and analyzed to determine system quality.

6.1 Methodology

After creating our own individual systems we combined them into one program. The

purpose of creating the system of systems is to determine if the combination performs better, or

shows more promise, than the individual systems. By combining the systems, the indicators and

trading styles should help to complement each other.

6.2 Program Flow

The combination of systems was coded in Metatrader. Each individual system was

incorporated into the final program. In Figure 28 we present the program flow of the combined

systems.

 CURRENCY TRADING SYSTEM DEVELOPMENT 58

Figure 28: Combined System Program Flow

As seen in Figure 28, the combined system runs in a main loop that is triggered every

price tick. Once a tick is detected, the system checks the buy and sell signals of each individual

system. Each system was slightly altered to return a string of either “buy” or “sell”, rather than

execute a trade. The system works to make a trade if at least two of the systems signal the same

trade direction within a one hour time frame. If one hour has passed, the buy and sell signals will

 CURRENCY TRADING SYSTEM DEVELOPMENT 59

reset. The one hour time frame was chosen to help program functionality. If the combined

system only accounts for the current tick signals, the system makes very few trades. Because

each system was individually developed the trade conditions occur at different times. With a one

hour window, the system is able to make a reasonable number of trades over the selected testing

period. The full code for the combined system can be found in Appendix E.

6.3 Operating Conditions

The challenge in designing this system was determining the conditions of program

operation. Each individual system had been created to trade with a specific set of conditions, that

differed from other systems. To combine the systems we had to design a set of operating

conditions that made logistical sense.

The first differing operating conditions were the trade inputs for the size, stop loss, and

take profit parameters. For the trade size, we determined the program would trade one lot, or

100% of the initial account balance. This was because two out of the three systems chose to trade

using the full initial balance. To determine the take profit and stop loss levels, an approximate

average was taken for the three systems. The average was rounded to the nearest 50 pip level.

The final result was a stop loss of 150 pips, and a take profit of 400 pips. A trailing stop was also

used for this program because a majority of the individual systems utilized a trailing stop.

The other operating conditions related to the Metatrader settings. Each individual system

varied slightly with time frame and initial deposit. Figure 29 summarizes the settings used for the

combined system.

 CURRENCY TRADING SYSTEM DEVELOPMENT 60

Figure 29: Combined System Settings

Each system was designed to target the EURUSD pair; this was done to maintain

consistency. The time frame was determined to be 30 minutes, because a majority of individual

systems used this time increment. Lastly, a deposit of $100,000 was employed. The specific

amount was not particularly important, but fell in between what individual systems used as initial

deposit. More importantly, the trades were made to reflect the usage of the initial deposit, and

results were evaluated based on percentage of the initial deposit.

6.4 Results

After the trading conditions were determined, the combined system could be tested on a

reasonable time frame. The time selected was January 01, 2010 - January 01, 2019. Clearly, the

nine year window was large enough to observe variances in the system, as well as monitor

performance in different market conditions. The yearly return for the combined system can be

found in Table 8.

 CURRENCY TRADING SYSTEM DEVELOPMENT 61

Table 8: Combined System Return
Year Return
2010 3.78%
2011 0.77%
2012 2.81%
2013 1.53%
2014 1.61%
2015 0.64%
2016 3.28%
2017 1.03%
2018 0.76%

Average 1.80%

Over the testing period the combined system returned on average 1.8% a year.

Interestingly, there were no years in which the system lost money, but returns were somewhat

modest. A variety of additional system measurements can be found in Table 9.

Table 9: Combined System Measurements

Year Sharpe Ratio Total Trades Average Profit Average Loss Profit Trade %
2010 0.07 784 0.062% 0.037% 42.09%

2011 0.02 750 0.054% 0.040% 43.87%

2012 0.13 386 0.050% 0.034% 48.96%

2013 0.09 236 0.050% 0.039% 50.85%

2014 0.14 155 0.047% 0.029% 52.26%

2015 0.03 383 0.049% 0.042% 48.04%

2016 0.17 259 0.051% 0.035% 55.60%

2017 0.25 130 0.028% 0.021% 58.46%

2018 0.16 106 0.042% 0.028% 50.00%

Average 0.12 354.33 0.048% 0.034% 50.01%

 CURRENCY TRADING SYSTEM DEVELOPMENT 62

One concern from this Table is the low average Sharpe ratio. This would imply a high

risk for the system, but similar to individual system 1. This may be mitigated by tightening the

stop loss value. With a maximum loss of 150 pips each trade can lose $1,500, or 1.5% of the

initial deposit. This is very reasonable for a trading system. The system averages close to one

trade a day, which is also reasonable for an automated system. It is important to note, that 50.1%

of the trades over the testing range were profitable. A majority of the trades were profitable, but

the difference between a profit and a loss were quite low, leading to low system return.

Additional yearly testing data can be found in Appendix F.

 CURRENCY TRADING SYSTEM DEVELOPMENT 63

7. Conclusions and Recommendations

This Chapter presents our conclusions and future work recommendations for each of the

individual systems, and the combined system. The future recommendations outlines future effort

that may improve overall system performance.

7.1 Conclusions

7.1.1 System 1 (Jake Barefoot)

From backtesting this system on historic price data, the approach has the potential to be

profitable when used on live data. The 14.46% average yearly return bests popular index funds

over that time period. If used with the exact parameters the system was designed for, the system

could be used with real money in the future.

Based on the results of the system, it should be more profitable than the most common

stock market indexes. The problem is the lack of real time testing, and limited scope of the

system. The program was optimized over four years and tested over five years, but there is no

live trading results. Popular index funds have been proven to be profitable over the course of 100

years. The system was designed to be used for EURUSD with a 30 minute time frame, and a

number of specific constraints. The system runs very well under those conditions, but lacks the

robust quality of other proven systems. When run outside the designed conditions, the system

does not maintain profitability. To be used as a future investment strategy, the system needs to be

able to function under a variety of market conditions.

 CURRENCY TRADING SYSTEM DEVELOPMENT 64

Nonetheless, the system does accomplish the initial goal of this project. A profitable

automated trading system was created that can be easily analyzed. This system serves as a great

baseline for future systems, because any of the 15 inputs can be changed to reflect current market

conditions. There are a few alterations that need to be made to improve the system quality, but

the system does perform well and can serve as a stepping stone for future successful currency

trading.

7.1.2 System 2 (Michael Cullen)

This system has the potential to be a very profitable and risk-adverse program. However,

as of this writing, the system remains very volatile and follows market trends. So far the program

has made profits of over 100% on a few tests, but has also lost up to 99% on others. The most

profitable part of the system was simply that roughly 1,500 trades are made each year. It mostly

seems that luck drives the program, as some years inexplicably do very well while other years

perform very poorly.

However, my goal for this project was not to create a highly profitable system, my goal

was to learn the process of foreign exchange and, if possible, learn and develop MQL5 code.

After spending weeks studying the system of forex and learning all the different types and

functions of various indicators, I set out to learn MQL5. I did not simply develop and test one

code, I wrote dozens of codes and tested various indicators, techniques, and parameters on them.

To me, this was the best way to learn how to trade forex and it opened the possibility of

automatically trading forex in the future.

 CURRENCY TRADING SYSTEM DEVELOPMENT 65

Also, this project gave me some experience learning a code language and developing a

system in that language, as I had no prior coding knowledge. I now feel much more confident in

learning an unknown platform and working with it until I understand it well. While I am by no

means an expert in MQL5 and I may never use the language again, the fundamentals seem to be

very similar to other programming languages.

7.1.3 System 3 (Aung Min)

The program seems to be very promising but it is important to notice that the conditions

are very specific. The 20% return arises from the 1 minute OHLC values, and not from each tick;

it is based on the 30 minute time-frame. The return is high due to the fact that the years in which

the program was tested are the trained years.

This program, listed in Appendix C, can be applied to a real-time trading system if the

trader using can set the conditions that the program needs. This program also can be used to

backtest and optimize across any year. The user who runs the program should adjust the values

within the inputs tabs in Metatrader 5. After changing the inputs, a person can check if his or her

trading techniques would work over the years he or she has specified.

Even though this program returns 20% based on the 1 minute OHLC, if this program is

executed on every tick, the returns will be inferior. Although the return is high, it is believed that

the methodologies can be replicated to work with real tick data. With enough computing power,

there is a possibility to obtain every tick based on real ticks and optimize based on all the

possible ticks. Unfortunately, due to the lack of computing power and time, this program is

 CURRENCY TRADING SYSTEM DEVELOPMENT 66

optimized on 1 minute OHLC to reduce the training time and the overhead from the laptop

running the optimization.

7.1.4 Combined System

The combined system incorporated the trading strategies of all three individual systems

into a single executable program. The final program had an average yearly return of 1.8% from

January 2010 to January 2019.

The goal of the project was to create a profitable, automated system of systems that could

become a baseline for future trading. We feel that our final program was able to meet this initial

goal of the project. Although some of the system profitability metrics were not ideal, the

combinational methodology shows promise. The individual systems were designed and

optimized on non-standardized operating conditions. Even with the diverging program

developments, the combined system was still profitable.

In addition to the profitability of the system of systems, there are other factors that make

it a more desirable option than any one individual system. The customization of the system

allows future users of the program to alter the inputs for the technical indicators depending on

their trading mindset. By combining the various technical indicators and trade parameters used

by the individual systems, the system of systems becomes more robust. The indicators can all

work together to create a thorough and profitable trading strategy. It is also easy to test, and

optimize, in the Metatrader platform. With future adjustments, the program has the potential for

high return and consistency.

 CURRENCY TRADING SYSTEM DEVELOPMENT 67

7.2 Future Recommendations

7.2.1 System 1 (Jake Barefoot)

There are a few improvements that should be made in the future to update the system.

The most limiting factors when designing the individual system was time, and computing power.

Backtesting and optimization require significant computing power, and multiple hours of run

time for each year of optimization. Even using the genetic algorithm, and one minute OHLC

settings, each optimization run took approximately 3 hours to complete. Ideally the system

should be tested based on real ticks, every combination of inputs, multiple currencies, and

multiple time frames. Additional testing and optimization would help to improve reliability of

the system under different market conditions, but could not be accomplished with limited

computing power and time.

In terms of system program design, the customization and ease of use could be improved.

Currently the system runs with a set deposit limit, and does not allow the user to conveniently

adjust any of the inputs without modifying the program file. A user interface may be added that

would open at program start, allowing the user to specify deposit amount, currency pair being

traded, indicator values, etc. Adding this feature would permit anyone to easily interact with the

system with no coding knowledge. Allowing users to interact with the program would be a step

towards commercialization of the system.

 CURRENCY TRADING SYSTEM DEVELOPMENT 68

7.2.2 System 2 (Michael Cullen)

Due to computational time and power required to backtest the parameters to the fullest

extent, estimations and simplifications were made to gain a working code. Given more time to

troubleshoot the code, better parameters may have found. Moreover, after reviewing data from

my system, it seems that an additional indicator may have been helpful in limiting the number of

bad trades. An RSI or RVI may have helped balance out the losses and make the profit trades

more profitable. Although much more testing is required, the platform shows promise.

7.2.3 System 3 (Aung Min)

For future implementations, it would be ideal for the program to be optimized in the

parameters of “every tick based on real ticks” with more inputs. The inputs and the ticks within

the optimization is reduced greatly in the system above. Also, based on this program, it would be

ideal for the program to give out when to buy and sell based on real time data. However, it would

be very difficult to follow as it makes tremendous amount of trades each year. Another possible

improvement would be to interact with the user via the inputs of optimization. For instance,

having input boolean variables such as “use_RSI_indicator” or “use_ATR_indicator” in which

the user will have to input “true” or “false” to indicate whether the user wants to use this

indicator or not. In the code for the system 3, see Appendix C, the Boolean variables are

commented out due to time constraints. With these variables, this system will be more user

friendly and will serve as a strategy testing program for novice programmers who want to test

their strategies whenever they learn something new.

 CURRENCY TRADING SYSTEM DEVELOPMENT 69

7.2.4 Combined System

There are future adjustments that should be made for the final program. Initially, the

recommendations for each individual system need to be implemented. The combined system

functions optimally if all input systems function optimally. Much like the individual systems,

there is room for optimization with the combined systems. Future iterations should optimize the

combined inputs, and individual system inputs to find the best possible combined system output.

It is expected that the optimization for the combined system will use even more resources than

individual systems, because of the program complexity, and number of possible inputs.

Once the optimizations are executed for the combined system, and individual systems

have been improved, there is also an option for future commercialization. Metatrader and other

online trading platforms have a marketplace for trading systems. Users with an account can view

information about the program, and may choose to purchase the program for individual use. This

could potentially create an additional way to monetize the program in addition to using it for

personal forex trading. This decision to post on the Metatrader platform would depend on future

improvements. In the systems current state, there might not be high demand for the product, but

there is a potential for the system to become more reliable and profitable based on the

aforementioned improvements.

 CURRENCY TRADING SYSTEM DEVELOPMENT 70

References

Achelis, S. B. (2014). Technical analysis from A to Z: Covers every trading tool ... from the

absolute breadth index to the zig zag. NY: McGraw-Hill Education.

Bauer, Raimund. MQL5 Tutorial Youtube Channel

Bauer, R. J., & Dahlquist, J. R. (1999). Technical market indicators. New York: Wiley.

Bollinger, J. (1992, February). Using Bollinger Bands. ​Stocks & Commodities​, ​10​, 47-51.

Chan, L., & Lakonishok, J. (2004). Value and Growth Investing: Review and Update. ​Financial

Analysts Journal,​ ​60​(1), 71. Retrieved February 25, 2019, from

https://www.cfapubs.org/toc/faj/2004/60/1.

Cohen, T. B. (2016). Entry Filtering With Volatility Measures. ​IFTA​. Retrieved January 18,

2019,

from http://www.ftaa.org.hk/Files/2016.pdf

Double Smoothed Stochastic [Digital Image]. (2019). Retrieved March 25, 2019, from

https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-i​n

dicator-guide/double-smoothed-stochastic

Drakopoulou, V. (2016). A Review of Fundamental and Technical Stock Analysis Techniques.

Journal of Stock & Forex Trading,​ ​05​(01). doi:10.4172/2168-9458.1000163

Fischer, S. (1993). The Role of Macroeconomic Factors in Growth. ​The National Bureau of

Economic Research,​ ​4565​. Retrieved March 15, 2019, from

https://www.nber.org/papers/w4565.

Forex Market Overview. (2019). Retrieved February 25, 2019, from

https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/double-smoothed-stochastic
https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/double-smoothed-stochastic

 CURRENCY TRADING SYSTEM DEVELOPMENT 71

https://www.nasdaq.com/forex/education/foreign-exchange-market-overview.aspx

Forex trading sessions table [Digital image]. (2017, June). Retrieved February 1, 2019, from

http://www.forextips.com/forex-101/forex-market-sessions-trading-times/

Froot, K., & Thaler, R. (1990). Anomalies: Foreign Exchange. ​Journal of Economic

Perspectives,4​(3), 179-192. Retrieved March 15, 2019, from

https://www.aeaweb.org/articles?id=10.1257/jep.4.3.179.

Grimes, A. (2012). The art and science of technical analysis: Market structure, price action, and

trading strategies. Hoboken, NJ: Wiley.

King, Michael Robert and Osler, Carol L. and Rime, Dagfinn, Foreign Exchange Market

Structure, Players and Evolution (August 14, 2011). Norges Bank Working Paper No.

2011/10, http://dx.doi.org/10.2139/ssrn.1935858

Lo, A. W., Mamaysky, H. and Wang, J. (2000), Foundations of Technical Analysis:

Computational Algorithms, Statistical Inference, and Empirical Implementation. The

Journal of Finance, 55: 1705-1765.

Major Currency Pairs [Digital image]. (2018). Retrieved February 1, 2019, from

gmtraining.weebly.com/lesson-1-section-3-buying-and-selling-in-currency-pairs

MetaQuotes Software Corp. - Page 16. (2019). Retrieved April 10, 2019, from

https://www.metatrader4.com/en/company/page16

Moving Average Convergence Divergence [Digital Image]. (2019). Retrieved March 28, 2019,

from ​https://www.investopedia.com/terms/m/macd.asp

MQL5 Articles. (2019). Retrieved February 1, 2019, from ​https://www.mql5.com/en/articles

Optimization Types, (2019). Retrieved February 5, 2019, from

https://www.investopedia.com/terms/m/macd.asp
https://www.mql5.com/en/articles

 CURRENCY TRADING SYSTEM DEVELOPMENT 72

https://www.metatrader5.com/en/terminal/help/algotrading/optimization_types

Parabolic SAR [Digital Image]. (2011). Retrieved March 25, 2019, from

https://www.dailyfx.com/forex/education/trading_tips/daily_trading_lesson/2011/09/30/​P

arabolic_SAR.html

Patel, P. (2014). Factors affecting Currency Exchange Rate, Economical Formulas and

Prediction

Models. ​International Journal of Application or Innovation in Engineering &

Management,​ ​3​(3), 53-56. Retrieved March 15, 2019, from

https://www.ijaiem.org/V3I3.html.

Relative Strength Index [Digital Image]. (2019). Retrieved March 25, 2019, from

https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-i​n

dicator-guide/RSI

Strategy Testing. (2019). Retrieved March 20, 2019, from

https://www.metatrader5.com/en/terminal/help/algotrading/testing

Triple Exponential Average, (2019). Retrieved February 6, 2019. From

https://www.metatrader5.com/en/terminal/help/indicators/oscillators/tea

What are Bollinger Bands? [Digital Image]. (2019). Retrieved March 28, 2019, from

https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-​in

dicator-guide/bollinger-bands

https://www.metatrader5.com/en/terminal/help/algotrading/optimization_types
https://www.dailyfx.com/forex/education/trading_tips/daily_trading_lesson/2011/09/30/Parabolic_SAR.html
https://www.dailyfx.com/forex/education/trading_tips/daily_trading_lesson/2011/09/30/Parabolic_SAR.html
https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/RSI
https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/RSI
https://www.metatrader5.com/en/terminal/help/algotrading/testing
https://www.metatrader5.com/en/terminal/help/indicators/oscillators/tea
https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/bollinger-bands
https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/bollinger-bands

 CURRENCY TRADING SYSTEM DEVELOPMENT 73

Appendix A: System 1 Code

The code below is for the system described in Chapter 5.1. The system code was

compiled in MetaEditor 5, and was ran in Metatrader 5 to produce the results described.

#include<Trade\Trade.mqh>

CTrade trade;

input double SARstep = .03;

input double SARmax = .3;

input int TRIXperiod = 18;

input int MACDfast = 11;

input int MACDslow = 25;

input int MACDsignal = 10;

input int RSIperiod = 8;

input int RSIupper = 60;

input int RSIlower = 40;

input int BANDperiod = 16;

input double BANDsd = 2;

input int TakeP = 400;

input int Stopl = 100;

 CURRENCY TRADING SYSTEM DEVELOPMENT 74

input int SLSmover = 350;

input int SLBmover = 250;

void OnTick()

 {

 //Create Price Data

 MqlRates PriceArray[];

 ArraySetAsSeries(PriceArray,true);

 int Data = CopyRates(Symbol(),Period(),0,3,PriceArray);

 double signal = 0;

 double prevsignal = 0;

 double Account_Balance = AccountInfoDouble(ACCOUNT_EQUITY);

 double Ask = NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_ASK),_Digits);

 double Bid = NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_BID),_Digits);

 CURRENCY TRADING SYSTEM DEVELOPMENT 75

 //SAR declarations

 double mySARArray[];

 int SARDefinition = iSAR(_Symbol,_Period,SARstep,SARmax);

 ArraySetAsSeries(mySARArray,true);

 CopyBuffer (SARDefinition,0,0,3,mySARArray);

 double SARValue = NormalizeDouble (mySARArray[0],5);

 double LastSARValue = NormalizeDouble(mySARArray[1],5);

 double NextToLastSARValue = NormalizeDouble(mySARArray[2],5);

 //Trix Declarations

 double myMovingTripleAverageArray[];

 int TrixDefinition = iTriX(_Symbol,_Period,TRIXperiod,PRICE_CLOSE);

 ArraySetAsSeries(myMovingTripleAverageArray,true);

 CopyBuffer(TrixDefinition,0,0,3,myMovingTripleAverageArray);

 //MACD Declarations

 double myMACDArray [];

 int MACDDefinition =

iMACD(_Symbol,_Period,MACDfast,MACDslow,MACDsignal,PRICE_CLOSE);

 ArraySetAsSeries (myMACDArray,true);

 CopyBuffer (MACDDefinition,0,0,3,myMACDArray);

 CURRENCY TRADING SYSTEM DEVELOPMENT 76

 float MACDValue = myMACDArray[0];

 //RSI Declarations

 double myRSIArray [];

 int RSIDefinition = iRSI(_Symbol,_Period,RSIperiod,PRICE_CLOSE);

 ArraySetAsSeries(myRSIArray,true);

 CopyBuffer(RSIDefinition,0,0,3,myRSIArray);

 signal = 0;

 //BollingerBands

 double MiddleBandArray[];

 double UpperBandArray[];

 double LowerBandArray[];

 ArraySetAsSeries(MiddleBandArray,true);

 ArraySetAsSeries(UpperBandArray,true);

 ArraySetAsSeries(LowerBandArray,true);

 int BollingerBandsDef = iBands(_Symbol,_Period,BANDperiod,0,BANDsd,PRICE_CLOSE);

 CopyBuffer(BollingerBandsDef,0,0,3,MiddleBandArray);

 CopyBuffer(BollingerBandsDef,1,0,3,UpperBandArray);

 CURRENCY TRADING SYSTEM DEVELOPMENT 77

 CopyBuffer(BollingerBandsDef,2,0,3,LowerBandArray);

 //MACD Buy Conditions

 if (MACDValue < 0)

 {

 signal = signal + 1;

 }

 // SAR Buy Conditions

 if ((LastSARValue < PriceArray[1].low) && (NextToLastSARValue > PriceArray[2].high))

 {

 signal = signal + 1;

 }

 //Moving Average Buy Conditions

 if ((myMovingTripleAverageArray[0] > 0))

 {

 signal = signal + 1;

 }

 //RSI Buy Conditions

 if ((myRSIArray[1] <= RSIlower))

 CURRENCY TRADING SYSTEM DEVELOPMENT 78

 {

 signal = signal + 1;

 }

 //Bollinger Buy Conditions

 if((PriceArray[1].close < LowerBandArray[1]) && (PriceArray[0].close >

LowerBandArray[0]))

 {

 signal = signal + 1;

 }

 //Sell Conditions

 //MACD Sell Conditions

 if(MACDValue > 0)

 {

 signal = signal - 1;

 }

 //Sell SAR Conditions

 if ((LastSARValue > PriceArray[1].high) && (NextToLastSARValue < PriceArray[2].low))

 {

 CURRENCY TRADING SYSTEM DEVELOPMENT 79

 signal = signal - 1;

 }

 //Sell Average Conditions

 if ((myMovingTripleAverageArray[0] < 0))

 {

 signal = signal - 1;

 }

 //Sell Conditions

 if ((myRSIArray[1] >= RSIupper))

 {

 signal = signal - 1;

 }

 //Bollinger Sell Conditions

 if ((PriceArray[1].close > UpperBandArray[1]) && (PriceArray[1].close <

UpperBandArray[0]))

 {

 signal = signal - 1;

 }

 CURRENCY TRADING SYSTEM DEVELOPMENT 80

 //leave market

 if (signal == 0)

 {

 ClosePositions();

 }

 //Buy Market

 else if (signal >= 3 && PositionsTotal() < 1)

 {

 ClosePositions();

 trade.Buy (signal,NULL,Ask,(Bid - Stopl* _Point),(Ask + TakeP* _Point),NULL);

 }

 //Sell Market

 else if (signal <= -3 && PositionsTotal() < 1)

 {

 ClosePositions();

 trade.Sell (MathAbs(signal),NULL,Bid,(Ask + Stopl* _Point),(Bid -TakeP * _Point),NULL);

 }

 CheckTrailingStop(Ask,Bid);

 CURRENCY TRADING SYSTEM DEVELOPMENT 81

 signal = 0;

 }

void ClosePositions()

 {

 for (int i=PositionsTotal()-1; i>=0; i--)

 {

 int ticket=PositionGetTicket(i);

 trade.PositionClose(i);

 }

 }

void CheckTrailingStop(double Ask, double Bid)

 {

 double SLB = NormalizeDouble(Ask+SLBmover*_Point,_Digits);

 double SLS = NormalizeDouble(Bid-SLSmover*_Point,_Digits);

 for(int i = PositionsTotal() - 1; i>= 0; i--)

 {

 string symbol = PositionGetSymbol(i);

 if (_Symbol == symbol)

 CURRENCY TRADING SYSTEM DEVELOPMENT 82

 {

 ulong PositionTicket = PositionGetInteger (POSITION_TICKET);

 double CurrentStopLoss=PositionGetDouble(POSITION_SL);

 if (CurrentStopLoss < SLB && PositionGetInteger(POSITION_TYPE) ==

POSITION_TYPE_BUY)

 {

 trade.PositionModify(PositionTicket, (CurrentStopLoss + 10 * _Point), 0);

 }

 if (CurrentStopLoss > SLS && PositionGetInteger(POSITION_TYPE) ==

POSITION_TYPE_SELL)

 {

 trade.PositionModify(PositionTicket, (CurrentStopLoss - 10 * _Point), 0);

 }

 }

 }

 }

 CURRENCY TRADING SYSTEM DEVELOPMENT 83

Appendix B: System 2 Code

The code below is for the system described in Chapter 5.2. The system code was

compiled in MetaEditor 5, and was ran in Metatrader 5 to produce the results described.

 CURRENCY TRADING SYSTEM DEVELOPMENT 84

Appendix C: System 3 Code

The code below is for the system described in Chapter 5.3. The system code was

compiled in MetaEditor 5, and was ran in Metatrader 5 to produce the results described.

#include <Trade\Trade.mqh>

CTrade trade;

//create more input into this code for optimization

//input int MyTakeProfitValue = 10;

//input int Stop = 100;

input int SLI = 300;

input int RSI_Upper = 65;

input int RSI_Lower = 35;

input int Stoch_Upper = 80;

input int Stoch_Lower = 15;

input double ATR_Value = 0.0015;

input int SLImover = 100;

input int stoplossvalue = 10;

//input int RSI_period_get;

//input int sto_one, sto_two, sto_three;

//input int Atr_period_get;

//input bool RSI = true;

 CURRENCY TRADING SYSTEM DEVELOPMENT 85

//input bool Stoc = true;

//input bool AVR = true;

void OnTick()

 {

 //double CurrentStopLoss = myAP;

 double myAB = AccountInfoDouble(ACCOUNT_BALANCE);

 double myAP = AccountInfoDouble(ACCOUNT_PROFIT);

 double myAE = AccountInfoDouble(ACCOUNT_EQUITY);

 string signal = "";

 MqlRates PriceArray[];

 ArraySetAsSeries (PriceArray, true);

 double Ask = NormalizeDouble(SymbolInfoDouble(_Symbol, SYMBOL_ASK), _Digits);

 double Bid = NormalizeDouble(SymbolInfoDouble(_Symbol, SYMBOL_BID), _Digits);

Comment("\n Ask: ", Ask);

 CURRENCY TRADING SYSTEM DEVELOPMENT 86

Comment("\n Bid: ", Bid);

 double KArray[];

 double DArray[];

 double myRSIArray[];

 double mySARArray[];

 double myATRArray[];

 double myLowerBandArray[];

 double myUpperBandArray[];

 ArraySetAsSeries(KArray, true);

 ArraySetAsSeries(DArray, true);

 ArraySetAsSeries(myRSIArray, true);

 ArraySetAsSeries(mySARArray, true);

 ArraySetAsSeries(myLowerBandArray, true);

 ArraySetAsSeries(myUpperBandArray, true);

 ArraySetAsSeries(myATRArray, true);

 int StochasticDefinition = iStochastic(_Symbol, _Period, 5,3,3,MODE_SMA,

STO_LOWHIGH);

 int myRSIDefinition = iRSI(_Symbol, _Period, 14, PRICE_CLOSE);

 int SARDefinition = iSAR(_Symbol, _Period, 0.02, 0.2);

 CURRENCY TRADING SYSTEM DEVELOPMENT 87

 int Data= CopyRates(Symbol(), Period(), 0,3, PriceArray);

 int BBDefinition = iBands(_Symbol, _Period, 20,0,2, PRICE_CLOSE);

 int ATRDefinition= iATR(_Symbol, _Period, 14);

 CopyBuffer(StochasticDefinition, 0,0,3, KArray);

 CopyBuffer(StochasticDefinition, 1,0,3,DArray);

 CopyBuffer(myRSIDefinition, 0,0,3, myRSIArray);

 CopyBuffer(SARDefinition, 0,0,3, mySARArray);

 CopyBuffer(BBDefinition, 2,0,3, myLowerBandArray);

 CopyBuffer(BBDefinition, 1,0,3, myUpperBandArray);

 CopyBuffer(ATRDefinition, 0,0,3, myATRArray);

 double KValue0 = KArray[0];

 double DValue0 = DArray[0];

 double myRSIValue = NormalizeDouble(myRSIArray[0],2);

 double LastSARValue = NormalizeDouble(mySARArray[1], 5); // calculated with 5 digits

behind the point

 double NextToLastSARValue = NormalizeDouble(mySARArray[2], 5);

 double ATRValue = NormalizeDouble (myATRArray[0] , 5);

 double myUpperBandValue = myUpperBandArray[0];

 double myLowerBandValue = myLowerBandArray[0];

 double myLastUpperBandValue = myUpperBandArray[1];

 CURRENCY TRADING SYSTEM DEVELOPMENT 88

 double myLastLowerBandValue = myLowerBandArray[1];

 double KValue1 = KArray[1];

 double DValue1 = DArray[1];

 int Stop = 100;

 //Check user based condition here

// if(myAE >= myAB)

// trade.Buy(0.10, NULL, Ask, 0,(Ask+MyTakeProfitValue * _Point), NULL);

 //Moving Stop Loss

 // Check Conditions here! There could be something wrong with the PriceArray[1].low

 //if(ATRValue > 0.0001) {

 if(KValue0 < Stoch_Lower && DValue0 < Stoch_Lower && myRSIValue <RSI_Lower &&

ATRValue > ATR_Value /*&& PriceArray[0].close > myLowerBandValue *//*&&

PriceArray[1].close < myLastLowerBandValue */) {

 // if((KValue0 > DValue0) && (KValue1 < DValue1) /*&& (Ask<

myLastLowerBandValue)*/){

 if((KValue0 < DValue0) && (KValue1 > DValue1) /*&& (Bid > myLastUpperBandValue)

*/){

 //Can even check Bolinger Band with Ask and Bid

 //if(KValue0 < 30 && DValue0 < 30 && myRSIValue < 40 && LastSARValue <

PriceArray[1].low) {

 CURRENCY TRADING SYSTEM DEVELOPMENT 89

 // if((KValue0 > DValue0) && (KValue1 < DValue1) && (NextToLastSARValue >

PriceArray[2].high) /*&& (CheckSARValue > PriceArray[3].high)*//*&&(CheckSARValue >

PriceArray[0].high)*/) {

 signal = "buy";

 }

 }

 //Check user based condition here

 //Check Leverage

 //if(ATRValue > 0.0001) {

 if(KValue0 > Stoch_Upper && DValue0 > Stoch_Upper&& myRSIValue >RSI_Upper &&

ATRValue > ATR_Value /*&& PriceArray[0].close < myUpperBandValue */ /*&&

PriceArray[1].close > myLastUpperBandValue */) {

 // if((KValue0 < DValue0) && (KValue1 > DValue1) /*&& (Bid >

myLastUpperBandValue) */){

 if((KValue0 > DValue0) && (KValue1 < DValue1) /*&& (Ask<

myLastLowerBandValue)*/){

 //if(KValue0 > 70 && DValue0 > 70 && myRSIValue >60 && LastSARValue >

PriceArray[1].high) {

 //if((KValue0 > DValue0) && (KValue1 < DValue1)&& (NextToLastSARValue >

PriceArray[2].low) /*&& (CheckSARValue > PriceArray[3].low)*/

/*&&(CheckSARValue<PriceArray[0].low)*/) {

 signal = "sell";

 CURRENCY TRADING SYSTEM DEVELOPMENT 90

 }

 }

 //}

 if(signal == "sell" && PositionsTotal() < 1) {

 //trade.PositionClose();

 trade.Sell(0.10, NULL, Bid, (Ask+Stop *_Point), (Bid-150 * _Point), NULL);

 }

 if(signal == "buy" && PositionsTotal() < 1) {

 // trade.PositionClose();

 trade.Buy(0.10, NULL, Ask, (Bid-Stop *_Point), (Ask+150* _Point), NULL);

 }

 Comment("The current signal is : ", signal);

 CheckTrailingStop(Ask, Bid);

 }

 void CheckTrailingStop (double Ask, double Bid) {

 double SLB = NormalizeDouble(Ask+SLI*_Point, _Digits);

 double SLS = NormalizeDouble(Bid-SLImover*_Point, _Digits);

 for (int i = PositionsTotal() -1; i >= 0 ; i--) {

 CURRENCY TRADING SYSTEM DEVELOPMENT 91

 string symbol = PositionGetSymbol(i);

 if(_Symbol == symbol) {

 ulong PositionTicket = PositionGetInteger(POSITION_TICKET);

 double CurrentStopLoss = PositionGetDouble(POSITION_SL);

 ulong PositionType = PositionGetInteger(POSITION_TYPE);

 if(CurrentStopLoss< SLB && PositionType == POSITION_TYPE_BUY){

 trade.PositionModify(PositionTicket, (CurrentStopLoss+stoplossvalue*_Point),0);

 }

 if(CurrentStopLoss> SLS && PositionType == POSITION_TYPE_SELL) {

 trade.PositionModify(PositionTicket, (CurrentStopLoss-stoplossvalue *_Point),0);

 }

 }

 }

 }

//+--+

 CURRENCY TRADING SYSTEM DEVELOPMENT 92

Appendix D: System 1 Yearly Results (Jake Barefoot)

The Figures below show the detailed results gathered for the combined system described

in Chapter 5.1, and found in Appendix A. Each Figure is a different year of results gathered, and

were generated in the Metatrader 5 Strategy tester section.

Figure 30: 2014 System 1 Backtesting Data

Figure 31: 2015 System 1 Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 93

Figure 32: 2016 System 1 Backtesting Data

Figure 33: 2017 System 1 Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 94

Figure 34: 2018 System 1 Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 95

Appendix E: Combined System Code

The code below is for the system described in Chapter 6. The system code was compiled

in MetaEditor 5, and was ran in Metatrader 5 to produce the results described.

#include<Trade\Trade.mqh>

CTrade trade;

int SLSmover = 350;

int SLBmover = 250;

int SLI = 150;

int SignalBuy = 0;

int SignalSell = 0;

int JakeBuy = 0;

int JakeSell = 0;

int AungBuy = 0;

int AungSell = 0;

int MichaelBuy = 0;

int MichaelSell = 0;

 CURRENCY TRADING SYSTEM DEVELOPMENT 96

datetime date1 = TimeCurrent();

datetime date2;

void OnTick()

 {

 //Create Price Data

 MqlRates PriceArray[];

 ArraySetAsSeries(PriceArray,true);

 int Data = CopyRates(Symbol(),Period(),0,3,PriceArray);

 double Account_Balance = AccountInfoDouble(ACCOUNT_EQUITY);

 double Ask = NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_ASK),_Digits);

 double Bid = NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_BID),_Digits);

 string JakeSignal = "null";

 string AungSignal = "null";

 CURRENCY TRADING SYSTEM DEVELOPMENT 97

 string MichaelSignal = "null";

 JakeSignal = JakesSystem(JakeSignal);

 AungSignal = AungsSystem(AungSignal);

 MichaelSignal = MichaelsSystem(MichaelSignal);

 date2 = TimeCurrent();

 MqlDateTime str1, str2;

 TimeToStruct (date1,str1);

 TimeToStruct (date2,str2);

 if (str2.hour == str1.hour)

 {

 if (JakeSignal == "buy")

 JakeBuy = 1;

 if (AungSignal == "buy")

 AungBuy = 1;

 if (MichaelSignal == "buy")

 MichaelBuy = 1;

 if (JakeSignal == "sell")

 JakeSell = 1;

 CURRENCY TRADING SYSTEM DEVELOPMENT 98

 if (AungSignal == "sell")

 AungSell = 1;

 if (MichaelSignal == "sell")

 MichaelSell = 1;

 SignalBuy = JakeBuy + AungBuy + MichaelBuy;

 SignalSell = JakeSell + AungSell + MichaelSell;

 }

 //if ((JakeSignal == "buy" || AungSignal == "buy" || MichaelSignal == "buy") &&

PositionsTotal() < 1)

 if(SignalBuy >= 2 && PositionsTotal() < 1)

 {

 ClosePositions();

 trade.Buy (1,NULL,Ask,(Bid - 150* _Point),(Ask + 400* _Point),NULL);

 }

 //if ((JakeSignal == "sell" || AungSignal == "sell" || MichaelSignal == "sell") &&

PositionsTotal() < 1)

 if (SignalSell >= 2 && PositionsTotal() < 1)

 CURRENCY TRADING SYSTEM DEVELOPMENT 99

 {

 ClosePositions();

 trade.Sell (1,NULL,Bid,(Ask + 150* _Point),(Bid -400* _Point),NULL);

 }

 CheckTrailingStop(Ask,Bid);

 if (str2.hour != str1.hour)

 {

 JakeBuy = 0;

 JakeSell = 0;

 AungBuy = 0;

 AungSell = 0;

 MichaelBuy = 0;

 MichaelSell = 0;

 date1 = date2;

 SignalBuy = 0;

 SignalSell = 0;

 }

 CURRENCY TRADING SYSTEM DEVELOPMENT 100

 }

string JakesSystem(string JakeSignal)

 {

 double SARstep = .03;

 double SARmax = .3;

 int TRIXperiod = 18;

 int MACDfast = 10;

 int MACDslow = 25;

 int MACDsignal = 10;

 int RSIperiod = 8;

 int RSIupper = 60;

 int RSIlower = 40;

 int BANDperiod = 14;

 double BANDsd = 2;

 int TakeP = 400;

 int Stopl = 100;

 int SLSmover = 350;

 int SLBmover = 250;

 //Create Price Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 101

 MqlRates PriceArray[];

 ArraySetAsSeries(PriceArray,true);

 int Data = CopyRates(Symbol(),Period(),0,3,PriceArray);

 double signal = 0;

 double prevsignal = 0;

 double Account_Balance = AccountInfoDouble(ACCOUNT_EQUITY);

 double Ask = NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_ASK),_Digits);

 double Bid = NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_BID),_Digits);

 //SAR declarations

 double mySARArray[];

 int SARDefinition = iSAR(_Symbol,_Period,SARstep,SARmax);

 ArraySetAsSeries(mySARArray,true);

 CopyBuffer (SARDefinition,0,0,3,mySARArray);

 double SARValue = NormalizeDouble (mySARArray[0],5);

 double LastSARValue = NormalizeDouble(mySARArray[1],5);

 double NextToLastSARValue = NormalizeDouble(mySARArray[2],5);

 CURRENCY TRADING SYSTEM DEVELOPMENT 102

 //Moving Average Declarations

 double myMovingTripleAverageArray[];

 int TrixDefinition = iTriX(_Symbol,_Period,TRIXperiod,PRICE_CLOSE);

 ArraySetAsSeries(myMovingTripleAverageArray,true);

 CopyBuffer(TrixDefinition,0,0,3,myMovingTripleAverageArray);

 //MACD Declarations

 double myMACDArray [];

 int MACDDefinition =

iMACD(_Symbol,_Period,MACDfast,MACDslow,MACDsignal,PRICE_CLOSE);

 ArraySetAsSeries (myMACDArray,true);

 CopyBuffer (MACDDefinition,0,0,3,myMACDArray);

 float MACDValue = myMACDArray[0];

 //RSI Declarations

 double myRSIArray [];

 int RSIDefinition = iRSI(_Symbol,_Period,RSIperiod,PRICE_CLOSE);

 ArraySetAsSeries(myRSIArray,true);

 CopyBuffer(RSIDefinition,0,0,3,myRSIArray);

 signal = 0;

 CURRENCY TRADING SYSTEM DEVELOPMENT 103

 //BollingerBands

 double MiddleBandArray[];

 double UpperBandArray[];

 double LowerBandArray[];

 ArraySetAsSeries(MiddleBandArray,true);

 ArraySetAsSeries(UpperBandArray,true);

 ArraySetAsSeries(LowerBandArray,true);

 int BollingerBandsDef = iBands(_Symbol,_Period,BANDperiod,0,BANDsd,PRICE_CLOSE);

 CopyBuffer(BollingerBandsDef,0,0,3,MiddleBandArray);

 CopyBuffer(BollingerBandsDef,1,0,3,UpperBandArray);

 CopyBuffer(BollingerBandsDef,2,0,3,LowerBandArray);

 //MACD Buy Conditions

 if (MACDValue < 0)

 {

 signal = signal + 1;

 }

 // SAR Buy Conditions

 CURRENCY TRADING SYSTEM DEVELOPMENT 104

 if ((LastSARValue < PriceArray[1].low) && (NextToLastSARValue > PriceArray[2].high))

 {

 signal = signal + 1;

 }

 //Moving Average Buy Conditions

 if ((myMovingTripleAverageArray[0] > 0))

 {

 signal = signal + 1;

 }

 //RSI Buy Conditions

 if ((myRSIArray[1] <= RSIlower))

 {

 signal = signal + 1;

 }

 //Bollinger Buy Conditions

 if((PriceArray[1].close < LowerBandArray[1]) && (PriceArray[0].close >

LowerBandArray[0]))

 {

 signal = signal + 1;

 CURRENCY TRADING SYSTEM DEVELOPMENT 105

 }

 //Sell Conditions

 //MACD Sell Conditions

 if(MACDValue > 0)

 {

 signal = signal - 1;

 }

 //Sell SAR Conditions

 if ((LastSARValue > PriceArray[1].high) && (NextToLastSARValue < PriceArray[2].low))

 {

 signal = signal - 1;

 }

 //Sell Average Conditions

 if ((myMovingTripleAverageArray[0] < 0))

 {

 signal = signal - 1;

 }

 CURRENCY TRADING SYSTEM DEVELOPMENT 106

 //Sell Conditions

 if ((myRSIArray[1] >= RSIupper))

 {

 signal = signal - 1;

 }

 //Bollinger Sell Conditions

 if ((PriceArray[1].close > UpperBandArray[1]) && (PriceArray[1].close <

UpperBandArray[0]))

 {

 signal = signal - 1;

 }

 //signal = 3;

 //leave market

/* if (signal == 0)

 CURRENCY TRADING SYSTEM DEVELOPMENT 107

 {

 ClosePositions();

 }*/

 //Buy Market

 else if (signal >= 3 && PositionsTotal() < 1)

 {

 JakeSignal = "buy";

 }

 //Sell Market

 else if (signal <= -3 && PositionsTotal() < 1)

 {

 JakeSignal = "sell";

 }

 // CheckTrailingStop(Ask,Bid);

 return JakeSignal;

 signal = 0;

 // Comment ("The current signal is: %g",signal);

 // Comment ("The current volume is: %g",volume);

 CURRENCY TRADING SYSTEM DEVELOPMENT 108

 }

string AungsSystem(string AungSignal)

 {

int MyTakeProfitValue = 300;

int SLI = 150;

int RSI_Upper = 65;

int RSI_Lower = 35;

int Stoch_Upper = 80;

int Stoch_Lower = 15;

double ATR_Value = 0.0015;

//input int RSI_period_get;

//input int sto_one, sto_two, sto_three;

//input int Atr_period_get;

//input bool RSI = true;

//input bool Stoc = true;

//input bool AVR = true;

 //double CurrentStopLoss = myAP;

 double myAB = AccountInfoDouble(ACCOUNT_BALANCE);

 double myAP = AccountInfoDouble(ACCOUNT_PROFIT);

 CURRENCY TRADING SYSTEM DEVELOPMENT 109

 double myAE = AccountInfoDouble(ACCOUNT_EQUITY);

 string signal = "";

 MqlRates PriceArray[];

 ArraySetAsSeries (PriceArray, true);

 double Ask = NormalizeDouble(SymbolInfoDouble(_Symbol, SYMBOL_ASK), _Digits);

 double Bid = NormalizeDouble(SymbolInfoDouble(_Symbol, SYMBOL_BID), _Digits);

Comment("\n Ask: ", Ask);

Comment("\n Bid: ", Bid);

 double KArray[];

 double DArray[];

 double myRSIArray[];

 double mySARArray[];

 double myATRArray[];

 double myLowerBandArray[];

 double myUpperBandArray[];

 CURRENCY TRADING SYSTEM DEVELOPMENT 110

 ArraySetAsSeries(KArray, true);

 ArraySetAsSeries(DArray, true);

 ArraySetAsSeries(myRSIArray, true);

 ArraySetAsSeries(mySARArray, true);

 ArraySetAsSeries(myLowerBandArray, true);

 ArraySetAsSeries(myUpperBandArray, true);

 ArraySetAsSeries(myATRArray, true);

 int StochasticDefinition = iStochastic(_Symbol, _Period, 5,3,3,MODE_SMA,

STO_LOWHIGH);

 int myRSIDefinition = iRSI(_Symbol, _Period, 14, PRICE_CLOSE);

 int SARDefinition = iSAR(_Symbol, _Period, 0.02, 0.2);

 int Data= CopyRates(Symbol(), Period(), 0,3, PriceArray);

 int BBDefinition = iBands(_Symbol, _Period, 20,0,2, PRICE_CLOSE);

 int ATRDefinition= iATR(_Symbol, _Period, 14);

 CopyBuffer(StochasticDefinition, 0,0,3, KArray);

 CopyBuffer(StochasticDefinition, 1,0,3,DArray);

 CopyBuffer(myRSIDefinition, 0,0,3, myRSIArray);

 CopyBuffer(SARDefinition, 0,0,3, mySARArray);

 CopyBuffer(BBDefinition, 2,0,3, myLowerBandArray);

 CURRENCY TRADING SYSTEM DEVELOPMENT 111

 CopyBuffer(BBDefinition, 1,0,3, myUpperBandArray);

 CopyBuffer(ATRDefinition, 0,0,3, myATRArray);

 double KValue0 = KArray[0];

 double DValue0 = DArray[0];

 double myRSIValue = NormalizeDouble(myRSIArray[0],2);

 double LastSARValue = NormalizeDouble(mySARArray[1], 5); // calculated with 5 digits

behind the point

 double NextToLastSARValue = NormalizeDouble(mySARArray[2], 5);

 double ATRValue = NormalizeDouble (myATRArray[0] , 5);

 double myUpperBandValue = myUpperBandArray[0];

 double myLowerBandValue = myLowerBandArray[0];

 double myLastUpperBandValue = myUpperBandArray[1];

 double myLastLowerBandValue = myLowerBandArray[1];

 double KValue1 = KArray[1];

 double DValue1 = DArray[1];

 //Check user based condition here

// if(myAE >= myAB)

// trade.Buy(0.10, NULL, Ask, 0,(Ask+MyTakeProfitValue * _Point), NULL);

 CURRENCY TRADING SYSTEM DEVELOPMENT 112

 //Moving Stop Loss

 // Check Conditions here! There could be something wrong with the PriceArray[1].low

 //if(ATRValue > 0.0001) {

 if(KValue0 < Stoch_Lower && DValue0 < Stoch_Lower && myRSIValue <RSI_Lower &&

ATRValue > ATR_Value /*&& PriceArray[0].close > myLowerBandValue *//*&&

PriceArray[1].close < myLastLowerBandValue */) {

 if((KValue0 > DValue0) && (KValue1 < DValue1) /*&& (Ask<

myLastLowerBandValue)*/){

 //Can even check Bolinger Band with Ask and Bid

 //if(KValue0 < 30 && DValue0 < 30 && myRSIValue < 40 && LastSARValue <

PriceArray[1].low) {

 // if((KValue0 > DValue0) && (KValue1 < DValue1) && (NextToLastSARValue >

PriceArray[2].high) /*&& (CheckSARValue > PriceArray[3].high)*//*&&(CheckSARValue >

PriceArray[0].high)*/) {

 signal = "buy";

 }

 }

 //Check user based condition here

 //Check Leverage

 //if(ATRValue > 0.0001) {

 CURRENCY TRADING SYSTEM DEVELOPMENT 113

 if(KValue0 > Stoch_Upper && DValue0 > Stoch_Upper&& myRSIValue >RSI_Upper &&

ATRValue > ATR_Value /*&& PriceArray[0].close < myUpperBandValue */ /*&&

PriceArray[1].close > myLastUpperBandValue */) {

 if((KValue0 < DValue0) && (KValue1 > DValue1) /*&& (Bid > myLastUpperBandValue)

*/){

 //if(KValue0 > 70 && DValue0 > 70 && myRSIValue >60 && LastSARValue >

PriceArray[1].high) {

 //if((KValue0 > DValue0) && (KValue1 < DValue1)&& (NextToLastSARValue >

PriceArray[2].low) /*&& (CheckSARValue > PriceArray[3].low)*/

/*&&(CheckSARValue<PriceArray[0].low)*/) {

 signal = "sell";

 }

 }

 //}

 if(signal == "sell" && PositionsTotal() < 1) {

 AungSignal = "sell";

 //trade.Sell(0.10, NULL, Bid, 0, (Bid-150 * _Point), NULL);

 }

 if(signal == "buy" && PositionsTotal() < 1) {

 AungSignal = "sell";

 CURRENCY TRADING SYSTEM DEVELOPMENT 114

 //trade.Buy(0.10, NULL, Ask, 0, (Ask+MyTakeProfitValue * _Point), NULL);

 }

 Comment("The current signal is : ", signal);

 // CheckTrailStop (Ask);

 return AungSignal;

 }

 void CheckTrailStop (double Ask) {

 double SL = NormalizeDouble(Ask-150*_Point, _Digits);

 // double SLS = NormalizeDouble(Bid-150*_Point, _Digits);

 for (int i = PositionsTotal() -1; i >= 0 ; i--) {

 string symbol = PositionGetSymbol(i);

 if(_Symbol == symbol) {

 ulong PositionTicket = PositionGetInteger(POSITION_TICKET);

 double CurrentStopLoss = PositionGetDouble(POSITION_SL);

 if(CurrentStopLoss< SL){

 trade.PositionModify(PositionTicket, (CurrentStopLoss+SLI* _Point),0) ;

 }

 }

 CURRENCY TRADING SYSTEM DEVELOPMENT 115

 }}

string MichaelsSystem(string MichaelSignal)

 {

 int SMATimeframe=14;

 int LMATimeframe=37;

 int StopLossValue=250;

 int TakeProfitValue=280;

 MqlRates PriceInfo[];

 ArraySetAsSeries (PriceInfo,true);

 int Data =CopyRates(Symbol(),Period(),0,3,PriceInfo);

 string signal="";

 double ShortMovingAverageArray[];

 double LongMovingAverageArray[];

 CURRENCY TRADING SYSTEM DEVELOPMENT 116

 double Ask=NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_ASK),_Digits);

 double Bid=NormalizeDouble(SymbolInfoDouble(_Symbol,SYMBOL_BID),_Digits);

 int ShortMovingAverageDefinition = iMA

(_Symbol,_Period,SMATimeframe,0,MODE_SMA,PRICE_CLOSE);

 int LongMovingAverageDefinition = iMA

(_Symbol,_Period,LMATimeframe,0,MODE_SMA,PRICE_CLOSE);

 ArraySetAsSeries (ShortMovingAverageArray,true);

 ArraySetAsSeries (LongMovingAverageArray,true);

 CopyBuffer(ShortMovingAverageDefinition,0,0,3,ShortMovingAverageArray);

 CopyBuffer(LongMovingAverageDefinition,0,0,3,LongMovingAverageArray);

 //---------------------------------------

 if (LongMovingAverageArray[1]>ShortMovingAverageArray[1])

 CURRENCY TRADING SYSTEM DEVELOPMENT 117

 if (LongMovingAverageArray[2]<ShortMovingAverageArray[2])

 {

 signal="sell";

 }

 if (LongMovingAverageArray[1]<ShortMovingAverageArray[1])

 if (LongMovingAverageArray[2]>ShortMovingAverageArray[2])

 {

 signal="buy";

 }

 if (signal=="buy" && PositionsTotal()<10)

 MichaelSignal = "buy";

//trade.Buy(0.10,NULL,Ask,(Ask-StopLossValue*_Point),(Ask+TakeProfitValue*_Point),NUL

L);

 if (signal=="sell" && PositionsTotal()<10)

 MichaelSignal = "sell";

//trade.Sell(0.10,NULL,Bid,(Bid+StopLossValue*_Point),(Bid-TakeProfitValue*_Point),NULL)

;

 CURRENCY TRADING SYSTEM DEVELOPMENT 118

 return MichaelSignal;

 }

void ClosePositions()

 {

 for (int i=PositionsTotal()-1; i>=0; i--)

 {

 int ticket=PositionGetTicket(i);

 trade.PositionClose(i);

 }

 }

void CheckTrailingStop(double Ask, double Bid)

 {

 double SLB = NormalizeDouble(Ask-SLBmover*_Point,_Digits);

 double SLS = NormalizeDouble(Bid-SLSmover*_Point,_Digits);

 for(int i = PositionsTotal() - 1; i>= 0; i--)

 {

 string symbol = PositionGetSymbol(i);

 CURRENCY TRADING SYSTEM DEVELOPMENT 119

 if (_Symbol == symbol)

 {

 ulong PositionTicket = PositionGetInteger (POSITION_TICKET);

 double CurrentStopLoss=PositionGetDouble(POSITION_SL);

 if (CurrentStopLoss < SLB && PositionGetInteger(POSITION_TYPE) ==

POSITION_TYPE_BUY)

 {

 trade.PositionModify(PositionTicket, (CurrentStopLoss + 10 * _Point), 0);

 }

 if (CurrentStopLoss > SLS && PositionGetInteger(POSITION_TYPE) ==

POSITION_TYPE_SELL)

 {

 trade.PositionModify(PositionTicket, (CurrentStopLoss - 10 * _Point), 0);

 }

 }

 }

 }

 CURRENCY TRADING SYSTEM DEVELOPMENT 120

Appendix F: Combined System Yearly Results

The Figures below show the detailed results gathered for the combined system described

in Chapter 6, and found in Appendix E. Each Figure is a different year of results gathered, and

were generated in the Metatrader 5 Strategy tester section.

Figure 35: 2010 Combined System Backtesting Data

Figure 36: 2011 Combined System Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 121

Figure 37: 2012 Combined System Backtesting Data

Figure 38: 2013 Combined System Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 122

Figure 39: 2014 Combined System Backtesting Data

Figure 40: 2015 Combined System Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 123

Figure 41: 2016 Combined System Backtesting Data

Figure 42: 2017 Combined System Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 124

Figure 43: 2018 Combined System Backtesting Data

 CURRENCY TRADING SYSTEM DEVELOPMENT 125

Appendix G: System 3 Backtesting Data

Figure 44 shows the detailed results gathered for the individual system described in

Chapter 5.3, and found in Appendix C. The Figure represents the testing data after testing the

system code from 2010-2019.

Figure 44: 2010 to 2019 System 3 Backtesting Results

This link has the detailed information about each and every trade made in Chapter 5.3 results

section.

https://drive.google.com/open?id=1QLmw7wczT-_IIWxZMq_bFcWQ4xIHKtaN

This link has the complete results for the optimization

https://drive.google.com/open?id=1eFAhwrJpl4VXZ8IANjcRQ9E09QsG2xBK

https://drive.google.com/open?id=1QLmw7wczT-_IIWxZMq_bFcWQ4xIHKtaN
https://drive.google.com/open?id=1eFAhwrJpl4VXZ8IANjcRQ9E09QsG2xBK

