
Dynamic Optimization and Migration of

Continuous Queries Over Data Streams

by

Yali Zhu

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

August 17, 2006

APPROVED:

Professor Elke A. Rundensteiner
Advisor

Professor Murali Mani
Committee Member

Professor Michael Gennert
Head of Department

Professor George Heineman
Committee Member

Dr. Volker Markl
IBM Almaden Research Center
External Committee Member

i

Abstract

Continuous queries process real-time streaming data and output results in

streams for a wide range of applications. Due to the fluctuating stream

characteristics, a streaming database system needs to dynamically adapt

query execution. This dissertation proposes novel solutions to continuous

query adaptation in three core areas, namely dynamic query optimization,

dynamic plan migration and partitioned query adaptation.

Runtime query optimization needs to efficiently generate plans that sat-

isfy both CPU and memory resource constraints. Existing work focus on

minimizing intermediate query results, which decreases memory and CPU

usages simultaneously. However, doing so cannot assure that both resource

constraints are being satisfied, because memory and CPU can be either pos-

itively or negatively correlated. This part of the dissertation proposes effi-

cient optimization strategies that utilize both types of correlations to search

the entire query plan space in polynomial time when a typical exhaustive

search would take at least exponential time. Extensive experimental evalu-

ations have demonstrated the effectiveness of the proposed strategies.

Dynamic plan migration is concerned with on-the-fly transition from

ii

one continuous plan to a semantically equivalent yet more efficient plan. It

is a must to guarantee the continuation and repeatability of dynamic query

optimization. However, this research area has been largely neglected in the

current literature. The second part of this dissertation proposes migration

strategies that dynamically migrate continuous queries while guaranteeing

the integrity of the query results, meaning there are no missing, duplicate

or incorrect results. The extensive experimental evaluations show that the

proposed strategies vary significantly in terms of output rates and memory

usages given distinct system configurations and stream workloads.

Partitioned query processing is effective to process continuous queries

with large stateful operators in a distributed system. Dynamic load redis-

tribution is necessary to balance uneven workload across machines due to

changing stream properties. However, existing solutions generally assume

static query plans without runtime query optimization. This part of the

dissertation evaluates the benefits of applying query optimization in par-

titioned query processing and shows dramatic performance improvement

of more than 300%. Several load balancing strategies are then proposed to

consider the heterogeneity of plan shapes across machines caused by dy-

namic query optimization. The effectiveness of the proposed strategies is

analyzed through extensive experiments using a cluster.

iii

Acknowledgments

This dissertation is the result of help, encouragement and pressure from a

group of people. Some I have known forever, and others I feel thankful to

have come to know in the last few years.

First, I want to thank my advisor, Professor Elke Rundensteiner, for all

her support during the process of making this dissertation. I feel truly

lucky to have her as my advisor in every possible way. And I feel truly

happy to have known her as a person. I thank Professor Murali Mani for

his insightful inputs on my research and his lightheartedness that brings

joy to the research group. I thank Professor George Heineman for his valu-

able inputs, discussions and joined meetings on this research work. I thank

Dr. Volker Markl for his inspiring comments and valuable discussions on

my research.

I thank all previous and current DCAPE members for their hard work

on building a system that we can share together as a team, including Lup-

ing Ding, Bin Liu, Song Wang, Brad Pielech, Timothy Sutherland, Rimma

Kaftanchikova, Brad Momberger, Mariana Jbantova, Nishant Mehta, Hong

Su and Jinghui Jian. My thanks also go to all members in the DSRG group,

iv

who together make DSRG a great research group to be part of.

I thank the wonderful professors in the CS department for both their

serious lectures and casual chattings. I thank the system support staff in

our department and from the school for providing a well-maintained com-

puting environment and utilities for our research needs. I am thankful for

the financial supports I have received from my advisor, the department and

the school during my study and research in WPI.

I thank my father for all his care and support, and for always over-

believing in me. Last, I want to thank my husband, Boyou Chen, for all his

encouragement, cooperation and patience. His support is ultimately what

makes this dissertation possible.

v

Contents

1 Introduction 1

1.1 Research Motivation . 1
1.1.1 General Concepts of Continuous Query Processing . 1
1.1.2 Motivation for Query Adaptation at Runtime 3
1.1.3 Existing Query Adaptation Techniques 5

1.2 Research Focus of This Dissertation 9
1.2.1 Overview of the DCAPE System 11
1.2.2 Continuous Query Optimization 13
1.2.3 Dynamic Plan Migration 19
1.2.4 Distributed Query Adaptation 23

1.3 Dissertation Organization . 28

I Continuous Query Optimization with Resource Constraints 29

2 Introduction and Research Outline 30

2.1 Continuous Query Optimization 30
2.2 Relationships Between Resource Usages 32
2.3 Proposed Strategies in This Dissertation 36
2.4 Road Map . 40

3 Background 41

3.1 Stateful Operators in Continuous Queries 41
3.2 Window Constraints . 43

4 Cost Analysis for Continuous Multi-Join 46
4.1 Cost Analysis for MJoin . 46
4.2 Cost Models For BJTree . 50
4.3 Comparing the Cost Models 51

CONTENTS vi

5 The MJoin-Init Strategy 53

5.1 Finding Join Orderings For MJoin 53
5.1.1 Finding Optimal Join Ordering For Acyclic Joins . . . 54
5.1.2 Heuristic-based Join Ordering for Cyclic Joins 58
5.1.3 Considering Cartesian Product 59
5.1.4 Overall Join Ordering Algorithm. 60

5.2 Generating Hybrid Tree from MJoin 62

6 The BTree-Init Strategy 67

6.1 Generating BJTree . 67
6.1.1 Considering Cartesian Product 69
6.1.2 The Overall Min-State Algorithm 70
6.1.3 Optimality of Generated BJTree. 70

6.2 Generating Hybrid Tree from BJTree 72
6.3 Discussion on Qualified Plans 74

7 The Exhaustive Search Strategy 78
7.1 The Multi-Join Search Space 78
7.2 Bottom-up Dynamic Programming 80
7.3 The Overall Exhaustive Search Algorithm 83

8 Experimental Evaluation 85

8.1 Verifying Cost Analysis . 86
8.2 Comparing Optimization Strategies 92

9 Related Work 99

II Dynamic Plan Migration for Continuous Queries 102

10 Introduction 103

10.1 Motivation for Migrating Continuous Queries at Run Time . 103
10.2 Limitations of Existing Migration Approaches 104
10.3 My Research on Run Time Migration 106
10.4 Road Map . 109

11 Background 111

11.1 Operator States and Window Constraints 111
11.2 Stateful Join Operator . 113
11.3 Stateful Group-by Operator 114
11.4 Tuple Arrival Order and Execution Order 117

CONTENTS vii

11.5 Total Synchronized Execution Model 119

12 Migrating Join Query Plans 123

12.1 Moving State Strategy . 124
12.1.1 State Matching . 125
12.1.2 State Moving . 126
12.1.3 State Recomputing . 127
12.1.4 Safe State Discarding 131
12.1.5 Overall Moving State Algorithm 133

12.2 Parallel Track Strategy . 134
12.2.1 Correctness of the Results 135
12.2.2 Duplicate Elimination 136
12.2.3 Timestamp Order Preservation 137
12.2.4 Overall Parallel Track Algorithm 138

12.3 Cost Analysis . 139
12.3.1 Analysis of Moving State Strategy 139
12.3.2 Analysis of Parallel Track Strategy 142

12.4 Comparing the Cost of Migration Strategies 145

13 Migrating Queries with SPJ Operators 148

13.1 Queries with Select and Join 149
13.2 Queries with Project and Join 152
13.3 State Matching Methods for SPJ Queries 155

13.3.1 State Matching for Incremental Optimization 156
13.3.2 State Matching for Total Re-Optimization 159

14 Migration Queries with Group-by And Aggregates 162

14.1 The Migration for Switching Join and Group-by 163
14.1.1 Applying the Moving State Migration Strategy 165
14.1.2 Applying the Parallel Track Migration Strategy . . . 167

14.2 Group-by and Key-to-Foreign-Key Join 170

15 Execution Models and Generalized Migration Strategies 174

15.1 Execution Models . 175
15.1.1 Totally Synchronized Execution Model 176
15.1.2 Semi-Synchronized Execution Model 176
15.1.3 Un-Synchronized Execution Model 177

15.2 Timestamp Representation and State Purging 179
15.2.1 Purge by Combined Tuples 179

15.3 Generalized Migration Strategies 183

CONTENTS viii

15.3.1 The Problem of Synchronization 184
15.3.2 The Punctuation-based Synchronization Algorithm . 187
15.3.3 Discussions on Synchronization Methods 189

16 Experimental Evaluation 192

16.1 Experimental Setup . 192
16.2 Length of Migration Stage . 193
16.3 Effects on Minimizing Intermediate Data 196
16.4 Apply Migration at Run Time 201

17 Related Work 206

III Distributed Continuous Query Adaptations 210

18 Distributed Continuous Query Processing 211

18.1 Distributed Query Adaptation 212
18.2 Advantages of Partitioned Query Processing 213
18.3 Limitations of Existing Strategies 214
18.4 New Research Problems . 216
18.5 Research Outline . 217
18.6 Road Map . 219

19 Operator-Level Distributed Migration 220

19.1 Distributed Moving State Migration Protocols 220
19.2 Distributed Parallel Track Migration Protocols 224
19.3 Discussion on Distributed Migration Strategies 226

20 Preliminaries on Partition-level Adaptations 228

20.1 Partitioned Continuous Query Processing 228
20.2 Design of Load Balancing Strategies 230
20.3 Conditions for Load Rebalancing 234

21 Parallel Partition Load Balancing 236

21.1 Distributed Parallel Track Load Balancing 236
21.2 Distributed PTLB Protocols 239

22 Moving Partition Load Balancing 249

22.1 Distributed Moving State Load Balancing 249
22.2 Distributed MSLB Protocols 251

CONTENTS ix

23 Experimental Evaluation 262

23.1 Experimental Setup . 262
23.2 Benefits of Local Query Optimization 263
23.3 Comparing PTLB and MSLB 271

24 Related Work 281

IV Conclusions and Future Work 283

25 Conclusions of This Dissertation 284

26 Ideas for Future Work 288

26.1 Future Work on Choosing Optimization Timing 289
26.1.1 Data-Driven Optimization 290
26.1.2 Memory-Driven Optimization 291
26.1.3 Refined Memory-Driven Optimization 294
26.1.4 Query Logging . 294

26.2 Future Work on Choosing Migration Scope 295
26.2.1 Determining The Size of Migration Box 296
26.2.2 Choosing Migration Step 298

26.3 Future Work on Distributed Optimization and Allocation . . 301
26.3.1 Distributed Query Optimization 303
26.3.2 Distributed Query Allocation 307
26.3.3 More Possible Future Work 310

x

List of Figures

1.1 Static Query Processing vs. Continuous Query Processing. . 2
1.2 Necessity of Runtime Adaptation. 5
1.3 Overall Research Focuses. 10
1.4 D-CAPE System Architecture. 12
1.5 Two Alternative Optimization Strategies 17

2.1 BJTree . 34
2.2 MJoin Operator . 34
2.3 MJoin and BJTree . 35
2.4 Two Alternative Optimization Strategies 37

3.1 Join Operators and Their States 43
3.2 Graph on Window Constraints 45
3.3 Combined Timestamp . 45

4.1 Example Query With Two Joins 47

5.1 Join Graph and Rooted Tree 57
5.2 Finding the Optimal Join Ordering 57
5.3 With or without Cartesian Product 60
5.4 Counting Edge Frequencies 63
5.5 Generate Hybrid Tree By State Selection 64
5.6 Operator Breaking and Merging 65

6.1 Min-State Algorithm Walkthrough 69
6.2 Potential Benefits of Cartesian Products 69
6.3 An example that the algorithm generates sub-optimal plan. . 71
6.4 Different Types of Join Graph. 71
6.5 Removing State by Merging Joins. 73
6.6 Dominating Plans. 76

LIST OF FIGURES xi

7.1 Two Equivalent Multi-Join Trees 79
7.2 Bottom-up Dynamic Programming for 4-way Join 81
7.3 Generate New Query Plans by Merging 83

8.1 Experimental Sets . 87
8.2 Accumulated Throughput (Set 1) 89
8.3 Tuples in States/Queues (Set 1) 89
8.4 Accumulated Throughput (Set 2) 90
8.5 Tuples in Input Queues (Set 2) 90
8.6 Accumulated Throughput (Set 3) 91
8.7 Memory Consumptions (Set 3) 91
8.8 Accumulated Throughput (Set 4) 92
8.9 Memory Consumptions (Set 4) 92
8.10 Qualified Percentage . 94
8.11 Average Optimization Time 95
8.12 Comparing Avg. Optimization Time (II) 95
8.13 Distribution of Qualified Plans (n=3) 96
8.14 Distribution of Qualified Plans (n=5) 96
8.15 Distribution of Qualified Plans (n=10) 97

10.1 Two Exchangeable Query Boxes 106

11.1 Join Operators and Their States 114
11.2 Stateful Group-by and Aggregate (SUM) with Window Con-

straint . 115
11.3 Tuple Arrival Order and Execution Order 119
11.4 Timestamps Order When Applying Total Synchronized Exe-

cution Model . 121

12.1 Moving State Strategy . 125
12.2 One Input Queue Shared by Two Operators 127
12.3 Possible Old/New Combinations for Tuples in Output Queue

ABCD . 128
12.4 Empty Unmatched States in the New Box 129
12.5 Parallel Track Strategy . 135
12.6 2W to purge all old tuples . 142

13.1 Opportunities in Switching Select and Join in Continuous
Query Processing. 149

13.2 State Filtering. 151
13.3 State Projecting and State Stuffing. 154

LIST OF FIGURES xii

13.4 State Recording for One Step in Incremental Optimization. . 157
13.5 State Matching for Optimization by Steps. 158
13.6 State Matching for Traditional Search-based Optimization. . 159

14.1 Switching Group-by and Join by Moving State Strategy –
General Case. 165

14.2 Applying Parallel Track Migration Strategy When Switching
Group-by and Join. 169

14.3 Switching Group by and Join – Special Case. 173

15.1 Combined Timestamp . 178
15.2 The Issue of Synchronization 186
15.3 Trace Back to Contributing Stream Queues 189
15.4 Synchronize by Propagating Punctuations 189

16.1 TPT vs. W . 196
16.2 TMS vs. W . 196
16.3 TMS and TPT vs. λB . 197
16.4 Comparison of TMS and TPT vs. W 197
16.5 Intermediate Tuple Counts - Low Config 198
16.6 Output Rate - Low Config . 199
16.7 Intermediate Tuple Counts - High Config 200
16.8 Output Rate - High Config . 201
16.9 Runtime Overhead . 203
16.10Migrate once at runtime - Throughput Comparison 204
16.11Migrate once at runtime - Memory comparison 204
16.12Migrate multiple times at runtime - Throughput comparison 205
16.13Migrate multiple times at runtime - Memory comparison . . 205

18.1 Operator-level and Partition-level Parallelism 213
18.2 Distribution of Partitioned Plan 214
18.3 Problem with Simple Partition Moving During Load Rebal-

ancing . 217

19.1 Distributed Moving State Protocol: Start of Migration 221
19.2 Distributed Moving State Protocol: Execution Synchronization222
19.3 Distributed Moving State Protocol: Change Shape of Query

Plan . 222
19.4 Distributed Moving State Protocol: Fill States and Reactivate

Operators . 223

LIST OF FIGURES xiii

19.5 Distributed Parallel Track Protocol: Deactivate Operators in
Old Box . 225

19.6 Distributed Parallel Track Protocol: Connect and Execute Old
and New Boxes . 225

19.7 Distributed Parallel Track Protocol: Remove Old Box 226

20.1 Tuple Partitioning in Split Operators 229
20.2 Two Exchangeable Query Boxes 231

21.1 Parallel Track Strategy . 239
21.2 PTLB: Compute Partitions to Move. 241
21.3 PTLB: Send Partitions to Both Machines. 243
21.4 PT Load Balance: Delete Partitions. 246

22.1 Moving State Load Balancing Strategy 250
22.2 MS Load Balance: Compute Partitions to Move. 252
22.3 MS Load Balance: Deactivate and Synchronize To-be-moved

Partitions. 254
22.4 MSLB: Move and Recompute Partitions. 258
22.5 MS Load Balance: Reactivate Partitions. 259

23.1 Throughput Comparisons (PTLB). 266
23.2 Total Tuples Comparisons (PTLB). 268
23.3 State Tuples Comparisons (PTLB). 269
23.4 Output Rate Comparisons (PTLB). 270
23.5 Throughput Comparisons (MSLB). 271
23.6 Total Tuples Comparisons (MSLB). 272
23.7 State Tuples Comparisons (MSLB). 273
23.8 Output Rate Comparisons (MSLB). 274
23.9 Throughput comparisons (λ = 30). 275
23.10Throughput comparisons (λ = 40). 276
23.11Throughput comparisons (λ = 50). 277
23.12Average Lengths of Load Balance (λ = 30). 278
23.13Average Lengths of Load Balance (λ = 40). 279
23.14Average Lengths of Load Balance (λ = 50). 280
23.15PTLB-better-than-MSLB Case. 280

26.1 Optimization Box and Migration Box 297
26.2 Size of Migration Box and Migration Steps 299
26.3 Non-overlapping Migration Boxes 301
26.4 Overlapping Migration Boxes 301

LIST OF FIGURES xiv

26.5 Multi-way Join Plan with Same-Column Equi-Join Predicates. 305
26.6 Multi-way Join Plan with Different-Column Equi-Join Pred-

icates. 306
26.7 Multi-way Join Plan with Complex Join Predicates. 306
26.8 Annotated Query Plan. 307
26.9 Query Distribution and Cost Updates. 308

xv

List of Tables

4.1 Terms Used in Cost Models 49

8.1 Parameter Configurations in Experiments 88

12.1 Terms Used in Cost Model . 140

16.1 Parameter Configurations . 195

1

Chapter 1

Introduction

1.1 Research Motivation

1.1.1 General Concepts of Continuous Query Processing

Recent years have witnessed a rapidly increasing attention on continuous

query processing in streaming database systems [MWA+03, BBD+02b,

ACC+03, AH00, DTW00, VN02b, ILW+00, AAB+05]. Many applications

share the same needs for processing streaming data in a continuous fash-

ion, including sensor networks, online financial tickers and medical moni-

toring systems.

Continuous queries significantly differ from traditional static queries

in several aspects. Figure 1.1 depicts the fundamental differences between

the two types of queries. For traditional static queries, the data are usu-

ally stored on disks. This means that the system has the complete data set

available before the query starts. Users can submit one-time queries, after

1.1. RESEARCH MOTIVATION 2

which the query engine will fetch data from disks and process the queries

against the data. Usually the complete results are output all at once. On the

other hand, as shown on the right of Figure 1.1, the data set that a continu-

ous query needs to process cannot be all available before the query starts,

but rather it arrives continuously as runtime streams. Users submit a set

of queries which will be maintained in the query engine. When data ar-

rives at runtime, the queries will process the data and output the update

of results at runtime (instead of the complete results as in static query pro-

cessing). New user queries can be added to the system at runtime while

existing queries can be deleted from the system.

Static
Query Engine

Continuous
Query Engine

Users Submit
One-time Queries

Data

Complete Query Results

Streaming Data

Disk

CQ1

CQ2

Users Submit
Continuous Queries

RealtimePartial Results

Figure 1.1: Static Query Processing vs. Continuous Query Processing.

In summary, a streaming database stores a collection of continuous queries

and the data arrives on the fly, while a static database stores a collection of

data sets and queries are posed by database users on the fly. These differ-

ences make it unfitting to apply the traditional database design, especially

query adaptation techniques, directly to a streaming database, as the for-

1.1. RESEARCH MOTIVATION 3

mer was not initially designed to deal with on-the-fly real-time data. This

calls for a new set of methodologies and algorithms tailored for streaming

database technologies to process with continuous queries.

1.1.2 Motivation for Query Adaptation at Runtime

Query optimization is one of the most critical techniques for improving

query performance in any database system. In a static database system,

such techniques are generally applied at the optimization stage before the

query plan starts being executed. This is feasible because, as mentioned

earlier, all the data is present before the query plan starts, so the system can

collect relatively comprehensive statistics information. Thus static query

optimization is able to make reasonably efficient optimization decisions

even before the query plan starts.

However, in a streaming database system, data is not stored before-

hand, rather it is streaming in as time goes by. At the time when a con-

tinuous query is issued, the system may predict the characteristics of the

incoming data, but it is generally not possible for the system to gather rea-

sonably accurate statistics before it receives the actual data at runtime. As

illustrated in Figure 1.2, several important parameters listed below may

change during the usually long execution of a continuous query:

• First, the data characteristics of the incoming streams may change, in-

cluding stream arrival rates (inter-arrival time), arrival patterns, and

data value distributions. Therefore, if any predictions are made re-

garding the data characteristics before the query starts, they can be

1.1. RESEARCH MOTIVATION 4

highly inaccurate. Even if they are reasonably accurate, they would

hardly hold true throughout the query execution. So the initial query

plan needs to be adapted at runtime when accurate statistics are being

collected or when statistics have changed.

• Second, the system resources available for executing the query, in-

cluding both CPU and memory resources, may change over time. Dif-

ferent query plans, even for executing the same query, may have dif-

ferent resource requirements. Some may consume more CPU while

others have higher memory requirements. Therefore, to prevent sys-

tem overflow, we need to be able to choose a query plan that can best

fit the current available system resources at runtime.

• Third, as the continuous queries are generally long running, during

their execution, the Quality of Service (QoS) requirements of users

may change as well. For example, the user may switch from requiring

the highest output rates to consuming the lowest memory. Based on

the requirement of the user, different query plans may need to be

chosen accordingly.

• Furthermore, even the collection of continuous queries registered in

the system is not stable. A streaming database usually processes mul-

tiple continuous queries at the same time. New queries may be reg-

istered into the system while old queries may be de-registered if they

are no longer useful or required.

In summary, the unpredictable and unstable nature of the streaming

1.1. RESEARCH MOTIVATION 5

Register
Continuous

Queries

Stream Query
Engine

Stream Query
Engine

Streaming Data Streaming Result

May have different
QoS Requirements.

May have time-
varying rates and
data distribution.

Available resources for
executing each operator

may vary over time.

Figure 1.2: Necessity of Runtime Adaptation.

environment poses many new challenges and requirements on query pro-

cessing in a streaming database system. A query plan that is selected at

the start of execution may become sub-optimal or even very inefficient due

to these changes in the streaming environment. In order to produce re-

sults quickly and efficiently, the streaming database system has to have the

ability to constantly collect the data statistics and dynamically adapt the

execution of the queries plans based on these realtime statistics.

1.1.3 Existing Query Adaptation Techniques

Dynamic continuous query adaptation can take several forms. Listed be-

low are the most commonly used adaptation techniques in currently con-

tinuous query systems [MWA+03, BBD+02b, ACC+03, AH00, DTW00,

VN02b, ILW+00, AAB+05]:

• Intra-operator Adaptation: An individual operator can have the abil-

1.1. RESEARCH MOTIVATION 6

ity to react to changing stream characteristics and adapt its execu-

tion process accordingly. The XJoin operator [UF99] proposed by

Urhan and Franklin is an example of applying intra-operator adap-

tation techniques. The XJoin operator has three execution modes:

memory-to-memory join, memory-to-disk join and disk-to-disk join,

and adaptively chooses one of the execution modes based on streams’

arrival rates. Punctuations [TMSF03a, DMRH04a], which are meta-

data describing the characteristics of data in arriving streams, can

also be used to invoke intra-operator adaptation. As an example, the

punctuation can carry information such as ”all data arriving after this

will have its value larger than 100”. The system can take advantage

of the punctuations and adapt the execution of individual operators

[DMRH04b].

• Run-time Operator Re-scheduling: Other researchers have proposed adap-

tation of continuous query processing at the scheduling level: based

on the current system load, the adaptive scheduler can dynamically

choose the next operator to run and compute its corresponding work-

loads. The scheduler may make different scheduling decisions based

on different optimization goals [WW94, MWA+03, CCea03]. Our

own earlier work [SZDR05] also proposes an adaptive framework to

choose between different scheduling algorithms at runtime. Chang-

ing the scheduling algorithm incurs relatively low overhead, which

makes it suitable for run-time adaptation of continuous queries.

• Load-shedding: In the case of bursty input streams that exceed the cur-

1.1. RESEARCH MOTIVATION 7

rent system resource limitations, some research has proposed to do

load shedding [TCZ+03, BDM04] in order to decrease the workload

that the system needs to handle. The basic idea is to drop some work-

load that has the minimal possible impact on the quality of the out-

puts. As a side effect, this introduces approximation into the results

that the continuous query processing engine produces, which by it-

self is another important research area in the streaming database field.

For a streaming database application that needs to get exact results,

approximation techniques such as load shedding are not applicable.

• Query Plan Re-optimization: The query optimizer can dynamically al-

ter the order of operators and the shape of the query plans according

to the gathered system statistics. This technique, although it may be

more costly than operator rescheduling, works the best when funda-

mental changes such as significant changes of operator selectivities

occur. This technique is used both in static query systems as well as

in continuous query systems. 1

• Query Re-distribution: Another technique dealing with a large amount

of streaming data is to execute the query plans using multiple ma-

chines, meaning to de-centralize the query processing and allocate

the workload onto different machines in a cluster or a grid structure.

A distributed system can absorb a larger amount of incoming data

by distributing the workload across potentially all participating ma-

chines. Thus it scales better to the amount of stream data and the

1In static systems, such runtime query re-optimization is usually caused by inaccurate
statistics gathering or false assumptions before the query starts [SLMK01].

1.1. RESEARCH MOTIVATION 8

number of continuous queries as compared to utilizing only a cen-

tralized system.

The first three techniques mentioned above, namely intra-operator adap-

tation, runtime operator rescheduling, and load-shedding, all try to improve the

performance of the query plan without changing the query plan itself. They

achieve such performance improvement basically by releasing occupied re-

sources to make more resources available.

Dynamic query plan optimization, another key adaptation technique listed

previously, takes the query adaptation into a deeper level by actually chang-

ing the shape of the query plan in order to improve the efficiency of the

query plan. When the current running query plan degrades too severely,

the system would be able to detect such degradation of plan quality and

modify the shape of the query plan at run time with the aim to achieve the

level of adaptation that the previous three adaptation techniques cannot

achieve.

The distributed query processing is not only used for faster results, but also

a much needed solution for the correct execution of continuous queries. A

streaming query engine may take several input streams and execute mul-

tiple continuous queries at the same time. The workload such a system

needs to deal with can be tremendous. The system resources on a single

machine including memory and CPU can be consumed quickly. A contin-

uous query engine that does not have enough system resources to handle

the query execution may have to apply load shedding, which incurs inexact

query results, or push some data to disk for later processing, which can fur-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 9

ther delay the query results. Hence a streaming system needs to scale well

in regards to its potentially very large workload, which generally cannot be

achieved by a centralized system with a single machine.

1.2 Research Focus of This Dissertation

The overall research goal of this dissertation is to build a continuous query

engine that can dynamically apply query optimization in both a centralized

and a distributed environment, as depicted in Figure 1.3. The query execu-

tor in the middle executes the query plan and collects runtime statistics,

which are input to the Query Optimization component. The Query Optimiza-

tion component is then invoked to analyze the given statistics and optimize

the query plan if a performance decline has been detected. As a result, a

new query plan may be generated by the query optimization component.

The system then needs to dynamically transfer the currently running query

plan to the newly generated query plan. This process is accomplished by a

Plan Migration component as shown in Figure 1.3. This component is nec-

essary because the optimization of continuous queries happens at a point

during execution, at which time the query execution may have already ac-

cumulated intermediate results in the query operators, which needs care-

fully designed algorithms to safely migrate these data to the new query

plan. A valid plan migration strategy needs to guarantee that this migra-

tion process does not result in any loss, duplicate or incorrect query results.

The Query Optimization and the Plan Migration are the two adaptation com-

ponents for the centralized dynamic query optimization. Finally, the new query

1.2. RESEARCH FOCUS OF THIS DISSERTATION 10

plan can be executed either in a centralized system or a distributed environ-

ment. For the latter case, we also need a Distributed Adaptation component

to take care of adaptation problems specific only to a distributed system,

such as runtime load relocation and dynamic query optimization across

multiple machines.

Query Optimization
cost analysis and
query rewriting

Query Optimization
cost analysis and
query rewriting

Query Plan Executor

Plan Migration
Transform old plan

to the new plan

Plan Migration
Transform old plan

to the new plan

Runtime
Stats

New Query Plan

Distributed Adaptation
Runtime load relocation and

query optimization across machines

Distributed Adaptation
Runtime load relocation and

query optimization across machines

Centralized Dynamic Query Optimization

Migration
Strategies

Runtime
Stats

Load relocation
& optimization

strategies

Figure 1.3: Overall Research Focuses.

As shown in Figure 1.3, the main adaptation technologies focused on in

this dissertation are query optimization and distributed adaptation. The

query optimization includes two components, the optimization compo-

nent to optimize a query and the plan migration component to dynami-

cally transfer current query plan to a new plan. Therefore, this dissertation

focuses on studying the new problems and designing novel solutions for

1.2. RESEARCH FOCUS OF THIS DISSERTATION 11

the three important adaptation components, including dynamic query op-

timization, dynamic plan migration and distributed adaptation, in order

to form a framework to apply runtime adaptations in a continuous query

system.

1.2.1 Overview of the DCAPE System

Based on the above research goals and design philosophy, we have built a

prototype continuous query system named DCAPE [RDS+04, LZJ+05] at

WPI as a team effort to serve as the testbed for our research designs for

continuous query adaptations. DCAPE stands for Distributed Continuous

Adaptive Processing systEm). The DCAPE system is a prototype streaming

database system to effectively evaluate continuous queries in highly dy-

namic stream environments. The system has been demonstrated in VLDB

2004 conference [RDS+04] and VLDB 2005 conference [LZJ+05]. DCAPE

adopts a novel architecture that enables adaptive services at all levels of

query processing, including reactive operator execution, adaptive operator

scheduling, runtime query plan reoptimization and across-machine plan

redistribution. All the proposed strategies and algorithms in this disserta-

tion are built into the DCAPE system to equip it with the ability of dynamic

query optimization and migration both on a single machine and across

multiple machines.

The DCAPE system architecture is depicted in Figure 1.4. The system

is built to be run on a single machine as well as across multiple machines.

Each machine (processor) can run an instance of the query engine named

CAPE engine. If the system is run on multiple machines, a distributed man-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 12

Operator
Configurator

Operator
Scheduler

Plan
Reoptimizer

CAPE Query Engine

QoS Inspector

Execution Engine

Storage
Manager

Stream
Sender

Stream
Feeder

Stream
Receiver

Internet

Control Flow

Data Flow

Legend :

Distribution
Manager

Query Plan
Generator

Stream / Query
Registration

GUI

Query 2 . . Query nQuery 1

Streaming
Data

End User

Figure 1.4: D-CAPE System Architecture.

ager overlooks these multiple CAPE query engines and collects statistics

from all of them to make system-wide adaptation decisions. The key adap-

tive components in DCAPE are Operator Configurator, Operator Sched-

uler, Plan Reoptimizer and Distribution Manager. Once the Execution En-

gine starts executing the query plan, the QoS Inspector component, which

serves as the statistics monitor, will regularly collect statistics from the Ex-

ecution Engine at each sampling point. This run time statistics gathering

component is critical to continuous query processing, as any adaptation

technique relies on the statistics gathered at run time to make informed

decisions.

The two adaptive components in the DCAPE architecture that are di-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 13

rectly related to this dissertation are Plan Reoptimizer and Distribution

Manager, which are in charge of the centralized query optimization and

distributed query optimization respectively. As mentioned earlier, this dis-

sertation focuses on investigating three adaptation technologies, includ-

ing dynamic query optimization, dynamic plan migration and distributed

query adaptation. The former two together correspond to the Plan Reop-

timizer component in the DCAPE architecture shown in Figure 1.4. The

distributed adaptation relies on the coordination between the Distribution

Manager and the local adaptation components. If particular machines are

detected to be overloaded or underloaded, the Distribution Manager will

redistribute one or multiple query plans among the given cluster of ma-

chines. All new designs and algorithms in this dissertation are imple-

mented and experimented within the DCAPE system.

1.2.2 Continuous Query Optimization

New Challenges in Dynamic Query Optimization

Query plan optimization has remained at the core of database research for

over two decades [MS79, IK84, KBZ86, SI93, IK91, SAC+79]. In a static

database, the quality of a query plan is often judged by its total processing

time measured in terms of CPU processing and disk I/O costs [SMK97].

However, the optimization of continuous query processing [MWA+03, MSHR02,

CCC+02] differs from traditional query optimization in several aspects.

First, the quality of a continuous query plan is typically judged by its

runtime output rate [VN02a]. As observed in [AN04], a continuous query

1.2. RESEARCH FOCUS OF THIS DISSERTATION 14

plan produces the optimal output rate as long as the CPU cost per unit time

required by the plan is less than the system CPU capacity. In this case,

the output rate of the query plan is determined solely by the stream ar-

rival rates. Therefore, a continuous query optimizer should generate query

plans with their required CPU usages below the system CPU resource con-

straint.

Second, continuous queries are usually assumed to be main-memory-

resident due to the often rather stringent real-time output requirements

[MWA+03, MSHR02, CCC+02]. Due to the existence of stateful operators,

such as join or group-by, which may store large amount of tuples in op-

erator states, continuous query processing tends to be memory-intensive.

In case of memory overflow, we have to either spill in-memory data to

disk [LZR06, UF99, VNB03], which can further delay the processing, or we

could apply load shedding [TCZ+03] to delete data, which incurs approx-

imate results. Clearly, for applications that favor accurate realtime results,

the query optimizer instead should aim to generate query plans with their

memory cost below the system memory resource constraint.

Lastly, what complicates matters significantly in the streaming context

is that the statistics of the streams are usually unknown before a query

starts. In fact they may continue to change during the query execution.

A query plan that is currently optimal can become sub-optimal at a later

time. Therefore, runtime optimization is needed. It is imperative to adopt

efficient optimization algorithms, as otherwise the cost of the optimization

process may outweigh its potential savings.

Therefore, efficient runtime optimization algorithms are required to gen-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 15

erate continuous query plans with both CPU and memory consumptions

beneath the respective CPU and memory resource constraints. Continu-

ous query plans that satisfy these dual resource constraints are henceforth

called qualified plans. Finding a qualified plan is a multi-objective optimiza-

tion problem [PY01]: the optimizer needs to find a query plan that satisfies

both resource constraints. As in other multi-objective optimization work

[PY01, HM94, SAL+96], in order to achieve both objectives, we need to

characterize the relationship among the determining cost factors.

It is clear that CPU and memory costs are often positively correlated.

Intuitively, a query that has less data (less memory) to process needs less

CPU for processing the data. This fact is being utilized by most current

work on continuous optimization [GO03, VNB03, BMM+04, VN02a]. The

main goal of these approaches, which parallels the optimization work in

static query processing [MS79, IK84, KBZ86, SI93, SAC+79], is to minimize

the amount of intermediate results with the assumption that this also re-

duces CPU costs.

However, these two resources can also be negatively correlated when

processing continuous multi-join queries. This observation has largely been

ignored by existing continuous query optimization work. Let us consider

the two common methods for executing continuous joins, namely binary

join trees (bjtree) [VN02a] and multi-way join operators (mjoin) [GO03, VNB03,

BMM+04, HAE03]. A bjtree is a query plan composed of binary join oper-

ators. It keeps all intermediate results in operator states, thus saves CPU

cost on recomputing these intermediate results but requires high memory

costs. On the contrary, an mjoin does not keep any intermediate results,

1.2. RESEARCH FOCUS OF THIS DISSERTATION 16

thus saves memory but requires extra CPU for recomputation.

Existing optimization work has focused on minimizing the intermedi-

ate results of either an mjoin or a bjtree, which decrease both memory and

CPU usages. However, since memory and CPU can be both positively and

negatively correlated, the dual resource constraints cannot always be sat-

isfied within the mjoin or the bjtree solution space. Instead, we need to

extensively yet efficiently explore the search space both within and beyond

the mjoin and the bjtree solution space, while considering both types of

correlations between memory and CPU.

Dissertation Contributions to Dynamic Query Optimization

This dissertation proposes two polynomial-time optimization strategies,

namely mjoin-init and bjtree-init, that generate continuous multi-join plans

meeting these dual resource constraints. The proposed strategies explore

the multi-join solution space, considering mjoin, bjtree, and the tree struc-

tures in-between as solution candidates. Each strategy utilizes both posi-

tive and negative correlations between CPU and memory. They are thus

able to find qualified query plans when existing strategies cannot. The

effectiveness of the proposed strategies is thoroughly analyzed and com-

pared through experiments in a prototype continuous query system.

The problem of dynamic continuous query optimization contains two

sub-problems:

• First, we need to design online efficient optimization algorithms that

find qualified continuous query plans meeting dual resource con-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 17

straints.

• Second, we need strategies to dynamically transfer the currently run-

ning query plan to the newly generated query plan without affecting

the runtime query results.

The second sub-problem, referred to as dynamic plan migration will be

addressed in the second part of this dissertation, which will be introduced

in Section 1.2.3. In this task of the dissertation, we focus on the first sub-

problem.

For the two proposed optimization strategies, I have designed four novel

optimization algorithms, two for each proposed strategy. Within each strat-

egy, the first algorithm utilizes the positive correlation to decrease both

memory cost and CPU costs of the query plan, while the second utilizes

the negative correlation to further exploit the trade-off between the two

resource usages.

State-Selection State-Removal

MJoin BJTree

MJoin-Ordering Min-State

BJTree-Init Strategy

Hybrid Tree

MJoin-Init Strategy

Multi-Join Query Multi-Join Query

Figure 1.5: Two Alternative Optimization Strategies

As illustrated in Figure 1.5, the mjoin-init strategy first applies the mjoin-

ordering algorithm to find optimal mjoin orderings to minimize both mem-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 18

ory and CPU costs. If the mjoin is still not qualified, the state-selection algo-

rithm then carefully selects intermediate states to store in memory in order

to save CPU costs. As a result, a hybrid tree in between an mjoin and a bjtree

may be generated as the qualified plan. On the other hand, the bjtree-init

strategy first applies the min-state algorithm to minimize both memory and

CPU costs by generating optimal bjtrees. If the bjtree is not qualified, the

state-removal algorithm then generates a qualified hybrid tree by removing

selected intermediate states. This saves memory while increases CPU costs.

This part of the dissertation work contributes to research in continuous

query optimization in the following ways:

• First, two novel optimization strategies are proposed, which contain

four efficient algorithms, to generate qualified continuous multi-join

plans. To the best of my knowledge, this work is the first in con-

tinuous query optimization to 1) consider both resource constraints,

2) utilize both positive and negative correlations between the two

resources, and 3) explore the multi-join solution space, considering

mjoin, bjtree, and the tree structures in-between as candidate solu-

tions.

• Secondly, each of the four polynomial-time algorithms by itself is an

advance of the state-of-art of continuous query optimization. The

mjoin-ordering, extending the classic IK algorithm [IK84], finds optimal

mjoin orderings for acyclic join graphs. It is an improvement to cur-

rent solutions on optimizing mjoins [GO03, VNB03, BMM+04]. The

min-state finds optimal bjtree solution for star joins, which to the best

1.2. RESEARCH FOCUS OF THIS DISSERTATION 19

of our knowledge is yet to be achieved by existing solutions on opti-

mizing continuous bjtrees [VN02a, BMM+04]. The state-selection and

state-removal algorithms are algorithms for solving this new problem

of generating hybrid trees. To the best of my knowledge, they are the

first such algorithms in the current literature.

• The proposed strategies and algorithms are implemented in the DCAPE

continuous query system [RDS+04, LZJ+05] introduced in Section

1.2.1. A thorough experimental evaluation is conducted in the DCAPE

system. The experimental results show that both proposed optimiza-

tion strategies are efficient in finding qualified query plans. We also

compare the performance of the two optimization strategies in terms

of resource consumption of their generated query plans and make

recommendations as when to use which optimization method.

1.2.3 Dynamic Plan Migration

New Challenges in Dynamic Plan Migration

Dynamic plan migration is concerned with the on-the-fly transition from

one continuous query plan to a semantically equivalent yet more efficient

plan. Migration is important for stream monitoring systems where long-

running queries may have to withstand fluctuations in stream workloads

and data characteristics.

A migration strategy must guarantee that it will not alter the results pro-

duced by the system during as well as after the plan transition. Correctness

here implies that results are neither missing nor contain erroneous or du-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 20

plicate tuples. Traditionally, a dynamic plan migration strategy [CCC+02]

takes the following steps: 1) pause the execution of the current query plan,

2) drain out all existing tuples in the current query plan, 3) replace the cur-

rent plan with the new plan, and restart the execution. We refer to this

traditional approach as the pause-drain-resume strategy. The purpose of the

draining step is to clean up the intermediate tuples in the query plan to

prevent any missing output tuples.

The pause-drain-resume migration strategy may be adequate to dynami-

cally migrate a query plan that consists of only stateless operators, such as

select and project. A stateless operator does not need to maintain intermedi-

ate data nor other auxiliary state information in order to be able to generate

complete and correct results. Intermediate tuples in such a stateless query

plan exist only in intermediate queues and can be cleaned completely by

the drain step during the migration process.

On the contrary, a stateful operator, such as join or group-by, must store

tuples that have been processed thus far so to be able to generate future

results. For a long-running query as in the case of continuous queries, the

number of tuples stored inside a stateful operator, such as a join or a group-

by, can potentially be infinite. Several strategies have been proposed to

limit the number of intermediate tuples kept in operator states by purging

unwanted tuples, including window-based constraints [KNV03, CCC+02,

NWAea02, HFAE03] and punctuation-based constraints [DMRH04a, TMSF03b].

In all the above strategies the purge of the old tuples inside the state is

driven by the processing of either new tuples or new punctuations from

input streams.

1.2. RESEARCH FOCUS OF THIS DISSERTATION 21

It is important to note that for a query plan that contains such stateful

operators, intermediate tuples may exist in both the intermediate queues

and in the operator states. As noted above, the purge of tuples in the states

relies on the processing of new data. However, in the pause-drain-resume

migration strategy described above, before embarking on the drain step, as

the very first step the execution of the query plan is paused so that no new

tuples beyond the intermediate tuples are being processed until the migra-

tion is over. This creates a deadlock in the migration process: the migration

is waiting for all old tuples in operator states to be purged from the old

plan, while the old tuples in those states are waiting for new tuples to be

processed in order to be purged.

In this dissertation, we are the first to develop new solutions for online

plan migration for continuous plans with stateful operators, or plans with

mixture of stateful and stateless operators.

Dissertation Contributions to Dynamic Plan Migration

This part of the dissertation proposes two plan migration strategies for con-

tinuous queries over streaming data, namely the moving state strategy and

the parallel track strategy. The first strategy exploits reusability of existing

stream states and the second employs parallel query execution to seam-

lessly migrate between continuous join plans without affecting the results

of the query.

The moving state strategy first pauses the query plan or part of the query

plan that is being optimized and drains out tuples inside the intermedi-

ate queues, similar to the above pause-drain-resume approach. However,

1.2. RESEARCH FOCUS OF THIS DISSERTATION 22

to avoid loss of any useful data residing in states, it then carefully identi-

fies and moves over all relevant tuples in the states of the old query plan

to their corresponding location in the new query plan. Beyond that, to

assure correctness, selectively certain intermediate tuples are then recom-

puted. Lastly, the execution of the query plan is then resumed with the new

plugged-in plan.

The second migration strategy, called the parallel track strategy, migrates

a query plan in a more gradual fashion by continuing the delivery of out-

put tuples even during migration. Instead of moving tuples to the new

query plan and discarding the old query, it plugs in the new query plan

and starts executing both query plans in parallel. Algorithms are devel-

oped to eliminate potential duplicates and maintain the appropriate order

of output tuples. Once the old plan is found to be “antiquated”, it can sim-

ply be disconnected and the migration stage is then over.

In summary, this part of the dissertation makes the following contribu-

tions to plan migration of continuous queries at runtime:

• Two migration strategies, namely the moving state strategy and the

parallel track strategy, are designed for migrating query plans that are

composed of stateful operators. The proposed migration strategies

cover query plans that consists of stateful operators, such as join and

group-by, as well as query plans with a mixture of stateful operators

and stateless operators, such as select and project.

• Cost models are developed to analyze and compare the costs of the

two proposed migration strategies.

1.2. RESEARCH FOCUS OF THIS DISSERTATION 23

• Various execution models adopted in existing continuous query sys-

tems [CCC+02, NWAea02, MSHR02, RDS+04] are identified and cate-

gorized to illustrate how different execution model can affect the run-

time plan migration strategy. Each identified execution model has its

unique properties on tuple execution order and operator scheduling.

Changes made to the proposed migration strategies to support each

execution model are also introduced in this dissertation.

• The proposed migration strategies are implemented in the DCAPE

system. Experimental evaluations have been conducted to compare

their performances. The experimental results demonstrate perfor-

mance improvements in the order of magnitude by dynamically ap-

plying the migration strategies in the middle of query processing in a

variety of system settings.

1.2.4 Distributed Query Adaptation

New Challenges in Distributed Query Adaptation

A continuous query system may easily run out of resources due to high

stream input rates or cost-intensive query operations. Distributed contin-

uous query processing over a shared nothing architecture, i.e., a cluster of

machines, has been recognized as one of the prevalent methods for solv-

ing this scalability problem [AAB+05, CBB+03, MJSM03, LZJ+05, DH04].

Distributing the query workload across multiple machines can greatly im-

prove the system performance due to having aggregated resources and

parallel processing capabilities. However, uneven workload among ma-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 24

chines may occur due to (1) the lack of initial cost information when dis-

tributing the queries, and (2) the potentially fluctuating nature of the in-

coming stream data. This imbalance of workloads may impair the benefits

of distributed processing. Thus, dynamic load balancing, which deals with

the problem of re-distributing workload across machines in the cluster, has

become one of the most crucial technologies for a distributed continuous

query system [MJSM03, AAB+05, LZJ+05, DH04].

In existing distributed continuous query systems [AAB+05, CBB+03,

DH04], the basic unit of workload to be moved among machines during

load rebalancing tends to be whole operators. This assumes that each op-

erator is small enough to fit on one machine. Such operator-level adapta-

tion is a good choice for for query plans containing only stateless operators

or stateful operators with fairly small states. However, the operator-level

adaptation is not always practical for stateful operators with huge states.

For such cases, operator-level adaptation can be inefficient, if not impossi-

ble.

Partitioned parallelism is a general query plan distribution strategy,

which has been routinely applied to traditional query processing [Has95,

Gra90]. The Flux system [MJSM03] is the first to apply partition-level load

redistribution to continuous queries and has demonstrated promising per-

formance.

However, all existing partition-level load redistribution solutions in the

literature implicitly assume that all query instances installed on machines

have the same query shapes and remain so throughout the query execu-

tion [MJSM03, AAB+05, CBB+03]. They have not considered the situation

1.2. RESEARCH FOCUS OF THIS DISSERTATION 25

that the query optimizer restructures the shape of the query plan residing

on individual machines. Therefore, existing work on partitioned contin-

uous query processing has not considered the benefits of integrating the

load balancing with query optimization. Consequently, the effects of query

optimization and its impact on load rebalancing strategies remain an open

issue to date.

This however is clearly a major limitation, as runtime query optimiza-

tion has been shown to be critical for streaming systems in the existing

literature [MWA+03, BBD+02b, ACC+03, AH00, DTW00, VN02b, ILW+00]

as well as by the research conducted in the first two parts of this disserta-

tion (as introduced in Sections 1.2.2 and 1.2.3). Load balancing strategies

typically just move workload from one machine to another, while the total

resource consumption in the system as a whole is not decreased. On the

other hand, plan optimization may be able to decrease the resource con-

sumption on each machine, therefore also decreasing the overall resource

consumption in the distributed system. For example, a plan optimization

may dynamically switch two join operators in a plan in the face of chang-

ing statistics. This can reduce the intermediate results, which leads to less

CPU and memory costs on this machine and thus to less overall resources

required to process this query in the distributed system.

Local query optimization however complicates load rebalancing strate-

gies. Traditionally, partition-level load rebalancing algorithms assume that

the shapes of the query plan are the same across machines and remain

so throughout the query execution. Balancing load among machines in

such a stable environment can be achieved by moving some load (parti-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 26

tions) from over-loaded machines to under-loaded machines with match-

ing query plan shapes. However, if local query optimization is applied on

individual machines, at any given time, the shapes of the query plan on

different machines can be distinct from one another.

This problem of integrating partition-level load rebalancing with query

optimization remains an unaddressed problem to date. Clearly, advanced

load balancing strategies are needed to collaborate with the query opti-

mization strategies and take the heterogeneity of plan shapes on difference

machines into account.

Dissertation Contributions to Distributed Query Adaptation

Part III of this dissertation makes contributions in both operator-level and

partition-level distributed adaptations, with a focus on the latter adapta-

tion. The main focus of this dissertation part is on partition-level adapta-

tion, which solves the new problems of integrating query optimization with

the partition-level runtime load balancing for continuous queries. For the

partitioned query adaptation, the first research goal is to study the effects

of adding plan optimization to distributed continuous query processing.

As the second research goal, we propose to design, implement and eval-

uate advanced load rebalancing strategies which take the heterogeneity of

query plan shapes on difference machines into account. For the operator-

level adaptation, the dissertation extends the centralized migration strate-

gies proposed in Part II to parallel query processing environment.

In particular, this research on distributed continuous query adaptation

makes the following contributions:

1.2. RESEARCH FOCUS OF THIS DISSERTATION 27

• I propose operator-level plan migration protocols for distributed con-

tinuous query processing. These protocols extend the plan migration

strategies described in Part II of this dissertation to distributed sys-

tem.

• I relax the assumption of unchanged plan shapes made by state-of-art

load balancing adaptation. I design two new load balancing strate-

gies, namely parallel track load balancing (PTLB) and moving state

load balancing (MSLB), and their corresponding protocols that can

balance workload while seamlessly handling the complexity caused

by local plan changes. The PTLB strategy is a general load balanc-

ing strategy that requires no detailed knowledge of the underlying

query plans, such as types of operators and shapes of query plans. I

then propose the more plan-aware MSLB strategy, which rebalances

the workload by comparing the detailed shapes of the query plans

among different machines.

• I have implemented the two new load balancing strategies in the

DCAPE system. I have experimentally evaluated the effects of query

optimization as well as load rebalancing for partitioned continuous

query processing on an actual cluster. The extensive experiments

show that the combination of query optimization and load balancing

has superior performance than applying each adaptation technique

alone. Between the two load balancing strategies, the MSLB is shown

to be more efficient than the PTLB in many situations, while the PTLB

can win under certain conditions.

1.3. DISSERTATION ORGANIZATION 28

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: The three research top-

ics are discussed in detail in Part I, Part II and Part III in this dissertation

respectively. The discussions of each of the three research topics include

the relevant research motivation, problem introduction, background, solu-

tion description, experimental evaluation and discussions of related work.

Chapter 25 concludes this dissertation and Chapter 26 discusses possible

future work.

29

Part I

Continuous Query

Optimization with Resource

Constraints

30

Chapter 2

Introduction and Research

Outline

2.1 Continuous Query Optimization

Query plan optimization has remained at the core of database research for

over two decades [MS79, IK84, KBZ86, SI93, IK91, SAC+79]. In a static

database, the quality of a query plan is often judged by its total processing

time measured in terms of CPU processing and disk I/O costs [SMK97].

However, the optimization of continuous query processing [MWA+03, MSHR02,

CCC+02], a recently emerging research topic, differs from traditional query

optimization in several aspects.

First, continuous queries over streaming data are usually long running

and theoretically can be even infinite. Thus the total processing time is no

longer a suitable criteria to measure the quality of a query plan. Instead,

2.1. CONTINUOUS QUERY OPTIMIZATION 31

the quality of a continuous query plan is typically judged by its runtime

output rate [VN02a], i.e., how fast it can produce real-time query results.

As observed in [AN04], a continuous query plan produces the optimal out-

put rate as long as the CPU cost per unit time required by the plan is less

than the system CPU capacity. In this case, the output rate of the query

plan is determined solely by the stream arrival rates. Therefore, a continu-

ous query optimizer should generate query plans with their required CPU

usages below the system CPU resource constraint.

Second, continuous queries are usually assumed to be main-memory-

resident due to the often rather stringent real-time output requirements

[MWA+03, MSHR02, CCC+02]. Some operators need to keep states in or-

der to be non-blocking [MWA+03, CCC+02]. For example, a join operator

needs to put tuples processed so far from one input stream into a join state

in order to join them with future incoming tuples from the other stream. In

case of high stream arrival rates or large processing windows, the size of the

operator states kept in main memory can be huge. Therefore, continuous

query processing tends to be memory-intensive. When memory overflows,

we have to either spill in-memory data to disk [LZR06, UF99, VNB03],

which can further delay the processing, or we could apply load shedding

[TCZ+03] to delete data, which incurs approximate results. Clearly, for ap-

plications that favor accurate results, the query optimizer instead should

aim to generate query plans with their memory cost below the system

memory resource constraint.

Lastly, what complicates matters significantly in a streaming context is

that the statistics of the streams are usually unknown before a query starts.

2.2. RELATIONSHIPS BETWEEN RESOURCE USAGES 32

In fact they may continue to change during the query execution. A query

plan that is currently optimal can become sub-optimal later. Therefore, run-

time optimization is needed. It is imperative to adopt efficient optimization

algorithms, as otherwise the cost of the optimization process may outweigh

its potential savings.

In summary, efficient runtime optimization algorithms are required to

generate continuous query plans with both CPU and memory consump-

tions beneath the respective CPU and memory resource constraints. Con-

tinuous query plans that satisfy these dual resource constraints are hence-

forth called qualified plans.

2.2 Relationships Between Resource Usages

Finding a qualified plan is indeed a multi-objective optimization problem

[PY01]: the optimizer needs to find a query plan that satisfies both resource

constraints. As in other multi-objective optimization work [PY01, HM94,

SAL+96], in order to achieve both objectives, we need to characterize the

relationship among the determining cost factors.

It is clear that CPU and memory costs are positively correlated. Intu-

itively, a query that has less data (less memory) to process needs less CPU

for processing the data. This fact is being utilized by most current work

on continuous multi-join optimization [GO03, VNB03, BMM+04, VN02a].

The main goal of these approaches, which parallels the join ordering work

in static query processing [MS79, IK84, KBZ86, SI93, SAC+79], is to mini-

mize the amount of intermediate results with the assumption that this also

2.2. RELATIONSHIPS BETWEEN RESOURCE USAGES 33

reduces CPU costs.

However, these two resources can also be negatively correlated when

processing continuous multi-join queries. This observation has largely been

ignored by existing continuous query optimization work. Let us consider

the two common methods for executing continuous joins, namely binary

join trees (bjtree) [VN02a] as shown in Figure 2.1 and multi-way join opera-

tors (mjoin) [GO03, VNB03, BMM+04, HAE03] as shown in Figure 2.2.

A bjtree, as shown in Figure 2.1 in two different shapes, is a query plan

composed of binary join operators. It is a direct extension from the typical

query plans used in static query processing [SAC+79, IK84, KBZ86]. Figure

2.1 shows two sample binary join trees. The one on the left is a linear tree, in

which one of the two inputs for each join operator is a stream input, except

for the leaf, which has two stream inputs. The bjtree on the right is a bushy

tree, in which both inputs of a join operator can be intermediate results from

the join operator below it. Each binary join operator applies symmetric join

algorithm [WA93a, HH99] (which will be illustrated in Section 3) and keeps

two states that stores tuples that the operator has received so far. Some

states, such as state SA in Figure 2.1, keep the stream input tuples. Other

states, such as SAB and SABC , keep intermediate join results.

Different from a bjtree, an mjoin use a single multi-way join operator

that takes in all joining stream inputs and outputs the joined results from

this join operator. Figure 2.2(a) shows the basic data structure of a mjoin

operator in a continuous query that contains a four-way join A ./ B ./

C ./ D. The operator takes in four input queues and outputs the joined

tuple ABCD. Four states are kept in the operator, each associated with one

2.2. RELATIONSHIPS BETWEEN RESOURCE USAGES 34

BC

AB

A B

C
SA SB

SAB SC

BC

CDAB

A B

SA SB

SCD

SC

SAB

SD

CDSABC SD

C D

D

(a) A left-deep binary join tree (b) A bushy binary join tree

Figure 2.1: BJTree

input queue. Suppose now the multi-way join operator takes one tuple A

from input queue A. It would first insert this tuple A into the state SA, then

it uses this tuple A to purge and join with all other remaining states in a

certain order. The processing of new tuples from other input queues fol-

lows the same procedure, except that they may join with remaining states

in a different order. Figure 2.2(b) shows possible join orders for tuples from

input queue A and input queue B.

ABCDE

A B C D E

A

SB

Probe Probe Probe

SA SB SC
SD

SE

SC SD SE

Probe

SAInsert

B

SC

Probe Probe Probe
SE SA SD

Probe

SBInsert

(a) A 5-way Mjoin Operator (b) Sample join orderings for input A and B

output

output

output

Figure 2.2: MJoin Operator

As we can see a bjtree keeps all intermediate results in operator states,

2.2. RELATIONSHIPS BETWEEN RESOURCE USAGES 35

thus saves CPU cost on recomputing these intermediate results but requires

high memory costs. On the contrary, an mjoin does not keep any intermedi-

ate results, thus saves memory but requires extra CPU for recomputation.

Memory Increasing

CPU Increasing

ABCD

A B DC
An MJoin

BC

AB CD

A C DB
A BJTree

Figure 2.3: MJoin and BJTree

As shown in Figure 2.3, from one join method to the other, we save one

resource by increasing the other: From mjoin to bjtree the memory cost in-

creases while the CPU cost decreases. For the opposite direction the mem-

ory cost decreases while the CPU cost increases. Most optimization strate-

gies for multi-join queries use only one of these two join methods [VN02a,

GO03, VNB03, BMM+04, HAE03]. Hence they can at most exploit the

positive correlation between CPU and memory within each join method,

but cannot utilize the two resources’ negative correlation that arises when

crossing different join methods.

For example, consider the scenario that an optimizer may find the best

bjtree with the least possible memory and CPU costs. However, the mem-

ory needed for storing all intermediate results may still exceed the available

system memory. Another possible scenario is that an optimizer may gener-

ate the optimal join orderings for an mjoin and thus guarantee minimized

CPU cost. However, due to requiring possibly large amounts of recompu-

tations, the CPU cost may still exceed available CPU resources. In either

2.3. PROPOSED STRATEGIES IN THIS DISSERTATION 36

case, the overflowing cost factor cannot be further reduced without taking

advantage of the negative correlation between CPU and memory that can

be exploited by crossing the boundary between the two join methods. At

this point, the memory cost may not be further reduced without using the

negative correlation between memory and CPU. However, the CPU may

not be further reduced without taking advantage of the negative correla-

tion between CPU and memory.

Therefore, the existing solutions in the literature miss the important op-

portunity for trading-off between the two resources. This severely limits

the optimizer’s search space. It fact, it simplifies the optimization to a one-

dimensional problem. Such optimization strategies may fail to find a quali-

fied continuous multi-join plan that satisfies both resource constraints, even

though a qualified plan may indeed exist.

2.3 Proposed Strategies in This Dissertation

In this first part of the dissertation, I propose two efficient polynomial-time

optimization strategies, namely the mjoin-init and the bjtree-init strategy,

that exploit both the positive and the negative correlations between CPU

and memory to generate qualified plans for continuous multi-join queries.

The mjoin-init strategy optimizes starting from an mjoin while the bjtree-init

strategy starts from a bjtree. To the best of our knowledge, our work is the

first to explicitly consider both CPU and memory resource constraints and

their relationships while optimizing a continuous multi-join query. I will

show that our optimizer can find qualified query plans when other exist-

2.3. PROPOSED STRATEGIES IN THIS DISSERTATION 37

ing techniques in the literature cannot.

The problem of dynamic continuous query optimization contains two

sub-problems:

• First, we need efficient online optimization algorithms that find qual-

ified continuous query plans meeting dual resource constraints.

• Second, we need strategies to dynamically transfer the currently run-

ning query plan to the newly generated query plan without affecting

the runtime query results.

The second sub-problem, referred to as dynamic plan migration, will be

addressed in the Part II of this dissertation. In this part of the dissertation,

I focus on the first sub-problem.

I have designed four novel optimization algorithms, two for each pro-

posed optimization strategy. Within each strategy, the first algorithm uti-

lizes the positive correlation to decrease both memory cost and CPU cost of

the query plan, while the second utilizes the negative correlation to further

exploit the trade-off between the two resource usages.

State-Selection State-Removal

MJoin BJTree

MJoin-Ordering Min-State

BJTree-Init Strategy

Hybrid Tree

MJoin-Init Strategy

Multi-Join Query Multi-Join Query

Figure 2.4: Two Alternative Optimization Strategies

2.3. PROPOSED STRATEGIES IN THIS DISSERTATION 38

As illustrated in Figure 2.4, the mjoin-init strategy first applies the mjoin-

ordering algorithm to find optimal mjoin orderings to minimize both mem-

ory and CPU costs. If the mjoin is still not qualified, the state-selection algo-

rithm then carefully selects intermediate states to store in memory in order

to save CPU costs. As a result, a hybrid tree in between an mjoin and a bjtree

may be generated as the qualified plan. On the other hand, the bjtree-init

strategy first applies the min-state algorithm to minimize both memory and

CPU costs by generating optimal bjtrees. If the bjtree is not qualified, the

state-removal algorithm then generates a qualified hybrid tree by removing

selected intermediate states. This saves memory while increases CPU costs.

Besides the two efficient optimization, I also designed an exhaustive

search strategy using dynamic programming, which searches the whole

multi-join search space to find a qualified query plan. This exhaustive

search strategy guarantees that a qualified plan can be found if there exist

one. However, since the strategy, as any of the classic dynamic program-

ming used in static databases [SAC+79], takes exponential time and space,

it is only useful when the number of joins in the query is relatively small.

This part of the dissertation work contributes to research in continuous

query optimization in the following ways:

• First, I propose two novel optimization strategies, which contain four

efficient algorithms, to generate qualified continuous multi-join plans.

To the best of my knowledge, this work is the first in continuous

query optimization to 1) consider both resource constraints, 2) utilize

both positive and negative correlations between the two resources,

2.3. PROPOSED STRATEGIES IN THIS DISSERTATION 39

and 3) explore the multi-join solution space, considering mjoin, bjtree,

and hybrid tree in-between as candidate solutions.

• Secondly, the four polynomial-time algorithms each by itself is al-

ready an advance of the state-of-art of continuous query optimiza-

tion. The mjoin-ordering, extending the classic IK algorithm [IK84],

finds optimal mjoin orderings for acyclic join graphs. It is an im-

provement to current solutions on optimizing mjoins [GO03, VNB03,

BMM+04]. The min-state finds optimal bjtree solution for star joins,

which to the best of our knowledge is yet to be achieved by existing

solutions on optimizing continuous bjtrees [VN02a, BMM+04]. The

state-selection and state-removal algorithms are algorithms for solving

this new problem of generating hybrid trees. To the best of our knowl-

edge, they are the first such algorithms in the current literature.

• I extend the classic left-deep exhaustive search optimization algo-

rithm to now cover the entire hybrid-tree search space.

• A thorough experimental evaluation is conducted in the CAPE con-

tinuous query system [RDS+04]. I compare the two polynomial-time

strategies with the exhaustive strategy. The experimental results show

that both proposed optimization strategies are as reliable in finding

qualified query plans as the exhaustive search strategy, while taking

much less time and space than the exhaustive strategy. I also com-

pare the performance of the two optimization strategies in terms of

resource consumptions of their generated query plans and make rec-

ommendations as when to use which optimization method.

2.4. ROAD MAP 40

2.4 Road Map

The rest of this part of the dissertation is organized as follows: Chapter 3

introduces the background information for this research, including stateful

operators and window constraints. Chapter 4 analyzes costs and correla-

tions between CPU and memory. The two alternative optimization strate-

gies are described in Chapters 5 and 6 respectively. The exhaustive search

algorithm is described in Chapter 7. Experimental results are reported in

Chapter 8. Chapter 9 discusses related work.

41

Chapter 3

Background

3.1 Stateful Operators in Continuous Queries

Continuous queries generally require real time responses. Query results re-

ceived after a certain time period may no longer be needed by the end user.

This requires that all operators in the query plans need to be operated in a

pipelined fashion: the operator needs to be able to generate partial results

based on the data that it has received so far. This promotes the usage of

stateful operators. A stateful operator, such as join or group-by, must store

all tuples that have been processed thus far from one input stream so to be

able to join them with future incoming tuples from the other input stream.

For a long-running query as in the case of continuous queries, the number

of tuples stored inside a stateful operator can potentially be infinite. Sev-

eral strategies have been proposed to limit the number of intermediate tu-

ples kept in operator states by purging unwanted tuples, including apply-

ing window-based constraints [KNV03, CCC+02, NWAea02, HFAE03] and

3.1. STATEFUL OPERATORS IN CONTINUOUS QUERIES 42

punctuation-based constraints [DMRH04a, TMSF03b]. On the contrary, a

stateless operator, such as Select and Project, does not need to maintain in-

termediate data nor other auxiliary state information so to be able to gen-

erate complete and correct results.

Join is one of the most important stateful operator in continuous query

processing, and is the focus of the research in this part of the dissertation.

As commonly used by continuous query plan in most streaming database

systems [KNV03, CCC+02, NWAea02], in this dissertation I adopt a sym-

metric window-based binary join algorithm [WA93a, HH99] for join pro-

cessing. A sample query plan for the query A ./ B ./ C ./ D that consists

of three join operators with input streams A, B, C and D is depicted in Fig-

ure 3.1(a). The join operator B ./ C in Figure 3.1(b) has two input queues

QAB and QC , two states SAB and SC , one associated with each input queue,

and one output queue QABC . Each state stores the tuples that fall within the

current window frame (either a certain time period or a certain number of

tuples) from its associated input queue. For each tuple AB from QAB, the

join involves three steps: 1) purge – AB is used to purge tuples in state SC

that are outside of the window frame, 2) join – AB is joined with the tuples

left in SC , and 3) insert – AB is inserted into state SAB. The same process

applies similarly to any tuple from QC . This 3-step process is referred to as

the purge-join-insert algorithm.

3.2. WINDOW CONSTRAINTS 43

BC

Input Queue QAB Input Queue QC

SAB SC

Output Queue QABC

CD

BC

AB

QA QB QC QD

Output Joined
Tuple ABCD

(a) (b)

Figure 3.1: Join Operators and Their States

3.2 Window Constraints

Without any constraints, the states of a stateful operator can grow infinitely,

and the system can eventually grows out of memory. To solve this problem,

streaming databases usually adopts sliding window constraints to limit

the size of states. A sliding window-based constraint [KNV03, CCC+02,

NWAea02] can be used to purge unwanted tuples stored in the state. Usu-

ally two kinds of window constraints can be posed over an operator: time-

based [KNV03] and count-based [NWAea02]. For a time-based window,

the window size is represented as a time frame, while the count-based win-

dow is described as the number of tuples in the window. For the rest of this

dissertation, unless otherwise noted, I will be using the symmetric join op-

erator with time-based window constraints as the illustrating stateful op-

erator in continuous queries.

A time-based window constraint WAB posed over streams A and B in-

dicates that two tuples from streams A and B respectively can be joined

3.2. WINDOW CONSTRAINTS 44

only if their timestamps are within WAB from each other. The most com-

monly used window constraint is global window constraint in which all pairs

of streams has the same window constraint. For the example illustrated in

Figure 3.2, a query A ./ B ./ C ./ D has a global window constraint means

that WAB = WBC = WCD = WAD = WAC = WBD. Theoretically it is

possible that the window constraints among join pairs may be different or

even unconstrained, these type of window constraints are referred to as lo-

cal window constraints. If these situations do occur, the window constraint

between any pair of streams that do not have a pre-defined window con-

straint can be treated as having a window constraint equal to the shortest

path between the pair in a window constraint relationship graph as the one

in Figure 3.2.

A time-based window constraint requires that each newly arriving tu-

ple has a timestamp. Only tuples with timestamps that are within the cur-

rent time window can be processed by the operator. A tuple has a single

timestamp when it first arrives in the stream, referred to as a singleton tuple.

Within each stream entering the query engine, the singleton tuples are as-

sumed to be ordered by their timestamps [KNV03, CF02, NWAea02]. When

two tuples are joined together, the timestamp for the joined tuple is an ar-

ray that concatenates the timestamps from both joining tuples, as indicated

in Figure 3.3. Both timestamps are kept because either of them might be

used by other join operators in the query plan to purge tuples. Such a tuple

with a combined timestamp is referred to as a combined tuple.

3.2. WINDOW CONSTRAINTS 45

A

B C

D

WAB

WBC

WCD

WAD

WBD
WAC

Figure 3.2: Graph on Window Constraints

TSA TSB

TSA TSB

TimeStamp of
Tuple A

TimeStamp of
Tuple B

TimeStamp TSAB of
Joined Tuple AB

Figure 3.3: Combined Timestamp

46

Chapter 4

Cost Analysis for Continuous

Multi-Join

In this chapter I illustrate cost models for computing CPU and memory

costs of mjoin and bjtree respectively.

4.1 Cost Analysis for MJoin

To describe the methods of estimating CPU and memory costs, we use the

example query represented as a join graph in Figure 4.1(a). A vertex rep-

resents an input stream and is marked by the stream name and arrival

rate per unit of time. An edge indicates a join predicate between the two

streams and is marked by the join selectivity. The join selectivities are as-

sumed to be independent. Given this join graph, Figures 4.1(b) and (c)

depict the best mjoin and the best bjtree, respectively. The widely adopted

symmetric nested loop join [WA93a] with time-based window constraints

4.1. COST ANALYSIS FOR MJOIN 47

[KNV03, CCC+02, MWA+03] is used for the cost analysis. Each join has

monotonically increasing results. Note that the proposed algorithms are

general and are not restricted by join algorithms and window constraints

used. For ease of exposition, all join predicates are assumed to have the

same window size though our technique is not restricted to this case. Each

join operator keeps one state per input, and each state stores tuples in one

window frame from the corresponding input so to join them with future

incoming tuples from other inputs.

B

A

C A B C

BC

ABSA SB

SCSAB

ABC
SA

(b) MJoin and Join Orderings

SCSB

A B C

(c) BTree

A � B � C
B � A � C
C � B � A

0.1

0.3

(a) Join Graph

(50)

(20)

(100)

Figure 4.1: Example Query With Two Joins

Figure 4.1(b) shows the optimal join orderings for each input of the

mjoin. The ordering B → A → C indicates that tuples from input B are

first inserted to state SB, and then are joined with tuples in state SA and SC

in that order. The join orderings minimize the amount of intermediate re-

sults so the CPU costs are kept minimal. This implies a positive correlation

between CPU and memory.

To estimate the CPU costs of an mjoin, I apply the commonly adopted

per-unit-time cost metric [KNV03], in which the CPU cost is the CPU pro-

4.1. COST ANALYSIS FOR MJOIN 48

cessing time required to process all tuples arriving in one time unit. The

result can be treated as the amount of CPU per unit time that the sys-

tem needs in order to keep up with the incoming tuple rates without any

processing delay and without tuple accumulation. Terms used in our cost

models are explained in Table 4.1. For the mjoin in Figure 4.1(b), the CPU

costs consist of the cost spent on processing A, B and C tuples. According

to the join orderings in Figure 4.1(b), a new tuple A is first inserted into

state SA (at cost Ci), causing the existing tuples that are now outside the

window frame to be deleted from SA (at cost Cd per tuple). The same tu-

ple A then joins with tuples in state SB and the joined AB tuples are used

to join with tuples in state SC . A similar process applies to tuples from B

and C . The formula to estimate the CPU cost for input A in a unit time

is CPUA = λA(Ci + Cd) + λA|SB|σABCj + λA|SB ||SC |σABCCj , in which

σABC = σABσBC , and |SB | = λBW . So we have:

CPUA = λA(Ci + Cd) + λAλBσABWCj + λAλBσABλCσBCW 2Cj

= λA(Ci + Cd) + (λAλBσABW + λAλBλCσABCW 2)Cj

(4.1)

By applying the same equation for inputs B and C, the total CPU pro-

cessing cost for mjoin can be estimated as:

CPUmjoin = CPUA + CPUB + CPUC

= (λA + λB + λC)(Ci + Cd) + λBλCσBCWCj

+ 3λAλBλCσABCW 2Cj + 2λAλBσABWCj

(4.2)

4.1. COST ANALYSIS FOR MJOIN 49

Table 4.1: Terms Used in Cost Models

Term Meaning

Ci Cost of inserting a tuple to a state

Cd Cost of deleting a tuple from a state

Cj Cost of joining a pair of tuples

λA Average input rate from stream A

λB Average input rate from stream B

λC Average input rate from stream C

σAB Selectivity of join A ./ B

σBC Selectivity of join B ./ C

W Sliding time-based window constraint

|SA| Number of tuples in state SA

The memory cost of mjoin can be conveniently estimated as the total

number of tuples in all states. The actual memory cost may fluctuate a bit

as intermediate tuples may temporarily exist. This temporary cost is being

minimized by choosing the optimal join orderings. The total state size is

relatively stable and usually accounts for the majority of the memory cost.

For simplicity, all tuples are assumed to be of the same size. However, the

cost model can be easily extended to take different tuple sizes into account.

Overall the estimated memory cost for the mjoin in Figure 4.1(b) is:

MEMmjoin = |SA|+ |SB|+ |SC | = λAW + λBW + λCW (4.3)

4.2. COST MODELS FOR BJTREE 50

4.2 Cost Models For BJTree

The CPU cost of a bjtree also consists of the CPU costs for processing each

input stream. In Figure 4.1, a new tuple A is first inserted to the state SA and

on average one old tuple from SA is deleted from the state. The new tuple

then joins with tuples in state SB. The joined tuples are inserted into the

intermediate state SAB and old tuples are being deleted from SAB. These

joined tuples finally join with tuples in state SC . Tuples from input B follow

similar steps. Tuples from input C have a shortcut to directly join with

tuples in state SAB . By keeping intermediate states, the bjtree saves the

CPU of recomputing intermediate results. The cost models to compute the

unit CPU costs for inputs A (or B) and C are given as follows:

CPUA = λA(Ci + Cd) + λA|SB|σAB(Cj + Ci + Cd) + λA|SB ||SC |σABCCj

and CPUC = λC(Ci + Cd) + λC |SAB|σBCCj .

Given that |SAB | = λAλBσABW 2 and |SB| = λBW , the total CPU is:

CPUbjtree = (λA + λB + λC)(Ci + Cd)

+ 3λAλBλCσABCW 2Cj + 2λAλBσABW (Cj + Ci + Cd)

(4.4)

The memory cost is again estimated by number of tuples in all states:

MEMbjtree = |SA|+ |SB |+ |SC |+ |SAB| = MEMmjoin + λAλBσABW 2

(4.5)

The first two terms in Equation 4.4 remain the same for any shape of

the bjtree. The third term, which is equivalent to 2|SAB |(Cj + Ci + Cd), is

4.3. COMPARING THE COST MODELS 51

join-order-dependent. Choosing a better join ordering lowers the size of in-

termediate states, which decreases the memory cost as indicated by Equa-

tion 4.5, and also lowers the CPU cost as indicated by Equation 4.4. This

shows that within the bjtree method, CPU and memory costs are positively

correlated.

4.3 Comparing the Cost Models

As indicated by Equations 4.3 and 4.5, MEMbjtree is always larger than

MEMmjoin because the bjtree needs to store extra intermediate states. So

the negative correlation between CPU and memory exists when the CPU

cost of the bjtree is smaller than the CPU cost of the mjoin. At the first look,

this seems to always hold, because without storing intermediate results, the

mjoin requires extra CPU cost to recompute any intermediate result used

more than once. However, the bjtree also needs extra CPU cost to main-

tain the intermediate states, that is, for inserting/deleting tuples to/from

these states. This is shown when comparing Equations 4.2 and 4.4. After

cancelling out common terms, both equations have one extra term left:

CPUmjoin diff = λBλCσBCWCj , and

CPUbjtree diff = 2λAλBσABW (Ci + Cd)

It is easy to see that CPUmjoin diff calculates the CPU cost of recom-

puting intermediate results BC , while CPUbjtree diff calculates the cost of

maintaining the intermediate state AB. So the CPU and memory have a

negative correlation only when CPUmjoin diff > CPUbjtree diff , meaning

the cost of recomputing the intermediate results is larger then the cost of

4.3. COMPARING THE COST MODELS 52

maintaining the intermediate state if these results were stored in the men-

tioned state.

In general, an optimizer could calculate the CPU costs of both the mjoin

and the bjtree using the above cost models. We know for sure that the

negative correlation between CPU and memory exists if the CPU cost of

mjoin is greater than the CPU cost of the bjtree.

53

Chapter 5

The MJoin-Init Strategy

5.1 Finding Join Orderings For MJoin

For an mjoin operator, the best join orderings imply the least intermediate

results and therefore the least CPU cost. This is the same problem as find-

ing the optimal join ordering for each mjoin input, which is known to be

NP-complete [IK84]. Existing join ordering algorithms proposed for con-

tinuous mjoin are all heuristics-based greedy algorithms [VNB03, GO03,

BMM+04] and thus cannot guarantee optimality.

This section describes the proposed mjoin-ordering algorithm, which can

find optimal join orders for each input of mjoin in polynomial time, when

given an acyclic join graph. Our algorithm extends the classic IK algorithm

[IK84], which has first been proposed for static query optimization to gen-

erate optimal join orders in polynomial time for acyclic join graph. It re-

quires the precondition that the cost model satisfies the Adjacent Sequence

Interchange (ASI) property [MS79]. We first prove that the cost model for

5.1. FINDING JOIN ORDERINGS FOR MJOIN 54

mjoin in Section 4.1 also satisfies the ASI property given an acyclic join

graph. This proves the applicability of the concept of the IK algorithm to

our continuous mjoin context. We then show how to apply the algorithm

to our problem. Lastly, we add a greedy pre-selection step when the join

graph contains cycles.

5.1.1 Finding Optimal Join Ordering For Acyclic Joins

We now show that the cost model for computing CPU cost of an mjoin

described in Section 4.1 also satisfies the ASI property given an acyclic join

graph, therefore proving the applicability of the concept of the IK algorithm

to our problem. According to the cost model in Equation 4.1, given n in-

put streams, an acyclic join graph and a join sequence S = (R1, R2, ..., Rn)

starting from input R1
1, the total CPU cost of such a join sequence can be

computed as:

C ′(R1) = λR1
(Ci + Cd) + Cj

∑n
i=2

∏i
j=2(σRj

λRj
W).

In this equation, σRj
denotes the join selectivity between Rj and in-

puts in (R1, ..., Rj−1). Since the join graph is acyclic and the join sequence

starts at R1, it must be true that Rj only connects to one of the inputs in

(R1, ..., Rj−1). Since the first term λR1
(Ci + Cd) and the constant Cj are

order-independent, they are ignored in the following analysis. The order-

dependent part of C ′(R1) is denoted as C(R1), which is estimated as fol-

lowing:

1The join sequence must confirm to the partial order defined in the given join graph.
This means that in a rooted tree of the acyclic join graph with root R1, if Ri is the parent of
Rj , then Ri must be placed in front of Rj in the join sequence.

5.1. FINDING JOIN ORDERINGS FOR MJOIN 55

C(R1) =

n
∑

i=2

i
∏

j=2

(σRj
λRj

W) (5.1)

The above equation can be defined recursively as follows:

C(Λ) = 0 For the null sequence Λ.

C(R1) = 0 For starting input stream.

C(Ri) = λRi
σRi

W For single input Ri(i > 1).

C(S1S2) = C(S1) + T (S1)C(S2) For subsequences S1 and S2

in join sequence S.

where T(*) is defined by:

T (Λ) = 1 For the null sequence.

T (R1) = λR1
For starting input stream.

T (Ri) = σRi
λRi

W For single input Ri(i > 1).

T (S1) =
∏j

k=i(σRk
λRk

W) For any subsequence S1 =

(Ri, ..., Rj).

The ASI property is stated in [IK84] by Lemma 5.1 below.

Lemma 5.1 For arbitrary sequences A and B, and nonnull sequences S1 and

S2 such that AS1S2B and AS2S1B are both compatible with the given order

constraints, we have C(AS1S2B) ≤ C(AS2S1B) if and only if rank(S1) ≤

rank(S2), where the rank function is defined for any nonnull sequence as rank(S) =

(T (S)− 1)/C(S).

Proof: From the recursive definition, we have: C(AS1S2B)−C(AS2S1B) =

5.1. FINDING JOIN ORDERINGS FOR MJOIN 56

T (A)[C(S2)(T (S1)− 1)−C(S1)(T (S2)− 1)] = T (A)C(S1)C(S2)[rank(S1)−

rank(S2)]. So the lemma follows directly from this equation. 2

Since the cost model for mjoin satisfies the ASI property, the IK algo-

rithm [IK84] can find the optimal join ordering for each input of an mjoin in

polynomial time, given an acyclic join graph. Optimal here means that the

total number of intermediate results is the smallest.

Next, we use a query example to describe how to apply the IK algorithm

to continuous queries. We illustrate intuitively why it can find an optimal

join ordering while existing greedy algorithms cannot. Figure 5.1(a) gives

an example acyclic join graph, with each edge marked by its join selectiv-

ity and each vertex marked by the stream input rate. The join selectivity is

computed as # of output tuples
of possible output tuples

. It falls in the range of [0, 1]. The cor-

responding tree rooted at input A is depicted in Figure 5.1(b). Each node

is marked by the rank computed by rank(Ri) = (T (Ri) − 1)/C(Ri) for an

input stream Ri. Here for simplicity, we set the window constraint W to 1.

The process of applying the IK algorithm to find the optimal join ordering

for the input stream A is illustrated in Figure 5.2.

Starting from the rooted tree in Figure 5.1, the algorithm traverses the

tree bottom up. It finds the first node that has more than one child (node

D in this example), and checks to see if all its children branches are or-

dered by non-decreasing ranks. If so, the children branches are merged

into one sequence sorted by ranks, shown as the left most tree in Figure

5.2. The next node with more than one child is the root node A. Note that

the right branch below node A is not ordered. The algorithm then merges

nodes C and D and recomputes the rank for the merged node CD. This is

5.1. FINDING JOIN ORDERINGS FOR MJOIN 57

B

A
C

E

D

0.1

(10)

(30)

(100)

(100)

(50)
0.08

0.1

0.1

F

B

A

C

E

D

F

0.68

(20)

0.25

0.9 0.96

0.5

0.75

(a) An acyclic join graph (b) Rooted tree for input A

Figure 5.1: Join Graph and Rooted Tree

B

A

C

E

D

F

0.68

0.9

0.96

0.5

0.75

B

A

CD

E

F

0.68

0.9

0.96

0.58

A

CD

E

F

0.9

0.96

0.58

B0.68

A

C

E

F

0.9

0.96

0.75

B 0.68

D 0.5

Figure 5.2: Finding the Optimal Join Ordering

repeated until the branch is in order. The two branches under node A are

then merged into one. As a final step, the algorithm un-merges all combined

nodes back to their original orders. The final sequence is the optimal join

sequence for input stream A. The same procedure can be applied to find

the optimal join sequences for all other input streams.

A greedy algorithm, as commonly assumed in the literature [VNB03,

GO03, BMM+04], would choose the next input in the join sequence dif-

ferently from the IK algorithm. It would select the next input to join if

5.1. FINDING JOIN ORDERINGS FOR MJOIN 58

it produces the smallest amount of intermediate results. During the join

ordering process, if the current amount of intermediate results is I , then

I ∗ C(Ri) in fact computes the amount of intermediate results generated

by joining current chosen inputs and input Ri. Since C(R) = T (R) and

rank(R) = (T (R) − 1)/C(R) = 1 − 1/C(R), an input R with smaller C(R)

would have a lower rank. Therefore a greedy algorithm always selects the

input with the lowest rank as the next in the join sequence. Looking back at

the left most tree in Figure 5.2, at this step a greedy algorithm would have

chosen the node B to be the next to join instead of the subsequence CD. A

greedy algorithm makes locally optimal decisions, while the IK algorithm

is able to look forward and make globally optimal decisions by selecting

the next sequence of inputs with the lowest rank.

5.1.2 Heuristic-based Join Ordering for Cyclic Joins

The above algorithm finds the optimal join orders for acyclic join graphs.

For a cyclic join graph, the problem is again NP-complete [IK84]. [KBZ86]

proposes an algorithm to first find a minimum spanning tree of the cyclic

join graph before applying the IK algorithm [IK84]. The weight of each

edge is its selectivity, based on the heuristic that smaller selectivity is more

likely to result in smaller amount of intermediate results. However, for a

continuous query, the amount of intermediate results is not determined by

the selectivity alone, but is also significantly affected by the stream input

rates. So in my work, I consider both selectivity and input rates when find-

ing the minimum spanning tree. The weight of an edge connecting two

vertices A and B is computed as λAλBσAB , instead of σAB. The IK algo-

5.1. FINDING JOIN ORDERINGS FOR MJOIN 59

rithm is then applied to the generated min spanning tree.

5.1.3 Considering Cartesian Product

Cartesian product has been excluded by many query optimization algo-

rithms, especially the ones for continuous queries, due to its potential high

cost. However, some research [VM96, OL90, CM95] have shown that con-

sidering cartesian product can be helpful to improve the performance of

the optimized query plan.

Figure 5.3 shows an example when considering cartesian product can

benefits the query plan. Given the join graph in Figure 5.3 (a), for input

tuples from B, the only possible joining sequence is B → A→ C . However,

in this example since input B and C both have much smaller input rate than

input A. So we can add one edge connecting B and C and assign the edge

a selectivity of 1 to form a cartesian product between B and C, as shown in

Figure 5.3 (b). This enables the join order B → C → A, which generates a

smaller amount of intermediate results than using the order of B → A →

C . To be more exact, assuming W = 5, using the cost model defined in

Equation 5.1, the join order B → A → C needs 750 join operations, while

the join order B → C → A only needs 550 join operations.

So we can further improve the join ordering algorithm described pre-

viously to take into consideration the benefits of cartesian product. This

can be done by adding new edges with selectivity of 1 to the given join

graph. Notice that by adding these new edges, a previously acyclic join

graph will become cyclic. However, this now cyclic join graph will enable

the join ordering algorithm to find join orders that are at least as good as

5.1. FINDING JOIN ORDERINGS FOR MJOIN 60

B

A

C

0.1

(100)

(5)
(2)

0.2

B

A

C

0.1

(100)

(5)
(2)

0.2

1

B � A � C B � C � A

(a) (b)

Figure 5.3: With or without Cartesian Product

the optimal join orders from the original acyclic graph. This is because if an

edge of cartesian product is not beneficial, it would have larger weight than

its neighboring edges and thus would not be picked to be in the minimum

spanning tree of the cyclic graph.

5.1.4 Overall Join Ordering Algorithm.

The overall join ordering algorithm and its helper functions are described

in Algorithm 1. Find MinSpanning Tree() generates a minimal spanning

tree. The algorithm then calls function Merge Branches() to generate join

order for each vertex in the join graph. Function Un Merge() then un-

merges previously merged nodes back to their original orders. For a join

graph with n vertices, finding a minimum spanning tree among the total

n(n − 1)/2 edges takes O(n2log(n)) time. The procedure of generating the

join sequence for each input stream takes O(nlog(n)). Thus generating the

join orders for all n input streams takes O(n2log(n)). The overall algorithm

has O(n2log(n)) time complexity.

5.1. FINDING JOIN ORDERINGS FOR MJOIN 61

Algorithm 1 The MJoin-Ordering Algorithm

//Input: joinGraph
//Output: Orders, array of join orders for each vertex.

Add CartesianProduct Edges(joinGraph);
Find MinSpanning Tree(joinGraph);

for each vertex v in joinGraph do
rootNode = Generate Rooted Tree(v);
joinOrder = Merge Branches(rootNode);
Un Merge(joinOrder);
Add joinOrder to Orders.

return Orders;
/* helper functions: */
Merge Branches(snode) {

for each child node cnode of snode do

Normalize Branch(cnode);
Sort all children of snode by increasing rank;
return joinOrder for rootnode;
}
Normalize Branch(snode) {

if (snode has no child) return;
if snode has more than one child

Merge Branches(snode);
Get child node cnode of snode;
if rank(cnode) < rank(snode)

Merge the two into cnode and compute its new rank;
Normalize Branch(cnode);
}

5.2. GENERATING HYBRID TREE FROM MJOIN 62

5.2 Generating Hybrid Tree from MJoin

When the optimized mjoin produced by the above mjoin-ordering algorithm

is not a qualified plan, we then further tune the balance between CPU

and memory utilizing their negative correlation. The goal is to increase

the memory cost by selecting intermediate results to keep so that the CPU

cost of recomputation can be saved. In this section, we describe our state-

selection algorithm to iteratively select intermediate results to keep in order

to generate a qualified hybrid tree.

Selecting intermediate states can be viewed as selecting edges in a join

graph. Given a join graph and the join orderings, we consider two per-

formance factors: edge frequency and edge weight. The edge frequency is de-

fined as how many times an edge appears in the join sequences. The edge

weight connecting vertices X1 and X2 is defined as X1X2λX1X2
. This is

proportional to the estimated size of its intermediate state. Heuristically,

the higher the edge frequency, the more likely that storing the intermediate

results for this join can save CPU cost. Based on this heuristic, the state

selection algorithm chooses the edges with the largest frequency/weight

ratio.

Using the join graph in Figure 5.1, the computed join sequences for all

input streams are shown in Figure 5.4(a). In Figure 5.4(b), each edge in

the join graph is marked by its edge frequency. The algorithm each time

selects an edge with the largest frequency/weight ratio as the candidate

state. However, it is not guaranteed that doing so will assure a decrease

in the CPU cost, even for an edge that appears in all join sequences. This

5.2. GENERATING HYBRID TREE FROM MJOIN 63

B

A
C

E

D

4

6

5

2

F

A � C � D � B � E � F

B � A � C � D � E � F

C � A � D � B � E � F

D � C � A � B � E � F

E � D � C � A � B � F

F � D � C � A � B � E
1

(a) Computed Join Sequences (b) Frequency Counts

Figure 5.4: Counting Edge Frequencies

is because as discussed in Section 4.3, the negative correlation exists only

when the CPU cost spent on recomputing a intermediate state is larger than

the cost spent on maintaining the state. Such condition is not guaranteed

to be satisfied by choosing the edge with the largest ratio.

Thus each time an edge XY is selected as a candidate state, the state

selection algorithm checks if it is beneficial to keep this intermediate state.

It does so by calling the join ordering algorithm as described in Section 5.1,

while treating the vertices X and Y as one merged vertex with the input rate

now set to λXλY σXY . If the cost of the new join sequences is smaller than

the cost of the original sequences before merging X and Y, the state SXY

is then selected and the two connecting vertices are merged. The same

state selection procedure is applied iteratively to the new join graph. The

algorithm terminates when one of the following conditions holds:

• None of the remaining intermediate states is beneficial, or (2) the first

time M ′m surpasses Ma, with Ma denoting the total memory in the

system, and M ′m denoting the memory cost of the current hybrid tree.

5.2. GENERATING HYBRID TREE FROM MJOIN 64

• M ′m > Ma and C ′m < Ca.

Although the generated hybrid tree may not be optimal, this algorithm

guarantees that it is better than the mjoin because it has less CPU cost.

The overall memory cost is guaranteed to be less than the system memory

constraint.

Figure 5.5 depicts how an hybrid tree is generated during the state

(edge) selection process. Given a 6-way mjoin and its join graph, suppose

D−E is the next edge to be selected based on the state selection algorithm

described earlier, the 6-way mjoin is then broken into a 5-way join and a

binary join, as shown in the middle of Figure 5.5. The intermediate results

of the newly added join D ./ E would now be kept in one of the states

in the mjoin on top of it. The join graph is updated by merging the edge

D − E into one node. The output rate of the new join DE is computed

as λDλEσDEW . The same process is then repeated when edge A − B is

selected.

B

A C

E

D

F

ABCDEF

A B C E FD
MJoin

Join Graph

ABCDEF

A B C

E

F

D

DE

B

A
C

DE

F

AB

C

DE

F

ABCDEF

A B

C

E

F

D

DEAB

Figure 5.5: Generate Hybrid Tree By State Selection

The above process add only binary join operators into the hybrid tree.

5.2. GENERATING HYBRID TREE FROM MJOIN 65

This limits the optimizer’s search space. To solve this problem, we add

operator merging steps to merge several binary joins into one bigger mjoin

operator. This is applied only when doing so can save both memory and

CPU costs. Consider the hybrid tree in Figure 5.6(a) when edge C − DE

is selected next. A join operator CDE is created for this edge selection, as

shown in Figure 5.6(b). At this point, we try to merge the new join operator

with its children join operators, in this case operator DE. This would create

a new join tree as depicted in Figure 5.6(c). If the new hybrid tree has both

less CPU and less memory costs than the hybrid tree in Figure 5.6(b), it is

then kept as the current hybrid tree.

ABCDEF

A B C

E

F

D

DE

B

A
C

DE

F

ABCDEF

A B

C

E

F

D

DE

CDE
ABCDEF

A B

C E

F

D

CDE

B

A

CDE

F

(a) (b) (c)

Figure 5.6: Operator Breaking and Merging

The overall algorithm is shown in Algorithm 2. For a join graph with n

input streams, at most (n−1)n/2 edges exist in the join graph. Each time an

edge is selected as a candidate, the algorithm needs to recompute the join

sequences. This takes O(n2 + n2log(n)) time. Therefore the overall worst

case complexity of the algorithm is O(n4log(n)).

5.2. GENERATING HYBRID TREE FROM MJOIN 66

Algorithm 2 The State Selection Algorithm

//Input: joinGraph and joinOrders;
//Output: newGraph, representing a hybrid tree.
//Cm and Mm are CPU and memory costs of joinOrders;
//Ca and Ma are available system CPU and memory.
while (Cm > Ca)&&(Mm < Ma) do

edgeSet = Set of candidate edges;
while (edgeSet != null) do

Choose edge with max freq/weight in edgeSet;
Merge two vertices of edge, get newJoinGraph;
newOrders = MJoin Ordering(newJoinGraph);
new Cm = CPU cost of newOrders;
if (new Cm < Cm) then

joinOrders = newOrders; Cm = new Cm;
Mm = Memory cost of joinOrders;
if(Mm > Ma) return newGraph;
newGraph = newJoinGraph;
Merge edge in newGraph with each child if this decreases both
resource usages;
break; // from inner while loop.

end if

end while

if (edgeSet.size() == 0) break; //from outer while loop.
end while

return newGraph;

67

Chapter 6

The BTree-Init Strategy

6.1 Generating BJTree

The best bjtree is the one that has the least memory cost (minimal interme-

diate states) and hence the least CPU cost (thanks to positive correlation)

among all semantically equivalent bjtrees. Finding such an optimal bjtree

is NP-complete [IK84]. In order to reduce the complexity, query optimiz-

ers usually limit their search spaces to linear trees (often left-deep trees)

[SAC+79]. However, limiting the search space can miss some potentially

good query plans. In fact, research on continuous queries has shown that

bushy trees in many cases have better performance than linear trees be-

cause join operators in bushy trees have more symmetrically balanced in-

puts [VN02a, VNB03].1

In this section, we describe our min-state algorithm that finds a bjtree

1In a linear bjtree each join has one stream input and one intermediate input, except for
the leaves. In a bushy both inputs to a join operator can be intermediate results.

6.1. GENERATING BJTREE 68

with small total intermediate states in polynomial time. For star joins, the

algorithm guarantees to find an optimal bjtree. In general, the algorithm can

generate either linear or bushy trees, and it can be applied to both acyclic

and cyclic join graphs.

The min-state algorithm is illustrated using an example of a 5-way join

in Figure 6.1. The input to the algorithm is a join graph. The weight of an

edge X1X2 is computed as λX1
λX2

σX1X2
. Starting from the original join

graph in Figure 6.1(1), the algorithm each time picks the current smallest

weighted edge and forms a join. In this example, edge AD is picked first

and forms the join A ./ D. The edge is then merged into a single vertex

AD. Its input rate is updated as the weight of the original edge AD. The

input B has a join predicate with both A and D. So the selectivity between

vertex B and the new vertex AD is also updated by multiplying the selec-

tivities on the original edges BA and BD. The algorithm then continues

to pick the smallest weighted edge from the updated join graph shown in

Figure 6.1(2). This time the edge CE is picked and a new join C ./ E is

formed. The two involved vertices are merged and the graph is updated

accordingly. Since the new join (C ./ E) and the existing join (A ./ D)

have non-overlapping inputs, this indicates that the algorithm will eventu-

ally produce a bushy tree. The same procedure is repeated in Figure 6.1(3).

The final output bjtree is depicted in Figure 6.1(4) at the bottom. When the

algorithm is over, the original join graph would be merged into a single

vertex.

6.1. GENERATING BJTREE 69

B

A

D

C
E

0.8

(10)

(50)

(2)
(15)

(5)

0.1

0.5

0.2

0.3

B

AD

C
E

0.8*0.5

(10)

(50)

(2)
(15)

0.2

0.3

B

AD

CE

0.4

(10)

(50)

(12)

0.3 BCE

AD
0.16

(10)

(360)

AD

A D

AD

A D

CE

C E

AD

A D

CE

C E

ABD

B AD

A D

CE

C E

B

ABCDE

BCE

(1) (2) (3) (4)

Figure 6.1: Min-State Algorithm Walkthrough

6.1.1 Considering Cartesian Product

Same as the join ordering algorithm discussed in Section 5.1, the min-state

algorithm can also take advantage of cartesian products. Figure 6.2 shows

the benefits of considering cartesian product to reduce the size of the in-

termediate states. The most number of cartesian product edges that can be

added to the join graph is the total number of edges minus the total number

of existing edges in the given join graph.

B

A

C

0.1

(100)

(5)
(2)

0.2

X

B C

ABC

A

B

A

C

0.1

(100)

(5)
(2)

0.2

ABC

BAC

A C
state size =
100+5+2+40 = 147

state size =
100+5+2+20 = 127

Figure 6.2: Potential Benefits of Cartesian Products

6.1. GENERATING BJTREE 70

6.1.2 The Overall Min-State Algorithm

Given a join graph with n vertices, the largest possible number of edges is

n(n− 1)/2. So the overall algorithm complexity is O(n2log(n)).

Algorithm 3 The Min-State Algorithm

//Input: initial joinGraph
//Output: the generated bjtree
Add CartesianProduct Edges(joinGraph);
while (there are edges left in the joinGraph) do

Select smallest weighted edge;
Merge selected edge;
Update selectivities of affected edges;
Update arrival rates of affected vertices;

end while

6.1.3 Optimality of Generated BJTree.

The pseudo-code of the min-state algorithm is shown in Algorithm 3. It is a

greedy algorithm and does not guarantee to always find the optimal bjtree

with the smallest state size.

Figure 6.3 depicts a case when the min-state does not generate the opti-

mal query plan. The upper half of Figure 6.3 shows the tree that generated

by the min-state algorithm, and the lower half shows the optimal tree.

However, for a star join, as depicted in Figure 6.4, the min-state algo-

rithm always generates an optimal bjtree. Intuitively, this can be explained

as follows: When any edge in the star join graph is picked, the edge is

merged into the node in the center of the join graph which connects to all

the other nodes. So the update on the input rate of the central node affects

the rest of the edges in the join graph equally. Therefore in the star join

6.1. GENERATING BJTREE 71

B

A

D

C

0.1

(10)

(10)

(6)

(8)

0.2

0.2

B
D

C

(20)

(6)

(8)

0.2

0.2 D

AB

A B

C

ABCD

ABC

B

A

D

C

0.1

(10)

(10)

(6)

(8)

0.2

0.2 C

AB

A D B

ABCD

BC

state size = 6+10+10+8+24+32 = 90

state size
= 6+10+10+8+20+48 = 102

Figure 6.3: An example that the algorithm generates sub-optimal plan.

graph, the local minima is also the global minima. For other types of join

graphs, this is no longer true because one node is not guaranteed to con-

nect to all the other nodes. Therefore updating one node may have different

impacts on different edges in the join graph.

B

A

D

C

B
A

D

C

Star Join Cycle Join

B

A

D

C

Chain Join

Figure 6.4: Different Types of Join Graph.

When the query plan generated by the min-state algorithm is sub-optimal,

it may affect the precision of the optimization strategy in two ways, namely

false negative and false positive. False negative here means that the optimizer

fails to find a qualified plan, while in fact a qualified plan does exist given

the allocated system resources (Ca and Ma). False positive means a quali-

fied plan is found, but in fact a qualified plan does not exist given Ca and

6.2. GENERATING HYBRID TREE FROM BJTREE 72

Ma. It is clear that the imprecision caused by a sub-optimal bjtree is al-

ways of the false negative type. This in fact makes the optimizer more

conservative, because the optimizer may end up requiring the system to

allocate more resources than the query actually needs. However, the false

positive would here gives the resource allocator the wrong assurance that

the allocated resources are sufficient, while in fact they are not. Finding a

good plan quickly versus finding an optimal plan is very often a tradeoff

between efficiency and precision. The min-state algorithm is chosen for its

efficiency, which is much needed by continuous query processing.

6.2 Generating Hybrid Tree from BJTree

If the bjtree generated by the min-state algorithm above is not a qualified

plan, we then utilize the negative correlation to further balance the memory

and the CPU costs. The optimizer now aims to save memory by removing

intermediate states and merging existing join operators. This can increase

CPU costs because the removed states now need to be recomputed. In this

Section, we describe our state-removal algorithm to select intermediate states

to remove in order to generate qualified hybrid tree.

The process of state removal is done iteratively, with each step remov-

ing one intermediate state and merging two join operators. Figure 6.5

shows an example of applying state-removal to a bjtree. The initial bjtree

generated by the min-state algorithm for a 6-way join query is shown in

Figure 6.5 (a). Four intermediate states exist in this bjtree, each represented

by a small rectangle at the sides of the three operators on the top. Now

6.2. GENERATING HYBRID TREE FROM BJTREE 73

let us assume that the circled intermediate state at join operator BC is se-

lected to be removed. This is achieved by merging join operators AB and

BC into a single mjoin operator ABC , which results in the hybrid tree in

Figure 6.5(b). We then need to apply the mjoin-ordering algorithm, as de-

scribed in Section 5.1, to find optimal or good join orderings for the new

mjoin operator ABC . The same process is then repeated until a qualified

hybrid tree is found, or all the candidate intermediate states are removed,

which indicates that the query plan has been merged to a single mjoin.

CD

BC DE

EF

A
C D

E F

AB

B

CD

DE

EFA C D

E F

ABC

B

CDE

EF

A C

D

E F

ABC

B

(a) (b) (c)

Figure 6.5: Removing State by Merging Joins.

The important remaining problem now is how to pick intermediate

states to remove in order to quickly lead to a qualified query plan. For each

candidate intermediate state, we need to consider two factors: the memory

saved by removing the state and the possible CPU increase due to recom-

puting the intermediate results. Suppose the CPU costs of the old plan and

of the new plan after operator merging are Cold and Cnew respectively, the

CPU increase can be computed as CPUincrease = Cnew −Cold. The memory

saving is in fact the size of the removed intermediate state.

Intuitively, each time we should remove an intermediate state that has

the smallest ratio of CPUincrease/state size. This ratio is referred to as the

state quality ratio. The optimizer removes the intermediate state with the

6.3. DISCUSSION ON QUALIFIED PLANS 74

smallest state quality ratio by merging two corresponding join operators

into a larger mjoin operator. The first operator is the one that contains the

selected state. The second operator inputs tuples to the first operator, and

the input tuples also would be inserted to the to-be-removed state. After

two operators are merged into a larger mjoin operator, the join orderings

of the new operator are recomputed. Note that sometimes merging two

operators into a larger mjoin may save both CPU and memory. This is

when the maintenance cost of the intermediate state overpasses the cost

of recomputing such a state, as discussed in Section 4.3. In this case, the

CPUincrease factor is actually a negative number.

Algorithm 4 illustrates the state removal algorithm. For a join query

with n input streams, there are at most n− 1 intermediate states in a query

plan. Therefore, in the worse case the state selecting and operator merging

process of the algorithm may be repeated n−1 times. Since the join ordering

algorithm takes at most O(n2log(n)), the total running time is bounded by

O(n2log(n))(n − 1)(n − 2)/2 = O(n4log(n)).

6.3 Discussion on Qualified Plans

So far all qualified query plans for the same query are considered to be

equal because using any of them will result in the same query output rate,

as discussed in Chapter 2. However, among all qualified query plans, some

may require less memory cost or less CPU cost than others. The plan that

consumes less resources can be more resistant to the changing stream char-

acteristics. Therefore, between two qualified plans, an optimizer should

6.3. DISCUSSION ON QUALIFIED PLANS 75

Algorithm 4 The State Removal Algorithm

//Input: A BJTree generated by min-state algorithm.
//Output: The generated HybridTree
HybridTree = BJTree;
i states = set of intermediate states in HybridTree;
while (i states is not empty) do

old cpu = CPU cost of HybridTree;
min ratio = largest number;
selected state = null; selected tree = null;
for (each s in i states) do

op1 = join operator contains s;
op2 = join operator with output tuples inserted to s;
Merge op1 and op2 into new op and get newTree;
Compute join orderings of new op;
new cpu = CPU cost of newTree;
ratio = (new cpu− old cpu)/(size of state s);
if (ratio < min ratio) then

min ratio = ratio; selected state = s;
selected tree = newTree;

end if

end for

HybridTree = selected tree;
Remove selected state from i states;
return HybridTree if it is a qualified plan;

end while

return HybridTree;

6.3. DISCUSSION ON QUALIFIED PLANS 76

favor the one with both less memory cost and less CPU cost.

To compare among continuous query plans, we use the notions of dom-

inating plans and non-comparable plans. Given two continuous query plans,

p1 and p2, if p1 has both less memory cost and less CPU cost than p2, we

say p1 is the dominating plan between the two. However, if p1 has less mem-

ory but more CPU than p2, or p1 has more memory but less CPU than p2,

we say that p1 and p2 are non-comparable plans. In Figure 6.6, if each dot

represents a qualified query plan, the dots connected by the line are all the

dominating query plans that are non-comparable to each other. Among all

qualified query plans, we are interested in the set of maximally dominat-

ing query plans D, meaning for a plan p in D, no other plans exist in D that

dominate p. Clearly, all plans in the set of maximally dominating plans

are non-comparable with one another. Figure 6.6 depicts such a scenario.

Assuming each dot represents a qualified query plan, the darker dots con-

nected by a line are the maximally dominating query plans.

Memory

CPU

0 Ma

Ca

Figure 6.6: Dominating Plans.

The concept of the dominating plans parallels the problem of skyline

6.3. DISCUSSION ON QUALIFIED PLANS 77

queries2[BKS01] or the problem of finding Pareto curve in multi-objective

optimization [PY01]3.

The four algorithms proposed in Chapters 5 and 6 are all designed to re-

turn the first encountered qualified plan without further exploration. This

saves optimization time but the returned qualified plan may not be the best

that can be found by the optimizer in terms of plan dominance. This is a

trade-off between plan quality and optimization time. A viable solution is

to assign a certain exploration time to each algorithm, which allows the al-

gorithm a chance to possibly explore further. When the time expires, if the

algorithm has found multiple qualified plans, it can choose to return one or

all maximally dominating query plans found in the given time. The dom-

inating query plan chosen to return may depend on which resource factor

(memory or CPU) is the more ample one in the current system or which

one is expected to become more critical in the near future.

2Skyline queries concerns database queries to find data points that satisfy multiple con-
ditions simultaneously.

3Similar concepts also exist in the larger research family of multi-objective optimization
[Ste86], which is an important problem that exists in many other research fields besides
computer science.

78

Chapter 7

The Exhaustive Search Strategy

7.1 The Multi-Join Search Space

To find a qualified query plan, an exponential-time solution is for the op-

timizer to use an exhaustive search algorithm to cover query plan search

space. Exhaustive search is valued for its thoroughness but is also hindered

by its high costs. Dynamic programming is an efficient method to imple-

ment an exhaustive search compared to full enumeration and thus has been

widely adopted in existing database systems [SAC+79]. To decrease the

cost, the search space is usually restricted to left-deep trees [SAC+79]. This

restriction implies that optimal query plans may be missed by the search

algorithm. In this section, we present a bottom-up dynamic programming

algorithm to find a qualified plan for multiple join continuous queries. The

proposed dynamic programming algorithm differs from traditional algo-

rithm in several aspects, including search space used, cost models applied

and termination criteria. Theoretically, if the search space covers all pos-

7.1. THE MULTI-JOIN SEARCH SPACE 79

sible query plans, the exhaustive search method is guaranteed to find the

desired plan if there exists one.

Instead of the left-deep tree search space, we ideally would need to

adopt the search space that contains all mjoin trees, i.e., the search space

that contains all the possible continuous multi-join query plans. It includes

linear trees and bushy trees, and each join operator in the tree can be either

a binary or an mjoin. The search space covers all possible mjoin trees (in-

cluding mjoin and btrees) and thus guarantees that the exhaustive search is

able to find a qualified plan, if one exists. The complete search space con-

tains a larger number of possible query plan shapes as compared to the left-

deep tree search space. On the other hand, the use of pipelining symmetric

join algorithms helps to remove some query plans from the search space.

For example, a binary join A ./ B is equivalent to a binary join B ./ A in

continuous queries due to its symmetric input processing. Therefore, the

two join trees depicted in Figures 7.1 (a) and (b) are treated as equivalent

in continuous query optimization, although they are usually considered as

two different query plans in static query optimization.

BC

CD

A

C

D

AB

B

BC

CD

B

C

D

BA

A

(a) (b)

Figure 7.1: Two Equivalent Multi-Join Trees

7.2. BOTTOM-UP DYNAMIC PROGRAMMING 80

The cost models described in Chapter 4 are used in our algorithm to

compute memory and cpu costs of partial joins (sub-plans) generated dur-

ing the bottom-up dynamic programming process. The memory and cpu

costs are used to identify a qualified plan. The two costs of a plan can

also be used to detect the subplans that have both their memory cost and

cpu cost beyond the system thresholds and thus are impossible to lead to

a qualified query plan. These subplans can be filtered out early on in the

dynamic programming process to decrease the optimization cost.

In static query optimization, a dynamic programming process termi-

nates when it finds the optimal solution, which is the plan that has the

smallest cost in the given search space. For continuous query optimiza-

tion, however, the search process can be terminated once a qualified plan

is found. Note that given two qualified query plans P1 and P2, it is possi-

ble that P1 may have both less memory cost and less cpu cost than P2, and

therefore P1 should be “favored” by the optimizer over P2.

7.2 Bottom-up Dynamic Programming

We now illustrate the main steps of our bottom-up dynamic programming

algorithm to find a qualified query plan. Given an n-way join query, the

algorithm takes as input the system statistics measured at run time. These

statistics include system resource consumptions and availabilities, stream

input rates and selectivities of join predicates between join columns. The

algorithm builds a table of all possible multiple join plans with the number

of input streams ranging from 2 to (n-1). It starts from two-way joins (n=2)

7.2. BOTTOM-UP DYNAMIC PROGRAMMING 81

and gradually constructs larger joins based on previously computed partial

query plans. Finally the algorithm constructs query plans for n-way joins

and outputs a qualified plan based on the given data statistics.

Figure 7.2 shows the process of building the query plan table using

bottom-up dynamic programming for a 4-way join among streams A, B,

C and D. The first column indicates the partial joins by the names of their

input streams. To generate a new join, we use a previously existing partial

join and add a new stream to it. The second and the third columns indicate

the previously existing partial joins and the new stream that is being used

to construct the join in the first column. The last column lists all the pos-

sible ways to construct the join, each corresponding to a distinctive query

plan. For each query plan, we compute its memory and cpu costs. The last

row of Figure 7.2 is the final 4-way join. The algorithm terminates once if

finds a qualified plan to execute the 4-way join.

JoinEntry Origins QueryPlans
A Ǿ + A A
B Ǿ + B B
C Ǿ + C C
D Ǿ + D D

AB A + B (AB)
AC A + C (AC)
AD A + D (AD)
BC B + C (BC)
BD B + D (BD)
CD C + D (CD)

ABC AB + C ((AC)B) (A(BC)) (ABC) ((AB)C)
ABD AB + D ((AD)B) (A(BD)) (ABD) ((AB)D)
ACD AC + D ((AD)C) (A(CD)) (ACD) ((AC)D)
BCD BC + D ((BD)C) (B(CD)) (BCD) ((BC)D)

ABCD ABC + D (((AD)C)B) ((A(CD))B) …

Figure 7.2: Bottom-up Dynamic Programming for 4-way Join

7.2. BOTTOM-UP DYNAMIC PROGRAMMING 82

One important problem is how to avoid duplicate computations during

the query building process. It is possible that a join of input length p can

be constructed by different partial joins of length p − 1. For example, join

ABC can be constructed by adding stream C to partial join AB, or it can

also be constructed by adding stream B to partial join AC . To avoid such

duplicate computation, we assign an ID to each stream. Each time a new

stream is added to an existing partial join, the stream must have larger ID

than all the input streams in the partial join. For example, for partial join

AC , we can only add stream D to it to construct join ACD, but stream B

cannot be added to partial join AC because it has smaller ID than stream C .

We also apply early filtering to further save the computation costs. Early

filtering here means that if a query plan has both memory cost and cpu cost

beyond system thresholds, it is discarded right away and will not be used

to construct any new query plans.

Because the search space of the algorithm contains all possible mjoin

trees, there are many possible ways of combining an existing join plan and

a new stream input. The possible combinations can be classified into two

categories: 1) the new stream can be merged with an existing join operator

in the plan, and 2) the new stream can be merged with a queue in the query

plan to create a new binary join operator. Figure 7.3 shows the two types of

combinations when a query plan (AB) is merged with a new stream C to

create all possible query plans for join ABC .

7.3. THE OVERALL EXHAUSTIVE SEARCH ALGORITHM 83

A

C
AB

B

(AB)

A

ABC

B C

(ABC)

A

AC

C

B

((AC)B)

ABC

A

BC

B C

((AC)B)

ABC

A

AB

B

C

((AB)C)

ABC

Figure 7.3: Generate New Query Plans by Merging

7.3 The Overall Exhaustive Search Algorithm

Algorithm 5 describes the pseudo-code of the above dynamic program-

ming algorithm to exhaustively search for a qualified query plan given the

mjoin tree search space.

7.3. THE OVERALL EXHAUSTIVE SEARCH ALGORITHM 84

Algorithm 5 Bottom-up Dynamic Programming.

//Input: N-way join query
//Output: A qualified query plan or null.
QueryPlans; //Arraylist of query plans starting as empty
i = 0; //points to current position of QueryPlans.
//initialize QueryPlans.
Assign streamID starting from 0 to each stream.
Insert each of the N input streams to QueryPlans.
index = 0; //pointer to current partial plan in QueryPlans
While (index < size of QueryPlans) do

{
Get query plan qp at position index in QueryP lans;
largestStream = stream with largest streamID in qp;
for (each stream S with ID larger than largestStream)
{
Generate set of plans newplans by merging qp and S;
for (each plan P in newplans)
{

memory = memory cost of P ;
cpu = cpu cost of P ;
if (P has N inputs and is a qualified plan)
return P .

if (either memory or cpu is less than the system threshold)
Add P to QueryP lans.
}
}
index + +;
}

85

Chapter 8

Experimental Evaluation

I have implemented the proposed optimization strategies in the DCAPE

continuous query system [RDS+04, LZJ+05]. A large number of experi-

ments have been conducted to thoroughly examine the ability of the pro-

posed optimization algorithms to generate qualified query plans under

various resource availabilities. In this section, I present two main aspects

of the experimental results. First, I verify the cost analysis in Chapter 4

by comparing the performances of mjoin, bjtree and hybrid tree under dif-

ferent system resource availabilities. These query plans are all generated

using the optimization algorithms proposed in this paper. Secondly, I com-

pare the optimization effects of the two optimization strategies, namely

mjoin-init and bjtree-init strategies. In particular, I compare their optimiza-

tion time, ability of finding qualified query plans and the resource con-

sumptions of the qualified plans generated by the two methods. The ex-

perimental results for these two aspects are reported in Sections 8.1 and 8.2

respectively.

8.1. VERIFYING COST ANALYSIS 86

The data generator in the query system generates tuples with arrival

patterns modeled as Poisson process. The mean inter-arrival delay between

two consecutive tuples is exponentially distributed to model the Poisson

arrival pattern. All implementation is done in Java. All experiments are

conducted on a machine running windows XP with a 1495MHz processor

and 512MB main memory.

8.1 Verifying Cost Analysis

I used various sets of experiments to compare the performances of the

bjtree, mjoin and hybrid tree in various system resource settings. The three

types of query plans are generated by using the optimization algorithms

proposed in Chapters 5 and 6.

The experiments are categorized into four different sets based on the

availabilities of memory and cpu:

• In set 1, I apply sufficient memory and CPU for executing both the

bjtree and the mjoin. Therefore both are qualified plans according to

our cost analysis. The distributions of CPU/memory consumptions

of the mjoin and bjtree are depicted in Figure 8.1 (a).

• In set 2, I use high stream rates and selectivities to make the query

CPU-intensive. Since bjtree generally requires less CPU than mjoin,

bjtree is more likely to be qualified than mjoin (Figure 8.1 (b)).

• In set 3, I use lower stream rates and selectivities. More importantly,

I restrict the system memory to a much lower value. Since mjoin gen-

8.1. VERIFYING COST ANALYSIS 87

erally requires less memory than bjtree, mjoin is more likely to be

qualified than the bjtree (Figure 8.1 (c)).

• In set 4, I use high stream rates and selectivities, while restrict the

system memory. Both the bjtree and the mjoin are likely not qualified.

Instead a hybrid tree is generated as a qualified plan (Figure 8.1 (d)).

(Mem)

(CPU)

0 Ma

Ca

(a) Set 1

btree

mjoin

(Mem)

(CPU)

0 Ma

Ca

(b) Set 2

btree

mjoin

(Mem)

(CPU)

0 Ma

Ca

(c) Set 3

btree

mjoin

(Mem)

(CPU)

0 Ma

Ca

(d) Set 4

btree

mjoin

moin-tree

Figure 8.1: Experimental Sets

The amount of available memory is controlled by setting the initial and

maximum java heap sizes using the command “java -Xms(size) -Xmx(size)”.

Amount of available CPU (Ca) remains the same for all experiments since

they are all run on the same machine. The effects of different CPU availabil-

ities are achieved by increasing/decreasing stream and query parameters,

including stream arrival rates, window sizes and join selectivities.

Table 8.1 lists the parameter configurations in the four sets of experi-

ments. The parameters include stream arrival rates, join selectivities, win-

dow sizes and allocated java heap sizes. λA is the input rate of stream A in

tuples/second. σAB denotes the selectivity between streams A and B. W

stands for the window size in milliseconds (ms). The java heap size (Ma) is

in MB.

8.1. VERIFYING COST ANALYSIS 88

Table 8.1: Parameter Configurations in Experiments

Set Ma λA λB λC λD σAB σBC σCD W

1 300 20 20 20 — 0.05 0.5 — 5000

2 300 20 20 50 — 0.02 0.5 — 15000

3 30 10 10 10 10 0.1 0.15 0.1 15000

4 30 20 20 20 20 0.02 0.2 0.05 50000

Experiment Set 1: The results for set 1 are shown in Figures 8.2 and 8.3.

In this set both the mjoin and bjtree are qualified plans according to our

cost analysis. We can see that both plans indeed have similar throughputs

in Figure 8.2. Sufficient CPU ensures that new tuples can be processed

quickly so the number of tuples accumulated in input queues are close to

0. This is true for both mjoin and bjtree, shown as the bottom two lines

in Figure 8.3. The major performance difference is the state size. Since the

bjtree needs to store intermediate results, its total state size is much larger

than that of mjoin. The top two lines in Figure 8.3 clearly display this trend.

Experiment Set 2: In this experiment, the bjtree is qualified but the mjoin is

not. Figure 8.4 shows that the bjtree has much faster throughput (more than

100% improvement) than the mjoin. Since the mjoin is not a qualified plan,

newly arriving tuples cannot be processed right away and thus accumulate

quickly in stream input queues, as shown in Figure 8.5, while the bjtree

processes new tuples right away and keeps the input queues small.

Experiment Set 3: In this experiment, the query is given enough CPU re-

sources so the CPU costs of mjoin and bjtree are both under the allocated

threshold. The two plans have similar throughputs at the beginning of

8.1. VERIFYING COST ANALYSIS 89

0

200000

400000

600000

800000

1000000

1200000

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

A
cc

u
m

u
la

te
d

 T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

BJTree
MJoin

Figure 8.2: Accumulated Throughput (Set 1)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

N
u

m
b

er
 o

f
T

u
p

le
s

BJTree-state
MJoin-state
BJTree-queue
MJoin-queue

Figure 8.3: Tuples in States/Queues (Set 1)

the experiment, as shown in Figure 8.6. Figure 8.7 displays the measured

memory consumptions. The memory of the bjtree keeps on accumulating

and quickly reaches the system memory threshold (Ma=30MB) at around

50,000ms. The memory consumed by the mjoin is smaller and averages

around 12MB after the start-up stage. The fluctuations of the memory us-

age in the mjoin are due to the temporary memory consumed by the inter-

mediate results.

8.1. VERIFYING COST ANALYSIS 90

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

A
cc

u
m

u
la

te
d

 T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

BJTree
MJoin

Figure 8.4: Accumulated Throughput (Set 2)

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (ms)

T
u

p
le

s
in

 In
p

u
t

Q
u

eu
es

 (
tu

p
le

s) BJTree
MJoin

Figure 8.5: Tuples in Input Queues (Set 2)

Experiment Set 4: In this experiment, neither mjoin nor bjtree are qualified

plans. Instead, an hybrid tree is generated as a qualified plan. Figures 8.8

and 8.9 compare the accumulated throughput and memory consumptions

of the three plans. The bjtree has the least CPU cost and is shown to have

faster throughput at the beginning. However, it quickly runs out of mem-

ory at around 80,000ms. The hybrid tree, although has slower throughput

8.1. VERIFYING COST ANALYSIS 91

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 50000 100000 150000 200000
Time (ms)

A
cc

u
m

u
la

te
d

 T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

BJTree
MJoin

Figure 8.6: Accumulated Throughput (Set 3)

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000
Time (ms)

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

) BJTree
MJoin

Figure 8.7: Memory Consumptions (Set 3)

than the bjtree, outputs results faster than the mjoin. And it does not runs

out of memory because it requires less memory than the bjtree.

In summary, our experimental results confirm our cost analysis, and

demonstrate that the proposed optimization framework is able to pick a

qualified query plan under various system resource availabilities.

8.2. COMPARING OPTIMIZATION STRATEGIES 92

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 50000 100000 150000 200000
Time (ms)

A
cc

u
m

u
la

te
d

 T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

BJTree
MJoin
HybridTree

Figure 8.8: Accumulated Throughput (Set 4)

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000
Time (ms)

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

BJTree
MJoin
HybridTree

Figure 8.9: Memory Consumptions (Set 4)

8.2 Comparing Optimization Strategies

Next I compare the performances of the two alternative optimization strate-

gies proposed in this paper, namely the mjoin-init strategy and the bjtree-

init strategy. The experiments are designed to compare their effectiveness

at finding qualified query plans and their average optimization time. I also

compare the memory and CPU costs of the qualified plans generated by

8.2. COMPARING OPTIMIZATION STRATEGIES 93

the two optimization strategies.

The first set of experiments compares the optimization effectiveness of the

two optimization strategies, meaning how often the algorithms can find a

qualified query plan given various experiment settings. In our experiment,

each setting is characterized by the number of input streams, the arrival

rates of streams, the joins among streams and the join selectivities. Chang-

ing any one of the parameters would result in a different experimental set-

ting. To quantify the concept of optimization effectiveness, I use the term

qualified percentage defined as below: Given N different experimental set-

tings, if an algorithm finds qualified query plans in M (M <= N) settings,

the qualified percentage of the optimization algorithm is M/N .

In order to demonstrate how effective the proposed optimization meth-

ods are, I compare their performance against an exhaustive search algo-

rithm for finding qualified query plans. The exhaustive search is imple-

mented as a bottom-up dynamic programming (DP) algorithm, which is

a direct extension to the classic dynamic programming algorithm in static

query optimization [SAC+79]. However, instead of searching in the left-

deep join tree space, our DP algorithm searches in the entire hybrid tree

space. To save processing time, the DP algorithm returns once the first

qualified query plan is found. The DP exhaustive algorithm is guaranteed

to find a qualified query plan if one exists. So it has the highest possible

qualified percentage in any experiment.

Our experiments are set up as follows: during each experiment, the

number of input streams N varies from 3 to 20. For each N, we go through

the following setup process: 1) the input streams are randomly generated

8.2. COMPARING OPTIMIZATION STRATEGIES 94

within the range of [1, 100] tuples/second, 2) the joins among input streams

are randomly selected, and 3) the corresponding join selectivities are ran-

domly generated within the range of (0, 1) 1. Such setup process is repeated

100 times for each distinctive N. Therefore, totally (20-3 + 1) * 100 = 1800

different parameter settings are applied in each experiment. This produces

a sufficiently large sample set to illustrate the performance trends of the

examined optimization algorithms.

0

20

40

60

80

100

120

0 5 10 15 20
Number of Input Streams

P
er

ce
nt

ag
e

of
 F

in
di

ng
 a

Q

ua
lif

ie
d

P
la

n
(%

)

MJoin-Init

BJTree-Init

DPExhaustive

Figure 8.10: Qualified Percentage

Figure 8.10 depicts the experimental results of the qualified percentage.

Because even the most effective dynamic programming runs in exponen-

tial time and space, the results denoted by DPExhaustive end as soon as

the number of input streams (N) reaches to 8. This is when the DP algo-

rithm runs out of memory and is unable to produce a result. We can see

from Figure 8.10 that the two proposed optimization strategies, denoted

by “MJoin-Init” and “BJTree-Init” respectively, have very similar qualified

1Note that the join selectivity here is defined as
(num of outputs)/(num of possible outputs). Therefore, a join with selectivity less
than 1 can still produce more output tuples than the input tuples it takes in.

8.2. COMPARING OPTIMIZATION STRATEGIES 95

0

10

20

30

40

50

60

70

80

3 4 5 6
Number of Input Streams

A
vg

 T
im

e
P

er
 R

o
u

n
d

 o
f

O
p

ti
m

iz
at

io
n

(m

s)

MJoin-Init
BJTree-Init
DPExhaustive

Figure 8.11: Average Optimization Time

0

2

4

6

8

10

12

14

0 5 10 15 20 25
Number of Input Streams

A
vg

. T
im

e
p

er
 R

o
u

n
d

 o
f

O
p

ti
m

iz
at

io
n

 (
m

s)

MJoin-Init

BJTree-Init

Figure 8.12: Comparing Avg. Optimization Time (II)

percentage given various N. This means that among the 100 optimizations

processed for each distinctive N, the number of qualified plans found by

the two strategies are very similar. Furthermore, both have almost the same

qualified percentage as the “DPExhaustive”. This confirms that both opti-

mization strategies are highly effective in finding qualified query plans.

Figures 8.11 depict the experimental results of comparing runtime opti-

8.2. COMPARING OPTIMIZATION STRATEGIES 96

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Memory Cost (tuples)

C
P

U
 C

o
st

 (s
ec

)

MJoin-Init

BJTree-Init

Figure 8.13: Distribution of Qualified Plans (n=3)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500
Memory Cost (tuples)

C
P

U
 C

o
st

 (
se

c)

MJoin-Init

BJTree-Init

Figure 8.14: Distribution of Qualified Plans (n=5)

mization time (average over 100 runs) for different number of input streams

(N). Both proposed optimization strategy takes polynomial time, while the

DP exhaustive search algorithm takes exponential time. It is clear from Fig-

ure 8.11 that DPExhaustive becomes too slow as compared to the polynomial-

time strategies even for very small N.

Lastly I compare the memory and cpu costs of the qualified query plans

generated by the two optimization strategies. The results are shown in Fig-

8.2. COMPARING OPTIMIZATION STRATEGIES 97

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000
Memory Cost (tuples)

C
P

U
 C

o
st

 (
se

c)

MJoin-Init

BJTree-Init

Figure 8.15: Distribution of Qualified Plans (n=10)

ures 8.13, 8.14 and 8.15. We observe the trend that the qualified plans gen-

erated by the mjoin-init strategy generally have smaller memory costs but

larger cpu costs, as compared to the qualified plans generated by the bjtree-

init strategy. Figures 8.13, 8.14 and 8.15 depict the distributions of memory

and cpu for all the qualified query plans found for N equals to 3, 5 and

10, respectively. We can see that this trend becomes more apparent as N

increases. In Figure 8.13 when N equals to 3, the qualified plans from both

optimization strategies are mixed on the plot. As N increases, the quali-

fied plans generated by the mjoin-init strategy tend to be located more at

the upper-left area, while the qualified plans generated by the bjtree-init

strategy tend to be located more at the lower-right area. The two sets of

qualified plans are clearly separating from each other. This trend is caused

in part due to the differences in the starting points of the two optimization

strategies. Since an mjoin usually has smaller memory costs but larger CPU

costs than a bjtree generated for the same query, optimizing from each start-

8.2. COMPARING OPTIMIZATION STRATEGIES 98

ing point has the tendency to reach qualified query plans that are closer to

that starting point.

In summary, our experiments demonstrate that both proposed opti-

mization strategies are highly effective in finding qualified query plans.

They both run in polynomial time and therefore are suitable for runtime

optimization for continuous queries. The qualified query plans generated

by the mjoin-init strategy tend to have lower memory but higher cpu costs

as compared to the qualified query plans generated by bjtree-init strategy.

Therefore, an runtime optimizer may choose which optimization strategy

to apply based on the current resource availabilities in the query system.

99

Chapter 9

Related Work

The problem of optimizing multiple joins is a core research area [MS79,

IK84, KBZ86, IK91, SI93, SAC+79]. The majority of results focus on opti-

mizing multiple joins in static query systems, in which the query plan is

in the shape of a left-deep [SAC+79, IK84, KBZ86], a right-deep [SMK97,

LVZ93], or a bushy [LVZ93] binary join tree.

The idea of using an mjoin operator for continuous query processing is

first discussed in [VNB03, GO03, HAE03]. [BMM+04] proposes heuristics-

based join ordering algorithms for mjoin that consider dependent join se-

lectivities. However, compared to bjtree, an mjoin may need extra CPU

time to recompute intermediate results. [VNB03] confirms this analysis by

showing experiments that a bjtree has better performance than an mjoin

when the amount of recomputations is large.

[VN02a] proposes a heuristic algorithm named FastLeaves to optimize

continuous multiple joins. It is however very different from our proposed

algorithms in terms of optimization goal and algorithm design. FastLeaves

CHAPTER 9. RELATED WORK 100

optimizes multiple joins for the purpose of achieving high output rate,

while our algorithms find query plans with both CPU and memory un-

der system resource constraints by utilizing the correlations between the

two resources.

[MSHR02] introduces the Eddy approach of adaptively executing a query

by routing tuples among operators. Eddy’s always-adapting solution makes

it suitable for a highly dynamic environment. The SteMs structure [RDH03]

further enhances the flexibility of an Eddy operator. Eddy together with

SteMs can be considered to be a more flexible version of the mjoin ap-

proach. However, like mjoin, this approach also needs to recompute all

intermediate results. [DH04] proposes solutions for dynamically optimize

a query plan containing Eddy operators to decrease the negative impacts

caused by tuple routing history. However, this solution does not consider

both CPU and memory resource constraints when optimizing a plan.

The A-caching algorithm [BMW05] optimizes a single continuous mjoin

operator by adding or removing temporary caches for selected intermedi-

ate results. It relies on value-based hashing for detecting a cache hit/miss

and only considers non-overlapping caches, meaning two caches cannot have

common joins. This limits the search space for the possible query plans.

Our solution can be applied to a query plan instead of just one opera-

tor and does not have the above restrictions on search space, thus signif-

icantly broadens the range of intermediate results that can be simultane-

ously stored.

The problem of considering multiple resources has been widely studied

in parallel query optimization and task scheduling in a distributed system

CHAPTER 9. RELATED WORK 101

[HS91, HM94, SAL+96, PY01, GI96, EHJ+96]. The parallel query optimiza-

tion in [HS91] considers both CPU costs and buffer sizes. The approach is

to minimize the CPU cost of the query at compile time and delay the deci-

sion made based on buffer sizes to runtime by adding “choose” operators.

In my solutions I consider both cost factors when optimizing the query.

The Mariposa project [SAL+96] optimizes a parallel query plan based on a

concrete user-defined cost-delay curve. In my work, I do not assume that

the relationship between CPU and memory is given a priori as this concrete

curve is hard to capture in reality. [HM94, GI96] propose solutions for the

problem of distributing query operators to several processors while explor-

ing the trade-off among multiple system resources, including CPU, mem-

ory, disk I/O and network communication. In these works, query plans

are given as inputs. Our work instead finds the query plan that satisfies

multiple resource constraints.

102

Part II

Dynamic Plan Migration for

Continuous Queries

103

Chapter 10

Introduction

10.1 Motivation for Migrating Continuous Queries at

Run Time

Many applications require the monitoring of data streams using stand-

ing queries, including sensor networks, stock and medical monitoring sys-

tems [CCC+02, BBD+02a, NWAea02, MSHR02, CF02, RDS+04, LZJ+05].

In those systems, data may stream in from several often distributed net-

work locations, with unpredictable fluctuations in arrival rates and in value

distributions. Queries posed over such streaming data are usually long-

running. Hence an originally well tuned query plan may later become sub-

optimal or even exhibit poor performance due to these changes. A stream

query engine must cope with such changing characteristics of the stream-

ing environment.

On-the-fly query re-optimization, one critical technology addressing

10.2. LIMITATIONS OF EXISTING MIGRATION APPROACHES 104

this problem, has attracted much recent research attention [BBD+02a, CCC+02,

NWMS98, VN02a, CDN02, IHW02]. Such a solution usually takes two

steps. First, the optimizer dynamically selects a new more efficient yet se-

mantically equivalent query plan based on system statistics gathered at run

time. This is referred to as the dynamic query optimization. Then the system

needs to be migrated from the query plan that it is currently running to the

new plan that the optimizer has chosen. We refer to the latter process as

dynamic plan migration.

10.2 Limitations of Existing Migration Approaches

A migration strategy must guarantee that it will not alter the results pro-

duced by the system during as well as after the plan transition. Correctness

here implies that results are neither missing nor contain erroneous or du-

plicate tuples. Traditionally, a dynamic plan migration strategy [CCC+02]

takes the following steps: 1) pause the execution of the current query plan,

2) drain out all existing tuples in the current query plan, 3) replace the cur-

rent plan with the new plan, and restart the execution. We refer to this

traditional approach as the pause-drain-resume strategy. The purpose of the

draining step is to clean up the intermediate tuples in the query plan so to

prevent any missing output tuples.

The pause-drain-resume migration strategy may be adequate to dynami-

cally migrate a query plan that consists of only stateless operators, such as

select and project. A stateless operator does not need to maintain intermedi-

ate data nor other auxiliary state information in order to be able to generate

10.2. LIMITATIONS OF EXISTING MIGRATION APPROACHES 105

complete and correct results. Intermediate tuples in such a stateless query

plan exist only in intermediate queues and can be cleaned completely by

the drain step during the migration process.

On the contrary, a stateful operator, such as join or group-by, must store

tuples that have been processed thus far so to be able to generate future

results. For a long-running query as in the case of continuous queries, the

number of tuples stored inside a stateful operator, such as a join or a group-

by, can potentially be infinite. Several strategies have been proposed to

limit the number of intermediate tuples kept in operator states by purging

unwanted tuples, including window-based constraints [KNV03, CCC+02,

NWAea02, HFAE03] and punctuation-based constraints [DMRH04a, TMSF03b].

In all the above strategies the purge of the old tuples inside the state is

driven by the processing of either new tuples or new punctuations from

input streams.

It is important to note that for a query plan that contains such stateful

operators, intermediate tuples may exist in both the intermediate queues

and in the operator states. As noted above, the purge of tuples in the states

relies on the processing of new data. However, in the pause-drain-resume

migration strategy described above, before embarking on the drain step,

as the very first step the execution of the query plan is paused so that no

new tuples beyond the intermediate tuples are being processed until the

migration is over. This creates a deadlock in the migration process: the

migration is waiting for all old tuples in operator states to be purged from the old

plan, while the old tuples in those states are waiting for new tuples to be processed

in order to be purged.

10.3. MY RESEARCH ON RUN TIME MIGRATION 106

10.3 My Research on Run Time Migration

In my research, I observe that the problem of dynamic migration can be ab-

stracted using a notion of migration box and then propose migration strate-

gies based on this notion. We use the term migration box to refer to the plan

or sub-plan selected for migration. Each box consists of a set of operators

that together represent a connected query sub-plan. It can be as large as the

complete plan or as small as one operator. Each box can have several box

root operators, each associated with a box output queue, and several box leaf

operators, each associated with a box input queue. Box intermediate queues

connect operators inside a box.

BC

AB

QA QB QC QD

QABCD

AB

CD

BC

QA QB QC QD

QABCD

SAB SC

SA SB
SB

SC

SBC SD

SBCDSA
CD

SABC SD

Figure 10.1: Two Exchangeable Query Boxes

Using the notion of migration box, the migration problem can then be

defined as the process of transferring an old box containing the old query

plan to a new box containing the new query plan. As shown in Figure 10.1,

the old and the new query plans must be semantically equivalent to each

other, indicating that the old and new boxes have the same sets of box input

10.3. MY RESEARCH ON RUN TIME MIGRATION 107

and output queues.

In my work, I propose two plan migration strategies for continuous

queries over streaming data, namely the moving state strategy and the par-

allel track strategy. The first strategy exploits reusability of existing stream

states and the second employs parallel query execution to seamlessly mi-

grate between continuous join plans without affecting the results of the

query.

The moving state strategy first pauses the query plan or part of the query

plan that is being optimized and drains out tuples inside the intermedi-

ate queues, similar to the above pause-drain-resume approach. However, to

avoid loss of any useful data inside states, it then carefully identifies and

moves over all relevant tuples in the states of the old query plan to their cor-

responding location in the new query plan. Beyond that, to assure correct-

ness, selectively certain intermediate tuples are then recomputed. Lastly,

the execution of the query plan is then resumed with the new plugged-in

plan.

The second migration strategy, called the parallel track strategy, migrates

a query plan in a more gradual fashion by continuing the delivery of out-

put tuples even during migration. Instead of moving tuples to the new

query plan and discarding the old query, it plugs in the new query plan

and starts executing both query plans in parallel. I develop algorithms to

eliminate potential duplicates and maintain the appropriate order of out-

put tuples. Once the old plan is found to be “antiquated”, it can simply be

dis-connected and the migration stage is then over.

In this part of the dissertation, I first present the basic ideas of the two

10.3. MY RESEARCH ON RUN TIME MIGRATION 108

migration strategies by focusing on joins only and by assuming a particu-

lar system execution model. I then generalize and significantly extend the

existing migration strategies along several dimensions, including to cover

all common types of operators (and not just joins), all main system execu-

tion models and timestamp representations common in the current stream

literature. I describe how to apply these migration strategies to query plans

that contain Select, Project and Join (SPJ) operators, and Group-by and Ag-

gregate operators.

In summary, I have made the following contributions on plan migration

of continuous queries at runtime:

• I first design and give cost analysis of the two migration strategies,

namely the moving state strategy and the parallel track strategy, for

migrating query plans that are composed of stateful operators, such

as join and group-by, and query plans with a mixture of stateful op-

erators and stateless operators, such as select and project.

• I extend the basic migration strategies to apply to query plans with

a mixture of stateful operators, such as joins, and stateless operators,

such as select and project. I illustrate the new migration problems of

mixing the two types of operators and the design changes that need

to be made to the basic migration strategies.

• I also propose migration strategies to cover the migration of group-

by with aggregates. I propose new methods to migrate a continuous

query plan with both joins and group-bys, the two common classes

of stateful operators in continuous queries.

10.4. ROAD MAP 109

• I identify and categorize the various execution models adopted in

existing continuous query systems [CCC+02, NWAea02, MSHR02,

RDS+04]. I illustrate how the execution models can affect runtime

plan migration, and then present critical changes that need to be made

to our migration strategies in order to support these execution mod-

els. In particular, I analyze the problem of synchronization during

migration, one of the key steps to guarantee the correctness of run

time migration for a system to be able to adopt alternative execution

models. I present several algorithms to achieve such synchronization

efficiently.

• I have implemented both strategies within the CAPE system [RDS+04],

a prototype continuous query system, and have conducted exper-

imental evaluations of the two proposed migration strategies and

compared their performances. I present the performance improve-

ments by dynamically applying the migration strategies in the mid-

dle of a query processing in a variety of system settings.

10.4 Road Map

The rest of this part of the dissertation is organized as follows. Chapter

11 establishes the foundations, including describing the two stateful opera-

tors, join and group-by, and the concept of the system execution model. In

Chapter 12, I describe the basic ideas of the two migration strategies to mi-

grate query plans containing only joins. Chapter 13 extends the migration

strategies to support the migration of Select-Project-Join (SPJ) query plans.

10.4. ROAD MAP 110

In Chapter 14 I discuss the migration of query plans containing both group-

bys and joins. In Chapter 15 I categorize the execution models in existing

stream query systems and generalize my proposed migration strategies to

support different execution models. Chapter 16 is devoted to the experi-

mental results, followed by a discussion of related work in Chapter 17.

111

Chapter 11

Background

11.1 Operator States and Window Constraints

As described in Section 10.1, dynamic query plan migration aims to smoothly

change the shape of a query plan in the middle of its running. A valid mi-

gration must guarantee that the migration process does not alter the results

of the running query. This means that the migration should not cause any

missing results, duplicate results or incorrect results.

For a valid migration strategy, the key to guarantee correct results of the

migrated query is to preserve and utilize all useful information kept in op-

erator states during migration. Operator state is simply some data structure

inside stateful operators, such as joins and group-bys, that stores tuples re-

ceived so far for future processing. This data structure is necessary since a

continuous query over streams must continuously produce results, requir-

ing all operators to be operating in a non-blocking fashion. Any operator

needs to output partial results based on the already received tuples. To

11.1. OPERATOR STATES AND WINDOW CONSTRAINTS 112

make traditionally blocking operators, such as joins or group-bys, become

non-blocking, we can store tuples received so far in this state data structure.

For example, for a join operator, tuples that arrive later can join with tuples

in the join states and produce more join results.

An operator state stores tuples received so far for future processing.

Since a continuous query can theoretically be infinite, that is, without any

restriction the states could grow arbitrarily large. Window constraints can

be used to limit the number of tuples stored in each state. A window con-

straint can be either time-based or count-based. A time-based window con-

straint indicates that only tuples that arrived within the last window time-

frame are useful and need to be stored in states. A count-based window con-

straint indicates that only the most recent certain number of tuples need to

be kept in states.

Window constraints are common in user-defined continuous queries.

For example, given three input streams A(a1, a2), B(b1, b2) and C(c1, c2), a

user may submit the following query with window constraints:

SELECT A.a1, B.b1, SUM(C.c2)

FROM A [range 30 min], B [range 30 min], C [range 30 min]

WHERE A.a1 = B.b1 and B.b2 = C.c1

GROUP BY C.c1

The above query is defined using the continuous query language (CQL)

proposed in [ABW03]. The time range after each stream defines the time-

based window constraint on that stream. The query contains two joins and

one group-by with aggregate SUM. In this example, all operators are eval-

11.2. STATEFUL JOIN OPERATOR 113

uated using the same time window of 30 minutes. One result set is output

for each of the latest 30-minutes window. By using a sliding window, a re-

sult set is output whenever new tuples of the next time unit (one minute in

this example) have arrived.

11.2 Stateful Join Operator

An essential part of the migration process is to properly preserve the use-

ful information (tuples) found in states, and to discard useless tuples from

states. I now show how the states are being managed in the two most com-

mon stateful operators in continuous queries, namely join and group-by,

given window constraints. The state operations of a join operator are intro-

duced below, while the stateful group-by operator is introduced in Section

11.3.

We use an example of the symmetric binary join [WA93b, HH99], com-

monly used for implementing joins in continuous queries [KNV03, CCC+02,

NWAea02], to show how tuples are being processed. Without loss of gen-

erality, we apply time-based sliding window constraints in our descrip-

tion. Applying the concepts discussed in this section to count-based win-

dow constraints is straight-forward. A sample query plan for the query

A ./ B ./ C ./ D that consists of three join operators with input streams

A, B, C and D is depicted in Figure 11.1(a). For instance, the join opera-

tor B ./ C in Figure 11.1(b) has two input queues QAB and QC , two states

SAB and SC , one associated with each input queue, and one output queue

QABC . Each state stores the tuples that fall within the current time window

11.3. STATEFUL GROUP-BY OPERATOR 114

from its associated input queue.

BC

Input Queue QAB Input Queue QC

SAB SC

Output Queue QABC

CD

BC

AB

QA QB QC QD

Output Joined
Tuple ABCD

(a) (b)

Figure 11.1: Join Operators and Their States

Given the above example, for each new tuple AB from QAB, the join

involves three steps: 1) purge – AB is used to purge tuples in state SC that

are outside the window frame from AB, 2) join – AB is joined with the

tuples left in SC , and 3) insert – AB is inserted into state SAB . The same

process applies to tuples from QC . Using this join algorithm, tuples from

either input to the join operator can be used to probe the tuples stored in

the state corresponding to the other input. Therefore the join operator is

being executed in a non-blocking fashion.

11.3 Stateful Group-by Operator

Group-by operator is another commonly used operator that is also state-

ful. A group-by operator is usually done for the purpose of applying an

aggregate function on each group of tuples. In this part of the dissertation,

if not otherwise noted, the group-by operator is assumed to also contain an

11.3. STATEFUL GROUP-BY OPERATOR 115

aggregate function.

The group-by is usually a blocking operator in static query processing.

By adding the window constraint, a group-by with aggregates generates

a set of output tuples per window frame, with one tuple for each group.

Thus it becomes non-blocking because it is able to continuously output re-

sults on a per window base. Figure 11.2 depicts an example of applying a

group-by over a stream named C with window constraint W . Each tuple

in the stream has two columns (c1, c2). The group-by column is on C.c1,

and an aggregation function SUM(C.c2) is applied to each group of tuples

with a distinctive C.c1 value within a window frame. As we can see the op-

erator generates a set of output tuples for the most recent W time window.

Specifically, in the recent W time frame, the sum of all C.c2 values among

tuples with C.c1=1 is 10. For tuples with C.c1=2, the sum of column value

C.c2 is 22.

1

SUM(c2)=10
C.c1=1

SUM(c2)=15
C.c1=10

….

SUM(C.c2)

Output for one window W

SUM(C.c2, C.c1 = 1) = 10
SUM(C.c2, C.c1 = 2) = 22

.
:

SUM(C.c2, C.c1 = 10) = 15

4
1 5
1 1

10 2
10 6
10 7

1 3
10 25

c1 c2

GroupBy(C.c1)

W

Figure 11.2: Stateful Group-by and Aggregate (SUM) with Window Con-
straint

11.3. STATEFUL GROUP-BY OPERATOR 116

For a window-based group-by operator, it is often not sufficient to just

store an aggregate result for each tuple group in its state. Instead, the oper-

ator may need to keep in its state all the tuples processed in the most recent

W window frame. To show why this is the case, let us again use the exam-

ple depicted in Figure 11.2. Suppose after outputting results for the most

recent window, two new tuples arrive in the input queue. Since the C.c1

column value of the first tuple (1, 3) equals to 1, it would be grouped with

tuples of the same C.c1=1 value. This group is stored in the left most table

inside the group-by operator. Since the group-by is sliding window-based,

it only generates one tuple for each group per window. The new tuple (1,

3), along with other tuples in the same group that are less than W away

from this new tuple, would be contributing to the new result for the now

most recent window. Any tuple outside the window should not affect the

result in any way and can be purged from the state. Suppose that the first

tuple (1, 4) in the left table is more than a window away from the new tuple

(1, 3), its effect on the aggregate result for this group should be cancelled.

The aggregate result, SUM(C.c2), for this group of tuples in the previous

window is 10. The new aggregate result for the new most recent window

should now become 10 - 4 + 3 = 9. This shows that in order to get the new

aggregate result, we need information from three aspects: the previous ag-

gregate result, the new tuple and the old tuple that is outside the window

frame from the new tuple. Therefore it is necessary to store tuples in the

most recent window frame in the group-by operator state.

A winid solution has been proposed in [LMT+05] recently, in which a

group-by operator does not need to store multiple tuples, but instead it

11.4. TUPLE ARRIVAL ORDER AND EXECUTION ORDER 117

stores multiple aggregate results, one for each active window. This only

works for certain aggregate functions. In this part of the dissertation, I

thus focus on the more general and also traditional approach of storing the

tuples within the latest window frame inside the group-by operator.

Also note that if negative tuples [HMA+04] are used in the query pro-

cessing, it is possible a group-by operator does not need to store all the

tuples in the most recent windows. However, using negative tuple also has

the drawback of doubling the workload. In my dissertation work, I focus

on the cases of query processing that do not need negative tuples.

11.4 Tuple Arrival Order and Execution Order

Applying time-based window constraints requires that each newly arriv-

ing tuple has a timestamp. When tuples first arrives at the query engine,

they each carries a single timestamp. We refer to these tuples as single-

ton tuples. They are usually assumed to be ordered by their timestamps

[KNV03, CF02, NWAea02].

The algorithm to purge a state by a singleton tuple is straightforward.

For a join operator A ./ B with window size W, since singleton tuples from

stream A are strictly ordered non-descendingly, a B tuple in state SB is

purged by an A tuple if and only if (TSA − TSB) > W .

Operators may combine two or more tuples into one complex tuple in

an operator, such as by a join operator. We refer to such a tuple as a combined

tuple. The original singleton tuples forming this combined tuple are called

the sub-tuples. A combined tuple may need to keep timestamps from all

11.4. TUPLE ARRIVAL ORDER AND EXECUTION ORDER 118

its sub-tuples in order to preserve all the timestamp information critical for

correct purging in the purge-join-insert process described above.

However, the combined tuples output from a join operator may not be

ordered by any column’s timestamps. Figure 11.3 depicts such a scenario.

In Figure 11.3, a binary join operator takes two inputs, named A and B

respectively. The input tuples each is marked by its arrival timestamp. The

output tuples combine the two timestamps of their sub-tuples. Assume

the input tuples arrive at the system from remote resources in the order of

A1, A2, B1, B2, A3. This order is referred to as tuple arrival order. We refer

to the order that tuples are actually being processed by the join operator

as tuple execution order. The tuple execution order is typically determined

by the system scheduler. As a result, it can be different from the tuple

arrival order. In Figure 11.3, we assume that the tuples execution order is

A1, B1, A2, B2, A3, which is different from the tuples’ arrival order. We can

see that the output tuples generated by this execution order are not ordered

by any of the sub-tuples’ timestamps: timestamps from A sub-tuples are

ordered as A1, A2, A1, A2, A3, A3, while timestamps from B sub-tuples are

ordered as B1, B1, B2, B2, B1, B2.

As a summary, if the tuple execution order inside an operator is not the

same as the tuple arrival order, it is likely that the combined tuple output

from this operator is not ordered by any of its sub-tuples’ timestamps. This

complicates the window-based tuple purging in the subsequent operators

in the query plan.

To solve this problem, in the literature it has been proposed to apply cer-

tain model that enforces the execution order of the tuples inside the query

11.5. TOTAL SYNCHRONIZED EXECUTION MODEL 119

A B

A1
A2
A3

B1
B2

A1B1
A2B1
A1B2
A2B2
A3B1
A3B2

TupleArrival Order: A1, A2, B1, B2, A3
TupleExecution Order: A1, B1, A2, B2, A3

Figure 11.3: Tuple Arrival Order and Execution Order

plan. We referred to such a model that a continuous query system adopts

to control tuple execution order as system execution model.

In Section 11.5, I introduce the most restricted execution model, named

total synchronized execution model and the corresponding tuple orderings

and timestamp representation. The discussions of other execution mod-

els adopted by current existing continuous query system are delayed to

Chapter 15. As will be discussed in Chapter 15, execution models other

than the total synchronized model introduce a new critical problem during

the migration process. This requires a carefully designed synchronization

process in order to guarantee correct plan migration.

11.5 Total Synchronized Execution Model

The total synchronized execution model executes tuples in a completely syn-

chronized fashion [KNV03, VNB03, ZRH04]. This enforces two properties

11.5. TOTAL SYNCHRONIZED EXECUTION MODEL 120

on the tuple processing. First, it enforces that the tuple execution order is

the same as the tuple arrivel order in the query processing system. This

guarantees that a singleton tuple with a smaller timestamp is always being

executed earlier than a singleton tuple with a larger timestamp. Secondly,

when a new tuple arrives into the system, the tuple is being processed by

all the operators in the query tree from bottom up until the final results, if

there are any, are being output from the root of the query tree. After this

complete execution, the next new tuple would then be processed following

the same procedure. This in fact restricts the functionality of the sched-

uler in the system, because operators are invoked in the order from the leaf

operator, where the new tuple is inserted, all the way to the root operator.

The total synchronized model is a highly restricted and thus simplified

execution model. Therefore it is commonly adopted by theoretical studies

on cost models in continuous query processing [KNV03, VNB03, ZRH04].

However, it does not give flexibility, such as scheduling flexibility, and thus

is typically not adopted in most actual systems for processing continuous

queries.

Using the total synchronized execution model has an impact on the

timestamp ordering of the combined tuples output by a join operator. Fig-

ure 11.4 depicts such a scenario. Here the tuple arrival order is the same

as the tuple execution order. Although the combined tuples output by the

join operator are not ordered by either of the sub-tuples’ timestamps, they

are indeed ordered by the larger timestamp within each combined tuple.

The larger timestamp in each combined tuple is underlined in Figure 11.4.

Taking advantage of this observation, I define the timestamp represen-

11.5. TOTAL SYNCHRONIZED EXECUTION MODEL 121

A B

A1
A2
A3

B1
B2

A1B1
A2B1
A1B2
A2B2
A3B1
A3B2

Tuple Arrival Order: A1, A2, B1, B2, A3
Tuple Execution Order: A1, A2, B1, B2, A3

B1
B1
B2
B2
A3
A3

Figure 11.4: Timestamps Order When Applying Total Synchronized Execu-
tion Model

tation of a combined tuple to be the maximum timestamp among all its

sub-tuples. As a result, the combined tuples would now be ordered by their

newly defined single timestamps, as depicted in Figure 11.4. Because the

tuples in any input queue feeding an operator in the query plan are now

ordered by their singleton timestamps, the straightforward state purging

algorithm by a singleton tuple, as described in Section 11.4, can now be ap-

plied to any operator in the query plan. In Chapter 15, I will define other

common execution models and their associated timestamp representations

in existing continuous query system, and will extend our migration solu-

tions as needed to address newly arising challenges when adopting these

execution models.

The migration strategies introduced in the following three chapters, in-

cluding Chapters 12, 13 and 14, assume that the total synchronized execution

model is used by the query execution system. This is an important assump-

11.5. TOTAL SYNCHRONIZED EXECUTION MODEL 122

tion and is rather restricted. In Chapter 15, I categorize execution models in

existing continuous query systems and then generalize our proposed mi-

gration strategies to support all the execution models.

123

Chapter 12

Migrating Join Query Plans

In this section, I describe the two migration strategies to migrate continu-

ous query plans with one or more joins. To focus on the key ideas, I first

make the simplifying assumption that the system adopts the total synchro-

nized execution model (see its definition in Section 11.5). This indicates

that (1) a joined tuple only keeps its maximal timestamp among all its sub-

tuples and (2) tuples in any queue of the query plan are ordered by their

timestamps. Later in Chapter 15 this assumption will be relaxed.

Several terms need to be made clear before introducing our proposed

migration strategies. I denote the time period of each online plan migration

process as migration stage, with the migration start time as TM start and the

migration end time as TM end. During the migration stage, I refer to the

states in the old box as old states, and states in the new box as new states. All

tuples existing in the old box at TM start are called old tuples, and any tuple

entering old and new boxes after that time point are called new tuples. That

is, it is not the system time that determines a tuple’s old or new status, but

12.1. MOVING STATE STRATEGY 124

rather the location of the tuple at TM start. If a tuple enters the old box any

time during the migration stage, although it has arrived in the system or

has been generated before TM start, it is still treated as a new tuple by the

old box. A combined tuple that has any of its sub-tuples marked as old is

referred to as an old tuple, since it still has some contents that had existed

in the old box at TM start. A combined tuple is considered a new tuple only

if all its sub-tuples are new.

12.1 Moving State Strategy

The basic idea of the moving state strategy is to safely move old tuples in old

join states directly into the join states in the new box without losing any

useful data. In this section, I detail the necessary steps of the moving state

strategy, including state matching, state moving and state recomputing.

In the moving state migration strategy, I first pause the execution of

the operators inside the old box. If the old box contains a sub-plan of a

complete query plan, then the rest of the operators in the query plan that

are outside the old box can still be processed as usual. After pausing the

execution of the old box and before any of the state operation can be carried

on, we should first clean the tuples accumulated in intermediate queues

inside the old box. This is the same as the “drain” step in the pause-drain-

resume strategy discussed in Chapter 10.

12.1. MOVING STATE STRATEGY 125

12.1.1 State Matching

State matching determines the pairs of join states, one in the old and one in

the new box, between which tuples can be safely moved. When the query

plan only contains join operators, we can match states by their state schema.

I define a state’s schema to be the same as the schema of all its tuples. A

tuple’s schema is defined as the combination of all its column IDs. Each

column ID is composed of the stream ID it belongs to, a dot and the name

of the column itself.

If two states have the same state schema, we say that those two states

are matching states. In Figure 12.1, states (SA, SB , SC , SD) exist in both boxes

and are matching states. States (SBC , SBCD) appear in the new box only,

and states (SAB, SABC) appear in the old box only. These are thus un-

matched states.

CD

BC

AB

QA QB QC QD

QABCD

AB

CD

BC

QA QB QC QD

QABCD

SABC SD

SAB SC

SA SB
SB SC

SBC SD

SBCDSA

Figure 12.1: Moving State Strategy

This simple schema-based state matching assumes that when two tu-

ples are joined, all columns are kept in the joined tuple. This is an reason-

12.1. MOVING STATE STRATEGY 126

able assumption when the query only contains multiple joins. For queries

that contain other types of operators, such as select and project operators,

the schema-based state matching is no longer sufficient. In Chapter 13, I

illustrate the problem of state matching in a query plan that contains other

types of operators and then describe the general techniques of state match-

ing for such query plans.

12.1.2 State Moving

After the state matching, the state moving step then moves tuples between

all pairs of matching states. Conceptually, for all matching states, I directly

move the tuples from the old state to its matching new state. This method,

although correct, is a waste of both time and storage. Thus in our CAPE

system [RDS+04], I instead use an improved method of state sharing by

utilizing the queue sharing technique.

In our system, a queue inside a query plan can have multiple operators

as its producers that append new tuples to the end of the queue, and mul-

tiple operators as consumers that fetch tuples from the top of the queue. I

refer to such a queue as shared queue. A shared queue stores one cursor for

each consumer that points to the position of the tuple that this consumer

would fetch next. Figure 12.2 shows the scenario where one input queue

is shared by two operators. Each has a different cursor pointing to its next

tuple in the shared queue.

For such shared queues, state moving can be achieved by simply creat-

ing a new cursor for each matching new state that points to the first tuple in

its matching old state. This indicates that all tuples in the old state are now

12.1. MOVING STATE STRATEGY 127

Input Queue Shared
by Both Operators

Queue
Cursor for
Operator 1

Queue
Cursor for
Operator 2

Operator 1 Operator 2

Figure 12.2: One Input Queue Shared by Two Operators

shared by both matching states. The cursors for the old matching states are

then dereferenced to complete this state moving process.

12.1.3 State Recomputing

Two questions remain regarding the unmatched states in both old and new

boxes: 1) Can we leave the unmatched states in the new box empty? 2) Can

we throw away the old tuples inside the unmatched states in the old box?

To answer the first question, we need to determine whether or not the

complete set of results can be generated if the unmatched states in the new

box are left empty. We again use the migration example shown in Figure

12.1, with the old box on the left and the new box on the right. Each tuple

in the output queue QABCD can be treated as a combination of four sub-

tuples A, B, C and D, originally from QA, QB, QC , and QD respectively. We

divide all the possible outcomes of the tuples in queue QABCD based on

the old/new status of their sub-tuples. Figure 12.3 lists all 16 possible cases

with their case #.

12.1. MOVING STATE STRATEGY 128

16
15

14
13
12
11
10
9
8
7
6
5
4
3
2
1

Case #

NewNewNewNew
OldNewNewNew

NewOldNewNew
NewNewOldNew
NewNewNewOld
OldNewOldNew
OldNewNewOld
NewOldOldNew
OldOldNewNew
NewOldNewOld
NewNewOldOld
OldOldOldNew
OldOldNewOld
OldNewOldOld
NewOldOldOld
OldOldOldOld
DCBA

Figure 12.3: Possible Old/New Combinations for Tuples in Output Queue
ABCD

I now show that by leaving the unmatched states in the new box empty,

tuples in some of the 16 cases may be lost. Figure 12.4 depicts the status of

the new box right after the state matching and moving steps. I show each

tuple inside the states and input queues by its sub-tuples’ old/new status.

All tuples in the input queues are new. And all tuples in the matching

states are old because they are copied over directly from the old box. The

two unmatched states SBC and SBCD, both empty, are shaded grey.

Assume that now we discard the old box and start executing the new

query plan with the unmatched states being empty. In the join operator

B ./ C in Figure 12.4, only new B tuples can be joined with old or new C

tuples in SC .1 Also, only new C tuples can be joined with old or new B tuples

in SB. Hence only the combined BC tuple with its two sub-tuples’ old/new

status as (new, old), (old, new) or (new, new) can be generated by the join

1In Figure 12.4 SC only contains old tuples. However, each new C tuple inserted into SC

may have been joined with B tuples, and after a while the state SC may contain both old
and new tuples.

12.1. MOVING STATE STRATEGY 129

operator B ./ C and later be inserted into state SBC . The combination

(old, old) would never be generated and inserted into SBC . This means

that among the 16 cases in Figure 12.3, cases #1, #2, #5 and #9 cannot be

generated by the query plan after migration, because those cases all require

that both sub-tuples B and C are old. The same kind of problem occurs

when leaving the other unmatched state SBCD empty.

By leaving unmatched states in the new box empty, we lose the all-old

combinations of sub-tuples in these states. This leads to the loss of some

result tuples as shown in the example above. So before restarting the ex-

ecution of the query plan, some computations need to be undertaken first

for the unmatched states in the new box in order to gain back those all-old

combinations. I refer to this step as state recomputing. I have designed a

recursive algorithm shown in Algorithm 6, recompute unmatched states(),

to compute the unmatched states in the new box. It is described for bi-

nary join operators to keep it simple, but could easily be modified to suit

multiple-input join operators as well.

AB

CD

BC

QB QC QDQA

Old
...

Old
...

Old
...

New
...

SA

SD

SB SC

SBCD

SBC

New
...

New
...

New
...

Old
...

Figure 12.4: Empty Unmatched States in the New Box

12.1. MOVING STATE STRATEGY 130

Algorithm 6 Recompute Unmatched States

During state matching step, mark a state as “matched” if it has a matching
state.
To start, set current op = new box root operator
Recompute Unmatched States(current op)

{
while current op has more state do

get the next state Si of current op;
get the child operator child op that has its output queue associated with
Si;
if child op is not new box operator then

continue;
end if

if Si is unmatched then

get child op l state;
get child op r state;
if either state of child op is unmatched then

Recompute Unmatched States(child op);
end if

Si = window join(child op l state, child op r state);
mark Si as “matched”;

end if

Recompute Unmatched States(child op);
end while

}

12.1. MOVING STATE STRATEGY 131

12.1.4 Safe State Discarding

Now we need to address the question if it is safe to discard the old tuples

inside those unmatched states in the old box. As for the example in Figure

12.1, we have to determine if we can discard the old tuples in states SAB

and SABC inside the old box on the left. To answer this question we need

to know if any of those old tuples in the unmatched old states may have the

potential to join with any new tuples.

Taking the unmatched old state SAB in the old box in Figure 12.1 as an

example, clearly it can be discarded if the following condition holds: All

sub-tuples A and B of the AB tuples in SAB also exist in states SA and SB

respectively. This is because the states SA and SB are already shared by the

new states in the new box. This way no data would be lost by discarding

the unmatched old state SAB. However, we can show that the above con-

dition cannot be guaranteed. For example, inside the join operator A ./ B

in Figure 12.1, some tuples A and B in SA or SB may have already been

purged by newer tuples from the input queue QB and QA. Before these

tuples are being purged from SA and SB , they may have already joined

with other B and A tuples and the joined AB tuples may have already been

inserted into SAB. Hence not all sub-tuples A and B in SAB are necessarily

present in SA and SB. After the state matching, moving and recomputing

state, if we discard the unmatched old state SAB, some tuples in state SAB

that may still be able to join with a new tuple C may then be lost. Then the

results of the query plan may be incomplete.

To decide if an unmatched old state can be safely discarded, I first define

12.1. MOVING STATE STRATEGY 132

the old state closure property. If this property is satisfied, an old unmatched

state can be safely discarded during the migration process without losing

any useful information.

Old State Closure Property: For a tuple in an unmatched old state, if one of

its sub-tuples does not exist in any of the matched old states, then it is invalid to

join this tuple with any future incoming tuples due to window constraints.

It is apparent that if such a property is satisfied, discarding the old states

will not lose any useful tuples. This is because all tuples in the unmatched

states contain data that either already exist in the old matched states or is

useless for future processing.

I now show that by using the totally synchronized execution model, this

property is guaranteed to hold. Thus the old unmatched states can always

be safely discarded without losing any useful data. I use the example in

Figure 12.1 to illustrate this point. I use Tpurged max to denote the largest

timestamp among the sub-tuples A and B in the state SAB that do not exist

in SA and SB, respectively. These tuples must have been purged by tuples

from either QA or QB with timestamps larger than Tpurged max + W . So

if we know that all C tuples in QC at that point have a timestamp larger

or equal to Tpurged max + W , then they are not able to join with any tuples

in SAB that contain sub-tuples A and B that do not exist in SA and SB.

This indeed can be guaranteed by the totally synchronized model. When

using this execution model, the tuple arrival order is the same as the tuple

execution order. If tuples with a timestamp larger than Tpurged max+W have

been processed from QA or QB, then all tuples in QC must have timestamps

12.1. MOVING STATE STRATEGY 133

larger than Tpurged max + W .

Therefore when using the totally synchronized execution model, it is

safe to discard the unmatched states in the old box, given that tuples ac-

cumulated in intermediate queues in the old box are being cleared at the

beginning of the migration process.

However, I will show in Chapter 15 that other types of execution mod-

els exist in the literature, for which the state closure property does not

hold. For these other execution models, an extra synchronization process

is needed to make sure that all useful information in the unmatched states

is also contained in the matched old states before the unmatched states can

be discarded.

12.1.5 Overall Moving State Algorithm

Putting all the pieces together, I now show the complete algorithm for our

moving state strategy in Algorithm 7.

Algorithm 7 Moving State Migration

clean accumulated tuples();
connect input and output queues of old and new boxes;
match states(old box, new box);
move states(old box, new box);
recompute unmatched states(root op of new box);
disconnect old box from current query plan;
start executing query plan with new box;

Once the moving state migration starts, after clean accumulated tuples(),

no new results are produced until the steps of matching, moving and re-

computing states are finished. The length of this output silence is closely

12.2. PARALLEL TRACK STRATEGY 134

related to the amount of tuples that need to be moved or recomputed dur-

ing the migration stage. This duration of output silence may be less de-

sirable for applications that are in favor of a more steady output rate. To

solve this problem, I design the second migration strategy, the parallel track

strategy, to continuously deliver outputs even during the migration stage.

12.2 Parallel Track Strategy

The basic idea for the parallel track migration strategy is that at the migration

start time, the input queues and output queue are connected and shared

between the old box and the new box, using the queue sharing technique

depicted in Section 12.1.2. Both boxes are then being executed in parallel,

as shown in Figure 12.5, while waiting for all old tuples in the old box to be

gradually purged. During this process, new outputs are continually being

produced as well by the query plan.

When the old box contains only new tuples, it is safe to discard the old

box. This is because all old tuples have finished their duty in terms of

contributing to the generation of output results from the old box. Since

we have been executing the new box in parallel with the old box when the

migration first starts, all the new tuples now in the old box exist in the new

box as well. So if the old box is discarded at this time, no useful data will

be lost.

12.2. PARALLEL TRACK STRATEGY 135

ABCD

ABC

AB

A B C D

ABCD

ABCD

BCD

BC

Figure 12.5: Parallel Track Strategy

12.2.1 Correctness of the Results

Correctness of the results involves two aspects: (1) the outputs are com-

plete and (2) the outputs do not contain duplicates. I use the example in

Figure 10.1 to show that by going through the parallel track migration to

transfer the query plan from the left to the right, all 16 possible sub-tuple

combinations of any output tuple ABCD, as listed in Figure 12.3, can still

be obtained. In our parallel track strategy, both old and new boxes are run-

ning in parallel until all the tuples with old status are purged from the old

box. By this time, the output tuples that contain any old sub-tuple, as in

the cases #1-#15, have already been generated by the old box, either before

(case #1) or during the migration stage (cases #2-#15). Since the new box

starts its execution right after TM start, its states are initially all empty, and

all the new tuples fed into the old box are also being processed by the new

box. All output tuples from the new box will have all their four sub-tuples

marked as new, reflecting case #16 in Figure 12.3. Thus all 16 cases are cov-

ered by either the old box or the new box.

12.2. PARALLEL TRACK STRATEGY 136

12.2.2 Duplicate Elimination

We must also ensure that no duplicate tuples are being generated. If we

use the parallel track strategy described above, although the old box will

cover all 15 cases consisting of at least one old sub-tuple, it may also gener-

ate the all-new sub-tuple combination belonging to case #16 in Figure 12.3,

duplicate to the output results from the new box.

To solve this duplication problem, a naive approach would be to discard

from the old box any tuples with all-new sub-tuples. However, this method

is too aggressive and will lose some must-have tuples. For example in the

join operator B ./ C , we cannot discard any combined tuple AB from input

queue QAB with both sub-tuples A and B marked as new, because this AB

tuple may still be able to join with an old C tuple in state SC , and generate

output tuples that belong to either case #8 or case #14 in Figure 12.3. Even

if the AB tuple ends up joining with a new C tuple, the joined tuple ABC,

with all its sub-tuples marked as new, may still join with an old D tuple in

state SD. So the final joined tuple ABCD belongs to case #15, which can

only be generated by the old box.

Thus the root join operator of the old box is the only safe place to elim-

inate duplicates. This is done by preventing a new tuple from joining with

another new tuple. Hence if two tuples that are about to be joined are both

new, we simply skip the join step in the regular purge-join-insert symmetric

join algorithm. The purge and insert steps are however still undertaken as

usual.

12.2. PARALLEL TRACK STRATEGY 137

12.2.3 Timestamp Order Preservation

As described in Section 11.4, correct timestamp order must be preserved

to ensure that the correct results are being generated. During the parallel

migration stage, both the old and the new box share the same output queue

into which both will insert output tuples. Keeping the timestamp order of

the tuples in the output queue requires that both the old and the new box

coordinate with each other to output tuples in the proper order.

Two characteristics of our parallel migration strategy assist in develop-

ing a valid method for preserving timestamp order. First, since each box is

executed as a valid sub-query plan, the timestamp order among the output

tuples from each box is preserved. Second, any output tuple from the old

box will be guaranteed to have at least one sub-tuple being old (arrived ear-

lier), and all output tuples from the new box will have all sub-tuples as new

(arrived later). This means that any tuple generated by the new box will

have a larger timestamp than any tuple generated by the old box.

Taking advantage of those two characteristics, I develop an easy yet

effective method to preserve the timestamp order in the parallel track strat-

egy. During the migration stage while both boxes are executing, we only

output tuples generated by the old box into the shared output queue. Any

output tuples generated by the new box are instead held in a temporary

buffer. When the old box is removed, all output tuples held in the tempo-

rary buffer are then inserted into the output queue all at once.

12.2. PARALLEL TRACK STRATEGY 138

12.2.4 Overall Parallel Track Algorithm

As described above, although join operators in both boxes are executed

in parallel during the migration stage, besides the regular join operation,

they may have other tasks to finish: The old box root operator needs to

avoid joining two new tuples to prevent duplicate results, and the new box

root operator needs to hold any results during the migration stage in a

temporary buffer to preserve the timestamp order. We use the W Join()

method for the regular purge-join-insert symmetric window join algorithm

described in Chapter 11. The methods used by the operators in the old

box and the new box are referred to as W Old Join() and W New Join()

respectively.

Algorithm 8 Parallel Track Strategy

Pause execution of old box at TM start;
Connect input and output queues of old and new boxes;
Start a separate thread to run Monitor Old Box();
while No signal from thread Monitor Old Box() do

Old operators run W Join Old();
New operators run W Join New();

end while
Disconnect old box from current query plan;
Operators in new box resume running W Join();

To determine when to finish the migration, each operator has an IF FINISHED

flag initialized to be false. During the migration stage, each operator in

the old box checks periodically to see if all old tuples have been purged

from its states. Once this is the case the operator sets its IF FINISHED

flag to true. The system also runs a light-weighted monitor method called

Monitor Old Box() in a separate thread to check at intervals all the IF FINISHED

12.3. COST ANALYSIS 139

flags of the operators in the old box. If within a scan all the flags are de-

tected as true, the monitor method sends a signal to the main thread to tell it

to finish the migration by disconnecting the old box from the current query

plan. The pseudo-code for the overall parallel track migration strategy is

shown in Algorithm 8.

12.3 Cost Analysis

In this section, I describe cost models for estimating the migration length

and the system processing time required by each migration strategy.

12.3.1 Analysis of Moving State Strategy

To estimate how long it takes to finish a moving state migration, we need

to add up the time spent on each migration step, including clean accumu-

lated tuples, state matching and moving, and state recomputing. The cost

model utilizes the binary nested-loop join algorithm with time-based win-

dow constraint. For simplicity, all join operators in the query plan are as-

sumed to have the same window size. The cost models can however easily

be extended to cover other join algorithms and different window sizes. I

also assume that the system has enough computing power and memory

resources to keep up with the query processing without much delay given

the incoming data load.

Given the sufficient-system-resources assumption, new tuples are gen-

erally being processed immediately without being accumulated in the in-

put queues. So the time spent on the clean accumulated tuples() method

12.3. COST ANALYSIS 140

Table 12.1: Terms Used in Cost Model

Term Meaning

N Number of operators in the old box

M Number of operators in the new box

Tm Time spent for each string comparison

Tc Time spent to create a new cursor

λA Average tuple input rate from QA

λB Average tuple input rate from QB

σAB Reduction factor of join operator A ./ B

W Global time window constraint

Tj Time spent to join a pair of tuples

Ts Time spent to insert one tuple into a state

|SA| Number of tuples in state SA

|SB| Number of tuples in state SB

is likely to be small compared to other migration steps and is thus not

counted in the model. The time spent on state matching and moving is

related to the total number of states in both boxes. State matching is ba-

sically a string matching between two lists of state IDs. Moving a state is

creating a new cursor to a state so to enable its sharing between two match-

ing states. Thus its costs are minimal.

A list of terms and their meanings used in our model are listed in Table

12.1. The time spent on state matching Tmatch and state moving Tmove can

be calculated as below. Here I use the minimum of N and M to estimate the

upper bound on number of matching state pairs.

Tmatch = 4NMTm and Tmove = 2min(N,M)Tc

In order to estimate the time spent on the state recomputing step, I de-

12.3. COST ANALYSIS 141

velop a general model to estimate the time to recompute a single state. This

model can then be applied to each state that needs to be recomputed to get

the total recomputation time. Assume we have a join operator A ./ B

with two input queues QA and QB, two states SA and SB , and one output

queue QAB. Without loss of generality, the tuple A and B each can be ei-

ther a singleton or a combined tuple. Suppose that the state SAB needs

to be recomputed. This is done by joining tuples from SA and SB us-

ing the purge-join-insert symmetric join algorithm but skipping the purge

step. The time spent on this recomputing process can be formulated as:

TSAB
= Tj |SA||SB |+ Ts|SA||SB |σAB .

Given the time window W and input rates from inputs A and B, the

state sizes of SA and SB, represented as |SA| and |SB |, can be estimated as:

|SA| = λAW , and |SB | = λBW .

Putting the above formulae together, we get the time for recomputing

SAB from SA and SB as:

TSAB
= TjλAλBW 2 + TsλAλBW 2σAB

= λAλBW 2(Tj + TsσAB)

(12.1)

If another unmatched state above SAB needs to be recomputed, accord-

ing to Equation 12.1, the output rate λAB is then required. This rate can be

estimated using Equation 12.2.

λAB = λA|SB|σAB + λB |SA|σAB = 2λAλBWσAB (12.2)

12.3. COST ANALYSIS 142

If we use TS to denote the total time spent on recomputing all un-

matched states in the new box, the total migration length of the moving

state strategy TMS can be estimated using the following model:

TMS = Tmatch + Tmove + TS (12.3)

12.3.2 Analysis of Parallel Track Strategy

We denote TPT as the length of the migration stage for the parallel migra-

tion strategy. For this strategy, all old tuples (tuples with at least one old

sub-tuple) need to be purged from the old box in order to finish the migra-

tion stage. Suppose that h (h >= 1) is the height of the query tree inside the

old box. We analyze the time spent on the parallel track migration stage in

two cases:

TM-start

TM-end

Timeline

New New

OldOld

New New

W

W

Old Old

Figure 12.6: 2W to purge all old tuples

1) h = 1. In this case the query tree has only one level of join operators.

For a join operator inside the old box to purge all old tuples from one of

its two states, the join operator must process new tuples from the input

that arrive in the next W time units. Given that the system has enough

12.3. COST ANALYSIS 143

computing power, TPT = W .

2) h > 1. This means that in the old box there is at least one join operator

which is above another join operator. Figure 12.6 depicts the old and new

tuples along a timeline. The migration start and end time is marked to the

right of the timeline. From the figure we can see that when the migration

begins, W time window’s new tuples from the box input queues are needed

to purge old tuples inside the states of box leaf operators. However, as these

new tuples are used to purge old tuples, they may also join with some

of the old tuples. These joined results in turn are being inserted into the

state of the join operators above the box leaf operators. Because the joined

tuples contain an old sub-tuple, they are treated as old tuples and need to

be purged as well. In order to do so, the old box needs to process another

W time window’s new tuples to completely purge these old tuples from the

old box. So in this case, TPT = 2W .

Other even older tuples may exist in the old box when the migration

first starts, represented by the first line of “old” in Figure 12.6. These tuples

will be purged by the first W new tuples after migration starts. They will

thus not be able to join with any of the new tuples.

As a summary, given sufficient system processing power, TPM has a

linear relationship with the global window size W. It can be formulated as:

TPT =

W if h = 1

2W if h > 1

(12.4)

Equation 12.4 shows that in order to complete a parallel track migration,

12.3. COST ANALYSIS 144

both old and new boxes need to process at most 2W worth of new tuples.

However, this is valid only when the system has enough processing power

so that a tuple arrives in the system can be processed immediately. If the

system processing power is not sufficient, the actual migration length may

be longer than 2W.

I now give the cost model to estimate the cost of processing during the

parallel track migration. As in the cost analysis for the moving state strat-

egy, I first develop general cost formulae to estimate the processing cost

spent on any one join operator (let us denote it as A ./ B) in the old box

and any join operator (let us denote it as B ./ C) in the new box. I then

apply the general formulae to all operators in the query plan. The total cost

is the sum of the cost of each operator.

I first compute TAB, the total cost of processing tuples in 2W timeframe

in operator A ./ B inside the old box. It is easy to see that for each new

tuple A, the average number of tuples B that will be purged from state B is

λb
1
λa

, and vice versa. The same method in Equation 12.2 can be applied to

compute the tuple output rate of operator A ./ B.

TAB = Cost of Purge + Cost of Insert + Cost of Join

= 2W [Ts(
λa

λb

λb +
λb

λa

λa + λa + λb) + Tj(λa|SB|+ λb|SA|)]

= 2W [2TjλaλbW + 2Ts(λa + λb)]

(12.5)

One major difference between operators inside the old and the new

boxes is that the states of operators inside the new box all start empty. The

12.4. COMPARING THE COST OF MIGRATION STRATEGIES 145

sizes of the states keep on increasing with no tuples being purged until the

Wth time unit, after which tuples begin to be purged and the state size on

average is limited by the window size W. This leads to different methods of

computing processing cost and tuple output rate for a join operator inside

the new box. These are described in Equations 12.6 and 12.7, respectively.

TBC = Cost for the first W + Cost for the second W

= W [Ts(λb + λc) + Tj(λa

∫ W

0

λbtdt + λb

∫ W

0

λatdt)]

+ W [2TjλaλbW + 2Ts(λa + λb)]

(12.6)

λBC =

∫ t

0
2λbλcσbctdt if t ≤W

2λbλcσbcW if t > W

(12.7)

12.4 Comparing the Cost of Migration Strategies

From the cost analysis from the above, we can see that the cost of moving

state strategy is determined mainly by the cost of recomputing unmatched

state, which is then determined by parameters such as window size, selec-

tivities and tuple arrival rates. Intuitively, the cost of recomputing states

does not exceed the cost of processing all the tuples in the states inside the

existing query plan. Since each state in the query plan is bounded by one

window constraint. So we can estimate that the cost of moving state strat-

egy is roughly the cost of processing one window worth’s of new tuples.

However, the parallel track strategy has to process two window worth’s

12.4. COMPARING THE COST OF MIGRATION STRATEGIES 146

of new tuples in order to complete the migration process. Although dur-

ing this process, new outputs can be generated, which cannot be achieved

by the moving state strategy, the optimizer usually expects the migration

process to be finished as soon as possible so that the advantage of the new

query plan can be fully realized. Furthermore, the 2W time frame for the

parallel track strategy does not mean that it will take 2W time for the mi-

gration to finish. This is only true when the system has enough resources

to keep up with the newly arrived tuples without delay. If the system does

not have enough resources, the migration process will take longer than 2W.

However, the very point of activating runtime optimization is to recover a

query plan that is not good enough to keep up with the current workload.

So we should expect that when runtime migration is in force, the system

resources are almost certain to be not enough, and therefore the parallel

track strategy will most likely takes more than 2W time to finish.

So in most cases, the moving state migration strategy is the more effi-

cient one between these two strategies in terms of system processing cost.

For applications that prefer low execution cost to smoother output rates,

the moving state strategy should be the favored strategy between these

two migration strategies.

However, there are still situations when the parallel track strategy would

be favored over the moving state strategy. The parallel track strategy was

initially designed to solve the problem of output silence that might be ex-

perienced by using the moving state strategy. Because the moving state

strategy requires to pause the execution of the sub-plan contained in the

migration box until the migration is done, it may experience a period of

12.4. COMPARING THE COST OF MIGRATION STRATEGIES 147

output silence. For example, if the migration box covers the whole plan,

or if it covers the sub-plan that without executing it, the query would not

be able to output any results, no output will be generated until the mov-

ing state migration is done. Applying the parallel track strategy does not

have such a problem because new output will continuous generated even

during the migration process. If the smooth output is one of the quality

of service that the application wants to have, it may be willing to pay the

price of higher migration cost in case of plan migration.

148

Chapter 13

Migrating Queries with SPJ

Operators

In this chapter, I extend the migration strategies proposed in Chapter 12

to support the migration of query plans with Select, Project and Join (SPJ)

operators. Both select and project operators are stateless operators, which

means they do not need to store any information in order to produce re-

sults continuously. Migrating a query plan that contains solely stateless

operators, such as select and project, only involves draining tuples in inter-

mediate queues. So the pause-drain-resume strategy discussed in Chapter 10

would be sufficient because no state is involved in the migration process.

However, mixing select and project operators with the stateful join op-

erators can create new optimization opportunities and along with them

new migration problems. The optimization is no longer restricted to the

cases of switching join orderings, as discussed in Chapter 12. Below I first

13.1. QUERIES WITH SELECT AND JOIN 149

describe examples of possible optimization scenarios for SPJ queries. I then

describe the new migration problems followed by our proposed solutions.

13.1 Queries with Select and Join

While select is usually applied before join to filter out useless tuples early

on, there are scenarios where their orders must be switched. This opti-

mization is particularly useful for multiple join processing, when sharing

of common operators can fluctuate from being beneficial to being non-

beneficial depending on the data characteristics.

A.a2 = B.b1

BA

σA.a1 > 9 σB.b1 < 2
A.a2 = B.b1

A

A.a2 = B.b1

σA.a1 > 9

AB B

(b) Shared Plan(a) Separate Two Plans

σB.b1 < 2

Figure 13.1: Opportunities in Switching Select and Join in Continuous
Query Processing.

Figure 13.1 shows an example of such a scenario. Suppose the query

engine processes two continuous queries (depicted in Figure 13.1(a)) that

have a common join and two distinctive selects. If the two queries are pro-

cessed separately, each would have the select pushed below the join to re-

duce intermediate results. On the other hand, it is a common practice for an

optimizer to generate a query plan that shares the common join operator as

13.1. QUERIES WITH SELECT AND JOIN 150

shown in Figure 13.1(b). For such a shared plan, the two different select op-

erators have to be applied after the join operator. For the two query plans

depicted in Figure 13.1, each can be the better one than the other one under

certain stream characteristics. For example, when the two select operators

have very low selectivities, that is, the two selects can filter out most of the

input workload, it may be better to adopt a solution that uses a separate

query plan per query. As depicted in Figure 13.1, the two selects can filter

out most of workload before it even reaches the join operator. For other

instances, sharing of the join computation can be better than executing the

two query plans separately.

For continuous query processing, since the stream characteristics can

change over time, the optimizer may need to switch between the two plans

depicted in Figure 13.1 at run time. The core of such query plan change

involves indeed a switch between select and join. Clearly the migration

strategies proposed in Chapter 12 now need to support the switching of

select and join at run-time.

The parallel track migration strategy, one of the two migration strate-

gies proposed in Chapter 12, is a general approach that does not rely on the

details of the state purging in the query plan. So it naturally supports the

switch of select and join. No changes need to be made to this strategy.

However, the moving state strategy proposed in Chapter 12 may or may

not apply for switching select and join, depending on the direction of the

switch. As shown at the top of Figure 13.2, if the optimizer were to migrate

from the old plan on the right to the new plan on the left, it would need

to pull the select up above the join. In this case the two states in the old

13.1. QUERIES WITH SELECT AND JOIN 151

plan (S′A and S′B) match with the two states in the new plan (SA and SB)

respectively. The old states can be copied directly to their corresponding

matching states in the new query plan although the tuples in state S′A have

already passed the select filter. This is because the tuples in SA in the new

query plan on the left would eventually have to eventually pass the select

operator. Thus copying the contents in S′A directly to SA does not alter the

results of the query plan in any way.

σA.a1 > 9

A.a2 = B.b1

B

A

A.a2 = B.b1

BA

σA.a1 > 9
20

17

18

22

20

17

18

22

1220

2010

Both States MatchingSA
SB

SA’
SB’

147

185

1220

173

2010

σA.a1 > 9

A.a2 = B.b1

B

A

A.a2 = B.b1

BA

σA.a1 > 9

147

185

1220

173

2010
20

17

18

22

20

17

18

22
147

185

1220

173

2010

SA
SB

SA’
SB’

1220

2010

SB’ matching SB

SA’ = SA filtered by A.a1>9

State filtering

Figure 13.2: State Filtering.

On the other hand, as depicted in the lower half of Figure 13.2, if the op-

timizer were to migrate the old query plan on the left to the new query plan

on the right, it would need to pull the select up through the join operator.

State SB still matches with S′B and can be copied directly to S′B. However,

although state SA matches with S′A by tuple semantics, it cannot be directly

13.2. QUERIES WITH PROJECT AND JOIN 152

copied over to S′A. This is because the tuples in SA are yet to be filtered

by the select operator, while the tuples in S′A are expected to have already

been filtered by the select at this point. Copying the tuples in SA directly

to S′A would result in invalid tuples being present in S′A, thus causing the

query plan to create incorrect results.

To solve this problem, we add a new operation, called the state filtering,

into the moving state migration strategy before the step of moving state.

The state filtering operation applies the relevant select predicate to a state

in the old query plan before copying it over to the corresponding matched

state in the new query plan. This can filter out unwanted tuples from the

old state and prevent the new query plan from generating incorrect results.

As illustrated above, the state filtering is only necessary when the select

operator is being pull up through a join operator.

13.2 Queries with Project and Join

For a continuous query plan that contains project and join, a project and

a join may also be switched in the context of sharing or un-sharing in the

multiple query execution scenario as discussed in Section 13.1. A project

may be pushed down or pull up through a join operator as the stream char-

acteristics change. The parallel track strategy again naturally supports this

new optimization scenario because it is general and does not depend on

the state operations inside both the old and the new migration boxes.

However, necessary changes need to be made to the moving state mi-

gration strategy. A project operator takes an input tuple and removes some

13.2. QUERIES WITH PROJECT AND JOIN 153

of its columns, which means that it changes the semantics of the input tu-

ples. Therefore by switching a project and a join, the semantics of states

may be altered as well. Figure 13.3 depicts the two directions of switching

a project and a join and the new operations that need to be added to the

moving state strategy.

When the project is pulled up through a join, as shown in the top half

of Figure 13.3, the contents in the old state S′B can be copied directly to its

matching state SB. However, the old state S′A may or may not be copied di-

rectly to the new state SA, depending on the system implementation of the

project operator. In some systems such as our CAPE system [RDS+04], the

project operator filters columns according to the column positions. This in-

dicates that the project operator in the new plan on the left is expecting the

tuples output by the join operator to have three columns, and the second

and the third column are therefore kept (A.a2 and B.b1) after the project.

For such an implementation, copying the tuples in S′A directly to SA would

cause problems for the project operator because tuples in S′A only have one

column instead of two.

To solve this problem, we add another state operation, called the state

stuffing, which adds a null column to the appropriate position of tuples in

the old state before copying them over to states in the new query plan.

This operation is only necessary when the project operator is implemented

as discussed above. Another possible implementation of the project oper-

ator is to remove tuple columns based on their semantic IDs. In this im-

plementation, the project operator is able to identify the semantics of each

tuple column and keep the correct columns without considering their rela-

13.2. QUERIES WITH PROJECT AND JOIN 154

tive positions in the input tuple. For such project implementation, it is not

necessary to apply the state stuffing operation.

πA.a2

A.a2 = B.b1

A

A.a2 = B.b1

BA

πA.a2

14x

18x

12x

17x

20x
20

17

18

22

20

17

18

22 SA = SA’ adds stuffing A.a1
Stuffing “x” means it matched

with any value.

SA SB

SA’ SB’

B

πA.a2

A.a2 = B.b1

A

A.a2 = B.b1

BA

πA.a2

147

185

1220

173

2010 20

17

18

22

20

17

18

22
147

185

1220

173

2010

SA SB

SB’

B

14

18

12

17

20

a1 a2 b1

SA’ = SA projected by A.a1

SA’

State Projecting

State Stuffing

Figure 13.3: State Projecting and State Stuffing.

A project can also be pushed down through a join operator, as illus-

trated in the bottom half of Figure 13.3. It would be split into multiple

project operators as necessary. The old state SB can be copied directly to

the new state S′B . However, if the old state SA is directly copied to the new

state S′A, the tuples in the new state S′A would have two columns, while in

fact they should only have one column because the project operator ΠA.a2

should by now already have been applied to these tuples in states S′A. The

same problem applies to SB and S′B.

Therefore for the moving state migration strategy, we add a state op-

eration state projecting to project redundant tuple columns from states to

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 155

guarantee the correctness of the final query results.

13.3 State Matching Methods for SPJ Queries

As discussed in Section 12.1, the state matching step is an important step of

the moving state migration. In Section 12.1.1, we have discussed a rather

simplistic first state matching strategy based on comparing the schema of

state tuples. Two states that have the same schema are matching states

and their contents can be copied directly from one to the other during plan

migration.

However, this simple schema-based state matching method works only

when the query plan contains just join operators. For query plans that also

contain select and project operators, this state matching method becomes

insufficient. This is because a project operator placed before a join instead

of after filters out some columns from a tuple and thus may change the se-

mantics of a join state. This causing two join states (one in the new plan and

one in the old plan) that should have been matched become un-matched

when attempting to use the simple schema-based state matching method.

Furthermore, a select placed before a join instead of after filters out some

tuples from a join state. These filtered tuples would have been in the same

join state if the select is applied later than the join. Therefore an old join

state and a new join state in the new plan may have the same state schema

but different sets of tuples. Their contents cannot be copied directly from

each other.

We have designed two new state matching methods for SPJ queries.

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 156

The two methods are designed for two different runtime optimization ap-

proaches. One method is used for incremental optimization, while the other

can be used for total re-optimization. The incremental optimization optimizes

the query plan step by step starting from its current plan shape [ACC+03].

Each step applies one of the rewriting rules to the existing query plan,

changing the plan to one of its neighbors. For example, switching two con-

secutive join operators or pushing a select operator through a join below

it. The total re-optimization, usually used in traditional static query opti-

mization, searches the complete or part of the query plan space until a

good query plan is found. It does not start with the current shape of the

query plan. Below we describe the two different state matching methods

designed for the two different optimization approaches respectively.

13.3.1 State Matching for Incremental Optimization

When the incremental optimization approach is applied, we are able to

record the changes made to the query plan step-by step. The state matching

method can take use of this feature.

We assign a temporary distinctive state ID to each state in the part of

the query plan that is to be optimized. During each optimization step, the

optimizer records three changes made to the query plan. First, if two joins

are switched, the new state created by this switch is given a new distinctive

state ID. Secondly, if the rewriting is to push down select or project through

a join, the corresponding select or project conditions are recorded in the

affected states of the join operators as interpretation instructions. Thirdly,

if the rewriting is to pull up a project through a join, the columns that need

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 157

to be stuffed are also recorded in the corresponding operator state.

Figure 13.4 shows an example when the rewriting is to push down a

select. In this example, the join state affected by this switch is the state SB

and thus the select condition σ(B.b1 > 9) is recorded in this state. After the

optimization is done, the states in the newly generated plan can be matched

with those in the old plan by comparing state IDs. Only an old state and a

new state that have the same state ID would be matched with each other.

When moving tuples from an old state to a new matching state, according

to the migration instructions stored in the join states, the corresponding

state operation, including state filtering, state projecting and state stuffing,

would be applied to the state before copying it over to the matching new

state.

σB.b1 > 9

A.a1 = B.b1

B B

σB.b1 > 9

B.b1 = C.c1

C

SA
SB

σB.b1 > 9

SA SB

A

Figure 13.4: State Recording for One Step in Incremental Optimization.

Figure 13.5 depicts another example of applying the migration instruc-

tion scheme described above. Note that the query plan shown in this ex-

ample can be treated as a subplan inside a bigger query network. Suppose

the old sub-plan applies a select and project after two join operators. The

optimizer decides to push down select and project and also to switch the

two joins, according to current data statistics. All join states are each as-

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 158

signed a unique state ID in the range of [1, 4] before optimization starts. An

incremental optimizer would push the select and the project step-by-step

through the two join operators, and switch the two joins in another step.

One project may be broken into several projects if the projecting columns

exist in multiple inputs. The same applies to the select operator. As we can

see from Figure 13.5, when the two joins are switched, the newly generated

join state is assigned a unique state ID 5. When the select is pushed through

a join, the select predicate is recorded in the affected join states, here states

SBC and SC . The projecting columns are also recorded in an affected join

states when a project is pushed down through a join. In Figure 13.5, all the

join states are affected when pushing down the project. After the optimizer

has generated the new query plan, the states between the old plan and the

new plan are matched by comparing their temporary IDs. During state

moving, an old state that has a matching new state in the new plan must

apply the state operations indicated by the migration instructions recorded

in the corresponding matching new state.

A.a2 = B.b1

BA

σC.c1 > 9

πA.a2, B.b1, C.c1

B.b1 = C.c1

C

A.a2 = B.b1

B

A

σC.c1 > 9

SA
πA.a2

B.b1 = C.c1

C

πA.a2

πB.b1 πC.c1

SBC
πB.b1, C.c1
σC.c1 > 9

SB
πB.b1

SC
πC.c1

σC.c1 > 9

SAB SC

SBSA

1 2

3 4

1

2
4

5

Figure 13.5: State Matching for Optimization by Steps.

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 159

13.3.2 State Matching for Total Re-Optimization

Next we describe a new state matching algorithm, referred to as the bit-map

algorithm, for the total re-optimization method. A state matching method

for total re-optimization needs to have two functionalities. First, it needs

to find “matching” old states and new states. Second, it needs to apply

appropriate state operations to old states in order to get the correct state

contents and copy them to the matching new states.

To achieve the two functionalities, the proposed bit-map algorithm first

assigns a unique state ID to each join state based on the inputs that tuples

in this state come from. For example, as shown in Figure 13.6, state SA

only contains tuples from input stream A, so its ID is SA. The join states in

Figure 13.6 are all marked by their state IDs, denoted as subscripts of the

state names.

A.a2 = B.b1

BA

σC.c1 > 9

πA.a2, B.b1, C.c1

B.b1 = C.c1

C

A.a2 = B.b1

B

A

σC.c1 > 9

SA

B.b1 = C.c1

C

πA.a2

πB.b1 πC.c1

SBC

SB SC

SAB SC

SBSA

σC.c1>9πC.c1πB.b1πA.a2

Array of predicates (select and project)

0000 0000

0000 0000

1000 0111

0100 0011

0000 0000

0000

0000

0000

0000

Figure 13.6: State Matching for Traditional Search-based Optimization.

The algorithm then generates an array of predicates. Simple boolean

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 160

expressions of all predicates, with each predicate representing a select con-

dition or a single column of a project operator, are collected into an ordered

array of predicates. As shown at the top of Figure 13.6, in this example, the

array of predicates contains one select and three project predicates.

After the array of predicates has been determined, each join state is then

assigned a bitmap with the number of bits equal to the size of the predicate

array. A bit “1” indicates that the corresponding predicate in the predicate

array has been applied to tuples in this state, while a bit “0” means the

opposite. All bit maps are initialized to be 0. Each stream is also assigned

an all-zero bitmap.

Now the bit-map algorithm starts to propagate the all-zero bitmaps bot-

tom up starting from each stream until reaching the root operator in both

the old plan tree and the new plan tree, using the following two propaga-

tion rules:

1) If the next parent operator is a select or a project, set the correspond-

ing bit in the propagating bitmap to “1”.

2) If the next operator has a state that stores tuples from the input that

the propagating bitmap is currently located, merge the existing state bit

map with the propagating bitmap using bit-wise OR, and assign the new

bitmap to be the state bitmap. The propagating bitmap is also set to be

equal to the newly generated bitmap.

The above propagation rules are applied repeatedly until the propagat-

ing bitmap reaches the root operator. The same propagation procedure is

applied starting from each stream in the query tree. This allows the bitmap

to be propagated following all possible tuple flows in the query plan. The

13.3. STATE MATCHING METHODS FOR SPJ QUERIES 161

orders of propagating paths do not matter. Therefore, after the complete

bitmap propagation procedure, the bitmap in each state records exactly the

select or project predicates in the predicate array that have been applied to

tuples in this state. Figure 13.6 depicts the bitmaps inside each state at the

end of the bitmap propagation procedure. For example, none of the select

or project predicates have been applied to tuples in state SB in the old plan,

so the bit-map of that state is marked as 0000. However, the state SB in the

new plan is marked as 0100 because a project has been applied to the state

tuples. As another example, the bitmap in state SBC in the new plan is the

bit-wise OR between the bitmaps in state SB and SC . This is an application

of the second propagation rule described above.

After this bottom-up bitmap propagation, the old states and the new

states are matched by their state IDs. The bit-maps of a pair of matching

states are then compared bit-by-bit. Two combinations of old bit and new

bit indicate that additional migration operations need to be applied to the

matched states: (1) If a bit in the bit-map of the old state is 0, while the same

bit in the new state is 1, then the old state needs to apply the corresponding

state filtering or state projection. (2) If an old bit is 1 while a new bit is 0, and

if the bit indicates a column projection, the old state needs to apply state

stuffing on the predicate column before copying over the tuples to the new

state. (3) If an old bit is 1 while a new bit is 0, and if the bit indicates a select

condition, it means that the select condition has been applied to all the

tuples in the matching old state and therefore no state filtering is necessary.

This is explained earlier in the upper half of Figure 13.2 in Section 13.1.

162

Chapter 14

Migration Queries with

Group-by And Aggregates

Group-by is also an important stateful operator in continuous queries. I

will illustrate that mixing group-by and join operators creates new opti-

mization opportunities and hence requires corresponding support from the

migration strategies.

In traditional query processing, group-by is usually performed after

join. However, pushing the group-by below the join can be beneficial un-

der certain conditions. Intuitively, group-by can put multiple tuples into a

single group, thus potentially decreasing the number of tuples fed into the

subsequent joins. Such optimizations have been studied for static databases

in [CS94, YL94]. Clearly, the same optimizations can also be applied to con-

tinuous queries.

In this section, I study the migration process of switching group-by and

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 163

join at runtime. The optimal order of evaluating group-by and join depends

on the statistics of the data and can be determined by cost models, such as

those presented in [CS94]. This is an orthogonal problem to the dynamic

plan migration problem I am concentrating on. Thus I do not discuss it

further here.

14.1 The Migration for Switching Join and Group-by

I first describe a representative example of switching group-by and join.

Thereafter I illustrate the migration of such plan change.

The following two streams are used in our examples:

AStream(aid, a2)

BStream(bid, aid, b2, b3)

For the two streams, aid is the primary key of AStream, and bid is the

primary key of BStream. The second column aid in BStream is a foreign

key reference to AStream. Given the two streams, consider the following

query written in a stream CQL-like language [ABW03]:

Query 1:

SELECT A.aid, A.a2, SUM(B.b3)

FROM AStream A [range 30 min], BStream B [range 30 min]

WHERE A.a2 = B.b2

GROUP BY B.b2

This query requires a join (between A.a2 and B.b2) and a group by on

column B.b2. An aggregate function sum is applied to each group in the

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 164

group by. Notice that neither A.a2 and B.b2 are keys nor are they foreign

keys to another stream. So the join is a many-to-many join between the two

input streams. The notation range after each stream defines the window

constraint. In this example, both streams have window constraints of 30

minutes. This indicates that the join has a sliding window constraint of

30 minutes and the group-by outputs results for each window of the most

recent 30 minutes.

Figure 14.1 depicts the changes that need to be made to the query plan

when changing the evaluation order of the group-by and join. When the

query changes from evaluating the group-by after the join (the plan on

the left) to evaluating the group-by before the join (the plan on the right),

since the join is a many-to-many join, simply pushing down the group-by

through the join is not sufficient. This is because for the new query plan on

the right, the lower group-by produces groups based on the value of B.b2.

However, each group of each distinctive B.b2 value may still join with mul-

tiple A tuples, namely those with the same value of A.a2. So more than one

tuple may be produced for each group by that subsequent join. Thus we

need another group-by on top of the join to group these tuples together into

one final group. Lastly, here we then compute the total sum of B.b3 for that

group. This in fact can be considered equivalent to conducting one group-

by in two stages. Given certain data statistics, the two-staged group-by can

be better than the single group-by because the lower group-by decreases

the number of tuples input to the join, and hence may decrease the total

processing cost spent on joining tuples. It is clear that such savings only

exist under certain cost-based conditions. Discussions on such cost-based

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 165

optimization can be found in [CS94, YL94].

On the other hand, group-by and join can also be switched in the op-

posite direction. As shown in Figure 14.1, the plan on the right evaluates

the group-by as early as possible, while the plan on the left evaluates the

group-by after the join. Changing from the right plan to the left plan has

the effect of merging two group-bys into one group-by operator on the top.

A.a2 = B.b2

A

A.a2 = B.b2

BA

GB(B.b2)

SA SB

SA’ SB’

B

SB.b2’SUM(B.b3)

GB(B.b2)

GB(B.b2)

SUM(B.b3)

SUM(B.b3)

SB.b2’’

A.a2 = B.b2

A

A.a2 = B.b2

BA

GB(B.b2)

SA SB

SA’ SB’

B

SB.b2

SB.b2’
SUM(B.b3)

GB(B.b2)

GB(B.b2)

SUM(B.b3)

SUM(B.b3)

SB.b2’’

SB.b2

(a)

(b)

Figure 14.1: Switching Group-by and Join by Moving State Strategy – Gen-
eral Case.

14.1.1 Applying the Moving State Migration Strategy

I now describe how this change of the query plan can be achieved by the

moving state migration strategy. The general concept of the moving state

strategy still applies here. The only changes must be made are in the state

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 166

matching and moving stages. Figure 14.1(a) shows the case when migrat-

ing from the old query plan on the left that evaluates the join first to the new

query plan on the right that evaluates the group-by first. It is clear that the

join states between the old plan and the new plan can still be matched ac-

cordingly during the state matching process. In this example, the old join

states SA and SB are matching states to the new join states S′A and S′B , re-

spectively. So the contents in the old join states can be copied over to the

new join states.

However, since multiple group-bys now exist in the new query plan

while the old plan only has one group-by (as shown in Figure 14.1(a)), the

matching between the group-by states does not work the same way as the

matching of join states. As analyzed in [CS94], the lower group-by in the

right plan in Figure 14.1(a) is semantically redundant but not computa-

tional redundant. This means that the lower group-by can be inserted and

removed without affecting the correct semantics of the query, but adding

or removing it can affect the performance of the query plan. Based on this

principle, in Figure 14.1(a) when migrating from the old plan on the left to

the new plan on the right, the old group-by state SB.b2 can be matched to

the new group-by state S′B.b2. So the content of SB.b2 can now be copied

to S′B.b2 directly. On the other hand, the group-by state S′′B.b2 in the lower

group-by can start as empty without having been matched to any existing

old state. The empty group-by state will build up as it starts processing

new input data.

A similar state matching strategy can be applied to the migration case

depicted in Figure 14.1(b). For this direction of migration, the old plan on

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 167

the right has multiple group-bys while the new plan on the left has only

one group-by after the join. The top most group-by states, namely SB.b2

in the new plan and S′B.b2 in the old plan, can still be matched with each

other. However, at this point the group-by state S′′B.b2 of the lower group-

by in the old plan can be non-empty. The tuples stored in state S′′B.b2 cannot

be thrown away and must be preserved in some way to eventually also

be processed by the join operator in the new query plan. Otherwise the

query may miss some results. To keep the tuples in the unmatched group-

by states, we can insert them into the appropriate queues in the new plan.

For the example in Figure 14.1(b), the tuples in the unmatched group-by

state S′′B.b2 are inserted into input queue B of the join operator. In this way,

the tuples that have been processed by the lower group-by in the old plan

will still be processed by the join operator.

The rest of the moving state migration as described in Chapter 12 can

be applied as before. As shown in Algorithm 7, the tuples accumulated in

the intermediate queues at the migration start time are always cleaned first

before state matching and state moving activities are started.

14.1.2 Applying the Parallel Track Migration Strategy

The basic idea of the parallel track migration strategy is to run both the

old plan and the new plan concurrently. Once the parallel track migration

process starts, both plans are processing the same new data until all the

old tuples in the operator states inside the old plan are expired. At that

point, the migration process is over. In principle, this strategy works for

any operator type. Therefore we can still apply the parallel track strategy to

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 168

the problem of switching plans with different evaluation orders of group-

by and join.

However, applying the parallel track migration strategy directly to a

query plan with both join and group-by may result in missing result tuples.

This is because such a query groups tuples together into one combined ag-

gregate tuple. Thus both the old plan and the new plan may each produce

two such partially aggregated tuples that must be further combined by in-

corporating the values from tuples in this group that come from the old

plan and the new plan. For a pair of an old plan and a new plan that both

contain a group-by, as shown in Figure 14.1(a), tuples that belong to the

same group may be partially generated by the join in the old plan, and par-

tially by the join in the new plan. However, the two group-by operators on

the top of each plan would form each group separately based on only their

partial join results. As an example, a group of a specific B.b2 value may

contain a total of 10 tuples in a certain window frame. So the correct results

from the group-by for that window frame should be the sum of the B.b3

column of these 10 tuples. However, 3 of the 10 tuples may be generated

by the join in the old plan and the other 7 may be generated by the join

in the new plan. So the result outputted from the old plan is the sum of

B.b3 columns of 3 tuples, while the result from the new plan is the sum of

B.b3 columns of the other 7 tuples. Simply put the two aggregate results

together won’t form the correct final results. The two aggregate outputs

have to be once more combined into the same group so that the two partial

sums can now be added together to output the correct final result.

To solve this problem, I add a temporary special Group-By operator,

14.1. THE MIGRATION FOR SWITCHING JOIN AND GROUP-BY 169

shown as the SGB operator in Figure 14.2, on the top of the two concurrently

running plans to combine their results together and to put the final correct

results into the output queue. This is similar to the concept of the merging

nodes in parallel aggregate execution [SN95]. The temporary SGB opera-

tor serves two purposes. First, if two aggregate tuples belong to the same

group (based on the group-by condition) and the same window frame but

are output by the two distinctive plans, the SGB operator puts them into the

same group. Whether two aggregate tuples belong to the window frame

can be easily determined by the two tuples’ timestamp. Secondly, the SGB

operator can then apply a pre-defined function to combine the two aggre-

gate tuples that belong to the same group into a single output tuple. A

combining function may need to be designed for each type of aggregate

function used in the queries.

A.a2 = B.b2

A.a2 = B.b2

BA

GB(B.b2)

SUM(B.b3)

GB(B.b2)

GB(B.b2)

SUM(B.b3)

SUM(B.b3)

SGB(B.b2)

Figure 14.2: Applying Parallel Track Migration Strategy When Switching
Group-by and Join.

Only certain types of aggregate functions used in the query plan can

be supported by the SGB operator. To be exact, only distributive aggregate

14.2. GROUP-BY AND KEY-TO-FOREIGN-KEY JOIN 170

functions [GBLP96] can be migrated using an SGB operator.

The definition of a distributive aggregate function is as following: Let

A() denote an aggregate function that can be applied to a data set D. Sup-

pose two non-overlapping data sets D1 and D2 are two subsets of the data

set D and D1∪D2 = D. Suppose A1 and A2 are the aggregate results gen-

erated by applying function A() over D1 and D2 respectively. We say the

aggregate function A() is distributive if we can find a function F () so that:

A(D) = F (A1, A2)

An example distributive aggregate function is sum, because sum(D) =

A1 + A2. However, the aggregate function avg does not have this property

because we do not have a function F () such that avg(D) = F(A1, A2) without

knowing the cardinalities of the two data sets D1 and D2. The aggregate

functions that are currently supported by the SGB operator in our proto-

type CAPE system [RDS+04] include count, min, max and sum. In principle,

any distributive aggregate function can be supported by the SGB opera-

tor. For queries that need to apply non-distributive aggregate functions,

the moving state migration strategy described earlier can be used instead

to achieve the runtime plan migration.

14.2 Group-by and Key-to-Foreign-Key Join

In [CS94], a special case for such group-by rewriting has been identified

when the joins are key-to-foreign-key joins (one-to-many joins) and the group-

by column is on the foreign key as well. From now on I refer to this type

14.2. GROUP-BY AND KEY-TO-FOREIGN-KEY JOIN 171

of join as key/fkey join. In this case, only a single group-by is needed af-

ter pushing the group-by down through a key/fkey join operator, as has

been discussed in [CS94]. The group-by on the top, as shown in the right

plan in Figure 14.1(a), is no longer necessary. This is because when the

join is a key/fkey join and the group-by column is on the fkey, each tuple

with the fkey column can only join with exactly one tuple. Therefore each

group formed in the group-by operator only contains one tuple, no matter

in what order the join and the group-by operators are being evaluated. I

use the following query example to show such a special case:

Query 2:

SELECT A.aid, A.a2, SUM(B.b3)

FROM AStream A [range 30 min], BStream B [range 30 min]

WHERE A.a1 = B.a1

GROUP BY B.a1

The above query requires a join and a group-by operator. A possible

query plan for the above query is depicted on the left of Figure 14.3(a).

Since A.a1 is the key column of stream A and B.a1 is the foreign key in

stream B referencing A, the join is a key/fkey join. Also the group-by

column is on the foreign key column B.a1 of stream B. If the two opera-

tors are switched, only a join and a group-by are needed in the new query

plan, as shown on the right of Figure 14.3(b). However, we can still put

another group-by on the top of the join, as shown on the right of Figure

14.3(a). Placing another group-by on the top is semantically redundant be-

cause each input tuple to this group-by ends up forming a unique group.

14.2. GROUP-BY AND KEY-TO-FOREIGN-KEY JOIN 172

However, this additional operator would not affect the correctness of the

final results.

In fact, the extra group-by on the top is temporarily required during

the moving state migration process when migrating from a plan with the

group-by on the top of a join to a plan with the group-by being pushed

down. Using the example in Figure 14.3(a), the migration is from the plan

on the left to the plan on the right. The tuples in the join state SB can

be divided into two types: key-matched and key-unmatched. A key-matched

tuple T in SB has been joined with a tuple from input A. This means that

the A tuple with the corresponding key value that matches the foreign key

column of the tuple T has already arrived and in fact exists in the same

window frame as the tuple T . A tuple in SB is key-unmatched if it hasn’t

been joined with any tuple yet. Since join state SB matches with join state

S′B in the new query plan, all tuples are moved from SB to S′B after the state

matching stage. However, a key-unmatched tuple in S′B can potentially be

joined with a future incoming tuple from input stream A. At that point, it

would need to be put into the group of tuples with the same foreign key

column and contribute to the final aggregate value of that group. Therefore

another group-by/aggregate operator is needed after the join in the new

query plan, even when another group-by were to already exist below the

join operator. This extra group-by is not semantically redundant at this

point.

This extra group-by on the top of the k/fk join, as shown in the right

plan of Figure 14.3(a), is only temporarily necessary. It will become un-

necessary once all old tuples in the join state S′B (that had been inserted

14.2. GROUP-BY AND KEY-TO-FOREIGN-KEY JOIN 173

A.a1 = B.a1

A

A.a1 = B.a1

BA

GB(B.a1)

SA SB

SA’ SB’

B

SB.a1’SUM(B.b3)

GB(B.a1)

GB(B.a1)

SUM(B.b3)

SUM(B.b3)

SB.b2’’

A.a1 = B.a1

A

A.a1 = B.a1

BA

GB(B.a1)

SA SB

SA’ SB’

B

SB.a1

SUM(B.b3)

GB(B.a1)

SUM(B.b3)

SB.a1’

SB.a1

(a)

(b)

Figure 14.3: Switching Group by and Join – Special Case.

into SB before the migration started) are eventually being purged from the

state. After that, the group-by on the top can be removed from the query.

The moving state migration for the opposite direction, as shown in Figure

14.3(b), as well as the parallel track migration for both migration directions,

are the same as the general group-by migration strategies described earlier

in Section 14.1.

174

Chapter 15

Execution Models and

Generalized Migration

Strategies

As described in Chapter 11, continuous query systems may adopt various

execution models to determine the tuple execution order, thus to ensure cor-

rect tuple processing and purging given a window constraint. The execu-

tion model affects the tuple order in each intermediate queue in the query

plan. It also affects the tuple timestamp representation in the system.

The migration strategies described in previous sections are based on

the assumption that the totally synchronized execution model, as described in

Section 11.5, is being used. This model is the most strict execution model

that guarantees that tuples are always executed in the same order as they

arrive. This simplifies the migration process and avoids potential migra-

15.1. EXECUTION MODELS 175

tion problems that may otherwise arise if other less restricted models were

being used.

In this section, I generalize the migration strategies proposed in previ-

ous sections by relaxing the assumption I made on the execution model.

I first categorize the execution models found in existing continuous query

systems in the literature and then discuss their corresponding timestamp

representations and tuple purging algorithms. These execution models I

have identified include the totally synchronized model, the semi-synchronized

model and the un-synchronized model. I then describe the changes that need

to be made to the migration strategies when used in systems that employ

these alternative execution models. In particular, I identify the necessity of

applying an additional synchronization process during a migration. Lastly, I

describe the methods of synchronization that can be applied in the migra-

tion process.

15.1 Execution Models

Any continuous query system relies on a clear execution model to carry

on proper query processing. An execution model defines the relationship

between the order of tuple arrival and the order of tuple processing. The

most restricted execution model requires that these two orders are exactly

the same, while the most relaxed model poses no restrictions on the rela-

tionship of these two orders.

Depending on how strict the execution model is, I categorized exist-

ing execution models into three classes: totally synchronized model, semi-

15.1. EXECUTION MODELS 176

synchronized model and un-synchronized model.

15.1.1 Totally Synchronized Execution Model

As discussed in Section 11.5, this is the most strict execution model for con-

tinuous query processing. When using this model, tuples are being pro-

cessed in exactly the same order as they arrive. By applying the complete

synchronized execution model, tuples in any queue in the query plan are

ordered by their max timestamp. Hence for a combined tuple, keeping only

the max timestamp is sufficient when the complete synchronized execution

model is applied.

By using this model, a tuple t1 that has a smaller timestamp than a tuple

t2 is guaranteed to be processed before t2, even if t1 and t2 are in different

input queues. Conceptually, we can consider the system as having a single

stream input queue. Whenever a stream tuple arrives, it is placed in this

stream queue. All leaf operators in the query plan obtain tuples from this

single input queue.

When applying such a model, a scheduling algorithm that would mod-

ify the execution order cannot be applied at the same time. The execution

order of tuples is instead completely controlled by the execution model.

15.1.2 Semi-Synchronized Execution Model

The semi-synchronized execution model is a bit more relaxed than the previous

model. This model only enforces that each operator processes tuples in all

its input queues in increasing order of their timestamps. Thus when one

15.1. EXECUTION MODELS 177

of an operator’s input queues is empty, the operator cannot be scheduled

to run. This guarantees that the tuples are being processed in order by

each operator. Such an execution model has been adopted in some existing

prototype stream processing systems [ABB+03, CCD+03].

Different from the totally synchronized model, this model only enforces

the tuple execution order to be the same as the tuple arrival order locally at

each operator. It does not enforce the tuple execution order across all input

streams (nor all operators). Although this model is more relaxed in exe-

cution order, the combined tuples in each queue are still ordered by their

max timestamp because each operator makes sure that tuples in its input

queues are executed in the right order.

This model gives more control to the scheduling algorithm than the to-

tal synchronized execution model. A scheduler is able to choose which op-

erator to run next as long as that operator does not have an empty queue.

15.1.3 Un-Synchronized Execution Model

The un-synchronized execution model does not pose any constraints on the

tuple execution order. It is completely up to the scheduler to pick which

operator to run next. Inside each operator, the tuples do not need to be exe-

cuted in order. The benefit of such a model is that the scheduling algorithm

does not have any restrictions and can be optimized to achieve the best

performance. However, an obvious drawback is that the combined tuples

in queues are ordered neither by max nor by min timestamp of sub-tuples.

To preserve complete temporal information in order to apply correct state

purging based on window constraint, a combined tuple needs to keep all

15.1. EXECUTION MODELS 178

timestamps of all its sub-tuples. I refer to this type of timestamp as the

combined timestamp. For example, as depicted in Figure 15.1, after joining

tuples A and B, the new timestamp for the joined tuple AB should be a

combination of both the timestamp of the sub-tuple A and the timestamp

of the sub-tuple B. An state purging algorithm using combined timestamp

is described in the following section.

TSA TSB

TSA TSB

TimeStamp of
Tuple A

TimeStamp of
Tuple B

TimeStamp TSAB of
Joined Tuple AB

Figure 15.1: Combined Timestamp

As shown above, the execution model can determine the timestamp

representation for combined tuples in the system. This is important for

state purging and thus may affect the migration process. Worst yet, when

tuples are not being executed in the same order as they arrive (as would

be the case in the semi-synchronized or un-synchronized models), out-of-

order execution is possible. This means that some tuples that arrived earlier

(with smaller timestamps) may be executed later than some other tuples

that arrived later (with larger timestamps). As I will show in Section 15.3.1,

the out-of-order execution creates a problem during the migration process.

It must be dealt with by the migration strategies via a process that is termed

as execution synchronization.

15.2. TIMESTAMP REPRESENTATION AND STATE PURGING 179

15.2 Timestamp Representation and State Purging

As discussed earlier, by applying the un-synchronized execution model,

combined tuples in the same queue may not be ordered by any of the two

timestamps from the two inputs. This has been shown in Figure 11.3 in

Section 11.4. Therefore it is necessary to keep combined timestamps for

combined tuples.

As discussed in Section 11.4, purging a state using a tuple with a sin-

gleton timestamp is rather straightforward: For a join operator A ./ B with

window size W, since tuples from stream A with singleton timestamps are

strictly ordered in non-descending order, a B tuple in state SB is purged by

an A tuple if and only if (TSA − TSB) > W .

Purging a state by a combined tuple with combined timestamp is more

complex than purging by a tuple with a singleton timestamp. This is be-

cause a combined timestamp has multiple columns and may not be ordered

by any of these timestamp columns. By utilizing the same purge algorithm

described above, some tuples may be purged by earlier combined tuples

even though they may still have the potential to join with future incom-

ing tuples. In the following section, I describe the extended algorithm for

purging a state by tuples with combined timestamps.

15.2.1 Purge by Combined Tuples

Although a sequence of tuples with combined timestamps is not strictly

ordered by any one of its timestamps, some Timestamp Order can still be ob-

served. Since combined tuples are usually only generated by join or union

15.2. TIMESTAMP REPRESENTATION AND STATE PURGING 180

operators, in this section, I use join to illustrate the timestamp order and

our proposed purging algorithm for combined timestamps.

Lemma 15.1 (Timestamp Order Lemma) Let t and t’ be two tuples in the out-

put queue of a binary window join operator. Both tuples have timestamps of

size n, represented as [TS1, ..., TSn] and [TS′1, ..., TS′n] respectively. If tuple t

appears earlier than tuple t’ in the queue, then there must exist at least one i

(1 <= i <= n), such that TSi < TS′i.

Proof: I now give a proof by induction on the size of timestamp array

n. Suppose that the window join operator has two input queues QL and

QR, two states SL and SR, and one output queue QLR. t and t’ are tuples in

QLR.

Base case: n = 2. Let [TS1, TS2] and [TS′1, TS′2] be the timestamps of

tuples t and t’ respectively. Tuples with a combined timestamp array of

size 2 must be formed by joining two sub-tuples each with a timestamp

of size 1. So t is formed by joining t1 with timestamp TS1 and t2 with

timestamp TS2. And t’ is formed by joining t1’ with timestamp TS′1 and

t2’ with timestamp TS′2. Without loss of generality, let us assume that t1

and t1’ are from QL, and t2 and t2’ from QR. All tuples in QL and QR are

singleton tuples and are strictly ordered by their timestamps, respectively.

Since tuple t comes before t’ in QLR, t must have been generated earlier

than t’. When sub-tuples t1 and t2 are about to be joined to generate tuple t,

two cases are possible: 1) t1 is the first tuple in QL and t2 is inside SR, or 2)

t1 is inside SL and t2 is the first tuple in QR. At this time, sub-tuples t1’ and

t2’ cannot both be in states. Because otherwise they must have been joined

15.2. TIMESTAMP REPRESENTATION AND STATE PURGING 181

already and tuple t’ would appear before t in QLR. So if sub-tuple t1’ with

timestamp TS′1 is not yet in SL, then it either is or will still arrive in QL. In

this case we have TS1 < TS′1 and i = 1. If sub-tuples t2’ with timestamp

TS′2 is not in state SR, then it is or will arrive in QR. So TS2 < TS′2 and i =

2.

From above I conclude that for base case n = 2, there always exists an i

such that TSi < TS′i .

Inductive Hypothesis: Assume that the timestamp order lemma holds

for any tuple sequence with size n <= k.

Inductive Step: I now show that the timestamp order lemma also holds

for sequences with size n = k + 1.

The timestamp array for t with size n = k + 1 can be treated as a combi-

nation of two sub-tuples t1 and t2 with timestamp arrays as [TS1, ..., TSj]

and [TSj+1, ..., TSk+1], respectively. Similarly, t’ can also be treated as the

combination of two sub-tuples t1’ and t2’ with timestamp array as [TS′1, ..., TS′j]

and [TS′j+1, ..., TS′k+1], respectively. Since each array is at least of size 1, it

must be true that j <= k. So both timestamp arrays have a size of at most

k.

Using the same reasoning as in the base case, when sub-tuples t1 and

t2 are about to be joined to generate tuple t, at least one sub-tuple t1’ or t2’

does not yet exist in its respective join state. If sub-tuple t1’ with timestamp

[TS′1, ..., TS′j] is not in state SL, then it is or will arrive in QL. Since t1’ must

come after t1 in QL, based on Induction Hypothesis, we know that there exists

an m (0 < m <= j) such that TSm < TS′m. So in the case i = m. If sub-

tuple t2’ with timestamp [TS′j+1, ..., TS′k+1] is not in state SR, then it is or

15.2. TIMESTAMP REPRESENTATION AND STATE PURGING 182

will arrive in QR. Since t2’ comes after t2 in QR, we can again find i = m

(j < m <= k + 1 = n) such that TSm < TS′m.

So I conclude that the lemma holds for any tuple sequence in a query

plan. 2

The timestamp order lemma naturally holds for tuple sequences with

ordered singleton timestamps. Also for single-input operators, such as se-

lect, project and group-by, the order of input tuples is not altered by the

operator itself. Therefore the timestamp order lemma still holds for the

output tuple sequence from these operators.

By utilizing the timestamp order lemma, I now describe the general

purge algorithm to safely purge tuples by either a singleton tuple or a com-

bined tuple. I attach a min-max timestamp pair [TSmin, TSmax] to each tu-

ple, corresponding to the smallest and largest timestamps in its timestamp

array. For a singleton tuple, TSmin equals TSmax.

Lemma 15.2 (Purging Lemma) Assuming that timestamp order holds for any

tuple sequence including queues and states1 in the query plan, given two tuples

tL (with n timestamps) and tR (with m timestamps) that have min-max time-

stamp pairs [TSminL
, TSmaxL

] and [TSminR
, TSmaxR

] respectively, if (TSminL
−

TSmaxR
) > W , then tR can be purged from its state by tL.

Proof: We need to show that tR can be safely purged because it can

no longer be joined with any tuple that arrives after tL in that sequence.

Because the timestamp order holds for any tuple t′L arriving after tL in the

1In the case of hash join, tuples belonging to the same hash bucket are assumed to be
ordered by their insertion time.

15.3. GENERALIZED MIGRATION STRATEGIES 183

same sequence, there exists an i (0 <= i <= n) such that TSiL < TS′iL .

Since TSminL
is the smallest timestamp in the timestamp array of tuple

tL, we know that TSminL
<= TSiL . Thus TSminL

< TS′iL . Now for tR,

given any j with (0 <= j <= m) we have TSjR
<= TSmaxR

. Since we

know that (TSminL
− TSmaxR

) > W , putting above together, we can get

(TS′iL − TSjR
) > W . Since the global window constraint is assumed in any

join pair, for any tuple t′L that comes after tuple tL in the same sequence, it

is outside the W window frame from tuple tR. So we conclude it is safe to

purge tR. 2

The above general purging lemma works for both singleton and com-

bined tuples. To our best knowledge, our timestamp order lemma and

purging algorithm are the first algorithms to explicitly deal with the purg-

ing of a combined tuple with multiple timestamps. In the case of singleton

tuples, our purging algorithm essentially reduces to the commonly used

purge algorithm [KNV03, CCC+02, NWAea02, MSHR02].

15.3 Generalized Migration Strategies

Thus far, I have described our migration strategies based on the assump-

tion that the continuous query system adopts the total synchronized execu-

tion model. This model guarantees that between two tuples with different

timestamps, the tuple with a smaller timestamp is always processed earlier

than the tuple with a larger timestamp.

However, such execution order property no longer holds for a system

that adopts a semi-synchronized execution model or an un-synchronized

15.3. GENERALIZED MIGRATION STRATEGIES 184

execution model. In either models, a tuple with a larger timestamp may be

processed before a tuple with a smaller timestamp. This asynchronism be-

tween tuple timestamp order and tuple processing order creates new issues

for correct state migration and requires changes in the migration strategies.

In fact, most of the changes that need to be made for generalization are

only necessary for the moving state migration strategy. This is because the

parallel track strategy itself is more general than the moving state strategy:

It does not care about the details of how states are being purged, as long

as tuples are being purged from states in some way so that the old box

can eventually be expired. Therefore, using a different execution model

does not impact the functioning of the parallel track strategy. The moving

state strategy, on the other hand, relies on the knowledge of how states

are maintained in order to re-utilize the useful information in the states of

the old box. Therefore it relies on the proper tuple order for correct tuple

purging, which is in turn determined directly by the execution model.

15.3.1 The Problem of Synchronization

Adopting the semi-synchronized or the unsynchronized execution model

creates a new problem for the moving state migration process. The problem

occurs when discarding the unmatched old states in the old box. When us-

ing these two execution models, the tuples may not always be processed in

the order of the tuples’ timestamps. So the old state closure property defined

in Section 12.1.4 no longer holds. This means that tuples in unmatched

old states may still be useful to future incoming tuples, i.e., they may still

be joined with accumulated tuples in the input queues. Therefore the un-

15.3. GENERALIZED MIGRATION STRATEGIES 185

matched old states cannot just be thrown away.

Figure 15.2 shows an example when the unmatched old states contain

tuples that are still useful for future processing. Suppose that the query

plan with two join operators shown in Figure 15.2(a) is contained in the old

box during migration. Also assume states SA, SB and SC are all matched

states, while state SAB is an unmatched state. At the migration start time

TM start, the tuples inside each of the states and input queues are also

shown in the figure. Here it shows that all tuples in input queues QA and

QB are empty because all tuples inserted to these two queues have been

processed at TM start. However, two tuples accumulated in input queue

QC . The orders in which tuples arrived in the three input streams A, B and

C are depicted in Figure 15.2(b). The window constraint is set to 2 time

units in this example and one time unit is the elapsed time between two

consecutive vertical bars. The number above each tuple indicates the order

in which this tuple was processed. For example, among the tuples shown

in Figure 15.2(b), tuple b1 is the first tuple being processed by an operator

in the system, while tuple a3 is the sixth tuple being processed an operator.

Tuples c2 and c3 are not labeled by numbers because they are being accu-

mulated in input queue QC and have not been processed at time TM state.

When using the semi-synchronized execution model, each operator pro-

cesses tuples strictly based on their timestamps. So the tuple execution or-

der inside the join operator AB is b1, a1, b2, a2 and a3. The joined tuple

from operator AB keeps only the max timestamp of its sub-tuples. Inside

the operator BC , the execution order is also strictly based on tuple times-

tamps. However, the tuple execution order across different operators does

15.3. GENERALIZED MIGRATION STRATEGIES 186

BC

AB

QA QB
QC

SC

SA SB

SAB

a2

b1
b2

a1
a2

c1

c2

A

B

C

t

a1 a2

b2b1

a3

c1 c2 c3

Window Constrait = 2

TM_start
c3

2

41

3

5 6

(a) Old Query Plan at TM_start (b) Tuple Arrival Order and Processing Order

a2
b2

Figure 15.2: The Issue of Synchronization

not have to be strictly based on tuple timestamps. As indicated in Figure

15.2(b), tuple a3 arrives later than tuple c2, but it may be processed earlier

by operator AB. This means a3 may have purged tuples outside its win-

dow from state SA, such as tuple b1. As a result, b1 only exists in the old

unmatched state SAB but not the matched state SB. However, b1 is still

within the window frame from c2 so the two may be able to join with each

other. The old states closure property is not satisfied in this example. So if the

unmatched old state SAB is discarded, useful data is lost and some tuples

can be missing from the results.

The key reason for this problem is that the tuple processing across oper-

ators is not synchronized. Caused by either a scheduling algorithm or the

limitations on system resources, tuples may not be processed immediately

after they arrive. Rather they may accumulate in the input queues. The ex-

ecution may be more advanced in regard to the timestamp in one operator

compared to in the other operator. For example, as shown in Figure 15.2, at

TM start, tuples in QC may have timestamps earlier than TM start. This can

15.3. GENERALIZED MIGRATION STRATEGIES 187

affect both the state moving and state discarding steps in the moving state

strategy.

15.3.2 The Punctuation-based Synchronization Algorithm

To solve this problem, I add an extra synchronization process before the

state moving step in the moving state strategy. The goal of this process is

to synchronize the execution among operators inside the old box so that

they all have processed tuples with timestamp smaller than TM start. If we

want to safely discard any unmatched states in the old box, one practical

method is to finish processing all the accumulated tuples in the old box’s

input queues that have arrived before TM start. This works fine if all the

old box input queues are stream input queues, which means they are input

queues to the leaf operators.

However, if the old box contains only a sub-tree of the complete query

tree and the box input queues are not the stream input queues of the whole

query plan, we need to identify all the queues (from box input queues

down to the stream input queues) that may have some contribution in

terms of forwarding tuples to the old box. For example, in Figure 15.3,

the query plan that is included in the old box is only a subplan of a larger

query plan. The stream input queues that contribute to the input queues

of this old box in fact include totally six queues, from QA to QF . The accu-

mulated tuples that arrive before TM start in the six involved stream queues

all need to be processed and pushed up the query tree until reaching the

output queue of the old box.2

2I have further optimized this step by finding the largest timestamp of the first tuple (or

15.3. GENERALIZED MIGRATION STRATEGIES 188

To coordinate this synchronization process among all the involved op-

erators, I developed a punctuation-based synchronization algorithm. In each

involved stream queue, I insert a synchronization punctuation tuple into

the proper position, so that all tuples before this punctuation have times-

tamps smaller than TM start and all tuples after it have timestamps larger

than TM start. Figure 15.4(a) depicts the status of the input queues QE and

QF at the migration start time TM start. Figure 15.4(b) shows the status

when a punctuation tuple has been inserted into the two queues respec-

tively. If the queue is empty at TM start, as QF in this example, a punctua-

tion would just be inserted to the first position of the queue. Each involved

operator along the path, upon receiving such punctuation from each of its

input queues, would propagate this punctuation by inserting a punctua-

tion tuple into its output queue. The synchronization process is complete

when the root operator inside the old box has received such a punctuation

tuple from all its input queues.

Applying the moving state migration strategy to the un-synchronized

execution model creates the same problem of unsynchronized execution

among operators as the semi-synchronized execution model. Hence a sim-

ilar punctuation-based synchronization approach can be adopted before

unmatched old states can be discarded.

TM start, whichever is smaller) in all the involved stream input queues, and push up all
accumulated tuples in these queues that have timestamps no later than this largest times-
tamp.

15.3. GENERALIZED MIGRATION STRATEGIES 189

QA QB QC QD QE QF QG

Figure 15.3: Trace Back to Contributing Stream Queues

QE QF QE QF

synchronization
punctuation tuple

regular tuple

(a) Tuples in QE and QF at TM_start (b) Punctuation tuples inserted.

Figure 15.4: Synchronize by Propagating Punctuations

15.3.3 Discussions on Synchronization Methods

The punctuation-based synchronization process described earlier requires

us to trace all the way back to the leaf level. This can be a problem if the

subplan contained in the old box is high above in the query plan tree. In

that case the number of operators involved in the synchronization process

can be large. Hence the cost of synchronization may be fairly high. It may

even dominate the total cost of the migration process. Ideally, the migration

process should only affect the operators inside the old box and should not

disturb the normal execution of other operators outside the old box.

15.3. GENERALIZED MIGRATION STRATEGIES 190

To keep the synchronization as a local process to the old box, we can

pick out all the sub-tuples in the unmatched states that do not exist in the

matched states and insert them back into the corresponding matched states.

By using this localized synchronization algorithm, all the useful information in

the unmatched states will be kept and these unmatched old states can then

be safely discarded. Note that one sub-tuple may be joined with several

different sub-tuples and thus may appear in a state multiple times. There-

fore duplicate elimination needs to be applied to the sub-tuples inserted

back to the matched states. Otherwise duplicate results may be generated

by the query plan. To ease the duplicate elimination process, a reasonable

assumption is that all tuples arriving in the same stream would have dif-

ferent timestamps. So distinctive sub-tuples in a state would have distinc-

tive timestamps. This fact can ease the process of duplicate elimination,

because duplicate tuples can now be easily detected by having the same

timestamps.

The localized synchronization method described above can be applied

in a system using the un-synchronized execution model. However, it may

not be sufficient to be applied in a system using the semi-synchronized

execution model. This is because the synchronization method requires that

tuples are first being drained from intermediate queues. When using this

execution model, operators in the query plan need to execute tuples strictly

based on the order of the timestamps. This creates a problem of draining

tuples from the intermediate queues: If an operator has two input queues,

such as a binary join operator, and if one input queue is empty, the operator

cannot be processed. That is, it must wait until some tuples appear in the

15.3. GENERALIZED MIGRATION STRATEGIES 191

empty queue. This can block the operator during migration which in turn

would hang the migration process itself. So the synchronization among

operators inside the old box cannot be achieved by only executing these

old operators or utilizing information stored only in the old box.

One possible solution may be to undo the processing of tuples in the

output queue of an old operator and put the original tuples (for example,

sub-tuples of the joined tuples) back to the operator’s input queues. The

process can be done recursively from the root operator in the old box to the

leaf operators in the old box. However, this method is in fact moving back-

ward along the execution line, as doing so may waste work that has already

been done. Instead, the approach of tracing back to the leaf level is actually

moving forward along the execution line and thus none of its computation is

wasting any processing.

192

Chapter 16

Experimental Evaluation

16.1 Experimental Setup

The proposed migration strategies are implemented in the CAPE system

[RDS+04] and various experiments have been conducted to compare their

performance. I use the query in Figure 10.1 on which the migration is per-

formed to transfer the plan from the left to the right. System parameters

such as stream input rates, operator reduction factors and global time win-

dow sizes are varied to reflect the changes of workload and data character-

istics.

Our stream data generator generates tuples with arrival patterns mod-

eled as the Poisson process. The mean inter-arrival delay between two con-

secutive tuples is exponentially distributed in order to model the Poisson

arrival pattern. In each experiment, the stream generator continuously gen-

erates streams for 50,000ms. All query plans are being executed for a time

period at least a few times longer than the global window in order to pass

16.2. LENGTH OF MIGRATION STAGE 193

the initial warm-up phase. A migration strategy is activated by the change

of system parameters for the running query plan.

All implementation is done in Java. The experiments were run on a

machine running windows 2000 with Pentium-III processor at 500MHz and

384M of main memory.

16.2 Length of Migration Stage

In this section, I analyze the experimental results related to the measured

length of the migration stage and compare them with the estimation mod-

els described in Section 12.3.

Both old and new query plans in Figure 10.1 have a height h = 3. Ac-

cording to the Equation 12.4 in Section 12.3.2, the total length of the migra-

tion stage of the parallel track strategy should be TPT = 2W .

Given the same query plans, by applying the Equations 12.1, 12.2 and

12.3 from Section 12.3.1, we can estimate the length of the migration stage

for the moving state strategy as:

TMS = λBλCW 2(Tj +TsσBC)+2λBλCλDW 3(TjσBC +TsσBCσBCD) (16.1)

From the above results, we see that TPT grows linearly with W. How-

ever, TMS is controlled by several parameters, including input rates from

QB , QC and QD, reduction factors σBC and σBCD , and the global time win-

dow W, with which it has a polynomial relationship.

16.2. LENGTH OF MIGRATION STAGE 194

The above estimations are based on the assumption that the system has

enough processing power to handle incoming tuples without much delay.

We judge the availability of system processing power in our experimental

setup by comparing the total system running time vs. the stream generator

running time. In our experiment, the stream generator in each experiment

runs for 50,000 ms, generating stream tuples according to the given mean

inter-arrival time. The system stops executing the query plan when there

are no more tuples to process. If the system finishes at about 50,000ms as

well, it implies that the system has enough processing power to keep up

with the given parameter configurations.

To verify these estimations on the length of the migration stage, I run

three sets of experiments:

1) Set 1: Only W increases linearly, while all other parameters are kept

constant.

2) Set 2: IB, the tuple inter-arrival time of stream B, is decreased (indi-

cating that input rate λB is increased) while keeping all other parameters

the same.

3) Set 3: W is increased linearly while other parameters are kept the

same. The difference from set 1 and 3 is that set 3 has higher configurations

with respect to input rates and operators’ reduction factors.

Figures 16.1 and 16.2 depict the results of the first experimental set. Fig-

ure 16.1 illustrates that TPT has a linear relationship with W and is statis-

tically equivalent to 2W, as is suggested by the Equation 12.4 in the case

of h > 1. The increasing curve of TMS , marked as “Measured TMS in Fig-

ure 16.2, indicates a close to polynomial relationship with W. A polynomial

16.2. LENGTH OF MIGRATION STAGE 195

Table 16.1: Parameter Configurations

Parameters Section 16.2 Section 16.3

set1 set2 set3 set1 set2

W(ms) vary 1000 vary 1000 2000

IA(ms) 100 50 100 100 50

IB(ms) 100 vary 12 100 50

IC(ms) 100 50 12 100 50

ID(ms) 100 50 12 100 50

σAB 0.1 0.1 0.1 0.1 0.2

σBC 0.05 0.05 0.1 0.02 0.05

σCD 0.02 0.02 0.1 0.02 0.05

trendline marked as “Poly.(Measured TMS)” is depicted as well.

Figure 16.3 displays the results of set 2 when increasing the input rate

λB . It shows that the increase of λB has almost no effect on TPT , which is

fairly stable. However, when λB increases, TMS increases as well.

The results of the experimental set 3 are depicted in Figure 16.4. At

small window constraint sizes, the moving state strategy migrates faster

because the state sizes limited by the window constraint are small. As the

window size increases, the parallel track migration time increases linearly,

and stays at about 2W. Since the total migration time for the moving state

strategy has a polynomial relationship with the window size, the gap be-

tween the two lengths of migration stages is getting smaller. After a certain

window size, the parallel track strategy surpasses the moving state and

becomes the faster one of these two strategies.

16.3. EFFECTS ON MINIMIZING INTERMEDIATE DATA 196

0
2000
4000
6000
8000

10000
12000
14000

0 2000 4000 6000 8000
Global Window Size W (ms)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

Measured T_PT Estimated T_PT

Figure 16.1: TPT vs. W

0

500

1000

1500

2000

0 2000 4000 6000 8000
Global Window Size W (ms)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

Measured T_MS Poly. (Measured T_MS)

Figure 16.2: TMS vs. W

16.3 Effects on Minimizing Intermediate Data

A common goal for a query optimizer is to minimize a query plan’s inter-

mediate data. This is usually achieved by pushing the operators with the

smallest reduction factors down the query plan tree. In this section, I study

the performance of both migration strategies working with an optimizer

that has such an optimization goal.

16.3. EFFECTS ON MINIMIZING INTERMEDIATE DATA 197

0

500

1000

1500

2000

2500

0 10 20 30 40 50
Arrival Rate from Input B (tuples/sec)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

T_MS T_PT

Figure 16.3: TMS and TPT vs. λB

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000
Window Size (ms)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

T_MS T_PT

Figure 16.4: Comparison of TMS and TPT vs. W

I have conducted two sets of experiments with the parameters’ config-

urations shown in Table 16.1. Parameters in set 1 are set to be low to create

the situation of sufficient system computing resources, while set 2 config-

ures parameters to their high values to model the scenario that the system

computational power is not sufficient to process the old query plan. Hence,

16.3. EFFECTS ON MINIMIZING INTERMEDIATE DATA 198

a large delay for processing new tuples is expected for the second set. In all

the experiments, I start migrating the old plan to the new plan after the old

plan has been executed for 10,000ms.

The results of the first experimental set with a low configuration are

shown in Figures 16.5 and 16.6. Each graph depicts the results for four dif-

ferent cases: 1) the moving state strategy (MS), 2) the parallel track strategy

(PT), 3) the new query plan only (New), and 4) the old query plan only

(Old).

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000 50000 60000

Time (ms)

o

f i
n

te
rm

ed
ia

te
 tu

p
le

s

MS PT New Old

Figure 16.5: Intermediate Tuple Counts - Low Config

Figure 16.5 shows the intermediate tuple counts for the above four cases.

The new plan has a much smaller intermediate tuple count than the old

plan throughout the experiment. At the first 10,000ms, the three lines over-

lap each other indicating that they have the same performance. However,

starting from around 10,000ms, two plans are migrating to the new plan

each using one of the migration strategies. When given sufficient system

processing power, which usually indicates a small window size, the mov-

16.3. EFFECTS ON MINIMIZING INTERMEDIATE DATA 199

0

50

100

150

200

250

300

350

400

450

500

0 10000 20000 30000 40000 50000 60000

Time (ms)

O
u

tp
u

t R
at

e
(t

u
p

le
s/

se
c)

MS PT New OLd

Figure 16.6: Output Rate - Low Config

ing state strategy starts to have the same intermediate tuple count as the

new plan case (earlier than the parallel strategy). This is because it usually

migrates to the new plan faster given a smaller window size. Both plans

going through two different migration strategies eventually have the same

intermediate tuple count as the one running the new plan only.

Figure 16.6 depicts the four cases with respect to their output rates. No

strong advantage can be observed for either migration strategy. This may

be due to the fact that the migration stage under a low configuration is

usually short. So even the parallel track strategy keeps on producing new

tuples during the migration stage, the plan using the moving state strat-

egy is able to migrate to the new plan faster so the output silence is short

enough to be neglected.

The situation changes for the second experimental set with a high con-

figuration. Figures 16.7 and 16.8 show the results of all four cases. Since

the system has insufficient processing power to keep up with the old query

16.3. EFFECTS ON MINIMIZING INTERMEDIATE DATA 200

plan, the new query plan as well as the query plan with migration both

out-perform the old query plan dramatically in all experimental results.

0

50000

100000

150000

200000

250000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Time (ms)

o

f
in

te
rm

ed
ia

te
 t

u
p

le
s

MS PT New Old

Figure 16.7: Intermediate Tuple Counts - High Config

The parallel strategy has a smaller intermediate tuple count as shown

in Figure 16.7 and a higher output rate at the initial stage of migration in

Figure 16.8. This is because the state sizes are much larger and thus the

migration time is much longer than what we have seen in the case of a low

configuration. During the state recomputing of the moving state strategy,

tuples in all states cannot be disposed until the migration is over. There is

a noticeable output silence between 10,000ms and 20,000ms in Figure 16.8

for the moving state strategy.

On the other hand, the parallel track strategy starts executing both the

old and the new plans immediately, so intermediate tuples are being con-

sumed (purged), and some output tuples are being generated while the

migration is ongoing. Figures 16.7 and 16.8 show that although the total

time for the migration stage is still smaller in the case of the moving state

strategy, as it ends the overall execution earlier, during the migration stage,

16.4. APPLY MIGRATION AT RUN TIME 201

0

500

1000

1500

2000

2500

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Time (ms)

O
u

tp
u

t R
at

e
(t

u
p

le
s/

se
c)

MS PT New Old

Figure 16.8: Output Rate - High Config

the parallel strategy has a better output rate and a smaller intermediate

tuple count.

16.4 Apply Migration at Run Time

I have conducted experiments to measure the performance improvement

of queries by applying query migration at runtime. During each experi-

ment, data statistics, such as operator selectivities, are being collected at

runtime. The runtime optimizer is invoked periodically to evaluate the

current statistics and optimize the running query plan if necessary. The

migration process is activated when a new query plan is generated by the

runtime optimizer. I use the SPJ query as depicted on the right of Figure

13.5 in these experiments. In this set of experiments, the optimizer applies

heuristic-based optimization to decide if the joins need to be switched ac-

cording to their measured selectivities.

In these experiments, the data characteristics are changed during query

16.4. APPLY MIGRATION AT RUN TIME 202

execution so that the query optimization and migration need to be applied

at runtime. I here present the experimental results of three representative

runtime migration scenarios. They vary on how often the join selectivities

are changed at runtime, which then determines how often the migration is

invoked to migrate a query plan. The join selectivity in our experiment is

estimated as # of output tuples
of possible output tuples

and is in the range of [0, 1]. The arrival

rates of all streams are set to be 20 tuples/sec. I apply time-based sliding

window constraint with the window set to 5,000 milliseconds (ms). In each

experiment, the optimizer is invoked every 10,000ms. The migration is in-

voked if a new query plan is generated by the optimizer. I compare the

performance of the query when runtime optimization and migration are

activated to the performance of the same query but without applying the

runtime query optimization and migration.

In the first set of experiments, the join selectivities are kept stable and

therefore no migration process needs to be nor will be applied. I hence

show the overhead of the optimizer to periodically analyze the collected

statistics. As shown in Figure 16.9, the query throughput when the op-

timizer is disabled and the query throughput when the optimizer is en-

abled are almost identical. Our experiments confirm that the overhead of

constantly invoking the optimizer to analyze data statistics is minimal and

does not have much impact on the query performance.

In the second set of experiments, the join selectivities are changed only

once during the query execution. Therefore the migration is invoked once

at runtime. The performance comparisons on query throughput and mem-

ory consumption are shown in Figures 16.10 and 16.11, respectively. The

16.4. APPLY MIGRATION AT RUN TIME 203

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

T
h

ro
u

g
h

p
u

t

Without Migration
With Migration

Figure 16.9: Runtime Overhead

starting selectivities for the upper join and the lower join are set to be 0.005

and 0.02 respectively. Shortly after the query starts, the join selectivities of

the two joins are switched. When the optimizer is invoked at 10,000ms, it

switches the two joins and invokes the query migration process. As shown

in Figure 16.10, the query execution with migration has a approximately

40% to 50% better throughput than the same query but without migration

after 10,000ms. This continues to be true for the rest of the query execu-

tion. Figure 16.11 compares the two query executions in terms of memory

consumption. We can see that the memory consumption of the query with

migration is decreased after the migration and continue to consume at least

50% less memory than the query without migration.

In the last set of experiments, I switch the selectivities of the two join

operators randomly during the query execution. Join operator 1 starts with

a selectivity of 0.02 and join operator 2 with selectivity 0.3. After a while

the selectivity of join operator 1 become 0.3 and the selectivity of join oper-

ator 2 become 0.02. This switch is repeated several times during the query

execution. Therefore, it may be necessary to invoke the migration multi-

16.4. APPLY MIGRATION AT RUN TIME 204

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

Without Migration
With Migration

Figure 16.10: Migrate once at runtime - Throughput Comparison

0

2

4

6

8

10

12

14

16

18

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

Without Migration
With Migration

Figure 16.11: Migrate once at runtime - Memory comparison

ple times during the query execution. As shown in Figure 16.12, the query

throughput of the query with migration is consistently higher than that

of the query without migration. Due to the higher configuration (higher

selectivities) than second experiment set, more tuples are accumulated in

operator states and queues at the migration start time. Therefore the over-

16.4. APPLY MIGRATION AT RUN TIME 205

head of migration increases accordingly and the migration process takes

longer. In this experiment, the migration process is recorded to be invoked

for four times, which are at approximately 10,000ms, 30,000ms, 70,000ms,

and 130,000ms. The memory consumed by the query plan with migration

is also shown to be consistently less than the memory consumed by the

query without migration.

0

200000

400000

600000

800000

1000000

1200000

1400000

0 50000 100000 150000 200000
Time (ms)

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

Without Migration

With Migration

Figure 16.12: Migrate multiple times at runtime - Throughput comparison

0

50

100

150

200

250

300

0 50000 100000 150000 200000
Time (ms)

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

Without Migration

With Migration

Figure 16.13: Migrate multiple times at runtime - Memory comparison

206

Chapter 17

Related Work

Although there is a renewed and more pressing need for dynamic query

plan optimization and migration for continuous queries in streaming en-

vironments, on-the-fly query plan re-optimization has initially been also

explored for static databases [KD98, Ant96, GC94, INSS92].

[KD98] utilize a run-time statistics collector and reconfigure only the un-

processed portion of the running query plan to improve performance. This

solution is not practical for stream processing, because all operators in a

long running query plan may have been executing by the time the migra-

tion is needed. The dynamic optimization for static databases proposed in

[Ant96] only applies to scan operators and thus is limited in its usage.

[GC94, INSS92] describe a query plan competing model to dynamically

change the running query plan to another plan. The approach requires that

before the query starts, several plans have been chosen and will be executed

in parallel. After a while the plan that has the best performance thus far will

then be running alone with all other plans being discarded. Although this

CHAPTER 17. RELATED WORK 207

approach shares some ideas with our parallel track migration strategy, it is

technically difficult or almost impossible to come up with the candidates

for query plans before continuous queries start running. Furthermore, this

dynamic plan migration or re-configuration can be applied only once, and

is thus too limiting for a long running query.

The research in [CCC+02] proposes to utilize the pause-drain-resume

strategy for dynamic plan migration. I now put forth that this strategy

has not explicitly addressed how to handle the case of query plans con-

taining stateful operators such as window joins with intermediate states.

[NWMS98] targets the dynamic plan migration in the context of long-running

queries in a distributed database system. The proposed migration strategy

cannot be undertaken whenever an optimizer has selected a new query

plan, but rather it needs to wait until all involved operators have entered

their own suspendable point. This extra wait is undesirable in a volatile

streaming environment since the new plan may become sub-optimal again

before the migration can even start.

Several dynamic query re-optimization techniques by changing the struc-

ture of the query plan have been proposed in [VN02a, CDN02]. Most such

optimization strategies alter the order of operators inside the query plan

to achieve a better performance. These works do not address how to mi-

grate from one plan to another plan at run time, once the optimizer has

picked a better plan for the system. This however is the exact problem I am

addressing in this part of the dissertation.

A phased query execution model is proposed in [Ive02], which can

be applied to query reoptimization and migration of long running static

CHAPTER 17. RELATED WORK 208

queries. At the beginning of each phase, the query processor can use the

knowledge gained in prior phases to choose a better evaluation plan for

the query. The system then performs a phase transition by pausing execu-

tion of the old plan in a stable state and starting execution of the new plan

over the portions of the data sources that have not yet been consumed. The

system needs to maintain all previously computed results (including inter-

mediate results) from all earlier phases to be able to use them later. Finally

when all input data is processed, a special cleanup phase is invoked to re-

cover the missing query results by joining all combinations of subresults

across all phases. The phased execution model allows arbitrary changes

to the executing query plan in mid-stream. However, the missing results

by joining tuples across phases can only be obtained at the very end of the

query execution. This is not acceptable for continuous queries that may run

for an arbitrary long time, may need real-time query output, and may pose

requirements on output tuple orders. Furthermore, the migration process

in such a phased query execution is actually not complete until the end

of the execution, so it is not truly a run time migration strategy and thus

cannot be applied repeatedly during a continuous query processing.

[MSHR02] introduces adaptive query plan execution by routing tuples

among operators inside a query plan. This novel adaption method is dif-

ferent from the generally adopted query plan re-optimization method, in

which tuples follow the same assumed optimal processing path until the

structure of the plan is re-optimized. Eddy’s always-adapting solution is

suitable for a highly dynamic environment. However, the flexibility of

Eddy comes at the price of a per-tuple based overhead since extra infor-

CHAPTER 17. RELATED WORK 209

mation needs to be carried or computed to make routing decisions for each

individual tuple (or at best for subgroups of individual tuples). Further-

more, the Eddy approach has the inherent problem of having to recompute

all delta intermediate results in the case of multiple joins. This can cost

large amounts of processing time given high stream rates and join selec-

tivities. For a changing environment that is not highly dynamic, the re-

optimization and migration method may exhibit a better performance.

Existing research has also shown how to migrate parts of a query plan to

other processors (machines) according to current system statistics [NWMN99].

In this case the structure of the query plan itself remains unchanged. This

is a different problem from the plan migration problem discussed in this

dissertation. Our plan migration targets the situation that the structure of

the query plan has changed, yet the execution of the query plan remains on

the same processor.

210

Part III

Distributed Continuous Query

Adaptations

211

Chapter 18

Distributed Continuous Query

Processing

Continuous queries have become popular in recent years due to demands

of numerous applications, including online auctions, financial analysis, sen-

sor monitoring systems, etc [CCC+02, BBD+02a, NWAea02, MSHR02, CF02].

A continuous query engine takes in real-time streaming data and sends out

results in a continuous fashion. High stream input rates and cost-intensive

query operations may cause a continuous query system to run out of re-

sources. Distributed continuous query processing over a shared nothing

architecture, i.e., a cluster of machines, is a prevalent method for solving

this scalability problem [AAB+05, CBB+03, MJSM03, LZJ+05, DH04].

18.1. DISTRIBUTED QUERY ADAPTATION 212

18.1 Distributed Query Adaptation

Distributing the query workload across multiple machines can greatly im-

prove the system performance due to the availability of aggregated re-

sources, including both CPU and memory. However, uneven workload

among machines may occur over time due to (1) the lack of initial cost in-

formation at the time when first distributing the queries, and (2) the poten-

tially fluctuating nature of the incoming data streams even if the statistics

could be measured at runtime. This imbalance of workloads on different

machines may impair the benefits of distributed processing. Thus, dynamic

load balancing, which deals with the problem of re-distributing workload

across machines in the cluster, has emerged as a crucial technology for dis-

tributed continuous query systems [MJSM03, AAB+05, LZJ+05, DH04].

In existing distributed continuous query systems such as [AAB+05, CBB+03,

LZJ+05], the basic unit of moving workload during the adaptation is typ-

ically one whole operator, assuming that each operator is small enough to

fit on one machine. This adaptation is referred to as operator-level adapta-

tion. Such adaptation relies on the assumption that the contents of each

operator (including operator states for stateful operators) are small enough

to fit on a single machine in the cluster. Therefore, while such adaptation is

sufficient for query plans containing only stateless operators or stateful op-

erators with small states, it may not work as well for stateful operators with

large states. In case of high stream arriving rates or large processing win-

dows, the size of the states in an operator can be huge [MJSM03]. For such

cases, applying operator-level adaptation can be difficult and inefficient.

18.2. ADVANTAGES OF PARTITIONED QUERY PROCESSING 213

(a) Original Multi-way Join Plan

Join1

Join2

A B

C

(c) Partition-level Parallelism

A B C

Join2

Join1

SplitA SplitB SplitC

Join2

Join1

Union

Join1

Join2

A B

C

(b) Operator-level Parallelism

Figure 18.1: Operator-level and Partition-level Parallelism

18.2 Advantages of Partitioned Query Processing

Partitioned parallelism [Has95] is a common method for processing query

operators with large states in a distributed system. Instances of each op-

erator will be installed on multiple processors, with the input data being

partitioned among these operator instances. The outputs from all operator

instances are unioned to form the final output stream. Partitioned paral-

lelism, a general query plan distribution strategy, has been routinely ap-

plied for traditional query processing [Has95, Gra90]. It has also been ap-

plied for continuous queries [MJSM03].

For example, the continuous query plan with two joins in Figure 18.2(a)

can be assigned to two machines as in Figure 18.2(b). Each machine runs

instances of both join operators. To partition the data, we add three split

operators and a union operator to the query plan. The split operators operate

as routers: They apply partition mapping functions, such as a value-based

mapping, to divide the streams of input tuples into partitions and direct

these partitions to the corresponding machines. The darker shading indi-

cates that the operator is active on that machine.

18.3. LIMITATIONS OF EXISTING STRATEGIES 214

M1 M2

Join2

Join1

SplitA SplitB SplitC

Union

Join2

Join1

Union

SplitA SplitB SplitC

M2 M1

M2

M2

A BC
(a) Original Multi -way Join Plan

Join1

Join2

A B

C

(b) Distribution of the Partitioned Plan.

Figure 18.2: Distribution of Partitioned Plan

As compared to the operator-level adaptation, the partitioned paral-

lelism makes runtime adaptation more efficient: instead of having to move

the operator as a whole unit as in [AAB+05, CBB+03, DH04], we now have

the choice of moving only some partitions of an operator state to another

machine at runtime. This enables finer-grained runtime adaptation.

This part of the dissertation first discusses my research findings on

operator-level plan migration in Chapter 19 as extension to the centralized

migration strategies proposed in Part II of this dissertation. The main fo-

cus of my research in this part is therefore the partitioned continuous query

processing, which is described in detail in Chapters 20, 21, 22 and 23.

18.3 Limitations of Existing Strategies

The load balancing strategies currently proposed in the literature for par-

titioned continuous queries make the implicit assumption that the parti-

tioned query plans on different machines remain identical [MJSM03, LZJ+05].

They have not considered the situation that the query optimizer restruc-

18.3. LIMITATIONS OF EXISTING STRATEGIES 215

tures the shape of the query plan residing on its machine. Therefore, exist-

ing work on partitioned continuous query processing has not considered

integrating the load balancing with query optimization. Consequently, the

effects of query optimization and its impact on load rebalancing strategies

remain an open issue to date.

However, this clearly is a major limitation, as runtime query optimiza-

tion has been shown to be critical for streaming systems. Load balancing

strategies typically just move workload from one machine to another, while

the total resource consumption in the system as a whole is not decreased.

On the other hand, plan optimization may be able to decrease the resource

consumption on each machine, therefore decreasing the overall resource

consumption in the distributed system. For example, a plan optimization

may dynamically switch two join operators in a plan in the face of changing

statistics. This can reduce the intermediate results, which leads to less CPU

and memory costs on this machine as well as less overall resources required

to process this query in the distributed system. Plan optimization may also

reduce the number of times load rebalancing is needed during query exe-

cution. Without local plan migration, changes in data characteristics may

result in imbalance among machine loads, possibly causing some machines

to be over-loaded. Typically this may trigger load rebalancing. However,

by applying local optimization on over-loaded machines, it can decrease

the load on these machines and thus may prevent unnecessary load rebal-

ancing.

Therefore, it is necessary to develop solutions that can seamlessly inte-

grate query optimization and load balancing within one runtime adapta-

18.4. NEW RESEARCH PROBLEMS 216

tion system. This is an open problem that is yet to be studied in the litera-

ture. It is now the focus of the research in this part of the dissertation.

18.4 New Research Problems

Traditionally, load rebalancing algorithms assume that the shape of the

query plan stays the same throughout the query execution. Therefore bal-

ancing loads among machines can be simply achieved by moving some

load (partitions) from over-loaded machines to under-loaded machines.

However, this is no longer valid if local query optimization has been ap-

plied. Since each machine can apply its own local optimization separately

from other machines, at any given time, the shapes of the query plan on

different machines can be distinct from one another.

To illustrate the problem, I use the query example from Figure 18.2. As

depicted in Figure 18.3, each join operator instance has two states, with

each state containing several partitions (without loss of generality, here I

assume value-based partitioning is applied in the split operator). Each par-

titioned state contains a set of partitions with different partition IDs. In

Figure 18.3, we can see that machine M1 processes partitions with IDs 1, 2,

3, and machine M2 processes partitions with IDs 4, 5.

After machine M2 applies the local plan optimization, the two joins on

M2 are switched. Now the query shapes on the two machines are distinct

from each other. A new partitioned state PBC has been created on M2 as

the result of this plan optimization. If at this time the load balancing algo-

rithm decided to move all partitions with ID 2 from M1 to M2, the partition

18.5. RESEARCH OUTLINE 217

M1 M2

Join2

Join1

SplitA SplitB SplitC

Union

Join2

Join1

Union

SplitA SplitB SplitC

A BC

PA
1
2
3

PB
1
2
3

PC
1
2
3

PAB
1
2
3

4
5

PA

PB
4
5

PC
4
5

PBC
4
5

2 2 22
PA PB PC PAB

?

Figure 18.3: Problem with Simple Partition Moving During Load Rebalanc-
ing

2 belonging to the partitioned state PAB cannot be put into any join state

on M2, because it does not have any matching state on that machine. Sim-

ply discarding this unmatched partition would cause loss of data. This

problem of integrating load rebalancing with query optimization remains

an unaddressed problem to date. Clearly, advanced load balancing strate-

gies are needed that can take the heterogeneity of plan shapes on different

machines into account. This is now the focus of our work.

18.5 Research Outline

In this part of the dissertation, I first introduce how to extend the central-

ized plan migration strategies described in Part II of this dissertation to

distributed systems. These operator-level plan migration strategies are dis-

cussed in Chapter 19 as extensions to the centralized migration strategies.

For the partition-level adaptation, which is the focus of this part of the

dissertation, I solve the problem of integrating query optimization with the

partition-level runtime load balancing for continuous queries. For this part

18.5. RESEARCH OUTLINE 218

of the research work, I first study the effects of adding plan optimization

to distributed continuous query processing. The performance gains of plan

optimization versus load balancing in isolation as well as in their integrated

forms are shown through experimental studies in an actual stream query

system running on a compute cluster (not just a simulation). Secondly,

I have designed, implemented and evaluated advanced load rebalancing

strategies which take the heterogeneity of query plan shapes on difference

machines into account. In particular, my research makes the following con-

tributions:

• I propose operator-level plan migration protocols for distributed con-

tinuous query processing. These protocols extend the plan migration

strategies described in Part II of this dissertation to distributed sys-

tem.

• I relax the assumption of unchanged plan shapes made by state-of-art

load balancing adaptation. I design two new load balancing strate-

gies, namely PTLB and MSLB, and their corresponding protocols that

can balance the workload while seamlessly handling the complexity

caused by local plan changes. The PTLB strategy is a general load

balancing strategy that requires no detailed knowledge of the under-

lying query plans, such as types of operators and shapes of query

plans. I then propose the more plan-aware MSLB strategy, which re-

balances the workload by comparing the detailed shapes of the query

plans among different machines.

• I have implemented runtime plan optimization and the two new load

18.6. ROAD MAP 219

balancing strategies as the three runtime partition-level adaptation

strategies in a continuous query system called D-CAPE [LZJ+05].

• I have experimentally evaluated the effects of query optimization as

well as load rebalancing for partitioned continuous query process-

ing using the D-CAPE system [LZJ+05] run on an actual cluster. The

corresponding experiments show that the combination of query opti-

mization and load balancing has superior performance than applying

each adaptation technique in isolation. Between the two load balanc-

ing strategies, the MSLB is shown to be more efficient than the PTLB

in many situations, while the PTLB can win under certain conditions.

18.6 Road Map

For the remainder of this part of the dissertation, I describe operator-level

plan migration protocols in Chapter 19. Chapter 20 describes preliminaries

on partitioned query processing, my design policies for the load balancing

strategies and conditions for load balancing. The two proposed load bal-

ancing strategies and their protocols in a distributed system are described

in Chapters 21 and 22, respectively. Chapter 23 shows my experimental

evaluations. Chapter 24 discusses related work.

220

Chapter 19

Operator-Level Distributed

Migration

19.1 Distributed Moving State Migration Protocols

In this chapter, I extend the two centralized migration strategies described

in Chapter 12 to a distributed system. The basic ideas of the two migra-

tion strategies can be re-applied in a straightforward way. When applying

a migration strategy in a distributed system, if all operators in the old mi-

gration box are active on the same machine, then it is the same as the local

migration. Otherwise, coordination and communication among multiple

machines are necessary.

I have developed a distributed protocol to achieve moving state migra-

tion across machines when operators in the same query are active on differ-

ent machines. The key steps include the synchronization of the execution

19.1. DISTRIBUTED MOVING STATE MIGRATION PROTOCOLS 221

on multiple machines, changing the shape of the query plans on each ma-

chine, filling the matched states and recomputing the unmatched state, and

finally reactivating the corresponding operators on each involved machine

to resume the normal execution.

The protocols for applying a cross-machine moving state strategy are

depicted in Figures 19.1, 19.2, 19.3 and 19.4. Here I use an example query

plan with four join operators. When the migration process starts, as in-

dicated by the distribution table inside the distribution manager in Figure

19.1, op1 and op3 are activated on machine M1 and op2 and op4 are acti-

vated on machine M2. The goal of the migration is to switch the top two

join operators, which are now active on different machines. So this is a case

of cross-machine migration.

op1

op2

op3 op4

Distribution Table

M2OP 4
M1OP 3
M2OP 2
M1OP 1

op1

op2

op3 op4

3 4

1 2M1 M2op1

op2

op3 op4

3 4

1 2

Distribution
Manager

Figure 19.1: Distributed Moving State Protocol: Start of Migration

Figure 19.2 illustrates the first few steps needed to synchronize the exe-

cution among multiple machines. This is necessary to prevent any missing

or duplicate results. The Distribution Manager (DM) initiates the migration

process by sending a “Request SyncTime” to each involved machine. Upon

19.1. DISTRIBUTED MOVING STATE MIGRATION PROTOCOLS 222

(2) Local Synctime

(1) Request SyncTime

Distribution Manager

op2

op3 op4

op1

op2

op3 op4

op13 4

1 2 3 5

4 2

Distribution Table

M2op 4
M1op 3
M2op 2
M1op 1

op1

op2

op3 op4

3 4

1 2M1 M2op1

op2

op3 op4

3 4

1 2

(1) Request SyncTime

(3) Global SyncTime (3) Global SyncTime

(4) Execution Synced

Figure 19.2: Distributed Moving State Protocol: Execution Synchronization

(6) PlanChanged

(5) Send New
SubQueryPlan

Distribution Manager
op2

op3 op4

op1

op2

op3 op4

op13 4

1 2 3 5

4 2

Distribution Table

M2op 4
M1op 3
M2op 2
M1op 1

M1 M2

op2

op1

3 5

4 2

(5) Send New
SubQueryPlan

op2

op1

3 5

4 2op2

op3 op4

op1

3 5

4 2

op2

op3 op4

op1

3 5

4 2

Figure 19.3: Distributed Moving State Protocol: Change Shape of Query
Plan

receiving such a message, each machine collects the latest timestamp of tu-

ples in its input queues and sends it back the DM. The DM computes the

global synctime and sends it to each machine. Each machine then executes

the query until all the tuples with a timestamp smaller than the global sync-

time are being executed. This ensures that all machines have processed tu-

ples up to the same timestamp. When the DM receives “Execution Synced”

19.1. DISTRIBUTED MOVING STATE MIGRATION PROTOCOLS 223

(8) States Filled

(7) Fill States [2, 4]

Distribution Manager
op2

op3 op4

op1

op2

op3 op4

op13 4

1 2 3 5

4 2

Distribution Table

M2op 4
M1op 3
M2op 2
M1op 1

M1 M2
op2

op3 op4

op1

3 5

4 2

op2

op3 op4

op1

3 5

4 2

(7) Fill States [3, 5]

(7.1) Request state [4]

(7.2) Move state [4]

(7.3) Request state [2]

(7.4) Move state [2]

(9) Reconnet operators

(11) Active [op 1]

(9) Reconnect Operators

(11) Activate [op 2] (10) Operator Reconnected

Figure 19.4: Distributed Moving State Protocol: Fill States and Reactivate
Operators

message from all involved machines, the synchronization phase is finished.

Note that the two operators that would be changed should be deactivated

on the respective machine that they each was originally activated on.

It is now safe for the machine to change the shape of the query plan. The

DM sends the new sub-plan to each machine, and waits for the acknowl-

edgments from all machines indicating that the shape of the query plan has

been changed.

Next, the DM sends the list of states in the migration box to the ma-

chines that should have these states after the migration is over. Along with

the list of states it also sends the machines that the old matching states are

currently on. The computation of which states are matched or unmatched

on which machine is done locally inside the DM. When a machine receives

the list of operator states to fill, it sends requests to machines if it does not

already have those states. If the state is a new state (judging by the state

19.2. DISTRIBUTED PARALLEL TRACK MIGRATION PROTOCOLS 224

ID), the machine should recompute the state and send any request to the

corresponding machines if it does not have the state to recompute this new

state. A machine sends a “State Filled” message back to the DM when all

the matching states are filled. After two more handshakes between DM

and the participating machines, the operators deactivated at the migration

start time are reactivated. After this step the migration is over and normal

execution is resumed.

19.2 Distributed Parallel Track Migration Protocols

The protocols for distributed parallel track strategy are depicted in Figures

19.5, 19.6 and 19.7, assuming the same starting state as depicted in Figure

19.1. The synchronization step is unnecessary for the parallel track strategy

because the old migration box and the new migration box are both going

to read tuples from the same queue.

The first step in this protocol is to deactivate operators inside the migra-

tion box, as indicated in Figure 19.5. After the deactivation, the migration

box containing the new sub-plan is sent from the Distribution Manager

(DM) to the involved machines. Each machine then connects the corre-

sponding box input queues to both the old migration box and the new mi-

gration box. Note that some of the connections are cross-machines. After

the connecting step, the DM notifies all machines to start the execution. At

this time, both migration boxes would be executed at the same time. The

same duplicate prevention method, as described in Chapter 12, is applied

here to avoid duplicate results being generated from both migration boxes.

19.2. DISTRIBUTED PARALLEL TRACK MIGRATION PROTOCOLS 225

Each machine monitors the tuples in the operators inside the old box. If all

tuples that had existed before migration start time have been purged, the

machine notifies the DM. The migration process is finalized by removing

the old box from each machine and then resuming the normal execution,

now with only the new sub-plan connected to the input queues.

(2) Operator Deactivated
(1) Deactivate [op1]

Distribution Manager

op2

op3 op4

op1

op2

op3 op4

op13 4

1 2 3 5

4 2

Distribution Table

M2op 4
M1op 3
M2op 2
M1op 1

op1

op2

op3 op4

3 4

1 2M1 M2op1

op2

op3 op4

3 4

1 2

(1) Deactivate [op2]

Figure 19.5: Distributed Parallel Track Protocol: Deactivate Operators in
Old Box

(4) Boxes Connected

(3) Send New
SubQueryPlan

Distribution Manager
op2

op3 op4

op1

op2

op3 op4

op13 4

1 2 3 5

4 2

Distribution Table

M2op 4
M1op 3
M2op 2
M1op 1

M1 M2

op2

op1

3 5

4 2

(3) Send New
SubQueryPlan

op2

op1

3 5

4 2

op3 op4

op2

op1

op2

op1

op1

op23 4

1 2

op3 op4

op1

op23 4

1 2

(5) Activate [op1] (5) Activate [op2](6) All old tuples purged
(7) Remove

old box
(7) Remove

old box

Figure 19.6: Distributed Parallel Track Protocol: Connect and Execute Old
and New Boxes

19.3. DISCUSSION ON DISTRIBUTED MIGRATION STRATEGIES 226

(8) Old Box Removed

Distribution Manager
op2

op3 op4

op1

3 5

4 2

Distribution Table

M2op 4
M1op 3
M2op 2
M1op 1

M1 M2

op3 op4

op2

op1

3 5

4 2

op2

op1

3 5

4 2

op3 op4

Figure 19.7: Distributed Parallel Track Protocol: Remove Old Box

19.3 Discussion on Distributed Migration Strategies

As discussed in the cost analysis in Section 12.4 of Part II and shown by the

experimental results in Chapter 16, the moving state strategy requires less

CPU costs than the parallel track strategy in a centralized system. However,

in a distributed system, the cost of moving matching states across machines

is added to the moving state strategy, while this cost is almost negligible in

a centralized system where matching states can be shared right away by

creating cursors. Another extra cost for distributed moving state is that

when an unmatched state needs to be recomputed, if the machine does

not have the states that are needed to recompute this unmatched state, the

missing states have to be requested to send from some other machines.

Therefore, the total extra cost of the distributed moving state can be at most

the communication costs to transfer all the matching states from the old

migration box to the new migration box.

For the distributed parallel track strategy, the extra cost is spent sending

19.3. DISCUSSION ON DISTRIBUTED MIGRATION STRATEGIES 227

the same tuples to both the old box and the new box when they are being

executed parallely over the same input data. As analyzed in Chapter 12,

this can be estimated as sending 2W worth’s of new input tuples as well

as sending those intermediate tuples across machines when the producer

operator and the consumer operator are located on different machines. In

a distributed system with the network connection as the bottleneck, we

can compare the size of the intermediate states to be transfered in case of

the moving state, to the 2W worth’s of new tuples that need to be sent to

both machines. Whichever of the above two is larger, the corresponding

migration strategy is likely to be more costly. We should then apply the

other distributed migration strategy to the global plan migration process.

228

Chapter 20

Preliminaries on Partition-level

Adaptations

20.1 Partitioned Continuous Query Processing

For the research on partition-level adaptation, I adopt partitioned parallel

processing as used in Volcano [Gra90] and Flux [MJSM03]. Input streams of

operators are partitioned into many smaller partitions based on values of

tuple columns. Each operator instance is allocated a number of partitions.

The partitioned processing is accomplished in the split operators. We use

the example shown in Figure 20.1 to illustrate the partitioning process. The

example query plan has two joins and is being processed in parallel on two

machines. Each machine executes the same instance of the query plan but

processes a different portion (set of partitions) of the input data. The data

partitioning process in the split operators will be described shortly. The

20.1. PARTITIONED CONTINUOUS QUERY PROCESSING 229

query plan has three input streams A, B and C, and the join predicates are

defined as A.A1 = B.B1 = C.C1. Therefore three split operators are added

to the query plan, shown as SplitA, SplitB and SplitC in Figure 20.1.

...3

...4

..1

...2

...3

...1

A2A1

...1

...2

..2

...3

...3

...4

B2B1

...3

...2

..1

...4

...1

...1

C2C1

Split� Split� Split�

M1 M2

A B C

A�%2=0 ->m�
A�%2=1 ->m�

B�%2=0 ->m�
B�%2=1 ->m�

C�%2=0 ->m�
C�%2=1 ->m�

...4

...2

A2A1

PA1

...2

...2

...4

B2B1

PB1

...4

...2

C2C1

PC1

Partitions of M1

...1

...3

...3

...1

A2A1

PA2

...1

...3

...3

B2B1

PB2

...1

...1

...3

...1

C2C1

PC2

Partitions of M2

Partition Functions

Input Streams

Join Predicates: A.A1 = B.B1 = C.C1

A B C =
PA1 PB1 PC1

∪ PA2 PB2 PC2
Union of Results

Figure 20.1: Tuple Partitioning in Split Operators

Each split operator stores a partition function and a partitionID-to-machine

mapping table between partition IDs and machines. Partition ID is an ID

assigned to a tuple as the result of applying the partition function to a tuple.

Each tuple will henceforth store its ID. When a new tuple arrives, the split

operator for that input stream applies the partition function to calculate

the partition ID of the new tuple. It then checks its partitionID-to-machine

mapping table and figures out to which machine this tuple should be sent

to. For example, for input stream A, the split operator SplitA has partition

functions based on modular function %2 in our example (Figure 20.1). All

the tuples with partition ID “0” are mapped to machine M1 while the other

tuples are mapped to machine M2. As the result of this partitioning, all

20.2. DESIGN OF LOAD BALANCING STRATEGIES 230

tuples with an even first-column value are processed on machine M1 and

temporarily stored in the corresponding states on machine M1. All the tu-

ples with an odd first-column value are processed and stored on machine

M2. The partitions in each state on M1 and M2 are also shown in Figure

20.1. The final result of this query processing is the union of the two non-

overlapping sets of results from the two machines.

20.2 Design of Load Balancing Strategies

As described in Chapter 10, the problem of dynamic plan migration is sum-

marized as the problem of replacing one query box by the other at runtime.

The term query box refers to the plan or sub-plan selected for migration. As

shown in Figure 20.2, the left box contains the old plan and the right box

contains the new plan. The plan migration process can then be defined as

the process of transferring an old box containing the old query plan to a

new box containing the new query plan. In the second part of this disser-

tation, two migration strategies have been proposed, namely the parallel

track strategy and the moving state strategy, to dynamically migrate con-

tinuous query plans that contain stateful joins.

The problem tackled in this part of the dissertation is how to dynami-

cally balance workload among machines with heterogeneous plan shapes.

At first glance, the problem of plan migration and the problem of load

balancing are two very different problems: The former deals with plan

changes in a local machine, while the latter moves workload among ma-

chines in a distributed environment. However, if we treat each query box,

20.2. DESIGN OF LOAD BALANCING STRATEGIES 231

BC

AB

QA QB QC QD

QABCD

AB

CD

BC

QA QB QC QD

QABCD

SAB SC

SA SB
SB

SC

SBC SD

SBCDSA
CD

SABC SD

Figure 20.2: Two Exchangeable Query Boxes

shown in Figure 10.1, instead as a machine in a distributed system, the

two seemingly very different problems now begin to look similar: in both

cases, we are moving some workload from one plan/machine box to an-

other plan/machine box. We observe that the challenges of both problems

are similar as well: First, the two boxes contain query plans of different

shapes. Second, the whole process needs to be done at runtime without

resulting in any lost, duplicate or incorrect query results. This sharing of

similar concepts and challenges has inspired us to reuse the ideas of the two

existing plan migration strategies as much as possible to solve the problem

of load balancing.

Based on these similarities between local plan migration and distributed

load balancing, I have designed two strategies, namely the moving state

load balancing and the parallel track load balancing, which reuse the re-

spective core ideas of the two local plan migration strategies to achieve the

distributed load balancing process with heterogenous plan shapes among

20.2. DESIGN OF LOAD BALANCING STRATEGIES 232

machines. However, although the problem of dynamic plan migration and

the problem of runtime load balancing have similarities, they are still dif-

ferent problems. The former changes the currently running query plans

with stateful operators on a local machine. On the other hand, the latter

moves operator partitions (not the whole operator) among machines with

possibly different query plan shapes. Two major differences exist between

these two problems:

• First, the local plan migration is conducted on a single machine, while

the distributed load balancing process involves the distribution man-

ager, the sender machine and receiver machine. Therefore three ma-

chines participate in this process across the network. This requires

carefully synchronized coordination among these participating ma-

chines to ensure the correct results of the query processing.

• The second major difference is the unit of data on which the migra-

tion processing is applied. In local plan migration, all tuples in the

same state are treated as one unit. Any migration action applied to

one tuple in the state will also be applied equally to all other tuples

in the same state. During the moving state plan migration, the state

matching, state moving and state recomputing all use the state as the

basic operation unit. During the parallel track plan migration, all tu-

ples sent to the old box are also sent to the new box. However, in

distributed load balancing, we are interested in moving only subset

of the partitions from one machine to another machine. So now the

unit of operation becomes a partition instead of a state. Partitions in

20.2. DESIGN OF LOAD BALANCING STRATEGIES 233

the same states can be treated differently. The split operators need

to distinguish the to-be-moved partitions from the other partitions.

While the to-be-moved partitions are being matched, moved or re-

computed in the moving state strategy, or duplicated in the parallel

track strategy, the other partitions should be processed normally.

The next two chapters describe the two load balancing strategies, namely

moving state load balancing and parallel track load balancing, respectively.

Especially they show what modifications to the two local migration strate-

gies are needed to resolve the differences described above between local

plan migration and distributed load balancing, so that the concepts of the

local migration can be reused and applied to load balancing in partitioned

continuous query processing. Chapter 21 describes the parallel track load

balancing strategy and the protocols designed to apply the method for the

purpose of distributed load balancing. This strategy conducts the load bal-

ancing process in a gradual fashion by executing the tuples belonging to

the to-be-moved partitions on both the sender machine and the receiver

machine in parallel. Chapter 22 introduces the moving state load balancing

strategy and the designed protocols to apply it to the distributed load bal-

ancing problem. This strategy pauses the processing of tuples that belong

to the to-be-moved partitions on the sender machine and carefully maps

and moves over the to-be-moved partitions in the states of the sender ma-

chine to their corresponding locations on the receiver machine.

20.3. CONDITIONS FOR LOAD REBALANCING 234

20.3 Conditions for Load Rebalancing

I have developed the proposed load balancing strategies in the D-CAPE

system [LZJ+05]. The load rebalancing process is invoked by the distri-

bution manager (DM). Each processor run on one machine periodically

sends its resource usage statistics to DM, who then analyzes these statis-

tics and makes the decisions to apply runtime load rebalancing if it detects

a load imbalance among processors. For discussion’s sake, let us assume

the resource statistics are memory usages. Each load balancing process is

between a pair of machines: the DM selects the machine Ml with the low-

est memory load Cmin and the machine Mh with the highest memory load

Cmax and moves (Cmax−Cmin)/2 worth of partitions from Mh to Ml. Mh is

referred to as the sender machine and Ml is referred to as the receiver machine.

The DM makes the decision based on three cost-related parameters:

• Cmax: The load on the most-loaded machine among all machines. If

this parameter is smaller than a threshold Tmax, then no machine is

over-loaded in the system. Therefore it is not necessary to balance the

load even if the load is unbalanced among machines in the system.

• Cmin: The load on the least-loaded machine among all machines.

If this parameter is larger than a threshold Tmin, that indicates that

even the least loaded machine is system is over-loaded, and mov-

ing some load to this machine won’t solve the problem. Therefore

load rebalancing should not be applied. At this time, other adapta-

tion strategies that can decrease the total amount of load in the sys-

20.3. CONDITIONS FOR LOAD REBALANCING 235

tem should be applied. These strategies include local plan migration

[ZRH04], load shedding [TCZ+03, BDM04] or spilling data to disk

[LZR06, UF99, VNB03].

• Cdiff : The difference of the load between the most-loaded machine

and the least-loaded machine in the system. If this difference is smaller

than a threshold Tdiff , the load imbalance is not serious enough and

therefore the load rebalancing should not be invoked.

236

Chapter 21

Parallel Partition Load

Balancing

21.1 Distributed Parallel Track Load Balancing

The basic idea for the parallel track load balancing strategy, which is inspired

by the parallel track migration strategy, is that at the load balance start

time, the set of tuples belonging to the to-be-moved partitions are send to

both the sender and the receiver machines. Both machines then process

this same portion of data in parallel, while waiting for all old tuples in the

to-be-moved partitions to be gradually purged. Here a tuple is old if it had

already existed in any partition before the load balancing starts. A tuple is

new if it arrives after the load balancing has started.

When the to-be-moved partitions on the sender machine contain only

new tuples, it is safe to discard them from the sender. This is because all old

21.1. DISTRIBUTED PARALLEL TRACK LOAD BALANCING 237

partitions have finished their duty in terms of contributing to the genera-

tion of output results from the sender machine. Since we have been feeding

the tuples belonging to these to-be-moved partitions to the receiver ma-

chine in parallel from the moment the load balancing first started, all the

new tuples belonging to these partitions now in the sender machine also

exist in the receiver machine as well. So if the old partitions are discarded

from the sender machine at this time, no useful data will be lost.

We also must ensure that no duplicate tuples are being generated. In the

parallel track strategy described above, although the sender machine will

generate all output tuples from the to-be-moved partitions that consist of

at least one old sub-tuple, it may also generate the all-new sub-tuple com-

bination, which duplicates the output results from the receiver machine.

To solve this duplication problem, we can apply the same duplicate pre-

vention algorithm described in Chapter 12 for local parallel track plan mi-

gration strategy. The root join operator of the sender machine can prevent

a new tuple from joining with another new tuple. Hence if the join predicate

is evaluated on two tuples that are both new, we simply skip the join step

in the regular purge-join-insert symmetric join algorithm. The purge and

insert steps are however still undertaken as usual.

For this strategy, all old tuples (tuples with at least one old sub-tuple)

need to be purged from the to-be-moved partitions. Suppose that h (h >=

1) is the height of the query tree on the sender machine. Again as in the

local parallel track plan migration described in Chapter 12, the duration of

the parallel track load balancing can be estimated by two cases:

1) h = 1. In this case the query tree has only one level of join operators.

21.1. DISTRIBUTED PARALLEL TRACK LOAD BALANCING 238

For a join operator on the sender to purge all old tuples in the to-be-moved

partitions from one of its two states, the join operator must process new

tuples from its second input that arrive in the next W time units. Therefore

TPT = W .

2) h > 1. This means that on the sender there is at least one join operator

which is above another join operator. When the load balancing begins, W

time window’s new tuples from the input queues are needed to purge old

tuples inside the to-be-moved partitions of leaf operators on the sender

machine. However, as these new tuples are used to purge old tuples, they

may also join with some of the old tuples and the results are being inserted

into the state of the join operators above the leaf operators. Because the

joined tuples contain an old sub-tuple, they are treated as old tuples and

need to be purged as well. In order to do so, the sender machine needs to

process another W time window’s new tuples to completely purge these

old tuples from the old partitions. So in this case, TPT = 2W .

In summary, the lower bound of time spent on finishing the parallel

track process is 2W for a query with more than one join operator, given

that W is the window size of the query. The lower bound is W if the query

contains only one join operator.

The flow chart of the parallel track load balancing strategy is shown

and compared to the parallel track plan migration strategy step-by-step in

Figure 21.1. As we can see, the two strategies are similar to each other, ex-

cept that each step of the parallel track load balancing is applied to tuples

in to-be-moved partitions only. This distinction between to-be-moved par-

titions and other partitions is accomplished in the split operators, because

21.2. DISTRIBUTED PTLB PROTOCOLS 239

these are where the partitions are formed and distributed to the sender ma-

chine and the receiver machine. The detailed protocols are described in the

following Section 21.2.

Parallel Track Plan Migration

Feed all tuples
to both old and new plans

Wait until all old states expired
in old query plan

Feed tuples to new plan only

Parallel Track Load Relocation

Feed to-be-moved partitions
to both sender and receiver

Wait until all old to-be-moved
partitions expired on sender

Feed to-be-moved partitions
to receiver only

Figure 21.1: Parallel Track Strategy

21.2 Distributed PTLB Protocols

This section describes the distributed Parallel Track Load Balancing (PTLB)

protocols I have designed to solve the problem of load balancing among

machines with heterogeneous plans in a distributed environment. As men-

tioned earlier, the key point in PTLB, different from the local parallel track

plan migration, is that we now need to distinguish the to-be-moved par-

titions in the split operators. Only the these partitions are send to both

sender and receiver during the PTLB process, while other partitions should

be processed as normal without being affected by the PTLB process.

A 5-step communication protocol has been designed to achieve the PTLB

once the DM has made the decision to apply load rebalancing. Each step

21.2. DISTRIBUTED PTLB PROTOCOLS 240

contains a message passing between the distribution manager (DM) and

one of the query processors. I divide the 5 steps into 3 phases, includ-

ing computing partitions, duplicating partitions and stopping duplication,

which corresponds to the three phases in the local parallel track plan mi-

gration process. The query example in Figure 18.3 is used here to illustrate

the execution of the protocols.

The three phases in the protocols are illustrated in Figures 21.2, 21.3 and

21.4.

PTLB Phase 1: Computing Partitions

During the first phase of the protocol, the to-be-moved partitions that need

to be moved from the sender to the receiver are determined by communica-

tion between the distribution manager and the sender machine. This phase

consists of steps 1 and 2, which together with the corresponding timeline

of the PTLB process are depicted in Figure 21.2. When the DM makes the

decision to invoke load balancing, it has already calculated three variables

used in the load balancing process: the sender machine, the receiver ma-

chine and the amount of partitions in terms of memory the sender should

send to the receiver. Therefore, in the first step of load balancing, the DM

sends a request computePartitionsToMove to the sender (assumed to be M1

in Figure 21.2), with the amount of partitions that need to be moved. Upon

receiving such a request, the sender machine selects the partitions whose

sum is close to the amount of partitions that need to be moved. In step 2,

the sender then sends the IDs of the selected partitions, denoted as parti-

tionsToMove in Figure 21.2, back to the DM.

21.2. DISTRIBUTED PTLB PROTOCOLS 241

Distribution Manager

(2) PartitionsToMove{1}(1) ComputePartitionsToMove
(Cmax-Cmin)/2

DM Sender Split

(1) Compute
Partitions
ToMove

(2) Partitions
ToMove

Sender

Union

Join1

Split� Split� Split�

Join2

Union

Join1

Split� Split� Split�

Join2

Receiver

Figure 21.2: PTLB: Compute Partitions to Move.

Each partition ID represents all the partitions on the sender machine

with that same partition ID. In fact, each partitioned state on a machine can

have a partition with the selected ID. Therefore each partition ID indicates

one partition from each state. Our mechanism is to choose the partitions

in all the states with the same partition ID as a whole unit to move. This

avoids joins across multiple processors. For example, as shown in Figure

18.3, we denote the partition with ID 2 in partitioned state PA as partition

A2. If we only move partition A2 from M1 to M2, then after the load bal-

ancing, the newly coming tuples to partition A2, which is now located on

M2 would have to probe and join partition B2, which is still located on

M1. Therefore in our load balancing process, the unit to move between two

machines is not a single partition, but a partition group that contains all the

partitions with the same ID on the sender machine.

21.2. DISTRIBUTED PTLB PROTOCOLS 242

PTLB Phase 2: Duplicating Partitions

During the second phase of the PTLB process, the to-be-moved partitions

are sent to both the sender and the receiver machines until all old tuples in

these partitions are purged on the sender machine. In order to achieve this

goal, the split operators should distinguish the to-be-moved partitions (as

calculated in the first phase of PTLB) from other partitions by modifying

their partition mapping tables: the to-be-moved partitions are mapped to

both sender and receiver, while mappings for other partitions remain the

same. Similar to the local plan migration, each operator on the sender ma-

chine checks to see if all old tuples belonging to the to-be-moved partitions

are purged from its states. And if so, the operator sends a message to its

parent. This message is propagated bottom up until the top most operator

on the sender has received the message from all its children and has purged

all old tuples from its to-be-moved partitions.

This second phase contains steps 3 and 4 that exploit parallel processing

principles, as shown in Figure 21.3. In Step 3, the DM sends a DuplicatePar-

titions to the sender machine as well as all the machines with active split

operators. Upon receiving the message, an active split operator will add

entries to the existing partition mapping table, which map each of the to-

be-moved partitions to the receiver machine. This allows the split operator

to henceforth forward tuples that belong to these selected partitions to both

the sender and the receiver machines.

Before actually sending the tuples to both machines, each split operator

first sends a meta-data tuple, referred to as CheckOld tuple, to its parent

21.2. DISTRIBUTED PTLB PROTOCOLS 243

operator that is active on the sender machine. This is shown as the step 3.1

in Figure 21.3. When each operator on the sender machine receives such

meta-data tuple from all its children, this operator then enters a checking-

old-expired mode. When in this mode, an operator periodically checks to

see if all the old tuples in the to-be-moved partitions in its states are purged.

The operator also immediately propagates the meta-data tuple to its parent.

After sending the CheckOld meta-data tuple, the split operator then im-

mediately starts sending tuples belonging to to-be-moved partitions to both

sender and receiver. Whenever a tuple is forwarded to a sender machine,

the split operator sets a flag on the tuple as new. This indicates that this

tuple is also being sent to the receiver machine. The flag on all other tuples,

including the tuples being sent to the receiver machine in parallel, are by

default set to be old.

Distribution Manager

(4) AllOldPurged

(3) DuplicatePartitions {1}

Sender

Union

Join1

Split� Split� Split�

1

1 Join2

Union

Join1

Split� Split� Split�

Join2

Receiver

1 1 1

1

1

1 1 1

DM Sender Split

(3) DuplicatePartitions

(1) Compute
Partitions
ToMove

(2) Partitions
ToMove

(4) AllOld
Purged

(3.1) CheckOld

CheckOld meta-data tuple

New input tuple

send
duplicate
partitions

(3.1)

Figure 21.3: PTLB: Send Partitions to Both Machines.

21.2. DISTRIBUTED PTLB PROTOCOLS 244

Upon receiving the DuplicationPartitions, the join operators on the sender

machine process tuples in the following way in order to avoid producing

duplicate results from the sender and the receiver.

• For all join operators except the root join operator on the sender ma-

chine, a new tuple is being treated the same as an old tuple. When a

joined tuple is outputted from a join operator, the joined tuple is set

to be new only when all its sub-tuples are new as well. Otherwise, the

tuple is still set to be old.

• At the root join operator, when two tuples are to be joined, if both

tuples are marked as new, they are not joined together. Instead, the

tuples are just used to purge partitions and are then inserted to the

corresponding partitions. This is because the new-to-new joins are to

be done on the receiver machine.

When all old tuples in the to-be-moved partitions are purged from an

operator, it then sends another meta-data tuple, referred to as the AllOld-

Purged tuple, to its parent. This meta-data tuple again is propagated in the

same fashion as the CheckOld tuple. The same bottom-up propagation of

AllOldPurged tuple ensures that when the top-most operator emits such a

tuple, it indicates that all old tuples have been purged from the sender ma-

chine. At this time, the sender machine can send an AllOldPurged message

back to the distributed manager. This is shown as the Step 4 in Figure 21.3.

21.2. DISTRIBUTED PTLB PROTOCOLS 245

PTLB Phase 3: Stopping Duplicates

In the last phase of the PTLB protocol, each split operator modifies its

mapping table again so that now the tuples in to-be-moved partitions are

mapped to the receiver machine only. This stops the duplicates of the tu-

ples and completes the PTLB process. This phase is accomplished by Step 5

as depicted in Figure 21.4. The DM sends a DeletePartitions message to the

sender machine and all machines with active split operators. Each active

split operator will then remove the entries that map the to-be-moved par-

tition IDs to the sender machine. This allows the split operator to forward

new tuples belonging to these partitions to the receiver machine only. The

split operator then puts an DeletePartitions meta-data tuple to all the output

queues connecting to the sender machine. This is shown as the Step 5.1

in Figure 21.4. When a join operator has received the DeletePartitions tuple

from all its input queues, it can delete the to-be-moved partitions from its

states. The join operator forwards the DeletePartitions tuple to its parent.

When the root join operator on the sender has received one DeletePartitions

tuple from each of its input queues, it sends a PartitionDeleted message back

to the DM. After this step, the PTLB process is over.

PTLB Algorithms

Algorithms 9 and 10 sketch the high-level interactions between the distri-

bution manager and the processors on each machine during the runtime

PT load balancing process. Algorithm 9 describes the basic operations of

the distribution manager. The algorithm follows the actions in the timeline

21.2. DISTRIBUTED PTLB PROTOCOLS 246

Distribution Manager

(5) StopDuplicate {1}

Sender

Union

Join1

Split� Split� Split�

Join2

Union

Join1

Split� Split� Split�

Join2

Receiver

1

1 1

1

DM Sender Split

(3) DuplicatePartitions

(1) Compute
Partitions
ToMove

(2) Partitions
ToMove

(4) AllOld
Purged

(5) StopDuplicate

(3.1) CheckOld

(5.1) Delete
Partition

(6) Partition
Deleted

send
duplicate
partitions

(6) PartitionDeleted

(5.1)

1

1 1

1

Figure 21.4: PT Load Balance: Delete Partitions.

diagram (shown on the left of Figure 21.4) by sending protocol messages

and waiting for the corresponding responses. Similarly, Algorithm 10 de-

scribes the steps performed on a participating processor during the PTLB

process. Here, the send and wait are primitive operators designed to send

or wait for messages across machines.

In summary, the PTLB is a general strategy that does not need to care

about the detailed properties about the plan itself, such as the types of the

operators and the shapes of the plans on different machines. This simplifies

the process of load balancing, especially when the plan shapes are different

between the sender and the receiver. It also has the advantage of not hav-

ing to stop the query execution in the to-be-moved partitions at any point

of time. It thus does not have to deal with on-the-fly tuples. However, this

simplicity comes with a price of both CPU and memory overhead, which

21.2. DISTRIBUTED PTLB PROTOCOLS 247

Algorithm 9 PT-State-Rebalance: DistributionManager(sender, receiver,
amount)

/*It controls load balancing process by sending control messages to participating
machines and waiting for corresponding responses.*/

1: send ComputePartitionsToMove(amount) msg to sender;
2: wait until get PartitionsToMove msg;
3: send DuplicatePartitions to sender & machines with active split opera-

tor(s);
4: wait until get AllOldPurged msg from the sender machine;
5: send StopDuplicates msg to sender & machines with active split opera-

tor(s);
6: wait until get PartitionDeleted msg from sender machine;

will prevail as long as the balancing process is ongoing. As discussed ear-

lier in Section 21.1, the whole process takes at least 2W timeframe to finish.

This is undesirable for continuous queries with large windows, which are

in fact the ones that most likely need to be executed in a distributed sys-

tem in the first place. It also incurs the extra overhead of having to store

the same set of tuples for these to-be-moved partitions on both the sender

machine and the receiver machine. To overcome these shortcomings, I de-

sign the second runtime load balancing protocol, the moving state protocol,

which is described in the next section.

21.2. DISTRIBUTED PTLB PROTOCOLS 248

Algorithm 10 PT-State-Rebalance:Processor()

/* To receive messages, perform corresponding actions, and return message(s) to
the distribution manager.*/

1: while (keepGoing) do

2: wait for control message of PTLB protocol;
3: switch(message)
4: ComputePartitionsToMove: /*compute partitions to be moved*/
5: compute partitions to move;
6: send PartitionsToMove msg to DM;
7: DuplicatePartitions: /*sends new tuples to both machines*/
8: split operators sends CheckOld tuple to operators on sender;
9: split operators start sending new tuples in to-be-moved partitions

to both machines;
10: root join operator waits for all old tuples to be purged and AllOld-

Purged tuples from all its children except split operators;
11: root join operator sends AllOldPurged msg to DM;
12: DeletePartitions: /*delete to-be-moved partitions*/
13: split operators send DeletePartition tuple to operators on sender;
14: split operators stop sending tuples in to-be-moved partitions to the

sender;
15: join operators on sender remove to-be-moved partitions when re-

ceive DeletePartition tuples from all its children except split operators;
16: sender machine sends PartitionDeleted message back to DM;
17: keepGoing = false;
18: end while

249

Chapter 22

Moving Partition Load

Balancing

22.1 Distributed Moving State Load Balancing

The basic idea of the Moving State Load Balancing (MSLB), which is inspired

by the moving state plan migration strategy described in Chapter 12, is to

safely move to-be-moved partitions (instead of whole states in plan migra-

tion) on the sender machine directly into the states on the receiver machine

without losing or duplicating data. The main steps of MSLB and its cor-

responding steps in the MS plan migration strategy are shown in Figure

22.1.

As we can see from Figure 22.1, MSLB and MS migration have very

similar steps in the flow charts. However, there are two major differences

between the two processes.

22.1. DISTRIBUTED MOVING STATE LOAD BALANCING 250

Moving State Plan Migration

Synchronize among leaf
operators on one machine

Apply state matching, state
moving and state recomputing

Start execute new plan only

Moving State Load Relocation

Synchronize among leaf split
operators across multiple machines

Move to-be-moved partitions
from sender to receiver and recompute

unmatched partitions on receiver

Resume execution of
to-be-moved partitions

Stop execution of old plan
Stop forwarding to-be-moved partitions

to sender in split operators.

Figure 22.1: Moving State Load Balancing Strategy

First, the synchronization step, which is critical for both to ensure cor-

rectness of query results during each process, are different in terms of syn-

chronization scales. For MS migration, the synchronization process syn-

chronizes the execution of leaf operators to the old box. However, for

MSLB, the synchronization is among split operators where the data is first

being partitioned and distributed to both sender and receiver machines.

Since split operators in a query plan can be activated on multiple machines,

the synchronization process is also applied to multiple machines. This com-

plicates the synchronization process, because now we need to synchronize

among multiple machines which normally execute query plans at their own

paces. In the designed MSLB strategy, this multi-machine synchronization

is coordinated by the distribution manager. Each machine sends and re-

ceive messages to and from the distribution manager so that the executions

on multiple machines are able to be synchronized by using the common

knowledge received from the distribution manager. Once the multiple ma-

22.2. DISTRIBUTED MSLB PROTOCOLS 251

chines with active split operators are brought to a synchronized point, the

rest of the state matching, state moving and state recomputing steps are

very similar to the MS plan migration strategy.

Secondly, as in the PTLB strategy, the MSLB only moves to-be-moved

partitions from the sender to the receiver. Other partitions should be pro-

cessed as normal. So the split operators need to be able to distinguish be-

tween these two types of partitions and apply different actions to different

partition types.

The next section describes the protocol designed to apply the ideas of

MSLB to distributed load balancing.

22.2 Distributed MSLB Protocols

The key of the distributed moving state load balancing (MSLB) strategy is

that now we need to carefully synchronize among multiple participating

machines, including the distribution manager (DM), the sender and the re-

ceiver and all other machines with active split operators in the query plan

in order to achieve the load balancing without resulting in any loss, dupli-

cate or incorrect query results. Hence I have developed a communication

protocol to achieve the MS load rebalancing. Each step consists of one or

more message exchanges between distribution manager (DM) and one of

the query processors.

Furthermore, I divide these steps into 4 phases of the MSLB process,

including computing partitions, synchronizing execution, relocating par-

titions and reactivating partitions. The four phases of the protocols are

22.2. DISTRIBUTED MSLB PROTOCOLS 252

depicted in Figures 22.2, 22.3, 22.4 and 22.5 respectively.

MSLB Phase 1: Computing Partitions

The first phase of MSLB is the same as the first phase of the PTLB, which is

to calculate the set of partitions IDs that need to be moved from the sender

machine to the receiver machine. Steps 1 and 2 in the MSLB protocol corre-

spond to communication between the distribution manager and the sender

machine, as shown in Figure 22.2, which are the same as in the PTLB pro-

tocol depicted in Figure 21.2 of Section 21.2.

Distribution Manager

(2) PartitionsToMove {1}

(1) ComputePartitionsToMove
(Cmax-Cmin)/2

Sender Machine Receiver Machine

Union

Join1

Split� Split� Split�

Join2

Union

Join1

Split� Split� Split�
Join2

DM Sender Split

(2) Partitions
ToMove

Receiver

(1) Compute
Partitions
ToMove

Figure 22.2: MS Load Balance: Compute Partitions to Move.

MSLB Phase 2: Synchronizing Execution

During phase 2 of the MSLB, messages are exchanged between the DM

and processors to deactivate to-be-moved partitions before they are really

22.2. DISTRIBUTED MSLB PROTOCOLS 253

moved between machines. Furthermore, this phase also has the task of

synchronizing the executions among all the active split operators to bring

the system to a point when it is safe to move partitions between a pair

of matching states on the sender and the receiver respectively. After this

phase, the partitions can be send to the receiver without losing any useful

information, as proved in the local MS plan migration in Chapter 12.

The phase 2 of the MSLB consists of steps 3, 4, 5 and 6, which are de-

picted in Figure 22.3.

In Step 3, the DM sends a DeactivatePartitions message, along with the

to-be-moved partition IDs calculated in Steps 1 and 2, to the sender ma-

chine and all machines with active split operators. In this example, both

machines have active split operators and both will receive such message

from the DM.

On machines with active split operators, after receiving such deacti-

vatePartitions message, an active split operator will take the following three

actions in that order: 1) First, it removes the to-be-moved partition IDs

from its partition mapping table, so that newly arriving tuples belonging

to these partitions will no longer be forwarded to the sender machine. 2)

Because after the first action, any new arriving tuples belonging to these

partitions won’t be forwarded to any machine, the split operator needs to

create buffers to temporarily hold new tuples belonging to these partitions.

3) Lastly, the split operator calculates the minimal timestamp of tuples that

belong to the to-be-moved partitions in its input queues. It then sends a

message containing this MinTimestamp back to the distribution manager.

This is illustrated as Step 4 in Figure 22.3.

22.2. DISTRIBUTED MSLB PROTOCOLS 254

Distribution Manager

(4) MinTimestamp

(3) DeactivatePartitions {1}

Sender

Deactivation and Sync In Active Split Operators

After receving message (3):
1. Remove ID {1} from PartitionMap
2. Create temporary space for partition with ID {1}
3. Send min timestamp of deactivated partitions to DM
After receiving message (5)
4. Process deactivated partitions up to T.
5. Send EndOfPartitions to operators on sender.

Union

Join1

Split� Split� Split�

1

1 Join2

Union

Join1

Split� Split� Split�

Join2

Receiver

1 1 1

1 1 1

111 111

111

1

1

DM Sender Split

(2) Partitions
ToMove

Receiver

(1) Compute
Partitions
ToMove

(3) Deactivate Partitions

(4) MinTimestamp

(5) SyncTime T

(4) MinTimestamp

(5) SyncTime

(5.1) EndOfPartitions

(6) Deactivated

(6) Deactivated (6) Deactivated

(5.1)

Figure 22.3: MS Load Balance: Deactivate and Synchronize To-be-moved
Partitions.

The distribution manager waits for the MinTimestamp from all the split

operators and calculates the max timestamp of all these min timestamps re-

ceived. This is the global synchronization timestamp among all machines

with active split operators. The generation of this synchronization time-

stamp is essentially the same as generating a synchronization timestamp

for all leaf operators in the centralized moving state plan migration, which

is described in Chapter 12. The distribution manager then sends this Sync-

Time to all machines with active split operators. This is illustrated as Step 5

in Figure 22.3.

When receiving the SyncTime message, each split operator then takes

22.2. DISTRIBUTED MSLB PROTOCOLS 255

two actions. 1) First, it keeps on processing tuples that belong to the to-

be-moved partitions up to the received global SyncTime. Note that at this

point, the tuples belong to the to-be-moved partitions can reside in both

input queues and the temporary buffers created in Step 3 of MSLB. The

split operator needs to process tuples from both locations if any tuple has

a timestamp smaller than the global sync time. 2) The split operator then

inserts an EndOfPartition tuple into each output queue that connects to the

sender machine. This is shown as the Step 5.1 in Figure 22.3. This tuple

is propagated through the operators on the sender machine: When a join

operator has received the same number of the EndOfPartition as its input

queues, it forwards this tuple to its parent operator. Therefore when this

tuple reaches the top root operator on the sender machine, this indicates

that from now on no more tuples belonging to the to-be-moved partitions

will enter the sender machine. The sender machine then sends a Deactivated

message back to the DM as Step 6.

The phase 2 of the MSLB not only deactivates to-be-moved partitions

and synchronizes the execution of split operators, it also allows the op-

erators on the sender machine to finish processing all on-the-fly tuples in

these input queues that belong to these to-be-moved partitions (by send-

ing and propagating the EndOfPartitions in Step 5.1). This clean-up stage is

necessary, because if the partitions were to be moved right away without

the clean-up, the on-the-fly tuples won’t be able to join with these already

moved partitions on the sender machine. We thus may miss some of the

query results due to load balancing process.

22.2. DISTRIBUTED MSLB PROTOCOLS 256

MSLB Phase 3: Relocating Partitions

This phase does the actual partition movement by sending to-be-moved

partitions from the sender to the receiver. This is achieved in Steps 7, 8 and

9, as depicted in Figure 22.4. The DM first waits for the Deactivated message

from all the involved machines. After that, as Step 7, the DM sends a Send-

Partitions message to the sender machine. Upon receiving such a message,

as Step 8 the sender machine packs all the partition groups with the se-

lected IDs and sends them to the receiver machine using a ReceivePartitions

message. After receiving and recomputing all partitions on the receiver

machine, in Step 9, the receiver sends a Received message back to the distri-

bution manager.

After receiving the ReceivePartitions message from the sender, along with

all the partition groups, the receiver machine then conducts the following

process:

• First, the receiver machine extracts each individual partition from the

received partition groups.

• It then applies the state partition matching step, as described in Sec-

tion 22.1, to match each single partition’s schema with the existing

states on the sender machine. A partition’s schema, as well as a state’s

schema, is defined as the string concatenation of all the column IDs

the tuple in this partition has. If a match is found, the single partition

is then inserted to the state that has the same schema. At this point,

this single partition should have a partition ID different from any ex-

isting partitions in that state. If a single partition cannot be matched

22.2. DISTRIBUTED MSLB PROTOCOLS 257

with any state, this single partition is then discarded by the receiver.

Using the example in Figure 18.3, the moved partition group contains

four single partitions PA2, PB2, PC2 and PAB2. The first three single

partitions will be inserted into states PA, PB and PC on machine M2

respectively, while the single partition PAB2 is discarded since it does

not match any states on machine M2.

• After the partition matching step, all the states that do not have a

matching partition inserted will require a partition recomputation to

regain the partitions that have the moved partition IDs. This can be

done by recursively recomputing these single partitions in a bottom

up fashion. Again using the example in Figure 18.3, the state PBC

does not have any matching partition. So the partition PBC2 that

should have been moved from the sender machine would now be re-

computed by joining the moved single partitions PB2 and PC2. Note

that we only need to join partitions with the same ID as the to-be-

generated partition.

After the partitions have been moved and recomputed, in Step 9, the

receiver machine sends a Received message back to the DM. This partition

moving procedure is general, that is, it would also work when local plan

optimization had not been invoked in the system, meaning the shape of

query plans had stayed unchanged. In the latter case, all partitions trans-

fered between two machines will be matching partitions on the receiver

machine. Therefore no partition recomputation is necessary.

22.2. DISTRIBUTED MSLB PROTOCOLS 258

(8) ReceivePartitions

Distribution Manager

(9) Received(7) SendPartitions {1}

Receiver

Union

Join1

Split� Split� Split�
Join2

PA1
PB1PC1PAB1

Sender

Union

Join1

Split� Split� Split�

Join2

1

1 1

1

111
111

111

DM Sender Split

(2) Partitions
ToMove

Receiver

(1) Compute
Partitions
ToMove

(3) Deactivate Partitions

(4) MinTimestamp

(5) SyncTime

(5.1) EndOfPartitions

(6) Deactivated

(7) Send
Partitions

(8) ReceivePartitions

(9) Received

Figure 22.4: MSLB: Move and Recompute Partitions.

MSLB Phase 4: Reactivating Partitions

In the last phase of the MSLB, the split operators reactivate the processing

of the tuples belonging to the to-be-moved partitions and send them to the

receiver only. This phase has Step 10 as depicted in Figure 22.5, which is

the last step of the MSLB protocol.

In Step 10, the DM sends a ReactivatePartitions message to all machines

with active split operators. This is shown in Figure 22.5. Upon receiving

such a message, the split operator will start forwarding new tuples belong-

ing to the moved-partitions to the receiver machine. The tuples in the tem-

porary buffers will also be forwarded to the receiver machine all at once,

after which the temporary buffers are removed from the machine. The pro-

cess of MS load balancing is then finished.

22.2. DISTRIBUTED MSLB PROTOCOLS 259

Distribution Manager

(10) ReactivatePartitions {1}

Sender

Union

Join1

Split� Split� Split�

Join2

Receiver

Union

Join1

Split� Split� Split�

Join2

111
111 111

111 111
111

DM Sender Split

(2) Partitions
ToMove

Receiver

(1) Compute
Partitions
ToMove

(3) Deactivate Partitions

(4) MinTimestamp

(5) SyncTime

(5.1) EndOfPartitions

(6) Deactivated

(7) Send
Partitions

(8) ReceivePartitions

(9) Received

(10) ReactivatePartitions

Figure 22.5: MS Load Balance: Reactivate Partitions.

MSLB Algorithms

Algorithms 11 and 12 sketch the high-level communication between the

distribution manager and the query processors on each machine during

the distributed MSLB process.

Algorithm 11 describes the basic operations of the distribution man-

ager. The algorithm follows the actions in the timeline diagram (depicted

on the left of Figure 22.5) by sending protocol messages and waiting for the

corresponding responses.

Similarly, Algorithm 12 describes the steps performed on a participat-

ing processor during the state relocation process. The algorithm waits for

control messages in the MSLB protocol. It performs corresponding actions

based on the messages it has received.

In summary, the MS load rebalance strategy selects partitions to move

22.2. DISTRIBUTED MSLB PROTOCOLS 260

Algorithm 11 MS-State-Rebalance:Manager(sender, receiver, amt)

/*It controls load balancing process by sending control messages to local machines
and waiting for corresponding responses.*/

1: send ComputePartitionsToMove(amt) msg to sender;
2: wait until get PartitionsToMove msg from sender;
3: send DeactivatePartitions to sender & machines with split operator(s);
4: wait until get MinTimestamp msgs from all split operators;
5: send SyncTime to machines with split operator(s);
6: wait until get all Deactivated msg from sender;
7: send SendPartitions msg to sender;
8: wait until get Received msg from receiver;
9: send ReactivatePartitions msg to machines with split operator(s);

and then directly moves these partitions from the sender machine to the re-

ceiver. Different from the PTLB strategy, it needs to have the knowledge of

the detailed information about the query plan. However, it directly moves

partitions from the sender and the receiver without delay. Therefore it can

release the burden of the sender right away, which is expected to be the

over-loaded machine of the two. It also does not incur the extra overhead

of having to send new tuples to both the sender and the receiver, as in the

PTLB strategy.

22.2. DISTRIBUTED MSLB PROTOCOLS 261

Algorithm 12 MS-State-Rebalance:Processor()

/* To receive messages, perform corresponding actions, and return message(s) to
the distribution manager.*/

1: while (keepGoing) do

2: wait for control messages of the MSLB protocol;
3: switch(received message)
4: ComputePartitionsToMove:
5: compute partitions to move;
6: send PartitionsToMove msg to Distribution Manager;
7: DeactivatePartitions:
8: split operators deactivate partition inputs;
9: split operators send MinTimestamp msg to Distribution Manager;

10: SyncTime:
11: split operators execute tuples up to the SyncTime;
12: split operators send EndOfPartitions to operators on sender;
13: operators on sender propagates EndOfPartitions to root operator;
14: sender machine sends Deactivated msg to Distribution Manager;
15: SendPartitions: /*send out partitions*/
16: wait for on-the-fly tuples finished being processed;
17: send partitions via ReceivePartitions msg to receiver;
18: ReceivePartitions: /*receive, insert and recompute partitions*/
19: extract single partitions from partition groups received;
20: insert matching single partitions to corresponding states;
21: recompute single partitions in unmatched states;
22: send Received msg to Distribution Manager;
23: ReactivatePartitions: /*resume & redirect inputs for moved partitions */
24: Split operators send tuples hold in temporary buffers to receiver;
25: Split operators start sending tuples in to-be-moved partitions to re-

ceiver only;
26: keepGoing = false;
27: end while

262

Chapter 23

Experimental Evaluation

This part of the experimental evaluation focuses on two studies. First, I

show the benefits of adding local plan optimization in the distributed con-

tinuous query processing along with the load balancing adaptation (Sec-

tion 23.2). Second, I compare the performances of the two proposed load

balancing strategies (Section 23.3).

23.1 Experimental Setup

I have implemented the dynamic query optimization and the two pro-

posed load balancing strategies in a distributed continuous query process-

ing system called D-CAPE [LZJ+05]. The D-CAPE system consists of a

distribution manager, a stream generator and arbitrary number of query

engines. Each machine runs a query engine. The distribution manager col-

lects statistics from each query engine and initiates global load balancing

among machines. The stream generator generates tuples with arrival pat-

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 263

terns modeled as the widely adopted Poisson process. That is, the mean

inter-arrival delay between two consecutive tuples is exponentially dis-

tributed in order to model the Poisson arrival pattern. In each experiment,

the stream generator continuously generates streams for 30,000ms. System

parameters such as stream input rates and global time windows are var-

ied to reflect the changes in workload and data characteristics, as will be

further discussed in each experiment.

All experiments are run on a 10-node cluster. Each node has dual 2.4Hz

Xeon CPUs with 2G main memory. I use the query in Figure 18.2 as the

experiment query. The join operators have instances installed on all ma-

chines. Split and union operators are added to the plan accordingly. Each

split or union operator is only active on one machine, while the join op-

erators are active on all machines. I devote one machine each to run the

distribution manager, the stream generator and the end application that

receives query results. The remaining nodes can each be utilized to exe-

cute one D-CAPE processor, which is the central query engine to execute a

query plan.

23.2 Benefits of Local Query Optimization

The main motivation for this work is to study the practicality and the po-

tential benefit gainable by applying the local plan optimization in distributed

continuous query processing. As we have discussed in Chapter 18, this

leads to the necessity of designing new load balancing techniques to sup-

port heterogeneous query shapes due to local query optimization. There-

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 264

fore, our first goal for experimental evaluation is to show that local query

optimization does boost the performance of partitioned CQ processing. To

show the added benefits of local optimization, I compare the query perfor-

mances in the following four settings:

• No-Adapt: In this setting, the same query plan is executed from the

beginning to the end. Neither local optimization nor load balancing

is applied during query execution.

• LM-only: Only Local Machine query optimization (LM) is applied as

the form of adaptation during query execution.

• PTLB-only or MSLB only: Only either PTLB or MSLB is applied as

the adaptation method to shift the workload across the available ma-

chines. But no local query optimization is applied during query exe-

cution.

• LM-PTLB or LM-MSLB: Both local query optimization and global load

balancing are applied as adaptation techniques during query execu-

tion.

In this set of experiments, each of the three stream inputs (streams A,

B and C) is partitioned into 100 partitions. The initial input rates for the

three streams are each set to be 100 tuples per second. The initial plan joins

streams A and B first, and the intermediate results then join with stream

C. At the 30th second, the input rates of B and C are both changed to 5

tuples per second. This motivates the switch of the two join operators to

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 265

get a more efficient query plan (to reduce the number of intermediate re-

sults), which can be achieved only by local plan optimization. The partition

functions in the split operators are initially set so that one machine in the

system gets 50% of the total workload, while the rest of the workload is di-

vided evenly among all machines in the system. This results in a scenario

where load balancing is necessary in order to obtain a better utilizations

of machine resources and hence result in better query performance. Load

balancing is only between the heaviest loaded and the lightest loaded ma-

chines each time it is applied.

Here I focus on evaluating the benefits of local query optimization. To

highlight my focus, I show the benefits of applying optimization with each

one of the two load balancing strategies separately. The comparisons of the

two load balancing strategies are left to Section 23.3 instead.

The following figures in this section depict the query performances,

with each chart comparing the four settings mentioned above. I compare

the query performances in various aspects, including the accumulated through-

put, total tuples in system, total tuples in states and average query output

rate.

I first show the results of applying LM with PTLB in Figures 23.1 and

23.2. These results compare the performances of the four settings described

above in terms of query throughput and total tuples in system, respectively,

when PTLB is applied as the load balancing strategy. Here the term “total

tuples” accounts for all tuples across all machines, not just tuples on one

machine. This shows the system performance as a whole.

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 266

The performance comparisons in term of throughput (accumulated) is

shown in Figure 23.1. It is clear that the execution with neither forms of

adaptation performs the worse. When applying the PTLB-only, the per-

formance improves about 100% because the workloads are more balanced

on all machines as a result of runtime load balancing. The execution with

only local plan optimization (LM-only) but no load balancing also gener-

ates about twice the number of tuples generated by No-Adapt in the same

amount of time. This shows that local plan optimization, as a runtime

adaptation technique, can be as powerful as the widely used load balanc-

ing. Lastly, the execution with both forms of adaptions (LM-MSLB) has the

best performance, producing about 330% more tuples than the No-Adapt.

This illustrates that both adaptation techniques can significantly improve

continuous query performance in distributed systems. Furthermore, com-

bining the two techniques can lead to a better performance than applying

either adaptation alone.

0

200000

400000

600000

800000

1000000

1200000

0 50000 100000 150000 200000 250000 300000 350000

Time (ms)

A
cc

um
ul

at
ed

 T
hr

ou
gh

pu
t

(t
up

le
s)

LM-PTLB LM only PTLB only No Adapt

Figure 23.1: Throughput Comparisons (PTLB).

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 267

The total number of tuples in the system is a good indicator for how

well the query performs. A build-up of tuples in the system indicates that

the query engine is not able to keep up with the current workload. In the

ideal case, given stable data statistics, a good query plan should lead to a

stable number of tuples. In fact, in this case the number of tuples in the

system should be very close to the number of tuples in states. This indi-

cates close to zero accumulation in input queues. This is when the system

is in stable state. On the other hand, the number of tuples in state is de-

termined by several parameters, such as window sizes, stream input rates

and selectivities. An optimized query plan, which can be achieved by plan

optimization, can be expected to result in the least number of state tuples

because this is when the number of intermediate results is minimal.

Figure 23.2 depicts the comparisons in terms of the total system tuples

among the four settings. The two settings with local plan optimization,

including LM-only and LM-PTLB, have much lower system tuple build-up

than the other two settings without plan optimization (PTLB-only and No-

Adapt). This is because both settings can apply query optimization early

on to optimize the query plan as soon as the changes in stream input rates

are first detected. Thus we observe much more in-time reduction in the

number of tuples for these two settings before too many tuples are being

build-up in the system. The reduction of system tuples happens for PTLB-

only as well but it falls behind the above two settings because it needs to

deal with a much higher tuple build-up. The No-Adapt has about the same

highest build-up as PTLB-only. The number of tuples slowly drops as a

result of slower stream input rates. But this drop may happen too slowly

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 268

and thus too late for a system with limited amount of memory. Both the

PTLB-only and NO-Adapt have higher likelihood of causing system over-

flow than the other two settings with plan optimization applied. This set of

results shows that load balancing itself may sometimes have very limited

impact on lowering the total memory costs of the system. Local plan opti-

mization can be much more critical than load balancing when it comes to

releasing the burden of memory in the system as a whole.

0

200000

400000

600000

800000

1000000

1200000

0 50000 100000 150000 200000 250000 300000 350000
Time (ms)

T
u

p
le

s
in

 S
ys

te
m

LM-PTLB LM only PTLB only No Adapt

Figure 23.2: Total Tuples Comparisons (PTLB).

The comparisons in terms of number of tuples in states, as shown in Fig-

ure 23.3, tells a similar story as in Figure 23.2, although the cause is slightly

different. Here both settings with plan optimization applied (LM-only and

LM-PTLB) have smaller numbers of state tuples than the two without plan

optimization. This is because after the query is being optimized, the num-

ber of intermediate results is smaller and therefore the number of tuples

stored in the intermediate states is also smaller. The number of state tu-

ples for No-Adapt and PTLB-only get smaller when the arrival rates of input

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 269

streams slow down. The lines do not suddenly drop because it takes time

to purge all the state tuples from all states. Eventually, if the data statistics

remain stable, the number of state tuples approaches a steady amount as

well. We can see that the LM-only and the LM-PTLB in the end still have

slightly less state tuples than the No-Adapt and PTLB-only because the plans

are better for the former two settings and generate a smaller amount of in-

termediate tuples.

0

20000

40000

60000

80000

100000

120000

0 50000 100000 150000 200000 250000 300000 350000
Time (ms)

T
u

p
le

s
in

 S
ta

te
s

LM-PTLB LM only PTLB only No Adapt

Figure 23.3: State Tuples Comparisons (PTLB).

Figure 23.4 compares the four settings in term of average output rate.

The No-Adapt has the lowest output rate among the four, while both LM-

Only and PTLB-Only both double the output rate. The LM-PTLB has the

highest output rate, which is about 3.3 times faster than the No-Adapt to-

wards the end of the experiment. For all four settings, the output rates are

becoming flat, indicating that the rates are approaching stable when the

data statistics remain stable.

23.2. BENEFITS OF LOCAL QUERY OPTIMIZATION 270

0

500

1000

1500

2000

2500

3000

3500

4000

0 50000 100000 150000 200000 250000 300000 350000

Time (ms)

A
ve

ra
g

e
O

u
tp

u
t R

at
e

(t
u

p
le

s/
se

c)

LM-PTLB LM only PTLB only No Adapt

Figure 23.4: Output Rate Comparisons (PTLB).

When MSLB is applied as the load balancing strategy, we observe very

similar patterns in all performance charts as compared to the correspond-

ing performance charts depicted in Figures 23.1, 23.2, 23.3 and 23.4, respec-

tively. In Figure 23.5, again the No-Adapt execution performs the worse,

while the MSLB-Only performs about 80% better due to runtime load bal-

ancing. The LM-Only generates twice the number of tuples generated by

No-Adapt in the same amount of time, and it even performs about 20%

better than MSLB-Only. The LM-MSLB further improves the query per-

formance and is about 2.7 times more productive than the No-Adapt. Fig-

ure 23.6 shows that the two settings with local query optimization, includ-

ing LM-only and LM-PTLB, have much lower system tuple build-up and

much faster memory relief in terms of total tuples than the other two set-

tings without query optimization (PTLB-only and No-Adapt). Finally, Fig-

ure 23.8 illustrates that both LM-Only and MSLB-Only are able to produce

a 100% faster output rate than the one with No-Adapt, with the combined

LM-MSLB producing the fastest output rate among all four settings.

23.3. COMPARING PTLB AND MSLB 271

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 50000 100000 150000 200000 250000 300000 350000

Time (ms)

A
cc

u
m

u
la

te
d

 T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

LM-MSLB LM only MSLB only No Adapt

Figure 23.5: Throughput Comparisons (MSLB).

In summary, our experiments have shown that applying query opti-

mization is essential in a distributed continuous query system. Further-

more, I have made the following three observations: 1) local query opti-

mization can be as effective as load balancing in terms of improving parti-

tioned continuous query performance in distributed systems. 2) query op-

timization has the effect of decreasing total system resource consumptions

while load balancing only balances the workload but does not decrease it.

3) Combining both adaptation techniques can significantly improve query

performances more than applying one of the two adaptations alone.

23.3 Comparing PTLB and MSLB

In this evaluation, I compare the runtime performances of the two pro-

posed load balancing techniques, namely PTLB and MSLB. The overhead

of the two load balancing strategies is largely determined by the number of

23.3. COMPARING PTLB AND MSLB 272

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 50000 100000 150000 200000 250000 300000 350000
Time (ms)

T
o

ta
l T

u
p

le
s

in
 S

ys
te

m

LM-MSLB LM only MSLB only No Adapt

Figure 23.6: Total Tuples Comparisons (MSLB).

tuples in the corresponding states, which in turn is controlled by parame-

ters including window sizes and stream arrival rates. For PTLB, the num-

ber of tuples in states determines how many old tuples need to be purged

before the process is over. For MSLB, the number of tuples in states deter-

mines the cost of moving state partitions to another machine and the cost

of recomputing unmatched partitions if needed. Since the state sizes are

controlled by parameters including the window sizes and stream arrival

rates, these parameters control the overhead of load balancing strategies.

As described in Section 21.1, PTLB is a general strategy that does not

need to care about the detailed information about the plan itself. But this

simplication comes at the price of overhead: the total process theoretically

takes at least 2W to finish. 1 MSLB safely moves loads between machines

by comparing the detailed shapes of the query plans. It can be more com-

plicated than PTLB but potentially may take less time to finish.

1This is for a query plan tree with the height higher than 1.

23.3. COMPARING PTLB AND MSLB 273

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50000 100000 150000 200000 250000 300000 350000
Time (ms)

T
u

p
le

s
in

 S
ta

te
s

LM-MSLB LM only MSLB only No Adapt

Figure 23.7: State Tuples Comparisons (MSLB).

I vary window sizes and stream rates in order to compare the two strate-

gies in a range of parameter settings, from low, medium to high. The stream

rates are set to be one of the three values: 30, 40 or 50 tuples/second, while

the window sizes are set to be one of the four settings: 15, 30, 45, 60 second.

The total number of combinations of stream rates and window sizes is thus

3 x 4 = 12. Therefore I have 12 different experimental settings. During our

experiments, each experiment runs for 30,000ms. I run each setting at least

5 times, and get the average of the total throughput as the throughput of

that setting. All the other environment setup is the same as in the previous

section.

For each setting, I also run the experiment with no adaptation to serve

as the base performance. The average throughput of this base run is the

base throughput. I then run the experiment by applying either the PTLB or

the MSLB to adapt the query plan. The average throughputs of the PTLB

run and the MSLB run are then divided by the base average throughput

23.3. COMPARING PTLB AND MSLB 274

0

500

1000

1500

2000

2500

3000

3500

0 50000 100000 150000 200000 250000 300000 350000

Time (ms)

A
ve

ra
g

e
O

u
tp

u
t

R
at

e
(t

u
p

le
s/

se
c)

LM-MSLB LM only MSLB only No Adapt

Figure 23.8: Output Rate Comparisons (MSLB).

to get the scaled throughput ratio. The throughput ratio for the run with

no adaptation is 1 because it is divided by itself. The larger the through-

put ratio is, the better the query performs as compared to the run without

adaptation.

Figures 23.9, 23.10 and 23.11 depict the results of the 12 settings with

different combinations of window sizes and stream rates. Each figure com-

pares the throughput ratio of the base case, the PTLB and the MSLB.

Figure 23.9 shows the results of the 4 settings in which the stream rates

are set to be 30 tuples/sec. We can see that as the size of the window grows,

the difference of average throughput ratios between the base case and ei-

ther the PTLB run or the MSLB run are getting larger.

The difference between the PTLB and the MSLB also changes from in-

significant, when window size is small, to about 25% difference, with the

MSLB gaining the edge. This is because, as the window size grows, the

total time for the PTLB to finish also becomes larger (it’s estimated as 2W

23.3. COMPARING PTLB AND MSLB 275

in Section 21.1). This means the over-loaded machine will continue to be

overloaded because it needs to purge out all the old tuples. This slow relief

can have a negative impact on the overall system performance. In com-

parison, the MSLB is able to release the overloaded machine (the sender)

right away by moving tuples from the machine to another machine (the

receiver). Even if some states are unmatched and need to be recomputed,

this work will be done at the receiver side. The later is expected to be the

underloaded machine. Therefore the impact of such recomputation to the

overall query performance would be rather light.

0

0.5

1

1.5

2

2.5

W=15sec W=30sec W=45sec W=60sec

Arrival Rate = 30 Tuples/sec

T
h

ro
u

g
h

p
u

t
R

at
io

No Adapt PTLB MSLB

Figure 23.9: Throughput comparisons (λ = 30).

We can observe similar but more dramatic trends in Figure 23.10, where

the stream rates are all set to be 40 tuples/sec. Since the stream rate is

higher than in the previous set of results, the lead of the PTLB and MSLB

versus the base case is much larger even when the window size is small.

This performance lead still continues to grow as the window size becomes

23.3. COMPARING PTLB AND MSLB 276

larger. Here we can still observe that the MSLB has better performance than

the PTLB when the window size becomes larger.

0

0.5

1

1.5

2

2.5

W=15sec W=30sec W=45sec W=60sec

Arrival Rate = 40 tuples/sec

T
h

ro
u

g
h

p
u

t R
at

io

No Adapt PTLB MSLB

Figure 23.10: Throughput comparisons (λ = 40).

In Figure 23.11, when the stream rate is set to the relatively high (namely

50 tuples/sec), the trend is a bit different than in the previous two compar-

isons. First, when the window size is small, the difference between the

PTLB or the MSLB and the base case is very large. On average, the PTLB

produces about 90% more tuples than the base case, and the MSLB pro-

duces about 100% more tuples than the base case. However, as the window

size grows larger, this difference is not further enlarged. Instead, the gap

between the base and the PTLB is getting narrower. This is because as both

stream rates and window sizes are set to high values, the PTLB starts to take

a long time and to consume large amounts of system resources in order to

purge all old tuples on the already overloaded sender machine. Therefore

the PTLB strategy becomes less and less efficient. On the other hand, the

23.3. COMPARING PTLB AND MSLB 277

MSLB is becoming more efficient in comparison to the PTLB, demonstrat-

ing that MSLB is a better choice when the parameters have high values.

0

0.5

1

1.5

2

2.5

W=15sec W=30sec W=45sec W=60sec

Arrival Rate = 50 tuples/sec

T
h

ro
u

g
h

p
u

t R
at

io

No Adapt PTLB MSLB

Figure 23.11: Throughput comparisons (λ = 50).

Figures 23.12, 23.13 and 23.14 compare the average total time taken by

the two load balancing strategies in the 12 experimental settings. As I have

estimated using cost models, the PTLB always takes approximately 2W

time to finish, while the MSLB usually takes much shorter time to complete

the whole process.

So far our experimental results have shown that the MSLB strategy is

winning. However, given certain combinations, the PTLB can perform bet-

ter than the MSLB as well. This is when the cost for state moving and

recomputation is high (large state sizes) while the cost for processing new

tuples is relatively low (low stream rates). Such situation will happen when

the stream statistics changes shortly before the load balancing process. For

example, if the stream rates start at very high, this results in very large

23.3. COMPARING PTLB AND MSLB 278

0

20

40

60

80

100

120

140

W=15sec W=30sec W=45sec W=60sec

Arrival Rate = 30 tuples/sec

A
ve

ra
g

e
L

en
g

th
 o

f L
o

ad
 B

al
an

ci
n

g
 (s

ec
)

PTLB MSLB

Figure 23.12: Average Lengths of Load Balance (λ = 30).

state sizes. However, at the time the load balance is triggered, the stream

rate may have become very low. Thus the cost of purging old tuples is rel-

atively low (lower cost on processing fewer new tuples). However, since

the number of tuples accumulated in the states are high, the cost of moving

the state and the cost of recomputation can potentially be very high. In this

case, the PTLB can be more efficient than the MSLB.

I set up an experiment to reflect this situation. The same query is used

as before. For the three input streams, A, B and C, the input rates all start to

be 100 tuples/sec. At 30th second, the input rates for B and C slow down to

5 tuples/sec. This also triggers a local query optimization on the machine

with the highest workload. The load balancing process is then invoked.

Figure 23.15 shows the experimental results. As we can see, the PTLB starts

to have better performance after the load balancing process is triggered. As

mentioned earlier, such stream changes benefit PTLB because it lowers the

23.3. COMPARING PTLB AND MSLB 279

0

20

40

60

80

100

120

140

W=15sec W=30sec W=45sec W=60sec

Arrival Rate = 40 tuples/sec

A
ve

ra
g

e
L

en
g

th
 o

f L
o

ad
 B

al
an

ci
n

g
 (s

ec
)

PTLB MSLB

Figure 23.13: Average Lengths of Load Balance (λ = 40).

cost of purging old tuples. However, since the state size has already grown

very large at this point, the cost of moving the partitions and recomputing

the unmatched partitions can be high. So in this case PTLB is winning.

In summary, our experiments have demonstrated that MSLB has bet-

ter performance than PTLB because the former utilizes the underloaded

machine more while the latter continues to use the already overloaded ma-

chine to purge old tuples. However, under certain circumstances, the cost

of state purging can be smaller than the cost of state moving and state re-

computing. This may occur when the data statistics change towards the

direction that decreases the cost of PTLB. In this case applying PTLB can be

more efficient than applying MSLB.

23.3. COMPARING PTLB AND MSLB 280

0

20

40

60

80

100

120

140

W=15sec W=30sec W=45sec W=60sec

Arrival Rate = 50 tuples/sec

A
ve

ra
g

e
L

en
g

th
 o

f L
o

ad
 B

al
an

ci
n

g
 (s

ec
)

PTLB MSLB

Figure 23.14: Average Lengths of Load Balance (λ = 50).

0

200000

400000

600000

800000

1000000

1200000

0 50000 100000 150000 200000 250000 300000 350000
Time (ms)

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s)

PTLB MSLB No Adapt

Figure 23.15: PTLB-better-than-MSLB Case.

281

Chapter 24

Related Work

Existing distributed continuous query systems [AAB+05, CBB+03, DH04]

use an operator as the basic unit of load balancing. This assumes that each

operator is small enough to fit on one machine. Partitioned parallelism is a

general query plan distribution strategy [Has95, Gra90]. The Flux system

[MJSM03], the first to apply partition-level load redistribution to continu-

ous queries, has demonstrated promising performance. However, Flux has

been focused on group-by and assumes that all query instances installed

on machines have the same query shapes. My research instead propose

load balancing strategies to deal with the heterogeneity of plan shapes with

stateful join operators among different machines.

Continuous query optimization has been studied in the literature in re-

cent years [BBD+02a, VN02a, CDN02, IHW02]. [VN02a] proposes a rate-

based algorithm to optimize continuous multiple joins to achieve a high

output rate. [BMM+04] proposes heuristics-based join ordering algorithms

for mjoin that consider dependent join selectivities. [MSHR02] introduces

CHAPTER 24. RELATED WORK 282

the Eddy approach of adaptively executing a query by routing tuples among

operators. Eddy’s always-adapting solution makes it suitable for a highly

dynamic environment. These solutions all focus on optimizing continuous

queries based on statistics collected at runtime.

My earlier work on dynamic plan migration [ZRH04], as presented in

Part II of this dissertation, is the first to deal with the problem of safely

transferring the currently running plan to the new plan generated by the

optimizer. The migration strategies described earlier inspire my designs of

the two load balancing strategies proposed in this part of the dissertation,

as both solve the problem of switching among different plan shapes. How-

ever, the two problems are significantly different: The former changes the

currently running query plans with stateful operators on a local machine,

while the latter moves operator partitions among machines with differ-

ent query plans. The latter requires carefully synchronized coordinations

among participating machines.

283

Part IV

Conclusions and Future Work

284

Chapter 25

Conclusions of This

Dissertation

Continuous queries process real-time streaming data and output results in

streams for a wide range of applications. Due to the fluctuating stream

characteristics, a streaming database system needs to dynamically adapt

query executions. This dissertation proposes novel solutions to continuous

query adaptations in three core areas, namely dynamic query optimization,

dynamic plan migration and partitioned query adaptation.

The first part of this dissertation proposes two polynomial-time opti-

mization strategies, namely mjoin-init and bjtree-init, that generate continu-

ous multi-join plans meeting resource constraints of both CPU and mem-

ory. The proposed strategies consider mjoin, bjtree, and the tree structures

in-between as solution candidates. They search the entire query plan space

in polynomial time when a typical exhaustive search would take at least

CHAPTER 25. CONCLUSIONS OF THIS DISSERTATION 285

exponential time. I have designed four new optimization algorithms, two

for each proposed optimization strategy. Within each strategy, the first al-

gorithm utilizes the positive correlation to decrease both memory and CPU

costs, while the second utilizes the negative correlation to further tune the

trade-off between the two resources. Besides the two efficient optimization

strategies and the four optimization algorithms mentioned above, I also

design an exhaustive search strategy using bottom-up dynamic program-

ming, which searches the whole multi-join search space to find a qualified

query plan. This exhaustive search strategy guarantees that a qualified plan

can be found if there exist one. All proposed strategies in Part I are im-

plemented in the DCAPE [RDS+04, LZJ+05] continuous query system and

have been evaluated and compared through a comprehensive experimen-

tal study. The experimental results show that both proposed optimization

strategies are as reliable in finding qualified query plans as the exhaustive

search strategy, while taking much less time and space than the exhaus-

tive strategy. The qualified query plans generated by the mjoin-init strat-

egy tend to have lower memory but higher cpu costs as compared to the

qualified query plans generated by bjtree-init strategy. Therefore, an run-

time optimizer may choose which optimization strategy to apply depend

on which resource factor (memory or cpu) is the more ample one in the

current system or which one is expected to become more critical in the near

future.

In the second part of the dissertation, I have designed two dynamic

query plan migration strategies, namely the moving state strategy and the

parallel track strategy, for migrating continuous query plans at runtime.

CHAPTER 25. CONCLUSIONS OF THIS DISSERTATION 286

The first strategy exploits reusability of existing stream states and the sec-

ond employs parallel query execution to seamlessly migrate between con-

tinuous join plans without affecting the results of the query. I first present

the basic ideas of the two migration strategies focusing on joins only while

assuming a particular system execution model. I then generalize and sig-

nificantly extend the existing migration strategies along several dimen-

sions, including to cover all common types of operators (and not just joins),

all execution models and timestamp representations common in the current

stream literature. Various execution models are identified and categorized

to illustrate how different execution model can affect the runtime plan mi-

gration strategy. Each identified execution model has its unique properties

on tuple execution order and operator scheduling. I describe how to apply

these migration strategies to query plans that contain Select, Project and

Join (SPJ) operators, and Group-by and Aggregate operators. The proposed

migration strategies are implemented in the DCAPE system. Experimental

evaluations have been conducted to compare their performances. The ex-

perimental results demonstrate performance improvements in the order of

magnitude by dynamically applying the migration strategies in the middle

of query processing in a variety of system settings.

In the third part of this dissertation, I point out that existing load bal-

ancing solutions have made the simplifying assumption that query plan in-

stances on all machines are static, i.e., no query optimization is conducted

at runtime. This is clearly unrealistic for dynamic stream systems. In this

work, I point out that adding plan optimization to distributed continuous

query processing is beneficial but doing so also creates new problems in dy-

CHAPTER 25. CONCLUSIONS OF THIS DISSERTATION 287

namic load balancing. The new problem is the heterogeneity of query plan

shapes among machines as a result of applying local query optimization,

which has yet to be dealt with by current state-of-the-art load balancing

strategies. I therefore propose two new load balancing strategies, namely

the PTLB and the MSLB strategies, along with their corresponding proto-

cols, that can balance the workload while seamlessly handling the com-

plexity caused by local plan changes in the system. The PTLB strategy is a

general load balancing strategy that requires no knowledge of the underly-

ing query plan optimization. The MSLB strategy, on the other hand, rebal-

ances the workload by comparing the detailed shapes of the query plans

among different machines. Both proposed load balancing strategies are

implemented in the DCAPE system. The experiments are conducted in the

DCAPE system using a real cluster. The results show that the combination

of query optimization and load balancing exhibits significantly superior

performances than applying each adaptation technique alone. Applying

query optimization in partitioned query processing have shown dramatic

performance improvement by more than 300%. Between the two load bal-

ancing strategies, the MSLB is shown to be more efficient than the PTLB in

many situations, while the PTLB can win under certain conditions.

288

Chapter 26

Ideas for Future Work

This chapter discusses several topics, with each containing several prob-

lems for possible future work that are important for runtime continuous

query adaptation. For each topic and its contained problems, I discuss rel-

atively detailed thoughts on the possible solutions to these problems. In

particular, these topics for future work include:

• Choosing Optimization Timing: Choosing when to apply query opti-

mization is a critical problem in runtime continuous query process-

ing. Since the data characteristics in streams can change over time, if

we optimize too soon, we may optimize too frequently and the ben-

efits of optimization may be overshadowed by its overhead. On the

other hand, if we optimize too late, we may miss optimization oppor-

tunities for improving the query performance. Therefore, this is an

important yet tricky problem. I discuss it further in Section 26.1.

• Plan Migration Scope: Once the optimizer decides to optimize a query

26.1. FUTURE WORK ON CHOOSING OPTIMIZATION TIMING 289

plan, which part of the query plan should be optimized and migrated.

Should we optimize the whole query plan or only part of the query

plan? Should we migrate a query plan as a whole or step-by-step?

These are also unsolved yet crucial problems to runtime query op-

timization and migration. I will discuss my thoughts and possible

solutions to these problems in Section 26.2.

• Distributed Query Optimization and Allocation: In a distributed system,

we need to decide how to optimize a continuous query and how to

allocate the query plans across machines. I will give my thoughts on

these future work in Section 26.3.

26.1 Future Work on Choosing Optimization Timing

In this section, I discuss my thoughts on the problem of choosing when

to optimize and migrate a continuous query (CQ) at run time. Since the

query migration is basically the last step in a dynamic query optimization

process, the problem of choosing the timing for migration is indeed the

problem of choosing the optimization timing at runtime. I here present

simple timing strategies that could be adopted in runtime optimizer. I then

describe possible improvements.

The most challenging aspect of the dynamic optimization for continu-

ous queries is the unpredictability of the stream characteristics. This means

that the data statistics, including stream arrival rates, arrival patterns and

value distributions, may keep on changing in an unpredictable way during

a CQ execution. In general, it is hard or even impossible to know what the

26.1. FUTURE WORK ON CHOOSING OPTIMIZATION TIMING 290

data characteristics will be like even in the very next moment. The opti-

mizer only has the knowledge of what has happened so far, but does not

have the knowledge of what is going to happen, unless the optimizer has

gained the knowledge that there is a repeating pattern which I will discuss

later in this section.

26.1.1 Data-Driven Optimization

Data-driven optimization for continuous queries here is defined as optimiza-

tion triggered by detecting changes in data statistics at runtime. In other

words, the optimization is directly triggered by the changes in the data it-

self. The data statistics considered include data arrival rates and predicate

selectivities.

A typical way to choose a good timing for data-driven optimization is

to select an optimization interval and a statistics threshold. If one optimiza-

tion interval has passed and the changes in data statistics are beyond the

defined statistics threshold, the optimizer is invoked to optimize the query

plan. A more aggressive version would be that even if the optimization

interval is not passed, the optimizer may still be activated just because the

statistics have changed beyond the threshold. Prototype systems such as

POP [MRS+04] define upper and lower bounds (thresholds) of cardinalities

expected in the inputs to or outputs from an operator. If such thresholds

are violated, the runtime optimizer is then triggered.

The data-driven optimization is easy to be explained and accepted logi-

cally. However, it has several problems that make it hard to be adopted for

a continuous query optimizer.

26.1. FUTURE WORK ON CHOOSING OPTIMIZATION TIMING 291

First, finding the proper optimization interval is a difficult task. If the

interval is defined to be too large, the optimizer may wait for too long to

take actions and thus may miss some critical moments of optimization. On

the other hand, if the threshold is defined too small, the optimization may

happen too frequently. This can lead to thrashing. When a query optimizer

enters the thrashing state, the gain of the optimization may be overshad-

owed by the overhead of the frequent optimization. Therefore, the opti-

mization interval itself may need to be tuned dynamically.

Second, it is difficult, if not impossible, to define the threshold which

indicates that the changes of statistics are so significant so that runtime

optimization becomes necessary. In some cases, changes in data statistics

do not necessarily imply that the current query has become sub-optimal.

Third, as illustrated in Part I of this dissertation, the optimization goal

for the continuous query optimizer is to find a qualified query plan that

satisfies both CPU and memory constraints. However, this concept of a

qualified plan is hard to embed into the data-driven optimization.

Therefore, data-driven optimization can be highly complicated, if not

impossible, to apply to runtime optimization for continuous queries.

26.1.2 Memory-Driven Optimization

Among all the information that an optimizer is observing in order to make

a decision on timing, what it really needs is a simple yet clear indication

that the current query is not good enough to keep up with the incoming

workload. In this section, I illustrate that this simple indication may be

achieved by simply observing memory consumptions.

26.1. FUTURE WORK ON CHOOSING OPTIMIZATION TIMING 292

Memory usage is a good choice for the purpose of triggering runtime

optimization for the following reasons. First, a qualified plan is bound by

both memory and CPU. So memory usage itself is a critical indicator to

show if a query plan is qualified or not. Second, a query execution that is

lacking of CPU will also result in newly arriving tuples being accumulated

in input queues, and thus eventually it will also cause memory build-up.

So any major increase in memory usage can be a signal that either or both of

the system resources are not sufficient for running the current query plan.

Hence a more efficient plan needs to be generated by the runtime opti-

mizer. Otherwise, the system may be running out of memory. Last but not

the least, memory usage is easy to measure at runtime, and therefore its in-

creasing or decreasing trend is easy to discover. When the memory usage

has increased for a period of time, we know that the current query plan is

most likely no longer a qualified plan and a change needs to be made by

the optimizer.

The memory-driven optimization is controlled by two memory related pa-

rameters: the total memory usage and the number of tuples accumulated

in input queues. A runtime optimization is necessary when:

• The total memory usage is approaching the total memory available

in the system for this processing task. This would avoid the system

from memory overflow.

• A runtime optimization is also necessary if the number of tuples in

input queues has the trend of increasing steadily for a period of time.

This indicates that a relatively permanent change has occurred in the

26.1. FUTURE WORK ON CHOOSING OPTIMIZATION TIMING 293

data statistics and the current query plan is no longer good enough

to keep up with the current workload.

A sudden increase in the amount of tuples in input queues is an indica-

tion that a sudden change has occurred. In this case, it may be more useful

to apply load shedding or data spilling than to invoke query optimization.

This is because the impact of query optimization can be delayed for a cer-

tain amount of time and thus would not be worthwhile if the change is only

sudden for a very short period of time.

In general, we can view the data-driven optimization as trying to con-

verge to an optimal plan, while the memory-driven optimization instead

as trying to converge to a steady state.

However, by using the memory-driven optimization, the effects of sub-

optimality can be delayed. For example, if two joins are being executed in

the wrong order (the higher one has much larger selectivity than the lower

one), and if they are located high up in the query tree, tuples will accu-

mulate mainly in the input queue of the lower join. That is, it is not an

input queue to the query plan but is rather an intermediate queue inside

the query plan. It may take a very long time to have the effects of accu-

mulating tuples to propagate down through the query tree and finally to

reach the input queues of the query plan. So by the time tuples are shown

to be accumulated in the input queues, the cause of this accumulation may

already persist for a while and may even not be present any more at this

time.

26.1. FUTURE WORK ON CHOOSING OPTIMIZATION TIMING 294

26.1.3 Refined Memory-Driven Optimization

To solve the problem of delayed impact, we could adopt a refined memory-

driven optimization. Instead of monitoring the number of tuples in input

queues, we can also monitor the number of tuples in intermediate queues.

If a build-up in the input queues or intermediate queues is detected and

if the trend holds for a certain amount of time, we can invoke the runtime

optimizer to optimize the query plan. This enables a quicker detection of a

possibly troubled execution.

Note that when using memory-driven optimization, we still need to col-

lect data statistics like the ones used in data-driven optimization. However,

instead of using these data statistics to control optimization timing, the

optimizer, once invoked by memory-related indicators, would use these

statistics to generate a better query plan.

26.1.4 Query Logging

It is possible that the data changes follow certain pattern. For example, a

typical day of stock trading may experience certain patterns over the course

of the day. The pattern may be in the volume of data streams or in the

value distributions in data. If both parameters follow similar patterns, the

optimizer may store a library of candidate query plans, each labeled by its

data statistics involved in the query. This solution is referred to as Query

Logging, an concept that exists in most commercial static DBMSs. At run

time, the optimizer can pick a query plan from the library that best matches

with the current data statistics. This query logging strategy can be highly

26.2. FUTURE WORK ON CHOOSING MIGRATION SCOPE 295

efficient if the number of combinations of data statistics is not large.

The above presented strategies for choosing optimization timing can

be useful for different types of stream changes, such as random change,

periodic changes, or sudden bursty changes. An interesting future work

is to compare the performance of these strategies given difference stream

change patterns.

26.2 Future Work on Choosing Migration Scope

The problem of choosing the proper migration scope is closely related to

how the query is being optimized by the runtime optimizer. Here I describe

two distinct yet close related concepts, namely the optimization box and the

migration box. The optimization box contains the query plan or sub-plan

that needs to be optimized, while the migration box contains the plan or

sub-plan that needs to be migrated. I first give my thoughts on how to de-

termine the size of the migration box given different runtime optimization

methods. I view this problem of choosing the scope (size) of the migration

box to have two aspects:

• The first aspect is to determine where to place the migration box in

the query plan and what is the size of each migration box. This is in

fact the problem of choosing which part of the query plan (network)

needs to be migrated, based on how the query is being optimized.

The sub-query to be migrated can be large or small depending on

the overhead of the migration and optimization process. Sometimes

more than one part of the query needs to be optimized and therefore

26.2. FUTURE WORK ON CHOOSING MIGRATION SCOPE 296

we may have more than one migration box. So this aspect determines

how many migration boxes and the size, i.e, the scope, of each migra-

tion box in the migration process.

• The second aspect is to determine the migration steps. The problem is

that once a part of the query plan is chosen to be migrated, should we

put this sub-query into one migration box and migrate the sub-query

together, or should we migrate step-by-step, i.e, which each step cov-

ers the migration of switching two consecutive operators such as joins.

So this presents an option of migrating using the box chosen in the

first aspect, or to further divide the box into smaller boxes and mi-

grate the smaller boxes one at a time.

26.2.1 Determining The Size of Migration Box

The size of the migration box can be determined by the optimization algo-

rithm used by the runtime optimizer and can be equal to or smaller than

the optimization box. For a relatively simple query plan that has a small

number of operators, the optimizer can afford to use dynamic program-

ming to exhaustively search through the problem space to find the best

query plan given current data statistics. In this case, the optimization box

would contain the whole query plan, and the migration box is the same as

the optimization box.

However, if the query plan is a complex query plan or query network

that contains a large number of operators, such as more than 7 or 8 joins,

heuristic-based algorithms may be necessary to find a good plan based on

26.2. FUTURE WORK ON CHOOSING MIGRATION SCOPE 297

the current statistics. In this case, the optimization box still covers a query

plan since it needs to optimize the plan. However, to avoid any high op-

timization overhead, the optimizer may only optimize some parts of the

query plan that it sees the most necessary and would most likely improve

the performance of the query plan. For example, the optimizer may focus

on reordering parts of the query plan that contain multiple join operators.

Therefore, the migration boxes are placed over those parts of the query net-

work that contain the multiple joins whose orders have been changed by

the optimizer.

Figures 26.1 (a) and (b) depict the two examples when the optimization

box and the migration box are the same and when they are different. The

query plan on the left (Figure 26.1(a)) contains two join operators, so the

optimization box and the migration box are the same. However, the query

plan depicted in Figure 26.1(b) has several join operators, and the optimizer

may choose to switch two pairs of joins, resulting in two smaller migration

boxes.

BC

AB

A B C

Optimization
Box

Migration
Box

(a)

A B C

Optimization
Box

Migration
Box 1

(b)

Migration
Box 2

Figure 26.1: Optimization Box and Migration Box

The prerequisite of the runtime optimization is to keep the benefits of

26.2. FUTURE WORK ON CHOOSING MIGRATION SCOPE 298

optimization to be higher than its cost. Therefore, the number of migra-

tion boxes and the size of migration boxes are largely determined by the

cost (overhead) of the whole optimization process, including both the op-

timization cost and the migration cost. Before each optimization step, the

optimizer would get an allocated quota, which limits the upper bound of

the total amount of overhead this round of optimization should incur. This

quota can be achieved by analyzing the most recent changes in the data

statistics and estimating when the next change would possibly occur.

When an optimizer rebuilds a whole new query plan using dynamic

programming, it does not take the cost of migration into account. Therefore

this type of optimization is only suitable for simple queries, where the cost

of both the optimization and the migration are likely to be low. On the

other hand, if the optimizer uses a step-by-step optimization method, for

example, switching joins one pair at a time as described above, it is easier

to estimate the overall cost of optimization and migration after each step.

Thus for large query plans and query networks, step-by-step optimization

gives the optimizer better control on the cost of the migration, and also

makes it easier to place the proper migration boxes.

26.2.2 Choosing Migration Step

Another important problem when choosing the size of a migration box is to

decide the migration step. Assuming the step-by-step optimization is being

applied, two options exist to place the migration box: First, one single large

migration box could be placed around the sub-query that the optimizer has

changed. Second, a small migration box can be placed around the opera-

26.2. FUTURE WORK ON CHOOSING MIGRATION SCOPE 299

tors the optimizer has just changed in the last step and migrate that part

of the query right away. In the next optimization step, we place the next

migration box until the optimization process is done.

BC

AB

A B

C

Migration
Box

(a) One big migration box after optimization

CD

D

BC

AB

A

B

CD

D

C

BC

AB

A

B

CD

D

C

BC

AB

A B

C

Migration
Box 2

(b) Several small migration boxes along optimization steps

CD

D

BC

AB

A

B

CD

D

C

BC

AB

A

B

CD

D

C

Migration
Box 1

Figure 26.2: Size of Migration Box and Migration Steps

Figures 26.2 (a) and (b) depict these two choices of migration steps re-

spectively. The optimization box contains three binary joins, and the op-

timizer first switches joins AB and BC, and then it switches joins AB and

CD. After the two optimization steps, CD becomes the bottom join operator

and AB the top join operator in the query tree. In Figure 26.2 (a), the mi-

grator decides to delay the migration process until both optimization steps

are done. So a migration box that includes all three join operators is placed

over the query plan. On the other hand, a smaller migration box could be

placed to include the two joins that are just switched by the optimizer and

migrate the query plan right away. Another migration box is placed to con-

tain the two joins that are switched in the next step of the optimization. So

26.2. FUTURE WORK ON CHOOSING MIGRATION SCOPE 300

in total, two migration boxes, each contains two joins, are used during this

optimization process.

Now the question is which one of two choices of migration steps (thus

migration box placement) incur less overhead, or they are the same in terms

of overhead? Are the answers the same for the moving state migration

strategy and for the parallel track migration strategy?

The replacement of one migration box by several smaller migration

boxes can be broken into two different cases. One case is that a migration

box can be divided into several non-overlapping migration boxes. Another

case is that one migration box is replaced by several overlapping migration

boxes. Which replacement can be applied depends on the actual changes

made to the sub-query by an optimizer. Non-overlapping migration boxes are

migration boxes that do not have common operators among them. Fig-

ure 26.3 illustrates an example where one migration box can be replaced

by several non-overlapping migration boxes. One migration box may also

be replaced by several overlapping migration boxes, as shown in Figure 26.4.

Are the migration steps in these two examples causing any differences in

the migration overhead?

These are all interesting future tasks as extensions to Part II on dynamic

plan migration of this dissertation.

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 301

BC

AB

A B C
(a) One big migration box at the end of optimization

CD

D

BC

CD

A

B

DE

EC

(b) Two small migration boxes at the end of optimization

Old Box New BoxDE

E AB

D

BC

AB

A B C

CD

D
BC

CD

A
B

DE

E

C

Old Box 1

New Box 2

DE

E
AB

D

Old Box 2

New Box 1

Figure 26.3: Non-overlapping Migration Boxes

BC

AB

A B C

(a) One big migration box at the end of optimization

CD

D

BC

AB

A

B

CD

D

C

BC

AB

A B
C

(b) Two small migration boxes along optimization steps

CD

D

BC

AB

A

B

CD

D

C

BC

AB

A

B

CD

D

C

Old Box New Box

Old
Box 1 New

Box 1

Old
Box 2

New
Box 2

Figure 26.4: Overlapping Migration Boxes

26.3 Future Work on Distributed Optimization and Al-

location

When executing queries in a distributed environment, we face several prob-

lems that are not encountered in centralized systems. These are all valuable

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 302

future work that can make contributions to distributed continuous query

processing.

• How to optimize the query in a distributed system?

• How to distribute the query operators across multiple machines?

• How should the above two aspects cooperate with each other?

Considering both of the two aspects at the same time when choosing a

query plan can dramatically increase the complexity of the already compli-

cated query optimization process. A classic method is to use a two-phase

approach proposed in [Hon92, Has95], that is, to separate the query opti-

mization and distribution into two steps. A query is first optimized into

a query tree, which is then being distributed to multiple machines based

on the cost-related annotations associated with the query plan that were

generated during the query optimization stage.

For distributed continuous query processing, this same solution can

also be applied. The optimization to generate a qualified continuous multi-

join query plan can still be applied first with some modifications, which are

discussed in the next section. The difference between task scheduling for a

traditional query and the task scheduling for a distributed query is that the

latter does not have blocking operators. Therefore they can apply pipelined

parallelism and partitioned parallelism without any temporal restrictions

caused by a blocking execution. This requires modification to the existing

solutions for scheduling static queries. However, the general ideas should

still be applicable.

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 303

In the next two sections, I discuss my thoughts on possible approaches

for optimizing and distributing multi-join continuous query plans in a ho-

mogeneous distributed system. The homogeneous system here implies that

all machines have the same processing power, meaning the available mem-

ory and CPU on each machine is the same. To simplify the problem, I also

assume that the number of processors can be arbitrary but known to the

distributing component. In Section 26.3.3 I will give my thoughts on query

optimization and distribution in a heterogeneous distributed system.

26.3.1 Distributed Query Optimization

The assumption of a homogeneous distributed system indicates that the

amount of memory and CPU on each machine is the same. Because the

number of machines are also know, therefore at the optimization step, two

aspects of the system are known to the optimizer:

• The total amount of memory and CPU in the distributed system.

• The ratio between memory and CPU in the system as well as on each

machine.

The first aspect also holds true for both a homogeneous system and

a heterogeneous system. However, the second aspect is only true for a

homogeneous distributed system. This information is important, because

it implies that the ratio of memory and CPU is approximately the same for

the whole system as well as for each machine.

Utilizing this information, the query optimizer can optimize the query

based on the total amount of memory and CPU in the system. Since the

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 304

optimizer can make different choices based on the availability of both re-

sources, the query plan chosen for a system that has sufficient memory but

limited CPU would be different from the query plan chosen for a system

with sufficient CPU but limited memory. Based on the property of sim-

ilar memory-CPU ratio for the whole system and for each machine, the

optimizer only needs to generate qualified query plans based on the total

memory and CPU, and the generated query plan should in principle be

suitable in proportion to each machine as well. Therefore the optimizer can

work the same as in a centralized system, and any optimization problems

and solutions should be applied here as well.

In my earlier work as described in Part I of this dissertation, I have

studied the problem of choosing a qualified multi-join plan assuming that

the joins are all equi-join and each stream only has one column involved in

the predicate. This is the most simplified case, which is depicted in Figure

26.5. For such join predicates, we can apply a hash-based join for each join

operation in the query plan, be it an mjoin operator, a btree or a mjoin tree.

The query plan for the mjoin and btree are shown in Figure 26.5. Each

operator state is marked by the hash key used for that hash table.

We can see that in this case, the memory cost of an mjoin operator is

sure to be smaller than the memory cost of a semantically equivalent btree,

because the intermediate results are not stored in the mjoin. On the other

hand, the mjoin may need to recompute these intermediate results and may

thus result in higher CPU costs.

We now consider two other types of common join predicates. The first

type is an equi-join but with at least one stream that has more than one col-

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 305

HashJoin
HashJoin

HashJoin

A B C A B

C

A.a1 = B.b1 = C.c1

output

A.a1 B.b1 C.c1 A.a1 B.b1

B.b1 C.c1

output

(a) (b)

Figure 26.5: Multi-way Join Plan with Same-Column Equi-Join Predicates.

umn involved in the join predicates. An example three-way join with this

type of join predicates is depicted in Figure 26.6. In the mjoin on the left,

since input B has two columns, b1 and b2, involved in the join predicates,

in order to utilize a hash-based join, we need to store two states for input B,

with each having a different hash key. An alternative mjoin operator is de-

picted in the middle. This mjoin keeps hash tables for inputs A and C, but

instead keeps a FIFO queue in the state for input B. Any tuple that probes

the state of B would join with the tuples in that state using NLJ. However,

a tuple B is able to join with tuples in state A and C using hash-based join.

So this mjoin operator applies a mix of hash-based join and NLJ. The third

query plan on the right is a binary tree. Here both join operators in the

query plan can still apply hash-based joins. Here the intermediate state at

the left side of the upper join uses a different hash key, in this case B.b2,

from the hash key used in the right state of the lower join, which is B.b1.

For such join predicates, the mjoin operator that uses a pure hash-based

join may have to store duplicate copies of a state, thus increasing its mem-

ory cost. If the number of intermediate results of joining tuples from A and

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 306

HashJoin

HashJoin

HashJoin

A B C A B

C

A.a1 = B.b1 & B.b2 = C.c1
output

A.a1

B.b2

C.c1
A.a1 B.b1

B.b2 C.c1

output

NLJ &
HashJoin

A B C

output

A.a1 C.c1
B.b1

(a) (b) (c)

Figure 26.6: Multi-way Join Plan with Different-Column Equi-Join Predi-
cates.

B is small, it is possible that the btree may have both less memory and less

CPU cost than the mjoin operator on the far left. Using the mixed mjoin

operator in the middle can be a better choice. However, for a distributed

query plan, the drawback of using a NLJ is that it is difficult to apply par-

titioned parallelism, while it is much easier to apply this parallelism to a

hash-based join because we can partition both the states and the input data

into non-overlapping partitions. So we may favor hash-based join over the

NLJ when generating a query plan intended for later distribution.

NLJ

NLJ

A B C A B

C

A.a1 > B.b1 & B.b2 = 2C.c1

output

output

(a) (b)

NLJ

Figure 26.7: Multi-way Join Plan with Complex Join Predicates.

The join predicates can also be more complex, such as the ones shown

in Figure 26.7. In this case, we may only apply NLJ to all the join operators

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 307

in the query plan.

After the query optimization step, the output is an annotated query

plan, as depicted in Figure 26.8, that contains a profile inside each opera-

tor. The profile indicates the types of join used in this operator, as well as

the estimated memory and CPU cost required by this operator. The links

between two operators are also marked by the estimated network com-

munication cost if the two operators were to be placed on two different

machines.

op1: NLJ
mem= m1
cpu = c1

A C

D

output

op2: HashJoin
mem = m2
cpu = c2

B

d = ddd = dabc

Figure 26.8: Annotated Query Plan.

26.3.2 Distributed Query Allocation

The annotated query plan generated from the optimization stage is then

allocated to multiple processors by a distributor. Two possible approaches

can be applied here.

In the first approach, we aim to put the query plan on as few machines

as possible. We can start by allocating the whole query plan on one ma-

chine. If the machine is overloaded, we select part of the query plan and

distribute it to another machine. When putting two connecting operators

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 308

on different machines, we need to add CPU cost to both the parent operator

and the children operators corresponding to the CPU cost spent on receiv-

ing and sending tuples. This is shown in Figure 26.9. The CPU costs of

both the join operators are increased when the lower join is distributed to

a different machine. Note that an operator can be further partitioned us-

ing partitioned parallelism. Then we create a copy on each machine that

it is distributed to. For example, as shown in Figure 26.9, two copies of

the lower join operator are put on two different machines, with each copy

only processing part of the data, and the states of the join operator are also

divided into two parts based on the partition function. For such a case, the

memory cost and CPU cost of the operator should both be updated: the

memory is decreased by half and the CPU is also decreased by half, but the

communication costs is increased.

op1: NLJ
m = m1
c = c1+dabc+dd

A C

D

(a)

op2: HJ
m = m2
c = c2 +dabc

B

M1

M2

op1: NLJ
m = m1
c = c1+dabc+dd

A C

D

op2: HJ
M
c

B

M1

M2 op2: HJ
m
c

split split split M3

merge

(b)

Figure 26.9: Query Distribution and Cost Updates.

The advantage of such a query allocation approach is that the communi-

cation costs between operators may be kept minimal. However, the draw-

back is that some machines are fully loaded, while others may be idle. This

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 309

can result in frequent runtime load rebalancing when one machine is de-

tected to be overloaded due to changes in the data streams.

Another possible approach is to first divide the total cost of the query

plan by the number of machines in the system, and then try to divide the

query plan into smaller pieces with each piece have the same amount of

costs. An obvious advantage of this approach is that all machines are uti-

lized in the system. However, if the workload is not large, all machines may

be under-utilized. To solve this problem, we may use a load factor when

dividing the query plan. Instead of dividing the total cost of the query plan

by the total number of machines in the system, we may decrease the num-

ber of machines to ensure that each machine used for executing the query

is loaded more than the load factor.

The two allocation approaches described above have different perfor-

mance goals and may as well have different performances. It would be in-

teresting to compare these two and see which one has better performances

under what conditions.

We may need to re-optimize the query if a valid distribution plan cannot

be formed. This is usually caused by an operator being too large to fit on

one machine and thus pipelined parallelism not being usable, or the total

memory and CPU costs exceeding the system available resources. The for-

mer can be fixed by re-optimization, while the latter needs more resources

or needs to push part of the data to disk in order to execute the query. The

former can be done by a feedback loop to inform the optimizer which part

of the plan is too large to fit on one machine. Actually, at the initial opti-

mization stage, we may add a check step to make sure that the part that

26.3. FUTURE WORK ON DISTRIBUTED OPTIMIZATION AND

ALLOCATION 310

cannot utilize partitioned parallelism should not be exceeding the memory

and CPU cost on a single machine.

26.3.3 More Possible Future Work

Several other critical issues still remain unaddressed, which would be in-

teresting future work as well.

How to efficiently apply partitioned parallelism to NLJ operators is a

challenge for continuous queries. NLJ requires that one tuple has to probe

the complete state in order to generate complete results. Putting states of

a NLJ operator on different machines may dramatically increase the com-

munication costs. It would be interesting to investigate when and how to

apply such partitioned parallelism.

Another problem is the query optimization and query distribution in

a heterogeneous distributed system, where the ratio of memory and CPU

can vary on different machines. A possible approach is equip the optimizer

with detailed information regarding the distribution of the memory and

CPU in the system. The optimizer may then divide the query plan into

clusters, with each cluster having different memory and CPU requirements.

311

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Cetintemel, Mitch Cherniack, Heong-Hyon Hwang, Walfgan
Lindner, Anurag S. Maskey, Alexander Rasin, Esther Ryvk-
ina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The de-
sign of the borealis stream processing engine. In Proceedings
of CIDR, 2005.

[ABB+03] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom. STREAM: The stanford stream
data manager. In SIGMOD Demonstration, June 2003.

[ABW03] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql
continuous query language: Semantic foundations and query
execution. In Stanford University Computer Science Department
Technical Report, 2003.

[ACC+03] D. Abbadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:
A new model and architecture for data stream management.
VLDB Journal, pages 120–139, 2003.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously
adaptive query processing. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages
261–272. ACM Press, 2000.

[AN04] Ahmed Ayad and Jeffrey F. Naughton. Static optimization
of conjunctive queries with sliding windows over infinite
streams. In ACM SIGMOD, pages 419–430, June 2004.

[Ant96] G. Antoshenkov. Dynamic optimization of index scan re-

BIBLIOGRAPHY 312

stricted by booleans. In Proceedings of the IEEE Conference on
Data Engineering, pages 430–440, 1996.

[BBD+02a] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings of
PODS, pages 1–16, 2002.

[BBD+02b] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Mot-
wani, and Jennifer Widom. Models and issues in data stream
systems. In Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
pages 1–16. ACM Press, 2002.

[BDM04] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load
shedding for aggregation queries over data streams. In Pro-
ceeding of ICDE, pages 350–361, 2004.

[BKS01] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline oper-
ator. In ICDE, pages 421–430, 2001.

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamech Munagala, Itaru
Nishizawa, and Jennifer Widom. Adaptive ordering of
pipelined stream filters. In Proceeding of ACM SIGMOD Con-
ference, pages 407–418, 2004.

[BMW05] Shivnath Babu, Kamesh Munagala, and Jennifer Widom.
Adaptive caching for continuous queries. In Proceeding of
ICDE, March, 2005.

[CBB+03] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemal, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In Proceeding of CIDR Conference, 2003.

[CCC+02] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Mon-
itoring streams: A new class of data management applica-
tions. In Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB ’02), pages 215–226, 2002.

[CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurphy, S. R. Madden,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow
processing. In SIGMOD Demostration, June 2003.

BIBLIOGRAPHY 313

[CCea03] D. Carney, U. Cetintemel, and A. Rasin et al. Operator
scheduling in a data stream manager. In VLDB, pages 838–
849, 2003.

[CDN02] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and evalu-
ation of alternative selection placement strategies in optimiz-
ing continuous queries. In Proceedings of International Confer-
ence on Data Engineering, pages 345–356, 2002.

[CF02] S. Chandrasekaran and M. J. Franklin. Streaming queries over
streaming data. In Proceedings of VLDB Conference, pages 203–
214, 2002.

[CM95] Sophie Cluet and Guido Moerkotte. On the complexity
of generating optimal left-deep processing trees with cross
products. In ICDT, pages 54–67, January 1995.

[CS94] S. Chaudhuri and K. Shim. Including Group-By in Query Op-
timization. In Proceedings of the Twentieth International Confer-
ence on Very Large Databases, pages 354–366, Santiago, Chile,
1994.

[DH04] Amol Deshpande and Joseph M. Hellerstein. Lifting the bur-
den of history from adaptive query processing. In VLDB,
pages 948–959, 2004.

[DMRH04a] L. Ding, N. Mehta, E. A. Rundensteiner, and G. T. Heineman.
Joining punctuated streams. In EDBT Conference, pages 587–
604, March 2004.

[DMRH04b] Luping Ding, Nishant Mehta, Elke Rundensteiner, and
George Heineman. Joining punctuated streams. In EDBT,
pages 587–604, 2004.

[DTW00] David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: a
scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 379–390. ACM Press, 2000.

[EHJ+96] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madari, and
O. Waarts. Efficient information gathering on the internet. In
IEEE Symp. on Foundations of Computer Science, pages 234–243,
1996.

BIBLIOGRAPHY 314

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-total. In ICDE, pages 152–159, 1996.

[GC94] G. Graefe and R. Cole. Optimization of dynamic query evalu-
ation plans. In Proceedings of ACM-SIGMOD Conference, pages
150–160, 1994.

[GI96] Minos N. Garofalakis and Yannis E. Ioannidis. Multi-
dimensional resource scheduling for parallel queries. In ACM
SIGMOD, pages 365–376, 1996.

[GO03] L. Golab and M. Tamer Ozsu. Processing sliding window
multi-joins in continuous queries over data streams. In VLDB,
pages 500–511, September 2003.

[Gra90] G. Graefe. Encapsulation of parallelism in the volcano query
processing system. In Proceeding of ACM SIGMOD, pages
102–111, 1990.

[HAE03] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elma-
garmid. Stream window join: Tracking moving objects in
sensor-network dbs. In SSDBM, pages 75–84, 2003.

[Has95] W. Hasan. Optimizing response time of relational queries by
exploiting parallel execution. In Ph.D Thesis, Stanford Univer-
sity, 1995.

[HFAE03] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. El-
magarmid. Scheduling for shared window joins over data
streams. In Proceedings of VLDB Conference, pages 297–308,
2003.

[HH99] P. J. Hass and J. M. Hellerstein. Ripple joins for online ag-
gregation. In Proceedings of ACM-SIGMOD Conference, pages
287–298, 1999.

[HM94] W. Hasan and R. Motwani. Optimization algorithms for ex-
ploiting the parallelism-communication tradeoff in pipelined
parallelism. In Proceeding of VLDB, pages 36–47, 1994.

[HMA+04] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H.
Ali, Walid G. Aref, and et. al. Nile: A query processing engine
for data streams. In ICDE, page 851, 2004.

BIBLIOGRAPHY 315

[Hon92] W. Hong. Parallel query processing using shared memory
multiprocessors and disk arrays. In Ph.D Thesis, University of
California, Berkeley, August, 1992.

[HS91] W. Hong and M. Stonebraker. Optimization of parallel query
execution plans in xprs. In Proceeding of the first international
conference on Parallel and Distributed information systems, pages
218–225, 1991.

[IHW02] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An xml query engine
for network-bound data. In VLDB Journal, pages 11(4): 380–
402, 2002.

[IK84] T. Ibaraki and T. Kameda. On the optimal nesting order for
computing n-relational joins. In ACM Transaction on Database
Systems, pages 9(3):482–502, 1984.

[IK91] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An
analysis of strategy spaces and its implications for query op-
timization. In Proceeding of ACM SIGMOD, pages 168–177,
Denver, USA, May 1991.

[ILW+00] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Flo-
rescu, and Marc Friedman. Adaptive query processing for in-
ternet applications. IEEE Data Engineering Bulletin, 23(2):19–
26, 2000.

[INSS92] Y. Ioannidis, R. T. Ng, K. Shim, and T. Sellis. Parametric query
optimization. In Proceedings of 18th VLDB Conference, pages
103–114, 1992.

[Ive02] Zachary G. Ives. Efficient Query Processing for Data Integra-
tion. Ph.D Dissertation, University of Washington, Auguest,
2002.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
non-recursive queries. In Proceeding of VLDB, pages 128–137,
1986.

[KD98] N. Kabra and D. J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In Pro-
ceedings of ACM-SIGMOD Conference, pages 106–117, 1998.

BIBLIOGRAPHY 316

[KNV03] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In Proceedings of ICDE Confer-
ence, pages 341–352, 2003.

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Pe-
ter A. Tucker. Semantics and evaluation techniques for win-
dow aggregates in data streams. In ACM SIGMOD, pages
311–322, 2005.

[LVZ93] R. Lanzelotte, P. Valduriez, and M. Zait. On the effectiveness
of optimization search strategies for parallel execution spaces.
In Proceeding of VLDB, pages 493–504, September, 1993.

[LZJ+05] Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger,
and Elke Rundensteiner. A dynamically adaptive distributed
system for processing complex continuous queries. In VLDB
Demonstration, pages 1338–1341, 2005.

[LZR06] Bin Liu, Yali Zhu, and Elke A. Rundensteiner. Run-time oper-
ator state spilling for memory intensive long-running queries.
In ACM SIGMOD, pages 347–358, 2006.

[MJSM03] M.A.Shah, J.M.Hellerstein, S.Chandrasekaran, and
M.J.Franklin. Flux: An adaptive partitioning operator
for continuous query systems. In Proceeding of ICDE, pages
25–36, 2003.

[MRS+04] Volker Markl, Vijayshankar Raman, David E. Simmen,
Guy M. Lohman, and Hamid Pirahesh. Robust query pro-
cessing through progressive optimization. In ACM SIGMOD,
pages 659–670, 2004.

[MS79] C. Monma and J. Sidney. Sequencing with series-parallel
precedence constraints. In Mathematics of Operations Research,
pages 4:215–224, 1979.

[MSHR02] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Contin-
uously adaptive continuous queries over streams. In Proceed-
ings of ACM-SIGMOD, pages 49–60, 2002.

[MWA+03] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation

BIBLIOGRAPHY 317

in a data stream management system. In Proceedings of the
First Biennial Conference on Innovative Data Systems Research
(CIDR 2003), pages 245–256, 2003.

[NWAea02] R. Notwani, J. Widom, A. Arasu, and et al. Query processing,
appromixation, and resource management in a data stream
management system. In Proceedings of CIDR Conference, pages
1–16, January 2002.

[NWMN99] K. W. Ng, Z. Wang, R. R. Muntz, and S. Nittel. Dynamic query
re-optimization. In Proceedings of International Conference on
Scientific and Statistical Databases, pages 264–273, July 1999.

[NWMS98] K. W. Ng, Z. Wang, R. R. Muntz, and E. C. Shek. On recon-
figuring query execution plans in distributed object-relational
dbms. In Proceedings of International Conference on Parallel and
Distributed Systems, pages 59–66, 1998.

[OL90] Kiyoshi Ono and Guy M. Lehman. Measuring the complexity
of join enumeration in query optimization. In Proceeding of
VLDB, pages 314–325, 1990.

[PY01] Christos H. Papadimitriou and Mihalis Yannakakis. Multiob-
jective query optimization. In PODS, 2001.

[RDH03] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state
modules for adaptive query processing. In ICDE, 2003.

[RDS+04] Elke A. Rundensteiner, Luping Ding, Timothy Sutherland,
Yali Zhu, Brad Pielech, and Nishant Mehta. Continuous
Query Engine with Heterogeneous-Grained Adaptivity. In
VLDB Demo Session, pages 1353–1356, 2004.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In Proceeding of ACM SIGMOD, pages
23–34, Boston, USA, May 1979.

[SAL+96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu. Mariposa: a wide-area distributed
database system. In The VLDB Journal, pages 5, 1(Jan.), 48–
63, 1996.

BIBLIOGRAPHY 318

[SI93] A. Swami and B. Iyer. A polynomial time algorithm for op-
timizing join queries. In Proceeding of ICDE, pages 345–354,
Vienna, Austria, April 1993.

[SLMK01] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. Leo db2s
learning optimizer. In VLDB, pages 19–28, 2001.

[SMK97] Machael Steinbrunn, Guido Moerkotte, and Alfons Kemper.
Heuristic and randomized optimization for the join ordering
problem. In The VLDB Journal, pages 6(3):191–208, 1997.

[SN95] Ambuj Shatdal and Jeffrey F. Naughton. Adaptive parallel
aggregation algorithms. In SIGMOD, pages 104–114, 1995.

[Ste86] R. E. Steuer. Multiple criteria optimization. Wiley, New York,
NY, 1986.

[SZDR05] Timothy M. Sutherland, Yali Zhu, Luping Ding, and Elke A.
Rundensteiner. An Adaptive Multi-Objective Scheduling Se-
lection Framework for Continuous Query Processing. In
IDEAS, pages 445–454, 2005.

[TCZ+03] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In Proceedings of VLDB Conference, pages 309–320, 2003.

[TMSF03a] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploit-
ing punctuation semantics in continuous data streams. IEEE
Transactions on Knowledge and Data Engineering, 15(3):555–568,
May/June 2003.

[TMSF03b] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploit-
ing punctuation semantics in continuous data streams. In
IEEE Transactions on Kowledge and Data Engineering, pages
15(3):555–568, May/June 2003.

[UF99] T. Urhan and M. Franklin. XJoin: Getting fast answers from
slow and bursty networks. Technical Report CS-TR-3994,
University of Maryland, 1999.

[VM96] B. Vance and D. Maier. Rapid bushy join-order optimization
with cartesian product. In Proceeding of ACM SIGMOD, Mon-
treal, Canada, June, 1996.

BIBLIOGRAPHY 319

[VN02a] S. D. Viglas and J. F. Naughton. Rate-based query opti-
mization for streaming information sources. In Proceedings
of ACM-SIGMOD, pages 37–48, 2002.

[VN02b] Stratis Viglas and Jeffrey F. Naughton. Rate-based query op-
timization for streaming information sources. In ACM SIG-
MOD, pages 37–48, 2002.

[VNB03] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maxi-
mizing the output rate of multi-way join queries over stream-
ing information sources. In Proceeding of VLDB, pages 285–
296, 2003.

[WA93a] Annita N. Wilschut and Peter M. G. Apers. Dataflow query
execution in a parallel main-memory environment. Dis-
tributed and Parallel Databases, 1(1):103–128, 1993.

[WA93b] Annita N. Wilschut and Peter M. G. Apers. Dataflow query
execution in a parallel main-memory environment. Dis-
tributed and Parallel Databases, 1(1):103–128, 1993.

[WW94] Carl A. Waldspurger and William E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource management. In
Operating Systems Design and Implementation, pages 1–11,
1994.

[YL94] Weipeng P. Yan and Paul Larson. Performing Group-By be-
fore Join. In Proceedings of the 10th IEEE International Confer-
ence on Data Engineering, pages 89–100, Houston, Texas, 1994.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman.
Dynamic plan migration for continuous queries over data
streams. In ACM SIGMOD, pages 431–442, Paris, France, June
2004.

