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Abstract 

Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a difficult pathogen 

to treat, requiring a lengthy treatment course with numerous antibiotics. It is believed that a 

robust regulation of gene expression contributes to high tolerance to antibiotics and other 

stressors. mRNA concentration is one physical factor that may impact mRNA half-life, a 

contributing factor to overall gene expression. Previous work in M. tuberculosis and other 

bacteria indicates a lack of consensus regarding whether mRNA abundance and mRNA half-life 

show a strong, negative correlation or a weak, positive correlation. Additionally, mRNA 

abundance may impact protein abundance in a non-linear fashion. However, there is a lack of 

consensus regarding the relationship between mRNA abundance and protein abundance. By 

understanding the impact of mRNA abundance on regulating gene expression, we sought to gain 

a greater understanding of how M. tuberculosis is able to effectively respond to stress. Using a 

tetracycline-inducible gene expression system in the model organism Mycolicibacterium 

smegmatis, we tested various combinations of concentrations of anhydrotetracycline (aTc) and 

induction times to determine conditions that would provide the widest range of mRNA and 

protein expression levels. We established that a range of aTc concentrations from 0 ng/mL to 50 

ng/mL at a 4-hour induction time provided a wide range of gfpmut3 expression. The degradation 

data were too noisy to determine half-life and make meaningful conclusions regarding the 

relationship between mRNA abundance and mRNA half-life. Additionally, our system could not 

be used to investigate the relationship between mRNA abundance and protein abundance due to 

a loss of inducer-based expression for undetermined reasons.  
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Introduction 

Tuberculosis (TB) is an upper respiratory infection that is a major cause of ill health 

globally (World Health Organization, 2020). The etiological agent for this disease is the 

pathogenic bacteria Mycobacterium tuberculosis (World Health Organization, 2020). In 2019 

alone, 1.4 million deaths were attributed to M. tuberculosis, making it one of the leading causes 

of death by an infectious disease in the world (World Health Organization, 2020). While the 

number of cases in high-income countries has decreased significantly since the 1940s, M. 

tuberculosis is still a major problem in medium and low-income nations (CDC, 1990; World 

Health Organization, 2020). Therapies for TB are combinatorial and lengthy, incurring a 

physical, mental, and economic toll on the individual patient (World Health Organization, 2020). 

One reason for the lengthy course of treatment is that M. tuberculosis inside granulomas is 

tolerant to antibiotics and a number of stresses, such as hypoxia, nutrient starvation, low pH, and 

reactive oxygen species (ROS). The mechanisms of tolerance in M. tuberculosis stem from a 

rigorous and well-evolved regulation of gene expression that allows them to survive in such 

conditions (Reviewed in: Connolly et al., 2007; Reviewed in: Prax, M., & Bertram, R, 2014; 

Reviewed in: Boldrin et al., 2020). 

Within stressful environments, M. tuberculosis is able to regulate its gene expression to 

adapt and persist. Regulation of the gene expression profile in M. tuberculosis, like any other 

bacteria, can occur at a select number of points: transcription of a gene, degradation of mRNA, 

translation of mRNA into protein, and degradation of the protein (Hausser et al., 2019). The 

degradation of mRNA is of key interest in studying the regulation of gene expression given the 

unstable nature of mRNA and the high energy cost of mRNA and protein synthesis within the 

cell (Pato et al., 1973; Reviewed in: Russel & Cook, 1995; Stouthamer, 1979; Dressaire et al., 

2013). Additionally, studies examining the impacts of bacterial transcriptional and 

posttranscriptional regulatory mechanisms on the half-lives of mRNA in M. tuberculosis and 

Mycolicibacterium smegmatis, a model organism for M. tuberculosis, show that mRNA half-

lives are extended in response to stress (Rustad et al., 2013; Vargas-Blanco et al., 2019). 

Understanding the mechanisms through which mRNA levels and degradation rates are regulated 

in response to resource and energy stress will yield a greater knowledge base of information 

regarding how M. tuberculosis is able to effectively respond to stress.  

A number of features of mRNAs have been assessed to understand the mechanisms for 

regulating mRNA degradation in bacteria. These features include stem-loops (Emory & Belasco, 

1992), leadered or leaderless gene transcripts (Chen et al., 1991; Nouaille et al., 2017; Nguyen et 

al., 2020), interaction with regulatory proteins and sRNAs (Arnvig & Young, 2012; Chen et al., 

2015; Sinha et al., 2018), RNA-binding proteins (e.g., CsrA, Hfq) (Liu et al., 2010; Timmermans 

et al., 2010), poly-A tails (O'Hara et al., 1995), and codon content (Lenz, et al., 2011; Boël et al., 

2016). In addition to these structural and mechanistic features, many studies have investigated 

the association between mRNA half-life and mRNA concentration. Bernstein et al. (2002) used 

DNA microarrays to identify an inverse relationship between mRNA half-lives and mRNA 

abundance in E. coli. Another study in E.coli showed a negative association between mRNA 
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half-lives and mRNA concentration (Esquerré et al., 2015). Using reporter systems with either 

arabinose-inducible or nisin-inducible promoters in log-phase, Nouaille et al. (2017) observed an 

inverse correlation between the half-life and concentration of lacZ mRNA in E. coli as well as 

lacLM mRNA in Lactococcus lactis. An inverse correlation between mRNA half-life and mRNA 

concentration in log-phase M. tuberculosis was shown by Rustad et al. (2013). A much weaker 

inverse correlation between mRNA half-life and mRNA concentration was observed in M. 

smegmatis (Sun et al., manuscript in preparation).  

In contrast to studies that showed negative relationships, there were two studies that 

indicated a weakly positive correlation between mRNA half-life and mRNA abundance in B. 

cereus and E. coli through transcriptome-wide measurement of mRNA half-lives using RNA-seq 

(Kristoffersen et al., 2012; Chen et al., 2015). In a study conducted by Redon et al. (2005), L. 

lactis experiencing carbon starvation showed a positive correlation between mRNA half-life and 

mRNA concentration. There is a lack of consensus regarding the direction and extent of the 

correlation between mRNA half-life and mRNA concentration. Furthermore, the causality of this 

correlation is not well characterized, as concluded by Nouaille et al. (2017). Formulating a 

complete understanding of the relationship between mRNA half-life and mRNA concentration in 

mycobacteria would fill a key gap in our understanding of how mRNA degradation occurs and 

how it is regulated.  

In addition, the relationship between mRNA abundance and protein abundance and the 

relationship’s impacts on protein synthesis rate are not well characterized in bacteria. A number 

of studies have identified factors that affect translation rate and contribute to translational 

regulation in bacteria. These factors include codon adaptation index (cAI) (Tuller et al., 2010; 

Riba et al., 2019), tRNA adaptation index (tAI) (Lenz et al., 2010; Riba et al., 2019), 5’ UTR 

(Chen et al., 1991; Kozak et al., 2005; Review: Ren et al., 2017), and Shine-Dalgarno affinity 

strength (Li et al., 2012; Saito et al., 2020; Tarai & Asai, 2020). The steady-state relationship 

between mRNA abundance and protein abundance has been studied in Pseudomonas aeruginosa, 

E. coli, and Saccharomyces cerevisiae. Kwon et al. (2014) found a strong positive correlation 

between protein abundance and mRNA abundance within two closely related Pseudomonas 

aeruginosa strains in log-phase using DNA microarrays and LC-MS/MS proteomics. Comparing 

the protein to mRNA ratios between these two strains also produced a positive correlation, 

indicating that the protein to mRNA ratios are evolutionarily conserved between closely related 

strains (Kwon et al., 2014). In de Sousa Abreu et al. (2009), a meta-analysis of protein and 

mRNA abundance in both E. coli and S. cerevisiae established a weakly positive correlation 

between protein abundance and mRNA abundance in the two species. Taniguichi et al. (2010) 

reported no direct correlation between steady-state mRNA concentration and protein 

concentration using a yellow fluorescent protein translationally fused to the C-terminus of 

proteins of interest in their native positions within E. coli. Similar conclusions were drawn in 

another study of E. coli examining mRNA concentration and protein concentration of a subset of 

native genes (Lee et al., 2003). Another study that evaluated the mean translation rate per mRNA 

in single living cells using fluorescence correlation spectrometry (FCS) showed a positive, linear 
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correlation between the mRNA concentration and protein concentration for dsRED in E. coli 

(Guet et al., 2008). There is a lack of consensus regarding the exact nature of the steady-state 

relationship of mRNA and protein concentration. These differences could be the result of 

different methods being used to assess and analyze the relationship between mRNA abundance 

and protein abundance. For example, most studies examined large numbers of different 

transcripts and proteins expressed at their native levels, while some examined a single transcript 

and protein expressed at different levels. Understanding this relationship further would address 

whether the efficiency of mRNA translation is affected by the mRNA concentration. 

Additionally, this relationship has not been assessed in M. smegmatis. Addressing this goal in M. 

smegmatis could yield information regarding the relationship between mRNA and protein 

concentration in the context of M. tuberculosis. 

Guided by previous research, this study sought to answer questions related to 

understanding the impact of mRNA concentration on gene expression. First, we sought to further 

investigate the nature of the negative correlation between mRNA half-life and mRNA 

concentration by examining the impact of transcription rate on mRNA stability in M. smegmatis. 

Second, we sought to examine the relationship between the protein concentration and mRNA 

abundance in M. smegmatis. To accomplish these goals, a set of M. smegmatis strains were 

constructed containing a tet-ON inducible system for temporal regulation of fluorescent 

proteins. Due to high variability and noise between biological replicates observed in the 

degradation data, we were unable to determine a meaningful relationship between mRNA 

abundance and mRNA half-life. In addition, our tetracycline-inducible gene expression system 

could not be used to investigate the relationship between mRNA abundance and protein 

abundance as a result of a decrease in inducer-based protein expression for undetermined 

reasons.  
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Materials and Methods 

Strains and culture conditions 

Mycolicibacterium smegmatis mc2155 strain and all constructed strains were grown in 

DifcoTM Middlebrook 7H9 medium with albumin dextrose catalase (ADC; final concentrations: 

5 g/L bovine serum albumin fraction V (BSA), 2 g/L dextrose, 0.85 g/L NaCl, and 3 mg/L 

catalase), 0.2% glycerol, and 0.05% Tween 80. Cultures were shaken at 200 rpm and 37°C to an 

optical density at 600 nm (OD600) between 0.5 to 0.8 at the time of harvest. Cultures grown and 

induced with anhydrotetracycline (aTc) were wrapped in aluminum foil to protect the 

photosensitive inducer. 

 

Plasmid construction 

Plasmid pSS303 (Nguyen et al., 2020) was used as a vector backbone and the yfp coding 

sequence in that plasmid was replaced with either a gfpmut3 or mCherry fluorescent reporter 

gene to create pSS470 and pSS471 (Table 1). The plasmid contained a strong constitutive Pmyc1 

2X tetO promoter , which was repressed in the presence of tet repressor protein (TetR) and 

initiated with the addition of aTc, an antibiotic derivative of tetracycline, with an associated Pmyc1 

5’ UTR (Blokpoel et al., 2005; Carroll et al., 2005; Ehrt et al., 2005). Two synthetic terminators 

were present in the vector; tsynA (Czyz et al., 2014) was upstream of the reporter gene, while 

ttsbiB (Huff et al., 2010) was downstream of the reporter gene. A 6×Histidine tag was added at 

the C terminus for the GFPmut3 protein (complete amino acid 

sequence:MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL

PVPWPTLVTTFGYGVQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAE

VKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNI

EDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGIT

HGMDELYKCHHHHHH) and the mCherry protein (complete amino acid 

sequence:MAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFA

WDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQD

GEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGH

YDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELY

KHHHHHH). The plasmids were integrated into the Giles phage site using an integrase promoter 

and protein sequence. Additionally, a tet repressor gene along with its strong constitutive Pmyc1 

promoter and associated Pmyc1 5’ UTR were used in conjunction with the pSS221 vector 

backbone to create pSS555. The plasmid was integrated into the L5 phage site using an integrase 

promoter and protein sequence.  

All constructs were built using NEBuilder HiFi DNA assembly master mix (catalogue 

E2621) (Table 1). To create M. smegmatis mc2155 strain with both gfpmut3 and tetR genes, 

pSS470 was transformed using electroporation (Bio-Rad, catalogue 1652100) into M. smegmatis 

mc2155 strain and integrated at the Giles phage site and selected with 250 μg/mL Hygromycin B. 

pSS555 was later transformed using electroporation and integrated in the same strain at the L5 

phage site and selected with 40 μg/mL nourseothricin (Table 1). These steps were repeated to 
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create M. smegmatis mc2_155 strain with both mCherry and tetR genes (Table 1). Additionally, 

the previously mentioned steps were used to create M. smegmatis mc2155 strains with only 

pSS470, pSS471, or pSS555 (Table 1). To confirm successful plasmid integrations at Giles and 

L5 phage sites, several different primers were used (Table 2 and Table 3).  

 

Table 1. A list of the Mycolicibacterium smegmatis strains and plasmids. HygR refers to a gene that 

produces a protein which confers resistance to Hygromycin B. NAT refers to a gene that produces 

nourseothricin N-acetyl transferase which confers resistance to nourseothricin.  

Strain Plasmid Plasmid Description 

SS-M_0836;  

SS-M_1097; 

SS-M_1098; 

SS-M_1099 

pSS470 Pmyc1 2X tetO promoter +  Pmyc1 5′ UTR+ gfpmut3-

6xHis + HygR 

SS-M_0837;  

SS-M_0838 

pSS471 Pmyc1 2X tetO promoter +  Pmyc1 5′ UTR+ mCherry-

6xHis + HygR 

SS-M_1062;  

SS-M_1063 

pSS470 + pSS555 Pmyc1 2X tetO promoter +  Pmyc1 5′ UTR+ gfpmut3-

6xHis + HygR (Giles site) and Pmyc1 promoter +  

Pmyc1 5′ UTR+ tetR  + NAT  (L5 site) 

SS-M_1073;  

SS-M_1074 

pSS471 + pSS555 Pmyc1 2X tetO promoter +  Pmyc1 5′ UTR+ mCherry-

6xHis + HygR (Giles site) and Pmyc1 promoter +  

Pmyc1 5′ UTR+ tetR  + NAT (L5 site) 

SS-M_1071;  

SS-M_1072 

pSS555 Pmyc1 promoter + Pmyc1 5′ UTR+ tetR + NAT 
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Table 2.  Primers used for plasmid construction, colony-checking PCR, and verifying plasmid integration 

into the Giles and L5 sites. HygR refers to a gene that produces a protein which confers resistance to 

Hygromycin B. NAT refers to a gene that produces nourseothricin N-acetyl transferase, which confers 

resistance to nourseothricin. Forward primers are denoted with an ‘F’ character whereas reverse primers 

are denoted with an ‘R’ character. 

Plasmid Primers for 

Amplification and 

Plasmid Creation  

Primers for Colony-

Checking PCR for 

fidelity  

Primers for verifying plasmid 

integration 

pSS470 Insert Amplification: 

SSS1992F,SSS1993R 

 

Vector Amplification: 

SSS1989F,SSS1800R 

SSS1171F, 

SSS1851R 

Giles Left integration: SSS1172F, 

SSS1174R 

 

Giles Right integration: 

SSS1173F, SSS1175R 

pSS471 Insert Amplification: 

SSS1990F,SSS1991R 

 

Vector Amplification: 

SSS1989F,SSS1800R 

SSS1171F, SSS1851R Giles Left integration: SSS1172F, 

SSS1174R 

 

Giles Right integration: 

SSS1173F, SSS1175R 

pSS555 Insert Amplification: 

SSS2159F,SSS2205R 

 

Vector Amplification 

SSS1488R,SSS1519F 

SSS2315F, 

SSS1641R 

L5 Left integration: SSS1103F, 

SSS142R 

 

L5 Right integration: 

SSS1104F, SSS144R 
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Table 3. Primer sequences. Listed in the table below are the sequences of primers listed in Table 2.  

Primer  Description Sequence (5’ → 3’)  

SSS1992 Forward primer to amplify 

gfpmut3 in pMV762 

TTAAGAAGGAGATATA

CATCATGAGTAAAGGA

GAAGAAC 

SSS1993 Reverse primer to amplify 

gfpmut3 in pMV762 

GTGATGGTGATGGTGAT

GACATTTGTATAGTTCA

TCCATGC 

SSS1990 Forward primer to amplify 

mCherry in pSS374 

TTAAGAAGGAGATATA

CATCATGGCCATCATCA

AGGAGTTC 

SSS1991 Reverse primer to amplify 

mCherry in pSS374 

TGATGGTGATGGTGATG

ACACTTGTACAGCTCGT

CCATGC 

SSS1989 Forward primer to amplify 

pSS303  

TGTCATCACCATCACCA

T 

SSS1800 Reverse primer to amplify 

pSS303  

GATGTATATCTCCTTCT

TAAT 

SSS2159 Forward primer to amplify 

Pmyc1 promoter + Pmyc1 5′ 

UTR+ tetR in pSS221 

CAAACTCTTCCTGTCGT

CATATAGAAATATTGGA

TCGTCGG 

SSS2205 Reverse primer to amplify 

Pmyc1 promoter + Pmyc1 5′ 

UTR+ tetR in pSS221 

GTTAACTACGTCGACAT

CGATATTAAGACCCACT

TTCACATTTAAG 

SSS1519 Forward primer to amplify 

pJEB402 

TATCGATGTCGACGTAG

TTAAC 

SSS1488 Reverse primer to amplify 

pJEB402 

ATATGACGACAGGAAG

AGTT 

SSS1171 Forward primer to amplify 

gfpmut3 or mCherry for 

colony-checking PCR 

GGAAAAGAGGTCATCC

AGGA 

SSS1851 Reverse primer to amplify 

gfpmut3 or mCherry for 

colony-checking PCR 

GGCAACGCCCTAGTGAT

GGTGATGGTGATGAC 
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SSS2315 Forward primer to amplify 

Pmyc1 promoter + Pmyc1 5′ 

UTR+ partial tetR for 

colony-checking PCR 

CGGTGAACGCTCTCCTG 

SSS1641 Reverse primer to amplify 

Pmyc1 promoter + Pmyc1 5′ 

UTR+ partial tetR for 

colony-checking PCR 

TAGGCTGCTCTACACCA

AGC 

SSS1172 Forward primer to check left 

junction in Giles site in M. 

smegmatis 

CTCCGAACTCCTCCGAA

ACC 

SSS1173 Forward primer to check 

right junction in Giles site in 

M. smegmatis 

ACATATCTGTCGAAGCG

CCC  

SSS1174 Reverse primer to check left 

junction in Giles site in M. 

smegmatis 

TGACGATCAACTCCGCG

GGGCCGGGCCA 

SSS1175 Reverse primer to check 

right junction in Giles site in 

M. smegmatis 

CGGTGGATCCGCGCAA

CCTG 

SSS1103 Forward primer to check left 

junction in L5 site in M. 

smegmatis 

TGGATTTGGTTTCAGCT

CCC 

SSS142 Reverse primer to check left 

junction in L5 site in M. 

smegmatis 

TAGAGCCGTGAACGAC

AGG 

SSS1104 Forward primer to check 

right junction in L5 site in 

M. smegmatis 

GACCTTGGTGCAGAAAT

CGC 

SSS144 Reverse primer to check 

right junction in L5 site in 

M. smegmatis 

TCGATGAGCCGCTTCTC

GC 
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Polymerase Chain Reaction (PCR) and DNA Recovery 

Polymerase Chain Reaction (PCR) was performed in a 25 μL sample reaction volume. 

When using Q5, high-fidelity polymerase, the following volumes of necessary components were 

added to each reaction: 5.0 μL of 5X Q5 polymerase buffer (New England Biolabs, catalogue 

B9027S), 5.0 μL of 5X GC enhancer (New England Biolabs, catalogue B9208A), 0.50 μL of 10 

μM forward primer, 0.50 μL of 10 μM reverse primer, 0.5 μL of 10 μM dNTPs, 0.25 μL of Q5 

polymerase (New England Biolabs, catalogue M0491L), and 1.0 μL of the DNA to be amplified. 

UltraPure™ DNase/RNase-free distilled water was added for the remaining volume. When using 

Taq polymerase, the following volumes of necessary components were added to each reaction: 

2.5 μL of 10X Taq polymerase buffer (New England Biolabs, catalogue B9014S), 1.0 μL of 

DMSO, 0.5 μL of 10 μM forward primer, 0.5 μL of 10 μM reverse primer, 0.5 μL of 10 μM 

dNTPs, 0.125 μL of Taq polymerase (New England Biolabs, catalogue M0273L), and 

approximately 5.0 μL of colony for colony-checking PCR. UltraPure™ DNase/RNase-free 

distilled water was added for the remaining volume. The forward and reverse primers for each 

strain can be found in Table 2. PCR was carried out at an initial denaturation step at 95℃ for 2 

minutes, (i) a denaturation step of 95℃ for 20 seconds, (ii) an annealing step at an appropriate 

primer annealing temperature (℃) for 40 seconds, (iii) an elongation step at 72℃ for 2 minutes, 

and a final elongation step at 72℃ for 5 minutes. The steps labeled i, ii, and iii were repeated 35 

times. Annealing temperatures were optimized for each primer set using the New England 

Biolabs Tm calculator. Additionally, the elongation time was based on the size of the PCR 

product following the precedent of 1 minute/kilobase. 

All products were analyzed by gel electrophoresis using a 1.0% agarose gel with 0.2-0.5 

μg/mL of ethidium bromide (EtBr) (depending on the mass of the gel) prepared in 1X Tris-

acetate-EDTA (TAE) buffer. Gels were visualized using UV-light (Bio-Rad) and Quantity One 

software. Bands of interest were cut from the gel and purified using the Zymoclean™ Gel DNA 

Recovery Kit (Zymo Research, catalogue D4002) following the manufacturer’s instructions. A 

NanoDrop One (Thermo Scientific) was used to measure sample concentrations of DNA. Any 

DNA sample intended for sequencing was sent to QuintaraBio following the company’s 

instructions.  

 

Flow cytometry 

Cultures of M. smegmatis were grown in duplicate at a variety of induction times (1 hour, 

4 hours, 24 hours, 26 hours, 28 hours, and 30 hours) and aTc induction concentrations (0 ng/mL, 

1 ng/mL, 2 ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL, 50 ng/mL, 100 ng/mL, and 200 ng/mL) at 

OD600 between 0.5 and 1.3. Harvested cultures were placed on ice, and diluted to form two, 1.0 

mL cultures, which served as duplicates, with an OD600 of 0.025 freshly filtered 7H9 media and 

then filtered with a 5 μm filter needle to remove clumps . A CytoFlex flow cytometer was used 

to measure 5000 events of each culture with one universal gate drawn to encompass the densest 

region of cells on a forward scatter (FSC) vs violet side scatter (SSC) plot. The gain values were 
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500 for FSC and 50 for violet SSC. The thresholds were 100,000 for violet SSC-H and 40,000 

for FSC-H. FlowJov10.8.0 was utilized to draw gates and analyze fluorescence data. 

 

RNA extraction 

RNA extractions were performed on triplicate cultures. Cell cultures were induced with 

one of the following aTc concentrations for 4 hours: 0 ng/mL, 2.5 ng/mL, 5 ng/mL, 10 ng/mL, 

20 ng/mL, or 50 ng/mL. The cultures were then spun down to form a cell pellet. Any pellets that 

were not used immediately for extraction were stored at -80 ℃ and were thawed on ice before 

extraction. Cells were resuspended in 1.0 mL of TRIzol Reagent (VWR, catalogue MSPP-

TR118), and pipetted into a 2.0 mL beating tube (OPS Diagnostics; 100-μm zirconium lysing 

matrix, molecular grade). The cells were then lysed using a FastPrep-24 5G instrument (MP 

Biomedical) (3 cycles of 7 m/s for 30 s, with 2 min on ice between cycles). Samples were treated 

with 300 μL of chloroform before being centrifuged for 15 minutes at 15,000 rpm and 4℃. The 

resulting aqueous layer was recovered from the sample, and extraction was completed using 

Direct-ZolTM RNA miniprep (Zymo Research, catalogue R2052) following the manufacturer’s 

instructions with an in-column DNase treatment. Sample concentrations and absorbance ratios 

were measured using a NanoDrop One (Thermo Scientific) before being stored at -80℃. RNA 

quality was assessed by gel electrophoresis. A volume containing 300 ng of extracted RNA was 

mixed with 2X RNA loading dye (New England Biolabs, catalogue 50-427-9) and heated at 

65℃ for 5 minutes using a heat block. Heated samples were loaded onto a 1.0% agarose gel with 

0.2-0.5 μg/mL of EtBr (depending on the mass of the gel), and run with 1X Tris/Borate/EDTA 

(TBE) buffer. Gels were visualized using UV-light (Bio-Rad) and Quantity One software. 

 

cDNA synthesis and cleanup 

Each solution of extracted RNA was diluted into two, separate 5.25 μL, samples 

containing 600 ng of RNA using UltraPure™ DNase/RNase-free distilled water, one used as a 

negative control without reverse transcriptase (no RT) and one with reverse transcriptase (RT). A 

volume of 1.0 μL mix, containing 0.83 μL of 100 mM Tris, pH 7.5, and 0.17 μL of 3.0 mg/mL of 

random primers (Invitrogen: Catalogue No. 48190011), was pipetted to each of the diluted RNA 

samples. Samples were incubated at 70°C for 10 minutes before being snap-frozen in an ice 

water bath for 5 minutes and then transferred onto ice. A 3.75 μL mix was pipetted to the RT 

samples containing the following components: 2 μL of ProtoScript II RT Reaction Buffer (NEB: 

Catalogue No. B0368S), 0.5 μL of 10 mM each dNTPs, 0.5 μL of 100 nM DTT (NEB: 

Catalogue No. B1034A), 0.25 μL of RNase Inhibitor, Murine, New England Biolabs (40,000 

U/mL), and 0.5 μL of ProtoScript® II Reverse Transcriptase, New England Biolabs (200,000 

U/mL). A 3.75 μL mix was pipetted to the no RT samples containing the following components: 

2 μL of ProtoScript II RT Reaction Buffer, 0.5 μL of 10 mM each dNTPs, 0.5 μL of 100 nM 

DTT, 0.25 μL of RNase Inhibitor, Murine, New England Biolabs (40,000 U/mL), and 0.5 μL of 

UltraPure™ DNase/RNase-free distilled water. Samples were incubated at 25°C for 10 minutes 

followed by 42°C for 2 hours. Samples were treated with 10 μL of master mix containing 5 μL of 



13 
 

0.5 M of EDTA and 5 μL of 1N NaOH to degrade any remaining RNA. Samples were then 

incubated at 65°C for 15 minutes before 12.5 μL of Tris HCl, pH 7.5, was added to neutralize the 

pH. All cDNA samples were cleaned up using the MinElute PCR Purification Kit (NEB 

#T1030L) following the manufacturer’s instructions. 

 

Quantitative PCR (qPCR) 

All qPCR reactions were performed in a BSL-2 approved biosafety cabinet. qPCR was 

performed on 3 biological replicates. All samples of cDNA were obtained from RNA extraction 

and cDNA synthesis and cleanup as described above. Samples of cDNA were diluted firstly to 

1.0 ng/μL from their original concentration in pure water. Those samples were then diluted to the 

desired concentration of 200 pg/μL. A 2.5 µM primer mix for sigA was created with a 1.12 

sample error. The final primer mix contained 2.5 µM of JR273 and 2.5 µM of JR274 (Table 4). 

A similar 2.5 µM primer mix was created for gfpmut3 resulting in a final primer mix with 2.5 

µM of SSS306 and 2.5 µM of SSS308 (Table 4). For each of the targets, a mastermix was 

created using 1 µL of the appropriate primer mix, 2 µL of ultra-pure water, and 5 µL of iTaq 

Universal SYBR Green Supermix (Bio-Rad: Catalogue No. 172-5124). Mastermixes were kept 

on ice until use. Within a 96-well PCR microplate (Axygen™: Catalogue No. 14-222-334), 2 µL 

of cDNA was pipetted into each well. Once all wells were filled with cDNA, 8 µL of the 

appropriate mastermix for sigA or gfpmut3 respectively was added to each well and mixed 

carefully using a micropipette. Water controls were made with the specific mastermixes but 

replacing the 2 µL of cDNA with 2 µL of ultra-pure water. The plate was then covered with a 

sealing film (Axygen: Catalogue No. UC-500). qPCR was run in a QuantStudio 6 Pro Real-Time 

PCR System (QuantStudio: Catalogue No. A43180). Samples in the microplate were incubated 

at (i) 50℃ for 2 minutes, (ii) a 95℃ for 1 minute, (iii) 95℃ hold for 15 seconds, and (iv) 61℃ 

hold for 2 minutes. In the final step (iv), the fluorescence of SYBR Green was recorded. Steps 

(iii) and (iv) were cycled through 40 times. To obtain information regarding transcript abundance 

and relative expression, the gfpmut3 gene was normalized to the sigA housekeeping gene. For 

each sample, the number of cycles (Ct) of a gene of interest required to pass a threshold (CT) of 

0.1 was compared to sigA. The difference was used to calculate the ΔCt for each sample. 

Relative expression was calculated as 2-ΔCt. Analysis and figure creation was completed using 

GraphPad Prism 9. 
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Table 4. Primers used for qPCR.  

Primer Description  Sequence (5’ → 3’) 

JR273 Forward primer to amplify 

sigA cDNA in M. smegmatis 

GACTACACCAAGGGCT

ACAAG 

JR274 Reverse primer to amplify 

sigA cDNA in M. smegmatis 

TTGATCACCTCGACCAT

GTG 

SSS306 Forward primer to amplify 

gfpmut3 cDNA 

GAAGGTGATGCAACAT

ACGG 

SSS308 Reverse primer to amplify 

gfpmut3 cDNA 

TCCTGTACATAACCTTC

GGG 

 

Rifampicin Experiment for mRNA Half-Life Determination  

Thirty-two mL cultures of M. smegmatis were grown to an OD600 of 0.5 and 0.7 in 250 

mL Erlenmeyer flasks for each concentration of aTc for each biological replicate. Four hours 

before the step of adding rifampicin, aTc was added to achieve final concentrations of 0, 2.5, 5, 

10, 20, 50 ng/mL. Three and a half hours later, 5 mL of bacterial culture was aliquoted from each 

flask into 5, 15 mL conical tubes, for five time points (0, 0.5 minute, 1 minute, 2 minutes, and 4 

minutes). The conical tubes were placed on the tissue culture rotator and spun for 30 minutes. 

Cultures were then treated with rifampicin at a final concentration of 150 ug/mL to halt 

transcription and snap-frozen in liquid nitrogen after 0, 0.5 minute, 1 minute, 2 minutes, and 4 

minutes. The cultures were then stored at -80 degrees Celsius for future RNA extractions, which 

was followed by cDNA synthesis and qPCR. 

Transcript abundance of sigA and gfpmut3 were used to determine mRNA half-lives. For 

each gene, the Ct was made negative, which represents transcript abundance on a log2 scale, and 

linear regression was performed on a plot of the negative Ct versus time using GraphPad Prism 9. 

Half-life was defined as the negative reciprocal of the best-fit slope (Equation 1).  

 

Half-life = −
1

𝑠𝑙𝑜𝑝𝑒
       (1) 

 

As seen previously in the context of mycobacteria, plotting log2 abundance over time produces a 

biphasic decay curve with a period of faster exponential decay followed by a period of much 

slower or undetectable exponential decay (Nguyen et al., 2020). Other studies in E. coli have 

observed similar biphasic curves for a variety of different genes (Blum et al., 1999; Brescia et al., 

2004; Chen et al., 2015; Sinha et al., 2018). 
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Results & Discussion 

Constructing Mycolicibacterium smegmatis strains with aTc-inducible GFPmut3 and 

mCherry 

 To determine the degree of correlation between mRNA half-life and concentration and 

whether transcription is causal in that relationship, we needed to measure mRNA half-life at a 

variety of mRNA concentrations for a single gene in Mycolicibacterium smegmatis. An 

anhydrotetracycline (aTc) induced expression system was selected to create a set of M. 

smegmatis strains given its strict temporal regulation of gene expression (Ehrt et al., 2005). We 

constructed three plasmids: one containing the two tet-operator Pmyc1 promoter and the 

associated Pmyc1 5’ UTR linked to a gfpmut3 gene, one containing the two tet-operator Pmyc1 

promoter with the associated Pmyc1 5’ UTR linked to an mCherry gene and another containing the 

same promoter and 5’ UTR without the tet operators, linked to a tet repressor gene (Figure 1A, 

Figure 1B, and Figure 1C). We conducted fluorescence microscopy to verify the expected 

protein expression in the experimental strains containing gfpmut3 + tetR, mCherry + tetR and 

control strains with gfpmut3 only and tetR only to validate that the system performed as expected 

in the presence and absence of aTc. Strains were induced with 0 ng/mL and 200 ng/mL of aTc 

and incubated for 24 hours for the gfpmut3 only strain, the tetR only strain, and the gfpmut3 + 

tetR strain. Strains were induced with 0 ng/mL and 200 ng/mL of aTc and incubated for 4 hours 

for the mCherry only strain, the tetR only strain, and the mCherry + tetR strain. The gfpmut3 and 

mCherry only strains fluoresced brightly in the presence and absence of aTc as expected (Figure 

1C and Figure 2C). The tetR only strain did not fluoresce in either the presence and absence of 

aTc (Figure 1D and Figure 2D). The experimental strains containing gfpmut3 + tetR or mCherry 

+ tetR only showed fluorescence in the presence of aTc (Figure 1E and Figure 2E). From these 

results, the performance of the tetracycline-inducible system was validated.  
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Figure 1. Constructing the aTc inducible system for GFPmut3 protein expression. (A) Schematic of the 

plasmid with the Pmyc1 promoter with associated Pmyc1 5’ UTR and two tet-operator regions and the 

gfpmut3 gene inserted into the M. smegmatis Giles site (B) Schematic for the plasmid with the Pmyc1 

promoter with associated Pmyc1 5’ UTR tetR gene inserted into the M. smegmatis L5 site (C) Fluorescence 

microscopy of M. smegmatis strains that contained a Pmyc1 promoter with associated Pmyc1 5’ UTR and two 

tet-operator regions linked gfpmut3 gene inserted into the M. smegmatis Giles site (D) Fluorescence 

microscopy of M. smegmatis strains that contained a Pmyc1 promoter with associated Pmyc1 5’ UTR linked 

tetR gene (E) Fluorescence microscopy of M. smegmatis strains that contained a Pmyc1 promoter with 

associated Pmyc1 5’ UTR and two tet-operator regions linked gfpmut3 gene inserted into the M. smegmatis 

Giles site and a Pmyc1 promoter with associated Pmyc1 5’ UTR linked tetR gene inserted into the M. 

smegmatis L5 site. Red arrows point out fluorescing cells. 
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Figure 2. Constructing the aTc inducible system for mCherry protein expression. (A) Schematic of the 

plasmid with the Pmyc1 promoter with associated Pmyc1 5’ UTR and two tet-operator regions linked 

mCherry gene inserted into the M. smegmatis Giles site (B) Schematic of the plasmid with the Pmyc1 

promoter with associated Pmyc1 5’ UTR tetR gene inserted into the M. smegmatis L5 site (C) Fluorescence 

microscopy of M. smegmatis strains that contained a Pmyc1 promoter with associated Pmyc1 5’ UTR and two 

tet-operator regions linked mCherry gene inserted into the M. smegmatis Giles site (D) Fluorescence 

microscopy of M. smegmatis strains that contained a Pmyc1 promoter with associated Pmyc1 5’ UTR linked 

tetR gene (E) Fluorescence microscopy of M. smegmatis strains that contained a Pmyc1 promoter with 

associated Pmyc1 5’ UTR and two tet-operator regions linked mCherry gene inserted into the M. 

smegmatis Giles site and a Pmyc1 promoter with associated Pmyc1 5’ UTR linked tetR gene inserted into the 

M. smegmatis L5 site. Blue arrows point out fluorescing cells. 
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Four hours induction generates the widest range of GFPmut3 expression for many aTc 

induction concentrations 

Studies have reported mixed data regarding the relationship between steady-state mRNA 

and protein concentration (Lee et al., 2003; Guet et al., 2008; de Sousa Abreu et al., 2009; 

Taniguchi et al., 2011; Kwon et al., 2014). This relationship is not well-studied in the context of 

M. smegmatis. Using this tetracycline-inducible gene expression system, it was a goal of this 

study to understand the steady-state relationship between mRNA abundance and protein 

abundance in M. smegmatis. Guided by previous work in M. smegmatis and Mycobacterium 

tuberculosis, we found that the aTc concentrations of 0, 1, 5, 10, 20, 50, 100, 200 ng/mL were 

the most used and applicable to generate our desired wide range of mRNA levels (Sinha et al., 

2007; Raghavan et al., 2008; Korch et al., 2009; Goyal et al., 2011; Minch et al., 2012). To 

determine the appropriate induction time with those aTc concentrations that would provide us 

with a wide range of GFPmut3 protein expression, we conducted flow cytometry after three 

different induction times: 1 hour, 4 hours, and 24 hours. After one hour or 24 hours of induction, 

samples exposed to higher aTc concentrations were fluorescent but those exposed to lower aTc 

concentrations did not consistently have above-background fluorescence (Figure 3A and 3C). In 

contrast, the 4 hour induction time point showed a greater range of GFPmut3 fluorescence 

(Figure 3B). Strains were also induced with the noted aTc concentrations and incubated for 24 

hours, 26 hours, 28 hours, and 30 hours, to examine the potential of increasing the spread of 

GFPmut3 expression levels. Median fluorescence levels of GFPmut3 decreased as the incubation 

time increased, indicating a decrease in protein expression levels (Figure 4). From these results, 

we determined that 4 hours induction was the best time point that would allow us to establish the 

correlation between mRNA abundance and mRNA half-life.  

Due to loss of aTc induced expression over time, we were not able to study the steady-

state relationship between mRNA abundance and protein abundance in M. smegmatis in this 

paper. Instead, our results shed light on the use of a tetracycline-inducible gene expression 

system for studying the expression of fluorescent proteins and mRNA. When examining 

induction times greater than 24 hours, GFPmut3 expression decreased as induction time 

increased (Figure 4). This decrease in expression is most likely due to a loss of aTc. The inducer 

aTc has been shown to be temperature sensitive and especially photosensitive in L-broth (LB) 

and M9 media (Ehrt, et al., 2005; Politi et al., 2014; Baumschlager, et al., 2020). One study that 

worked to understand aTc degradation in the context of E. coli grown in LB and M9 through a 

linear model attributed nearly 42.5% of degradation to residual error unexplained with their 

linear model while 41.9% of degradation was due to temperature (Politi et al., 2014). Long-term 

exposure to higher temperatures, such as those used to grow bacterial cultures, appears to be a 

significant factor that accounts for aTc degradation (Politi et al., 2014). To better improve and 

use aTc in future M. tuberculosis and M. smegmatis experiments, a similar study as Politi et al. 

(2014) could be conducted in 7H9 media and at 37°C. Politi et al. (2014) also assessed the half-

lives of other inducers beside aTc including IPTG and HSL and found that IPTG has the highest 

half-life out of three inducers and is stable over 32 hours. IPTG could be considered as a 
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potential inducer for future experiments, especially regarding longer induction times. Long 

GFPmut3 protein half-lives and loss of aTc induced expression (Figure 4) indicates that steady-

state gfpmut3 mRNA expression (see below) does not coincide with steady-state GFPmut3 

protein expression. 
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Figure 3. Validating the use of a 4 hour aTc induction time point for greatest spread of protein expression 

levels. Samples of the strains containing gfpmut3 + tetR were incubated at 0 ng/mL, 1 ng/mL, 5 ng/mL, 

10 ng/mL, 20 ng/mL, 50 ng/mL, 100 ng/mL, or 200 ng/mL of aTc for different induction times. Samples 

containing gfpmut3 only, and tetR only were incubated at 0 ng/mL and 200 ng/mL of aTc at different 

induction times. The fluorescence histogram from one duplicate is shown. The mean of median 

fluorescence of GFPmut3 expression of the duplicate samples and standard deviation were quantified 

using FlowJo. (A) 1-hour induction (B) 4-hours induction (C) 24-hours induction.  
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Figure 4. Induction times above 24 hours led to a decrease in GFPmut3 fluorescence. Samples of the 

strains containing gfpmut3 + tetR were incubated at 0ng/mL, 20 ng/mL, 50 ng/mL, 100 ng/mL, or 200 

ng/mL of aTc for 24 hours, 26 hours, 28 hours, and 30 hours. Fluorescence was quantified by flow 

cytometry. The mean of median fluorescence of GFPmut3 expression of the duplicate samples and 

standard deviation were quantified using FlowJo.  

 

TetR-controlled mCherry acts like an on-off inducible switch system for the variety of aTc 

concentrations 

 The initial goal of this research was to engineer plasmids with similar constructs but with 

two different genes, either gfpmut3 or mCherry, to see if our findings held true for different 

genes. Based on the results of flow cytometry with the gfpmut3 strains (Figure 3), we chose to 

test the mCherry strains after 4 and 24 hours of induction using the aTc concentrations of 0, 5, 

10, 20, 50, 100, and 200 ng/mL. The 1-hour induction was excluded from testing the mCherry 

strains because we found that 1-hour induction was not long enough to give a wide range of 

GFPmut3 protein levels in the gfpmut3 + tetR strains (Figure 3A). In contrast to the gfpmut3 + 

tetR results, 4-hours induction was not long enough to allow strains containing mCherry + tetR 

with low concentrations from 5 ng/mL to 50 ng/mL of aTc to produce expression greater than the 

negative control strains (Figure 5A). In addition, there was a large difference between the 

fluorescence of samples induced with 100 ng/mL and 200 ng/mL of aTc compared to samples 

induced with 50 ng/mL of aTc. The mCherry + tetR induction system therefore seemed to behave 

as an on-off inducible switch system instead of a titratable system as seen in Figure 3B where a 

wide range of GFPmut3 fluorescence was observed. The 24 hours induction compared to 4 hours 

induction showed a sharp decrease in the median fluorescence levels of strains containing 

mCherry + tetR with 100 ng/mL and 200 ng/mL of aTc, which brought them closer to the 

median fluorescence levels of negative control strains (Figure 5B). Because of these 

observations, we decided that the mCherry strains were not able to establish a wide enough range 

of protein expression by using these aTc concentrations and time points of induction. As a result, 

these strains were excluded from the rest of this study. 
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Figure 5. The tested range of aTc concentrations and induction times produced two mCherry 

fluorescence states: on and off. Samples of the strains containing mCherry + tetR were incubated at 0 

ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL, 50 ng/mL, 100 ng/mL, or 200 ng/mL of aTc for different 

induction times. Samples containing mCherry only, and tetR only were incubated at 0 ng/mL and 200 

ng/mL of aTc at different induction times. The fluorescence histogram from one duplicate is shown. The 

mean of median fluorescence of GFPmut3 expression of the duplicate samples and standard deviation 

were quantified using FlowJo. (A) 1 hour induction (B) 4 hours induction (C) 24 hours induction.  
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A four-hours induction time point generates wide range of gfpmut3 mRNA abundance for a 

range of aTc induction concentrations 

qPCR was used to measure gfpmut3 mRNA abundance four hours after induction with 

aTc. From previous flow cytometry results (Figure 3C), since there was a significant difference 

in GFPmut3 protein expression levels between 1 ng/mL and 5 ng/mL aTc (Figure 3B), we added 

an intermediate concentration of 2.5 ng/mL aTc in an attempt to increase the number of distinct 

expression levels in our study. We found that the differences in mRNA abundance in the 0-10 

ng/mL aTc range were small (Figure 6). Furthermore, mRNA abundance at 50 ng/mL and 100 

ng/mL aTc showed no discernible difference in expression from the 20 ng/mL of aTc (Figure 6) 

despite the differences in protein levels (Figure 3B). Therefore, we decided to exclude 1 ng/mL 

and 100 ng/mL of aTc from half-life experiments. Moving forward, we decided to induce 

gfpmut3 + tetR strains with 0, 2.5, 5, 10, 20, 50 ng/mL of aTc for 4 hours to determine mRNA 

half-lives. 

Although we did not detect above-background fluorescence in the absence of aTc (Figure 

3B), there was mRNA present at levels similar to the housekeeping gene sigA (Figure 6). The 

ability to tightly regulate expression by the tet repressor systems is not as clear or straightforward 

as may seem. Our data support the notion that there is some leakiness associated with the Pmyc1 

2X tetO promoter as there was some expression of gfpmut3 mRNA in the absence of the aTc 

inducer (Figure 6). Future studies using this system should note this limitation.  
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Figure 6. qPCR to measure expression levels of gfpmut3 mRNA relative to sigA. (Top) gfpmut3 + tetR 

strains samples were incubated for 4 hours with the lower aTc concentrations: 0 ng/mL, 1 ng/mL, 2.5 

ng/mL, 5 ng/mL, and 10 ng/mL. (Bottom) gfpmut3 + tetR strains samples were incubated for 4 hours with 

the higher aTc concentrations: 20 ng/mL, 50 ng/mL, and 100 ng/mL. The 10 ng/mL concentration was 

included as a reference for comparison between the mRNA expression levels of the lower and higher aTc 

concentrations. The positive control of gfpmut3 only was incubated for 4 hours in the absence of aTc. 
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mRNA half-lives were indeterminable due to high noise in the mRNA degradation curves 

There is a lack of consensus regarding the direction and extent of the correlation between 

mRNA abundance and mRNA half-life. While some studies note the presence of a weak, 

positive correlation in non-growing conditions (Redon et al., 2005) and log-phase (Kristoffersen 

et al., 2012; Chen et al., 2015), others note an inverse correlation in log-phase growth (Bernstein 

et al., 2002; Redon et al., 2005; Rustad et al., 2013; Esquerré et al., 2015; Nouaille et al., 2017; 

Sun et al., manuscript in progress). Additionally, the causality for this correlation is unknown as 

noted by Nouaille et al. (2017). Using a tetracycline-inducible gene expression system of 

gfpmut3, we were interested in determining if mRNA abundance affected the rate of mRNA 

degradation and transcriptional causality within this relationship in M. smegmatis. Hence, we 

intended to determine the half-lives of gfpmut3 mRNA at different induction levels. We prepared 

four biological replicate cultures (batches A-D) that were induced with 0, 2.5, 5, 10, 20, and 50 

ng/mL of aTc for 4 hours. We then treated cultures with a high dose of rifampicin to block 

transcription and harvested RNA after different time points: 0, 0.5, 1, 2, and 4 minutes (Figure 7 

and Figure 8). In all the degradation curves obtained for gfpmut3 mRNA and sigA mRNA, there 

was high noise and high variability between the four batches across all aTc concentrations 

(Figure 7 and Figure 8). We found that there was little degradation of gfpmut3 mRNA even after 

4 minutes of treatment, implying that gfpmut3 mRNA may have a longer half-life than expected 

(Figure 7). Unexpectedly, there appeared to be increased mRNA abundance following rifampicin 

treatment for some batches. In contrast to the gfpmut3 degradation curves (Figure 7), there was 

degradation of sigA mRNA across all aTc concentrations (Figure 8). The overall rate of sigA 

degradation over time was slower than expected (Nguyen et al., 2020). Interestingly, we noticed 

that for all aTc concentrations, the trend of sigA degradation between the four batches was not 

consistent (Figure 8). Batches A and C were more similar to each other, with a faster rate of sigA 

mRNA degradation, whereas batches B and D were most similar to each other and had a slower 

rate of sigA mRNA degradation (Figure 8). Due to the high noise and variability in these mRNA 

degradation curves, we were not able to calculate gfpmut3 mRNA half-lives with confidence and 

establish the correlation between mRNA abundance and mRNA half-lives. 
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Figure 7. Degradation curves of gfpmut3 mRNA induced for 4 hours at various concentrations of aTc. 

Four biological replicates, denoted as different batches, of gfpmut3 + tetR strains were induced with 0, 

2.5, 5, 10, 20, and 50 ng/mL of aTc for 4 hours and treated with rifampicin for 0, 0.5, 1, 2, and 4 minutes. 

mRNA abundance was measured by qPCR and -Ct plotted on the y-axis as a unit of log2 abundance. 

Linear regression was performed on each batch using GraphPad Prism 9.  
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Figure 8. Degradation curves of sigA mRNA induced for 4 hours at various concentrations of aTc. Four 

biological replicates, denoted as different batches, of gfpmut3 + tetR strains were induced with 0, 2.5, 5, 

10, 20, and 50 ng/mL of aTc for 4 hours and treated with rifampicin for 0, 0.5, 1, 2, and 4 minutes. 

mRNA abundance was measured by qPCR and -Ct plotted on the y-axis as a unit of log2 abundance. 

Linear regression was performed on each batch using GraphPad Prism 9.  
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The high variability and noise in degradation curves came from the RNA samples rather 

than qPCR error 

To determine a probable cause of the high noise in the mRNA degradation curves among 

four biological replicates (Figure 7 and Figure 8), we repeated the qPCR for all samples induced 

with 20 ng/mL of aTc. Prior to repeating the qPCR, the concentrations of the cDNA samples 

were re-measured. The amplification plots, cDNA concentrations, and Ct values were compared 

between the two trials. Beginning with the amplification plots, we saw that Batch A and Batch B 

replicates had shallow curves in the first trial (Figure 9A). In the second trial, all curves were 

parallel to each other as expected (Figure 9B). Therefore, any technical errors in the qPCR were 

resolved. When looking at the amplification plot for the second trial, there appeared to be no 

significant difference between the gfpmut3 curves at different time points (Figure 9B). Therefore, 

qPCR technique and technical errors were likely not the cause for the variability seen in the 

degradation curves (Figure 7 and Figure 8). 

 

 

 
Figure 9. qPCR amplification plots of gfpmut3 (purple) and sigA (red) with the Ct of 0.1 for all four 

replicates induced with 20 ng/mL of aTc for 4 hours. (A) The amplification plot from the first qPCR trial. 

(B) The amplification plot from the second qPCR trial.  
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Figure 10. Comparison of the first trial cDNA concentrations (ng/uL) (green circle) and the second trial 

cDNA concentrations (ng/uL) (red square) at the different time points of rifampicin exposure for all 

replicates induced with 20 ng/mL of aTc for 4 hours. Each of the replicates was represented in their 

respective graphs: replicate batch A (top-left), replicate batch B (top-right), replicate batch C (bottom-

left), replicate batch D (bottom-right).  

 

To determine whether the cDNA samples were the cause of the variability in the 

degradation curves, we compared the cDNA concentrations and Ct values between the two qPCR 

trials for the 20 ng/mL aTc induction samples. To assess cDNA concentration quantification 

error, we compared the first trial cDNA measurements to the second trial cDNA measurements 

(Figure 10). Aside from two samples in replicate batch A that were significantly different, cDNA 

concentrations between the first and second qPCR trials did not vary substantially (Figure 10). 

Therefore, we believe the noise did not originate from quantifying cDNA.  

To assess potential error in cDNA dilution or the qPCR, we plotted the first trial Ct values 

for sigA against the second trial Ct values for sigA (Figure 11). Our analysis was performed using 

sigA since other lab members have measured the half-life of sigA previously so we had an 

expectation for how the results should look. When comparing the first and second trial Ct values 

at each rifampicin exposure time point, there was no significant difference between them for all 

four replicates (Figure 11A and B). Therefore, the cDNA dilution and qPCR were not the cause 

of the high noise and variability we saw in the sigA degradation curves (Figure 8). When 

comparing the Ct values of the first trial against the Ct values of the second trial for sigA, we saw 

the different rifampicin exposure time points were out of expected order (Figure 11C). One 

would expect that as rifampicin exposure increased, the mRNA abundance for sigA would 

decrease. Thus, higher exposure time points should have higher Ct values. In our experiment, 
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however, all four replicates showed unexpected orders in the exposure time points (Figure 11C). 

Thus, the source of these cDNA samples, the RNA collected from the rifampicin experiment, are 

the likely source of the noise and variability in the sigA degradation curves (Figure 8).  
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Figure 11. Comparing sigA Ct values between two qPCR trials done on the same set of cDNA samples. 

The data represent four replicates induced at 20 ng/mL of aTc for 4 hours. (A) The degradation curves of 

sigA in the first trial (left) and second trial (right) (B) Comparison of Ct values between the first (green 

circle) and second (red square) trials at different time points of rifampicin exposure (C) Comparison of Ct 

values of the first trial against the second trial. Labels at each data point denote the rifampicin exposure 

time point. The four batches of replicates were graphed separately.  
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 The RNA samples are likewise the most likely cause of the noise seen in the gfpmut3 

mRNA degradation curves as well. The degradation curves for gfpmut3 were more variable in 

the first trial than in the second trial (Figure 12A). However, both trials do not show any sign of 

mRNA degradation (Figure 12A). When comparing the Ct values between the first and second 

trials, there was substantial variability in replicates batch A and batch B (Figure 12B), which is 

consistent with the shallow curves observed in Figure 9A. We therefore focused on batch C and 

batch D replicates. When examining these two replicates, there was no significant difference in 

the Ct values between the first and second trials at the different rifampicin exposure time points. 

We observed that the time points were all clustered and in an unexpected order (Figure 12C). 

The unexpected order indicates that, as with sigA, the RNA samples are a cause for the noise in 

the degradation curves of gfpmut3 (Figure 7). The clustering indicates that gfpmut3 mRNA did 

not degrade as quickly as expected (Figure 12C). The time points for rifampicin exposure were 

selected based on a previous study using yfp in M. smegmatis (Nguyen et al., 2020). Our data 

potentially indicate that the half-life of gfpmut3 mRNA is longer than yfp mRNA. Hence, we 

suggest performing a similar half-life experiment with longer rifampicin exposure time points 

such as 0, 1, 2, 4, 8, 10, and 12 minutes for each aTc concentration.  

To summarize, the degradation curves were too noisy to determine half-lives of gfpmut3 

mRNA. Thus, we were unable to establish a relationship between mRNA abundance and mRNA 

half-life. We could not conclude whether transcription is causal in this relationship either. 

Additionally, loss of aTc-induced GFPmut3 protein expression over time prevented us from 

investigating the steady-state relationship between mRNA abundance and protein abundance. 

Future work should consider the recommendations for studying half-life and limitations of our 

gene expression system in M. smegmatis.  
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Figure 12. Comparing gfpmut3 Ct values between the first and second qPCR trials done on the same set 

of cDNA samples. The data represent four replicates induced at 20 ng/mL of aTc for 4 hours. (A) The 

degradation curves of gfpmut3 in the first trial (left) and second trial (right) (B) Comparison of Ct values 

between the first (green circle) and second (red square) trials at different time points of rifampicin 

exposure (C) Comparison of Ct values of the first trial against the second trial. Labels at each data point 

denote the rifampicin exposure time point. The four batches of replicates were graphed separately. In 

batch D, the red arrow denotes the 30 second rifampicin exposure time point.  
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ABSTRACT

Metabolic pathways are complex, multi-structured organizations of proteins and metabo-
lites that promote the continuation and survival of a living system. Through regulation
of the proteins that compose these pathways, a robust system enables greater survival in

a variety of stresses and conditions. Mycobacterium tuberculosis, the causative agent of tubercu-
losis, is one such organism. This makes treatment of the pathogen difficult. Generating and using
biovisualizations is important for culminating a greater understanding of M. tuberculosis and its
mechanisms of regulating gene expression. While there are an abundance of biovisualizations
mapping metabolic pathways and protein-protein interactions, there is little work involving the
ability to visualize changes in protein expression and impacts of regulations on systems. Addition-
ally, many of these visualizations and other existing visualization tools are based on reference
pathways, and are not specific to M. tuberculosis. In this paper, a prototype biovisualization of
M. tuberculosis metabolic pathways was constructed consisting of three panels: one visualizing
metabolic pathways, one displaying protein-protein interactions, and one showing changes in
gene expression from a user uploaded file. The tasks and design components were made based on
interviews with M. tuberculosis researchers. This work highlights a prospective idea for future
metabolic biovisualization work.
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1
INTRODUCTION

Researchers in the biological sciences have access to vast amounts of data regarding specific

systems and models for study. Metabolism is and the study of metabolic pathways is one such

area of interest. Metabolic pathways form the basis for understanding how organisms function

and survive and respond to environmental changes[1]. These metabolic pathways are outlined by

many concurrent and sequential reactions that occur within cells. These biochemical networks are

difficult to visualize because of the vast amount of associated data and the impacts small changes

have on the entire pathway or set of pathways[1, 2]. Metabolism and the study of metabolic

pathways is, thus, one area of biological intrigue in which visualizations have the greatest need

and impact.

To support this intricate web of reactions, most if not all proteins are regulated in their

activity in some way. To better understand widespread changes in global gene expression, many

researchers use RNA sequencing (RNA-seq) to note changes in expression in order to understand

how an organism or system reacts to changes in the environment. Using visualizations, these

biological researchers can examine and study the extensive amount of metabolic data and RNA-

seq data to visualize where changes and adaptations are occurring. This leads to an enhanced

understanding and knowledge to drive further research.

One such research community is the one that studies Mycobacterium tuberculosis. Mycobac-

terium tuberculosis is the pathogen that causes tuberculosis in humans [3]. With 1.3 million

deaths attributed to Mycobacterium tuberculosis in 2020 alone, it is one of the leading causes

of death by an infectious disease in the world [3]. There is an extensive amount of work and

research being devoted to understanding this pathogen, its mechanism of persistence, and how to

treat it [3]. Given the importance of metabolism and its regulation, visualizing such data would
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CHAPTER 1. INTRODUCTION

prove useful for these researchers as they work to better study and find means to combat this

pathogen. Using visualizations enhances the researchers understanding and to draw inferences

regarding their experimental systems and models for a greater push of scientific understanding.

Dang, et al. (2017) and Murray, et al. (2016) have addressed important task taxonomies and

design elements for creating protein-protein interaction and metabolic pathway visualizations.

These findings have not been examined for researchers studying Mycobacterium tuberculosis

specifically. Additionally, there is an extensive amount of bioinformatics data and information

regarding metabolic pathways that has been generated and are commonly used. Many of these

commonly used resources are limited in their representations of specific organisms, lack of gene

expression feature change, or limited by some other external factors (Figure 2.1 and figure 2.2

and Figure 2.3). These are key components for many researchers who are trying to elucidate the

role of a particular protein or note differences between two or more strains.

Building on the work of Murray, et al. (2016) and Dang, et al. (2017), interviews with re-

searchers studying M. tuberculosis and its model organism Mycolicibacterium smegmatis were

conducted to build a better understanding of the tasks important for a prototype metabolic visu-

alization of M. tuberculosis. The responses were recorded and specific tasks that a visualization

should accomplish were identified. In regard to the prototype metabolic visualization, the final

prototype was created in React.js using d3.js, node.js, and express.js. The final visualization

consists of three panels. The first panel visualizes one pathway selected by the user as either

a network of connecting proteins or a more traditional view of protein to molecule to protein

connections. Transcription factors and other pathway connections are togglable. The second panel

is displayed once a protein from the first is selected, a protein’s protein-protein interactions are

displayed and interaction designated by a color legend. The third and final panel allows a user

to upload a file containing a protein or transcription factor and their associated fold change

from RNA-seq data. This data is compiled into tables displayed on the panel and is incorporates

visually within the first, pathway panel. Broadly, the aim of this work was two-fold. The first

goal was to compile a list of the important tasks for a metabolic pathway visualization of M.

tuberculosis from researchers working to understand the pathogen. The second goal was to create

a prototype visualization of the metabolic pathway visualization of M. tuberculosis.

Thus, the contributions of this project are as follow:

• A compiled data set of two pathways and one collected set of proteins grouped together by

similar function with a number of dimensions created specifically for this visualization

• A list of notable tasks relevant to a metabolic pathway visualization of M. tuberculosis from

researchers studying Mycobacterium tuberculosis

• A prototype biovisualization of the metabolic pathways of Mycobacterium tuberculosis using

d3.js that includes:

2



– The ability to visualize two pathways and one collected set of proteins grouped together

by similar function

– The ability to visualize the protein-protein interactions of each protein in the visual-

ized pathway

– The ability to upload a file containing a list of proteins or transcription factors and

their associated fold changes of expression generated from RNA-seq data that is then

incorporated onto the pathways being visualized
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2
BACKGROUND

2.1 Importance of Visualizing Metabolic Pathways and Gene
Expression Changes

Metabolic pathways are complex, biological systems that are central in the survival of a variety

of organisms. Each pathway consists of several different interacting proteins and metabolites.

Researchers organize these components into pathways to better understand their relation and

map their impacts on living systems. These pathways are multivariate and contain numerous

associated datapoints, inherent through the nature of these living systems and expressed in

the multivariate statistical analysis that is taken to analyze them[1, 4, 5]. When studying the

impacts of different protein-coding genes, groups of protein-coding genes, or their gene products,

expression is often varied to determine their role in their specific living system. These changes

may have great implications on the system and its survival by impacting one or more metabolic

pathways. These changes in protein and metabolite concentrations are known to easily perturb

and affect metabolic systems[2]. In the context of gene expression changes, living systems are

easily and potentially significantly affected by those changes. Understanding those changes, in a

neighborhood and global context, is important to researchers. In the context of M. tuberculosis,

the changes to its metabolism are central in the bacteria’s ability to cause disease, survive various

stressors, and become tolerant to drug exposure[6]. Given the multivariate nature, number of

interactions, and significance of changes that are present in a metabolic pathway, visualizing

metabolic pathways and their effects will aid researchers in their efforts to better understand

the systems they study. For researchers studying M. tuberculosis, a visualization tool that can

map gene expression changes to the metabolic pathways of the organism would understand the
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various aspects of M. tuberculosis pathogenesis, persistence, and survivability.

2.2 Goals and Task Taxonomy Regarding Metabolic Pathway
Visualizations

It is important to know what members of the scientific community and those seeking to use

this visualization in order to understand the goals and tasks of a visualization. In a general

approach, Lee, et al. (2006) describes a number of tasks for different types of network visual-

izations. In an attribute-based network, nodes should have specific values that allow for users

to act on one or more of the following tasks: filtering the nodes, computing data information,

determining a range, or characterize the distribution of nodes for and over a given dataset[7]. For

metabolic pathway biovisualizations, it could be argued that noting correlations could also be

vital for attribute-based nodes, using Lee, et al. (2006) as a reference. Links should be specific and

defined by some relationship between one or more nodes[7]. This general view is, as mentioned,

not specific to biovisualizations or metabolic pathway biovisualizations.

A couple of studies have previously examined a list of task taxonomies related to metabolic

pathway visualizations and protein-protein interaction visualizations. In the former, Murray, et

al. (2016) interviewed many different biomedical researchers to create a list of visualization task

taxonomy for metabolic pathway biovisualizations. Highlighted from their analysis are three

categories of tasks: attribute associated, relationship associated, and data curation associated[8].

Attribute associated tasks focused on the multivariate nature of the data, the ability to compare

data between pathways, denoting experimental evidence for each entry, and noting the level of

confidence between relationships[8]. Relationship associated tasks highlighted an understanding

of the relationships and interactions between different pathway components in terms of the

reaction, directionality, grouping, casualty, and feedback[8]. Finally, data curation tasks focus on

modifying and updating the dataset in order to match new findings, discoveries, and clarification

of protein functions and interactions in order to maintain accuracy in the biovisualization[8].

Current implementations or methods for implementing each of these tasks was provided[8].

In the latter, protein-protein interaction, Dang, et al. (2017) highlighted some key tasks for

a solely protein-protein interaction visualization in cancer cells. Though specific to cancerous

cells, these insights can extend to protein-protein interaction visualizations related to biomedical

research data. These tasks focused on presenting accurate and relevant data that allowed users

to investigate protein interactions and protein neighborhoods. Additionally, pointing out relevant

and conflicting literature was a key task identified in their work[9]. Overall, these previous works

serve as a great resource for building visualizations incorporating both metabolic pathways and
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protein-protein interactions. No specific insight has been examined in researchers studying M.

tuberculosis or other bacterial species. Investigating these individuals could provide insights into

tasks, goals, and features specific to this and other related communities of researchers and their

research goals.

2.3 Existing Metabolic Pathway Databases for Mycobacterium
tuberculosis

There are a number of databases that curate and store metabolic information for M. tubercu-

losis. When discussing proteins, the UniProtKB database, a collection of protein entries for most

organisms, is commonly used[10, 11]. Each protein entry lists a number of structural, functional,

and taxonomic data associated with the protein of interest[10, 11]. This makes identifying pro-

teins easy. The database has many annotations to other databases. For example, protein-protein

interactions for each entry direct the user to the STRING network[10, 11]. There are not many

features specific to visualizing pathways or noting gene expression changes with this database.

The Systems Bio MtB database is a large-scale, multi-omics curated dataset that seeks to

generate a predicted network for gene regulation in M. tuberculosis, especially for host-pathogen

interactions[12]. Each gene is given an entry that denotes its sequence data, regulation and

co-regulation overview, and existing quantitative proteomics data [12]. Annotations to other

databases are also included for metabolic pathway and protein-protein interaction data[12].

The most notable feature of this database is its integration of regulation data and information

between transcription factors and proteins. Users are able to better define where changes of

gene expression can occur and which specific regulation elements, whether that be proteins or

transcription factors, are likely to be causing any noted changes[12]. No user data is able to be

uploaded to entries within the database.

The Pathosystems Resource Integration Center (PATRIC), is a database specifically created

for collecting, organizing, and integrating data for use in biomedical research against bacterial

infectious diseases[13]. Taking a more global approach, this database highlights large-scale

transcriptomics, protein-protein interactions, sequence analysis, protein family grouping, and

metabolic pathways[13]. Using experimental evidence, interactions between proteins and their

effects are noted. Large-scale transcriptomics data highlights changes in expression indicated

through the literature. No direct changes in expression can be manipulated or inputted to any of

the sites directly. The metabolic pathway collection uses what appear to be hand-drawn reference

pathways designed by the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) onto

which proteins known to be found in M. tuberculosis are mapped[13]. Proteins can then be
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selected, but the goal and main function of this database appears to be storing and presenting

the data to the user.

The BioCyc database is the most extensive of the databases examined, in regard to data

and features. Proteins from an extensive number of organisms, M. tuberculosis included, can be

investigated for sequence, function, and structural data[14]. In conjunction with the database,

BioCyc includes a metabolic map for a number of organisms[14]. This map organizes reactions

into specific pathways where applicable[14]. As opposed to other visualizations discussed, the

reference metabolic map is based on that particular organism rather than one, general reference

metabolic pathway where applicable[14]. In this particular network, nodes of varying shapes

represent different components of a reaction whereas links represent the reactions themselves[14].

A zoom feature is used to examine the metabolic map[14]. Using the Omics tool, users are able to

upload a file, specifying gene or protein name and a numerical value, to see the degree of gene

expression change for metabolic experiments particularly[14, 15]. Limiting a user’s investigation,

however, is a subscription to use the database[14]. The MetaCyc database, a derivative of the

BioCyc database, has many features specific to metabolism and metabolic pathways[16]. From

this database, protein entries can be examined to obtain sequence, function, and structural data

about a specific protein. This database does not feature a metabolic map or similar functionality.

In summary, these databases are useful and robust collections of curated data that help

researchers easily reference that available data. Many of the investigated databases have some

degree of specificity to M. tuberculosis and are useful to easily find proteins of interest. Two, specif-

ically BioCyc and PATRIC, present metabolic pathways in a visualized way to some degree[13, 14].

In regard to BioCyc, this database incorporates a metabolic map tool that allows users the ability

to note experimental gene expression changes from user inputted data, all based on a M. tuber-

culosis reference pathway[14]. BioCyc, though a useful tool that does address metabolic gene

expression changes, is often limited in use for its not complete representation of M. tuberculosis

metabolic pathways and subscription based service[14]. Aside from BioCyc, other investigated

databases are limited in their representation of protein-protein interactions and gene expression

changes. These conclusions are summarized in Figure 2.1. Thus, facilitating the creation of a

prototype biovisualization to denote differences in gene expression in the M. tuberculosis would

serve to benefit the larger tuberculosis research community. Additionally, creating a prototype

biovisualization would present the novel idea incorporating a metabolic pathway visualization

with the ability to denote gene expression changes and protein-protein interactions specific to M.

tuberculosis.
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Figure 2.1: A summary of the features present and not present in existing databases of
M. tuberculosis containing metabolic pathway information. The “Visualize the Pathway”
feature refers to the database containing a visualization of a metabolic pathway. The “Specific to M.
tuberculosis” feature refers to the database containing data specific and inherent to M. tuberculosis
and not simply orthologous information. The “Identify Particular Proteins” feature refers to the
database allowing users to find and search for proteins or pathways. The “Allow Uploading Data”
feature refers to the database allowing users to enter data in some form, regardless if that data is
specific to gene expression datasets or simply a list of proteins to highlight, The “Indicate Impacts
of Gene Expression Changes” feature refers to the database providing information related to gene
expression changes, with or without user file uploading. The “Protein-Protein Interactions” feature
refers to the database indicating interactions between proteins and the nature of those interactions.
Features that are present in a specific biovisualization tool are noted in green. Features that are
present in a specific biovisualization tool to some capacity are noted in brown. Features that are
not present in a specific biovisualization tool are white. Any component listed as annotation to
another database is not included as the database containing the feature or containing the feature
to some capacity.

2.4 Existing Metabolic Pathway Visualizations of Mycobacterium
tuberculosis

There are a handful of different, dedicated visualizations of metabolic pathways that already

exist and include information and data for M. tuberculosis. The KEGG database contains one such

visualization[17–19]. Using a base reference map of metabolic pathways, the KEGG visualization

highlights proteins or orthologous proteins of a specific organism that construct the metabolic

pathways for that organism or particular isolate of that organism[17–19]. The user is then able

to highlight specific pathways of interest and specific proteins[17–19]. Clicking on a node or link

in the pathway directs the user to another page with more details regarding a particular protein

or metabolite[17–19]. The KEGG biovisualization is robust and extensive in its representation of

metabolic pathways for a number of organisms, but lacks specificity as a result[17–19]. Certain
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proteins and protein collections specific to M. tuberculosis are absent from the base reference

map and are not represented. Additionally, while the pathway does allow users to upload data,

this upload feature is restricted to highlighting specific proteins in the reference protein only[17–

19]. No changes nor notes of gene expression changes can be submitted alongside a protein in

question.

Another such biovisualization is found in the BRENDA database[20]. BRENDA uses its

extensive source of data and a reference map of the metabolic pathways in order to construct

the metabolism of many different organisms[20]. A number of different strains and isolates of

M. tuberculosis are represented within this metabolic pathways biovisualization[20]. Using a

zoom feature, a user is able to get a greater insight into each specific pathway, being able to

denote proteins, molecules, and some cofactors involved in the many reactions of a metabolic

pathway[20]. Once an organism is selected, the visualization generates a coverage score and

highlights proteins or orthologous proteins within the reference pathways that are found in the

organism of interest[20]. Clicking on a protein node directs the user to another page with more

information specific to that protein of interest[20]. While extensive, the BRENDA biovisualization

trades specificity for scope per its intended goal, and is not specific to M. tuberculosis or any

particular organism[20]. Thus, certain protein or protein collections are not present in the

visualization. The upload feature allows users to highlight specific proteins only[20].

While not specific to displaying the metabolic pathways of any particular organism, the

STRING and STITCH visualizations provide an interesting viewpoint into the metabolism

of an organism of interest through protein-protein interactions and protein-molecule interac-

tions respectively[21–23]. In STRING, a user is able to enter a protein of interest within a

particular organism to generate a network of protein-protein interactions at varying levels of

confidence[22, 23]. In STITCH, a user is able to enter a protein of interest within a particular

organism to generate a network of protein-protein interactions and protein-molecule interactions

at varying levels of confidence[21]. Both visualizations generate these networks as representa-

tions of the confidence of these interactions rather than the specificity[21–23]. In the STRING

visualization, users are able to identify physical interactions, the formation of a complex, and

functional interactions, some unspecified interaction, between proteins[22, 23]. In the STITCH

visualization, users are able to note the molecular action and binding affinity of protein-protein

and protein-molecule interactions[21]. Inherent in their representation and robust dataset, these

visualizations are able to show metabolic pathways through the interactions of proteins, but not in

a style commonly associated with metabolic pathway representations[21–23]. Furthermore, this

dataset allows the visualization to be robust in its representation of many different proteins for a

variety of organisms without being made specific for any one, including M. tuberculosis[21–23].

As a representation of interactions between proteins and molecules respectively, STRING and

STITCH have some degree of indicating gene expression changes using outside information, but
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Figure 2.2: A summary of the features present and not present in existing biovisualiza-
tions of M. tuberculosis metabolic pathways. The “Visualize the Pathway” feature refers to
whether the visualization visualizes a metabolic pathway. The “Specific to M. tuberculosis” feature
refers to the visualization containing data specific and inherent to M. tuberculosis and not simply
orthologous information. The “Identify Particular Proteins” feature refers to the visualization
allowing users to find and search for proteins or pathways. The “Allow Uploading Data” feature
refers to the visualization allowing users to enter data in some form, regardless if that data is
specific to gene expression datasets or simply a list of proteins to highlight, The “Indicate Impacts
of Gene Expression Changes” feature refers to the visualization providing information related to
gene expression changes, with or without user file uploading. The “Protein-Protein Interactions”
feature refers to the visualization indicating interactions between proteins and the nature of
those interactions. Features that are present in a specific biovisualization tool are noted in green.
Features that are present in a specific biovisualization tool to some capacity are noted in brown.
Features that are not present in a specific biovisualization tool are white. Any component listed as
annotation to another database or visualization is not included as the visualization containing
the feature or containing the feature to some capacity.

have no means to represent those changes within the visualization[21–23]. Likewise, no ability

to upload data is present[21–23].

In summary, these biovisualizations are extensive and robust in the information and detail

that they present regarding the metabolism and protein-protein interactions of a variety of organ-

isms, including M. tuberculosis. The metabolic visualizations created in KEGG and BRENDA are

based on a reference pathway that, while effective at displaying the majority of metabolism in M.

tuberculosis, is not specific to that or any organism[17–20]. Thus, certain proteins and pathways

specific to the organism are not able to be found within this visualization. While STRING and

STITCH do include many proteins specific to M. tuberculosis, their goal is not to indicate the

whole metabolic pathways of these proteins[21–23]. STRING and STITCH are able to indicate im-

pacts of gene expression changes to some capacity, but the goal of these biovisualizations does not

allow the user to draw inferences about how these gene expression changers impact the pathway

as a whole or other pathways[21–23]. Finally, aside from the ability to highlight a set of proteins

if those proteins are found in the KEGG and BRENDA biovisualizations, these visualizations do
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not allow the user to upload data or datasets denoting gene expression changes[17–20]. These

conclusions are succinctly detailed in Figure 2.2. Thus, creating a prototype biovisualization of

M. tuberculosis metabolic pathways would address a novel idea of incorporating and visualizing

gene expression changes in a pathway alongside protein-protein interaction data.

2.5 Existing Metabolic Pathway Visualization Tools

While not necessarily specific to M. tuberculosis, a number of visualization tools have been

developed to better map, understand, and draw inferences from metabolic visualization data. A

select number of other visualization tools referenced in Murray, et al. (2016) and review of the

literature were chosen to understand the capabilities of these tools for use with M. tuberculosis.

VisANT is one such visualization tool that utilizes networks to represent large scale datasets

for researchers to draw inferences regarding the nature of the interactions and gene expression

ratios[24–26]. Interactions with the node can reveal further increasing complexity between the

interactions present[24–26]. Edgers represent different experimental methods and evidence

through use of a color visual channel[24–26]. Many annotations allow the user to easily find

other entries and further information more easily, especially when paired with the Predictitome

database[24–26]. Layout and graph operations are determined from user input on various

filters[24–26]. While not displaying metabolic pathways explicitly, the inherent displaying of

interaction networks shows the metabolic relationship of proteins[24–26]. No explicit feature for

denoting gene expression changes is found within this visualization tool[24–27].

Cytoscape is another visualization tool originally designed for assessing and analyzing

metabolic data[28]. Using the various layout tools, different networks with different degrees

of details can be shown[28]. This ranges from displaying pathways based from a public source

database, protein interaction networks, and protein-protein interactions[28]. Filters are present

in order to reduce or increase the magnitude of data displayed at any one time[28]. Furthermore,

the users are able to upload gene expression data and draw inferences about the changes in

protein expression. There is no specific data to M. tuberculosis regarding metabolomics data, but

access to specific M. tuberculosis sequence and genome data is present[28].

PTools is the most extensive and robust of the available metabolic visualization tools dis-

cussed. This tool is used in conjunction with and found as a part of the BioCyc database, as

aforementioned[14, 15]. Given this relationship, PTools reconstructs a metabolic pathway using

BioCyc for a variety of organisms, including M. tuberculosis[15]. As noted with BioCyc, the

representation is not entirely complete in regard to M. tuberculosis[14]. Using this tool, specific

proteins, molecules, and reactions can be found within organized pathways, where applicable, and
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in intracellular or extracellular space as they would exist in a living system[15]. A highlighting

feature allows users to identify proteins easily within the visualization tool[15]. Furthermore,

an omics aspect to the visualization tool permits the user to upload gene expression data and

note changes in expression on the visualized pathway[15]. A scale is used to be able to denote

differences in expression changes[15]. As previously mentioned with regard to BioCyc, this Omics

tool does require a subscription for continued use[14].

Another metabolism visualization tool, BiologicalNetworks, incorporates the ability to up-

load and analyze microarray gene expression data[27]. The BiologicalNetworks visualization

tool visualizes metabolic pathways, protein-protein interactions, and protein-DNA interactions

through a variety of networks[27]. Through filtering features and hierarchical organization of

networks within the tool, users are able to specify what is exactly visualized[27]. Using those

visualized networks, users are able to find and search for proteins, pathways, common targets,

common regulators of gene expression, and intersections with other pathways[27]. Furthermore,

this visualization tool supports the upload of user gene expression data to reveal the impact of

gene expression changes from microarray data in a static or dynamic display [27]. Capabilities

to analyze and compare datasets of gene expression changes are included in this tool allow

users to better understand and define the relevance of their gene expression datasets[27]. The

BiolgicalNetworks tool has no inherent specificity to M. tuberculosis provided its sources of data

integration[27].

The GeneVis visualization tool takes a different approach to understand genetic regulatory

networks in prokaryotic organisms using a simulation[29]. Using a circle to represent a bacterial

chromosome, smaller circular nodes representing protein-coding genes[29]. About each protein-

coding gene node, activity state of a gene and whether regulatory proteins are bound to the gene

are found[29]. Using this approach, regulatory and activity dynamics of these protein-coding

genes are visualized[29]. The degree of detail and exact genes, with their associated protein

products, are able to be toggled through the use of different views and lenses [29]. Interactions

between gene-coding proteins and protein products amass to display a hierarchical system of

regulation based on the chromosomal ring[29]. The impacts of gene expression shown are limited

to effects of selected proteins products on genes already within the visualization as opposed to

a more global approach [29]. The exact nature of a global application is not discussed. While

designed for prokaryotic organisms, Escherichia coli is the organism of interest explored within

the initial publication of this visualization tool[29]. No known work has been done using data

from M. tuberculosis with GeneVis.

The final metabolic visualization tool discussed in this report is VANTED. The VANTED

tool allows researchers to visualize biochemical data regarding proteins and metabolites in the

context of metabolic pathways[30]. Using the KEGG pathways, another independent pathway
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file, or a pathway built by the tool itself from the data, the visualization tool is able to display the

metabolic pathways of an organism [30]. On the final constructed pathway, user experimental

data can be uploaded and mapped to the proteins or metabolites of interest[30]. For each specified

experiment or condition, the metabolite or protein concentration is displayed at each node which

allows for easy comparison within a pathway[30]. Plotting expression across a similar timeframe

can also be done within a pathway using a neuronal-network algorithm: the self-organizing map

(SOM)[30]. Finally, the tool allows users to perform a correlation analysis between metabolite

expression and protein expression [30]. Though there is a lack of specificity with regard to the M.

tuberculosis metabolic pathway, VANTED may construct its own pathway if the KEGG pathway

is not complete[17–19, 30]. The tool is able to represent these pathways with greater specificity

to M. tuberculosis should such data be uploaded and used.

In summary, existing visualization tools are quite robust in their data integration and

functionality. Alongside visualizing metabolic pathways to some degree, the majority of these

tools are able to show indications of gene expression changes from a user created dataset. By

proxy, identifying particular proteins is an inherent and basic function within all these tools.

The use of different filters and lenses specific to each tool make searching easy and allow

users to draw conclusions and inferences while still maintaining the multivariate nature of the

data. Additionally, all visualization tools discussed provide some degree of statistical analysis

to them. These visualization tools, however, are not specific to M. tuberculosis, providing a

niche for another visualization tool designed for the M. tuberculosis research community. These

conclusions are summarized in Figure 2.3. Through this project, integrating the aspects of a

metabolic pathway visualization, a protein-protein interaction visualization, and noting changes

of gene expression for the M. tuberculosis research community is the main goal. Many of these

features and design choices, especially with regard to filtering and expressing data, should be

carried into a biovisualization that this project seeks to design and create.
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Figure 2.3: A summary of the features present and not present in existing tools that
visualize and inform researchers about metabolic pathways. The “Visualize the Pathway”
feature refers to the tool containing a visualization of a metabolic pathway. The “Specific to M.
tuberculosis” feature refers to the tool containing data specific and inherent to M. tuberculosis and
not simply orthologous information. The “Identify Particular Proteins” feature refers to the tool
allowing users to find and search for proteins or pathways. The “Allow Uploading Data” feature
refers to the tool allowing users to enter data in some form, regardless if that data is specific to
gene expression datasets or simply a list of proteins to highlight, The “Indicate Impacts of Gene
Expression Changes” feature refers to the tool providing information related to gene expression
changes, with or without user file uploading. The “Protein-Protein Interactions” feature refers to
the tool indicating interactions between proteins and the nature of those interactions. Features
that are present in a specific biovisualization tool are noted in green. Features that are present in a
specific biovisualization tool to some capacity are noted in brown. Features that are not present in a
specific biovisualization tool are white. Any component listed as annotation to another database or
visualization is not included as the visualization containing the feature or containing the feature
to some capacity.
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3
EXPERIMENTAL SETUP

3.1 Compiling the Dataset for the Prototype Metabolic Pathway
Biovisualization

The pathway and other related data was gathered from a number of databases. The KEGG,

PATRIC, and Mycobrowser databases were used to obtain the protein name, substrate and

product details, protein connections, branch point status, and pathway connections[13, 17–19, 31].

No hypothetical proteins were included in this dataset. Protein-protein interaction data was

gathered using the STRING and STITCH databases[21–23]. The MTB Network Portal database

was used to obtain transcription factor information and to determine the gene name of each

protein[12]. Only those interactions with the highest confidence were included. This data was

compiled into a csv file for use in the final prototype visualization. The final dataset can be

found in the GitHub repository alongside the final prototype visualization (https://github.

com/ao-joker/V2-BCB-MQP-BioVis). All data recorded was from the M. tuberculosis H37Rv

strain.
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Researcher Title and Research Areas

Title: Bioinformatics Graduate Research Assistant
Research: M. tuberculosis, M. smegmatis, mRNA degradation, Machine learning

Title: Biology and Biotechnology Graduate Research Assistant
Research: M. smegmatis, RNA-binding proteins

Title: Post-Baccalaureate Research Assistant
Research: M. smegmatis, esxB, ribosomal proteins

Title: Undergraduate MQP Research Assistant
Research: M. smegmatis, mRNA half-life, mRNA concentration

Table 3.1: Researchers Interviewed. A description of the researchers who were interviewed.

3.2 Understanding and Compiling the Important Goals and
Tasks for the Prototype Metabolic Pathway Biovisualization

To understand the important tasks for this prototype metabolic pathway visualization, four

interviews were conducted with researchers of the M. tuberculosis community (Table 1). Prior to

conducting the interviews, oral consent was provided. These researchers (Table 1) were asked

to think about what a visual image or description of a metabolic pathway is. Then, they were

asked to utilize some existing metabolic pathway visualizations and note both effective and less

effective aspects or functions. At the end, interviewees were asked to consider important features

and tasks after exploring existing visualizations. The final questions used in all interviews can

be found in Appendix A. The goal of these interviews were to understand what aspects are

great in existing data visualizations, understand what elements are lacking in existing data

visualizations, to identify what are the goals for a data visualization of M. tuberculosis metabolic

pathways would be, to note tasks that a biovisualization should accomplish, and to define some

task abstractions from the interviewee’s response. The responses were then recorded for use

when building this prototype metabolic pathway visualization. Responses were then organized by

order of occurrence to denote the importance of a task or feature.

3.3 Creating and Improving on the Prototype Metabolic
Pathway Biovisualization

The bulk of this prototype visualization was built using JavaScript and CSS. The d3.js

version 6 and node.js libraries were used to handle the structuring and display of data seen

in all three constructed panels. Express.js and axios library were utilized in the file input

mechanism. The entire visualization is hosted on a React.js server. As the final prototype was
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3.3. CREATING AND IMPROVING ON THE PROTOTYPE METABOLIC PATHWAY
BIOVISUALIZATION

being constructed, conversations regarding the type of information and exact detail choices

were had with both advisors. The completed prototype can be found at the following GitHub

repository:https://github.com/ao-joker/V2-BCB-MQP-BioVis.
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4
RESULTS

4.1 Building an Understanding Regarding the Important Tasks
and Goals for a Prototype Metabolic Pathway
Biovisualization of Mycobacterium tuberculosis

Interviews with M.tuberculosis researchers (Table 1) were performed in order to better under-

stand both the tasks and goals of a prototype metabolic pathway biovisualization of Mycobac-

terium tuberculosis. The insights of these interviews can be denoted into 3 distinct categories: key

actions, important data features, displaying the data. The goals of the biovisualization focused

on displaying a metabolic pathway without overwhelming the user and adding a mechanism

to receive inputted data which would then be visualized alongside the pathway to be able to

draw inferences about larger changes of gene expression. This information was important in

structuring and building the prototype metabolic pathway biovisualization.

4.1.1 Key Actions

There were three classes of key actions that the interviewees found important: discovering

data, searching options, and uploading data. Firstly, in regard to discovering data, many intervie-

wees expressed desire to take the data presented from a visualization and make new inferences

about gene expression changes. For example, one researcher noted the importance of having

all kinds of data present in a given visualization for ease of access. Metabolic pathway data is

inherently multivariate in nature[1, 4, 5, 8]. Using interactivity to display data per the user’s
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4.1. BUILDING AN UNDERSTANDING REGARDING THE IMPORTANT TASKS AND GOALS
FOR A PROTOTYPE METABOLIC PATHWAY BIOVISUALIZATION OF MYCOBACTERIUM

TUBERCULOSIS

interest, such as in the use of “on-click” mechanisms and tooltips, would be useful to show all the

data in a meaningful way without being too overwhelming. Additionally, doing so will provide a

sense of discovery of the data and information.

Secondly, the ability to search and find data of interest was highly important to the inter-

viewees. When provided sample metabolic pathway biovisualizations, interviewees often called

attention to the degree of ease in finding particular data of interest. A biovisualization of a

metabolic pathway should present some ability to find data of interest, whether it be a more

global view focused on pathways or a more specific view focused on individual proteins. Many

noted the limited reach and ability of existing biovisualizations to both find identifiable pathways

and proteins in those pathways. Databases do have this well-received feature, but are more text

and information heavy by nature. A prototype metabolic pathway biovisualization should work,

thus, to combine the ability to search per pathway and per protein. With a greater variability in

searching, researchers will be able to use a metabolic pathway biovisualization most effectively.

Current implementations of this task would include the ability to locate, browse, and specifically

search for the data in question.

The final action noted was the ability to input data to note changes in gene expression. As

aforementioned, many researchers, including the interviewees, are interested in understanding

how changes in expression of particular proteins may be able to impact a biological system.

These changes in the expression of genes is a large area of interest that fuels research in M.

tuberculosis. No visualizations known or used by the interviewees allowed data to be implemented

and compared to the present metabolic pathway network. All interviewees expressed interest in

implementing the ability to insert some data to understand how it impacts metabolic pathways.

The use of different visual channels would especially be vital in this role, as users would want

to notably see those differences. Current implementation would likely involve the use of an

upload mechanism that then impacts the visualization as a whole, providing data and editing the

visualization in some way discernable and useful to the user. Organizing the provided data in

a table would be an easy solution that would be both familiar to the user and easy to reference

when identifying specific changes with the greater visualization as a whole.

4.1.2 Important Data Features

Metabolic pathways, by their complexity, are inherently multivariate in nature. All the

interviewees and researchers as a whole are well aware of this notion. Thus, when compiling

a dataset to represent the M. tuberculosis metabolic pathway, there is a variety of data that

needs to be conveyed in order to form a meaningful and useful visualization. Interviewees

noted that a metabolic pathway should include not only protein to protein connections in a
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pathway, but the molecules that serve as substrates and products. Doing so would provide users

a greater sense of familiarity in the pathway structure. Furthermore, molecules were noted by

some interviewees to be important to the understanding impacts of gene expression changes.

Additionally, the interviewees noted the importance of including gene name alongside the protein

name. With different identifiers, including all possible varieties will make the visualization

more apt in the key actions of discovery and search. As final note, ensuring the data within the

visualization was accurate and supported with high confidence was noted as essential for any

good visualization. One interviewee specifically added that potentially linking proteins and their

interaction to academic papers would provide an easy way to validate the visualization in high

confidence and find the original literature. Given the importance of accuracy and peer-review

in the scientific community, this is a logical and important feature that should be inherent

to all data. Current ideas and implementations would present the confidence of a particular

result alongside a particular data point. Consequently, only including data with high confidence

could also address the aspect of validity and accuracy of the data. Linking the original and

other potential literature, as in the case of database annotations, would address the thoughts

of the aforementioned interviewee. More specifically about the pathway itself, the inclusion of

connections between molecules and other pathways could prove strenuous on many devices, as in

the case with the BRENDA pathway[20]. To condense, current implementation ideas could focus

on providing different layouts to allow the user to investigate different aspects and perspectives

of the pathway.

4.1.3 Displaying the Data

As in all visualizations, displaying the data is itself an intricate design choice. Apart from

important data, this area delves into how the user would see and interact with the data benign

visualized. Interviewees all noted that metabolic pathway data is inherently extensive in nature,

with there being countless values and items to represent at one time. In one specific example, an

interviewee indicated that displaying all data at one would be overwhelming, impeding the ability

to draw inferences and conclusions for a visualization. With current techniques, any tabular and

otherwise structured data should remain uncondensed and easy to identify. Furthermore, using

tooltips and other features focused on interactivity would make the visualization more appealing

and prevent the user from being overwhelmed with the vast amount of information. Additionally,

implementing a layout system to show different kinds of data at once is a viable option and would

allow users to adjust their perspective on their own discretion. On a final note, using the visual

channels of size and color will be essential to discerning all the different kinds of data. Most

interviewees agreed on this statement. Implementing color and size channels will aid the user in

quickly and readily identifying differences in data values and features of the visualization.
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4.2. COMPILING A DATASET FOR THE PROTOTYPE METABOLIC PATHWAY
BIOVISUALIZATION OF MYCOBACTERIUM TUBERCULOSIS

Figure 4.1: A representation of the data involved in each panel of the biovisualization.
The black bordered data are used in the metabolic pathway panel. The pink-red bordered data are
used in the protein-protein interaction panel. The blue bordered data are used in the regulation
data panel.

4.2 Compiling a Dataset for the Prototype Metabolic Pathway
Biovisualization of Mycobacterium tuberculosis

In order to create a visualization of M. tuberculosis metabolic pathway, the data for this

pathway needed to be sought and organized. For the purposes of this prototype, data was

compiled for the Glycolysis/Gluconeogenesis and Citrate Cycle pathways and a collection of

proteins involved with T-receptor signaling grouped together for similar function. All are specific

to M.tuberculosis. The final dataset consists of the following data categories: protein name,

protein ID, pathway, proteins connected to in the pathway, molecules connected to by substrate

and product relation, pathways connected to, a list of transcription factors that impact expression

of a protein (if applicable), the impact of the transcription factor (if applicable), boolean status as

a branch point, high confidence proteins that interact with a given protein in some way, and the

nature of the interaction of those high confidence proteins. The importance of this data to each

panel of the biovisualization can be found in Figure 4.1.
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Protein name provides the gene name whereas protein ID denotes the name of the protein and

enzyme commission (EC) number. Proteins connected to in the pathway refers to the organization

of the proteins in which one protein takes in a substrate and outputs a product that a connected

protein uses as a substrate in its reaction. The layout of the metabolic pathway would only

show these proteins and not include molecules. Molecules connected to by substrate and product

relation refers to creating a layout where both the molecules and proteins accounting for the

change of substrates and molecules are included along with the proteins. The category “Pathways

connected to” refers to proteins that lead into other proteins not included in the current pathway

of interest. The transcription factor list and the impact of the transcription factor, denoted by a

positive or negative one, indicates if other proteins impact the expression of a particular protein

in a positive or negative way. Branch point status refers to proteins that can make two different

products from a given substrate. Given limited information on the branch point status, this value

was characterized as a boolean so as to present this information to the user. Finally, protein

interactions were included in a list with a separate, corresponding list concerning the nature

of those protein interactions in order to construct a protein-protein interaction network. This

data indicated the type of interaction as specific as possible given the information available. Only

proteins with high confidence were included. All the data here was used in the construction of the

final visualized metabolic pathway, displaying a protein-protein interaction map, and indicating

changes in gene expression by file upload. In order to compile this dataset, a number of databases

were used to compile all the necessary data. No one specific database had all the necessary data

needed for this visualization. Thus, the dataset was entirely compiled by hand, scoping through

a number of databases (Found in experimental setup). Given this method of construction, the

addition of papers to link users to the original literature was not included.

4.3 The Prototype Metabolic Pathway Biovisualization of
Mycobacterium tuberculosis

Guided by the tasks and goals analysis and using the data collected, a prototype metabolic

pathway visualization of M. tuberculosis was constructed. The final, prototype visualization

consisted of three, linked panels that comprise the one larger visualization. These three panels

are aptly named the metabolic pathway panel, the protein-protein interaction panel, and the

regulation data panel. The final prototype visualization, its code, and the datasets used can

be found at this GitHub repository: https://github.com/ao-joker/V2-BCB-MQP-BioVis. The

panel colors are not a design choice, but rather a designation choice.
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4.3. THE PROTOTYPE METABOLIC PATHWAY BIOVISUALIZATION OF MYCOBACTERIUM
TUBERCULOSIS

4.3.1 The Metabolic Pathway Panel

As implied for the title of this panel, this portion of the visualization focuses on displaying

the actual pathway. For this visualization, only one pathway is displayed at a time. A drop down

menu allows the user to alternate and change the pathway being shown. The pathway here

is constructed using a force-directed network. With a particular pathway, radio buttons allow

the user to alternate the pathway layout. One layout shows only connecting proteins, where

each node represents a protein and the edges connect proteins in the metabolic pathway. Most

reactions are in equilibrium and this visualization implies equilibrium between reactions.While

this is not true for many cases, all are left undirected. The second layout includes the molecules,

substrates and products, and proteins in the pathway. Additional nodes, smaller and gold in

color, represent the molecules in the pathway. Edges represent the progression of the pathway

as with the first layout. Regardless of the layout, each node always includes the name of the

molecule or the gene name of the protein in question. A third radio button allows the user to

toggle transcription factors as part of the pathway. These transcription factors are represented

as smaller, red nodes with the gene name of the transcription factor positioned next to the node

similarly to the proteins and molecules. This function mainly lets the user see which transcription

factors impact which proteins in the pathway to draw inferences from changes in gene expression

if applicable. Edges for transcription factors are acting on the connected node and are designated

as undirected. A fourth and final radio button allows the user to toggle other pathway connections.

If a protein is connected to another protein found in a different pathway, then a node to present

that pathway is drawn. Other pathways are represented as larger, orange nodes with the name

of the pathway positioned next to the node similar to the other nodes described. This allows

the user to draw further inference and denote where impacts of gene expression changes one

pathway may cascade to other pathways. Hovering over a particular protein reveals a tooltip

with further information about the protein. This includes the gene name, protein name, and

EC identification number. Clicking on a protein node will draw the protein-protein interaction

network for that protein in the protein-protein interaction panel. The function of clicking on a

node is subsequently reserved for creating protein-protein interaction networks. Hovering over a

molecule node will just indicate the molecule’s name. Hovering over a transcription factor node

will display the transcription factor name and the effect it has on its connected protein. Hovering

over a pathway node will display the pathway itself and indicate users to explore that pathway,

if applicable, in the biovisualization. Clicking on a molecule node, transcription factor node, or

pathway node will produce an alert that informs the user that no protein-protein interaction

network exists for this particular node. Figure 4.2 shows a sample image the metabolic pathway

panel described.

23



CHAPTER 4. RESULTS

Figure 4.2: A sample image of the metabolic pathway panel. This sample image displays a
portion of the metabolic pathway panel within the prototype biovisualization. The panel is much
larger in the prototype biovisualization. A dropdown menu selects the Glycolysis/Gluconeogenesis.
The transcription factors are toggled on. The Rv0489 node is hovered over to display a tooltip.

4.3.2 The Protein-Protein Interaction Panel

This panel displays the protein-protein interactions for specific proteins from the pathway.

In order to display this information, a protein node must be clicked in the metabolic pathway

panel. Once completed, a force-directed network is used to draw this network. The central protein

node is the protein of interest whereas the surrounding protein nodes represent proteins with

high confidence that interact with the central node protein. The gene names of all proteins

are positioned to the side of the node. The edges represent the type of interaction between a

protein of interest and other proteins. The possible interactions are constructed from the dataset,

allowing any changes and additions of new interactions not previously listed to be included in

the visualization at a later date. Each interaction is represented with a different color and an

associated legend is drawn alongside this network to indicate what each color edge represents to

the user. Any protein with more than one interaction is defined as multiple in this key. Hovering

over any node will pull up a tooltip that indicates the gene name of the protein and the type

of interaction. For any edge marked as having multiple interactions, the tooltip will provide

further clarity on what those interactions are. Hovering over the central protein node will indicate

that there is no interaction of the protein on itself. Figure 4.3 displays a sample image of the

protein-protein interaction panel described.
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TUBERCULOSIS

Figure 4.3: A sample image of the protein-protein interaction panel. This sample image
displays the protein-protein interaction panel within the prototype biovisualization. The protein-
protein interaction network of the protein product of Rv0489. A legend to decipher legend color
with the specific type of interaction is found within the panel. The Rv1617 node is hovered over to
display the tooltip.
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4.3.3 The Regulation Data Panel

This panel displays data that the user inputs for noting changes in gene expression. Attached

to this panel, the user is able to upload a csv file from the client side to the server. The csv file in

question specifies two parameters: protein name and fold change, as would be obtained from data

such as RNA sequencing. When uploaded, the panel will display a maximum of two data tables.

The first table contains the protein name, pathway or pathways the protein is located in, whether

the resulting regulation is positive or negative, and the exact degree of fold change taken from

the data inputted by the user. The second table contains the transcription factor name, pathway

or pathways the protein is located in, whether the resulting regulation is positive or negative,

and the exact degree of fold change taken from the data inputted by the user. Additionally, using

this uploaded data, the metabolic pathway panel would be modified. Any protein or transcription

factor listed in the selected pathway would result in that specific node being outlined in green for

upregulation or red for downregulation. If the fold change was zero or not included, no change to

the protein or transcription factor node would be seen. Currently, if a different pathway should be

examined, a user would have to re-upload the dataset for regulation again. Another limitation of

the design is that only data part of the final data set compiled is included in the tables mentioned

and the changes in gene expression. Figure 4.4, Figure 4.5, and Figure 4.6 displays a set of

sample images that display an active regulation data panel, the mechanism for file upload, and

the changes a file upload has on the metabolic pathway panel respectively.
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TUBERCULOSIS

Figure 4.4: A sample image of the regulation data panel. The sample image shows the panel
after a sample dataset, testReg3, is uploaded to the prototype biovisualization. Two tables, one
from proteins and one for transcription factors, are displayed that contain data from the uploaded
file and from dataset the prototype biovisualization uses.

Figure 4.5: A sample image of the file upload mechanism tied to the regulation data
panel. A file is selected and is then uploaded using the respective button.
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Figure 4.6: A sample image of the impacts of the file upload on the metabolic pathway
panel. Displayed is a portion of the Glycolysis/Gluconeogenesis pathway in the metabolic pathway
panel after uploading a sample gene expression dataset. The panel is much larger in the prototype
biovisualization. The uploaded dataset is testReg3. Upregulated genes proteins are outlined in
green whereas downregulated proteins are outlined in red. Exact references regarding the fold
change and significance are done by referring to the tables in the regulation data panel.
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DISCUSSION

Presented in this paper is a prototype biovisualization of M. tuberculosis metabolic pathways.

Using a variety of databases, a dataset was compiled that incorporated data specific to the aspects

of this visualization. A set of interviews with researchers in the M. tuberculosis community were

conducted to build an understanding of the goals and tasks that would be important for building a

metabolic pathways biovisualization. With this data and direction, a prototype biovisualization of

M. tuberculosis metabolic pathways was constructed. This visualization consists of three distinct

panels: one that showcases one specific pathway, one that indicates protein-protein interactions,

and one that allows users to input gene expression data and use it to draw inferences from the

first panel. The final prototype is, as the name implies, a representation of what a final product

would look like. There are some noteworthy limitations with the dataset and the interviews that

should be noted. Likewise, there are a number of aspects of the biovisualization that should be

addressed or added in order to improve the user experience with the biovisualization as a whole.

Despite these limitations, this prototype presents a tool for visualizing gene expression datasets

alongside protein-protein interactions and metabolic pathways specific to M. tuberculosis from

which researchers can use and draw inferences about the effect of gene expression changes on

the overall system.

5.1 Data Limitations and Future Applications

As is true for any set of compiled or collected data, there are limitations to the one created in

this paper. In an effort to create the dataset for a few pathways, the data was taken from many
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different databases that were of high confidence and accompanied with relevant citations. The

original literature was not checked to ensure the validity of the data if there was any discrepancy.

Furthermore, the amount of available data from these databases was limited. There were a

few instances where access to a database and its information was locked unless a subscription

was purchased. While going to the original literature is another option, this process is time

intensive and can also be prevented without a subscription as well. Using a number of databases

and collaborating with researchers who have access to these locked databases, especially if the

data is important to the visualization, could prove useful to obtaining the necessary data. One

notable case can be found in the protein-protein interaction data and panel. This panel displays

interactions of a protein of interest with high confidence. In the construction of this dataset,

only data of high confidence from primarily STRING and STITCH was selected. This limits the

ability of the users to explore deeper protein neighborhoods as with these two databases and

as highlighted in Dang, et al. (2017). Selecting high confidence data in the construction of the

dataset limits this ability in favor of greater empirical evidence.

In terms of methodology, the data collected was taken and investigated by hand. Any and all

data with high confidence was recorded individually and exported as a csv formatted file for use

in the visualization. Part of this effort was to understand what data should be included as an

important step in creating the base dataset the visualization draws from. In order to expand the

use of the visualization, however, more pathways will need to be added to this dataset. There

may be a more efficient method that can be used to comb through one or multiple databases at a

time and collect the necessary data. Doing so will save time in building the dataset that can be

allocated to improving the visualization.

5.2 Interview Limitations and Future Applications

As noted, previous work such as in Murray et al, (2016) and Dang, et al. (2017), have identified

many key goals and tasks that are important to researchers in general. To gain a greater insight

into the specific needs and tasks for a biovisualization of M. tuberculosis metabolic pathways,

interviews were conducted with researchers in the M. tuberculosis community. In order to get a

better understanding of the goals and tasks that are specific to this group of researchers, more

interviews should be performed. Adding questions specific to improving the current prototype

biovisualization would be useful to understand areas not highlighted in the results or discussion

that can be improved for both efficiency and user experience.
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5.3 Biovisualization Limitations and Future Applications

Limitations of the biovisualization are related to both implementation and design choice.

Starting with the former, the biovisualization is defined as a prototype, implying further devel-

opment and improvement should be completed. One aspect of this development that should be

of key interest is related to the uploading of data in the regulation data panel. In its current

implementation, uploading a file will only indicate changes of gene expression related to the

current pathway layout visualized in the metabolic pathway panel. This limits the ability of the

user to actively investigate, discover, and draw inferences about their data on metabolic pathways

as a whole. Furthermore, if the layout is changed and the user reuploads the same data set,

no gene expression changes will be shown as the information has already been uploaded. Thus,

finding a way to remove datasets from the program and to hold onto their information between

layouts is an important next step in the development of this biovisualization.

When uploading data to the regulation panel, the user is expected to reference the regulation

data panel to understand the degree of change of a protein or transcription factor’s expression.

While a small set of data is manageable, larger datasets will make this task less efficient and

manageable if the user would like to easily denote changes in expression between two or more

proteins. Implementing a colored scale would be easier for the user and make denoting differences

in expression more efficient. Additionally, the current set-up of the regulation data panel involves

incorporating the uploaded data in a set of tables for the user to easily reference. As more data is

included in uploaded files, the panel will become filled with long lists of tables. To better facilitate

this process, making the regulation data panel svg scrollable would easily facilitate the additional

data without losing the ability to see the information.

In regard to design choice, there are three key aspects that limit the presentation of un-

derstanding of the data: accessibility to the colorblind, the use of force-directed networks, and

directionality of the edges in those networks. Firstly, the biovisualization does not take into

account colorblindness. While panel backgrounds will change, as they simply exist for designation,

node coloration and the legend in the protein-protein interaction panel will be important for

denoting different items. Identifying and using colors that are color-blind friendly will be an

important step for improving the biovisualization for a wider audience. This idea should be at

the forefront with other recommendations aforementioned. Secondly, force-directed graphs are

limiting in their ability to convey meaningful structure. Many pathways are drawn to convey

more of an ordered progression that makes recognizing and identifying the pathway much easier.

Glycolysis and Gluconeogenesis, for example, are often depicted as a linear chain of reactions.

Force-directed networks palace nodes at a certain distance from each other by some force metric

and length distance that is irrespective of commonly drawn organizations used by researchers.
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Using this network structure was found to be the best method for implementing many different

protein data points together at the cost of this lost structure. While the different layouts highlight

the organized flow, looking at other network structures and algorithms may improve the user

experience and help them draw better inferences from the visualization as a whole. Thirdly,

the current biovisualization has edges which are undirected. Future improvements should add

direction, especially for reactions where equilibrium cannot be assumed and is not the case.

Likewise, adding direction for transcription factor action would make visualizing the action

simpler.
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6
CONCLUSIONS

Metabolic networks are complex systems that are always in flux because of changes in gene

expression within a living system. To better understand these living systems, visualizing these

changes will allow researchers to better understand how these changes in these pathways impact

growth, survival, and persistence. In this paper, a prototype metabolic pathway visualization

for M. tuberculosis was constructed based upon the goals and tasks from published work and

interviews with researchers in the M. tuberculosis community. While nothing inherently new

in design and task implementation, such as a new network design, was constructed with this

prototype, this visualization combines metabolic pathway data and protein-protein interaction

with the ability to upload gene expression datasets to allow researchers to visualize and draw

inferences from their data. Furthermore, this prototype creates a visualization tool with a specific

focus on M. tuberculosis for use in that research community. It is the goal of this paper to showcase

these ideas in order to be able to implement them in a more integrated and robust visualization.
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APPENDIX A: INTERVIEW QUESTIONS

1. Can you please tell me about your research and work?

2. Have you ever used any databases or visualizations specific to biology generally or M.

tuberculosis specifically? What have you used them for? (Continues if applicable)

a) With regard to this visualization, what aspects of the visualization is useful for

understanding M. tuberculosis metabolic pathways?

b) Is there anything that is extraneous, ineffective or missing, regarding the visual or

the data present?

3. Using your knowledge of the metabolic pathway (and the visualization you mentioned if

applicable), what are the key elements when visualizing metabolic or protein data?

a) Could you list some particular actions that are associated with those key components?

4. *Shows the KEGG database OR from answer to question 2 and provides time for explo-

ration*

a) What are your thoughts when first exploring this visualization? *If needed* Examples

would include the design, the data, the interface, etc.

b) With regard to this visualization, what aspects of the visualization is useful for

understanding the M. tuberculosis metabolic pathway?

c) Is there anything that is extraneous, ineffective or missing, regarding the visual or

the data present?

5. *Shows the STRING PPI visualization and provides time for exploration* (Using a goal -

like find confidence and most strong evidence for a functional and physical connection).

a) What are your thoughts when first exploring this visualization? *If needed* Examples

would include the design, the data, the interface, etc.

b) With regard to this visualization, what aspects of the visualization is useful for

understanding the M. tuberculosis metabolic pathway?

c) Is there anything that is extraneous, ineffective or missing, regarding the visual or

the data present?

6. In visualizing the M. tuberculosis metabolic pathway and given from the examples shown,

what are some aspects that you particularly liked or disliked across all the visualizations?

7. After observing some sample visualizations, what would you determine are the most

important parts of a visualization? This could be data to include, features, details, etc.
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8. It is my goal to create a biovisualization that incorporates the M. tuberculosis metabolic

pathway, a PPI network, and a method to input RNA-seq data to identify changes in protein

levels and regulation.

a) Given what you have seen and identified, are there other key components that should

be noted when comparing and visualizing these three aspects together?

b) Are there areas that you believe should receive more or less detail?

c) How would a visualization like this be useful in your research and work, if at all?

9. Are there any other details you would like to add or questions you would like to ask?
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APPENDIX B: INFORMED ORAL CONSENT FORM

Thank you again for responding and accepting my request for an interview with you. In order to

proceed with the interview, I ask that you kindly provide oral consent to this interview.

You, the participant, are being invited to participate in an interview with Adrian Orszulak. This

interview is part of a Major Qualifying Project (MQP) to understand the goals and tasks for

creating a biovisualization of the M. tuberculosis metabolic pathways. In this interview, I am

seeking to define what you, the researcher, would define as important goals for a biovisualization

of the M. tuberculosis metabolic pathways. Using this information, I will be able to list a set

of goals for building the said visualization, and identify the corresponding tasks needed to

accomplish those goals. The interview will last from 1 hour to 1.5 hours. Your name will not be

published, but your specific field of work (such as metabolomics) will be.

Do you have any questions?

This process is a voluntary one. If you do not want to answer any particular question, you are not

obligated to do so. We will simply move on should you make this known. Additionally, if you no

longer feel open to an interview or wish to stop the interview, you have the right to withdraw

from the interview at any point.

Do I have your consent to move forward with this interview?

In addition, I would like to ask if I could have your consent to record the interview. You do not

need to agree to have the interview recorded. I will act as both interviewer and notetaker if you

do not consent to the recording. Do I have your consent to record the interview?

Do you have any questions before we begin?
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