
Design and Analysis of Active Vision Methods for Robotic
Grasping of Novel Objects

by

Sabhari Natarajan

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Robotics Engineering

by

August 2021

APPROVED:

Professor Berk Calli, Thesis Advisor

Professor Jing Xiao, Thesis Committee

Professor Michael Gennert, Thesis Committee

Abstract

In this project, multiple heuristic-based and data-driven active vision strategies are

presented for viewpoint optimization of an arm-mounted depth camera to aid robotic

grasping. These strategies aim to efficiently collect data to boost the performance

of an underlying grasp synthesis algorithm. An open-source benchmarking platform

was created in simulation (https://github.com/galenbr/2021ActiveVision),

and an extensive study for assessing the performance of the proposed methods as well

as comparing them against various baseline strategies was performed. The experi-

mental study was done on a Franka Emika Panda robot with a two-fingered parallel

jaw gripper. In these experiments, an existing grasp planning benchmark in the lit-

erature is utilized. With these analyses, we were able to quantitatively demonstrate

the versatility of heuristic methods that prioritize certain types of exploration, and

qualitatively show their robustness to both novel objects and the transition from

simulation to the real world. The heuristic-based and data-driven methods were also

compared in terms of their execution times and efficiency. We identified scenarios in

which our methods did not perform well and present a discussion on which avenues

for future research show promise.

https://github.com/galenbr/2021ActiveVision

Acknowledgements

I would first like to thank my thesis advisor Prof Berk Calli. His office was

always open whenever I ran into a trouble spot or had a question about my research

or writing. He consistently allowed this research to be my own work but steered me

in the right direction whenever he thought I needed it.

I would also like to thank Galen Brown, a Ph.D. student at WPI, who was

also a part of this research work and the research scholars at Manipulation and

Environment Robotics Laboratory (MER Lab) for their support.

I would also like to acknowledge Prof Jing Xiao and Prof Michael Gennert as

committee members of this thesis, and I am gratefully indebted to them for their

very valuable comments on this thesis.

Finally, I must express my very profound gratitude to my family and friends for

providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

i

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Overview . 3

1.3 Contribution . 4

1.4 Outline . 4

2 Literature Review 6

2.1 Grasp Synthesis . 7

2.2 Active vision . 8

3 Workspace description 12

4 Point cloud processing 15

4.1 Additional processing for real world 18

4.1.1 Hole-Filling . 18

4.1.2 Camera calibration and point cloud registration 20

5 Grasp synthesis 24

5.1 Grasp generation . 24

5.2 Collision and Reachability check . 27

5.3 Grasp sorting and selection . 28

ii

6 Active vision policies 31

6.1 Baseline policies . 31

6.1.1 Random Policy . 32

6.1.2 Brick Policy . 32

6.1.3 Breadth-First-Search (BFS) Policy 32

6.2 Heuristic policies . 33

6.2.1 2D Heuristic Policy . 33

6.2.2 3D Heuristic Policy . 34

6.2.3 Information Gain Heuristic Policy 35

6.3 Data-driven policies . 36

6.3.1 Self-supervised Learning Policy 37

6.3.2 Deep Q-Learning Policy . 38

7 Simulation and Real world Results 41

7.1 Simulation Study . 41

7.2 Comparison with Information Gain Heuristic 48

7.3 Real World Study . 50

8 Conclusions 53

iii

List of Figures

1.1 Active vision-based grasp synthesis pipeline 3

3.1 Hardware used . 13

a Intel Realsense D435i . 13

b Franka Emika Panda . 13

3.2 Viewsphere and its next steps . 14

3.3 Comparison of different viewsphere sizes 14

4.1 Downsampled point cloud . 16

4.2 Extracting table and object . 17

4.3 Unexplored regions . 18

4.4 Simulation vs real world camera difference 19

a Intel Realsense D435i depth field of view 19

b Comparison for a can object 19

4.5 Point cloud hole-filling . 20

4.6 Hand-eye calibration . 21

4.7 Point cloud registration . 23

a Accurate transformation with ICP 23

b Accurate transformation without ICP 23

c Inaccurate transformation with ICP 23

iv

5.1 Grasp quality calculation . 26

a Configuration 1 . 26

b Configuration 2 . 26

c Configuration 3 . 26

d Configuration 4 . 26

5.2 Gripper model . 27

6.1 2D vs 3D Heuristic comparison . 35

6.2 HAF state vector illustration . 37

6.3 Self-Supervised Learning-based policy 38

6.4 The Deep Q-Learning policy . 39

6.5 Simulation training objects . 40

7.1 Simulation and real world setup . 42

7.2 Simulation testing objects . 42

7.3 Simulation results - Easy objects . 45

7.4 Simulation results - Medium objects 46

7.5 Simulation results - Hard objects . 47

7.6 Simulation results - Stepwise . 48

7.7 Simulation results - Direction radar plots 49

7.8 Real world testing objects . 51

v

List of Tables

7.1 Simulation Results - Average steps and success percentage 44

7.2 Information gain vs 3D heuristic - Comparison 50

7.3 Real world results - Average steps and benchmarking 52

vi

Chapter 1

Introduction

Robotic grasping is a vital capability for many tasks, particularly in service

and warehouse robotics. The problem of grasp synthesis is to determine how to

position the robotic fingers on an object’s surface so that a stable grasp can be

achieved. If the shape and pose of the object is known to the robot accurately,

various optimization techniques can be used to determine the finger contact locations

on the object. Alternatively, if all the possible objects are known a priori, a database

can be created with models of all objects along with several stable grasps, and

an approach similar to Huebner et al. (2009) can be followed for localizing and

identifying the object. However, in many scenarios of service robotics or warehouse

robotics, the object variety is immense and the object models are not available to

the robot a priori. For such applications, vision-based grasp synthesis methods are

presented (Du et al., 2021), which utilize partial and noisy object data. Most of

This thesis is partially based on a manuscript that is published in Frontiers in Robotics and
AI: ”Natarajan, S., Brown, G., and Calli, B., 2021. Aiding Grasp Synthesis for Novel Objects
Using Heuristic-Based and Data-Driven Active Vision Methods. Frontiers in Robotics and AI, 8.”

The work in this thesis was supported in part by the National Science Foundation under grant
IIS-1900953.

1

these grasp synthesis algorithms use data from a single viewpoint to synthesize a

grasp (Caldera et al., 2018), i.e. they use only a single image of the object. Such an

approach attempts to create a single, master algorithm that is useful for all objects

in all situations. Nevertheless, these algorithms tend to suffer when the viewpoint

of the vision system is different from the images used in the training set (Viereck

et al., 2017). Additionally, many graspable objects have observation angles that are

”singular” from which no grasp can be synthesized: For example, if an object has

only one graspable surface, which is self-occluded from the current viewpoint of the

vision system, the grasp synthesis algorithm would either fail to find any grasps or

would need to rely on assumptions that might not always hold, and therefore lead to

an unsuccessful grasp. These drawbacks of the single viewpoint approaches can be

addressed via active vision frameworks, i.e. by actively moving the vision system to

collect more data about the target object. Active vision is also used by humans in

their day-to-day activities including grasp synthesis (Findlay and Gilchrist, 2003),

suggesting that active vision is a viable solution to address the drawback of single

viewpoint approaches.

1.1 Problem Statement

We aim to develop active vision strategies that can efficiently collect data with brief

motions and allow the grasp synthesis algorithms to find sufficiently good grasps

as quickly as possible. It is shown in the grasping literature that even algorithms

tailored for single viewpoints can have a substantial performance boost even with

very simple data collection procedures (Viereck et al., 2017). Utilizing active vision

for robotic grasping has several avenues for optimization: the exploration algorithm,

the data analysis, and the grasping algorithm. The major focus of this work is on

2

Figure 1.1: The active vision-based grasp synthesis pipeline

the exploration algorithm.

1.2 Overview

The active vision-based viewpoint optimization pipeline for grasp synthesis is repre-

sented in Fig. 1.1. The steps of this pipeline follow an iterative process until a grasp

is found. The first step of an iteration is collecting the point cloud data about the

environment using the vision system. In subsequent iterations, the point cloud data

collected is fused with the point cloud data captured in previous iterations, thereby

increasing our knowledge of the object and the environment. This point cloud data

is processed using segmentation techniques to extract the points corresponding to

the table and the object. Using this table and object points, a point cloud data is

generated, to represent the unexplored regions in the environment i.e. the regions

which have not been explored by the vision system yet (these processed point clouds

are used in the grasp synthesis algorithm and active vision policies which will be

explained in the further chapters). Then, an attempt is made to synthesize a grasp

with the available point cloud data, and if it fails, the active vision policy is called

to guide the vision system to its next viewpoint after which a new iteration starts

until a grasp has been found. Each of these steps will be explained in the upcoming

3

chapters.

1.3 Contribution

• Two novel heuristic-based policies for viewpoint optimization.

• A self-supervised and a novel Q-learning-based policies viewpoint optimiza-

tion.

• Three baseline policies for benchmarking the heuristic and data-driven policies.

• An open-source simulation platform (https://github.com/galenbr/2021A

ctiveVision) to develop new active vision algorithms and benchmark them.

• Extensive simulation and experimental analysis, assessing and comparing the

performance of 5 active vision methods using objects from the YCB dataset

(Calli et al., 2015).

• Use grasp planning benchmark (Bekiroglu et al., 2020) to assess the quality of

grasps in real world experiments.

• Comparison study to another active vision-based algorithm (Arruda et al.,

2016), which provides, to the best of our knowledge, the closest strategy to

ours in the literature.

• Tools for visualizing the point cloud data collected and the path taken by the

various policies.

1.4 Outline

The thesis is outlined as follows:

4

https://github.com/galenbr/2021ActiveVision
https://github.com/galenbr/2021ActiveVision

• Chapter 2 is a literature review on various approaches for robotic grasping.

• Chapter 3 describes the workspace and the hardware setup used.

• Chapter 4 is focused on the point cloud processing techniques for simulation

as well as additional processing for real world scenario.

• Chapter 5 explains the grasp synthesis algorithm used in this study.

• Chapter 6 focuses solely on the active vision policies developed i.e. Baseline,

Heuristic, and Data-driven ones.

• Chapter 7,8 explains the various simulation and real world tests performed

along with a discussion on the results and the conclusions.

5

Chapter 2

Literature Review

Adapting robotic manipulation algorithms to work in an imperfect and uncertain

world is a central concern of the robotics field, and an overview of modern approaches

is given by Wang et al. (2020). It focuses on three major uncertainties; Geomet-

ric uncertainty (shape, size, etc.), Physical uncertainty (mass, friction, etc.), and

completely unknown objects. Under each, the research done has been classified into

feature sensing (estimating object properties and localization) and robotic grasping

(grasp synthesis). Du et al. (2021) also gives a detailed review of the researches

done towards vision-based grasping. They are segregated into the three key tasks

which are object localization, object pose estimation, and grasp estimation. Object

localization provides the regions of the target object in the input data. The object

pose estimation refers to estimating the 6D object pose and the grasp estimation

includes 2D planar grasp methods and 6DoF grasp methods. The focus on grasp

synthesis using data-driven methods has been constantly increasing and Caldera

et al. (2018) discusses the various approaches along with their performances over

the past 10 years.

6

2.1 Grasp Synthesis

Much of the research on robotic grasping does not attempt to move the vision sensor

and focuses on single image grasp synthesis. Also, the grasp synthesis algorithms

differ based on the configuration of the gripper. Richtsfeld and Vincze (2008) uses

range images from a fixed laser scanner to scan the object on a table. Based on

the shape of the object, the grasp points for the gripper (3D model of a hand) are

generated by using brute force search and collision checks. This study was done

in simulation and showed good results for a wide range of objects. Saxena et al.

(2010)’s work on grasping objects in cluttered environments acknowledges the prob-

lem of accurately sensing a complex 3D environment, but attempts to overcome it

by storing prebuilt 3D models of the environment and using them to better analyze

a single stereo-vision image rather than by collecting more information. With the

environment information known, the objects are segmented and pre-trained models

are used to find grasp for the objects. In a similar vein, Zheng et al. (2018) ap-

proaches industrial grasping for robotic welding by trying to accurately map known

features to objects instead of by trying to collect more data to resolve ambiguities

in the images. The environment here is a set of planar objects on a conveyor, for

which the height of objects is mapped using a vision system after which a heuristic

approach is used to find the grasp.

A typical and upcoming approach in the literature is to train a neural network to

produce grasps by annotating individual images with grasp candidates. This neural

network-based approach has been done using both 2D-based and 3D-based images

as seen in Pinto and Gupta (2016), Chu et al. (2018) and Mahler et al. (2017)

among many others. These neural network-based methods are trained with data

from a single viewpoint which restricts their use for our application where data is

7

fused from multiple viewpoints. Learning-based algorithms have also be attempted

in the past like Salganicoff et al. (1996), which uses Interval Estimation (IE) ex-

ploration heuristic with the ID-3 inductive learning algorithm to learn grasps for

a two-fingered gripper. Even in tasks peripheral to grasping, like shape and pose

estimation, considerable work has gone into more refined algorithms and machine

learning strategies for extracting information from a single 2D image without at-

tempting to capture more images or optimize the viewpoint. Morales et al. (2001)

discusses the heuristic way of generating antipodal grasps based on the 2D features

of unknown objects as seen by a top-down camera. Kurenkov et al. (2018) uses 3D

data deformation to learn a model for 3D reconstruction through deformation. The

network takes an image input, searches the nearest shape template from a database,

and deforms the template to match the query image. Zhang and Cao (2019) focuses

on 6D object pose refinement from noisy depth images. It also compares its meth-

ods with other common algorithms for pose refinement which are the ICP-based

algorithms and optimization-based algorithms.

2.2 Active vision

Our research focuses on the problem of collecting new data to improve processing

outcomes. Active vision has been applied to many aspects of machine vision, but

often with the explicit goal of achieving a complete 3D model of an object rather

than our objective of acquiring just enough data about the object to synthesize

a sufficiently good grasp. Khalfaoui et al. (2012) uses the Mean Shift technique

to construct the first set of candidates for the Next Best View (NBV). Weights

are assigned to each NBV to pick the best one for scanning the object. Daudelin

and Campbell (2017) also uses a similar approach but uses a mobile robot for this

8

purpose. It integrates an object probability characteristic to determine sensor views

that incrementally reconstruct a 3D model of the object.

Even in the narrower domain of active vision for grasp synthesis, not all work

relates to our concerns. For instance, Fu et al. (2019)’s study on industrial grasp-

ing uses active vision to assist feature identification of known objects, but with

the explicit goal of maximizing grasp precision rather than minimizing information

collected. For the use of active vision to address grasping using incomplete informa-

tion, there has been research into both algorithmic (Calli et al., 2011; Arruda et al.,

2016) and data-driven methods (Paletta and Pinz, 2000; Viereck et al., 2017; Calli

et al., 2018b; Rasolzadeh et al., 2010), with more recent works tending to favor data-

driven approaches (Caldera et al., 2018). In particular, the work in Viereck et al.

(2017) demonstrated that active vision algorithms have the potential to outperform

state-of-the-art single-shot grasping algorithms. Rasolzadeh et al. (2010) had an

interesting approach with a multi-camera setup. A wide field of view camera was

used for the initial localization of the object and then a near field of view camera

mounted on a different manipulator was used to focus on the localized region to

collect detailed information to generate a grasp.

Calli et al. (2011) proposed an algorithmic active vision strategy for robotic

grasping and extending 2D grasp stability metrics to 3D space. As an extension of

that work (Calli et al., 2018b), the authors utilized local optimizers for systematic

viewpoint optimization using 2D images. Arruda et al. (2016) employs a probabilis-

tic algorithm whose core approach is the most similar to our heuristics presented in

Section 6.2. Our approaches differ in focus since Arruda et al. (2016) selects view-

points based on estimated information gain as a proxy for finding successful grasps,

while we prioritize grasp success likelihood and minimizing distance traveled. In our

simulation study, we implemented a version of their algorithm and included it in

9

our comparative analysis.

The data-driven approach presented in Viereck et al. (2017) avoided the problem

of labeled data by automating data labeling using state-of-the-art single shot grasp

synthesis algorithms. They then used machine learning to estimate the direction

of the nearest grasp along a view-sphere and performed gradient descent along the

vector field of grasp directions. This approach has the advantage of being continuous

and fast but did not fit in our discrete testing framework. All data-driven methods

analyzed in this work utilize a similar self-supervised learning framework due to its

significant easiness in training.

One of our data-driven active vision algorithms utilizes the reinforcement learn-

ing framework. A similar strategy for active vision is used by Paletta and Pinz (2000)

to estimate an information gain maximizing strategy for object recognition. We not

only extend Q-learning to grasping but do away with the intermediary information

gain heuristic in reinforcement learning. Instead, we penalize our reinforcement ap-

proach for each step it takes that does not find a grasp, incentivizing short, efficient

paths. Two of the data-driven methods in this work are based on the general strat-

egy used in Calli et al. (2018a), which presented a preliminary study in simulation.

In this work, we present one additional variant of this strategy and present a more

extended simulation analysis along with real world experiments.

Gallos and Ferrie (2019) focused on object classification rather than grasping

and influenced our theoretical concerns and experimental design to some extent.

Their paper argues that contemporary machine learning-based active vision tech-

niques outperform random searches but this is too low a bar to call them useful

and demonstrates that none of the methods they implemented could outperform

the simple heuristic of choosing a direction and moving along it in large steps. Vir-

tually all active vision literature like de Croon et al. (2009) and Ammirato et al.

10

(2017) compares active vision approaches to random approaches or single-shot state-

of-the-art algorithms. While there has been research on optimality comparison in

machine vision Karasev et al. (2013), to the best of our knowledge, it has never

been extended to 3D active vision, much less active vision for grasp synthesis. Our

simulation benchmarks are an attempt to not only extend their approach to grasp-

ing but to quantify how much improvement over the best-performing algorithms

remains possible.

11

Chapter 3

Workspace description

We consider an eye-in-hand system that allows us to move the camera to any view-

point within the manipulator workspace. In our implementation, we use an Intel

Realsense D435i (Fig. 3.1a) as the vision system on Franka Emika Panda (Fig. 3.1b)

arm for our eye-in-hand system.

The camera can be moved to infinitely many configurations in this setup which

would make it difficult for the active vision policies to come up with the next view-

point to move to. To reduce the dimension of active vision algorithm’s action space

i.e. make the movements discrete, the camera movement is constrained to move

along a viewsphere, always pointing towards and centered around the target object

(a common strategy also adopted in Paletta and Pinz (2000), Arruda et al. (2016)

and Calli et al. (2018a)). The radius of the viewsphere (vr) is set based on the

manipulator workspace and sensor properties. In the viewsphere, movements are

discretized into individual steps with two parameters, step-size (vs) and number of

directions (vd). Fig. 3.2 shows the workspace configuration used with vr = 0.4 m,

vs = 20° and vd = 8 (N,NE,E,SE,S,SW,W,NW).

The target object is placed on a platform in front of the manipulator at a distance

12

(a) Intel Realsense D435i (b) Franka Emika Panda

Figure 3.1: The manipulator and vision system used in the study.

of 0.45 m in front and 0.125 m above the base of the robot. These values were

determined experimentally based on the manipulator’s reach and its ability to grasp

the object at different parts of the workspace. The dimensions of the objects to

be used were restricted to be within a cylinder of height 35 cm and a radius of 25

cm. Multiple viewsphere radius (vr) values were experimented before selecting 0.4

m. Fig. 3.3 shows a top-down view of the viewsphere regions marked as green or

red, based on whether that point is within the workspace or not, for values of 0.4

m, 0.5 m, and 0.6 m. 0.4 m had the highest visibility percentage at 80. Further

lower value could not be used due to the camera’s minimum depth range of 17.5

cm at a resolution of 640x480 (it can be lowered to 10.5 cm but with a much lower

resolution of 424x240).

With the workspace and the hardware described, in the next chapter, we will

discuss the various point cloud processing steps and how the environment is modeled.

13

Figure 3.2: Viewsphere and its next steps with parameters vr = 0.4 m, vs = 20°
and vd = 8. The blue sphere is the expected position of the object, green sphere the
current camera position and red one the next steps it can take

Figure 3.3: Comparison of how much information can be captured based on the
viewsphere size. Blue dot: Robot Base, Centre of the circle: Object position, Green
dots: Inside the workspace, Red dots: Outside the workspace

14

Chapter 4

Point cloud processing

The Intel Realsense D435i camera gives us point cloud data (RGB-D) of the envi-

ronment. Point Cloud Library (PCL) Rusu and Cousins (2011) is used as the tool

for processing the data. The point cloud data received from the camera is downsam-

pled before further processing to reduce sensor noise and to speed up the execution

time during further point cloud processing. Fig. 4.1 shows the environment as seen

by the camera after downsampling.

This point cloud data which is in the camera frame is transformed to the base

frame of the robot using

PCDB = TB
C ∗ PCDC (4.1)

where, PCDB is the point cloud data in robot base frame, TB
C is the transformation

matrix between the camera and the robot base frame and PCDC is the point cloud

data in camera frame i.e. the received data. TB
C is estimated using in real-time

using the manipulator’s DH parameters and the joint configurations.

Sample Consensus-based plane segmentation technique is used to extract the

points corresponding to the table. With table information known the points above

the table are extracted and marked as object points. Fig. 4.2 shows the extracted

15

Figure 4.1: Environment as seen by the camera after downsampling in simulation.

table and object.

With every new point cloud data captured, it is fused with the previously cap-

tured point cloud data after transforming them to the robot base frame. With

each fusion, the data is again downsampled to remove the duplicate points in the

point cloud. The next step is to identify the unexplored regions surrounding the

object which is required for the grasp synthesis algorithm as well as the active vision

policies. For this purpose, the region surrounding the object is populated with an

evenly spaced point cloud and then sequentially checked to determine which points

are occluded. While a common visibility check approach is ray-tracing, it is a com-

putationally intensive and time-consuming process. Instead, we take advantage of

the organized nature of the point cloud data received from Intel Realsense D435i.

16

Figure 4.2: Extracted table and object

The 3D points are projected to the image plane using:

Xp = KX/z0 (4.2)

where, Xp is the projected pixel co-ordinates, X is the 3D point

(
x0 y0 z0

)T

, and

K is the camera intrinsic matrix described by:

K =


fx 0 ppx

0 fy ppy

0 0 1

 (4.3)

where, fx and fy are the focal length, ppx and ppy are the principal point offset of

the camera along the x-axis and y-axis respectively. The ”depth value at Xp” and

”z0” are compared and if z0 is greater than the depth at Xp, the point X is marked

as occluded. This approach reduces the computation time greatly. The two images

on the bottom right of Fig. 4.3 show the unexplored region generated for a drill

object.

17

Figure 4.3: Black points show the unexplored regions in the environment for a drill
object. The camera is positioned as shown in Fig. 4.1.

4.1 Additional processing for real world

The vision system in the case of the real world and the simulation work a bit differ-

ently. To account for these changes two additional processing steps were required

in this study when working in the real world.

4.1.1 Hole-Filling

In the Intel Realsense camera D435i, depth is derived primarily from solving the

correspondence problem between the simultaneously captured left and right video

images determining the disparity for each pixel (i.e. shift between object points in

left vs right images), and calculating the depth map from disparity and triangulation.

Fig. 4.4a shows the left and right imagers and the regions where depth can’t be

calculated. Depth also can’t be calculated for surfaces that cannot be seen by both

the imagers as shown in Fig. 4.4b. In the case of the simulation sensor, it just uses

one imager (left) to generate the point cloud and hence can see all the surfaces in

its field of view. This reduced surface visibility, especially the surfaces normal to

the image plane leads to errors while updating the unexplored point cloud regions.

These missing regions are considered as visible and hence unexplored regions get

18

(a) Depth field of view of Intel Realsense D435i camera

(b) Comparison for a can object: Simulation sensor (left), real world
sensor (right). Notice the missing surfaces in real world data.

Figure 4.4: Difference between simulation and real world sensor

incorrectly classified as explored regions.

To address missing regions, we use a hole-filling approach to generate surfaces

that are missing. As the newly generated surfaces will not accurately represent the

object surface these generated surfaces are only used during the unexplored region

update process and not considered under object points. Fig. 4.5 shows the results

after hole-filling. Also, notice a large number of missing surfaces in the cuboid. We

take advantage of the organized nature of the point cloud again for this hole-filling

process. The 2D array for all pixels where the depth value is missing is updated

using the average depth value of its 8-connected neighboring pixels. If there are

19

Figure 4.5: In each pair of images, the left image is the input and the right is the one
after hole-filling. The blue dots represent the newly created surfaces. The red and
green prisms show the two surfaces of the cuboid for comparison. The top image is
from the camera perspective and the bottom ones are from different viewpoints to
visualize the new surfaces added.

fewer than 4 neighbors with depth values then that pixel is not updated. Multiple

passes are done to ensure larger holes are filled up. This process is done only on the

central region of the image and not on the edges.

4.1.2 Camera calibration and point cloud registration

The transformation between the camera and the end-effector is required to transform

the point cloud in the camera frame to the robot base frame. Using the CAD models

of the manipulator, camera mount, and the camera the transformation between the

end-effector and camera can be calculated. This transformation was not accurate

enough in the real world setup and caused problems with point cloud fusion where

the fused point cloud had duplicate surfaces. To solve the transformation error, first

20

Figure 4.6: Hand-eye calibration setup. Robot Base (B), End-effector (E), Camera
(C), ArUco Marker (A)

a camera calibration setup involving ArUco markers Garrido-Jurado et al. (2014)

as shown in Fig. 4.6 was setup.

As shown in Fig. 4.6, we have the following four homogeneous transformation

matrices:

• TE
B : Transformation of Robot Base w.r.t End-effector.

• TB
A : Transformation of ArUco Marker w.r.t Robot Base.

• TE
C : Transformation of Camera w.r.t End-effector.

• TC
A : Transformation of ArUco Marker w.r.t Camera.

The one which we are concerned about is TE
C . These matrices can be connected by

the equation:

TE
B TB

A = TE
C TC

A (4.4)

TE
B can be estimated using the manipulators’ joint configuration and TC

A can be

estimated by using the ArUco marker placed on the table. The other two matrices

21

are constant but unknown. Equation 4.2 can be represented in the form of:

AX = Z B (4.5)

where A and B are known matrices and X and Z are unknowns. As X and Y

are homogeneous transformation matrices each have only 6 unknown variables (3

rotational + 3 transnational). So, we have 12 variables to solve for. If we can

collect 12 or more samples by moving the camera to different locations, we will have

sufficient data to solve for and find the matrices X and Z. We utilize Moveit!’s

hand-eye calibration module for this (Coleman et al., 2014). We feed it with the

required number of camera samples and it returns the transformation matrix TE
C .

Even with the updated transformation matrix, it is not accurate enough for point

cloud fusion. We use the Iterative Closest Point (ICP) based registration techniques

available in PCL to finely align the point clouds before fusion. This method is most

reliable when the input and target point cloud only differ in their alignment and not

on their shape or structure. In our case, we need to fuse point clouds from different

viewpoints which imply that they will not be the same in terms of the shape or

structure. ICP based registration is used in two stages to get reliable results in this

scenario.

• Extract table planes from both point clouds and do the initial alignment (6

DoF).

• Restrict the registration process to 3 DoF i.e. translation and rotation about

the table plane and align the object point clouds.

Fig. 4.7 shows the accurate alignment during fusion when accurate transformation

and ICP is used. As seen in Fig. 4.7 ICP registration also doesn’t work well if the

22

(a) Accurate transformation with ICP

(b) Accurate transformation without ICP (c) Inaccurate transformation with ICP

Figure 4.7: Effect of using accurate transformation matrices and ICP. The red oval
shows the region where misalignment is prominently visible

initial alignment is considerably off. Hence both camera calibration and ICP were

required to accurately fuse the point clouds.

23

Chapter 5

Grasp synthesis

The goal of our pipeline is to provide enough data to an underlying grasp synthesis

algorithm to find a successful grasp. As such, our methods are largely agnostic

to the specific grasp synthesis algorithm used. Essentially, any gripper type i.e.

parallel-jaw / multi-fingered / vacuum along with its corresponding grasp synthesis

algorithm can be used in this methodology, provided the grasp synthesis algorithm

can process an incomplete point cloud as input. However, these grasping algorithms

are naturally preferred to be fast (since they will be run multiple times per grasp

within our viewpoint optimization process), and be able to work with stitched point

clouds. Most data-driven approaches in the literature are trained with single-view

point clouds, and might not perform well with stitched object data.

5.1 Grasp generation

In this study, we use the Franka Emika parallel jaw gripper, which has a maximum

gripper width of 8 cm and a contact surface area of 4 cm2 as shown in Fig. 4.1. We

use the term ”contact point” to refer to a point in the point cloud being considered

for a grasp. PCL has modules for calculating the normal vector and curvature of

24

points in the point cloud which are used in the following process. As our gripper is

a parallel jaw gripper, we use a force-closure-based approach similar to Calli et al.

(2018a), with the following constraints:

1. Grasp quality: This quality is a value ranging from 0 to 180 and depends on

the normal vectors of the two contact points being considered for the grasp

and their relative position. This is calculated as:

GQ = 180− (min(6 (
−−−→
C1C2,

−−→
C1N), 6 (

−−−→
C2C1,

−−→
C1N))+

min(6 (
−−−→
C1C2,

−−→
C2N), 6 (

−−−→
C2C1,

−−→
C2N)))

(5.1)

where GQ is the grasp quality, C1 and C2 are the contact points 1 and 2

respectively, C1N and C2N are the surface normal vectors at the contact points

1 and 2 respectively. Fig. 5.1 shows the various configurations possible for the

normal vectors. For all the cases shown in Fig. 5.1, Equation 5.1 would give

180− (min(A, 180−A) +min(B, 180−B)) = 180− (180−A+B) = A−B.

When all three vectors align with each other we will have the highest grasp

quality of 180. In this study, a grasp quality requirement was set as between

150 and 180.

2. Contact patch area and curvature constraint: To grasp the object, there must

be a relatively flat surface surrounding each contact point at least as large as

the gripper’s contact area. Based on the known gripper contact area and the

points surrounding the contact point under consideration, the object contact

patch area is calculated by projecting the points within a 3 cm radius of the

contact point onto a plane whose normal vector is the same as that of the

contact point. This projected area should be higher than a threshold for the

contact point, and the curvature as calculated by PCL should be below a

25

(a)
−−→
C1N and

−−→
C2N pointing away (b) Only

−−→
C2N pointing away

(c)
−−→
C1N pointing away (d) None pointing away

Figure 5.1: Various possible configurations for the normal vectors for the contact
points C1 and C2. The red arrows are the normal vectors and the green one is the
vector connecting the contact points. In each configuration the left image shows−−−→
C1C2 and right one

−−−→
C2C1

threshold.

3. Gripper width: The distance between the contact points should be less than

the maximum gripper width i.e. 8 cm.

Each pair of contact points that satisfy the above constraints is a potential grasp.

In the case of thin objects, where two contact points can’t be found, each point is

considered as its own pair. is A brute force search is done on all the object points

to generate the possible list of grasps for the object. Algorithm 1 shows the grasp

generation process.

26

Algorithm 1 Grasp generation process

Require: obj ← Object point cloud
contact pair ← Pair of contact points
potential grasps← Array of contact pair which can be a potential grasp
for all contact pair ∈ obj do
if All constraints satisfied then

Add contact pair to potential grasps
end if

end for

Figure 5.2: Simplified model of the gripper using cuboids for collision check.

5.2 Collision and Reachability check

From the set of potential grasps, we only need to consider the grasps which don’t

collide with the environment (collision check) and can be reached by the manipulator

(reachability check). The collision check is done by using a simplified model of the

gripper as shown in Fig. 5.2. We check for collision of the gripper model with the

table and unexplored point clouds. Each grasp has infinitely many possible gripper

orientations that would align with the contact points i.e. the gripper can revolve

along the axis connecting the two contact points. The possible orientations have

been discretized into eight evenly spaced orientations in this study. The collision

27

check is done in two stages to speed up the process:

• Preliminary check: If the red-colored region in Fig. 5.2 has a collision, then

any orientation of the gripper will still have a collision. So, if a collision is

detected at this region all further collision checks are discarded and the grasp

candidate is discarded.

• Advanced check: The green-colored regions in Fig. 5.2 (fingers, hand, camera)

are sequentially checked for collisions for eight different orientations, and if

a collision is detected, that particular orientation of the grasp candidate is

discarded.

The grasping process involves moving the manipulator to a pre-grasp pose which

is 10 cm away from the grasp configuration along the negative approach vector

direction. From the pre-grasp pose, it is moved along a straight line to the grasp

pose to grasp the object. So, the reachability check is performed for grasp as well

as the pre-grasp pose using the inbuilt functions in Moveit! (Coleman et al., 2014).

5.3 Grasp sorting and selection

The collision and reachability checks used to select a grasp from the possible grasps

are computationally intensive and hence it is preferable to do as few checks as

possible to select the grasp. Algorithm 2 explains the process of sorting the potential

grasps using the grasp related parameters:

• Centroid: Centroid on the object point cloud.

• Euclidean distance: Euclidean distance between the contact pair’s centroid

and the object’s centroid.

28

• Line distance: Euclidean distance between the contact pair’s centroid and the

object’s line of gravity.

• Grasp quality.

The thresholds used were experimentally determined. This sorting process helps to

prioritize the grasps that have a higher probability of passing the checks and which

are closer to the centroid of the object.

Algorithm 2 Grasp sorting

Require: A← First contact pair of a potential grasp
Require: B ← Second contact pair of a potential grasp
if abs(A.line distance - B.line distance) ≤ .01 m then
if abs(A.centroid.z - B.centroid.z) ≤ .06 m then
if abs(A.euclidean distance - B.euclidean distance) ≤ .01 m then
potential grasp with the highest grasp quality is preferred

else
potential grasp with the lowest euclidean distance is preferred

end if
else
potential grasp with the highest centroid.z is preferred

end if
else
potential grasp with the lowest line distance is preferred

end if

With the sorted list of potential grasps, the collision and reachability checks are

run as described in Algorithm 3. The sorting process reduces the number of checks

required to arrive at the final grasp. The first grasp orientation that passes the

checks is selected.

29

Algorithm 3 Grasp selection process

Require: tbl← Table point cloud
Require: unexp← Unexplored point cloud
Require: potential grasps← Array of contact pair which can be a potential grasp

Sort potential grasps using Algorithm 2.
for all contact pair ∈ potential grasps do
for each of the eight gripper orientations do
if Collision and Reachability check passed then

Select this contact pair at this gripper orientation
Exit both the for loops

end if
end for

end for

30

Chapter 6

Active vision policies

The focus of this thesis is the active vision policies, which guide the eye-in-hand

system to its next viewpoints. The nature of the pipeline allows us to plug in any

policy which takes point clouds as its input and returns the direction to move for the

next viewpoint. The policies developed and tested have been classified into three

categories as follows:

1. Baseline policies

2. Heuristic-based policies

3. Data-driven policies

Each of these sets of policies is explained below.

6.1 Baseline policies

As the name suggests these are a set of policies defined to serve as a baseline to

compare the heuristic-based and data-driven policies with. The three baselines used

are shown below.

31

6.1.1 Random Policy

Ignoring camera data, a random direction was selected for each step. No constraints

were placed on the direction chosen, leaving the algorithm free even to (for instance)

oscillate infinitely between the start pose and positions one step away. This move-

ment represents the worst case for a policy not deliberately designed to perform

poorly, and all methods should be expected to perform better than it in the aggre-

gate. This policy is the standard baseline in the active vision literature.

6.1.2 Brick Policy

Named after throwing a brick on the gas pedal of a car, a consistent direction (north-

east) was selected at each timestep. This direction was selected because early testing

strongly favored it, but we make no claims that it is ideal. This policy represents

the baseline algorithm that is naively designed and any serious policy should be

expected to outperform. Any policy that performed poorly than this policy would

need well-justified situational advantages to be usable.

6.1.3 Breadth-First-Search (BFS) Policy

From the starting position, an exhaustive Breadth-First-Search was performed, and

an optimal path was selected. This policy represents optimal performance, as it is

mathematically impossible for a discrete algorithm to produce a shorter path from

the same start point. No discrete method can exceed its performance, but measuring

how close each method comes to it gives us an objective measure of each method’s

quality in each situation.

With baselines defined, we will now discuss the other categories starting with

heuristics.

32

6.2 Heuristic policies

The idea behind the heuristic policy is to choose the best possible direction after

considering the next available viewpoints. The metric used to define the quality of

each of the next viewpoints is a value proportional to the unexplored region visible

from a given viewpoint.

6.2.1 2D Heuristic Policy

The viewpoint quality is calculated by transforming the point clouds to the next pos-

sible viewpoints and projecting the object and unexplored point clouds from those

viewpoints onto an image plane using the camera’s projection matrix. This process

has the effect of making the most optimistic estimation for exploring unexplored

regions; it assumes no new object points will be discovered from the new viewpoint.

Since the point clouds were downsampled, their projected images were dilated to

generate closed surfaces. The 2D projections are then overlapped to calculate the

size of the area not occluded by the object. The direction for which the most area

of the unexplored region is revealed is then selected. Fig. 6.1 shows an illustration

with the dilated projected surfaces and the calculated non-occluded region. The 2D

Heuristic policy is outlined in Algorithm 4.

While this heuristic is computationally efficient, it considers the 2D projected

area, leading it to, at times, prefer wafer-thin slivers with a high projected area over

deep blocks with low projected area. Additionally, it is agnostic to the grasping goal

and only focuses on maximizing the exploration of unseen regions.

33

Algorithm 4 2D Heuristic policy

Require: obj ← Object point cloud
Require: unexp← Unexplored point cloud
for all viewpoint ∈ next possible viewpoints do
if viewpoint within manipulator workspace then
obj trf ← Transform obj to viewpoint
obj proj ← Project obj trf onto image plane (B/W image) and dilate
unexp trf ← Transform unexp to viewpoint
unexp proj ← Project unexp trf onto image plane (B/W image) and dilate
non occ unexp proj ← unexp proj − obj proj

end if
Record the number of white pixels in non occ unexp proj

end for
Choose the direction with maximum white pixels

6.2.2 3D Heuristic Policy

In the 3D heuristic, we focused only on the unexplored region which could lead to

a potential grasp. This was done using the normal vectors of the currently visible

object. Since our grasp algorithm relies on antipodal grasps, only points along the

surface normals can produce grasps. These points were extracted by using a 3D

bounding box with a length of twice the maximum gripper width [2*8 cm], and a

width and height of 1cm. The longer axis of this box was aligned with the normal

vector and the center of the box was aligned with the point in consideration. This

process was done for all object points to create a 3D mask of all unexplored space

that could contain a grasp. The unexplored points which were outside this mask

were discarded for the next steps.

Next, like in the 2D heuristic, we transformed the point cloud to the frame of

reference of the next possible viewpoints. This time, instead of projecting, we used

local surface reconstruction and ray-tracing to determine all the unexplored points

which will not be occluded from a given viewpoint. The direction which leads to

the highest number of non-occluded unexplored points is selected. This approach

34

Figure 6.1: Set of images illustrating how the 2D and 3D Heuristics evaluate a
proposed next step North with the drill object. The 3D Heuristic images have been
shown from a different viewpoint for representation purposes.

prioritizes exploring the greatest possible region of unexplored space that, based on

known information, could potentially contain a grasp. If all the viewpoints after one

step have very few non-occluded points the policy looks one step ahead in the same

direction for each before making the decision. Fig. 6.1 shows an illustration with

the non-occluded useful unexplored region. The green points are the region of the

unexplored region which is considered useful based on gripper configuration. The

3D Heuristic policy is outlined in Algorithm 5.

6.2.3 Information Gain Heuristic Policy

The closest approach to the heuristics presented in this work is provided by Arruda

et al. (2016). For comparison purposes, we implemented an approximate version

of their exploration policy to test our assumptions and compare it with our 3D

Heuristic approach. First, we defined a set of 34 viewpoints across the viewsphere

to replicate Arruda et al. (2016)’s search space. The same viewsphere setup as seen

in Fig. 3.2 was used. Each viewpoint is defined by a pair of polar and azimuthal

angles. Three polar angle values of 22.5° , 45° and 67.5° were used with 10, 12,

35

Algorithm 5 3D Heuristic policy

Require: obj ← Object point cloud
Require: unexp← Unexplored point cloud
Require: points threshold ← Minimum number of non-occluded unexplored

points needed for a new viewpoint to be considered useful
useful unexp trf ← Unexplored points with potential for a successful grasp
for all viewpoint ∈ next possible viewpoints do
if viewpoint within manipulator workspace then
obj trf ← Transform obj to viewpoint
useful unexp trf ← Transform usefulunexp to viewpoint
non occ useful unexp ← Check occlusion for each useful unexp trf using
local surface reconstruction and ray-tracing.

end if
Record the number of points in non occ useful unexp

end for
max points← Maximum points seen across the possible viewpoints
if max points ≤ points threshold then

Run the previous for loop with twice the step-size
end if
max points← Maximum points seen across the possible viewpoints
Choose the direction which has max points

and 12 evenly distributed azimuthal angle values from 0° - 360° respectively. To

calculate the information gain for each viewpoint, we modified the 3D Heuristic

to consider all unexplored regions as opposed to focusing on the regions with a

potential grasp. Similarly, the modified 3D Heuristic policy, instead of comparing

the next vd viewpoints, compared all 34 viewpoints and used the one with the highest

information gain. A simulation study was performed to compare the camera travel

distance and computation time of this algorithm to our heuristics.

6.3 Data-driven policies

Our data-driven policies utilize a fixed-size state vector as input. This state vector is

obtained by modeling the object point cloud and unexplored regions point cloud with

36

Figure 6.2: HAF-based state vector for a 6x6x6 cm cube on the table. The blue
square shows the square zone considered for object data and the yellow square

shows the zone considered for unexplored data. The length of the unexplored data
square zone is 1.5 times that of the object square zone. The values represent the

maximum height among the points within each grid. These data are flattened and
merged along with camera information to generate the state vector.

Height Accumulated Features (HAF), developed by Fischinger and Vincze (2012)

and used in Calli et al. (2018a) along with the camera position. We experimented

with grid sizes of 5 and 7 height maps, both of which provide similar performance in

our implementation, so we chose to use 5 for performance reasons. The state vector

of a given view is composed of the flattened height maps of the extracted object and

the unexplored point cloud and the polar and azimuthal angle of the camera in the

viewsphere. The size of the state vector is 2n2 + 2, where n is the grid size. Fig. 6.2

shows an illustration of the HAF state vector generation process.

6.3.1 Self-supervised Learning Policy

Following the synthetic data generation procedure used by Calli et al. (2018a), we

generated training data in simulation. For a given start pose, each compass direction

(north, north-east, east, etc.) was explored for a grasp. If none were found, further

exploration of four random steps from each compass direction was performed three

times. The shortest working path was saved, along with the state vector of each

37

Figure 6.3: Self-Supervised Learning-based policy

camera view in the path. This process was repeated for 1,000 random initial poses

each for the 10x8x4 and 20x6x5 prisms in Fig. 6.5. Further training objects were

considered, but initial results generalized so well that it was not pursued. This data

was used to train two self-supervised learning methods, logistic regression and LDA

classification, to predict the next best viewpoint to select given the state vector

of the current viewpoint. In both of the methods, we first applied PCA to each

state vector to further compress it to 26 components, as shown in Fig. 6.3. All

the components used in this policy were implemented using the scikit-learn library

Pedregosa et al. (2011).

6.3.2 Deep Q-Learning Policy

In an attempt to improve on the self-supervised methods, a deep Q-Learning policy

was also trained to predict, for a given state vector, the next best viewpoint using

Keras library tools Chollet (2015). Four fully connected 128 dense layers and one 8

dense layer, connected by Relu transitions, formed the deep network that made the

predictions as shown in Fig. 6.4. In training, an epsilon-random gate replaced the

network’s prediction with a random direction if a random value exceeded an epsilon

value that decreased with training. The movement this function requested was then

performed in simulation, and the resulting state vector and a binary grasp found

38

Figure 6.4: The Deep Q-Learning policy

metric were recorded. Once enough states had been captured, experience replay

randomly selected from the record to train the Q-Network on a full batch of states

each iteration. The Q-Learning was trained in simulation to convergence on all of

the objects in Fig. 6.5, taking roughly 1,300 simulated episodes to reach convergence.

We hoped that, given the relatively constrained state space and strong similarities

between states, meaningful generalizations could be drawn from the training set to

completely novel objects.

For all data-driven approaches, the objects used for training were never used in

testing.

39

Figure 6.5: Objects used for simulation training. Left to right: prism 6x6x6 cm,
prism 10x8x4 cm, prism 20x6x5 cm, handle, gasket, cinder block.

40

Chapter 7

Simulation and Real world Results

The methodology discussed in the above chapters was implemented and tested in

simulation and the real world. The setups used for the testing are shown in Fig. 7.1.

The maximum number of steps allowed before an experiment is restarted was set

to 6 based on preliminary experiments with the BFS policy. The start position of

the manipulator i.e. the position from which the viewpoint optimization is started

is shown in Fig. 3.2.

7.1 Simulation Study

The extensive testing in simulation was done on a set of 12 objects from the YCB

dataset (Calli et al., 2015) which are shown in Fig. 7.2. To ensure consistency, we

applied each policy to the same set of 100 poses for each object. This approach

allowed us to produce a representative sample of a large number of points with-

out biasing the dataset by using regular increments, while still giving each policy

identical conditions to work in. This sampling was done by generating a set of 100

random values between 0 and 359 before testing began. To test a given policy with

a given object, the object was spawned in Gazebo in a stable pose, with 0° of rota-

41

Figure 7.1: The setup as seen in simulation environment (left) and lab environment
(right) with power drill in place

Figure 7.2: The set of object used for simulation testing. YCB object IDs : 3, 5, 7,
8, 10, 13, 21, 24, 25, 35, 55, 72-a

tion about the z-axis. The object was then rotated by the first of the random value

about the z-axis, and the policy was used to search for a viable grasp. After the

policy terminated, the object was reset, and rotated to the second random value,

and so on.

The number of steps required to synthesize a grasp was recorded for each of the

objects and its 100 poses. The use of baseline policies i.e. random for the lower limit

and BFS for the upper limit helped us in classifying the objects as easy, medium,

and hard in terms of how difficult is it to find a path that leads to a successful

grasp. Objects are ”Easy” when taking a step in almost any direction will lead to

a successful grasp, and ”Hard” when very specific paths are needed to find a grasp.

42

Two objects with similar BFS and random performance will have similar numbers

of paths leading to successful grasps, and so differences in performance between the

policies would be due to algorithmic failures, not an inherent difficulty. Performance

of a policy Y w.r.t BFS at a given Step X is given by the ratio

Policy performanceY,X =
Number of successful grasps at Step X using policy Y

Number of successful grasps at Step X using BFS

(7.1)

The random policy performance at Step 2 is used for the classification of objects

as easy, medium, and hard. For example, if the BFS result shows that out of 100

poses 40 poses have a successful grasp found after the second step and the random

policy is only able to find a grasp at after the second step for 10 poses, the policy is

considered to have performed at 25% of the optimal performance or in other words

the ration= would be 0.25. Objects with the ratio at Step 2 ≤ 0.40 are considered

hard, objects between 0.41 and 0.80 as medium, and objects with a ratio > 0.80 as

easy. With this criteria the test objects were classified as follows:

1. Easy: Tomato soup can (005), Bowl (024), Mug (025)

2. Medium: Apple (013), Bleach cleanser (021), Power drill (035), Baseball (055)

3. Hard: Cracker box (003), Mustard Bottle (006), Pudding box (008), Potted

meat can (010), Toy airplane (072-a)

The discussion of results will be done based on this classification to aid in ease of

comparison. Table 7.1 shows the average steps taken and the success percentage at

step 5 for the objects tested. From Table 7.1 we can see that for Easy objects using

any policy leads to a successful grasp and all policies achieve 100 success at the 5

step mark with average steps at 1.1. Moving to the medium category objects, we see

that the random policy starts to fail and needs more steps than other policies to find

43

Table 7.1: Simulation results for applying each policy to each object in 100 pre-set
poses. Success is defined as reaching a view containing a grasp. For cases where
no grasp was found, the step count was considered to be 6 for average calculation.
Average steps are shown along with the success percentage in square brackets. The
color coding for each object shows the best policy in green and worst in red.

a grasp. All other policies require 1.6 steps whereas the random needs 2.6. There is

not much differentiating the performance of other policies. It is the hard category

of objects in which we see a significant performance difference between the policies.

The 3D Heuristic completely outperforms the rest with an average step of 2.1 (BFS

is 2.0) and a success percentage of 95. It is followed by the self-supervised policies

at 2.5. The random policy miserably fails with an average step size of 4.7 and a

success percentage of 39. For the scenarios where no grasp was found at step 5, the

step count was considered as 6 for the average step size calculation. Fig. 7.3, 7.4, 7.5

show the detailed plot of step-wise success rate for the objects and the policies.

The data collected can also be analyzed using the policy performance metric

defined in Equation 7.1. Fig. 7.6 shows the performance of the policies at Step 1

and Step 3 using the policy performance metric Again we see a similar pattern in

the results. Almost all policies perform close to the optimal BFS solution for easy

objects at Step 1. At Step 3, both easy and medium objects perform as well as the

44

Figure 7.3: Easy classified objects : Simulation results showing the success percent-
age after each step

BFS solution. Overall, in simulation, the 3D Heuristic performed the best, followed

by the self-supervised learning approaches, Q-Learning, and the 2D Heuristic. For

half of the objects we tested, the 3D Heuristic performed best, while for objects 003,

010, 013, 021, 025, and 055 another algorithm performed better.

One reason the 3D Heuristic may be failing in some cases is that the heuristics

are constrained to only considering the immediate next step. Our data-driven ap-

proaches can learn to make assumptions about several steps in the future, and so

may be at an advantage on certain objects with complex paths. In addition, the

optimistic estimations explained in Section 6.2.2 will not hold for all objects and

cases, causing the Heuristic to waste time exploring promising-looking dead-ends.

One reason the data-driven techniques underperform for some cases may be due

to the HAF representation used to compress the point cloud data, which creates a

very coarse-grained representation of the objects, obliterating fine details. Addition-

45

Figure 7.4: Medium classified objects: Simulation results showing the success per-
centage after each step

ally, HAF representations cannot represent certain types of concavities, hampering

their utility for complex objects. A much finer grid size, or an alternative representa-

tion of the state vector, could help in improving the performance of the data-driven

techniques.

The radar plots shown in Fig. 7.7 for three objects and policies illustrate the

point that every policy takes a different path to find the grasp. An observation with

data-driven policies was that they did not prefer the directions S, SW, and SE. This

directional aversion can be attributed to the training set of objects used, for which

grasps were found without taking steps in these directions and also explains the

significant failure of data-driven policies on the toy airplane object (072-a) which

requires a step to be taken in S/SW/SE to generate a grasp as done by the heuristic

policy.

We found that all methods consistently outperformed random, even on objects

46

Figure 7.5: Hard classified objects: Simulation results showing the success percent-
age after each step

classified as hard. It is important to note that even the brick policy was able to find

successful grasps for all objects except for the toy airplane object (072-a), suggesting

that incorporating active vision strategies even at a very basic level can improve the

grasp synthesis for an object.

The toy airplane object (072-a) deserves special attention as it was by far the

hardest object in our test set. It was the only object tested for which most algorithms

did not achieve at least 80% optimal performance by step 5, as well as having the

lowest random to BFS ratio at step 5. We also saw (both here and in the real

47

Figure 7.6: A comparison of the performance of various policies for objects catego-
rized into easy, medium, and hard, for Step 1 and Step 3

world experiments) that heuristic approaches performed the best on this complex

and unusual object, while the data-driven approaches all struggled to generalize to

fit it.

Easy and Medium category objects come very close to optimal performance

around step 3, as seen in Fig. 7.6. Given how small the possible gains on these

simple objects can be, difficult objects should be the focus of future research.

Of the methods we examined, Heuristics (2D, 3D, and information gain) had

the advantage of fast set up time, since they did not need training, but longer run

time, since they performed more complicated calculations. The deep Q-learning

had the disadvantage of needing extensive training time but ran quickly, and the

self-supervised learning approaches (LDA and logistic regression) could be trained

quickly and ran quickly, but needed a long initial data collection period.

7.2 Comparison with Information Gain Heuristic

Using the same simulation setup the Information Gain Heuristic policy was com-

pared to the 3D heuristic policy. The comparison results are shown in Table 7.2,

where the number of viewpoints required was converted to the effective number of

3D Heuristic steps for comparison. One step is the distance travelled to move to an

48

Figure 7.7: Radar plots showing the percentage of each direction taken at each step
for 3 different objects and policies.

adjacent viewpoint along the viewsphere in the discretized space with vr = 0.4m, vs

= 20°.

We see an average of 41% reduction in camera movement and with the 3D

Heuristic policy, confirming our theory that only certain types of information war-

rants exploration and that by focusing on grasp containing regions we can achieve

good grasps with much less exploration. As a side benefit, we also see a 73% reduc-

tion in processing time with the 3D Heuristic policy, as it considers far fewer views

49

Table 7.2: Comparison between the exploration pattern employed by the Informa-
tion Gain Heuristic and the 3D Heuristic’s grasp weighted exploration.

in each step.

7.3 Real World Study

The real world testing was done on a subset of objects in simulation along with

two custom objects built using lego pieces. The grasp benchmarking protocol in

Bekiroglu et al. (2020) was implemented to assess the grasp quality based on the

five scoring parameters specified. Another grasp benchmarking protocol focused on

vision-based approaches is Kootstra et al. (2012), but it is simulation-based and

needs the input to be in the form of stereo images which does not fit well with our

pipeline’s need for a point cloud input. Also, it lacks the shaking and rotational test

metrics available in Bekiroglu et al. (2020). The 3D Heuristic and the Q-Learning

policies were selected and tested with the objects. The results for the tests performed

are shown in Table 7.3. A total of 18 object-pose-policy combinations were tested

with 3 trials for each and the average across the trails has been reported. The

objects used along with their stable poses used for testing are shown in Fig. 7.8.

In real world trials, we found that the 3D heuristic works consistently, but the

Q-Learning is at times unreliable. When run in simulation, the paths Q-Learning

50

Figure 7.8: The left image shows the set of objects used for real world testing
along with their YCB IDs. On the right are the stable poses used for testing (the
manipulator base is towards the right). (a) [YCB ID : 008] Stable Pose #1, (b)
[YCB ID : 008] Stable Pose #2, (c) [YCB ID : 006] Stable Pose #1, (d) [YCB ID
: 035] Stable Pose #1, (e) [Custom Lego 1] Stable Pose #1, (f) [Custom Lego 2]
Stable Pose #1. Objects with YCB IDs 005 and 057 are considered symmetrical
and are used in the same orientation as shown in the left image. Likewise, object
025 was tested in only one stable pose, with the handle facing away from the robot.

picks for the real world objects produce successful grasps. The difference between

our depth sensor in simulation and the depth sensor in the real world as discussed

in Section 4.1.1 seems to be causing the disconnect. This sensor difference also

explains why more steps were required in the real world than in simulation. The

heuristic policy adapts to the missing information whereas the Q-Learning is not

able to do as it has not been trained with such data. Nonetheless, the reliability

of the 3D Heuristic demonstrates that simulated results can be representative of

reality, although there are some differences.

51

Table 7.3: The list of objects tested for 3D Heuristic and Q-Learning policies along
with the benchmarking results

52

Chapter 8

Conclusions

In this thesis, heuristic-based and data-driven policies are presented to achieve view-

point optimization to aid robotic grasping. In the simulation and real world testing,

we implemented a wide variety of active vision approaches and demonstrated that,

in overall performance, the 3D Heuristic outperformed both data-driven approaches

and naive algorithms. We concluded that prioritizing exploration of grasp-related

locations can produce both faster and more accurate heuristic policies. Also, we

noticed that the data-driven policies had an edge over heuristic policies for some

objects due to their inherent nature of considering multiple steps ahead as opposed

to the heuristic policies which can see only one step ahead. From our optimal

search, we demonstrated that for most objects tested, both types of approaches

perform close to optimal. We were able to identify that the complex objects in our

test set like the toy airplane and custom Lego objects are not only dissimilar to

our training objects, but they are also objectively more difficult for viewpoint opti-

mization. In the real world testing, we demonstrated that while sensor differences

impacted all algorithms’ performances, the heuristic-based approach was sufficiently

robust to generalize well to the real world while our data-driven approaches were

53

more sensitive to the changes in sensor behavior.

Both types of policies, i.e. heuristic-based and data-driven, had their pros and

cons. The execution times of the policies were less than 1 sec for the data-driven

policies and for the heuristic ones they ranged from 0.5 sec to 5 sec based on the

size of the target object. The speed difference is due to the processing of raw

point cloud data in the heuristic policies as opposed to the compressed state vector

used in the data-driven policies. This data compression removes potentially useful

information. The nature of our state-vector makes data-driven policies less reliable

as seen with the tests involving the custom Lego objects. Using different data

compression methods to generate the state vectors containing more data could be

used to enhance the performance of the data-driven techniques along with using

more objects for training and testing.

Future research should prioritize what we have identified as difficult objects over

simple ones, as it is only in the more difficult objects that gains can be made and

good policies discerned from poor ones. Additionally, our work depended on discrete

movements through the viewsphere. Future work should consider the possibility that

continuous motion through the viewsphere may outperform discrete strategies.

54

Bibliography

Ammirato, P., Poirson, P., Park, E., Košecká, J., and Berg, A. C. (2017). A dataset

for developing and benchmarking active vision. In 2017 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 1378–1385.

Arruda, E., Wyatt, J., and Kopicki, M. (2016). Active vision for dexterous grasp-

ing of novel objects. In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2881–2888.

Bekiroglu, Y., Marturi, N., Roa, M. A., Adjigble, K. J. M., Pardi, T., Grimm, C.,

Balasubramanian, R., Hang, K., and Stolkin, R. (2020). Benchmarking protocol

for grasp planning algorithms. IEEE Robotics and Automation Letters, 5(2):315–

322.

Caldera, S., Rassau, A., and Chai, D. (2018). Review of deep learning methods in

robotic grasp detection. Multimodal Technologies and Interaction, 2(3):57.

Calli, B., Caarls, W., Wisse, M., and Jonker, P. (2018a). Viewpoint optimiza-

tion for aiding grasp synthesis algorithms using reinforcement learning. Advanced

Robotics, 32(20):1077–1089.

Calli, B., Caarls, W., Wisse, M., and Jonker, P. P. (2018b). Active vision via

extremum seeking for robots in unstructured environments: Applications in object

55

recognition and manipulation. IEEE Transactions on Automation Science and

Engineering, 15(4):1810–1822.

Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., and Dollar, A. M.

(2015). Benchmarking in manipulation research: Using the yale-cmu-berkeley

object and model set. IEEE Robotics Automation Magazine, 22(3):36–52.

Calli, B., Wisse, M., and Jonker, P. (2011). Grasping of unknown objects via

curvature maximization using active vision. In 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 995–1001.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

Chu, F. J., Xu, R., and Vela, P. A. (2018). Real-world multiobject, multigrasp

detection. IEEE Robotics and Automation Letters, 3(4):3355–3362.

Coleman, D., Sucan, I., Chitta, S., and Correll, N. (2014). Reducing the Barrier to

Entry of Complex Robotic Software: a MoveIt! Case Study. arXiv e-prints, page

arXiv:1404.3785.

Daudelin, J. and Campbell, M. (2017). An Adaptable, Probabilistic, Next-Best

View Algorithm for Reconstruction of Unknown 3-D Objects. IEEE Robotics and

Automation Letters, 2(3):1540–1547.

de Croon, G., Sprinkhuizen-Kuyper, I., and Postma, E. (2009). Comparing active

vision models. Image and Vision Computing, 27(4):374–384.

Du, G., Wang, K., Lian, S., and Zhao, K. (2021). Vision-based robotic grasping

from object localization, object pose estimation to grasp estimation for parallel

grippers: a review. Artificial Intelligence Review, 54(3):1677–1734.

56

https://github.com/fchollet/keras

Findlay, J. and Gilchrist, I. (2003). Active vision: The psychology of looking and

seeing. Journal of Neuro-ophthalmology - J NEURO-OPHTHALMOL, 26.

Fischinger, D. and Vincze, M. (2012). Empty the basket - A shape based learning

approach for grasping piles of unknown objects. In IEEE International Conference

on Intelligent Robots and Systems, pages 2051–2057.

Fu, X., Liu, Y., and Wang, Z. (2019). Active Learning-Based Grasp for Accurate

Industrial Manipulation. IEEE Transactions on Automation Science and Engi-

neering, 16(4):1610–1618.

Gallos, D. and Ferrie, F. (2019). Active vision in the era of convolutional neural

networks. In 2019 16th Conference on Computer and Robot Vision (CRV), pages

81–88.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., and Maŕın-Jiménez, M.

(2014). Automatic generation and detection of highly reliable fiducial markers

under occlusion. Pattern Recognition, 47(6):2280–2292.

Huebner, K., Welke, K., Przybylski, M., Vahrenkamp, N., Asfour, T., Kragic, D.,

and Dillmann, R. (2009). Grasping known objects with humanoid robots: A box-

based approach. In 2009 International Conference on Advanced Robotics, pages

1–6.

Karasev, V., Chiuso, A., and Soatto, S. (2013). Control recognition bounds for

visual learning and exploration. In 2013 Information Theory and Applications

Workshop (ITA), pages 1–8.

Khalfaoui, S., Seulin, R., Fougerolle, Y., and Fofi, D. (2012). View planning ap-

proach for automatic 3D digitization of unknown objects. In Lecture Notes in

57

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 7585 LNCS, pages 496–505. Springer

Verlag.

Kootstra, G., Popović, M., Jørgensen, J., Kragic, D., Petersen, H., and Krüger, N.

(2012). Visgrab: A benchmark for vision-based grasping. Paladyn, Journal of

Behavioral Robotics, 3(2).

Kurenkov, A., Ji, J., Garg, A., Mehta, V., Gwak, J., Choy, C., and Savarese, S.

(2018). DeformNet: Free-form deformation network for 3D shape reconstruction

from a single image. In Proceedings - 2018 IEEE Winter Conference on Appli-

cations of Computer Vision, WACV 2018, volume 2018-January, pages 858–866.

Institute of Electrical and Electronics Engineers Inc.

Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., and Goldberg, K. (2017). Dex-net

3.0: Computing robust robot suction grasp targets in point clouds using a new

analytic model and deep learning. arXiv preprint arXiv:1709.06670.

Morales, A., Recatala, G., Sanz, P., and del Pobil, A. (2001). Heuristic vision-

based computation of planar antipodal grasps on unknown objects. In Proceedings

2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.

No.01CH37164), volume 1, pages 583–588 vol.1.

Paletta, L. and Pinz, A. (2000). Active object recognition by view integration and

reinforcement learning. Robotics and Autonomous Systems, 31:71–86.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:

58

Machine learning in Python. Journal of Machine Learning Research, 12:2825–

2830.

Pinto, L. and Gupta, A. (2016). Supersizing self-supervision: Learning to grasp from

50K tries and 700 robot hours. In Proceedings - IEEE International Conference

on Robotics and Automation, volume 2016-June, pages 3406–3413. Institute of

Electrical and Electronics Engineers Inc.

Rasolzadeh, B., Björkman, M., Huebner, K., and Kragic, D. (2010). An active vision

system for detecting, fixating and manipulating objects in the real world. The

International Journal of Robotics Research, 29:133 – 154.

Richtsfeld, M. and Vincze, M. (2008). Grasping of unknown objects from a table

top. In Workshop on Vision in Action: Efficient strategies for cognitive agents in

complex environments.

Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (pcl). In IEEE

International Conference on Robotics and Automation (ICRA).

Salganicoff, M., Ungar, L. H., and Bajcsy, R. (1996). Active learning for vision-based

robot grasping. Machine Learning, 23(2-3):251–278.

Saxena, A., Wong, L., Quigley, M., and Ng, A. Y. (2010). A vision-based system

for grasping novel objects in cluttered environments. Springer Tracts in Advanced

Robotics Robotics Research, page 337–348.

Viereck, U., Pas, A., Saenko, K., and Platt, R. (2017). Learning a visuomotor con-

troller for real world robotic grasping using simulated depth images. In Levine, S.,

Vanhoucke, V., and Goldberg, K., editors, Proceedings of the 1st Annual Confer-

ence on Robot Learning, volume 78 of Proceedings of Machine Learning Research,

pages 291–300.

59

Wang, C., Zhang, X., Zang, X., Liu, Y., Ding, G., Yin, W., and Zhao, J. (2020).

Feature sensing and robotic grasping of objects with uncertain information: A

review. Sensors, 20(13):3707.

Zhang, H. and Cao, Q. (2019). Fast 6D object pose refinement in depth images.

Applied Intelligence, 49(6):2287–2300.

Zheng, Z., Ma, Y., Zheng, H., Gu, Y., and Lin, M. (2018). Industrial part localiza-

tion and grasping using a robotic arm guided by 2d monocular vision. Industrial

Robot: An International Journal, 45(6):794–804.

60

	Introduction
	Problem Statement
	Overview
	Contribution
	Outline

	Literature Review
	Grasp Synthesis
	Active vision

	Workspace description
	Point cloud processing
	Additional processing for real world
	Hole-Filling
	Camera calibration and point cloud registration

	Grasp synthesis
	Grasp generation
	Collision and Reachability check
	Grasp sorting and selection

	Active vision policies
	Baseline policies
	Random Policy
	Brick Policy
	Breadth-First-Search (BFS) Policy

	Heuristic policies
	2D Heuristic Policy
	3D Heuristic Policy
	Information Gain Heuristic Policy

	Data-driven policies
	Self-supervised Learning Policy
	Deep Q-Learning Policy

	Simulation and Real world Results
	Simulation Study
	Comparison with Information Gain Heuristic
	Real World Study

	Conclusions

