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Abstract

Polytopes are the generalizations of polygons and polyhedra. In this project,
we model polytopes as graphs, with each edge being an identical resistor, and
calculate the equivalent resistance between two arbitrary nodes. We explore
four methods to solve for equivalent resistances, based on the work of Kirch-
hoff, van Steenwijk, Lovász, and Nahin. We present results for the Platonic
solids, selected Archimedean solids, and all but one of the regular convex four-
dimensional polytopes. The project then concludes with an overview of oppor-
tunities for future research, including extending these strategies to the Catalan
solids.
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1 Introduction

The goal of this project is to determine the equivalent resistance between
arbitrary nodes of a polytope whose edges are modeled as identical 1Ω resistors.
Resistors networks, involving either a finite or an infinite number of resistors,
have been studied for years for their various applications. Polygons and poly-
topes also provide examples of such networks, when their edges are modeled
by identical resistors, and the goal of this project is to expand on an earlier
project by Moody [1] by looking at a wider array of methods of solving this
problem, and also to carry out a comparison of the effectiveness of the different
approaches.

The Platonic solids are made of congruent regular polygons meeting at iden-
tical vertices. For example, the cube is made of six squares, with three squares
meeting at each of the eight vertices, and the icosahedron is made of twenty
equilateral triangles, with five triangles meeting at each of the twelve vertices.
There are five Platonic solids, the tetrahedron, cube, octahedron, dodecahedron,
and icosahedron, and all are highly symmetric, due to their vertex-, edge-, and
face-transivity.

The Archimedean solids are composed of regular polygons meeting at identi-
cal vertices, excluding both the Platonic solids and the prisms and anti-prisms.
These are much more varied than the Platonic solids, and can have as few as
12 vertices or as many as 120. For example, the cuboctahedron is made from
six squares and eight equilateral triangles, with two squares and two triangles
meeting at each of the 12 vertices. There are thirteen Archimedean solids,
the truncated tetrahedron, cuboctahedron, truncated cube, truncated octahe-
dron, rhombicuboctahedron, truncated cuboctahedron, snub cube, icosidodeca-
hedron, truncated dodecahedron, truncated icosahedron, rhombicosidodecahe-
dron, truncated icosidodecahedron, and snub dodecahedron. The Archimedean
solids are vertex-transitive but not face-transitive. The lack of face symmetry
does not majorly impact this project, as we are mainly concerned with the ver-
tices and the edges that connect them.

The convex regular polytopes in four dimensions consist of the five analogues
of the Platonic solids, along with a sixth polytope (the 24-cell). These are known
by the number of three-dimensional cells that make up the polytope, similarly
to how the Platonic solids are known by the number of two-dimensional faces
that make them up (another name for the cube is the hexahedron, for its six
faces). In order of increasing number of cells, they are the 5-cell, 8-cell, 16-cell,
24-cell, 120-cell, and 600-cell, and are made up of that number of tetrahedra,
cubes, tetrahedra, octahedra, dodecahedra, and tetrahedra, respectively.

The other objective of this project was to review and discover methods for
calculating equivalent resistances of these polytope networks. The first method
is based on the use of Kirchhoff’s current and loop equations. This process was

1



discussed by Moody [1], so we will only provide a brief overview. The second
method is that of van Steenwijk [2], who solved this problem by utilizing the
symmetries of the solids to divide the nodes into equipotential planes. After this
division, the number of nodes in each layer and the number of edges running
between layers is used to finding equivalent resistances.

The third method is the so-called hanging method, developed by Lovász
[3], and involves the concept of a hitting time. The hitting time H(a, b) is the
average number of steps it takes for a random walk on a connected graph to
move from a to b. We then move to a physical model of the graph and prove
the equality of hitting times and equivalent resistances between the two nodes.
The final method determines hitting times by a computer simulation of random
walks on the structure [4], and uses these to calculate the equivalent resistances.

Of the four methods, the first two were discussed in a previous Major Qual-
ifying Project [1], and the second two were adapted this year to be used in
solving this problem.
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2 Symmetrically Equivalent Layers

For all four methods discussed, we will divide networks into layers of sym-
metrically equivalent nodes. From a given starting node, all the nodes in a
layer will be equipotential, and therefore have the same equivalent resistance.
Formally, layers are defined by isomorphisms that send all the nodes in a layer
into each other while leaving the starting node invariant.

To identify these layers, we investigated three main approaches. The first
approach was to take the coordinates of the vertices of a polytope and com-
pute the dot product of the input node with every other node. As long as the
polytope is centered on the origin of the coordinate system, the vertices will all
be equidistant from the origin. In this case, the dot product will be a stand-in
for the cosine of the angle between the vectors going from the origin to the
two vertices in question. Since this angle must be between 0 and π, the cosine
will be a strictly decreasing function, going from 1 for the dot product of the
starting node and itself to −1 for the dot product of the starting node and its
antipode (if the antipode exists). In this way, all of the nodes of a polytope
may be arranged in order of distance from the starting node. The dot product
both accomplishes the same goal and is easier to compute than the Euclidean
distance between two nodes.

Just using the dot product, however, is not always enough to uncover all
layers. For example, the truncated tetrahedron, shown in Figure 1, will not
provide accurate layers just by using the dot product approach. For any node,
its three neighbors are equal distances away, but will not be symmetric. In the
figure, node 1 is adjacent to nodes 2, 3, and 10, but the equivalent resistance
between node 1 and either of nodes 2 and 3 is 17/30Ω, but the equivalent
resistance between nodes 1 and 10 is 7/10Ω.

Figure 1: Truncated Tetrahedron
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By the dot product, the nodes would be sorted into the layers given in Table
1, whereas the nodes sorted by equivalent resistance are shown in Table 2. It can
clearly be seen that the dot product method does not accurately split nodes 2,
3, and 10. Another method must be used to avoid this undersplitting of layers.

Layer Number Nodes in Layer
1 1
2 2, 3, 10
3 6, 8, 11, 12
4 5, 9
5 4, 7

Table 1: Layers of Truncated Tetrahedron by Dot Product

Layer Number Nodes in Layer Equivalent Resistance (Ω)
1 1 0
2 2, 3 17/30
3 10 7/10
4 6, 8, 11, 12 29/30
5 5, 9 16/15
6 4, 7 11/10

Table 2: Equivalent Resistances of Truncated Tetrahedron

The second approach was to mandate that all nodes in a layer connect to the
same number of nodes in other layers. This involves an iterative process where
the layer connections of all nodes are found and then checked against the layer
connections of all other nodes in a layer. If there are discrepancies, the layer is
split and the process is repeated for all nodes. To illustrate this process, we look
again at the truncated tetrahedron, starting from the layers found by the dot
product method. After finding the layer connections for each node, shown in
Table 3, each layer is checked for dissimilarities. As can be seen, layer 2 must be
split, as nodes 2 and 3 are connected to layers 1, 2, and 3, but node 10 connects
to layers 1, 3, and 3 again. Likewise, layer 3 must be split, as nodes 6 and 8
connect to layers 2, 4, and 5, but nodes 11 and 12 connect to layers 2, 3, and
4. After making these splits, the new layers connections are shown in Table 4.
Now it is clear that each of the seven layers have consistent layer connections.
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Layer Number Node Number Node Connections Layer Connections
1 1 2, 3, 10 2, 2, 2
2 2 1, 3, 8 1, 2, 3
2 3 1, 2, 6 1, 2, 3
2 10 1, 11, 12 1, 3, 3
3 6 3, 4, 5 2, 4, 5
3 8 2, 7, 9 2, 4, 5
3 11 5, 10, 12 2, 3, 4
3 12 9, 10, 11 2, 3, 4
4 5 4, 6, 11 3, 3, 5
4 9 7, 8, 12 3, 3, 5
5 4 5, 6, 7 3, 4, 5
5 7 4, 8, 9 3, 4, 5

Table 3: Layer Connections of Truncated Tetrahedron after Dot Product

Layer Number Node Number Node Connections Layer Connections
1 1 2, 3, 10 2, 2, 3
2 2 1, 3, 8 1, 2, 4
2 3 1, 2, 6 1, 2, 4
3 10 1, 11, 12 1, 5, 5
4 6 3, 4, 5 2, 6, 7
4 8 2, 7, 9 2, 6, 7
5 11 5, 10, 12 3, 5, 6
5 12 9, 10, 11 3, 5, 6
6 5 4, 6, 11 4, 5, 7
6 9 7, 8, 12 4, 5, 7
7 4 5, 6, 7 4, 6, 7
7 7 4, 8, 9 4, 6, 7

Table 4: Layer Connections of Truncated Tetrahedron after Splitting

However, we now have an oversplitting of layers. Above in Table 2, there
were only six layers, with nodes 6, 8, 11, and 12 forming just one layer, but now
nodes 6 and 8 are in one layer and nodes 11 and 12 are in another. Physically,
we can see the relationship between these four nodes. Referring to Figure 1, we
see that the path from node 1 to either of nodes 6 or 8 takes us first along an
edge with a triangle on one side and a hexagon on the other, and then along
an edge with hexagons on both sides. The path to get from node 1 to either of
nodes 11 or 12 is the reverse, first a hexagon-hexagon edge and then a triangle-
hexagon edge. This, combined with the fact that all four nodes are just two
nodes away on their common hexagonal faces, contributes to the idea that they
should be in the same layer, despite their different layer connections. To see if
this is really the case, we go back to the original definition of layers.
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The third method that we investigated was attempting to find the physical
isomorphisms that send the nodes of a layer into each other while leaving the
starting node invariant. For the three-dimensional polytopes (the polyhedra),
the only transformations that leave a point invariant are rotations about an axis
containing the point and reflections across a plane containing the point. The
axis of rotation and plane of reflection must pass through both the center of the
polyhedron and the starting node, which fixes the axis but still leaves one degree
of freedom for the plane. For the truncated tetrahedron, the only isomorphism
is a reflection about the plane containing the center and nodes 1 and 10. This
isomorphism leads to the layers shown in Table 5, which are the same as those
achieved through the layer connection method. Since there is no isomorphism
that sends nodes 6 and 8 into 11 and 12 while leaving node 1 invariant, we see
that the identical equivalent resistances are a coincidence.

Layer Number Nodes in Layer Equivalent Resistance (Ω)
1 1 0
2 2, 3 17/30
3 10 7/10
4 6, 8 29/30
5 11, 12 29/30
6 5, 9 16/15
7 4, 7 11/10

Table 5: Layers of Truncated Tetrahedron by Isomorphisms

In this project, we will find layers by first splitting the nodes using the dot
product method and then mandating that the layer connections within a layer
be identical. For the truncated tetrahedron, this leads to the layers given in
Table 5.

The last ingredient we will need is the l × l layer matrix L, whose entries
Lij are equal to the number of nodes in layer j that are connected to each node
in layer i. For the truncated tetrahedron, the layer matrix is given in Equation
1. The layer matrix will usually have the property that the ith row will be the
same as the (l− i+ 1)th row, but reversed. This does not hold for the truncated
tetrahedron because it lacks antipodes for all its vertices.

L =



0 2 1 0 0 0 0
1 1 0 1 0 0 0
1 0 0 0 2 0 0
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1
0 0 0 1 0 1 1


(1)
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3 Kirchhoff’s Circuit Laws

The first of Kirchhoff’s circuit laws dictates that the sum of currents in a
network meeting at a node is zero. In other words, the sum of currents flowing
into a node is equal to the sum of currents flowing out of the node. Kirchhoff’s
second law states that the sum of potential differences around a closed loop is
also zero. As a loop is traversed, positive potential differences arise from mov-
ing through a voltage source from negative to positive or from passing a resistor
while moving against the current. Alternatively, negative potential differences
occur when moving through a voltage source from positive to negative or from
passing a resistor in the direction of the current. The results of both laws for
the network shown in Figure 2 are as follows:

Kirchhoff’s Current Law: The sum of currents flowing into the right node,
i1, must equal the sum of currents flowing of the node, i2 + i3. This leads to
the equation i1 = i2 + i3.

Kirchhoff’s Voltage Law: In the first loop, moving clockwise from the right
node, there is first a negative potential difference from moving through the
resistor R2 with current i2, then a positive difference from moving through
the source ε1 from negative to positive, and finally a negative difference from
moving through the resistor R1 with current i1. This leads to the equation
−i2R2 + ε1 − i1R1 = 0.

In the second loop, again moving clockwise from the right node, there is first
a negative difference from moving through the resistor R3 with current i3, then
another negative difference from moving through the source ε2 from positive to
negative, another negative difference from doing the same with the source ε1,
and finally a positive difference from moving through the resistor R2 against
the current i2. This leads to the equation −i3R3 − ε2 − ε1 + i2R2 = 0.

Figure 2: Example Network for Kirchhoff’s Laws
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Using these equations, if given the values of any five of the eight unknowns,
would enable us to solve for the remaining three unknowns. We can use this
method to solve for the equivalent resistances of a polytope by first solving for
the currents running between layers, assuming that current always flows from
layers with lower number to those with higher numbers. We insert a current
of 1A into the starting node and take a current of 1

H−1A out of every other
node, where H is the total number of nodes in the network. We can create an
equation from Kirchhoff’s current law for a node each of the layers, though one
of them will not be linearly independent. For the truncated tetrahedron, the
currents running between layers are I12, I13, I24, I35, I46, I47, I56, I67. In layers 2,
5, and 7, resistors are running between two nodes in the same layer, but since
all nodes in a layer are equipotential, there is no current flowing across those
resistors and we can neglect them. Since there are eight currents, we need eight
linearly independent equations, six of which we get from the current equations,
shown below.

1 = 2I12 + I13
I12 = I24 + 1/11
I13 = 2I35 + 1/11
I24 = I46 + I47 + 1/11
I35 = I56 + 1/11
I46 + I56 = I67 + 1/11
I47 + I67 = 1/11

(2)

Since only six of these are linearly independent, we must also consider two
loop equations. These can be generated using a script written by Jeremy Moody
in 2013 [1]. His program, written in Java, has been translated to MATLAB for
this project. It works by finding two paths between a pair of layers that pass
through different layers on the way and noting that the potential differences
caused by them must be equal. For example, to get from layer 1 to layer 6
in the truncated tetrahedron, one could take the layer path 1 → 3 → 5 →
6 or 1 → 2 → 4 → 6. Since all the resistors are identical, we know that
I13 + I35 + I56 = I12 + I24 + I46. The other loop we can use are the two paths
to get from layer 4 to layer 7: 4 → 7 and 4 → 6 → 7, yielding the equation
I47 = I46 + I67. With all eight equations in hand, we can solve for the currents
running between each of the layers, and obtain the results

I12 = 17/55A
I13 = 21/55A
I24 = 12/55A
I35 = 8/55A
I46 = 3/55A
I47 = 4/55A
I56 = 3/55A
I67 = 1/55A

(3)

At this point we consider a different situation where a current of 1A is taken
out of a node in the layer we are trying to find the equivalent resistance to and
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a current of 1
H−1A is inserted into every other node. When the new system is

solved, we have the same values for currents between layers. Superposing the
two situations, as seen in Figure 3, we find the the potential difference between
the input node and the layer of interest is equal to 2

∑
Iij , where the sum of

currents takes a path from the starting node to the ending layer. Since all
resistors have the same value of 1Ω, we omit it from the sum. The superposed
system has a current of 1+ 1

H−1 = H
H−1A entering the starting node and coming

out of a node in the ending layer, so the equivalent resistance is found by

Ri = 2
∑

Iij
H − 1

H
. (4)

It is now trivial to calculate the equivalent resistances given in Table 5.

Figure 3: Superposition of currents [2]
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4 van Steenwijk’s Symmetry Method

By as early as the 1990s, the equivalent resistances had been derived for all
five Platonic solids. In 1998, van Steenwijk [2] published a paper outlining his
method, which involves noting that, from the perspective of any arbitrary node,
the other vertices of the regular solids form equipotential layers, as shown in
Figure 4.

Figure 4: Equipotential layers of Platonic solids [2]

The method is very similar to that of Kirchhoff’s circuit laws, in that a
current of 1A is inserted into one of the nodes (shown as an arrow in Figure
4), and a current of 1

H−1 is taken out of the remaining H − 1 vertices. The
potential of each of the i equipotential planes is then

Vi =

i∑
j=2

Ij
nj

=

i∑
j=2

1

nj

(
1− 1

H − 1

j−1∑
k=2

qk

)
(5)

where Ij denotes the total current flowing between layers j − 1 and j, nj
is the number of resistors crossing between layers j − 1 and j, and qj is the
number of vertices in layer j, where the input node is in layer 1 and the bottom
layer is N . We have also omitted the 1Ω resistor values. Since the network
is symmetric, the fraction

Ij
nj

divides the total current moving between layers

into the current through just one resistor. This current then gets multiplied by
the resistor value to obtain the potential drop over that layer. Since an equal
amount of current is taken out at all nodes other than the starting node, and all
remaining current is passed on to the next layer, we can calculate the current
moving from one layer to the next to be
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1− 1

H − 1

j−1∑
k=2

qk.

We then apply the same superposition as in Kirchhoff’s method, taking
current of 1A out of a node in the ith layer and feeding currents of 1

H−1A into
each of the other nodes. This superposition leads to the equation

2Vi =

(
1 +

1

H − 1

)
Ri.

Rearranged, the equation becomes

Ri =
2(H − 1)Vi

H
=

2

H

i∑
j=2

1

nj

(
H − 1−

j−1∑
k=2

qk

)
.

Noting that q1 = 1, the equation can be rewritten to yield

Ri =
2

H

i∑
j=2

1

nj

(
H −

j−1∑
k=1

qk

)
. (6)

A full chart of resistances and other relevant information is shown in Table 6.

H E N
{n2, . . . , nN}
{q1, . . . , qN}

R2 R3 R4 R5 R6

Tetrahedron 4 6 2
{3}
{1, 3}

1
2 . . . . . . . . . . . .

Octahedron 6 12 3
{4, 4}
{1, 4, 1}

5
12

1
2 . . . . . . . . .

Icosahedron 12 30 4
{5, 10, 5}
{1, 5, 5, 1}

11
30

7
15

1
2 . . . . . .

Cube 8 12 4
{3, 6, 3}
{1, 3, 3, 1}

7
12

3
4

5
6 . . . . . .

Dedecahedron 20 30 6
{3, 6, 6, 6, 3}
{1, 3, 6, 6, 3, 1}

19
30

9
10

16
15

17
15

7
6

Table 6: Equivalent Resistances of the Platonic Solids

There are a few special cases that van Steenwijk covers in his paper. First,
the equivalent resistance between two adjacent vertices is

R2 =
2

H

1

n2
(H − q1) =

H − 1

E
,

since the product of the number of vertices, H, with the number of edges coming
out of a node n2, is equal to twice the number of edges, E. Second, the equivalent

11



resistance between opposite vertices (if they exist) is

RN =

N∑
j=2

1

nj
.

Finally, the difference between equivalent resistances of opposite and next-to-
opposite vertices is

∆Re = RN −RN−1 =
1

E
.

Though van Steenwijk’s symmetry method is very useful for the Platonic
solids, it has two large drawbacks. First, there are several pieces of information
that need to be collected about a network before using the method. The number
of nodes and edges is not difficult to obtain, but what is difficult is determining
how many nodes are on each layer, and how many edges connect each of the
layers. The task of assigning nodes to layers will be addressed shortly. The
second drawback is that the method only works if there is no layer skipping.
That is, all the current must flow from the first layer to the second, and then
to the third, and so forth. Some networks, such as the truncated tetrahedron,
involve edges that go straight from the second layer to the fourth, for example.
In this case, the calculation of the total current flowing between layers becomes
much more difficult.
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5 Lovász’s Hanging Method

Both this method and the next will involve random walks. A random walk
on a graph is a sequence of nodes that begins with a specified node. A step is
then taken from the first node to one of its neighboring nodes, and then a step
to one of the neighbors of that node, and so forth. From any given node, we as-
sume that there is an equal probability that it will step to any of its neighbors.
The random walk can either be infinite or have some terminating condition,
such as stepping to a certain node or taking some total number of steps. For
example, a random walk of length 7 on the truncated tetrahedron shown in
Figure 1 starting at node 1 could be (1, 3, 6, 5, 4, 7, 4).

At this point, we introduce the concept of a hitting time. The hitting time
between two nodes a and b is the average number of steps it takes to get from
the former to the latter, and is denoted by H(a, b). In general H(a, b) 6= H(b, a).
Lovász [3] gives a concise formula for the hitting time between two nodes, given
in Equation 7. The degree of a node, deg(a), is equal to the number of neighbors
of that node, and v ∈ N(a) refers to the neighbors of node a. We define the
hitting time of a node to itself to be zero, or H(a, a) = H(b, b) = 0, since it
takes zero steps to go from a node to itself.

H(a, b) = 1 +
1

deg(a)

∑
v∈N(a)

H(v, b) (7)

We will now discuss the rubber band model. In this model, we treat the
edges of a network not as resistors, but as rubber bands, or ideal springs with
a natural length of zero. In this case the force that the rubber band exerts is
directly proportional to its length. The next action we take is to attach to each
node a weight equal to the degree of the node. We then pick an input node,
suspend it, and let the rest of the network hang freely under the influence of
gravity. An example of this model for the cube is shown in Figure 5, which has
been horizontally distorted to show the different nodes. Since every node the
cube has a degree of three, a weight of three is attached to each node.

Figure 5: Rubber Band Model of a Cube
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We will now show that the vertical distance of any node to the suspended
node is equal to its hitting time. Starting from the hitting time equation, we
multiply both sides by the degree of node a and obtain

deg(a)H(a, b) = deg(a) +
∑

v∈N(a)

H(v, b).

Since the sum is over all the neighbors of node a, it is clear that there are
deg(a) terms in the sum, equal to the number of copies of H(a, b) that we are
adding together on the left side. We can thus subtract over the sum and obtain∑

v∈N(a)

[H(a, b)−H(v, b)] = deg(a) = Wa, (8)

where Wa is the weight attached to node a, and is thus equal to deg(a). We
then split the neighbors of a into those that are above the node and those that
are below. The neighbors that are above exert an upward spring force on a, and
the neighbors that are below exert a downward spring force. We can ignore any
neighbors that are at the same height, since they exert no force at all. Since
the rubber bands have a natural length of zero, the difference in height between
two nodes is exactly proportional to the force exerted. Equation 8 can then be
rearranged such that the upward forces are on the left side and the downward
forces are on the right side. The upward forces are∑

F+ =
∑

v∈N(a)

[H(a, b)−H(v, b)]

such that H(a, b) > H(v, b). The downward forces are∑
F− =

∑
v∈N(a)

[H(v, b)−H(a, b)] +Wa

such that H(a, b) < H(v, b). These two equations are equal to each other,
which can only be true if the hitting time is equal to the distance from the
highest, suspended node.

While this is an interesting result if we want to physically model a network,
it is not actually necessary to solve for the equivalent resistances. If we imagine
that the random walk is being taken by a theoretical positive charge carrier, we
can see how the hitting time and the equivalent resistance are both measures
for how “hard” it is for charge to go from one point to another. Tetali [5] shows
how the hitting times from node x to node y and vice versa are found by

H(x, y) = mRxy +
1

2

∑
z

deg(z) [Ryz −Rxz]

and
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H(y, x) = mRxy −
1

2

∑
z

deg(z) [Ryz −Rxz] ,

where m is the total number of edges in the network and Rxy = Ryx is the
equivalent resistance between nodes x and y. The networks that we are dealing
with are vertex-transitive, so the term [Ryz −Rxz] will go to zero when summed
over all nodes z. Thus we are just left with

Rxy =
H(x, y)

m
=
H(y, x)

m
. (9)

We can create a system of equations just using the hitting time equation and
solve for the hitting time of every node. The equivalent resistance between any
node and the suspended one will be equal to the hitting time of that node, up
to a scaling factor. Given that we are using 1Ω resistors, we will need to divide
the hitting times by the total number of edges of the network. For the cube
shown in Figure 5, the equations are as follows, where the second argument in
H(a, b) has been omitted since b = 8 for all terms:

H(1) = 1 + 1
3 [H(2) +H(3) +H(4)]

H(2) = 1 + 1
3 [H(1) +H(5) +H(6)]

H(3) = 1 + 1
3 [H(1) +H(5) +H(7)]

H(4) = 1 + 1
3 [H(1) +H(6) +H(7)]

H(5) = 1 + 1
3 [H(2) +H(3) +H(8)]

H(6) = 1 + 1
3 [H(2) +H(4) +H(8)]

H(7) = 1 + 1
3 [H(3) +H(4) +H(8)]

We omit H(8) since we know that it is equal to zero, and we can also drop
it from the equations of every node that connects to it. We can rearrange the
system to obtain



1 −1/3 −1/3 −1/3 0 0 0
−1/3 1 0 0 −1/3 −1/3 0
−1/3 0 1 0 −1/3 0 −1/3
−1/3 0 0 1 0 −1/3 −1/3

0 −1/3 −1/3 0 1 0 0
0 −1/3 0 −1/3 0 1 0
0 0 −1/3 −1/3 0 0 1





H(1)
H(2)
H(3)
H(4)
H(5)
H(6)
H(7)


=



1
1
1
1
1
1
1


Solving the system, we find that

H(1) = 10
H(2) = 9
H(3) = 9
H(4) = 9
H(5) = 7
H(6) = 7
H(7) = 7
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Or, dividing by the total number of edges in the cube, 12, we have

R1,8 = 5/6Ω
R2,8 = R3,8 = R4,8 = 3/4Ω
R5,8 = R6,8 = R7,7 = 7/12Ω

This method works, but is fairly computationally expensive, as there is one
variable for every node. A much easier computation involves taking advantage of
the layers present in the network. Since nodes 2, 3, and 4 are in the same layer,
they have identical layer connections and equivalent resistances, and likewise
for nodes 5, 6, and 7. We can then simplify the equations, letting H(2, 3, 4) =
H(2) = H(3) = H(4) and H(5, 6, 7) = H(5) = H(6) = H(7):

H(1) = 1 + 1
3 [3H(2, 3, 4)]

H(2, 3, 4) = 1 + 1
3 [H(1) + 2H(5, 6, 7)]

H(5, 6, 7) = 1 + 1
3 [2H(2, 3, 4) +H(8)]

We can rearrange these equations into the matrix equation 1 −1 0
−1/3 1 −2/3

0 −2/3 1

 H(1)
H(2, 3, 4)
H(5, 6, 7)

 =

1
1
1


Solving the system, we find that

H(1) = 10
H(2, 3, 4) = 9
H(5, 6, 7) = 7

Or, dividing by the total number of edges in the cube, 12, we have

R1,8 = 5/6Ω
R2,8 = R3,8 = R4,8 = 3/4Ω
R5,8 = R6,8 = R7,7 = 7/12Ω

This produces the exact same results as before with only one variable for
each layer, omitting the starting node. This method can be very useful and not
computationally taxing, but relies on the network being vertex-transitive, which
is not generally true.
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6 Nahin’s Random Walk Simulation

The final method that we investigated was adapted from the random walk
simulations that Nahin [4] wrote about 2009, with two major changes. The first
change is that, where Nahin was trying to find the potentials of various nodes
in a node, we are trying to find equivalent resistances. The other change is that
Nahin did not take advantage of the layers of the network, which greatly reduces
the number of computations needed.

Figure 6: Graph of Cube

The first step is to compute the probability of stepping from each layer in a
network to every other layer. Because we are taking a simple random walk where
all the resistors have identical values, that probability is equal to the number of
edges running between the two layers over the total number of edges connected
to the first layer. For example, if we number the layers of the cube shown in
Figure 6 from top to bottom as 1 through 4, we can compute the transition
matrix P with entries Pij being the probability of stepping from layer i to layer
j as

P =


0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


This essentially sets up a Markov chain, which has been related to the equiv-

alent resistance problems extensively in other papers [6]. Once we have our tran-
sition matrix, Nahin details a way to run the random walk simulation, which
can be easily adapted to keep count of the number of steps taken. The results
for the cube, as well as their deviations from the actual resistances, are shown
in Table 7 for a run of five million trials per layer.
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Layer Number Result (Ω) Actual (Ω) Actual (Ω) Error
2 .5832 .5833 7/12 .0224%
3 .7502 .75 3/4 .0220%
4 .8326 .8333 5/6 .0922%

Table 7: Random Walk Results for Cube

For just five millions trials per layer, all of the networks tested both provided
accurate results (within 0.1%) and ran fairly quickly. The Platonic solids all
ran in under 30 seconds and the Archimedean solids in under 10 minutes. The
regular four-dimensional solids had very wide range, with the 5-cell taking under
a second and the 120-cell, with 45 layers, taking three and a half hours.
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7 Future Research

There are three main topics of future research that follow directly from this
project. The first is to find a better method of splitting nodes into layers. As
discussed in the section on Symmetrical Equivalent Layers, just computing the
dot products between nodes can sometimes lead to undersplitting layers, but
considering layer connections can lead to oversplitting. It would be very use-
ful to have another method that can predict when nodes with different layer
connections will still have the same resistance, as this would greatly simplify
calculations for some networks. For example, the truncated icosidodecahedron,
one of the Archimedean solids, has 120 vertices, each with their own layer when
considering layer connections. When just looking at the dot product, there are
62 layers, but the final calculation reveals 75 unique resistances. It seems log-
ical that there should be some method to predict the resistance layers before
the computation, or that there be some proof that equal resistances are just a
coincidence.

The second area of future research is to extend some or all of these meth-
ods to the Catalan solids. The Catalan solids are the dual polyhedra of the
Archimedean solids, and are notable in that their vertices do not all have equal
degree, and thus the solids are not vertex-transitive. This would seem to rule
out Lovász’s method, which is otherwise the most efficient method, with one
variable for every layer. The direct proportionality between hitting time and
equivalent resistance does not necessarily hold if the network is not vertex-
transitive. Since van Steenwijk’s method required that no edges skip a layer, we
are left with just using Kirchhoff’s circuit laws. Moody [1] details an approach
to adapt that method to the Catalan solids but only calculates results for the
rhombic dodecahedron and rhombic triacontahedron. A useful addition to a
later paper would be to include results for all of the Archimedean and Catalan
solids, along with either labeled pictures of the polyhedra, similar to Figure 1,
or labeled version of layer diagrams like Figure 6.

The final topic of future research is to investigate why certain networks
have a higher or lower range of equivalent resistances than other networks. For
example, the resistances for the truncated cube, shown in Appendix B, range
from 0.75 to 1.5667, whereas the resistances for the 600-Cell, shown in Appendix
C, range from 0.16528 to 0.21164. Is there some measure of the connectivity of a
graph that would allow insight into what range of resistances could be expected
for a given network? It is obvious that the more connected a graph is, the lower
the resistance between any two points is, since there are more possible paths for
current to flow, but research into a possible qualitative measure of this property
is warranted.
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A Equivalent Resistances of the Platonic Solids

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 3 1/2 0.5

Tetrahedron

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 3 7/12 0.58333
3 3 3/4 0.75
4 1 5/6 0.83333

Cube

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 4 5/12 0.41667
3 1 1/2 0.5

Octahedron

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 3 19/30 0.63333
3 6 9/10 0.9
4 6 16/15 1.0667
5 3 17/15 1.1333
6 1 7/6 1.1667

Dodecahedron

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 5 11/30 0.36667
3 5 7/15 0.46667
4 1 1/2 0.5

Icosahedron
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B Equivalent Resistances of Selected
Archimedean Solids

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 2 17/30 0.56667
3 1 7/10 0.7
4 2 29/30 0.96667
5 2 29/30 0.96667
6 2 16/15 1.0667
7 2 11/10 1.1

Truncated Tetrahedron

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 4 11/24 0.45833
3 2 7/12 0.58333
4 4 5/8 0.625
5 1 2/3 0.66667

Cuboctahedron

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 1 3/4 0.75
3 2 7/12 0.58333
4 2 13/12 1.0833
5 2 13/12 1.0833
6 2 77/60 1.2833
7 2 4/3 1.3333
8 2 83/60 1.3833
9 2 13/10 1.3
10 2 29/20 1.45
11 2 29/20 1.45
12 1 91/60 1.5167
13 2 31/20 1.55
14 1 47/30 1.5667

Truncated Cube
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Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 2 281/560 0.50179
3 2 767/1680 0.45655
4 1 51/80 0.6375
5 2 257/420 0.6119
6 2 1133/1680 0.6744
7 2 1133/1680 0.6744
8 2 1229/1680 0.73155
9 2 1229/1680 0.73155
10 1 421/560 0.75179
11 2 323/420 0.76905
12 2 63/80 0.7875
13 2 1343/1680 0.7994
14 1 57/70 0.81429

Rhombicuboctahedron

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 4 29/60 0.48333
3 4 61/90 0.67778
4 4 127/180 0.70556
5 2 7/9 0.77778
6 2 7/9 0.77778
7 4 49/60 0.81667
8 4 38/45 0.84444
9 4 157/180 0.87222
10 1 8/9 0.88889

Icosidodecahedron
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C Equivalent Resistances of Selected
Regular Four-Dimensional Convex Solids

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 4 2/5 0.4

5-Cell

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 4 15/32 0.46875
3 6 7/12 0.58333
4 4 61/96 0.63542
5 1 2/3 0.66667

8-Cell

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 6 7/24 0.29167
3 1 1/3 0.33333

16-Cell

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 8 23/96 0.23958
3 6 11/40 0.275
4 8 139/480 0.28958
5 1 3/10 0.3

24-Cell

Layer Nodes in Layer Resistance (Exact) Resistance (Decimal)
2 12 119/720 0.16528
3 20 14293/75600 0.18906
4 12 737/3780 0.19497
5 30 1903/9450 0.20138
6 12 37/180 0.20556
7 20 5231/25200 0.20758
8 12 3179/15120 0.21025
9 1 40/189 0.21164

600-Cell
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