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Abstract

Autonomous electric vehicles are set to replace most conventional vehicles in the

near future. Extensive research is being done to improve efficiency at the individ-

ual and fleet level. There is much potential benefit in optimizing the deployment

and rebalancing of Autonomous Electric Taxi Fleets (AETF) in cities with dynamic

demand and limited charging infrastructure. We propose a Fleet Management Sys-

tem with an Online Optimization Model to assign idle taxis to either a region or a

charging station considering the current demand and charging station availability.

Our system uses real-time information such as demand in regions, taxi locations and

state of charge (SoC), and charging station availability to make optimal decisions in

satisfying the dynamic demand considering the range-based constraints of electric

taxis. We integrate our Fleet Management System with MATSim, an agent-based

transport simulator, to simulate taxis serving real on-demand requests extracted

from the San Francisco taxi mobility dataset. We found our system to be effective

in rebalancing and ensuring efficient taxi operation by assigning them to charging

stations when depleted. We evaluate this system using different performance met-

rics such as passenger waiting time, fleet efficiency (taxi empty driving time) and

charging station utilization by varying initial SoC of taxis, frequency of optimization

and charging station capacity and power.
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Chapter 1

Introduction

The automobile industry is entering the new era of Autonomous Electric Vehicles

(AEVs) which can fundamentally redefine our transportation systems. AEVs can

completely automate the way we travel, increase the ease of navigation and safety

as well as reduce the impact we have on the environment when combined with re-

newable electric power sources. While they offer all of these compelling advantages,

there is a need to build new technologies and infrastructure to lay the ground for

their adoption and efficient utilization.

Electric vehicles have been on the road since 2010 [1]; their adoption is set to be

the norm in the coming years with advances in their total distance range per charging

cycle and availability of more charging stations [2]. Many countries are providing

tax benefits to encourage the adoption of electric vehicles and this coupled with the

increasing trend of electricity generation from renewable sources, can make them

completely carbon emission-free mode of transport.

Driving any vehicle requires formal training, and despite that, human errors

lead to accidents resulting in loss of property and even life. Extensive research is
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being done to replace the human aspect in operating a vehicle, and they are already

delivering promising results in implementing various levels of autonomy in vehicles.

Level 5 autonomous vehicles will be able to drive completely on their own based

on inputs from a wide array of sensors, motion planning, and machine learning

algorithms, high definition maps and data from nearby vehicles without any human

intervention [3]. Aided with all this information in real time, they can increase

the safety of the passengers as they can avoid accidents which humans are not

capable of foreseeing. Autonomous vehicles will also increase the vehicle utilization

as they can perform tasks without a driver and this makes them well suited to act

as autonomous taxis which can be on the road all day serving passengers without

suffering any fatigue.

So based on this trend, we will most likely see the adoption of Autonomous

Electric Vehicles (AEV) that can result in an environmentally friendly mode of

transport which also offers better user experience for people traveling. There will be

a massive deployment of autonomous electric taxi fleets as both Tesla [4] and Uber [5]

are already working towards this goal. As passenger cars spend about 96% percent

of the time in parking [6], Tesla wants to provide the option for users to let their

cars to join a taxi fleet when not in use and get paid for serving passenger requests.

Similarly, Uber plans to have their own fleet of autonomous electric vehicles instead

of current driver-operated cars.

Implementing these Autonomous Electric Taxi Fleets (AETF) in urban cities

share some of the same problems faced in dispatching, conventional taxis along with

limited range and charging based constraints of the electric vehicles. On-demand

mobility services require constant rebalancing of these vehicles across regions based

on dynamic demand to reduce the waiting time for passenger and idle time for the

taxis. Electric taxis require multiple recharging sessions because of their limited
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range [7]. To reduce their time spent on charging stations, they have to be assigned

to charging stations which can offer them the shortest charging sessions. Charging

stations play a critical role in operating any electric taxi fleet, maximizing their

utilization can improve the fleet efficiency in serving passengers [8]. To address

these problems, we have implemented a fleet management system with an online

optimization system integrated with various data sources like taxis serving in a

region, unmet demand in a region, the location of idle vehicles and availability of

charging stations. This fleet management system has full control of all taxis in the

fleet, and it will move them based on the decisions from the optimization system to

increase the fleet utilization.

1.1 Problem Background

The rise in urban population density has made it challenging for the public

transportation systems to handle the demand because of the inherent limitations

to the speed at which their infrastructure can expand. At the same time, recent

technological advancements have enabled newer modes of transportation. Mobility-

on-Demand (MoD) services like Uber and Lyft have taken advantage of the people

need for an instant and convenient way of traveling in recent years, and their adop-

tion is considered the future of urban mobility [9].

MoD and Taxi dispatching face similar problems in meeting the user demand

efficiently. With limited number of vehicles in their fleet, it is beneficial to find ways

to reduce the waiting time for passengers to board a vehicle once they have placed a

request. It is important to ensure their vehicles are not idle and serve many requests

as possible to increase their overall fleet utilization. These problems are addressed

by repositioning vehicles to the regions with high demand, so more vehicles can
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reach their passengers fast. However, because of the spatial and temporal nature of

the user requests in the urban setting, the demand in these regions are dynamic and

uncertain resulting in a greater number of vehicles being idle in an area where high

demand no longer exists. This imbalance leads to inefficiency in the fleet usage and

requires rebalancing strategies that can continuously adapt to the dynamic nature

of the user mobility. Rebalancing of vehicles based on demand is a widely studied

optimization problem.Studies [10, 11] use a linear optimization program to rebalance

the idle vehicles to improve the efficiency of an autonomous ride sharing taxi fleet.

Rebalancing strategies for a fleet of electric vehicles offer more challenges because

of the need for extended charging time required by each of these vehicles for their

continuous operation. While advances are being made related to the battery capacity

and to reduce the time it takes to charge, these vehicles will still be off the road to

charge every few hours in a day. With only limited charging infrastructure rolled

out in urban cities, distributing the demand across charging stations is important

to avoid long queues of depleted vehicles in the charging stations resulting in less

number of vehicles on road [12].

Placement of charging stations plays a critical role in solving this problem. Ex-

isting studies [13–15] provide linear optimization based strategies to find the optimal

locations for charging stations to improve the fleet efficiency and balance the uti-

lization across charging stations.

In recent times, agent-based microscopic simulation models are used to study

and evaluate various scenarios and strategies. With the increase in computational

power, these systems are now capable of simulating millions of agents like vehicles,

passengers, public transport, charging and parking facilities and as well as their

interactions with each other. They can be configured to simulate the activity and

preferences of each agent, closely mirroring the real-world. This gives us tremendous

4



insights in understanding complex scenarios as well as the ability to test, how new

infrastructure and policies can affect the dynamic urban mobility.

Studies [16] and [17] simulate autonomous electric taxi fleets in urban cities

like Berlin and study how the fleet size, charging station locations and rebalancing

strategies affect the fleet’s ability to satisfy user demand.

1.2 Contribution

We have created a fleet management system with an online optimization model

that can rebalance idle taxis across regions via repositioning on current demand and

assigning charge depleted taxis to charging stations that can provide them with fast

charging time. This system helps with both the problem of rebalancing and charging

station assignment together improving overall user experience and fleet utilization.

The online optimization conducted in this study is performed using 0–1 integer

optimization. For every discrete time t, the model assigns each idle and charge

depleted taxi to a distinct region and charging station respectively based on various

constraints and parameters like demand in a region, charging station availability

and range limitations of idle taxis. The objective of this model is to serve user

requests while improving the taxi fleet utilization through reducing total idle time

and energy conservation through distance traveled. The Fleet Management system

gets real time information of all taxis in the fleet, charging station availability and

user requests. It also has complete control over the autonomous taxis and can

execute the decisions from the optimization model.

We have used MATSim, an open source multi-agent transport simulation tool

integrated with our optimization model, to act as the Fleet management system.

It will simulate an urban autonomous taxi fleet deployment scenarios, vehicle in-
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teraction with charging stations with real user requests and road networks. This

can also be used to realistically evaluate different optimization models for routing

and rebalancing [18] and [19]. We have extensively customized MATSim to simu-

late autonomous electric taxi behavior and its integration with our custom online

optimization model. To the best of our knowledge, our approach of simulating an

Autonomous Taxi Fleet Management System with an optimization model that can

rebalance the fleet based on demand and assign taxis to charging stations is novel.

We have implemented a prototype of this combined system of simulation-optimization

and used it to analyze the impact of different parameters based on performance met-

rics such as passenger waiting time, empty drive ratio and charger occupancy, and

found them to be effective. We have also suggested improvements to this system like

how integrating a demand prediction model can improve its performance in meeting

user demand.

The remainder of this paper is organized in the following manner. In Chapter 2,

we introduce the transport simulation tool MATSim and our custom autonomous

electric vehicles module. In Chapter 3, we show the formulation of our online opti-

mization model. In Chapter 4, we discuss about the integration between MATSim

modules and the online optimization model. In Chapter 5, we provide the details

of our experimental setup and detailed analysis of its results. In Chapter 6, we end

with the summary of our work and provide our insights for future work.
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Chapter 2

Autonomous Electric Taxi Fleet

Simulation using MATSim

2.1 Introduction to MATSim

MATSim is a large scale, multi-agent, transport, micro-simulation framework

implemented in Java. It is an open source software primarily developed at ETH

Zurich [20]. Simulations in MATSim are based on agents and their activities. Agents

can be vehicles, passengers, and dispatchers, each performing their operations such

as serving a passenger, requesting a vehicle and dispatching vehicles respectively.

Given a scenario of vehicles and passenger trip information such as time and location

of pickups and drops, MATSim can simulate those activities and evaluate different

plans in each iteration and score them based on the cost function defined. With

multiple iterations, it can eventually find the best plan in terms of cost quality to

complete the defined activities.

We can define a scenario in the MATSim using the following input files:
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1. Network: This file provides the road network for the vehicles to traverse. This

network is extracted from real-world road networks along with information

like free-flow speed and capacity per hour. Based on the network information

in this file, MATSim creates a network of nodes with links connecting them in

a x−y coordinate system.

2. Vehicles: This file provides information about the vehicles in the scenario. It

defines the starting location and time of each vehicle along with their battery

capacity and starting State of Charge (SoC) which is the amount of charge in

their battery.

3. Population: This file provides the activities of all passengers in the simulation

like their time and location of their travel activity. In a static scenario, We have

to submit the entire plan for each passenger which requires prior knowledge of

all their activities while in dynamic agents scenario, not all this information

is needed.

MATSim is widely used to simulate entire transportation activities of various

cities to find patterns and evaluate different policies. It is used in study [21] to

decrease the passenger traveling time without increase in cost and in study [22] to

study the impact of deploying autonomous electric taxi fleet on traffic congestion in

Berlin city. For additional information on the MATSim tool, we refer to [20].

2.2 Autonomous Electric Vehicles Module

MATSim is designed to be extensible to add more custom behaviors and scenarios

to mimic new and evolving modes of transport. To simulate an always online service

like MoD, MATSim should have the ability to handle new requests at any point of
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simulation and reoptimize its vehicle planning and routing. This functionality is

implemented using Dynamic Vehicle Routing Problem (DVRP) module which is

described in detail in [23]. Numerous other functionalities can be built over the

DVRP module to simulate complex passenger, vehicle and dispatcher behavior in a

MoD service.

In this study, we have modeled all vehicles in the fleet to exhibit autonomous and

electric vehicle behavior. To achieve this, we have implemented custom functionali-

ties by extending the electric taxi implementation in [24]. The autonomous behavior

of these vehicles gives the dispatch system complete control over these vehicle move-

ments and get real-time status information like its location, passenger details, and

SoC. To simulate electric vehicles, we have added behaviors like discharging power

from their batteries based on the speed they are traveling, the ability to charge their

batteries when plugged into a port in the charging station. We also have simulated

charging stations in the network with the ability to charge vehicles plugged to its

ports, queue for vehicles waiting for their turn to charger. These charging stations

is also connected to the Fleet Management System which can access all its status

information in real time. We have modeled the characteristics including battery ca-

pacity, discharge rate of electric vehicles in the simulation as that of electric vehicle

model Nissan Leaf 2012 [25]. Using this custom module, we can simulate deploy-

ment of the autonomous electric vehicle fleet in cities with real user trip information

data and evaluate various optimization models to rebalance and assign vehicles to

charging stations.

In the next chapter, we will discuss about the formulation of our online opti-

mization model in detail.
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Chapter 3

Online Optimization Model

The problem of rebalancing idle vehicles across regions and finding optimal charg-

ing stations for charge depleted vehicles can be modeled as an online optimization

problem. Online optimization is used to make decisions in near real-time with only

data available at that point of time [26]. Both rebalancing and charging station

assignments predominantly depend on the demand for vehicles and charging sta-

tions respectively. Offline optimization requires the knowledge of future demand

but predicting future user demand on MoD services is found to be challenging, and

error in demand prediction can drastically affect the model performance. Online

optimization does not suffer from this drawback and has been proven to perform

better than offline optimization models in few scenarios like shown in [19]. Integrat-

ing optimization models with MATSim have been proven effective in analyzing and

evaluating various strategies as shown in [27, 28].

We have formulated our optimization model using Binary Integer Programming

(BIP). BIP is a type of Integer Programming where the variables can be only either

0 or 1. They are known as 0–1 Integer Problems for the same reason. BIP is widely
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used for assignment based problems where typically 0 denotes no assignment while

1 denotes an assignment. This binary type of decision is well suited for this problem

of rebalancing and charging station assignment, where each taxi is assigned either

to a distinct region or a charging station.

3.1 Assumptions

We have made assumptions related to various aspects of this problem while

coming up with our model formulation.

3.1.1 Related to time

• We consider discrete time intervals.

• We consider appropriate level of discretization for these time intervals in terms

of minutes.

3.1.2 Related to taxis

• MATSim will assign taxis to pickup passengers only within their current re-

gion.

• Idle taxis are taxis which are not serving any request at time t.

• Idle taxis will be moved to other regions to meet their demand at time t. Once

a taxi is assigned to a region, they will move to the center of the region and

can start serving passengers inside that region.

• Idle taxis with SoC less than a certain threshold θ at time t will be assigned

to a charging station.
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3.1.3 Related to Demand

• In online optimization based approach, We consider only the demand at time

t and assume we don’t have any information on the future demand.

• We try to ensure that all demand at each time interval t are met, but it is

not always possible when the demand is more than the taxis available in the

fleet and SoC of the taxis can limit their ability to serve requests out of their

range.

• In case of demand in a region is less than a certain threshold, MATSim will

not consider them as demands. This is to prevent premature balancing.

• If there is demand less than the threshold for successive k time periods, then

MATSim will consider them as demands. This is to ensure that those demands

are met as they have persisted over multiple time periods.

3.1.4 Related to Regions

• We partition the entire region of the city into smaller square shaped regions

of equal size.

3.1.5 Related to Charging Station Locations

• We partition the entire region of the city into square grids of equal size and

assume there are charging stations within that region.

• We assume there will be less number charging stations than the number of

regions, as its less likely for every region to have a charging station.
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3.1.6 Related to Charging Stations

• We assume all charging stations have the same total number of ports available

for taxis to get plugged and start the charging session.

• We assume taxis will be added to a queue of infinite size when there is no port

available for them to get plugged.

• We assume taxis will continue charging up to their maximum battery capacity

and can unplug themselves after a charging session and leave the charging

station to start serving requests in that region.

3.1.7 Related to charging station reachability

• MATSim will assign taxis to a request only if they have enough SoC to com-

plete the request and reach at least one charging station from the drop off

location of that request. This is to ensure there is enough charge in the taxi to

complete its request once started and no taxi is stranded on the road without

the ability to reach at least one charging station after dropping a passenger.

• Taxis with low SoC tend to become idle as their ability to reach a charging

station after completing a request is limited.

3.2 Problem Formulation

We provide a 0–1 integer programming formulation for the AETF rebalancing

and charging station assignment problem. We will start with the sets, parame-

ters and variable definitions, followed by the constraints, equations, objective and

complete formulation.
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3.3 Set Definition

The different sets used in our model formulation are as follows.

• E: Set of all autonomous electric taxis, indexed by e

• I: Subset of E which denotes autonomous electric taxis that are idle, indexed

by i

• R: Set of regions, indexed by r

• S: Set of charging stations, indexed by s

• T : Set of time periods, indexed by t

3.4 Parameter Definition

The different parameters which are part of our model formulation are as follows.

3.4.1 Region Attributes

• nrt: Total number of idle taxis in region r at time t

• drt: Demand in region r at time t

3.4.2 Taxi Attributes

• cit: Charge in taxi i at time t

• δtsi: Charge required to reach charging station s for taxi i at time t.

• δtri: Charge required to reach region r for taxi i at time t
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3.4.3 Charging Station Attributes

• pst: Total number of charging ports in charging station s

• ust: Sum of total number of taxis in queue and total number of taxis that are

en route to charging station s at time t

3.5 Integer Programming Formulation

The formulation of our online optimization model is as follows.

• Decision Variables:

1. xist: Binary variable denotes assignment of taxi i to charging station s

at time t

xist =


1 if taxi i is assigned to charging station s at time t;

0 Otherwise.

(3.1)

2. xirt: Binary variable denotes assignment of taxi i to region r at time t

xirt =


1 if taxi i is assigned to region r at time t;

0 Otherwise.

(3.2)

• Constraints:

1. All idle taxis are assigned either to a charging station, or a region, at
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time t:

∑
s∈S

xist +
∑
r∈R

xirt = 1,∀ i ∈ I. (3.3)

2. All idle taxis can be assigned only to those charging stations that are

reachable:

xist ≤ b1 + cit − δtsic, ∀ i ∈ I, s ∈ S, t ∈ T. (3.4)

3. All idle taxis can be assigned only to those regions that are reachable:

xirt ≤ b1 + cit − δtric, ∀ i ∈ I, r ∈ R, t ∈ T. (3.5)

4. All idle taxis can be assigned only to a charging station if its charge at

time t is less than the threshold θ:

xirt ≤ cit + (1− θ), ∀ i ∈ I, r ∈ R, t ∈ T. (3.6)

• Equations:

1. Sets the values of εrt, εrt:

drt = nrt + εrt − εrt, ∀ r ∈ R, t ∈ T. (3.7)

• Objective Coefficients:

1. ast: User defined objective term to incentivize or disincentivize taxi as-

signment to charging station s at time t
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2. art: User defined objective term to incentivize or disincentivize taxi as-

signment to region r at time t

3. brt: User defined objective term to incentivize or disincentivize meeting

demand in the region r at time t

4. εrt, εrt: Non negative deviation variables to incentivize or disincentivize

demand being met in region r at time t

• Objective Function Components:

1. ast incentivize assignment of idle taxis to charging stations with available

ports and disincentivize assignments to charging stations where there are

no free ports as that might result in long waiting time in the queue for

the taxi:

∑
t∈T

∑
i∈I

∑
s∈S

(
(ast)xist

)
. (3.8)

2. art incentivize assignment to regions which requires the least amount of

charge for the taxis to reach:

∑
t∈T

∑
i∈I

∑
r∈R

(
(art)xirt

)
. (3.9)

3. εrt, εrt with brt incentivize demand being met by assigning idle taxis to

those regions:

∑
t∈T

∑
r∈R

(
brt(εrt + εrt)

)
. (3.10)
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• Complete Formulation:

The complete formulation of our model is as follows.

minimize
∑
t∈T

[∑
i∈I

(∑
s∈S

(ast)xist +
∑
r∈R

(art)xirt

)
+
∑
r∈R

(
brt(εrt + εrt)

)]
(3.11)

subject to
∑
s∈S

xist +
∑
r∈R

xirt = 1,∀ i ∈ I (3.12)

xist ≤ b1 + cit − δtsic, ∀ i ∈ I, s ∈ S, t ∈ T (3.13)

xirt ≤ b1 + cit − δtric, ∀ i ∈ I, r ∈ R, t ∈ T (3.14)

xirt ≤ cit + (1− θ), ∀ i ∈ I, r ∈ R, t ∈ T (3.15)

drt = nrt + εrt − εrt, ∀ r ∈ R, t ∈ T (3.16)

xirt ∈ {0, 1}, ∀ i ∈ I, r ∈ R, t ∈ T (3.17)

xist ∈ {0, 1}, ∀ i ∈ I, s ∈ S, t ∈ T (3.18)

εrt, εrt ≥ 0, ∀ r ∈ R, t ∈ T (3.19)
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Chapter 4

Integrating MATSim with Online

Optimization Model

To implement and study the Fleet Management System, we have to integrate

MATSim with our Online Optimization Model. Once integrated, MATSim can sim-

ulate the user requests, AETF and charging stations, and implement the various

assignment decisions from the optimization model. Figure 4.1 illustrates how the

fleet management system with online optimization model is integrated with simula-

tion in MATSim.
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Figure 4.1: Fleet Management System integrated with MATSim

4.1 Parameters from MATSim

We extract parameters from simulation running in MATSim which will be passed

to the online optimization model as inputs.

1. Regional Parameters:

We can define the regions in MATSim by specifying the cell size for each

region. MATSim creates square-shaped regions of equal size based on the cell
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size. Smaller cell size will result in more number of regions. To keep track

of regional locations of all taxis in the fleet, MATSim maintains a regional

taxi registry. When a taxi enters a region, it will be added to the registry of

the new region it entered and will be removed from the region it left. We can

identify idle taxis in the registry by checking if they are serving any request. It

also maintains a registry for all unplanned requests in each region. Unplanned

requests are requests which are not assigned to any taxi signifies the unmet

demand in the region. Parameters nrt which is total idle taxis in region r at

time t is obtained from regional taxi registry and unplanned requests registry

provides the drt which is total number of demand in region r at t.

2. Taxi Parameters:

Operational information of all taxis in MATSim are continuously updated

when they enter and exit new links in the network. MATSim also updates the

SoC of the electric taxis based on the operation they are performing. Discharge

rate is proportional to the speed at which the taxi is moving and there will be

some discharge even when the taxis are idle. When the taxis are plugged to a

port in the charging station, their SoC increases up to their battery capacity.

This provides us with the SoC information cit of all taxis in the fleet at any

given time t.

MATSim can retrieve the location coordinates from all taxis in the simulation.

Using the current location information, it can calculate the travel path and

time it takes for each of this taxi to reach all regions and charging stations.

We can estimate the charge required based on the distance to reach each

of these locations. Because of events like congestion which can increase the

travel time and energy consumption, we can only estimate the energy required.
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Underestimating the charge required to reach various locations can result in

taxis losing all their charge before reaching their destinations. These estimates

provides δtsi which is the charge required to reach charging station s for taxi i

at time t and δtri which is the charge required to reach region r for taxi i at

time t.

3. Charging Station Parameters:

We can simulate charging stations by defining their location in the network,

total number of ports and charging power. We can get various information

like number of ports in use, number of taxis in queue and number of taxis

that are assigned to each of this charging stations which are en route. This

provides us the parameters pst and ust. pst is the total number of ports in

the charging station s and ust is the sum of total number of taxis in queue

and total number of taxis that are already been assigned and en route to the

charging station s at time t.

4. Additional Parameters: We also define the minimum threshold of demand

k below which demand in the region is not considered. This is to ensure,

premature allocation of taxis to a region whose demand might have been met

by other taxis in the region before the assigned taxis reach the region. If the

demand below the threshold k is persistent over more than 2 time periods then

we consider it as a demand and model might assign idle taxis to the region to

meet those demand. Charging power of the charging stations w expressed in

kilowatt-hour (KWh) is configured in the simulator to mimic different levels

of charging stations [29].
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4.2 Integrated Simulation-based Optimization

Algorithm

We have implemented the online optimization model in Java using Gurobi Opti-

mizer[30] and integrated with Autonomous Vehicle Module in MATSim. MATSim

executes the model at defined time intervals t in T . The algorithm which explains

the interaction between MATSim and the optimization model is as follows.

Algorithm 1: Algorithm for rebalancing and assigning charging stations to
idle taxis in AETF

Input : Set of Regions R; Set of Charging Stations S; Time intervals t in T
to run the model; Minimum charge threshold θ; Minimum demand
threshold in regions k.

Output: Regional or Charging station assignments for each idle taxi at time t
1 . foreach t in T do
2 Build optimization model in Gurobi using inputs nrt, drt, cit, δ

t
si, δ

t
ri, pst,

ust.
3 Optimize the resulting model.
4 Reassign taxis in MATSim according to optimal taxi assignment decisions.
5 MATSim continues to simulate the fleet till next t.

6 end
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4.3 Illustrative Example of Online Optimization

Model

Figure 4.2: Model Decisions Example

Figure 4.2 shows the assignment decisions for a given scenario at time t. The

square boxes are the 4 regions named R1, R2, R3 and R4. The dotted lines depict

the closest regions to each other. The circles S1 and S2 represent charging stations

along with their region R1 and R2 respectively. The demand in the region is denoted

by ’D’ in each region and IDs of idle taxis with their SoC at time t are shown next

to each region. Number of available ports in each charging station are also shown.

The assignment decisions from the model are shown as blue line with arrows

along with the IDs of taxis that are being moved. Model’s objective is to ensure

that the demand is met in each region by moving idle taxis to that region and
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to assign taxis with low charge to charging stations with available port under given

constraints. We can see that Taxi 6 has low SoC and it is being assigned to charging

Station S2 instead of S1 as it has a free port available. To meet the demand in Region

R4 idle taxis 2 and 3 are moved from region R2 where there is no more demand and

idle taxis 8 and 10 are moved to region R4 and R1 respectively from R3 where the

demand has reduced. These decisions from the model are optimal and feasible with

the given constraints.

This example illustrates how the optimization model makes the decisions based

on parameters from MATSim and how MATSim implements those decisions by

moving the idle taxis either to a region or a charging station.
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Chapter 5

Experiments & Results

We evaluate our Taxi Fleet Management System through various performance

metrics by simulating real world scenarios in MATSim. We also analyze how dif-

ferent parameters in the model and the fleet influence the metrics to show how this

system can be used to effectively analyze various scenarios. All experiments were

run on an Intel Core i7 6th Gen 6700HQ 2.60 GHz processor with 16.0 GB RAM

running 64-bit Windows 10.

5.1 Dataset Description

We use the San Francisco Taxi Cabs Mobility dataset which contains over 10

million GPS traces of 500 taxis for a period of 30 days [31]. It also provides occu-

pancy information in each of the taxi along with their time and location using which

we can identify the pickup and drop off location of all requests.

To simulate a real-world scenario, we have extracted 1170 taxi requests over a

period of 4 hours from 05/23/2008 06:00:00 to 05/23/2008 10:00:00. We have also

identified the 310 taxis which were in service during that time period. We have used
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the same number of requests and taxis from the dataset to mimic the real-world as

close as possible.

We used Open Street Map (OSM) to extract the San Francisco road network

and convert it into MATSim compatible network.xml file where all the GPS coor-

dinates are mapped to a x−y coordinates in EPSG-2227 Spatial Reference System.

We created the population.xml and vehicles.xml from the extracted information by

mapping the GPS coordinates of pickup and destination to the x−y coordinates in

the MATSim network.
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5.2 Regions and Charging Stations

Figure 5.1: Regions and Charging Stations in San Francisco Simulation

Figure 5.1 shows the region partitions and red dots show the charging station

locations on the links in the road network. The entire map region is partitioned into

16 square regions of equal size. Higher number of regions up to a level have found

to be effective in meeting the demand as the reassignments can be more precise

28



[32] but they also increase the computational complexity and since we assume that

the reassigned taxis will be moved to a parking location close to the center of each

region, its not possible to have so many large parking lots inside an urban city.

We have placed 13 charging stations to cover the entire network, so the taxis

always have at least one charging station within a certain range when they move

across the regions. Few regions have more than one charging station, this is to

reduce queue length in charging stations in regions of high demand. All charging

stations are assumed to have the same number of ports and charging power in terms

of kilowatt-hour (kWh) which determines the time it takes to charge a vehicle to

its maximum capacity. We vary the number of ports and charging power in our

analyzes to study their impact in detail.
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5.3 Demand of User Requests

(a) 6am - 7am (b) 7am - 8am

(c) 8am - 9am (d) 9am - 10am

Figure 5.2: Pickup request locations during each hour

30



Figure 5.2 shows the user pickup requests from the dataset mapped to the MAT-

Sim network of San Francisco city. We can see that the number of requests increase

with time and most of the pickup requests originate from the top left region which

constitutes the Financial District, Nob Hill, Chinatown and Civic Center.

This kind of spatiotemporal distribution of requests requires robust rebalance

strategies to improve fleet utilization and provides us a good use case for testing our

rebalancing model.

5.4 Taxi Power Consumption and Battery

Capacity

We have modeled the power consumption and battery capacity of the taxis in the

fleet based on electric vehicle Nissan Leaf 2012. Maximum usable battery capacity

is set to be 21 KW. Discharging rate varies based on the vehicle movement which

is determined by the speed and acceleration, and auxiliary power consumption like

various other electrical components like onboard computer and air conditioning.

This has been configured based on the energy consumption in [25].

5.5 MATSim Parameters and Limitations

We run the simulation for 7 hours from 6:00 to 13:00 for serving requests in the

period of 4 hours from 6:00 to 10:00. Because of the need for charging the taxis

during their operation, not all taxis will be on the road serving, so it takes more

time to complete these requests than conventional taxis.

We have set the minimum charge threshold θ to be 20% of the battery capacity.

The minimum demand threshold for a region k is set to 5 and persistent demand
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less than the threshold k for 2 subsequent time intervals will be considered.

We estimate the energy consumption before each taxi is assigned to a request,

region or a charging station to ensure they have enough charge to reach a charging

station before their charge is depleted. But sometimes because of reasons like traffic

congestion, these estimates may not be correct and it can lead to some taxis get-

ting depleted before they can reach a charging station. We can avoid this by over

estimating the power consumption and premature charging but it will in turn affect

the fleet’s ability to serve the user requests effectively. During our experiments,

few taxis did get stranded because of the above reason, but the number of taxis

affected is less as its around 10% of the fleet and it mostly happens at the end of

the simulation.

5.6 Two different scenarios based on initial SoC

The distribution of SoC of all taxis in the fleet is a major factor in determining

the number of taxis on road serving requests and number of taxis in charging station

at any given point of time. This distribution varies over a period of time-based on

the charging cycle of the taxis. To study how these distributions affect the metrics,

we experiment with two different scenarios where we randomly assigned the initial

SoC to be a percentage of the battery capacity for all taxis as per the percentage

distribution shown in the Figure 5.1.

SoC = 100% SoC = 50% SoC = 30%
Scenario 1 50% 40% 10%
Scenario 2 50% 20% 30%

Table 5.1: Scenarios with different percentage distribution of inital SoCs
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5.7 Evaluation Metrics

We use 3 metrics from the literature to evaluate the performance of the dispatch-

ing system in terms of customer satisfaction and fleet efficiency.

• Passenger Waiting Time: This metric represents how well the demand is being

met and it is expressed as average seconds passengers had to wait before they

boarded a taxi each hour.

• Empty Drive Ratio: This metric represents the fleet utilization in terms of the

average ratio of Unoccupied driving to total driving for all taxis operating in

an hour. This ratio tends to be high in electric taxis as they take frequent

empty drives to the charging stations.

• Charging Station Occupancy: This metric represents the total number of taxis

in the fleet assigned, plugged and queued in all charging stations at a given

point of time. This signifies the utilization of charging infrastructure and how

long taxis spend in charging stations.

5.8 Varying Time Interval t

The time interval between each rebalancing and charging station assignment

decisions is an important parameter in the model. Since its an online optimization

model only idle taxis and unmet demand at time t are considered. We experimented

with t=10 and t=15 for both the scenarios to analyze how it affects the metrics.
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5.8.1 Scenario 1

Average Passenger Waiting Time: From Figure 5.3(a), We can see that average

passenger waiting time was low when t=15 than when t=10. This can be because of

premature rebalancing of idle taxis when there is upcoming demand in their regions

which the model was not aware. Compared to Scenario 2 Figure 5.3(b), waiting time

is relatively low in the beginning as number of low charge taxis is less in Scenario 1.

The increase in waiting time after hour 8 is because of increase in charge depleted

taxis in the fleet as well as because of the increase in user requests.

Empty Drive Ratio: We can see from Figure 5.3(c) that the empty drive ratio

is similar when t=15 and t=10 except for few hours in the middle. This can be

attributed to premature rebalancing which increases the empty drive ratio as the

taxis are moved across regions. The rise in empty drives after hour 9 is because of

increased assignment of depleted taxis to the charging stations and rebalancing to

meet the high demand.

Charging Station Occupancy: From Figure 5.4(a) and Figure 5.4(c), we can see

that the charger occupancy is almost same and varying t doesn’t influence station

assignments in Scenario 1.

5.8.2 Scenario 2

Average Passenger Waiting Time: From Figure 5.3(b), We can see that average

passenger waiting time is low when t=15 and overall waiting time is high compared

to Scenario 1. This can be because of premature rebalancing along with the high

number of low charge taxis in the beginning hours of this scenario which has a

cascading effect during the subsequent high demand.

Empty Drive Ratio: From Figure 5.3(d), We can see that empty drive ratio is
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high when t=10 in the beginning and decreased after hour 9 as the fleet efficiency

improved with more taxis joining back the fleet to serve requests after their charging

sessions. This also shows how frequent rebalancing can improve the fleet efficiency

under right circumstances.

Charging Station Occupancy: Because of high number of low charge taxis in the

beginning of Scenario 2, we can see those taxis getting assigned to charging stations

in Figure 5.4(b) and Figure 5.4(d). Varying t affects how often the low charge

taxis are identified and assigned to a charging station as we can see more initial

assignments when t=10 than when t=15, which can provide better turn around

time for low charge taxis.
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(a) (b)

(c) (d)

Figure 5.3: Passenger wait time and empty drive ratio with different t
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(a) (b)

(c) (d)

Figure 5.4: Charger occupancy with different t

5.9 Varying Charging Ports Capacity p

The total number of charging ports in each station is given by p. This defines the

maximum number of taxis that can be plugged to a charging station simultaneously.

High capacity can reduce the number of taxis in queue waiting for their turn during

peak demand.
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5.9.1 Scenario 1

Average Passenger Waiting Time: From Figure 5.5(a), We can see that average

passenger waiting time is the same when p=15 and p=10. In Scenario 1, number of

low charge taxis is less when compared to Scenario 2, so there is no queuing in the

charging stations which is influenced by p.

Empty Drive Ratio: We can see from Figure 5.5(c) that the empty drive ratio

is also same when p=15 and p=10 because of the same above reason as passenger

waiting time.

Charging Station Occupancy: From Figure 5.6(a) and Figure 5.6(c), we can see

that the charger occupancy is almost same except for a slight queuing before hour

11 when p=10 which didn’t happen when p=15 as the stations had more ports to

accommodate all taxis assigned to them.

5.9.2 Scenario 2

Average Passenger Waiting Time: From Figure 5.5(b), We can see that average

passenger waiting time is almost similar when p=15 and p=10. The difference of

about 5 minutes in the passenger wait time between these charging ports capacity

is due to different charging station assignments as p is a parameter in the model

based on which the charging stations are assigned.

Empty Drive Ratio: From Figure 5.5(d), We can see that empty drive ratio is

almost the same when p=10 and p=15 except in the end where p=15 performed

better. This can be because of assignments to farther charging stations because of

unavailability of ports in the closest station.

Charging Station Occupancy: Because of high number of low charge taxis in

the Scenario 2, resulting in all those taxis getting assigned to charging stations in
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the beginning hour as shown in Figure 5.6(b) and Figure 5.6(d). We can see that

the charger occupancy is almost same except for the significant queuing when p=10.

(a) (b)

(c) (d)

Figure 5.5: Passenger wait time and empty drive ratio with different total number of
charging ports per station
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(a) (b)

(c) (d)

Figure 5.6: Charger occupancy with different total number of charging ports per station

5.10 Varying Charger Power w

Charging power w denotes the rate at which the taxi connected to it charges.

Higher the power lesser the time it takes to charge a taxi to its maximum battery

capacity. This can reduce the amount of time each taxi spends on charging during

their charging sessions and increase their overall utilization.

40



5.10.1 Scenario 1

Average Passenger Waiting Time: From Figure 5.7(c), We can see that average

passenger waiting time is low when w=135 than when w=50. This can be attributed

to less time spent by taxis on charging stations for each charging cycle.

Empty Drive Ratio: We can see from Figure 5.7(c) that the empty drive ratio is

slightly lower when w=135 and w=50 because of the same above reason as passenger

waiting time.

Charging Station Occupancy: From Figure 5.8(a) and Figure 5.8(c), we can see

that the charger occupancy is high when w=50 as expected because of the longer

charging cycles which also resulted in queuing after hour 11. Charger occupancy is

uniform across hours when w=135 as it facilitates faster charging.

5.10.2 Scenario 2

1. Average Passenger Waiting Time: From Figure 5.7(d), We can see that

average passenger waiting time is better when w=135 when compared to

w=50. In Scenario 2, we have a high number of low charge taxis assigned

to the charging stations in the beginning hours, so more taxis are available

during the peak hours resulting in less passenger wait time.

2. Empty Drive Ratio: From Figure 5.7(d), We can see that empty drive ratio

is almost the same when w=50 and w=135 except for in the beginning hour

where w=135 had better empty drive ratio. This is due to less time spent on

charging stations by taxis during charging when w=135.

3. Charging Station Occupancy: From Figure 5.8(b) and Figure 5.8(d), we

can see that the charger occupancy is high from the beginning when w=50
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compared to w=135 because of the longer charging cycles which also resulted

in significant queuing during hour 7 and 10.

(a) (b)

(c) (d)

Figure 5.7: Passenger wait time and empty drive ratio with different charging power
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(a) (b)

(c) (d)

Figure 5.8: Charger occupancy with different charging power

5.11 Comparing Scenario 1 and Scenario 2

By comparing the results from above experiments with Scenario 1 and 2, we can

see that the total number of taxis with low charge in the fleet is one of the important

factor that affects the performance of the fleet in serving user requests. Charging

station infrastructure based parameters such as p and w have a directly proportional

effect on the fleet performance. Parameter t which governs the frequency of opti-
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mization can be made dynamic based on the need for rebalancing every hour, as its

effect on the fleet vary based on the demand and the scenarios.
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Chapter 6

Conclusion

6.1 Summary

Autonomous Electric Taxis are going to be the conventional mode of transport

in urban cities in the near future. Rebalancing of idle taxis based on demand

and assignments of taxis to right charging stations are going to be two important

problems in operating these fleets. We have come up with a fleet management

system with an online optimization model to continuously solve this problem based

on the varying demand and charging station utilization.

We used a simulation-based optimization approach to implement this system

building over existing extensions in MATSim. We also evaluated this system using

real-world data and analyzed his performance. We also illustrated how this simula-

tion based on approach can be used to analyze different scenarios, parameters, and

strategies effectively before rolling them out in the real world.
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6.2 Future Work

The inherent limitation of online optimization is not to consider future demand.

So the current system cannot make decisions based on future demand which is

important for electric taxis as their mobility is bounded by their SoC. This can

be addressed by a hybrid approach of online and offline optimization along with

predicting demand in real time using Machine Learning.

We need a fleet management system that can anticipate and prepare for future

demand by preemptively charging taxis where there are ports available in charging

stations and start moving taxis towards regions where there is going to be high

demand.

We also have to incorporate more parameters in the simulation like real-time

congestion prediction and mitigation to accurately estimate the range of the taxis

to improve the overall fleet efficiency.

Model Predictive Control (MPC) based approach can make decisions based on

information towards horizon [32, 33]. We can use simulation to realistically simulate

the complex fleet behavior to extract various parameters for MPC instead of making

statistical assumptions should result in a robust fleet management system.
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