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Abstract 

 Chronic pain affects a large percentage of the adult population in the United States. The 

goal of this project was to analyze data from a study about the effects of acupuncture treatment on 

veterans of the Persian Gulf War (1990-91) afflicted with what is known as Gulf War Illness 

(GWI) to determine for whom acupuncture effectively reduces chronic pain. A series of machine 

learning models were developed to gain insight into the key factors that help predict whether a 

patient’s chronic pain improved. Logistic Regression yielded the most accurate predictive models 

for pain improvement in patients. Drawing from the calculated feature importance and Logistic 

Regression modeling, the most important factors for the prediction are derived from the McGill 

Pain Scale, SF-36 questionnaire, Locus of Control questionnaire, Pittsburgh Sleep Quality Index, 

and Carroll Depression Scale. 
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1. Introduction 

Chronic pain affects over 20% of adults in the United States and has a large negative impact 

on many aspects of their health and well-being (Yong et al., 2022). A specific form of chronic pain 

only observed in veterans of the Persian Gulf War (1990-91) is known as Gulf War Illness (GWI). 

There has been much debate and uncertainty surrounding the source of this illness since the mid-

90s; however, over the years, a consensus has been reached that one of the leading causes was the 

numerous toxic exposures that veterans faced during their time in the Gulf War (Wessely & 

Freedman, 2006). Veterans with GWI experience a multitude of chronic symptoms that can be 

partitioned into three main categories comprising fatigue, mood and cognition impairments, and 

musculoskeletal issues (Centers for Disease Control and Prevention (CDC), 1995). These 

categories cover a wide range of different ailments that Gulf War veterans face daily and present 

the need for analysis on how to improve their health and well-being. 

There have been studies that investigate the efficacy of different treatments for GWI 

patients, including acupuncture and other Traditional Chinese Medicine (TCM). A current study 

into the effects of acupuncture treatment on GWI patients has yielded data that is important to 

understanding patient response (Conboy et al., 2012). Further analysis of the patients’ data was 

required to gain insight into whether (and for whom) the acupuncture treatment resulted in an 

improvement of chronic pain as well as the corresponding degree of significance. The goal of this 

project was to utilize the data from this study to identify and predict for whom the treatment 

effectively helped reduce chronic pain, through the means of predictive modeling and other 

analysis. 

We addressed this goal through the development of a series of regression and classification 

models to predict the reduction of chronic pain in veterans. The specific modeling techniques used 

were Linear Regression, Logistic Regression, K-Nearest Neighbors, Softmax Regression, and XG 

Boosting. The Logistic Regression technique produced the best performing model. The key factors 

https://www.zotero.org/google-docs/?fxgIDz
https://www.zotero.org/google-docs/?zJXshP
https://www.zotero.org/google-docs/?zJXshP
https://www.zotero.org/google-docs/?h6wQ8a
https://www.zotero.org/google-docs/?inJuVt
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for predicting the pain outcome were found to be in the McGill Pain Scale, the SF-36 

questionnaire, the Locus of Control questionnaire, Pittsburgh Sleep Quality Index, and Carroll 

Depression Scale. These important features for predicting pain outcomes in patients can be further 

utilized to determine if treatment will be effective for other Gulf War veterans. 
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2. Background 

2.1 Chronic pain 

Chronic pain can be defined as a pain that lasts “months or years,” and “interferes with 

daily life” (Dydyk & Conermann, 2023). It is one of the leading health issues in the US. In fact, 

prior studies show that “findings indicate that more than one in five adults in America experiences 

chronic pain” (Yong et al., 2022). This condition has a vast variety of root causes, and impacts 

people in different ways. Some causes of chronic pain can be due to long-term illnesses that result 

in persistent pain, major injuries, diseases that can leave you “more sensitive to pain,” or even pain 

“caused by psychological factors such as stress, anxiety and depression” (Dydyk & Conermann, 

2023).  

Recent studies have further investigated the science behind chronic pain. These studies 

show that the nervous system’s neuroinflammation is associated and probably even “mediates the 

persistence and chronification of human pain conditions” (Ji et al., 2018). Another study also looks 

into pain that often coexists with chronic pain, referred to as chronic overlapping pain. According 

to the study, patients with chronic overlapping pain do not show “a compensatory increase in 

antiinflammatory cytokines” (Ji et al., 2018) to reduce pain compared to patients who are suffering 

from regular localized pain. In addition to this, people with chronic overlapping pain fail to 

“augment immune response and proinflammatory cytokine production” (Ji et al., 2018). This 

means that the pain these patients feel is sustained as their nervous system has suffered changes 

making it hard for them to fight the pain. Lastly, studies show that issues that cause chronic pain 

such as tissue and nerve damage further “heighten[s] synaptic transmission” (Ji et al., 2018), or an 

increase in which neurons communicate which in turn lowers a person’s pain threshold, as well as 

“amplification of pain responses, and a spread of pain sensitivity to noninjured areas” (Ji et al., 

2018). The reason this increased synaptic activity is disadvantageous is because neurons that 

regulate pain (nociceptive neurons) take part in more of these neuron transmissions. 

https://www.zotero.org/google-docs/?AKCHzX
https://www.zotero.org/google-docs/?WfhQ8n
https://www.zotero.org/google-docs/?PJDw3P
https://www.zotero.org/google-docs/?PJDw3P
https://www.zotero.org/google-docs/?qTV7h7
https://www.zotero.org/google-docs/?LEa2k5
https://www.zotero.org/google-docs/?qVA0xo
https://www.zotero.org/google-docs/?8MgF75
https://www.zotero.org/google-docs/?yTKhhw
https://www.zotero.org/google-docs/?yTKhhw
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2.1.1 Impacts on the Individual 

As previously mentioned, chronic pain affects around one in five adults in America. 

Unfortunately, chronic pain frequently comes with other conditions including depression. A study 

shows that “injury sensory pathways of body pains have been shown to share the same brain 

regions involved in mood management … which form a histological structural foundation for the 

coexistence of pain and depression” (Sheng et al., 2017). Further studies have also shown that of 

patients who suffer from persistent pain as much as 85% suffer from depression. Another 

interesting concept this study investigates is that depression and chronic pain act bidirectionally 

(Bair et al., 2003). Furthermore, people with depression are at risk of having pain complaints. The 

study concludes that “on average, 65% of patients with depression experience one or more pain 

complaints (Bair et al., 2003). 

In addition, pain patients incur much more costs than those with less pain, and have 

trouble being productive in the workplace. A study calculated that a person suffering from “severe 

pain had health care expenditures $3,210 [annually] higher than those of persons with moderate 

pain” (Gaskin & Richard, 2012). Exacerbating this financial challenge, these people usually make 

less money in the workplace as they work fewer hours due to their pain. This study observed that a 

person “with severe pain worked 717 fewer hours [annually]” (Gaskin & Richard, 2012). 

2.1.2 Impacts on the Economy and Society  

Chronic pain not only impacts the individual but the economy as well. One event that shed 

light on this topic was the opioid epidemic starting in the late 1990s. Opioids, widely prescribed as 

a pain-relieving medicine, soon caused addiction and thousands of deaths due to overdosing. Many 

misused and took advantage of the prescriptions due to addiction, and this epidemic indicated a 

substantial need for non-addictive inventions for pain(National Academies of Sciences, 

Engineering, and Medicine (U.S.) et al., 2017). 

Another way chronic pain impacts society is due to low worker productivity as mentioned 

earlier. Patients with chronic pain work less than others who do not suffer from this condition. In 

https://www.zotero.org/google-docs/?swbyP1
https://www.zotero.org/google-docs/?NPanvj
https://www.zotero.org/google-docs/?s5AVF9
https://www.zotero.org/google-docs/?wc93gf
https://www.zotero.org/google-docs/?8TFy1k
https://www.zotero.org/google-docs/?Er4KHA
https://www.zotero.org/google-docs/?Er4KHA
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addition, undertreatment is a large issue in today's society. Tracing back to opioid misuse, 

financially struggling patients would likely opt in to using opioid medication compared to 

financially stable people, leaving them more susceptible to opioid addiction and drug misuse 

(Newman et al., 2018). In addition to this, studies show racially underrepresented groups face 

more severe chronic pain, due to epigenetic mechanisms that increase sensitivity to pain (Aroke et 

al., 2019). 

2.2 Gulf War Illness (GWI) 

One specific illness that involves chronic pain is Gulf War Illness (GWI), otherwise known 

as Gulf War syndrome. GWI refers to the prominent chronic symptoms shared by many veterans 

from the Persian Gulf War (1990-91) and has been the topic of numerous medical studies 

involving both the investigation of its causes and subsequent treatments of its symptoms (Kerr, 

2015). 

Early studies, conducted in the first few years after the Gulf War, did not produce 

sufficient evidence of the existence of GWI. While there were some reports of veterans with similar 

symptoms, which they believed were tied to their deployment in the Gulf War, there was very little 

data at the time to make strong conclusions about the existence of a syndrome (Beale et al., 1997). 

In addition, a common hypothesis at this time was that the symptoms present in these veterans 

were “simply the result of war- related stress,” which did not consider all that these individuals 

were exposed to during the war (Kerr, 2015). Another reason for the lack of concrete evidence and 

definition of GWI in these early years was the poor documentation of medical services (during and 

before deployment) that were provided to veterans (Mawson & Croft, 2019). In conjunction with 

this, the vast number of different symptoms reported made accurately defining the root cause an 

immense task (Joyce & Holton, 2020). These factors all contributed to the unexplained nature of 

this illness and made the specific identification of its causes difficult. However, over time and with 

the accumulation of more reports and data on these Gulf War veterans, more trends and detailed 

ideas of GWI’s origins arose. 

https://www.zotero.org/google-docs/?qTd3og
https://www.zotero.org/google-docs/?EZwNWN
https://www.zotero.org/google-docs/?EZwNWN
https://www.zotero.org/google-docs/?fAiliu
https://www.zotero.org/google-docs/?fAiliu
https://www.zotero.org/google-docs/?u6ljnL
https://www.zotero.org/google-docs/?KVzuD1
https://www.zotero.org/google-docs/?H6eEPZ
https://www.zotero.org/google-docs/?Ulu9dS
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2.2.1 Causes of GWI 

It was concluded that GWI can be traced back to “numerous potentially toxic deployment-

related exposures that appeared to vary by country of deployment, by location within the theater, 

by unit, and by personal job types,” encapsulating the broad scope of the potential origins of this 

illness (Kerr, 2015). While there have been many theories and studies into the origins of this illness, 

it is known that Gulf War veterans suffered a multitude of exposures during the war that are 

considered prominent causes of GWI (Kerr, 2015). 

As is present in war settings, Wessely and Freedman (2006) reported that there is always the 

risk “to life and limb from the various munitions and explosives that are part and parcel of modern 

war,” as well as “dangers to the psyche.” Other toxic exposures, such as the smoke from oil fires 

started by the Iraqis, were unanticipated but not unheard of during this time. However, one major 

difference in the Gulf War was the added threat of more recent advancements in dangerous 

weapons and technology. Expected presence of “large stocks of chemical and biological weapons” 

incited countermeasures to protect against these deadly weapons, which included “giving 

vaccinations against biological agents such as plague and anthrax, [and] taking pyridostigmine 

bromide tablets to protect against exposure to organophosphate (OP) nerve agents” (Wessely & 

Freedman, 2006). The exposure to both the vaccinations meant to protect and the chemical agents 

themselves proved to be very harmful and a potential cause of the “rashes, muscle pain, fatigue, 

headaches, and other mysterious symptoms” reported (“Update on Gulf War Illness,” 1997). This 

combination of recently developed health threats and protective measures used to combat them, 

along with the many pre-established dangers of war, resulted in the emergence of the many chronic 

symptoms experienced by veterans. 

2.2.2 GWI Symptoms and Symptom Clusters 

GWI symptoms have been sorted into three main categories by the CDC: fatigability, 

mood and cognition, and musculoskeletal (Centers for Disease Control and Prevention (CDC), 

1995). Although commonly seen individually, the aggregation of these three symptom clusters is 

https://www.zotero.org/google-docs/?WePbE6
https://www.zotero.org/google-docs/?ygXWX2
https://www.zotero.org/google-docs/?9Ww2W3
https://www.zotero.org/google-docs/?9Ww2W3
https://www.zotero.org/google-docs/?XizbFi
https://www.zotero.org/google-docs/?lfvsLq
https://www.zotero.org/google-docs/?lfvsLq
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helpful in defining the nature of GWI. They facilitate patient diagnoses and studies into potential 

treatments for this illness. A patient is diagnosed with GWI if experiencing at least one symptom 

from two of the three clusters defined by the CDC (Nettleman, 2015). 

The first of these symptom clusters, fatigability, refers to exhaustion or fatigue that persists 

for longer than 24 hours subsequent to exertion (Conboy et al., 2012). The second category of 

GWI symptoms is mood and cognition; contained in this cluster is a myriad of different possible 

mood-related conditions, such as feeling depressed, irritable, or anxious, as well as symptoms 

related to difficulty thinking or concentrating (Conboy et al., 2012). Also included in this cluster is 

difficulty sleeping. Of the three components of GWI, “cognitive problems remain one of the most 

prevalent and distressing symptoms of GW veterans,” making it an important component of GWI 

screening (Jeffrey et al., 2019). The third and last component of GWI deals with joint and muscle 

pain (Blanchard et al., 2006). Chronic skeletal pain has been observed in many Gulf War veterans, 

and even includes suffering from bone fractures and soft tissue injuries (Mawson & Croft, 2019). 

While these clusters are useful in defining GWI and diagnosing veterans, there are other symptoms 

related to GWI, including reproductive disorders, gastrointestinal issues, and Amyotrophic Lateral 

Sclerosis (ALS), among various others, that affect Gulf War veterans (Mawson & Croft, 2019). 

Overall, defining these symptoms in patients is a practical and attainable way of identifying GWI 

using both qualitative and quantitative measurements. 

2.3 Measurements of Health 

The measurement of subjective experiences in health is inherently difficult. To accomplish 

this task, many studies have been conducted to determine accurate and easy ways to gather 

information from participants. Early health questionnaires often were criticized for being too long 

with ambiguous statements, too narrow in scope, and involving the addition of subscores that were 

unrelated (Hunt et al., 1985). Over time, more specific and concise questionnaires were created to 

improve the shortcomings of previous questionnaires. 

https://www.zotero.org/google-docs/?U5bEnf
https://www.zotero.org/google-docs/?2TKmfs
https://www.zotero.org/google-docs/?wy72l8
https://www.zotero.org/google-docs/?uthw0E
https://www.zotero.org/google-docs/?0GmY64
https://www.zotero.org/google-docs/?4vK3uA
https://www.zotero.org/google-docs/?AmJfNZ
https://www.zotero.org/google-docs/?hilIpA
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2.3.1 McGill Pain Scale 

The short form McGill Pain questionnaire was developed in order to track an individual's 

perceived pain over time for academic research (Melzack, 1987). It consists of 15 sensory adjectives 

that participants describe as either ‘none’, ‘mild’, ‘moderate’, or ‘severe’. It was constructed with 11 

sensory words, and four affective words from the original McGill pain scale. It was thought that 

there were three dimensions to pain, the experience of the pain, the quality of the pain, and the 

intensity of the total pain experience (Melzack & Raja, 2005). The McGill pain questionnaire was 

also found to be more accurate than the Nottingham profile (Melzack & Raja, 2005). 

Table 1. Example of a Filled-Out Short Form McGill Pain Questionnaire (Melzack, 1987) 

Word None Mild Moderate Severe 

Throbbing ✔    

Shooting   ✔  

Stabbing  ✔   

Sharp  ✔   

Cramping    ✔ 

Gnawing  ✔   

Hot-Burning    ✔ 

Aching    ✔ 

Heavy   ✔  

Tender ✔    

Splitting ✔    

Tiring-Exhausting    ✔ 

Sickening ✔    

Fearful  ✔   

Punishing-Cruel  ✔   

https://www.zotero.org/google-docs/?iPnwDF
https://www.zotero.org/google-docs/?4Ce8f1
https://www.zotero.org/google-docs/?YThZN9
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2.3.2 SF-36 Scale 

In 1992, the RAND Corporation developed a 36-question short form survey (SF-36) in 

order to easily assess the quality of life of patients (Brazier et al., 1992). Quality of life was meant as 

the combination of health limiting physical and social activities, bodily pain, mental health, energy 

and fatigue, the perception of personal health, and the impact health had on one’s profession 

(Ware & Sherbourne, 1992). The SF-36 was an attempt at improving the older Nottingham health 

profile. At 36 questions long, it was short enough to have a high response rate and also have a high 

rate of completion. The SF-36 was also able to ‘detect low levels of ill patients’ who had scored 

perfect health on the Nottingham questionnaire. 

2.3.3 Other Scales 

With the focus on chronic pain, there are many scales that standardize how an individual 

perceives their health. Within mental health, there is the Beck Anxiety Inventory (BAI), the Carroll 

Depression Scale, and the Whitely Depression Scale. The Pittsburgh Sleep Quality Index (PSQI) 

measures sleep, Measure Yourself Medical Outcome Profile (MYMOP) measures general health, 

while the Profile of Mood States (POMS) provides understanding of mood (see Table 2). These 

questionnaires and surveys can also be tailored to fit a study (i.e., by removing or adding 

questions). 

  

https://www.zotero.org/google-docs/?xphAdj
https://www.zotero.org/google-docs/?TvHwjj
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Table 2. List of Scales Used in Data Modeling 

Scale Description 

BAI ● 21 items 
● Measures of anxiety of the psyche and cognition 
● Self-reported 

(Leyfer et al., 2006) 

Carroll ● 24 items 
● Self-rating instrument used for measuring the severity of one’s depression 

(Carroll et al., 1981) 

Whitely ● Seven items 
● Assesses the anxiety experienced due to the fear of having an undiagnosed 

illness 
(Chen et al., 2021) 

PSQI ● 17 items 
● Measures the quality of sleep and sleep disturbances 
● Said to be more reflective of a negative cognitive viewpoint or depressive 

symptoms than actual sleep parameters 
(Grandner et al., 2006) 

POMS ● 65 items 
● Measures mood swings of tension and anxiety, anger and hostility, and 

fatigue and inertia through a 5-point scale 
(Shahid et al., 2011) 

MYMOP ● 10 items 
● Offers an individualized approach to evaluating general health 
● Works particularly well for musculoskeletal and respiratory conditions, by 

focusing on impacted symptoms and activities 
(Paterson, 1996) 

WAI ● 36 items 
● Working Alliance Inventory is a self-reported instrument used to measure 

the quality of alliance between a patient and a therapist 
● Based on bonds, goals, and tasks 

(Paap et al., 2019) 

https://www.zotero.org/google-docs/?kQqTyp
https://www.zotero.org/google-docs/?KXW7ov
https://www.zotero.org/google-docs/?MUoCbm
https://www.zotero.org/google-docs/?I7ChC9
https://www.zotero.org/google-docs/?18lqmL
https://www.zotero.org/google-docs/?g2htQH
https://www.zotero.org/google-docs/?qitQYH
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2.4 Related Work 

An article of review that summarizes nine Gulf War Illness studies concluded that Gulf 

War veterans have been affected by neuropsychological illnesses after being deployed (Jeffrey et al., 

2019). This article also summarizes studies comparing veterans who have fallen symptomatic with 

GWI and Gulf War veterans who have not been affected by it. Conboy et al. have been 

investigating the effects of acupuncture on GWI patients to determine whether it will decrease 

chronic pain levels (Conboy et al., 2012). The data from this study has been used in the present 

analysis. 

2.4.1 Previous Studies on GWI 

Several investigations have focused on the neuropsychological outcomes of Gulf War 

veterans, as many of them seemed to have been affected by neuropsychological impairments. 

Previous studies have also concluded that “visuospatial abilities, attention/executive functioning, 

and learning/memory” are rated lower in GWI patients than in non GWI patients using a variety 

of assessments (Jeffrey et al., 2019). 

Another attribute that GWI affects is memory, which was assessed and concluded by using 

the Expanded Health Symptom Checklist. GWI veterans have also suffered from “high levels of 

neuropsychological symptoms also reported tension, fatigue, confusion, and decreased vigor,” as 

concluded by the Profile of Moods survey. Studies have also shown a decreased ability to retain 

information (Jeffrey et al., 2019).  

In another study, GWI patients took the SCL-90-R questionnaire that screens for a “range 

of psychological symptoms and psychopathological features on nine subscales” (Jensen et al., 

2013). People who were deployed during the Gulf War showed significantly poorer performance 

over all on this questionnaire when compared to a control group (Jeffrey et al., 2019). The authors 

were not able to draw conclusive results due to the small sample size (n=103) and other limitations, 

but there seemed to have been some correlation between deployment and psychological impact. 

Overall, all studies conducted on Gulf War veterans’ cognitive aspects have shown them to be 

https://www.zotero.org/google-docs/?lPpA9r
https://www.zotero.org/google-docs/?lPpA9r
https://www.zotero.org/google-docs/?c2UeQh
https://www.zotero.org/google-docs/?7keW0v
https://www.zotero.org/google-docs/?Rmnz2d
https://www.zotero.org/google-docs/?wAlsbn
https://www.zotero.org/google-docs/?wAlsbn
https://www.zotero.org/google-docs/?oHSFHZ
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lower or worse off than other veterans who have not been deployed in the Gulf War and people 

who did not serve in the military at all. 

A few other studies compared symptomatic vs. non-symptomatic GW veterans in terms of 

neuropsychological performance. Utilizing a validated survey, these studies have shown that 

veterans who exhibit symptoms perform worse on measures of brain function. In addition to this, 

symptomatic veterans performed worse on a test that measured their “abstract reasoning and 

problem solving/flexibility; measures of executive functioning” (Jeffrey et al., 2019). 

2.4.2 A Study of the Effectiveness of Acupuncture on GWI Patients 

A previous randomized clinical trial evaluated the effects of personalized acupuncture 

treatment on patients suffering from chronic pain due to Gulf War Illness (GWI). Assessments 

used to measure the outcome of this study were the McGill Pain Scale and the SF-36 Scale, both 

validated and reliable scales. Individuals first had to go through a screening to make sure that they 

had GWI before being admitted into the trial (Melzack & Raja, 2005; Ware & Sherbourne, 1992). 

During testing, patients were split up into two groups. The first group of patients (Group 1) were 

getting acupuncture twice a week, and the second group (Group 2) got put on a two-month 

waitlist and was then able to get weekly acupuncture. These acupuncture treatments were 

individualized and conducted by experienced acupuncture practitioners. Other methods of 

Traditional Chinese Medicine supplemented the acupuncture, such as heat therapies, electro-

acupuncture, Chinese massage, and press balls (Conboy et al., 2012). These two groups completed 

the SF-36 survey and the McGill Pain Questionnaire bimonthly to track progress. Here, the latter 

group can be viewed as a control group, as the first two months they did not receive treatment, and 

there also seems to have been no change in their pain level during these first two months. This 

study provided treatment to all participants, allowing the evaluation of the effects of frequency of 

acupuncture treatment on pain levels. 

This study reported a statistically significant improvement in the pain of the patients who 

received treatment twice a week. An increase in SF-36 score positively correlates with good quality 

of life, as larger values on the SF-36 scale are mapped to a higher rating of wellbeing. Patients who 

https://www.zotero.org/google-docs/?L76WqQ
https://www.zotero.org/google-docs/?R9rwmK
https://www.zotero.org/google-docs/?VnZnhH
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were getting bi-weekly acupuncture after month 4 saw around a nine-point increase in their point 

value in the SF-36 scale (Figure 1). For the waitlisted group, however, during their two months on 

the waitlist they saw a slight decline in quality of life, but in the end there was a net increase of 

three points. It can be inferred here that getting acupuncture more often gets one’s body more 

acclimated to the treatment, and therefore people have better results further down the line with 

the treatment. 

 

Figure 1. SF-36 Scores of Biweekly and Waitlisted Groups Over Time (Conboy et al., 2012). 
Scores improve more significantly for people receiving acupuncture more frequently. 

The McGill scale (see Figure 2) works in reverse, where a lower score value indicates less 

pain, so a decrease in score is considered positive. Here again, a steady decrease can be seen in the 

group that received acupuncture twice a week. For the waitlisted group, during their two months 

of no treatment, there was an increase in their McGill pain score, which starts decreasing after they 

receive acupuncture (but not as rapidly as the group that receives acupuncture twice a week). 
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Figure 2. Pain Levels of Biweekly and Waitlisted Groups Over Time (Conboy et al., 2012). 

Pain levels decrease more significantly for patients receiving acupuncture more often. 
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3. Methodology 

3.1 Data Description 

Data was provided to the team courtesy of Dr. Conboy from her previous research into 

acupuncture and GWI. The data consists of 103 patients split into two treatment groups and 

observed over the course of the 6-month study (outlined in Section 2.4.2 above). Group 1 patients 

received acupuncture treatment twice a week, while Group 2 received it once a week after an initial 

two-month waitlist. The dataset contains over 1900 attributes describing each participant and 

their answers to various questionnaires over the course of the study. Including data from over 20 

standard questionnaires, the surveys were administered four times throughout treatment. The first 

survey (T1) was first administered before treatment had started. The second (T2) and third (T3) 

surveys were administered at two and four months into the treatment, respectively. The final 

survey was administered at the conclusion of treatment (6 months). The scope of the 

questionnaires includes topics such as mood, pain, anxiety, sleep, depression, and patient-

healthcare provider relations. For more information about the individual scales, refer to Section 

2.3. 

3.1.1 Demographics 

There is a high percentage of participants in their forties, with the median age of the group 

being 47 years old, the mean being 48.2 years old, and the oldest being in their late 60s (Figure 3). 

Out of the 103 participants, seven identified as Hispanic or Latino. The largest identifying race was 

white, followed by African American, 2+ races, other, and then American Indian (Figure 4).  
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Figure 3. Age Distribution of Study Participants 

 
Figure 4. The distribution of identifying races for study participants 
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3.1.2 Pain Score Distributions 

With the inclusion of over 20 questionnaires, there is a great deal of sensitivity about 

different aspects of how treatment affects the study participants. Many questions have remarkably 

similar responses between the two participant groups, and there are few that stand out with 

different distributions of the respondents. 

 

Figure 5. Change in SF-36 Physical Functioning Components. Higher SF-36 Physical 
Component value is more desirable (scores range from 0-100). 
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Figure 6. Percent Change in McGill Pain. Higher reduction in McGill pain measure is 

more desirable. 

3.1.3 Traditional Chinese Medicine 

Additional data provided to the team by Dr. Conboy included Traditional Chinese 

Medicine (TCM) Diagnoses data that was directly associated with each patient in the dataset. 

Attributes in this supplementary dataset specified three different categorical diagnoses for patients 

(with some overlap), resulting in the following breakdown (Taylor-Swanson et al., 2019): 

● Single Diagnosis (Excess, Deficiency, or Channel Imbalance) 

● Excess and Deficiency 

● Excess, Deficiency, and Channel Imbalance 

● Deficiency and Channel Imbalance 

● Excess and Channel 

 

 

https://www.zotero.org/google-docs/?fXtM4X
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3.2 Data Pre-processing 

This section outlines the pre-processing performed on the given data, both prior work and 

that of the team. Prior pre-processing of the data was conducted by Ruofan Hu, a Ph. D. student at 

WPI and collaborator of Prof. Ruiz and Dr. Conboy, and the version of the data produced from 

this work was used as the base version for the team’s usage. 

3.2.1 Prior Pre-processing 

Based on previous work on the data by Ruofan Hu, some pre-processing of features had 

already been performed and was used as the basis for further pre-processing. This work included 

handling missing values and calculating delta variables for use in analysis, as well as creating 

summary variables to condense the large number of questionnaire scales and subscales. 

3.2.1.1 Missing Values 

To handle the large number of attributes in the data, certain patients were removed from 

the data based on the percentage of missing values observed. Specifically, there were 20 patients 

who were missing over 50% of the survey questions, so their values were excluded from the dataset. 

To further handle the more intricate missing values observed in the data, two methods of 

imputation were used to cater to the specific variable for which there was a missing value. The first 

method consisted of calculating and imputing the mean of whatever was the smallest or most 

specific subscale or sub-questionnaire to which the missing value belonged. This approach was 

used for most variables and not applied in cases where using a mean value was illogical in the 

context of the variable. The second method used for imputing values was to impute with zero, 

which applied to questions under the Social Network Index (SNI) category (such as “How many 

children do you have?”). Both of these methods were utilized where applicable in the data. 
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3.2.1.2 Summary Variables 

Further pre-processing of the data included calculating summary variables for the many 

scales and questionnaires observed in the data. For each questionnaire, a sum score was calculated 

to combine the numerous questions into a single variable that could be used for analysis and 

modeling. Each sum score that was calculated followed a similar process to that described for the 

delta variables, in which the positive or negative impact of a higher value on each scale was 

considered and accounted for in the sum. 

3.2.1.3 Delta Variables 

For additional use in modeling and other analyses, some transformed variables were 

formulated based on the calculated summary variables. Specifically, delta variables were created to 

represent the difference between the first timepoint in the study (T1) and the last timepoint (T4). 

These delta variables were calculated in two different ways based on the specific variable, as each 

attribute could either improve or worsen with a positive or negative delta value. Furthermore, the 

delta values for variables such as McGill Pain were calculated as [Baseline – T4] because the higher 

the value on this scale meant worse pain. Using this formula for the delta allows reduction in pain 

(and reduction in other variables for which lower is better) to be observed as a positive change; 

meanwhile, for variables such as Social Support, the formula [T4 – Baseline] was used to indicate 

that higher values are better. This method of calculating delta values was applied to all attributes in 

the data, where each attribute was identified as having either a positive or negative impact with an 

increase between start and end points. 

3.2.2 Further Pre-processing 

Before developing predictive models for the data, further pre-processing and 

transformations were performed. Some extra rows were removed that programs (Excel, Python, R) 

were identifying as data, although they were actually metadata. These programs also viewed all data 

as strings, so casting of these attributes to numerical values was necessary. Transformations of the 
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initial model data involved scaling all the values using the min-max normalization method (scaled 

between 0 and 1). The dataset was then broken into two different subsets, one containing the data 

of patients from Group 1 and the other from Group 2. Lastly, we decided to use data from surveys 

that were filled out prior to a patient's treatment, and survey data that was collected at the end of 

the study. Attributes that computed the changes between attributes from the beginning to the end 

of the study were also included in the data. Further feature selection and other data computations 

took place during modeling, which will be discussed in the following sections. 

Data that had low response rates and low variability were removed as they would not be 

useful to analysis and modeling. The first round of pre-processing involved removing any 

attributes with response rates less than 60%. Subsequently, we removed all attributes with less than 

10% unique data. 

Combining identical information into one attribute was important in one case. The 

attribute “Race” was repeated for all four surveys in the study, and they contained some conflicting 

and incomplete information. The data was corrected manually, paying attention to each 

individual’s responses and selecting the one that was most accurate. 

3.2.2.1 Feature Selection with Lasso Regression 

One modeling technique that was used to obtain values for feature selection was Lasso 

Regression. Lasso Regression was implemented in R (data programming language) using the 

glmnet and caret packages. This modeling technique was useful in determining which attributes to 

keep in the training set because it regularizes input data, which reduces many coefficient values to 

zero. Running Lasso Regression in R Studio outputs the attributes and their coefficients that were 

not reduced to zero. The attributes selected as well as their coefficients can be seen in Appendix A. 

To build this model, the data was first split up into two separate datasets based on group. 

This was done because it was hypothesized that each group would have a different set of 

coefficients that are useful for predicting decreases in pain. Next, all data between the two groups 

was scaled, and two Lasso Regression models were run for each group. The first Lasso model used 
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the Timepoint 1 data as inputs and predicted the percent change in a veteran's pain at the last 

timepoint. This model would be useful in a prediction environment if one was trying to choose 

who should receive treatment. The second Lasso model used the delta values between the 

timepoints as its input, and the output was again pain reduction. This was done to see if there were 

any relationships between changes in other attributes of a person and how they perceive pain. For 

both of these models, the input data was min-max scaled (so all values were between 0 and 1) to 

make it easier to read the coefficients and see which factors have the greatest impact on pain. 

3.2.2.2 Feature Selection with Random Forest 

The Random Forest modeling technique was also implemented, and its output was 

leveraged for feature selection. The Random Forest method was run on scaled data from 

Timepoint 1 in both Group 1 and Group 2 separately. The output that was being predicted by this 

model was the percent change in a veteran’s pain at the last timepoint. 

This method was implemented in both R Studio and Python. In R Studio, the Random 

Forest model output includes each attribute and its "increase in mean squared error" value. This 

value indicates how much the model error would increase if the specific attribute it is attached to 

was removed from the model. For this reason, values with an increase in mean squared error value 

above zero were chosen. In later experiments with Python’s implementation of Random Forest 

from the sklearn package, the output listed each attribute and its "feature importance" value (where 

higher-valued attributes were considered more important to the model). These attributes were 

graphed and then selected based on their feature importance ratings. Many of the same features 

were chosen from the R and Python implementations. The features chosen from the 

implementation of Random Forest in R Studio were used in Linear Regression, Logistic 

Regression, KNN, and Softmax. The features chosen from the Python Random Forest 

implementation were used in XG Boosting. Output from Random Forest models in both Python 

and R can be found in Appendix B. 
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3.2.2.3 Data Features and Subsets for Modeling 

As a result of the further pre-processing conducted, specifically feature selection, the 

following subsets of the original data were created for modeling purposes. For all subsets of the 

data created, only features from Timepoint 1 (T1) were included to be utilized as model input data. 

The outcome variable associated with each of these data subsets was the McGill Pain Reduction 

percentage delta value (T4 – T1). This feature was used as the target variable for predictions across 

all regression and classification models. For classification models, the target variable was divided 

into two classes, split by a threshold to indicate a cutoff for significant improvement in pain vs. 

insignificant. This threshold was adjusted at values of +12%, +20%, and +30% to test different 

cutoffs and to see how each model performed as a result. 

Table 3 outlines a list of the full features in the dataset, after prior pre-processing by 

Ruofan Hu, along with their corresponding occurrences in each of the study timepoints. Some 

features were not present in the first Timepoint and were seen later in the study. 

Table 3. List of the full features, after prior pre-processing, and timepoint occurrences 

Attribute T1 T2 T3 T4 

WAI: Working Alliance Bond  ✓ ✓ ✓ 

WAI: Working Alliance Task  ✓ ✓ ✓ 

WAI: Working Alliance Goal  ✓ ✓ ✓ 

WDEP Whitely Depression ✓ ✓ ✓ ✓ 

sumFI Fatigue ✓ ✓ ✓ ✓ 

SOC Social Support Open ✓ ✓ ✓ ✓ 

SNI Support Networks Num People ✓ ✓ ✓ ✓ 

SNI Support Networks Num Embedded ✓ ✓ ✓ ✓ 

SNI Support Networks High Contact Role ✓ ✓ ✓ ✓ 

SF_PHYS Physical Functioning ✓ ✓ ✓ ✓ 

SCHN Stress ✓ ✓ ✓ ✓ 
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PSQI Subjective Sleep Quality ✓ ✓ ✓ ✓ 

PSQI Sleep Medications ✓ ✓ ✓ ✓ 

PSQI Sleep Disturbances ✓ ✓ ✓ ✓ 

PSQI Sleep Daytime Dysfunction ✓ ✓ ✓ ✓ 

POMS Mood States ✓ ✓ ✓ ✓ 

OPTI Optimism ✓ ✓ ✓ ✓ 

MYMOP Self-reported Medical Outcome ✓ ✓ ✓ ✓ 

McPain Pain score ✓ ✓ ✓ ✓ 

McPain_s Sensory Pain score ✓ ✓ ✓ ✓ 

McPain_a Affective Pain score ✓ ✓ ✓ ✓ 

LCTR Locus of Control Powerful ✓ ✓ ✓ ✓ 

LCTR Locus of Control Internal ✓ ✓ ✓ ✓ 

LCTR Locus of Control Chance ✓ ✓ ✓ ✓ 

ISEL Social Support ✓ ✓ ✓ ✓ 

CDEP Work Interests ✓ ✓ ✓ ✓ 

CDEP Retardation ✓ ✓ ✓ ✓ 

CDEP Psy Anxiety ✓ ✓ ✓ ✓ 

CDEP Guilt ✓ ✓ ✓ ✓ 

CDEP Depression ✓ ✓ ✓ ✓ 

CDEP Agitation ✓ ✓ ✓ ✓ 

CAT Catastrophizing ✓ ✓ ✓ ✓ 

BCX Body Consciousness ✓ ✓ ✓ ✓ 

BANX Anxiety ✓ ✓ ✓ ✓ 

 
Table 4 outlines each of the data subsets used as model input. The datasets labeled 

“Original” illustrate the original data for each group (without any feature selection) and the 

corresponding information about that dataset. All other data subsets listed specify from which 

method(s) the features were selected (namely Lasso Regression and Random Forest (RF)), along 
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with the same information about each dataset. TCM refers to the “Traditional Chinese Medicine” 

Diagnoses data that was received later in the modeling process and was appended to some of the 

following data subsets. 

Table 4. Standard Data Subsets Utilized for Modeling from Pre-Processing and Feature 
Selection. The “∩” symbol was used to signify the intersect of attributes chosen from Lasso Regression 
and Random Forest. Where present, the TCM Diagnoses data was appended. 

Features Selected From Group # of Features 
Included 

# of Features 
Removed 

# of 
Patients 

Original 1 34 0 44 

Lasso 1 16 18 44 

RF 1 19 15 44 

Lasso ∩ RF 1 10 24 44 

Lasso ∩ RF, TCM 1 11 23 41 

Original 2 34 0 39 

Lasso 2 9 25 39 

RF 2 19 15 39 

Lasso ∩ RF 2 8 26 39 

Lasso ∩ RF, TCM 2 9 25 39 

3.3 Modeling Experiments 

The following sections outline modeling experiments conducted for the purpose of 

predicting the McGill Pain Reduction percentage (target attribute). The experiments involved 

modeling techniques Linear Regression, Logistic Regression, K-nearest neighbors (KNN), and 

Softmax Regression to view relationships between improvements in chronic pain and other 

features in the data as well as to predict whether patients experienced an improvement in or 

worsening of chronic pain based on their baseline survey. 
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For all modeling experiments, the model validation method used was Leave-One-Out cross 

validation; this method was used to maximize usage of the given small data. For the purpose of 

evaluating all binary classification models, the most important metric is precision (Hicks et al., 

2022). 

3.3.1 Linear Regression 

Linear Regression was trained on all datasets outlined in Section 3.2.2.3, with a target 

variable of the reduction in McGill Pain score. Using Linear Regression as our first technique, we 

aimed to predict the improvement in patients' chronic pain through regression analysis. Evaluation 

metrics used to determine prediction performance included R2, mean average error (MAE), and 

mean squared error (MSE). 

3.3.2 Logistic Regression 

Logistic Regression was trained on all datasets outlined in Section 3.2.2.3. The purpose of 

using Logistic Regression was to serve as a classification method in an attempt to increase accuracy 

over models similar to a majority class classifier. As previously mentioned, binary classes were 

created by adjusting a threshold for the McGill Pain score. The pain outcome thresholds used 

included +12%, +20%, and +30%. 

3.3.3 K-Nearest Neighbors 

The K-Nearest Neighbors (KNN) classification method was employed to train models on 

all datasets outlined in Section 3.2.2.3. As previously mentioned, the output was mapped to binary 

values. To do this, we set different thresholds and considered all patients who had a pain reduction 

percentage above the given threshold to have gotten better. The thresholds for the classification of 

the target attribute were the same as in previous models (+12%, +20%, and +30%). 

https://www.zotero.org/google-docs/?OwzNUb
https://www.zotero.org/google-docs/?OwzNUb
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3.3.4 Softmax Regression 

The Softmax Regression technique was used to create further models following a similar 

process to previous models for the input data and outcome variables (i.e., utilizing the feature-

reduced datasets from the Lasso Regression and Random Forest models, as well as the TCM data). 

The outcome variable used for these experiments was the percentage reduction in McGill pain 

score (T1 to T4) that was used for other models. Models were trained over the two separate groups 

using the input data subsets outlined in Section 3.2.2.3. 

The Softmax Regression method was run to classify the McGill Pain reduction percentage 

using three classes to differentiate between different levels of pain reduction. Namely, the first class 

represented that a patient had a significant pain reduction (“Significantly Better”), which was 

defined by a pain reduction threshold of significance. The second class contained all insignificant 

pain reduction from below the threshold to above zero (“Insignificantly Better”), while the third 

class represented anything zero and below that demonstrated that the pain became worse over time 

(“Worse”). The threshold that was used varied for certain experiments based on what is considered 

clinically significant pain reduction and the distribution of the given data. Accordingly, 

experiments were run each with pain outcome thresholds of +12%, +20%, and +30% improvement 

to observe which would lead to the best model performance (as outlined in Section 3.2.2.3). 

Following the same process as KNN, these models used LOOCV to fully utilize the data for 

training and testing purposes. To evaluate the model’s predictive performance, test accuracy and 

confusion matrices were also calculated. 

3.3.5 XG Boosting 

The XG Boosting models were trained using the input data explained in Table 5. 

Additional datasets were created to run experiments on XG Boosting, as this modeling technique 

worked best with our data. The new data that was engineered for these experiments are outlined in 

Table 5. The output that was being predicted was the McGill Pain Reduction percentage. The 
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models were trained over the two separate groups, as well as the groups combined. A new data 

subset that was created for XG Boosting modeling was “shifted baseline data” for Group 2 to 

account for the two-month period at the beginning of the study that this group did not receive 

treatment. Specifically, Group 2’s Timepoint 2 data was considered the new baseline values of pain. 

This “shift” included recalculating the delta value for the McGill Pain Reduction score to compute 

using Timepoint 2 as the initial value (T4 – T2). After recalculating the outcome values, the TCM 

Diagnoses data was appended with both the Group 1 and Group 2 datasets. Random Forest and 

Lasso Regression were run on that data to obtain values used for feature selection. 

Table 5. Additional Data Subsets from Feature Selection Utilized for XG Boosting 

Features Selected From Group # of Attributes 
Included 

# of Attributes 
Removed 

# of 
Patients 

Original 1 & 2 34 0 80 

Shifted Baseline 2 34 0 39 

Shifted Baseline, Lasso 2 9 25 39 

Shifted Baseline, RF 2 16 18 39 

Shifted Baseline, Lasso ∩ 
RF 

2 7 27 39 

Both Groups 
Combined, Lasso  

1 & 2 6 28 80 

Both Groups 
Combined, RF 

1 & 2 10 24 80 

Both Groups 
Combined, Lasso ∩ RF 

1 & 2 4 30 80 

Another dataset that was used for only XG Boosting training was a dataset that consisted of 

Group 1 Timepoint 1 data with appended Group 2 Timepoint 2 data (Table 5). A new attribute 

was added to this new dataset to identify which patient came from which group. TCM Diagnoses 

data was also appended into the dataset. This data was then run through Random Forest and Lasso 
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Regression to obtain values for feature selection. The output that was being predicted was the 

McGill Pain Reduction percentage. The pain reduction for all patients in Group 2 was recalculated 

so that Timepoint 2 would be considered their baseline pain score instead of Timepoint 1. Test 

accuracy, F1 scores, and confusion matrices were calculated to measure how well the model was 

performing. 
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4. Results 

4.1 Feature Selection 

4.1.1 Feature Selection with Lasso Regression 

Tables 6 and 7 show the features in decreasing order of the (absolute value) coefficients 

produced from the models using Lasso Regression for Group 1 and Group 2 respectively. 

Table 6. Lasso Regression coefficients using Timepoint 1 attribute values as input and 
McGill Pain Reduction Percentage as output on Group 1 

Attribute Coefficient 

McPain..Pain.score..T1. 34.305116 

SF_PHYS..Physical.Functioning..T1. 27.816196 

SNI..Support.Networks.High.Contact.Role..T1. -19.280454 

LCTR..Locus.of.Control…Powerful..T1. 19.10707 

PSQI..Sleep.Daytime.Dysfunction.C7..T1. 17.185981 

CDEP.Work.Interests..T1. 15.851624 

OPTI..Optimism..T1. -14.28442 

PSQI..Subjective.Sleep.Quality.C1..T1. 12.094371 

CDEP.Retardation..T1. -10.389943 

CDEP.Depression..T1. -9.3270251 

McPain_a..Affective.Pain.score..T1. 7.692115 
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PSQI..Sleep.Medications.C6..T1. 6.2181086 

MYMOP..Self.reported.Medical.Outcome..T1. -4.0800111 

BCX..Body.Consciousness..T1. -1.952934 

CDEP.Psy.Anxiety..T1. 1.6491213 

POMS..Mood.States..T1. 0.2065523 

 

Table 7. Lasso Regression coefficients using Timepoint 1 attribute values as input and 
McGill Pain Reduction Percentage as output on Group 2 

Attribute Coefficient 

CAT..Catastrophizing..T1. 40.031677 

PSQI..Sleep.Daytime.Dysfunction.C7..T1. -29.841435 

CDEP.Retardation..T1. 28.531807 

PSQI..Sleep.Disturbances.C5..T1. -26.471346 

SCHN..Stress..T1. -25.687251 

CDEP.Depression..T1. 6.6761321 

CDEP.Work.Interests..T1. -4.2347112 

CDEP.Psy.Anxiety..T1. -3.7659624 

BCX..Body.Consciousness..T1. 0.2012609 

 



32 
 

4.1.2 Feature Selection with Random Forest 

Tables 8 and 9 show the features for Group 1 and Group 2 respectively, sorted in 

decreasing order of predictive importance as measured by the increase in the Mean Squared Error 

value produced when a feature is removed from consideration in the construction of Random 

Forest models. 

Table 8. Random Forest output using Timepoint 1 attribute values as input and McGill 
Pain Reduction percentage as output on Group 1 

Attribute Increase in Mean Squared Error 

POMS..Mood.States..T1. 65.514135 

McPain..Pain.score..T1. 34.405286 

SNI..Support.Networks.Num.People..T1. 26.676747 

McPain_a..Affective.Pain.score..T1. 20.087733 

CDEP.Guilt..T1. 17.495748 

OPTI..Optimism..T1. 15.879208 

CDEP.Psy.Anxiety..T1. 15.483043 

CDEP.Retardation..T1. 12.631556 

ISEL..Social.Support..T1. 12.212556 

sumFI..Fatigue..T1. 12.104012 

PSQI..Subjective.Sleep.Quality.C1..T1. 11.646765 

LCTR..Locus.of.Control...Chance..T1. 11.534417 



33 
 

SOC..Social.Support.Open..T1. 7.8988537 

BANX..Anxiety..T1. 5.4351759 

McPain_s..Sensory.Pain.score..T1. 5.4117133 

BCX..Body.Consciousness..T1. 4.4306142 

MYMOP..Self.reported.Medical.Outcome..T1. 4.0834094 

PSQI..Sleep.Medications.C6..T1. 3.9236771 

CDEP.Agitation..T1. 3.9071771 

 

Table 9. Random Forest output using Timepoint 1 attribute values as input and McGill 
Pain Reduction percentage as output on Group 2 

Attribute Increase in Mean Squared Error 

CAT..Catastrophizing..T1. 105.8876 

LCTR..Locus.of.Control...Internal..T1. 44.154603 

CDEP.Retardation..T1. 21.933869 

POMS..Mood.States..T1. 19.651913 

CDEP.Psy.Anxiety..T1. 18.767761 

MYMOP..Self.reported.Medical.Outcome..T1. 15.702524 

SCHN..Stress..T1. 12.146609 

PSQI..Sleep.Disturbances.C5..T1. 12.063518 
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CDEP.Agitation..T1. 9.1321974 

LCTR..Locus.of.Control...Powerful..T1. 9.0829226 

BCX..Body.Consciousness..T1. 8.5886245 

PSQI..Sleep.Medications.C6..T1. 8.3178172 

SNI..Support.Networks.High.Contact.Role..T1. 7.897154 

CDEP.Work.Interests..T1. 3.1674251 

LCTR..Locus.of.Control...Chance..T1. 3.0122292 

sumFI..Fatigue..T1. 2.7611721 

PSQI..Sleep.Daytime.Dysfunction.C7..T1. 2.1993682 

CDEP.Guilt..T1. 1.1477933 

McPain..Pain.score..T1. 1.0967201 

 

4.1.3 Feature Selection Summary 

 Based on the feature selection conducted using both Lasso Regression and Random Forest 

values from the tables above, the features that appeared most frequently in the top-ranked feature 

lists (see Appendix A and B for full lists) were from the following questionnaires: McGill Pain 

Scale, Pittsburgh Sleep Quality Index (PSQI), and Carroll Depression Scale (CDEP). Values from 

these questionnaires are important to predicting the pain outcome for veterans. 
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4.2 Linear Regression 

Linear Regression was found to be powerful for predicting the McGill Pain Reduction 

percentage. Table 10 shows the results of the Linear Regression experiments. 

Table 10. Linear Regression Results 

Group # of patients Attributes selected by ML method R2 MAE MSE 

1 44 Lasso regression 0.44 12.87 254 

1 41 Lasso ∩ RF, TCM data -0.14 16.44 341 

2 39 Lasso ∩ RF 0.37 17.32 450 

2 39 Lasso ∩ RF, TCM data 0.39 17.52 433 

The attributes selected using Lasso Regression for Group 1 proved to be the most 

predictive, while the inclusion of TCM Diagnoses only seemed to hinder the performance. For 

Group 2, the most accurate model was trained on attributes at the intersection of Lasso Regression 

and Random Forest, together with an attribute that includes TCM Diagnoses. The models trained 

on attributes selected by Random Forest alone resulted in worse performance compared to what 

would be expected by simply predicting the mean change in pain over the patients in the dataset.  

 Due to the considerable variability in the regressors for the models using Linear 

Regression, as demonstrated in Table 10, we could not derive conclusions directly from the 

models. A full list of regressors can be found in Appendix C. 

4.3 Logistic Regression 

Figure 7 shows the performance of the most accurate Logistic Regression model for Group 

1. Trained on attributes selected by Lasso Regression, this model had an accuracy of 66%. It 

correctly categorized 22 out of the 26 patients labeled as "No Significant Improvement", and 

correctly predicted 7 out of the 18 patients that were categorized as "Significant Improvement." 
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Thresholds above 12% resulted in models that classified all patients as having "No Significant 

Improvement." 

 

Figure 7. Logistic Regression Confusion Matrix for Group 1 data selected by Lasso 
Regression 

Table 11 presents the values of regressors for the top-performing Logistic Regression 

model, along with those from a poor performing model. These regressors were selected to highlight 

the large difference in the values of the coefficients between the models. Features that were deemed 

important from these regressors for the best performing model include the Carroll Depression 

Scale (CDEP), the Locus of Control questionnaire, and the SF-36 Pain questionnaire. These 

features were the highest weighted in the better performing models. A full list of regressors can be 

found in Appendix D. 
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Table 11. Select Logistic Regression Regressors for Group 1 

 
Coefficients From Model Trained 
on Lasso Attributes 

Coefficients From Model Trained 
on Lasso ∩ RF + TCM data  

MYMOP -0.37 -0.49 

McGill Pain 0.50 0.43 

PSQI Subjective Sleep Quality 0.63 0.40 

SF-36 0.75  

Locus of Control Powerful 0.77  

Carroll Depression -0.94  

In Figure 8, it shows the confusion matrix of the most accurate Logistic Regression model 

for Group 2. Trained on data that included TCM Diagnoses one-hot encoded, this model had an 

accuracy of 79%, correctly categorizing all 26 of the patients labeled as “No Significant 

Improvement,” and correctly predicted 4 out of 12 of the patients who were categorized as 

“Significant Improvement.” Thresholds above 12% resulted in models that classified all patients as 

having “No Significant Improvement.” 

 

Figure 8. Logistic Regression Confusion Matrix for Group 2 with TCM Data 
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4.4 K-Nearest Neighbors 

Table 12 shows the results obtained with the K-Nearest Neighbors technique. 

Table 12. KNN Test Accuracy for Different Pain Outcome Thresholds and Datasets. Each 
prediction in the LOOCV was aggregated into a confusion matrix, and the accuracies were 
calculated from here. Test accuracies and thresholds for each dataset are listed. 

Group Data  Test Accuracy 
(Threshold: 12%, 20%, 30%) 

1 Lasso 59.09% 
72.73% 
90.91% 

1 RF 56.82% 
75% 

90.91% 

1 Lasso ∩ RF 52.27% 
72.73% 
90.91% 

1 Lasso ∩ RF, TCM 51.16% 
72.09% 
90.70% 

2 Lasso 74.36% 
82.05% 
84.62% 

2 RF 61.54% 
76.92% 
79.49% 

2 Lasso ∩ RF 61.54% 
76.92% 
79.49% 

2 Lasso ∩ RF, TCM 64.10% 
76.92% 
79.49% 



39 
 

For Group 1, KNN worked best on attributes selected by Lasso Regression. The model was 

59% accurate at a 12% threshold and had an F1 score of 0.41. The confusion matrix for this model 

can be seen in Figure 9. 

 

Figure 9. KNN Confusion Matrix on Lasso Group 1, 12% Threshold 

At a 20% threshold, the model does not predict that any patients have gotten better and 

gives an F1 score of zero. The model predicted that every patient had gotten worse except for one, 

who was classified incorrectly. These predictions were very close to the model that predicted the 

majority class. The predictive power of the model is low, despite its accuracy of 73%. The 

confusion matrix for this model can be seen in Figure 10. 
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Figure 10. KNN Confusion Matrix on Lasso Group 1, 20% Threshold 

The model created using the Random Forest variables performed second-to-best for 

predicting the pain change of patients in Group 1. The correlation matrix of this model ran at a 

12% threshold percent and is shown in Figure 11. The F1 score was 0.42, with an accuracy of 

56.8%. 
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Figure 11. KNN Confusion Matrix on RF Group 1, 12% Threshold 

The accuracy of using Random Forest coefficients was 75% at a threshold of 20%. The F1 

score in this case, however, is zero. This model has weak predictive power as it predicts that all 

patients have not gotten better when, in reality, 33% of them have, so although the accuracy of this 

model is high, it is not a good model because of the incorrect predictions. The confusion matrix for 

this model can be seen in Figure 12. 
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Figure 12. KNN Confusion Matrix on RF Group 1, 20% Threshold 

The best KNN model for predicting values for Group 2 used the field values generated by 

the Random Forest model. This was the only model that did not return a F1 score of 0 for 

thresholds of 20% and 30%. This model’s confusion matrix is shown in Figure 13, and the F1 score 

for it was 0.375 at the threshold of 12%. 
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Figure 13. KNN Confusion Matrix on RF Group 2, 12% Threshold 
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4.5 Softmax Regression 

Table 13 presents the results obtained on the Softmax regression experiments. 

Table 13. Softmax Regression Test Accuracy for Different Pain Outcome Thresholds and 
Datasets. Each prediction in the LOOCV was aggregated into a confusion matrix, and the 
accuracies were calculated from here. Test accuracies and thresholds for each dataset are listed. 

Group Data  Test Accuracy 
(Threshold: 12%, 20%, 30%) 

1 Lasso 34.09%, 
31.82% 
50.00% 

1 RF 27.27% 
34.09% 
45.45% 

1 Lasso ∩ RF 29.55% 
38.64% 
47.73% 

1 Lasso ∩ RF, TCM 32.56% 
25.58% 
58.14% 

2 Lasso 38.46% 
33.33% 
38.46% 

2 RF 28.21% 
41.03% 
38.46% 

2 Lasso ∩ RF 35.90% 
30.77% 
33.33% 

2 Lasso ∩ RF, TCM 30.77% 
30.77% 
41.03% 
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For Group 1, the Softmax method worked best on attributes selected by the intersection of 

Lasso Regression and Random Forest joined with the TCM data. The model was 58% accurate at a 

30% threshold, and sufficiently predicted which patients fell into the second category 

(improvement below the 30% threshold but above 0). However, it is important to note that a large 

portion of individuals who got worse were incorrectly classified as seeing some improvement, as 

depicted in Figure 14. 

 

Figure 14. Softmax Regression Confusion Matrix on Lasso ∩ RF + TCM Data Group 1, 
30% Threshold 

For Group 1, the Softmax method’s next-best performance was on attributes selected by 

only Lasso Regression. The model was 50% accurate and sufficiently predicted which patients got 

insignificantly better at a 30% threshold. However, the accuracy at predicting which patients have 

gotten significantly better was not as high as depicted in Figure 15. 
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Figure 15. Softmax Regression Confusion Matrix on Lasso Group 1, 30% Threshold 

For Group 2, the Softmax method’s best performance was on attributes selected by 

Random Forest at a 20% threshold and on the intersection of Lasso Regression and Random Forest 

joined with the TCM data at a 30% threshold. Both of these experiments yielded a 41% test 

accuracy (see Table 13). For Random Forest at the 20% threshold, the model was able to predict 

correctly for each of the 3 classes (with varying accuracy), including nearly half of the patients who 

saw significant improvement. It is important to note that for the class “Worse,” the model 

classified a majority of these patients as “Insignificantly Better,” as depicted in Figure 16. 
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Figure 16. Softmax Regression Confusion Matrix on RF Group 2, 20% Threshold 

For the intersection of Lasso Regression and Random Forest joined with the TCM data at a 

30% threshold (see Figure 17), the model was also able to accurately predict some from each class, 

most prominently for the insignificant improvement classification. However, it performed poorly 

for classifying the third category (“Worse”), a majority of which were incorrectly classified as the 

second category.  
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Figure 17. Softmax Regression Confusion Matrix on Lasso ∩ RF Group 2 with TCM Data, 
30% Threshold 

Overall, for both Groups 1 and 2, with the varying thresholds and data, a common trend 

that was observed in most confusion matrices was that the “Worse” true labels were classified as 

“Insignificantly Better” by the model. In addition, out of the 12 experiments for Group 1, there 

were seven that accurately classified patients with significant improvement for at least one patient. 

For Group 2, 10 out of 12 were classified correctly for significant improvement. Although the 

accuracy was not the best compared to other Group 2 experiments, the Softmax method on only 

Lasso Regression attributes at the 12% threshold yielded the highest number of correct predictions 

for significant improvement (see Figure 18). 
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Figure 18. Softmax Regression Confusion Matrix on Lasso Group 2, 12% Threshold 

  



50 
 

4.6 XG Boosting 

The results of the XG Boosting experiments are presented in Table 14. 

Table 14. XG Boosting Test Accuracy at Different Pain Outcome Thresholds and Datasets. 
Each prediction in the LOOCV was aggregated into a confusion matrix, and the accuracies were 
calculated from here. Test accuracies and thresholds for each dataset are listed. 

Group Data  Test Accuracy 
(Threshold: 12%, 20%, 
30%) 

F1 Score 
(Threshold: 12%, 20%, 
30%) 

1 Lasso 56.82% 
61.82% 
84.90% 

0.4571 
0.3000 
0.0000 

1 RF 50.00%, 
70.45% 
86.36% 

0.3889 
0.2353 
0.0000 

1 Lasso ∩ RF 54.55%, 
70.45% 
88.64% 

0.4118 
0.3810 
0.0000 

1 Lasso ∩ RF, TCM 60.98%, 
68.29% 
82.93% 

0.5000 
0.3810 
0.0000 

2 Lasso 58.97%, 
79.50% 
87.18% 

0.2727 
0.4286 
0.6154 

2 Lasso (TCM added into Lasso 

selection), Group 2 shifted to 

start at T2 

56.41%, 
66.67% 
76.92% 

0.2609 
0.2353 
0.4000 

 

2 RF 53.85%, 
76.92% 
82.05% 

0.1818 
0.3077 
0.3636 
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2 RF (TCM added into RF 

selection), Group 2 shifted to 

start at T2 

53.85%, 
61.54% 
71.79% 

0.2500 
0.1176 
0.1167 

2 Lasso ∩ RF (TCM added into 

Lasso and RF selection), 

Group 2 shifted to start at T2 

56.41%, 
76.92% 
82.05% 

0.2609 
0.4000 
0.4615 

2 Lasso ∩ RF, TCM 56.41%, 
79.49% 
87.18% 

0.1905 
0.4286 
0.6154 

1 & 2 Lasso ∩ RF (TCM added into 

Lasso and RF selection), 

Group 2 shifted to start at T2 

60.00%, 
61.25% 
81.25% 

0.4483 
0.1143 
0.1176 

1 & 2  RF (TCM added into RF 

selection), Group 2 shifted to 

start at T2 

66.25%, 
70.00% 
77.50% 

0.4906 
0.2500 
0.0000 

1 & 2  Lasso (TCM added into 

Lasso selection), Group 2 

shifted to start at T2 

61.25%, 
62.50% 
80.00% 

0.4561 
0.1667 
0.0000 

1 & 2 All T1 features, Group 2 

shifted to start at T2 

61.25%, 
68.75% 
80.00% 

0.3922 
0.1935 
0.0000 

For Group 1, the confusion matrix for the best performing model can be seen in Figure 19. 

The data this model was run on had features selected by Lasso Regression as well as Random 

Forest. Additional TCM data was then appended to the data. For Group 1, the confusion matrix 

for this model (seen in Figure 19) does not have the highest accuracy, but it does have the most 

values predicted correctly for patients who got better at the given threshold. The accuracy for the 
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confusion matrix below is calculated to be 60.98% at a 12% threshold, with an F1 score of 0.50. 

 

Figure 19. XG Boosting Confusion Matrix on Lasso ∩ RF, TCM Group 1, 12% Threshold 

As explained prior, some feature selection for XG Boosting was done with the TCM data 

included. The TCM Diagnoses feature was considered significant during Lasso feature selection 

and hence was part of the model data for the XG Boosting iteration, whose confusion matrix is 

shown in Figure 20. In general, predicting which patients have gotten better in Group 2 was much 

more successful than it was in Group 1. For the XG Boosting technique, at the 30% threshold level, 

not all implementations had a True Positive rate of 0, but for Group 2, almost every model had a 

True Positive Rate greater than 0. A possibility for this could be that 8 people in Group 2 had a 

pain reduction of 30% or above as opposed to the 4 in Group 1. Therefore, models that ran on 

Group 2 encountered more training data for patients who had gotten better at the 30% threshold 

and therefore had more predictive power. The accuracy of the model shown below in Figure 20 is 

76.92%, and it has an F1 score of 0.40. 
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Figure 20. XG Boosting Confusion Matrix on Lasso Group 2 Shifted, 30% Threshold 
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4.7 Results Summary 

 To recommend best treatment for veterans, it is important to maintain the highest 

precision (Hicks et al., 2022). For Group 1, the best performing model was trained using Logistic 

Regression on the attributes selected by Lasso Regression. As seen in Table 15, the precision of the 

model was 64%. Similarly, for Group 2, the best performing model was trained using Logistic 

Regression, but trained on the data that included TCM Diagnoses. As seen in Table 15, the 

precision was 100%, and F1 score was 0.50. As stated in Sections 4.1.3 and 4.3, some of the most 

prevalent questionnaires that can be used for accurately recommending acupuncture include 

Pittsburgh Sleep Quality Index, the Locus of Control questionnaire, the SF-36 questionnaire, the 

Carroll Depression Scale, and McGill Pain Scale. 

Table 15. Best Performing Binary Classification Models from Each Modeling Technique 

Technique Training Data Group Threshold Precision F1 score Recall Accuracy 

Logistic 
Regression 

Lasso 1 +12% 64% 0.48 39% 66% 

KNN RF 1 +12% 47% 0.42 39% 65% 

XG 
Boosting 

Lasso ∩ RF, 
TCM 

1 +12% 53% 0.50 47% 61% 

Logistic 
Regression 

Lasso ∩ RF, 
TCM 

2 +12% 100% 0.50 39% 79% 

KNN RF 2 +12% 100% 0.38 23% 74% 

XG 
Boosting 

Lasso 2 +12% 30% 0.27 23% 59% 

  

https://www.zotero.org/google-docs/?Pjb3Su
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5. Conclusions 

The overall goal of this project was to predict pain response to acupuncture treatment for 

veterans suffering from Gulf War Illness (GWI). We developed both regression and classification 

models to predict the pain reduction outcome for patients over the course of the four timepoints in 

the study. To enhance these predictive models, the most important features were chosen as input 

by their predictive strength of the pain reduction outcome. Through a number of experiments, we 

attempted to model how different features of veterans’ health contribute to their response to 

acupuncture treatment (predicting the change in pain). The best performing model produced, in 

terms of precision and accuracy, used the Logistic Regression method with input data of features 

selected from Lasso Regression for Group 1, which produced a precision of 64%, and an F1 score of 

0.4830. The key factors for predicting the pain outcome were found to be in the McGill Pain Scale, 

the Pittsburgh Sleep Quality Index, the Locus of Control questionnaire, the SF-36 questionnaire, 

and Carroll Depression questionnaire. 

To improve the effectiveness of modeling how acupuncture impacts chronic pain in 

veterans with GWI, it could prove helpful to acquire additional data about the patients and train 

more models. Because the training data utilized in this project consisted of less than 50 patients per 

group, the addition of more data could also enhance the generalization of our models and reduce 

the risk of overfitting. Furthermore, other classification techniques such as support vector 

machines and naïve Bayes classifiers could offer more insight into the effectiveness of acupuncture 

for treating Gulf War Illness. Overall, more investigation of effective treatments for GWI is 

necessary to improve the well-being of Gulf War veterans with chronic pain.  
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Appendix A: Lasso Regression Output Equations 
The tables below show the equations from the Lasso Regression method used for feature selection. 

 

Table A1. Lasso Regression coefficients using Timepoint 1 attribute values as input and 

McGill Pain Reduction Percentage as output on Group 1. 

Attribute Coefficient 

McPain..Pain.score..T1. 34.305116 

SF_PHYS..Physical.Functioning..T1. 27.816196 

SNI..Support.Networks.High.Contact.Role..T1. -19.280454 

LCTR..Locus.of.Control...Powerful..T1. 19.10707 

PSQI..Sleep.Daytime.Dysfunction.C7..T1. 17.185981 

CDEP.Work.Interests..T1. 15.851624 

OPTI..Optimism..T1. -14.28442 

PSQI..Subjective.Sleep.Quality.C1..T1. 12.094371 

CDEP.Retardation..T1. -10.389943 

CDEP.Depression..T1. -9.3270251 

McPain_a..Affective.Pain.score..T1. 7.692115 

PSQI..Sleep.Medications.C6..T1. 6.2181086 

MYMOP..Self.reported.Medical.Outcome..T1. -4.0800111 

BCX..Body.Consciousness..T1. -1.952934 
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CDEP.Psy.Anxiety..T1. 1.6491213 

POMS..Mood.States..T1. 0.2065523 

 

 

Table A2. Lasso Regression coefficients using delta attribute values as input and McGill 

Pain Reduction Percentage as output on Group 1. 

Attribute Coefficient 

SNI..Support.Networks.Num.People..D. 98.392821 

SNI..Support.Networks.Num.Embedded..D. -83.925385 

WAI..Working.Alliance.Task..D. 38.356932 

CDEP.Retardation..D. -36.040853 

SNI..Support.Networks.High.Contact.Role..D. 34.685764 

LCTR..Locus.of.Control...Internal..D. -26.955414 

ISEL..Social.Support..D. -26.923819 

CDEP.Depression..D. -26.007694 

POMS..Mood.States..D. 24.045611 

PSQI..Sleep.Disturbances.C5..D. 24.008163 

SCHN..Stress..D. 22.140698 

PSQI..Sleep.Medications.C6..D. 20.710779 

CDEP.Agitation..D. -17.966602 
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sumFI..Fatigue..D. 16.389921 

CDEP.Guilt..D. 15.730232 

WAI..Working.Alliance.Goal..D. 12.992023 

PSQI..Subjective.Sleep.Quality.C1..D. 11.889857 

LCTR..Locus.of.Control...Chance..D. -8.631689 

LCTR..Locus.of.Control...Powerful..D. 7.6654509 

OPTI..Optimism..D. 6.1441566 

WDEP..Whitely.Depression..D. -4.371798 

WAI..Working.Alliance.Bond..D. 3.9802694 

BCX..Body.Consciousness..D. 3.9602985 

BANX..Anxiety..D. -3.9297184 

CAT..Catastrophizing..D. 1.5874542 

PSQI..Sleep.Daytime.Dysfunction.C7..D. 1.1883199 

SF_PHYS..Physical.Functioning..D. -0.4178776 
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Table A3. Lasso Regression coefficients using Timepoint 1 attribute values as input and 

McGill Pain Reduction Percentage as output on Group 2. 

Attribute Coefficient 

CAT..Catastrophizing..T1. 40.031677 

PSQI..Sleep.Daytime.Dysfunction.C7..T1. -29.841435 

CDEP.Retardation..T1. 28.531807 

PSQI..Sleep.Disturbances.C5..T1. -26.471346 

SCHN..Stress..T1. -25.687251 

CDEP.Depression..T1. 6.6761321 

CDEP.Work.Interests..T1. -4.2347112 

CDEP.Psy.Anxiety..T1. -3.7659624 

BCX..Body.Consciousness..T1. 0.2012609 

 

Table A4. Lasso Regression coefficients using delta attributes values as input and McGill 

Pain Reduction Percentage as output on Group 2. 

Attribute Coefficient 

BCX..Body.Consciousness..D. 14.891542 

sumFI..Fatigue..D. 14.261043 

CAT..Catastrophizing..D. 13.957125 

SF_PHYS..Physical.Functioning..D. 13.644653 

PSQI..Subjective.Sleep.Quality.C1..D. 13.25602 
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LCTR..Locus.of.Control...Powerful..D. -11.072026 

LCTR..Locus.of.Control...Internal..D. -9.3825041 

LCTR..Locus.of.Control...Chance..D. 0.8708093 

 

Table A5. Lasso Regression coefficients using Timepoint 2 (baseline) attributes values as 

input and McGill Pain Reduction Percentage as output on Group 2. 

Attribute Coefficient 

McPain_s..Sensory.Pain.score..T2. 24.188121 

TCM Diagnoses -19.286312 

LCTR..Locus.of.Control...Chance..T2. 17.562496 

CDEP.Work.Interests..T2. -17.04251 

McPain_a..Affective.Pain.score..T2. 7.74638 

LCTR..Locus.of.Control...Internal..T2. -6.8016597 

MYMOP..Self.reported.Medical.Outcome..T2. -6.2946499 

CDEP.Guilt..T2. -1.8986728 

SCHN..Stress..T2. -1.8187312 
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Table A6. Lasso Regression coefficients using baseline attribute values as input and McGill 

Pain Reduction Percentage as output on Group 1 and Group 2 combined. 

Attribute Coefficient 

PSQI..Subjective.Sleep.Quality.C1 0.4908474 

TCM Diagnoses -7.7313663 

LCTR..Locus.of.Control...Chance 8.796358 

MYMOP..Self.reported.Medical.Outcome -13.996435 

McPain_s..Sensory.Pain.score 17.58949 

McPain_a..Affective.Pain.score 17.772838 
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Appendix B: Random Forest Outputs 
The tables below display the output of the Random Forest method used for feature selection. 

 

Table B1. Random Forest output using Timepoint 1 attribute values as input and McGill 

Pain Reduction percentage as output on Group 1. 

Attribute Increase in Mean Squared Error 

POMS..Mood.States..T1. 65.514135 

McPain..Pain.score..T1. 34.405286 

SNI..Support.Networks.Num.People..T1. 26.676747 

McPain_a..Affective.Pain.score..T1. 20.087733 

CDEP.Guilt..T1. 17.495748 

OPTI..Optimism..T1. 15.879208 

CDEP.Psy.Anxiety..T1. 15.483043 

CDEP.Retardation..T1. 12.631556 

ISEL..Social.Support..T1. 12.212556 

sumFI..Fatigue..T1. 12.104012 

PSQI..Subjective.Sleep.Quality.C1..T1. 11.646765 

LCTR..Locus.of.Control...Chance..T1. 11.534417 

SOC..Social.Support.Open..T1. 7.8988537 

BANX..Anxiety..T1. 5.4351759 
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McPain_s..Sensory.Pain.score..T1. 5.4117133 

BCX..Body.Consciousness..T1. 4.4306142 

MYMOP..Self.reported.Medical.Outcome..T1. 4.0834094 

PSQI..Sleep.Medications.C6..T1. 3.9236771 

CDEP.Agitation..T1. 3.9071771 

 

Table B2. Random Forest output using Timepoint 1 attribute values as input and McGill 

Pain Reduction percentage as output on Group 2. 

Attribute Increase in Mean Squared Error 

CAT..Catastrophizing..T1. 105.8876 

LCTR..Locus.of.Control...Internal..T1. 44.154603 

CDEP.Retardation..T1. 21.933869 

POMS..Mood.States..T1. 19.651913 

CDEP.Psy.Anxiety..T1. 18.767761 

MYMOP..Self.reported.Medical.Outcome..T1. 15.702524 

SCHN..Stress..T1. 12.146609 

PSQI..Sleep.Disturbances.C5..T1. 12.063518 

CDEP.Agitation..T1. 9.1321974 

LCTR..Locus.of.Control...Powerful..T1. 9.0829226 
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BCX..Body.Consciousness..T1. 8.5886245 

PSQI..Sleep.Medications.C6..T1. 8.3178172 

SNI..Support.Networks.High.Contact.Role..T1. 7.897154 

CDEP.Work.Interests..T1. 3.1674251 

LCTR..Locus.of.Control...Chance..T1. 3.0122292 

sumFI..Fatigue..T1. 2.7611721 

PSQI..Sleep.Daytime.Dysfunction.C7..T1. 2.1993682 

CDEP.Guilt..T1. 1.1477933 

McPain..Pain.score..T1. 1.0967201 

 
 

Table B3. Random Forest output using Timepoint 2 (baseline) attribute values as input and 

McGill Pain Reduction percentage as output on Group 2. 

Attribute Feature Importance 

McPain..Pain.score..T2. 0.112978893 

sumFI..Fatigue..T2. 0.106164661 

McPain_a..Affective.Pain.score..T2. 0.075239175 

LCTR..Locus.of.Control...Chance..T2. 0.070870446 

LCTR..Locus.of.Control...Internal..T2. 0.065342829 

CAT..Catastrophizing..T2. 0.037889037 
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SCHN..Stress..T2. 0.037665217 

ISEL..Social.Support..T2. 0.034023221 

SOC..Social.Support.Open..T2. 0.032924948 

MYMOP..Self.reported.Medical.Outcome..T2. 0.031844426 

PSQI..Subjective.Sleep.Quality.C1..T2. 0.030703327 

WDEP..Whitely.Depression..T2. 0.02843588 

CDEP.Work.Interests..T2. 0.028190882 

McPain_s..Sensory.Pain.score..T2. 0.026521947 

SNI..Support.Networks.High.Contact.Role..T2. 0.025440301 

PSQI..Sleep.Disturbances.C5..T2. 0.025341946 

BANX..Anxiety..T2. 0.022482692 

SNI..Support.Networks.Num.Embedded..T2. 0.018652001 

WAI..Working.Alliance.Goal..T2. 0.017991554 

 

Table B4. Random Forest output using baseline attribute values as input and McGill Pain 

Reduction percentage as output on Group 1 and Group 2 combined. 

Attribute Feature Importance 

McPain..Pain.score 0.150639602 

McPain_a..Affective.Pain.score 0.100955726 
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MYMOP..Self.reported.Medical.Outcome 0.062663902 

LCTR..Locus.of.Control...Chance 0.059170522 

sumFI..Fatigue 0.055079062 

SNI..Support.Networks.Num.People 0.052864793 

ISEL..Social.Support 0.044250739 

McPain_s..Sensory.Pain.score 0.040819915 

LCTR..Locus.of.Control...Powerful 0.036234279 

POMS..Mood.States 0.033789155 

LCTR..Locus.of.Control...Internal 0.032560676 

BCX..Body.Consciousness 0.031144256 

SOC..Social.Support.Open 0.029228507 

CAT..Catastrophizing 0.027543248 

PSQI..Subjective.Sleep.Quality.C1 0.027202287 

SF_PHYS..Physical.Functioning 0.026475576 

SNI..Support.Networks.High.Contact.Role 0.026398574 

OPTI..Optimism 0.024635537 

PSQI..Sleep.Disturbances.C5 0.016775461 
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Appendix C: Linear Regression Models 
Table C1: A complete list of regressors from the best performing data with Group 1. 

 Lasso 
R2: 0.44 

Lasso ∩ RF, TCM 
R2: -0.14 

BCX Body Consciousness -255.8 -1079.8 

CDEP Psy Anxiety 590.8 1264.7 

CDEP Retardation -908.2 -1079.9 

MYMOP Self reported Medical Outcome -719.6 -1397.1 

McPain Pain score 2246.4 1802.9 

McPain_a Affective Pain score 186.7 461.9 

OPTI Optimism -815.0 -820.3 

POMS Mood States -544.1 -178.4 

PSQI Sleep Medications C6 653.3 793.9 

PSQI Subjective Sleep Quality C1 586.8 264.5 

CDEP Depression -648.7  

CDEP Work Interests 1001.9  

LCTR Locus of Control Powerful 981.5  

PSQI Sleep Daytime Dysfunction C7 987.7  

SF_PHYS Physical Functioning 1499.3  

SNI Support Networks High Contact Role -1006.7  

Deficiency and Channel (TCM diagnosis)  617.8 

Excess and Channel (TCM diagnosis)  774.7 

Excess and Deficiency (TCM diagnosis)  646.5 

Excess and Deficiency and Channel (TCM diagnosis)  598.4 

Single Category (TCM diagnosis)  777.8 
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Appendix D: Logistic Regression Models 
Table D1: A complete list of regressors from the best performing data with Group 1. 

 
Lasso 
Accuracy: 66% 

Lasso ∩ RF, TCM 
Accuracy: 51% 

BCXBody Consciousness -0.82 -0.86 

CDEP Depression -0.94  

CDEP Psy Anxiety -0.38 -0.21 

CDEP Retardation -0.69 -0.52 

CDEP Work Interests 0.20  

LCTR Locus of Control Powerful 0.77  

MYMOP Self reported Medical Outcome -0.37 -0.49 

McGill Pain score 0.50 0.43 

McGill Affective Pain score 0.42 0.60 

OPTI Optimism -0.64 -0.62 

POMS Mood States 0.04 0.10 

PSQI Sleep Daytime Dysfunction 0.50  

PSQI Sleep Medications 0.04 -0.19 

PSQI Subjective Sleep Quality 0.63 0.40 

SF_PHYS Physical Functioning 0.75  

SNI Support Networks High Contact Role -0.36  

TCM Diagnoses  -0.19 
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Appendix E: Star Glyphs 
The star glyphs below (generated using the seaborn Python package) represent how 

patients' subscores changed over time, allowing for easy deciphering of how patients were affected 

by the treatment. The attributes shown in the glyphs include PSQI Sleep Daytime Dysfunction, 

Support Networks High Contact Role, Locus of Control (Powerful), SF-36 Physical Functioning, 

and McGill Pain Score. The blue highlighted region represents the patient’s scores at the beginning 

of the study (at Timepoint 1), while the red highlighted region indicates the scores after treatment 

was completed (at Timepoint 4). Furthemore, each point for the blue and red regions corresponds 

with an attribute value (as described above). By examining the differences between the blue and red 

areas, one can visually observe the impact or changes resulting from the treatment. 

 

Figure E1. A star glyph depicting a patient whose McGill Pain Score improved from 

Timepoint 1 to Timepoint 4. 
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Figure E2. A star glyph depicting a patient whose McGill Pain Score did not improve from 

Timepoint 1 to Timepoint 4. 
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Appendix F: Parallel Coordinates 
The following parallel coordinate graphs indicate certain relationships among key features 

in the given data over time. These graphs were generated using the plotly package in Python. Each 

line in the graph represents a patient in the specified group of the study. Each vertical axis depicts 

the delta score of an attribute calculated from the first to last timepoint. The color scale is a blue-

orange gradient that is based on the values of the McGill Pain Reduction (blue indicating a 

reduction in pain and orange indicating an increase in pain). 

 

 
Figure F1. A parallel coordinate graph of patients in Group 1 with delta scores of 

Depression, Fatigue, Sleep Quality, Anxiety, Locus of Control (Chance), Mood, and McGill Pain 

Reduction. 
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Figure F2. A parallel coordinate graph of patients in Group 2 with delta scores of 

Depression, Fatigue, Sleep Quality, Anxiety, Locus of Control (Chance), Mood, and McGill Pain 

Reduction. 

  



73 
 

References 
Aroke, E. N., P. V. Joseph, A. Roy, D. S. Overstreet, T. O. Tollefsbol, D. E. Vance, and B. R. 

Goodin. “Could Epigenetics Help Explain Racial Disparities in Chronic Pain?” J Pain 

Res 12 (2019): 701–10. https://doi.org/10.2147/jpr.s191848. 

Bair, Matthew J., Rebecca L. Robinson, Wayne Katon, and Kurt Kroenke. “Depression and 

Pain Comorbidity: A Literature Review.” Archives of Internal Medicine 163, no. 20 

(2003): 2433–45. https://doi.org/10.1001/archinte.163.20.2433. 

Beale, Peter, Peter Heaf, and Norman Jones. “Gulf War Illness.” BMJ: British Medical 

Journal 314, no. 7086 (1997): 1041–1041. 

Blanchard, Melvin S., Seth A. Eisen, Renee Alpern, Joel Karlinsky, Rosemary Toomey, 

Domenic J. Reda, Frances M. Murphy, Leila W. Jackson, and Han K. Kang. “Chronic 

Multisymptom Illness Complex in Gulf War I Veterans 10 Years Later.” American 

Journal of Epidemiology 163, no. 1 (January 1, 2006): 66–75. 

https://doi.org/10.1093/aje/kwj008. 

Brazier, J. E., R. Harper, N. M. Jones, A. O’Cathain, K. J. Thomas, T. Usherwood, and L. 

Westlake. “Validating the SF-36 Health Survey Questionnaire: New Outcome Measure 

for Primary Care.” British Medical Journal 305, no. 6846 (1992): 160–64. 

https://doi.org/10.1136/bmj.305.6846.160. 

Carroll, Bernard J., Michael Feinberg, Peter E. Smouse, Sarah G. Rawson, and John F. Greden. 

“The Carroll Rating Scale for Depression I. Development, Reliability and Validation.” 

British Journal of Psychiatry 138, no. 3 (March 1981): 194–200. 

https://doi.org/10.1192/bjp.138.3.194. 

Centers for Disease Control and Prevention (CDC). “Unexplained Illness among Persian Gulf 

War Veterans in an Air National Guard Unit: Preliminary Report--August 1990-March 

1995.” MMWR. Morbidity and Mortality Weekly Report 44, no. 23 (June 16, 1995): 

443–47. 

Chen, Yixiao, Per Fink, Jing Wei, Anne-Kristin Toussaint, Lan Zhang, Yaoyin Zhang, Hua 

Chen, et al. “Psychometric Evaluation of the Whiteley Index-8 in Chinese Outpatients in 

General Hospitals.” Frontiers in Psychology 12 (July 1, 2021): 557662. 

https://doi.org/10.3389/fpsyg.2021.557662. 

https://doi.org/10.2147/jpr.s191848
https://doi.org/10.2147/jpr.s191848
https://doi.org/10.1001/archinte.163.20.2433
https://doi.org/10.1001/archinte.163.20.2433
https://doi.org/10.1093/aje/kwj008
https://doi.org/10.1093/aje/kwj008
https://doi.org/10.1093/aje/kwj008
https://doi.org/10.1136/bmj.305.6846.160
https://doi.org/10.1136/bmj.305.6846.160
https://doi.org/10.1136/bmj.305.6846.160
https://doi.org/10.1192/bjp.138.3.194
https://doi.org/10.1192/bjp.138.3.194
https://doi.org/10.1192/bjp.138.3.194
https://doi.org/10.3389/fpsyg.2021.557662
https://doi.org/10.3389/fpsyg.2021.557662
https://doi.org/10.3389/fpsyg.2021.557662


74 
 

Conboy, Lisa, Meredith St John, and Rosa Schnyer. “The Effectiveness of Acupuncture in the 

Treatment of Gulf War Illness.” Contemporary Clinical Trials 33, no. 3 (May 1, 2012): 

557–62. https://doi.org/10.1016/j.cct.2012.02.006. 

Dydyk, Alexander M., and Till Conermann. “Chronic Pain.” In StatPearls. Treasure Island 

(FL): StatPearls Publishing, 2023. http://www.ncbi.nlm.nih.gov/books/NBK553030/. 

Gaskin, Darrell J., and Patrick Richard. “The Economic Costs of Pain in the United States.” 

The Journal of Pain 13, no. 8 (August 1, 2012): 715–24. 

https://doi.org/10.1016/j.jpain.2012.03.009. 

Grandner, Michael A, Daniel F Kripke, In-Young Yoon, and Shawn D Youngstedt. “Criterion 

Validity of the Pittsburgh Sleep Quality Index: Investigation in a Non-Clinical Sample.” 

Sleep and Biological Rhythms 4, no. 2 (June 2006): 129–36. 

https://doi.org/10.1111/j.1479-8425.2006.00207.x. 

Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & 

Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. 

Scientific Reports, 12(1), 5979. https://doi.org/10.1038/s41598-022-09954-8  

Hunt, S. M., J. McEwen, and S. P. McKenna. “Measuring Health Status: A New Tool for 

Clinicians and Epidemiologists.” The Journal of the Royal College of General 

Practitioners 35, no. 273 (April 1985): 185–88. 

Jeffrey, Mary G., Maxine Krengel, Jeffrey L. Kibler, Clara Zundel, Nancy G. Klimas, Kimberly 

Sullivan, and Travis J. A. Craddock. “Neuropsychological Findings in Gulf War Illness: A 

Review.” Frontiers in Psychology 10 (September 2019). 

https://doi.org/10.3389/fpsyg.2019.02088. 

Jensen, H. H., E. L. Mortensen, and M. Lotz. “Scl-90-R Symptom Profiles and Outcome of 

Short-Term Psychodynamic Group Therapy.” ISRN Psychiatry 2013 (2013): 540134. 

https://doi.org/10.1155/2013/540134. 

Ji, Ru-Rong, Andrea Nackley, Yul Huh, Niccolò Terrando, and William Maixner. 

“Neuroinflammation and Central Sensitization in Chronic and Widespread Pain.” 

Anesthesiology 129, no. 2 (2018): 343–66. 

https://doi.org/10.1097/aln.0000000000002130. 

https://doi.org/10.1016/j.cct.2012.02.006
https://doi.org/10.1016/j.cct.2012.02.006
http://www.ncbi.nlm.nih.gov/books/NBK553030/
http://www.ncbi.nlm.nih.gov/books/NBK553030/
https://doi.org/10.1016/j.jpain.2012.03.009
https://doi.org/10.1016/j.jpain.2012.03.009
https://doi.org/10.1016/j.jpain.2012.03.009
https://doi.org/10.1111/j.1479-8425.2006.00207.x
https://doi.org/10.1111/j.1479-8425.2006.00207.x
https://doi.org/10.1111/j.1479-8425.2006.00207.x
https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.3389/fpsyg.2019.02088
https://doi.org/10.3389/fpsyg.2019.02088
https://doi.org/10.3389/fpsyg.2019.02088
https://doi.org/10.1155/2013/540134
https://doi.org/10.1155/2013/540134
https://doi.org/10.1155/2013/540134
https://doi.org/10.1097/aln.0000000000002130
https://doi.org/10.1097/aln.0000000000002130
https://doi.org/10.1097/aln.0000000000002130


75 
 

Joyce, Michelle R., and Kathleen F. Holton. “Neurotoxicity in Gulf War Illness and the 

Potential Role of Glutamate.” NeuroToxicology 80 (September 1, 2020): 60–70. 

https://doi.org/10.1016/j.neuro.2020.06.008. 

Kerr, Kathleen J. “Gulf War Illness: An Overview of Events, Most Prevalent Health 

Outcomes, Exposures, and Clues as to Pathogenesis.” Reviews on Environmental Health 

30, no. 4 (January 1, 2015). https://doi.org/10.1515/reveh-2015-0032. 

Leyfer, Ovsanna T., Joshua L. Ruberg, and Janet Woodruff-Borden. “Examination of the 

Utility of the Beck Anxiety Inventory and Its Factors as a Screener for Anxiety 

Disorders.” Journal of Anxiety Disorders 20, no. 4 (January 2006): 444–58. 

https://doi.org/10.1016/j.janxdis.2005.05.004. 

Mawson, Anthony R., and Ashley M. Croft. “Gulf War Illness: Unifying Hypothesis for a 

Continuing Health Problem.” International Journal of Environmental Research and 

Public Health 16, no. 1 (2019): 111. 

Melzack, Ronald. “The Short-Form McGill Pain Questionnaire.” PAIN 30, no. 2 (1987): 

191–97. https://doi.org/10.1016/0304-3959(87)91074-8. 

Melzack, Ronald, and Srinivasa N. Raja. “The McGill Pain Questionnaire: From Description 

to Measurement.” Anesthesiology 103, no. 1 (2005): 199–202. 

https://doi.org/10.1097/00000542-200507000-00028. 

National Academies of Sciences, Engineering, and Medicine (U.S.), Richard J. Bonnie, 

Morgan A. Ford, and Jonathan Phillips, eds. Pain Management and the Opioid 

Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid 

Use. Washington, DC: The National Academies Press, 2017. 

Nephew, B. C., A. C. Incollingo Rodriguez, V. Melican, J. J. Polcari, K. E. Nippert, M. 

Rashkovskii, L. B. Linnell, et al. “Depression Predicts Chronic Pain Interference in 

Racially Diverse, Income-Disadvantaged Patients.” Pain Med 23, no. 7 (July 1, 2022): 

1239–48. https://doi.org/10.1093/pm/pnab342. 

Nettleman, M. “Gulf War Illness: Challenges Persist.” Trans Am Clin Climatol Assoc 126 

(2015): 237–47. 

https://doi.org/10.1016/j.neuro.2020.06.008
https://doi.org/10.1016/j.neuro.2020.06.008
https://doi.org/10.1016/j.neuro.2020.06.008
https://doi.org/10.1515/reveh-2015-0032
https://doi.org/10.1515/reveh-2015-0032
https://doi.org/10.1016/j.janxdis.2005.05.004
https://doi.org/10.1016/j.janxdis.2005.05.004
https://doi.org/10.1016/j.janxdis.2005.05.004
https://doi.org/10.1016/0304-3959(87)91074-8
https://doi.org/10.1016/0304-3959(87)91074-8
https://doi.org/10.1097/00000542-200507000-00028
https://doi.org/10.1097/00000542-200507000-00028
https://doi.org/10.1097/00000542-200507000-00028
https://doi.org/10.1093/pm/pnab342
https://doi.org/10.1093/pm/pnab342


76 
 

Newman, Andrea K, Shweta Kapoor, and Beverly E Thorn. “Health Care Utilization for 

Chronic Pain in Low-Income Settings.” Pain Medicine 19, no. 12 (2018): 2387–97. 

https://doi.org/10.1093/pm/pny119. 

Paap, Davy, Ernst Schrier, and Pieter U. Dijkstra. “Development and Validation of the 

Working Alliance Inventory Dutch Version for Use in Rehabilitation Setting.” 

Physiotherapy Theory and Practice 35, no. 12 (December 2, 2019): 1292–1303. 

https://doi.org/10.1080/09593985.2018.1471112. 

Paterson, C. “Measuring Outcomes in Primary Care: A Patient Generated Measure, MYMOP, 

Compared with the SF-36 Health Survey.” BMJ 312, no. 7037 (April 20, 1996): 1016–

20. https://doi.org/10.1136/bmj.312.7037.1016. 

Shahid, Azmeh, Kate Wilkinson, Shai Marcu, and Colin M. Shapiro. “Profile of Mood States 

(POMS).” In STOP, THAT and One Hundred Other Sleep Scales, edited by Azmeh 

Shahid, Kate Wilkinson, Shai Marcu, and Colin M Shapiro, 285–86. New York, NY: 

Springer New York, 2011. https://doi.org/10.1007/978-1-4419-9893-4_68. 

Sheng, Jiyao, Shui Liu, Yicun Wang, Ranji Cui, and Xuewen Zhang. “The Link between 

Depression and Chronic Pain: Neural Mechanisms in the Brain.” Neural Plasticity 2017 

(June 19, 2017): 9724371. https://doi.org/10.1155/2017/9724371. 

Taylor-Swanson, Lisa, Joe Chang, Rosa Schnyer, Kai-Yin Hsu, Beth Ann Schmitt, and Lisa A. 

Conboy. “Matrix Analysis of Traditional Chinese Medicine Differential Diagnoses in 

Gulf War Illness.” The Journal of Alternative and Complementary Medicine 25, no. 11 

(November 1, 2019): 1097–1102. https://doi.org/10.1089/acm.2017.0299. 

“Update on Gulf War Illness.” Environmental Health Perspectives 105, no. 5 (1997): 474–76. 

https://doi.org/10.2307/3433570. 

Ware, J. E., Jr., and C. D. Sherbourne. “The MOS 36-Item Short-Form Health Survey (SF-36). 

I. Conceptual Framework and Item Selection.” Med Care 30, no. 6 (June 1992): 473–83. 

Wessely, S., and L. Freedman. “Reflections on Gulf War Illness.” Philos Trans R Soc Lond B 

Biol Sci 361, no. 1468 (April 29, 2006): 721–30. 

https://doi.org/10.1098/rstb.2006.1830. 

https://doi.org/10.1093/pm/pny119
https://doi.org/10.1093/pm/pny119
https://doi.org/10.1093/pm/pny119
https://doi.org/10.1080/09593985.2018.1471112
https://doi.org/10.1080/09593985.2018.1471112
https://doi.org/10.1080/09593985.2018.1471112
https://doi.org/10.1136/bmj.312.7037.1016
https://doi.org/10.1136/bmj.312.7037.1016
https://doi.org/10.1007/978-1-4419-9893-4_68
https://doi.org/10.1007/978-1-4419-9893-4_68
https://doi.org/10.1155/2017/9724371
https://doi.org/10.1155/2017/9724371
https://doi.org/10.1089/acm.2017.0299
https://doi.org/10.1089/acm.2017.0299
https://doi.org/10.2307/3433570
https://doi.org/10.2307/3433570
https://doi.org/10.2307/3433570
https://doi.org/10.1098/rstb.2006.1830
https://doi.org/10.1098/rstb.2006.1830
https://doi.org/10.1098/rstb.2006.1830


77 
 

Yong, R. Jason, Peter M. Mullins, and Neil Bhattacharyya. “Prevalence of Chronic Pain 

among Adults in the United States.” PAIN 163, no. 2 (2022): e328–32. 

https://doi.org/10.1097/j.pain.0000000000002291. 

https://doi.org/10.1097/j.pain.0000000000002291
https://doi.org/10.1097/j.pain.0000000000002291
https://doi.org/10.1097/j.pain.0000000000002291

