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Abstract

This project introduces two new integer linear programs (ILP) to assist students with course

selection. These ILPs use novel mathematical constructs, such as “collections” of courses that

may always be interchanged. The first integer linear program minimizes the additional credits

needed for degree completion, and the second increases flexibility. Additionally, degree

completion rules are modeled with a framework that captures the “real-world” complexity

and is sufficiently standardized to be adapted to a user interface. Computational experiments

demonstrate the potential of the model to identify efficient schedules and perform “what-if”

analysis. The modeling proposed by this project has the potential to be extended to a visual

tool that assists students with choosing effective schedules.
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1 Introduction

The average six-year graduation rate at four-year colleges and universities in the

US is only 64% [1]. With tuition rates at an all-time high and increasing, delayed graduation

can be very expensive for students. Students who need more time to complete college must

pay more in tuition and face the opportunity cost of delayed entry into the workforce. The

total cost of delaying graduation from four to five years has been estimated to be at least

$88,000 [2]. Increased graduation time has also been linked to lower mid-career earnings,

even after controlling for demographic and institutional factors [3]. Alarmingly, undergrad-

uate enrollment more than doubled between 1970 and 2009, but the completion rate has

been “virtually unchanged” [4]. Planning efficient schedules is challenging for students due

to the complexity of university requirements and variability in offerings. Many students

also graduate with more credits than required. According to “Complete College America”,

students who receive a bachelor’s degree take an average of 14 credits more than necessary;

nearly half of the extra credits are due to inefficient planning and course selection [4]. Fre-

quently, information on graduation requirements is not consolidated and students must find

the information themselves [4]. Although academic advisors assist students with planning,

they may lack the resources and tools to compare different scenarios in detail.

Worcester Polytechnic Institute (WPI) features a unique academic calendar that

creates additional challenges. A typical undergraduate academic year at WPI includes four

7-week terms, referred to as A, B, C, and D terms. This does not include summer, and a

typical undergraduate student will take 3 classes per term for a total of 12 courses per year.

The four-term system significantly increases the possible offering patterns for courses: many

are offered only one or two terms per year, while others are offered every term or occasionally
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every term except one. Some courses are even offered only once every two years. Therefore,

there are 16 possible permutations of course offering patterns. WPI also offers much more

flexibility than many engineering programs with regard to which courses may be used for

various requirements: for many majors, relatively few courses are unequivocally required,

and few electives are completely unrestricted. This creates a large number of schedules that

satisfy degree requirements, but the complicated course offering patterns make many of these

infeasible or impractical. Conflicts between courses that are offered only once per year can

force students to overload or even delay graduation an entire year if not resolved. Therefore,

early planning is critical.

This project develops a tool to assist students with selecting schedules that are

efficient but flexible. It can also be utilized as an alternative degree audit tool. AlthoughWPI

does offer a degree audit tool through Workday, it does not clearly display requirement rules,

nor does it always place completed courses effectively. For example, courses are sometimes

counted toward free electives when they are able to fulfill a more specific requirement. It

also lacks the ability to perform “what-if” analysis or provide guidance on course selection.

The tool developed in this project seeks to minimize the number of additional credits to

graduate, which guarantees efficient placement of already completed courses. It can also be

easily extended to allow students to test different scenarios by selecting a different major or

entering intended courses as “completed”.

In this report, a framework for degree evaluation and planning optimization is

developed. After a review of related work, a structure for requirements will be introduced

and defined. Furthermore, a method to simplify the problem size is described. This system of

“collections” also results in a single “solution” actually representing a set of solutions. This

model is then used to create a two-stage series of integer linear programs. The first stage

minimizes credits necessary, and the second stage is intended to capture a broader array of
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solutions. Various computational experiments are then utilized to build a plan for completing

a double major in the minimum amount of credits necessary. Additionally, the impact

of specific course planning decisions is evaluated. This process also illuminates multiple

potential “problem areas” where students may struggle to identify and fulfill requirements.

Finally, a number of potential directions for further work are discussed.
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2 Literature Review

In this section, we review prior work on similar projects and describe the factors

that were considered in the design of this model.

2.1 Challenges of Constraint Complexity

The primary goal of most course planning tools is to find “ideal” solutions that

satisfy a large number of complicated rules. Many models cannot accommodate requirements

beyond selecting some minimum number of courses from a list. This is often insufficient for

real-life graduation requirements, which may involve many other rules. Unfortunately, many

degree requirements involve dependencies. Consider a program that requires three science

courses but at least two must be from different areas of science. For a student who has taken

two science courses and is choosing a third, whether or not it can fulfill the requirement

depends on the two they have already taken. This complicates answers to questions as

simple as if a student should take a physics course.

One of the most detailed and complex examples found in this review is Avi Dechter’s

paper “Model-Based Student Academic Planning” [5]. Dechter modeled the degree require-

ments for a B.A. in Child and Adolescent Development (CADV) at California State Uni-

versity, Northridge (CSUN). This included breadth requirements, a minimum number of

upper-level courses, and constraints on how many credit-hours must be achieved before or

after a course is taken. Two versions were implemented, one with constraint programming

(CP) and the other with integer linear programming (ILP). Constraint programming has the

advantage of not requiring linearity, but performance on the ILP was clearly superior. On

the detailed test cases, the CP version failed to find an optimal solution within a “reasonable
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amount of time” and sometimes could not even find a feasible solution. The ILP ran much

faster, but still required several minutes using CPLEX in order to generate only one optimal

solution when more almost certainly exist. However, it should be noted that this paper was

published in 2007 and the same problem would likely run much faster today. An improved

runtime still may limit the practicality of “what-if” analysis, particularly since each run only

returns a single optimal solution. Additionally, Dechter notes that the test case was still

simpler than the actual requirements. For the CADV program at CSUN, some courses may

sometimes be allowed to fulfill multiple requirements.

Another common issue is a lack of standardization of types of requirements. Some

level of standardization is necessary for implementing an administrative user interface, which

is critical for longevity. If requirements cannot be changed without editing the code itself, this

greatly limits the long-term maintainability. In “Dependency Evaluation and Visualization

Tool for Systems Represented by a Directed Acyclic Graph” [6], the authors describe a

standardized data structure for handling complex requirements as a combination of simpler

requirements. Their proposed structure allows a requirement to apply to a set of courses

or a set of other requirements. Although their paper focuses primarily on graph-based

visualization of prerequisites, structuring requirements such that they may run over other

requirements significantly increases the complexity that can be handled.

2.2 Double Majors

Another common cause of complex requirements with dependencies is the case of

double majors. Typically a student may count a course once per major, but not more than

once within the same major. Identifying the courses with maximal overlap between majors

is an inherent part of planning a double major, but relatively little has been published
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on applying optimization. One of the most direct works on double major optimization

is Olabumuyi’s “Application of Optimization Methods to Bachelor’s Degree Planning” [7].

Olabumuyi models this with an ILP to minimize the total credit-hours needed to complete all

degree requirements. Some requirement-sharing rules are implemented in this model: some

courses may be also used as an upper-level course or as an elective, but not both. This is

handled by adding an extra decision variable for the assignment of the course to an elective

and/or upper-level requirement as applicable, the sum of which must be at most one. There

do not appear to be any other constraints that limit how many times a course can be applied

to a requirement. Whether or not a course satisfies a requirement is determined by a binary

variable given as an input, which limits the ability to handle dependencies. Over-assignment

seems to be prevented mostly implicitly, because there is little overlap between the courses

that can satisfy each requirement. A notable exception is the science requirement, which

requires at least one course from “Group 1”, one from groups 1 or 2, and one from groups 1,

2, or 3. Presumably a course cannot count toward more than one of these requirements, or

a single group 1 course would fill all three. This can still be implemented without restricting

the number of assignments by considering the sum of courses from each group: at least two

from groups 1-2, and at least three from groups 1-3. However, the actual implementation is

unclear from the manuscript. One of the sample solutions given shows a solution with only

one course from Group 1, none from Group 2, and two from Group 3 (Table 3-8, Olabumuyi).

One of the Group 3 courses may be invalid because it is listed as required in addition to the

group 1-3 requirements (Figure 2-1, Olabumuyi).
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2.3 Student Choice and Flexibility

One of the most obvious applications of degree planning tools is helping students

to identify and choose between options. Additionally, there are often multiple secondary ob-

jectives that may be considered. Some work has been done on identifying multiple solutions,

such as “A decision support model for long-term course planning” [8], which introduces a

“novel diversification technique” in order to generate multiple “structurally different” so-

lutions. Other works, including Olabumuyi, allow students to assign preference weights to

courses. It’s trivial for most models to restrict if specific courses are taken or not, but this

may not return a feasible solution. Still, introducing secondary objectives requires determin-

ing appropriate weighting. Due to the potential size of the set of optimal solutions, it may

be more useful to identify “ingredients” of optimal solutions.

One approach to comparing solutions is emphasizing schedule resiliency. Among a

set of optimal schedules, which are most likely to remain optimal in the event of common

changes? Where are the “pinch points” in a given degree plan? The paper “An Optimal

Slack-Based Course Scheduling Algorithm for Personalised Study Plans” [9] addresses this

question. The authors’ method revolves around maximizing slackness: “a slack-based al-

gorithm simplifies which course must be scheduled first and which courses can be delayed

until a later date”. The authors define “slack” as the difference between the earliest a course

can be taken (while satisfying prerequisites) and the latest a course can be taken (without

delaying graduation).

The primary limiting factor in their paper is “chains” of prerequisite requirements.

Much of the prior work on course planning optimization has pertained to prerequisites,

although not all explicitly sought to maximize “slack”. Many variants are essentially a

form of critical path analysis, although the details differ. Some focus on prioritization [10],
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while others take a graphical approach [6]. Alternatively, “Personalizing Education With

Algorithmic Course Selection” [11] introduces a calculation of “opportunity cost”, based on

the number of post-requisites that are “unlocked” by a course and its post-requisites.

In “TAROT: A course advising system for the future” [12], the authors describe

a scheduling system that is resilience-based but does not emphasize prerequisites. Their

model is also one of the few to include double majors. The authors describe the questions

that students and advisors may want to answer as questions about “the present”, “possible

futures”, “all possible futures”, and “the rules”. The authors note that most other works

focus only on the former two, which aligns with the findings of this review. TAROT is also

implemented in constraint programming, which allows complicated and nonlinear constraints

to be applied more easily. Although Dechter [5] found that constraint programming was

significantly slower than integer linear programming and often unable to find any solution,

TAROT can solve even its most complex inquiries within about 10 minutes. Some of this

difference may be due to implementation differences, but it is unclear if TAROT was tested

on the very complex requirements that Dechter used. Based on the examples given, TAROT

may have been tested on scenarios with very complex constraints on when a course can

be taken, but simpler constraints on the graduation requirements. Dechter also scheduled

many more courses; TAROT excluded general education courses. Although excluding general

education can be sensible, some universities permit courses to be double-counted toward

major-specific requirements and general education requirements. Maximizing this overlap

could be another target for optimization, particularly for degree programs outside of STEM.

For a basic inquiry, TAROT develops a single valid schedule that satisfies input

parameters or determines that one does not exist. This basic inquiry can typically be com-

pleted within 0.10 seconds if any solution exists, and within about 2.0 seconds if none exists.

The authors state that a double major is “as simple as finding a schedule for the first major,
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then starting with this schedule [...] and filling in the requirements for the second major”.

However, this does not guarantee that the resulting double major schedule has minimized

the number of courses needed. Different valid schedules for the first major may not have the

same amount of overlap with the second major. For example, consider a double major of a

math degree and computer science degree at Stetson University (which TAROT was tested

on). A math degree requires one of CSCI 141 and CSCI 261, and a computer science degree

requires CSCI 141. Clearly the student should take CSCI 141 for the math requirement to

minimize the total courses needed. If the math degree is scheduled first with CSCI 261, it

seems that TAROT may add CSCI 141 without dropping CSCI 261. This also means that

results may vary depending on which major is scheduled first. The authors do reference a

feature to compare the overlap between majors by computing all schedules for each one and

counting the courses in common.

Generating all schedules that fulfill given criteria is another interesting feature of

TAROT. The schedules can then be compared for different scenarios, which can be applied

to assess schedule resilience. The authors give the example of a student who wishes to

study abroad and wants to decide which semester to go abroad. Assuming that only general

education courses are available while abroad, TAROT determines that there are 51,549

possible schedules if the student studies abroad in Fall 2019, but only 28,026 if the student

studies abroad in Spring 2022. Therefore, the student will have much more scheduling

flexibility if they go abroad in Fall 2019. Similarly, TAROT can evaluate the impact of a

particular course’s assignment on the rest of the schedule.
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2.4 Summary

Papers on long term course planning often do not include complex requirements like

Dechter, and instead assume that all requirements are in the form of selecting a certain num-

ber of courses from a set of courses. Real-life constraints can depend on one another, which

can make linearization challenging and can significantly increase the number of constraints

and variables needed. Additionally, the input of complex constraints must be standardized

so that the tool can continue to be used as degree requirements evolve over time. A stan-

dardized input for complex rules is essential to the longevity of a degree tool. University

administrators should be able to modify rules and requirements without making any mod-

ifications to the code of the tool. This is especially critical for a tool that utilizes integer

linear programming, such as the one implemented in this project. Complex requirements

often need to be linearized, which is challenging to automate in the absence of sufficiently

standardized inputs. Any tool that can only be modified by individuals with integer linear

programming experience will be severely limited in practical use.

Many other works also do not consider the double major case. In the literature

reviewed, only TAROT and Olabumuyi address double major optimization. Olabumuyi

does not significantly address identifying multiple solutions and TAROT identifies multiple

solutions through enumeration. Although TAROT uses constraint programming in Prolog

to strategically enumerate possibilities, it takes about 4 minutes to compute all paths for

a double major. In this paper, we introduce a standardized structure for requirements and

a system to group courses with shared attributes. By establishing the circumstances in

which courses can be interchanged, this allows for the solution to assign categories of courses

instead of a singular course, when possible.
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3 Methodology

This section will discuss the mathematical modeling utilized in this project.

3.1 Requirements

For this project, a regular degree requirement is defined as a requirement that a

specified number of credits be taken from a given set of courses. If a course is applied to

a regular requirement, it may not be applied to any other regular requirements within the

same major. For double majors and minors, a course may be applied up to two times as long

as each applied to a different program. However, many degree requirements at WPI and

other universities cannot be expressed solely as regular requirements. For example, many

programs require a certain number of upper division courses, yet do not specify which upper

division courses. The rules around how courses may be assigned to requirements will be

referred to as super-requirements. Unlike regular requirements, no course(s) are assigned to

super-requirements directly.

This project considers two types of super-requirements. The first type, called Type

1, sets a minimum or maximum number of credits from a set of courses that can be applied

to a set of requirements. A common example is restrictions on upper and lower-level courses.

For example, a math major at WPI may count at most one 1000-level course toward the

“Transition Courses” requirement. Type 1 super-requirements may also be applied to prevent

multiple mutually-exclusive courses from being taken, although this is not considered in

this model. Type 2 super-requirements typically reflect “depth” requirements: a minimum

number of credits must be selected from the same subset. A Type 2 super-requirement

is considered satisfied if at least the minimum number of credits has been completed from
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any of the subsets. All Type 1 and Type 2 super-requirements can be implemented as

linear constraints in an integer linear program; the formulation can be seen in Section 3.3.

Although this project focuses on a small number of majors, this structure is intended to be

applicable to many others.

Key Credits Courses

MA TRANSIT 12 MA 1033, MA 1971, MA 2073, MA 2631,
MA 2211, MA 2251, MA 2271, MA 2273,
MA 2431, MA 2631, MA 3631

Table 1: Math transition courses requirement

Key Direction Credits Selection Applicable
Courses

Applicable
Reqs

MA
TRANSIT
MAX

AT MOST 3 ANY OF MA 1033,
MA 1971

MA
TRANSIT

Table 2: Math transition courses super-requirement

All super-requirements have a “direction” and “selection”. The direction field must

be “AT LEAST” or “AT MOST” and the selection field must be “ANY OF” or “ONE OF”.

The type is determined by the selection field– “ANY OF” a set of courses is a Type 1

super-requirement and “ONE OF” a set of sets of courses is a Type 2 super-requirement.

For Type 2 super-requirements, the direction must be “AT LEAST”. The field “Applicable

Courses” refers to this set of courses or set of subsets of courses. Finally, “Applicable Reqs”

refers to the requirements that the super-requirement applies to. For example, the restric-

tion on 1000-level math courses only applies to the courses applied to the math transition

requirement– multiple 1000-level math transition courses can be used toward other require-

ments. An example input for the math transition requirement and 1000-level maximum

super-requirement can be seen in Table 1 and Table 2.
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An example of the versatility of this requirement and super-requirement model is

the WPI humanities requirement. WPI requires students to choose a concentration and

take 9 credits of courses from the concentration, as well as a 3-credit project related to

their concentration. Concentrations may be chosen from art, foreign language, writing,

history, and philosophy. Students may propose self-designed concentrations, but this requires

individual approval and is thus not included in the model. WPI also requires that students

take at least one course outside of their concentration (waived for foreign languages), and

one “free” humanities course. The concentration requirement can be implemented with a

Type 2 super-requirement, and the breadth requirement can be implemented with a series

of Type 1 super-requirements that prohibit all courses from being selected from the same

area. See Tables 3, 4, and 5 for the corresponding standardized input.

Key Credits Courses

HUA CORE 15 AR DEPT, TH DEPT, MUS DEPT, AB
DEPT, CN DEPT, GN DEPT, SP
DEPT, EN DEPT, WR DEPT, HI
DEPT, HU DEPT, INTL DEPT, PY
DEPT, RE DEPT

HUA PROJ 3 HU 3900, HU 3910

Table 3: Humanities requirements
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Key Direction Credits Selection Applicable
Courses

Applicable
Reqs

HUA
DEPTH

AT LEAST 9 ONE OF [AR DEPT,
TH DEPT,
MUS DEPT]

HUA CORE

[AB DEPT,
CN DEPT,
GN DEPT,
SP DEPT]

[EN DEPT,
WR DEPT]

[HI DEPT,
HU DEPT,
INTL DEPT]

[PY DEPT,
RE DEPT]

Table 4: Humanities depth super-requirement

Key Direction Credits Selection Applicable
Courses

Applicable
Reqs

HUA ART
MAX

AT MOST 12 ANY OF AR DEPT,
TH DEPT,
MUS DEPT

HUA CORE

HUA WR
MAX

AT MOST 12 ANY OF EN DEPT,
WR DEPT

HUA CORE

HUA HI
MAX

AT MOST 12 ANY OF HI DEPT,
HU DEPT,
INTL DEPT

HUA CORE

HUA PY
MAX

AT MOST 12 ANY OF PY DEPT,
RE DEPT

HUA CORE

Table 5: Humanities breadth super-requirement
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3.2 Collections

One of the challenges of course selection optimization is handling the large number

of course offerings, which leads to a large number of potential outcomes. Some courses

may be grouped together, such as all courses in a given department, which helps to reduce

the problem size and complexity. Combining courses into a single group is also desirable

because it leads to a “single” solution actually representing a set of solutions. However,

courses must be grouped carefully to ensure that the solution space is unchanged by the

grouping process. For example, cross-listed courses may be unaccounted for if the grouping

process is done naively. Simultaneously, courses may be enumerated unnecessarily, which

increases the number of variables and the difficulty of identifying other optimal solutions.

In this project, courses are grouped into collections. All courses in a collection must

be equivalent with respect to certain properties. These properties include the requirements

and super-requirements that a course can fulfill, and the number of credits each course is

worth. Additionally, collections must be non-overlapping; each course may be in only one

collection. All courses that may be applied to any requirement must belong to a collection.

These requirements are automatically satisfied if each course belongs to its own unique

collection; therefore it is always possible to define a valid set of collections.

As an example, consider a simplified version of the requirements for a math major

in Table 6; assume all courses are 3 credits. Notice that MA 3631 may be used as a transition

course or as an upper-level course, while no other transition courses are upper-level. There-

fore, MA 3631 must be in a separate collection from the rest of the transition courses. No

other courses can satisfy the upper-level requirement and the transition courses requirement,

so MA 3631 is the only member of its collection. Similarly, MA 1033 and 1971 are subject

to the 1000 level maximum, and the rest of the transition courses are not. Therefore, they
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cannot be in the same collection as the rest of the transition courses, but may be in the same

collection as each other. We therefore get the following collections and the requirements to

which they apply, as seen in Table 7.

Requirements Courses

Transition Courses MA 1033, 1971, 2073, 2631, 2211, 2251, 2271,
2273, 2431, 2631, 3631

Real Analysis MA 3831, 3832

Numerical Methods MA 3257, 3457

Abstract Algebra MA 3825, 3823

Upper Level Math Any 3000+ MA

Super Requirements

Transition 1000-Level Max MA 1033, 1971

Table 6: Simplified version of math requirements

Collection of Courses Requirements and Super Requirements

MA 1033, 1971 Transition Courses, Transition 1000-Level Max

MA 2073, 2631, 2211, 2251,
2271, 2273, 2431, 2631

Transition Courses

MA 3631 Transition Courses, Upper Level Math

MA 3831, 3832 Real Analysis, Upper Level Math

MA 3257, 3457 Numerical Methods, Upper Level Math

MA 3825, 3823 Abstract Algebra, Upper Level Math

All other 3000+ MA Upper Level Math

Table 7: Collections for simplified math major

If a double major is being considered, we can apply a similar procedure to determine

the collections. Consider a simplified version of the math courses that may be used for

industrial engineering (Table 8). By comparing any overlap between the two, we find that

MA 1033 can be applied to Calc III but not MA 1971, so these courses must be split into
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their own collections. Additionally, MA 2631 is the only course to fulfill the math transition

requirements and the Statistics and Probability requirement. Finally, the upper-level math

courses included in the OIE electives may also be counted toward a math major. The

resulting set of collections is shown in Table 9.

Requirements Courses

Calc III MA 1023, 1033

Calc IV MA 1024, 1034

Statistics MA 2611

Statistics and Probability MA 2612, 2621, 2631

OIE Electives MA 3231, 3233, 3627, 4235, 4237, 4631, 4632;

MIS 3720, 4084, 4720, 4741;

OIE 3405, 3600, 4410, 4430, 4460

Super Requirements

None

Table 8: Simplified version of IE requirements
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Collection of Courses Requirements and Super Requirements

MA 1971 Transition Courses, Transition 1000-Level Max

MA 1033 Transition Courses, Transition 1000-Level Max,
Calc III

MA 1023 Calc III

MA 1024, 1034 Calc IV

MA 2073, 2211, 2251,
2271, 2273, 2431

Transition Courses

MA 2611 Statistics

MA 2612, 2621 Statistics and Probability

MA 2631 Transition Courses, Statistics and Probability

MA 3631 Transition Courses, Upper Level Math, OIE
Electives

MA 3831, 3832 Real Analysis, Upper Level Math

MA 3257, 3457 Numerical Methods, Upper Level Math

MA 3825, 3823 Abstract Algebra, Upper Level Math

MA 3231, 3233, 3627,
4235, 4237, 4631, 4632

OIE Electives, Upper Level Math

MIS 3720, 4084, 4720, 4741 OIE Electives

OIE 3405, 3600, 4410,
4430, 4460

All other 3000+ MA Upper Level Math

Table 9: Collections for math and IE double major
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3.3 Stage I Model

In this section, we introduce our mathematical model for minimizing the number

of additional credits that must be taken for degree completion. This project uses a two-

stage ILP; this section will describe the first and the next section describes the second.

Our approach to this problem involves assigning courses to requirements, where the primary

decision variable are how many courses from a collection to assign to each requirement. This

section provides a brief overview of the model; additional details may be seen in Appendix

F. The conditions that must be met for a collection to be valid are also outlines in Appendix

F.

Sets

P Programs (majors) p being evaluated
Rp Set of requirements r needed for program p

M Set of all collections m
m A collection, which is a set of one or more courses such that certain

conditions are met for all courses in the collection
Mr Set of collections m that may be applied to requirement r
Rm Set of requirements r such that any course in m may be applied to r

Umax Set of Type 1 super-requirements u with an upper bound
Umin Set of Type 1 super-requirements u with a lower bound
Mu Set of collections m to which u applies
Ru Set of requirements to which u applies

W Set of Type 2 super-requirements w
Vw Set of sets v such that w is satisfied if sufficient credits have been taken

from a single v ∈ Vw

Mv Set of all m such that m ⊆ v
Rw Set of requirements to which w applies
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Constants

α(m) Credits for any course in Cm

β(r) Credits associated with requirement r
µ(u) Credits associated with u (upper or lower bound)
µ(w) Minimum number of credits that must be selected from the same set of

courses for Type 2 super-requirement w
T (m) The number of courses that have already been taken from Cm

γ(m) The number of courses contained in Cm

Variables

xm,r Integer variable representing the number of courses from Cm assigned to
requirement r

ym Integer variable representing the total number of courses from Cm

assigned to any requirement, excluding courses that have already been
taken

qv,w Binary variable taking the value of 1 if sufficient credits have been
selected from v for super-requirement w and 0, otherwise

The primary decision variable in the integer linear program is xm,r, which represents

the number of courses from Cm assigned to requirement r. Because the objective is to

minimize the number of additional credits that need to be taken, our objective function

should not include courses that have already been taken. Our objective function is therefore:

min
∑
m∈M

α(m)ym

First, the number of courses assigned from a collection to each program must not exceed the

total number of courses in the collection. This also bounds ym from below.

∑
r∈Rm∩Rp

xm,r ≤ ym + T (m), ∀p ∈ P, ∀m ∈ M
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Next, the constraint that each requirement is satisfied:

∑
m∈Mr

α(m)xm,r ≥ β(r), ∀p ∈ P, ∀r ∈ Rp

Constraints for Type 1 super-requirements:

∑
m∈Mu

∑
r∈Rm∩Ru

α(m)xm,r ≤ µ(u), ∀u ∈ Umax

∑
m∈Mu

∑
r∈Rm∩Ru

α(m)xm,r ≥ µ(u), ∀u ∈ Umin

For Type 2 super-requirements w, we add a binary indicator variable for whether sufficient

credits are taken from each sublist, and a constraint that sufficient credits are taken from at

least one:

qw,v ≤
1

µ(w)

( ∑
m∈Mv

∑
r∈Rw∩Rm

α(m)xm,r

)
, ∀w ∈ W, ∀v ∈ Vw

∑
v∈Vw

qw,v ≥ 1, ∀w ∈ W

The final ILP appears in (1) – (10). In summary, (1) minimizes the number of

additional credits that must be completed. Constraint (2) properly bounds ym. Constraint

(3) stipulates that all requirements are met. Constraints (4) and (5) enforce Type 1 super-

requirements. Constraint (6) sets the value of the variables that indicate whether a set of

courses can be used as a depth for Type 2 super-requirements. Finally, constraint (7) requires

that at least one depth is met for each Type 2 super-requirement.
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Final ILP statement:

min z =
∑
m∈M

α(m)ym (1)

subject to

∑
r∈Rm∩Rp

xm,r ≤ ym + T (m), ∀p ∈ P, ∀m ∈ M (2)

∑
m∈Mr

α(m)xm,r ≥ β(r), ∀p ∈ P, ∀r ∈ Rp (3)

∑
m∈Mu

∑
r∈Rm∩Ru

α(m)xm,r ≤ µ(u), ∀u ∈ Umax (4)

∑
m∈Mu

∑
r∈Rm∩Ru

α(m)xm,r ≥ µ(u), ∀u ∈ Umin (5)

∑
m∈Mv

∑
r∈Rw∩Rm

α(m)xm,r ≥ µ(w)qw,v, ∀v ∈ Vw, ∀w ∈ W (6)

∑
v∈Vw

qw,v ≥ 1, ∀w ∈ W (7)

xm,r ∈ {0, 1, ..., γ(m)} ∀m ∈ M, ∀r ∈ R (8)

ym ∈ {0, 1, ..., γ(m)− T (m)} ∀m ∈ M (9)

qw,v ∈ {0, 1} ∀v ∈ Vw, ∀w ∈ W (10)
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3.4 Stage II Model

The first ILP minimizes total new credits, but may select a more narrow choice

than is necessary. For example, a particular upper-level course may be selected when any

upper-level course would suffice. In the second stage, we maximize choice without exceeding

the minimum number of credits determined in the first stage. Each collection is assigned a

choice weight Γ(m) and the choice weights of all assigned courses are summed.

By default, Γ(m) = γ(m). For collections that represent any course in a given

department, γ(m) excludes all courses in that department that already belong to other

collections. However, the choice weights include all courses in a department including ones

that already belong to other collections. This forces the model to preferentially assign

collections that represent entire departments when possible. The same calculation is also

used for collections that represent any course of a given level in a given department.

The choice weights can also be used to express preference. Although student pref-

erence is not currently taken into account, future extensions could allow courses preferred by

the student to be assigned a higher choice weight. Conversely, courses that students do not

want to take could be assigned negative scores of sufficiently large magnitude. This will still

allow for non-preferred courses to be assigned if necessary. Lower choice weights can also be

assigned to collections with multiple very similar courses.

The final ILP for Stage II can be seen below. The new objective function (11)

maximizes the choice weights. Constraint (12) prevents the minimum number of credits

needed from being exceeded. See the previous section for descriptions of constraints (2) –

(10).
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Constants

z∗ The minimum number of credits necessary to complete all requirements
Γ(m) The choice weight of any course in collection m

max
∑
m∈M

Γ(m)ym (11)

subject to

(2) - (10)∑
m∈M

α(m)ym ≤ z∗ (12)
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4 Results and Analysis

In this section, we give an overview of the implementation of the model and some

results from computational experiments.

4.1 Implementation

For this project, the model was tested on the mathematical sciences and industrial

engineering majors at WPI. Data on graduation requirements was retrieved from the WPI

tracking sheets and based on the requirements for the class entering in 2022-2023. All

requirements and super-requirements were hand-input into a spreadsheet in a standardized

format as described in Section 3.1 and can be seen in Appendix B. Physical education,

free electives, and the major qualifying project (MQP) were excluded from the input and

handled in post-processing. The “Additional Courses” math requirement was considered

additional elective slots. Courses were also partitioned into “collections” as described in

the previous section. All collections were manually formed by hand, and partial code was

created that could be extended in future work to automate this process. The result can be

seen in Appendix C.

Both spreadsheets were read and processed using Python. After processing, the

resulting Python dictionaries were written to a JSON file. This allows for improved run-

times due to much of the data processing not needing to be repeated unless the graduation

rules themselves are changed. The ILP was created and solved using PuLP [13], which is

open-source. A small correction factor of 0.1 was added to the left-hand side of constraint

(6) to prevent negatives due to rounding. Additionally, a constraint was added to avoid

overfilling the “related courses” requirement for mathematical sciences. Otherwise, the ILP
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formulation matched the formulation described in the methodology.

The program input required the user to select a major or set of majors (industrial

engineering, mathematical sciences, or both) and to input a list of courses that have already

been taken. Each course input as “taken” is compared to the courses listed under “contents”

in the collections input. If a match is found, this is added to the count of courses already

taken from the collection. Some courses are matched based on the department and level; no

validity check is performed to check if courses entered are real courses. If no exact match is

found, the course is assumed to be 3 credits.

The program was first tested with an empty list of “taken” courses, which mod-

els an incoming student with no prior credit. This was run for a math major, industrial

engineering major, and for both. Table 11 shows some attributes of the ILP and Table 10

show the run times. Note that “Total” time includes setting up the model and reading the

solution, therefore it is longer than the sum of the solve times for each stage. Overall credits

were broken down into the following categories: general education, major-specific, MQP,

and free electives. General education consists of the humanities requirement, social science

requirement, physical education requirement, and IQP. “Major-specific” covers all other re-

quirements that are input into the model, and any remaining credits are considered free

electives. As previously noted, the “additional courses” for mathematics are also considered

free electives.

Math IE Double

Stage I Solve 0.0513 0.0459 0.0566

Stage II Solve 0.0500 0.0509 0.0588

Start to Finish 0.1154 0.1123 0.1443

Table 10: Solve time (seconds), assuming no courses have been taken yet
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Problem and
Stage

Rows Columns Nonzero
Elements

Math, stage I 52 75 148

Math, stage II 53 75 173

IE, stage I 69 94 167

IE, stage II 70 94 203

Double, stage I 143 201 449

Double, stage II 144 201 502

Table 11: Comparison of ILPs

The distribution of credits for the three scenarios is shown in Table 12. A double

major in math and industrial engineering requires a minimum of 147 credits, which is 12

more credits than the minimum for a single-major. Only 9 of these are additional coursework,

while the other 3 are added to the MQP. This also shows that a maximum of 57 credits from

the major-specific category may be overlapped. However, the minimum number of credits for

graduation can only be achieved if 57 credits that can be double-counted are taken. Figure

1 shows the output of the initial double major run.

Credits Math IE Double

HUA, SS, IQP, PE 36 36 36

MQP 9 9 12

Major-specific 75 81 99

Free 15 9 0

Total 135 135 147

Table 12: Distribution of credits for different programs
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Industrial Engineering
INDUSTRIAL ENGINEERING CORE (27 credits)

OIE 3405 or OIE 4430

OIE 2081

BUS 3020

CS 2119, 2102, or 2103

OIE 2850

OIE 3410

OIE 3420

OIE 3460

OIE 3510

INDUSTRIAL ENGINEERING ELECTIVES (9 credits)

MA 3631

MA IE Elective

MA IE Elective

TECHNICAL ELECTIVES (9 credits)

ES

MA 3257 or 3457

CS

MATHEMATICS & BASIC SCIENCE (36 credits)
Calculus and Statistics

MA 1021

MA 1022

MA 1033

MA 1024 or 1034

MA 2051

MA 2611

MA 2631

Physics/Chemistry Sequence

CH

PH

PH

Math/Science Electives

MA 3831

MA 3832

Mathematical Sciences
CORE COURSES (12 credits)

MA 3831

MA 3832

MA 3823 or 3825

MA 3257 or 3457

TRANSITION COURSES (12 credits)
Choose from: MA 1033, MA 1971, MA 2073, MA 2211, MA 2251, MA
2271, MA 2273, MA 2431, MA 2631, MA 3631. At most one of 1033 and
1971 may be applied.

MA 1033

MA 2631

MA 3631

Math Transition Course

ADDITIONAL 3000 OR HIGHER MATH (9 credits)

MA IE Elective

MA IE Elective

3000+ MA

INTRODUCTORY AND OTHER MATH COURSES (24 credits)

MA 1021

MA 1022

MA 1024 or 1034

MA 2051

MA 2611

MA

MA

MA

RELATED COURSES (18 credits)
Two science courses (BB, CH, ES, GE, PH), two CS/DS courses, and two
other courses from science, engineering, computer science or business
(except FIN 1250). At most one from DS 1010, CS 2022, and CS 3043.

PH

PH

CS

CS 2119, 2102, or 2103

BUS 3020

OIE 2081

Figure 1: Course placement from first run
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4.2 Identifying Critical Courses

We can now perform sensitivity analysis to determine the conditions necessary

to complete a double major in only 147 credits. First, we consider “fixed” courses– if a

requirement can be filled only by a single collection, then at least one course must be taken

from that collection. The fixed courses for math and IE can be seen in Table 13. Note that

Calculus III is not fixed because MA 1033 can be applied as a math transition course and

MA 1023 cannot. Running the list of fixed courses as “taken” against each single-major

can identify the double-counting potential of the fixed courses. When the fixed courses are

run against a math major, 21 of the 60 credits cannot be applied to any major-specific

requirements for a math major. When run against industrial engineering, 3 of the 60 credits

cannot be applied. The remaining 36 credits can be applied to both. We can then compute

the distribution of credits that apply to a single major or to both, which is shown in Table

14. This yields a remaining 36 credits for math and 24 credits for IE, with a total of 39

additional credits. Therefore, 21 of the remaining credits must double-count.

IE Core IE Math and Science Math Core

OIE 3405 or 4430 Calculus I MA 3831

OIE 2081 Calculus II MA 3832

BUS 3020 Calculus IV Numerical Methods

OIE 2850 MA 2051 Abstract Algebra

OIE 3410 MA 2611

OIE 3420 CH

OIE 3460 PH

OIE 3510 ES

Table 13: Fixed courses
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Consider other areas where courses may double-count. For the IE programming

requirement, either OIE 3600, CS 2102, CS 2103, or CS 2119 may be used. The initial

solution selects the collection of CS courses. If the program is run with OIE 3600 added to

taken, the minimum total credits increases to 150. Therefore, selecting OIE 3600 prevents

any optimal solution from being reached. The CS courses may all be applied to the math

CS requirement, so this is a guaranteed double-count.

Math IE Combined

Only IE 0 21 21

Only math 3 0 3

Both 36 36 36

Remaining 36 24 39

Total 75 81 99

Table 14: Distribution of credits for fixed courses

The set of math courses that may be applied as industrial engineering electives

are another opportunity to double-count. Another way to evaluate the necessity of courses

is to adjust the choice weight. If the choice weight is set to -1000 for all courses in the

aforementioned set, this still results in 3 of them being assigned. Therefore, the minimum

number of credits cannot be reached without at least 9 credits of these courses applied.

Another consideration is the third physics/chemistry course. This was assigned as

a physics course in the initial run (Figure 1), but switching it to a chemistry course and

re-running does not increase the minimum credits needed. However, adding either to fixed

courses and running as a math major returns an additional elective course. Therefore, physics

or chemistry may be used for the IE science requirement but neither can be double-counted

in addition to the courses already double-counted.

After applying all of the changes, the new distribution table is shown at Table 15.
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This table indicates that the rest of the courses counted toward IE must also double-count

toward MA. Table 16 shows the requirements that must be met by the remaining 24 credits.

This is now small enough that it could be enumerated if desired. Even without enumerating,

we can easily see the results of simple scenarios. It can be readily seen that the remaining

courses must include 21 credits of mathematics and 3 credits of CS or DS courses. Therefore,

the final IE technical elective must be from math or CS/DS. If the program is run with even

one technical elective course outside of these areas, the minimum credits for a double major

increases to 150.

Math IE Combined

Only IE 0 24 24

Only math 3 0 3

Both 48 48 48

Remaining 24 9 24

Total 75 81 99

Table 15: Updated distribution of credits

Consider if a student takes a 1000-level CS course in preparation for the required

2000-level CS courses. This course may be applied to the math CS/DS requirement, but

1000-level CS courses are excluded from IE technical electives. The IE technical elective

must then be filled by a math course. This results in a much smaller subset of the technical

electives that may be selected from in order to finish with the minimum number of credits.

Math IE

12 credits from math transition courses 3 credits from MA 1033 or 1023

3 credits from CS or DS 3 credits from MA 2612, 2621, or 2631

6 credits of other math courses 3 credits from technical electives

Table 16: Remaining requirements
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Figure 2 shows which courses must be taken and how they must be applied for

an optimal double major. Asterisks indicate which courses may be moved to a different

requirement and which courses must double count. Based on this analysis, any other changes

will prohibit the double major from being completed in only 147 credits.
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Industrial Engineering
INDUSTRIAL ENGINEERING CORE (27 credits)

OIE 3405 or OIE 4430

OIE 2081

BUS 3020

CS 2119, 2102, or 2103

OIE 2850

OIE 3410

OIE 3420

OIE 3460

OIE 3510

INDUSTRIAL ENGINEERING ELECTIVES (9 credits)

MA IE Elective

MA IE Elective

MA IE Elective

TECHNICAL ELECTIVES (9 credits)

ES

MA 3257 or 3457

TECH ELECT: MA or CS**

MATHEMATICS & BASIC SCIENCE (36 credits)
Calculus and Statistics

Calc I

Calc II

MA 1023 or MA 1033

Calc IV

MA 2051

MA 2611

MA 2612, 2621, or 2631

Physics/Chemistry Sequence

CH

PH

CH or PH

Math/Science Electives

MA 3831

MA 3832

Mathematical Sciences
CORE COURSES (12 credits)

MA 3831

MA 3832

MA 3823 or 3825

MA 3257 or 3457

TRANSITION COURSES (12 credits)
Choose from: MA 1033, MA 1971, MA 2073, MA 2211, MA 2251, MA
2271, MA 2273, MA 2431, MA 2631, MA 3631. At most one of 1033 and
1971 may be applied.

ADDITIONAL 3000 OR HIGHER MATH (9 credits)

MA IE Elective

MA IE Elective

MA IE Elective

INTRODUCTORY AND OTHER MATH COURSES (24 credits)

Calc I

Calc II

MA 1023 or 1033*

Calc IV

MA 2051

MA 2611

MA 2612, 2621, or 2631*

RELATED COURSES (18 credits)
Two science courses (BB, CH, ES, GE, PH), two CS/DS courses, and two
other courses from science, engineering, computer science or business
(except FIN 1250). At most one from DS 1010, CS 2022, and CS 3043.

CH

PH

CS or DS

CS 2119, 2102, or 2103

ES

OIE 2081

*May be moved to a different requirement
**Must be double-counted

Figure 2: Completed tracking sheets for major-specific requirements for a double major
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4.3 Delay Cost of Switching

The next analysis conducted compares the impact of switching or adding a major at

different points in time. Three sample student schedules were generated for testing the model.

The first two semesters of each were based upon the WPI recommendations for first-year

students (Appendix E) for students majoring in mathematics, IE, or who are undecided. For

students majoring in mathematics or IE, a sample second year schedule was created. These

were selected based upon course offerings and the tracking sheets and were intended to be

relatively well-distributed among different subjects, although the high number of technical

courses required is still reflected. The math and IE students were assumed to have taken

MA 1021 and 1022 equivalents prior to WPI, as is the case for many WPI students, while

the undecided student was assumed to begin with no prior college credits. Sample schedules

were determined prior to determining the optimal double major path in the previous section.

Original major

Semesters IE Math Undecided

1 147 147 147

2 147 147 150

3 150 147 -

4 156 153 -

Table 17: Total credits needed complete double major from various starting points

Table 17 shows the minimum number of total credits needed to complete a double

major in mathematics and industrial engineering, assuming a student stays on the sample

path for the given number of semesters. Students who begin as math or IE majors and follow

the WPI recommendations for their first year are still able to complete the double major in

the minimum number of credits. Therefore, achieving a minimum-credit double major may
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be achievable even if the second major is not added until the end of the first year. However,

course availability may prevent being able to take all necessary double-counting courses.

An undecided freshman who follows the sample “undecided” schedule shown in

Table 18 can still complete a double major in the minimum number of credits after the first

semester. After the second semester, an additional 3 credits are required. This is consistent

with the plan described in the previous section. The first semester complies with the plan,

but the second semester contains ME 1800, which cannot be double-counted for non-elective

credit.

Freshman

A B C D

MA 1021 MA 1022 MA 1023 MA 1024

PH 1110 PH 1120 CH 1010 ME 1800

HUA Soc Sci ES 1310 HUA

Table 18: Sample undecided freshman schedule

If a student begins on the sample math schedule shown in Table 19 and adds an

industrial engineering major, the first three semesters align with the optimal double major

plan. The course CS 2022 may be counted as a technical elective for IE and as an introductory

math course for a math major, so it still fits within the plan. In the fourth semester, BB

1002 does not fit within the double major plan and adds an additional 3 credits. MA 3431 is

also unable to be additionally double-counted because all “general and introductory” math

slots have already been filled but it cannot fill any specific requirements for IE. Additionally,

the student has already taken two social science courses and double majoring does not allow

for any free electives, which means that taking ID 2050 will also increase the minimum by

another 3 credits.

Although almost all IE requirements outside of the IE core can be double-counted
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Freshman

A B C D

MA 1023 MA 1024 MA 2051 MA 1971

PH 1110 PH 1120 MA 2611 MA 2071

CS 1004 HUA CS 2022 HUA

Sophomore

A B C D

MA 2631 MA 3457 MA 2073 MA 2273

MA 3231 ES 1310 BB 1002 MA 3431

ENV 1000 HUA HUA PSY 1400

Table 19: Sample freshman and sophomore math schedule

Freshman

A B C D

MA 1023 MA 1024 MA 2051 MA 2611

PH 1110 PH 1120 CH 1010 ES 1310

HUA Soc Sci HUA OIE 2850

Sophomore

A B C D

OIE 3420 OIE 3600 OIE 3410 OIE 3405

BUS 3020 MA 2612 OIE 2081 ME 1800

MA 2071 HUA HUA BB 1025

Table 20: Sample freshman and sophomore IE schedule

toward a math degree, the sample IE schedule in Table 20 produced a steeper increase in

the minimum possible credits to add a double major. Comparison to the double major

plan in the previous section indicates that OIE 3600 will add a minimum of 3 credits to

the plan, while the other courses in the first 3 semesters fit within the framework from the

previous section. The fourth semester adds 6 more credits. This aligns with the forecast in

the previous section that additional science or engineering courses (BB 1025, ME 1800) will
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increase the minimum number of credits needed.

Although these small and hand-picked examples do not necessarily represent the

“average” student, the timing of increases to the total number of credits supports the validity

of the double major planning sheet developed in the previous section. However, there is no

guarantee that course offerings and students’ particular schedules will permit completing the

most efficient courses within the typical graduation time. This continues to apply even if

the original optimal path is no longer possible, so a logical next step is to consider course

availability.
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5 Conclusion

In this section the implications, limitations, and extensions of this project will be

discussed.

5.1 Discussion

This project proposed and implemented a framework for evaluating and optimiz-

ing student course selection. The framework successfully accommodated the real, complex

requirements for two different majors at WPI. Run time was very fast (all runs completed

within 1 second), and a single solution actually refers to a larger set of options due to the

method of collections. Although a user interface remains to be implemented, the framework

should allow for one to be added without making fundamental changes to the underlying

code. For rules too complex to be applied with this framework, it may be worth considering

if the rules can be simplified. However, the mathematical model applied in this paper is

most effective as a tool for determining paths to complete double majors in the minimum

number of credits. This could be extended to accommodate minors and BS/MS students,

but is likely unnecessarily complex for the single major case. The degree planning problem

has many facets, and different tools are better suited to different aspects.

Adding a user interface to allow students to perform their own what-if analysis and

automatically generate a tracking sheet would likely be of great utility to the student body.

The current tool in Workday has many limitations and does not appear to have the capability

to compare various scenarios. Even simple scenarios, such as the impact of changing one’s

major, can be beneficial for students. For double majors, the “cost of switching” analysis

(Section 4.3) indicated that relatively late additions of a second major (after the first year)

38



may not increase the minimum credits needed by much if at all. However, even if it is

theoretically possible to complete the second major without any delay compared to students

who added the second major sooner, course offering schedules may make this impractical.

A key component of the degree planning problem at WPI is the term offering patterns;

although this was not able to be addressed in this project, some potential strategies are

described in the extensions section.

Throughout this project, a few potential areas of confusion or delay for students

were noted. All of the WPI first-year recommendations (Appendix E) include a social science

course as one of the recommended options for each term, but only two social science courses

are required and one may be ID 2050, which is mandatory for students who complete IQP

abroad. Although it’s understandable to encourage freshmen to take a balance of technical

and non-technical courses, taking excess social science courses in the first year decreases the

“slack” of free elective courses remaining. In addition, students who complete much of their

humanities and social science requirements early on will have greater difficulty balancing

technical and non-technical courses as upperclassmen. If WPI would like students to take

more social science courses, adjusting the requirements to allow students to earn more non-

elective credit for social sciences may help. Similarly, some majors do not allow GPS courses

to count toward any non-elective credit. Consideration should be given to the effects of

students filling multiple free elective slots as freshmen.

Another possible area of difficulty is “prerequisites”. Although WPI does not have

formal prerequisites, many courses would be inadvisable to take without sufficient back-

ground. The lack of required prerequisites can make it difficult for students to identify which

courses need to be taken sooner. One remedy may be to identify “foundational courses” in

different departments or areas of study. Students could still be permitted the freedom to

enroll in any course, but with more clear guidelines for courses that should be taken sooner
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rather than later to prepare for upper-level coursework. Additional analysis would also likely

reveal that certain “not required” courses are implicitly required if a student abides by even

more of the “recommended” course guidelines. Relatedly, the IE program gives the students

the choice of a scripting course or an object-oriented programming course. However, it’s rec-

ommended that students take a 1000-level computer science course prior to object-oriented

programming, but the IE program does not allow any credit to be given for the former except

for free electives. In the example in Section 4.2, specifying a couple of standard courses such

as introductory computer science or linear algebra significantly narrows the possibilities to

complete the double major without exceeding the minimum required credit.

5.2 Limitations

Although care was taken to preserve the complexity of degree-planning, some factors

were not considered in this project. Graduate courses were excluded, and requirements such

as the residency minimum and limits on applying AP courses were also not considered..

Mutually exclusive courses were also not enforced. Although this can be handled with Type

1 super-requirements, no exportable data source on which courses are mutually exclusive was

found. Course descriptions were the only identified source of this, but a substantial number

of courses were listed as mutually exclusive with courses that do not appear to have been

offered in the last five years. The model was also only tested on two majors, though the

formulation was developed with the intention of being viable for other WPI majors. Because

WPI does not have required prerequisites (only “suggested” and “recommended” courses),

this was not considered in the model. This model also does not provide any recommendations

regarding when to take a course.

Additionally, the process of partitioning courses into collections was performed
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manually and therefore may be subject to errors. Some code was written to automate this

process but it was unable to be completed in time. The data can be manually altered and

reloaded, but this still requires specific formatting rules to be adhered to. There is also no

current way for student preference to be considered. Although the choice weights could be

adjusted manually, it would likely make more sense for student weights to be multipliers on

static choice weights. other than manually adjusting choice weights. The current heuristic for

assigning choice weights is also unable to account for dependencies. For example, selecting

three courses from a collection of seven will have a higher choice weight than selecting

two from a collection of seven and one from a collection of six, although the number of

permutations is higher for the latter.

The model will also typically not return the entire set of optimal solutions. The

use of collections allows a “single” solution to represent a set, but in some scenarios courses

will be selected randomly. Frequently, a requirement could be fulfilled by any course from a

union of collections, but because collections by definition have some different properties from

each other, this cannot be assumed. For example, a depth may be automatically chosen for a

student if there are multiple options. However, it cannot be assumed that all depth options

are legitimate. Similarly, care must be taken to avoid violating Type 1 super-requirements.

The Stage II ILP was originally intended to address this, but allowing overlapping groups of

collections requires substantial modeling changes. Some other possible methods of addressing

this are described in further detail in the next section.

5.3 Future Work

One of the most immediate applications of this tool would be to design and im-

plement a user interface. The requirements structure is intended to allow for a seamless
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connection with an administrative UI, in order for such a tool to be maintainable. The tool

could create filled-in tracking sheets for students and perform what-if analysis for various

scenarios, such as switching their major. Other considerations may include generating double

major tracking sheets and considering student preferences. Students could also be permitted

to assign their own weights for the “choice scores” described in Section 3.4. However, one

barrier to implementing a tool based on this model is the need to generate the collections.

This is not currently automated, and no algorithm has been finalized for ensuring that the

fewest possible number of collections is used (which is similar to the set covering problem).

One clear extension to this project is to include minors and combined BS/MS

programs. This introduces additional challenges because triple-counting must be prohibited,

and a minimum number of courses must not be double counted at all. Additionally, some

courses that are cross-listed as graduate and undergraduate courses while others are not

cross-listed but are mutually exclusive. Graduate courses also have firmer prerequisites than

undergraduate courses, and are typically offered on a semester basis rather than a term basis.

For a BS/MS student, minimizing credits may be less important than minimizing the time

to completion. Therefore, a critical part of the planning problem becomes not only which

courses to take, but when.

Many other works on degree planning focus on when to take a course and prerequi-

sites, but WPI’s four-term system greatly increases the complexity of deciding when to take

a course. Additionally, long-term planning that considers the timing of individual course

sections is often impractical due to year-to-year variation; the terms in which a course is

offered tends to be more consistent. Unfortunately, the unique four-term system at WPI can

significantly increase the number of combinations of schedules, which may be prohibitive to

translate into an ILP and solve in a reasonable amount of time. Although a possible ILP

formulation may be seen in Appendix G, multiple areas of this project may be better suited
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to an algorithmic approach. In particular, the two-stage ILP may be more efficient as a

combination of an algorithm and a single ILP.

This project uses a second ILP to return “broader” solutions when possible, but

this will still require the solver to choose between “equivalent” solutions. One option may

be to use an ILP to determine the minimum number of credits and then algorithmically

determine which “swaps” are permitted to expand the solution set without losing optimality.

Alternatively, an algorithm could be used to generate initial assignments and then an ILP

could be used to perform sensitivity analysis, similar to the process used in Section 4.2.

One concept that was considered but unable to be implemented in this project is

the “density” of course requirements. For each collection of courses, vectors representing

the distribution of each course in the collection can be summed to calculate an “expected”

number of courses that the student will take each term. An average of these can then be

computed, weighted by the expected number of courses to be taken from each collection as

determined by the ILP. This can assist in identifying terms that are most “dense” and most

likely to create a bottleneck or force an overload. A similar analysis could also be done to

evaluate current course offering schedules. For example, a simulation could be conducted to

forecast student demand for various courses and identify areas that could most benefit from

adding additional course sections. Various methods could also be developed to identify the

most critical courses.
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Appendices

A Reflection

In this project, we proposed a system for standardizing degree requirements and

grouping courses with shared characteristics. Course planning is a complicated problem that

impacts every college student. According to “Complete College America” [4], the number

of degrees earned has not increased in parallel with the number of students enrolled in a

degree program. WPI currently utilizes Workday for academic administration. Although

Workday has a “degree progress” tool, it’s unintuitive and does not permit any what-if

analysis. Furthermore, the tool sometimes places courses inefficiently or outright fails to

match courses to any requirement even when a match exists.

The engineering design process was applied to this problem. One of the primary

objectives was creating a process that can be adapted to evolving circumstances and remain

in operation without the involvement of the original creators. An otherwise impeccably

designed tool may not be useful if it no longer works when information changes or if it

cannot be maintained without its creator. Software development principles were considered

in the implementation of this project, particularly in terms of maintaining modular code that

can be adapted. A standardized spreadsheet input format was created, and code was written

so that a single function could reload all of the data. The standardized input was intended

to balance simplicity and readability with the complexity of actual degree requirements. The

final input is structured simply enough that it should be doable to replace the spreadsheet

with a user interface later. Care was taken to avoid opportunities to enter conflicting data;

data that needed to be available in multiple locations was distributed during processing.

After processing, the data was stored in a JSON. For this type of project, the amount of
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data processing is high but changes to the data are relatively infrequent. Therefore, it made

sense to “front-load” the processing.

The tasks and workflow for this project differed substantially from typical, non-

project-based coursework. As a long-term project, dynamically adjusting to circumstances

was essential. Additionally, the original scope of the project was very broad and ultimately

unrealistic for the intended timeline. Project management skills were critical to the comple-

tion of the project. One of the biggest challenges was balancing the need to be meticulous

and detail-oriented with realistic goals and timeframes. Despite these challenges, this project

was a valuable experience for gaining insight into the engineering design process.
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B Requirements Input

Figure 3: Requirements input sheet
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Figure 4: Super-requirements input sheet
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C Collections Input

Figure 5: Collections input for IE single major
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Figure 6: Collections input for math single major
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Figure 7: Collections input for math-IE double major
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D Tracking Sheets

MATHEMATICAL SCIENCES MAJOR 
Program Tracking Sheet 

Effective for students entering AY 2022-2023 

Name: Class Year: 

Advisor: 2nd Major: 

NOTES: Minimum total academic credit = 15 units 
               Residency Req.: Min. of 8 units must be completed at WPI 
HUMANITIES AND ARTS (6/3 units) 
All 5 HUA courses must be completed before beginning the Inquiry Seminar 
or Practicum. 

Depth Component 
Students must complete at least three thematically-related courses prior to 
the culminating Inquiry Seminar or Practicum in the same thematic area. At 
least one of the three courses should be at the 2000-level or above. 

Course Term Grade Units 
1 1/3 
2 1/3 
3 1/3 
4 HU 3900 or HU 3910 1/3 
Breadth Component 
Students must take at least one course outside the grouping in which they 
complete their depth component. To identify breadth, courses are grouped in 
the following manner. 
i. art/art history, drama/theatre, and music (AR, EN/TH, MU);
ii. foreign languages (AB, CN, EN, GN, SP);
iii. literature and writing rhetoric (EN, WR, RH);
iv. history and international studies (HI, HU, INTL);
v. philosophy and religion (PY, RE).
Exception: May take all six courses in a foreign language
5 1/3 
Humanities Elective 
6 1/3 

PHYSICAL EDUCATION (4 PE classes = 1/3 unit) 

7 

1/12 
1/12 
1/12 
1/12 

SOCIAL SCIENCE (2/3 unit) ECON, ENV, GOV, PSY, SD, SOC, SS, STS, 
DEV, and ID2050 

8 1/3 
9 1/3 

THE INTERACTIVE QUALIFYING PROJECT (1 unit) 
10 1/3 
11 1/3 
12 1/3 

FREE ELECTIVES (1 unit) 
13 1/3 
14 1/3 
15 1/3 

MATHEMATICS (22/3 units) 
May not include both MA 2631 and MA 2621. 
May not include both MA 2071 and MA 2072.  
At least 7/3 units must consist of MA courses at the 3000 level or above. 

TRANSITION COURSES (4/3 units) 
Must include at least four of the following: MA 1033 or MA 1971 (one only), 
MA 2073, MA 2211, MA 2251, MA 2271*, MA 2273*, MA 2431, MA 2631, 
MA 3631, or their equivalents (MA 2621 cannot be counted as a transition 
course) 

16 1/3 
17 1/3 
18 1/3 
19 

CORE COURSES (4/3 units) 
20 MA 3831 1/3 
21 MA 3832 1/3 
22 MA 3257 or MA 3457 1/3 
23 MA 3823* or MA 3825* 1/3 

ADDITIONAL COURSES AT 3000 LEVEL OR HIGHER (1 unit) 
24 1/3 
25 1/3 
26 1/3 

INTRODUCTORY AND OTHER MATH COURSES (8/3 units) 
27 1/3 
28 1/3 
29 1/3 
30 1/3 
31 1/3 
32 1/3 
33 1/3 
34 1/3 

MAJOR QUALIFYING PROJECT (3/3 unit) 
35 1/3 
36 1/3 
37 1/3 

MATHEMATICAL PROGRAM - RELATED COURSES (2 units) 
Courses from other departments that are related to the student’s 
mathematical program.  At least 2/3 units of science must be included. At 
least 2/3 unit in computer science or data science must be included; the 
remaining courses are to be selected from science, engineering, computer 
science or business (except FIN 1250).  Science courses may be chosen 
from the following disciplines: BB, CH, ES, GE, PH. CS/DS courses may 
include only one of DS 1010, CS 2022 and CS 3043. 

38 SCI 1/3 
39 SCI 1/3 
40 CS or DS 1/3 
41 CS or DS 1/3 
42 1/3 
43 1/3 

ADDITIONAL COURSES (2/3 units) 
Additional courses or independent studies (except AS, MS, PE courses, and 
other degree requirements) from any area. 

44 1/3 
45 1/3 

*Category II classes. Only offered every other year.

Figure 8: Mathematical Sciences Tracking Sheet
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INDUSTRIAL ENGINEERING MAJOR 
Program Tracking Sheet 

Effective for students entering AY 2023 (2022-2023) 

Name: Class Year: 2026 Date tracking sheet completed: 

Student ID #: Advisor: 2nd Major/Minor: 
NOTES: Minimum academic credit = 15 units 

Residency Req.:  Min. of 8 units must be completed at WPI. 
No course should appear more than once on this sheet, with the 
exception of PE courses. 

HUMANITIES AND ARTS REQUIREMENT (6/3 units) 
--Breadth Component 
Students must take at least one course outside the grouping in which 
the depth component falls: 
a. Art/art history, drama/theatre, music (AR, EN/TH, MU)
b. Foreign languages (AB, CN, EN, GN, SP)
c. Literature, writing, rhetoric (EN, WR, RH)
d. History, international studies (HI, HU, INTL)
e. Philosophy, religion (PY, RE)

Course Term Grade Units 
1. 1/3 
2. 1/3 
--Depth Component 
Students must complete at least three thematically-related courses 
prior to the culminating Inquiry Seminar or Practicum in the same 
thematic area.  At least one must be at the 2000 level or above. 
Exception: May take all six courses in German or Spanish. 
3. 1/3 
4. 1/3 
5. 1/3 
6. HU 3900/3910 (taken last) 1/3 

 

PHYSICAL EDUCATION (4 PE classes = 1/3 unit) 
7.1 1/12 
7.2 1/12 
7.3 1/12 
7.4 1/12 
MATHEMATICS & BASIC SCIENCE (12/3 units) 
Calculus Sequence 

8. MA 1021 1/3 
9. MA 1022 1/3 
10. MA 1023 1/3 
11. MA 1024 1/3 
12. MA 2051 1/3 
Statistics Sequence 

13. MA 2611 1/3 
14. MA 2612 or 2621 1/3 
Physics/Chemistry Sequence 

15. CH 1/3 
16. PH 1/3 
17. CH or PH 1/3 
Math/Science Electives (one of each is recommended)  
Recommended in Math:  MA 2071, probability & stats., numerical analysis 
Science:  BB, CH, GE, PH 

18. 1/3 
19. 1/3 

SOCIAL SCIENCES (2/3 units) 
Two from:  DEV, ECON, ENV, GOV, ID 2050/SS 2050, PSY, SD, SOC, SS, STS 

20. ID 2050/SS 2050 AY ‘25 1/3 
21. 1/3 

THE INTERACTIVE QUALIFYING PROJECT (3/3 units) 
22. AY ‘25 1/3 
23. AY ‘25 1/3 
24. AY ‘25 1/3 

INDUSTRIAL ENGINEERING CORE (9/3 units) 
25. OIE 3405 or OIE 4430 1/3 
26. OIE 2081 1/3 
27. BUS 3020 1/3 
28. OIE3600 or CS2119 or 2102/2103** 1/3 
29. OIE 2850 1/3 
30. OIE 3410 1/3 
31. OIE 3420 1/3 
32. OIE 3460 1/3 
33. OIE 3510 1/3 

**Take CS 1004 prior to CS 2119.  Take CS 1101/1102 prior to CS 2102/2103. 
INDUSTRIAL ENGINEERING ELECTIVES-Operations Research (3/3 units) 
Choose three: OIE 3405*, 3600*, 4410, 4430*, 4460; MIS 3720, 4084, 4720, 
4741; MA 3231, 3233, 3627, 3631, 4235, 4237, 4631, 4632. 
*Only if not taken in IE Core.

34. 1/3 
35. 1/3 
36. 1/3 

 

TECHNICAL ELECTIVES (3/3 units) 
Any designated CE (except CE 3022), CHE, CS (except CS 1004, 1101, 
1102, 3043), ECE, ES (except ES 1000, 3323), ME, OIE, RBE, as well as any 
IE Elective (see above).  Suggested courses include:  
CS 2011, CS 4032/MA 3257, ECE 2010, ES 1310, ES 2001, ES 2800,  
ES 3001, ME 1800, ME 2820.  GPS course credits do not qualify.           

37. One ES course required 1/3 
38. 1/3 
39. 1/3 

 

THE MAJOR QUALIFYING PROJECT (3/3 units) 
40. A ‘25 1/3 
41. B ‘25 1/3 
42. C ‘26 1/3 

FREE ELECTIVES (3/3 units) 
43. 1/3 
44. 1/3 
45. 1/3 

NOTES

Revised 05/18/2021 

Figure 9: Industrial Engineering Tracking Sheet
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E WPI First-Year Recommended Courses

A B

MA MA

Science/Econ/Additional MA Science/Econ/Additional MA

GPS/HUA/CS GPS/HUA/CS

C D

MA MA

Science/Econ/Additional MA Science/Econ/Additional MA

GPS/HUA/CS HUA/CS

Table 21: First-year recommendations for math majors

A B

MA MA

CH or PH CH or PH

GPS/HUA/SS GPS/HUA/SS

C D

MA MA

CH/PH Engineering Science

GPS/HUA/SS HUA/SS/OIE 2850

Table 22: First-year recommendations for IE students

A B

CH 1010 or PH 1110/1111 CH 1020 or PH 1120/1121

MA MA

GPS/HUA/SS GPS/HUA/SS

C D

CH 1010 or PH 1110/1111 CH 1020 or PH 1120/1121

MA MA

GPS/HUA/SS/Intro Course GPS/HUA/SS/Intro Course

Table 23: First-year recommendations for undecided students

Source: [14]

53



F Model Derivation

In this section, we will begin with the assumption that we wish to assign individual

courses to requirements. The necessary attributes of collections will be demonstrated and

defined.

Sets

P Programs (majors) p being evaluated
Rp Set of requirements needed for program p

C Set of all courses c
Cr Set of all courses that can be applied to requirement r
Rc Set of all requirements that course c can be applied to

Umax Set of Type 1 super-requirements u with an upper bound
Umin Set of Type 1 super-requirements u with a lower bound
Cu Set of courses that u applies to
Ru Set of requirements to which u applies

W Set of Type 2 super-requirements w
v ∈ Vw Each set of courses that may be selected for Type 2 super-requirement w
Rw Set of requirements to which w applies

Constants

α(c) Credits for course c
β(r) Credits associated with requirement r
µ(u) Credits associated with u (upper or lower bound)
µ(w) Credits associated with w (lower bound)

Variables

xc,r Binary variable taking the value of 1 if course c is assigned to requirement
r; 0 otherwise

yc Binary variable taking the value of 1 if course c is assigned at all and has
not already been taken; 0 otherwise

qv,w Binary variable taking the value of 1 if sufficient credits have been
selected from v for super-requirement w; 0 otherwise
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Consider the following constraints that ensure all requirements are met:

∑
c∈Cr

α(c)xc,r ≥ β(r), ∀p ∈ P, ∀r ∈ Rp (1)

∑
c∈Cu

∑
r∈Rc∩Ru

α(c)xc,r ≤ µ(u), ∀u ∈ Umax (2)

∑
c∈Cu

∑
r∈Rc∩Ru

α(c)xc,r ≥ µ(u), ∀u ∈ Umin (3)

∑
c∈v

∑
r∈Rw∩Rc

α(c)xc,r ≥ µ(w)qw,v, ∀v ∈ Vw,∀w ∈ W (4)

The primary goal of the model transformation is to reduce the number of variables through

the following substitution, where m is a collection of courses.

xm,r =
∑
c∈m

xc,r

In order for this to be possible, the following conditions must hold for all collections m ∈ M

and for any cj ∈ m:

α(cj) = α(ck) ∀ck ∈ m

cj ∈ Cr ⇐⇒ m ⊆ Cr ∀r ∈ Rp, ∀p ∈ P

cj ∈ Cu ⇐⇒ m ⊆ Cu ∀u ∈ U

cj ∈ Cv ⇐⇒ m ⊆ Cv ∀v ∈ Vw, ∀w ∈ W

In simple terms, the set of requirements and super-requirements that a course can apply to

must be the same for all courses in a collection. Additionally, the number of credits must

be the same for all courses in the same collection. We define the following new sets, where

cj is an arbitrary element of m:
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Rm := Rcj

α(m) := α(cj)

Mr := {m|m ⊆ Cr}

Mu := {m|m ⊆ Cu}

Mv := {m|m ⊆ Cv}

We can now begin to transform expressions. First, the LHS of constraint (1):

∑
c∈Cr

α(c)xc,r ⇐⇒
∑

m∈Mr

∑
c∈m

α(c)xc,r ⇐⇒
∑

m∈Mr

α(m)xm,r

Next, the LHS of constraints (2) and (3):

∑
c∈Cu

∑
r∈Rc∩Ru

α(c)xc,r ⇐⇒
∑

m∈Mu

∑
c∈m

∑
r∈Rm∩Ru

α(c)xc,r

⇐⇒
∑

m∈Mu

∑
r∈Rm∩Ru

∑
c∈m

α(c)xc,r ⇐⇒
∑

m∈Mu

∑
r∈Rm∩Ru

α(m)xm,r

Then the LHS of constraint (4):

∑
c∈Cv

∑
r∈Rc∩Rw

α(c)xc,r ⇐⇒
∑

m∈Mv

∑
c∈m

∑
r∈Rm∩Rw

α(c)xc,r

⇐⇒
∑

m∈Mv

∑
r∈Rm∩Rw

∑
c∈m

α(c)xc,r ⇐⇒
∑

m∈Mv

∑
r∈Rm∩Rw

α(m)xm,r
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G Alternative Formulation

This is one possible formulation for determining when to take courses to minimize time

to graduation. This version does not use collections and represents individual course as-

signments. A simpler definition of requirements is used and courses are not assigned to

requirements.

Sets

R Set of requirements r that must all be completed
C Set of considered courses
Cr Set of courses that can be applied to requirement r
CSEM Set of semester-length courses

T Set of all term indices, consecutive integers 1 through n
Tc Terms when course c may be taken
T ∗
c Terms when course c may be completed (must be even index for semester

courses)
Ct Courses that may be taken during term t

q ∈ Q Set of prerequisite labels
Cq Courses that satisfy prerequisite q
Qc All prerequisites that must be satisfied before course c
U Set of all sets of mutually exclusive courses
u Set of course indices for a set of mutually exclusive courses

Constants

α(c) Credits for c, in terms of undergrad credits
kc Semester constant: 2 if semester and 1 if term
β(r) Minimum credits needed to satisfy requirement r
λ Maximum credits a student is willing to take per term (default 10.5)
n Number of terms considered in planning horizon
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Variables

xc,t Binary variable; assumes the value of 1 if course c is assigned to term t
and 0 otherwise, ∀c ∈ C, ∀t ∈ Tc

yc Binary variable; assumes the value of 1 if course c is taken at all and 0
otherwise, ∀c ∈ C

qt Binary variable; assumes the value of 1 if prerequisite q has been met by
term t and 0 otherwise, ∀t ∈ T,∀q ∈ Q

Z The latest term where any courses are taken

First, we add a constraint to set the value of yc. This also forces that a course is taken in

only one term, or two for semester courses.

∑
t∈Tc

xc,t = kcyc, ∀c ∈ C

Next, constraint that all requirements are met:

∑
c∈Cr

α(c)yc ≥ β(r), ∀r ∈ R

And the maximum number of credits that may be taken per term:

∑
c∈Ct

α(c)xc,t

kc
≤ λ,∀t ∈ T

Preventing mutually exclusive courses from both being taken:

∑
c∈Uu

yc ≤ 1, ∀u ∈ U
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Setting a constraint to define the indicator variable for whether q is satisfied by term t:

qt ≤
∑
c∈Cq

∑
j∈T ∗

c ∩[1,t−1]

xc,j, t ∈ [2, n]

q1 = 0

Next, that a course may only be taken if the prerequisite is satisfied:

xc,t ≤ qt, ∀q ∈ Qc,∀c ∈ C, ∀t ∈ Tc

For a term-based course, the number of the term that course c is assigned to, if any, is given

by: ∑
t∈Tc

txc,t

For a semester-based course, the larger of the two consecutive terms that course c is taken

can be given by:

1

2
+

1

2

∑
t∈Tc

txc,t

Therefore, if we define Z as a nonnegative integer and set the following constraint, Z may

be no less than the latest term that contains any courses:

Z ≥ 1

kc

(∑
t∈Tc

txc,t

)
∀c ∈ C

Thus, minimizing Z will identify the minimum number of terms that must be completed for

the BS/MS. One final constraint is needed to ensure that semester courses are assigned to

consecutive terms, which must include an even numbered term and the one before it, or not
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at all. ∑
t∈T ∗

c

txc,t

−

∑
t∈T ∗

c

(t− 1)xc,t−1

 = yc, ∀c ∈ CSEM

If yc = 1, then this constraint can only be satisfied if a course is assigned to an even-numbered

term and the term before it. If yc = 0, then the definition of yc means that the LHS is also

0. constraint is satisfied by definition of yc

The final ILP is then:

min Z

subject to:

∑
t∈Tc

xc,t = kcyc, ∀c ∈ C

∑
c∈Cr

α(c)yc ≥ β(r), ∀r ∈ R

∑
c∈Ct

α(c)xc,t

kc
≤ λ, ∀t ∈ T

∑
c∈Uu

yc ≤ 1, ∀u ∈ U

∑
c∈Cq

∑
j∈T ∗

c ∩[1,t−1]

xc,j ≥ qt, t ∈ [2, n],∀q ∈ Q

q1 = 0, ∀q ∈ Q

xc,t ≤ qt, ∀q ∈ Qc,∀c ∈ C, ∀t ∈ Tc

1

kc

(∑
t∈Tc

txc,t

)
≤ Z, ∀c ∈ C∑

t∈T ∗
c

txc,t

−

∑
t∈T ∗

c

(t− 1)xc,t−1

 = yc, ∀c ∈ CSEM
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