


Abstract

The problem of distributed state estimation over a sensor network in which a

set of nodes collaboratively estimates the state of continuous-time linear systems

is considered. Distributed estimation strategies improve estimation and robustness

of the sensors to environmental obstacles and sensor failures in a sensor network.

In particular, this dissertation focuses on the benefits of weight adaptation of the

interconnection gains in distributed Kalman filters, distributed unknown input ob-

servers, and distributed functional observers. To this end, an adaptation strate-

gy is proposed with the adaptive laws derived via a Lyapunov-redesign approach.

The justification for the gain adaptation stems from a desire to adapt the pair-

wise difference of estimates as a function of their agreement, thereby enforcing an

interconnection-dependent gain. In the proposed scheme, an adaptive gain for each

pairwise difference of the interconnection terms is used in order to address edge-

dependent differences in the estimates. Accounting for node-specific differences, a

special case of the scheme is presented where it uses a single adaptive gain in each

node estimate and which uniformly penalizes all pairwise differences of estimates in

the interconnection term. In the case of distributed Kalman filters, the filter gains

can be designed either by standard Kalman or Luenberger observers to construct

the adaptive distributed Kalman filter or adaptive distributed Luenberger observer.

Stability of the schemes has been shown and it is independent of the graph topology

and therefore the schemes are applicable to both directed and undirected graphs.

The proposed algorithms offer a significant reduction in communication costs asso-

ciated with information flow by the nodes compared to other distributed Kalman

filters. Finally, numerical studies are presented to illustrate the performance and ef-

fectiveness of the proposed adaptive distributed Kalman filters, adaptive distributed

unknown input observers, and adaptive distributed functional observers.
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Chapter 1

Introduction

Wireless sensor network (WSN) refers to a group of spatially dispersed and dedi-

cated sensors, or nodes, that are linked by a wireless medium to monitor and record

the physical conditions of the environment in order to perform distributed sensing

tasks. Recent advances in micro-electro-mechanical systems (MEMS) technology,

wireless communications, and digital electronics have enabled a wide range of appli-

cations of WSNs such as environmental monitoring, health and wellness monitoring,

military application, biomedical applications, and industrial automation, see [1–3]

and references therein. There are many new challenges that have surfaced for the

deployment of WSNs, in order to meet the requirements of various applications.

One of the challenges is the design of distributed estimation algorithms over WSNs,

which has been the subject of many research works in recent years, [4–9] to name a

few.

In distributed estimation over networks, a node provides an estimate of a process

state using local information and attempts to improve and synchronize its estimate

by reaching consensus with the process estimates generated by the other nodes in

the network [10]. Distributed estimation strategies improve the estimation and ro-
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bustness of the sensors to environmental obstacles and sensor failures in a sensor

network compared to the case of a single sensor [4, 11]. They also have advantages

over the centralized schemes such as reduced communication bandwidth require-

ment, increased reliability, and reduced communication cost [4, 11].

A particular problem of interest is the design of distributed estimation algorithms

in order to mitigate the uncertainty of each agent’s estimation. A prevalent approach

concerns the modification of standard Kalman filters by distributed (consensus)

protocol, thereby introducing distributed Kalman filters (DKFs).

An early contribution to distributed Kalman filtering [12], required that the

global estimate at the previous step be sent from the fusion center to the local

sensors. This requirement was relaxed in [13] and [14], where each local processor

provided estimates based only on its own measurement and transmitted its estimate

and error covariance to the fusion center in order to combine the estimates and

associated error covariances and to generate the global estimates. A decentralized

Kalman filter has been proposed in [15] for a decentralized control problem and a

fully connected network.

Dynamic consensus averaging strategy has been used in [16] and [17], where the

nodes of a sensor network use the average of the other sensors’ estimates or measure-

ments to construct a distributed Kalman filter. In [17] the associated interconnection

weights are related to the covariance matrix of the distributed and non-interacting

filters. A distributed Kalman filter algorithm has been proposed in [18] to estimate

the state of a sparsely connected large-scale system efficiently. The optimization of

the Kalman gain and interconnection weights is considered in [19] for a scalar sys-

tem. Diffusion strategy has been adopted in [20] and [21] to propose a distributed

Kalman filter. In [20] every node of a network shares its data and estimations with

its direct neighbors only, and the information is propagated across the network by
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the proposed diffusion strategy, while in [21] the covariance data is also incorpo-

rated. A gossip-based distributed Kalman filter has been proposed in [22], where

each sensor intermittently communicates with a neighbor. The issue of stability and

convergence of distributed Kalman filters has been studied in [17, 23, 24] and [25],

where the graph is restricted to be undirected to prove the stability of the schemes.

The consensus weight of a network has also designed by other approaches. Weight

design of a network has been considered in [26] by using semi-definite convex pro-

gramming and finding the fastest distributed linear averaging. A distributed min-

imum variance estimator has been proposed in [27] to track a noisy time-varying

signal. The weights of interconnection (consensus) terms were updated adaptive-

ly in order to minimize the estimation error variance. For the finite dimensional

case, the use of adaptive gains has been applied to the synchronization of complex

networks, [28,29].

Adding another design level addressing robustness of the distributed estimation,

the adaptation of the interconnection gains within the consensus protocol proved

to be an alternate to optimization of these gains with the obvious savings in com-

putations. A framework for the adaptation of the interconnection gains has been

introduced in [7] for infinite dimensional systems with a full connectivity assump-

tion. While the aforementioned works consider optimality of distributed estimation,

little attention has been paid toward possible reduction in communication costs due

to information exchange amongst nodes. In spite of the fact that distributed Kalman

filters reduce estimation error at each agent, they impose huge communication costs

and energy requirements on the agents, which make their implementation infeasible

in some situations. Therefore, one of the main characteristic of WSNs that must be

considered in the design of data collection schemes is the communication cost (thus

the energy consumption associated with it).
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Descriptor systems (also known as singular systems, or semi-state systems, or

differential-algebraic systems, or generalized state-space systems) have also been

extensively studied. Descriptor systems can include both dynamic and algebraic

equations, as is common in electrical circuits or constrained mechanical systems.

Therefore, descriptor systems present a general mathematical framework for the

modelling, simulation and control of complex dynamical systems. Such systems

have applications in large-scale systems, economic systems, power systems and other

areas [30,31]. An important problem in the control design of the descriptor systems

is their observer design. The observer design for descriptor systems with known

input has been studied in [32–37]. The observer design for systems with unknown

inputs has been also widely studied since such systems have applications in the

failure detection, fault diagnosis, and synchronization of chaotic systems [38–42].

The observer design for descriptor systems with unknown input has been also studied

in [43–45].

Functional observers directly estimate a given linear function of the states with-

out estimating all the systems’ states and their existence conditions are weaker

than the detectability conditions required by full state observers. Functional ob-

server (FO) design has been considered in [46–51]. The functional observer design

for descriptor systems with known input has been proposed by [52]. An approach for

the distributed estimation problem using full order functional observers and stat-

ic feedback has been proposed by [53]. Extending the distributed algorithms to

descriptor systems, [54] proposed a distributed algorithm addressing delays.

The adaptation of the interconnection gains in distributed estimation of descrip-

tor systems has not been studied.
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1.1 Dissertation Contribution

Using the dynamic consensus averaging strategy framework proposed in [17], the

first objective of this work is to adaptively adjust the gain of the interconnection term

in order to obtain an adaptive interconnection gain and thereby propose an adaptive-

DKF algorithm for continuous-time linear time-varying (LTV) systems. First the

general form of the adaptive-DKF scheme, an edge-dependent, is proposed. Then a

special case, a node-dependent, is proposed. In the edge-dependent case, every node

of the network uses different adaptive gains, one for each pairwise disagreement with

its neighbors, whereas in the node-dependent case, every node of the network uses

a single adaptive gain to penalize all of its pairwise disagreements between state

estimates.

A major benefit of the proposed adaptive interconnection weights is the signif-

icant reduction in the communication costs associated with information exchange

amongst the nodes. Such a communication benefit relies on the assumption that

every node is aware of all of its neighbors’ sensing models. The proposed adap-

tive DKFs present a significant savings in the amount of information needed to be

transmitted from each node within the network. Additionally the schemes reduce

restrictions on the graph topology which makes these schemes applicable for directed

graph topology as well.

Continuing, the adaptation of the interconnection gains in distributed estima-

tion of descriptor systems has not been examined. Therefore in this work, the

interconnection gain adaptation framework developed by [7] is adapted to the un-

known input observer and functional observer design algorithms proposed by [45]

and [52], respectively, to arrive at distributed unknown input observers and distribut-

ed functional observers for linear time-invariant descriptor systems, respectively. An
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adaptive unknown input observer scheme is proposed, based on an edge-dependent

adaptive gain, i.e. every node of the network penalizes the disagreement between its

own state estimate and the state estimate of its neighboring nodes differently using

separate adaptive gains. The special case where adaptive gains are node-dependent,

i.e. every given node of the network uses only one adaptive gain to penalize the

disagreement between its own state estimate and that of its neighbors’, is also pre-

sented. Similarly, an adaptive functional observer scheme is proposed, based on

an edge-dependent adaptive gain, i.e. every node of the network penalizes the dis-

agreement between its functional estimate and every other functional estimate of its

neighboring nodes differently using different adaptive gains. The special case where

adaptive gains are node-dependent, i.e. every given node of the network uses only

one adaptive gain to penalize the disagreement between its functional estimate and

its neighbors’ is also presented.

The contribution of this work can be summarized as follows:

1. It proposes novel distributed estimation schemes applicable to Kalman filter

sensor networks.

2. It presents adaptive strategies for the interconnected gains of distributed Kalman

filters.

3. It reduces significantly the communication costs associated with information

exchange amongst the nodes.

4. It proposes distributed schemes applicable to networks whose information ex-

change is described by directed graphs.

5. It proposes distributed estimation schemes applicable to unknown input ob-

server sensor networks.

6



6. It presents adaptive strategies for the interconnected gains of distributed un-

known input observers.

7. It reduces the estimation error of unknown input observers by applying dis-

tributed estimation strategies.

8. It proposes distributed estimation schemes applicable to functional observer

sensor networks.

9. It presents adaptive strategies for the interconnected gains of distributed func-

tional observers.

10. It reduces the estimation error of functional observers by applying the dis-

tributed estimation strategy.

1.2 Dissertation Organization

The remainder of this dissertation is as follows. In the next chapter, the adaptive

distributed Kalman filters are proposed and their stability is presented. Commu-

nication costs associated with information exchange amongst the nodes has been

studied to emphasise the significant reduction in the communication costs.

In Chapter 3, first the preliminaries and formulation of unknown input observers

[45,55] are briefly explained for descriptor linear time-invariant systems. Then, the

adaptive distributed unknown input observers (AD-UIO) are proposed and their

stability is presented.

In Chapter 4, the formulation of functional observers [50,52] are briefly explained

for descriptor linear time-invariant systems. Then, the adaptive distributed func-

tional observers (ADFO) are proposed and their stability are shown.
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Chapter 5 is dedicated to numerical simulations for the proposed adaptive schemes

in this dissertation. The numerical simulations for the adaptive distributed Kalman

filters, adaptive distributed unknown input observers, and adaptive distributed func-

tional observers are presented in Section 5.1, Section 5.2, and Section 5.3, respective-

ly. Simulation results are provided to demonstrate the performance and effectiveness

of the proposed schemes.

Finally, Chapter 6 concludes the dissertation and provides some suggestions for

future work. Specially, adaptation of the proposed adaptive schemes to discrete-time

distributed Kalman filters is discussed.
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Chapter 2

Adaptive Distributed Kalman

Filters for Linear Time-Varying

Systems

In this chapter, two different modifications to distributed Kalman filtering algo-

rithms for sensor networks are proposed. The distributed filters, whether based on

Kalman filter or Luenberger observer design, are coupled with terms that penalize

the pairwise difference of their estimates. The two adaptive schemes are either node-

dependent, in which case all pairwise differences of the state estimates are penalized

by the same adaptive weight for every given node uniformly, or edge-dependent in

which case the pairwise differences of the state estimates are penalized by different

adaptive weights. The significant benefit of the proposed adaptive interconnection

weights is described by the communication costs associated with information ex-

change amongst the nodes.

In a sensor network with distributed estimation, each node can collaborate with

its neighbors to improve its own estimation. Therefore, the framework proposed
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in [7] for the interconnection gain adaptation is applied to a sensor network of

Kalman filters in Theorem 3.1 and Lemma 2.3 to enhance the estimation.

2.1 Problem Formulation

The class of systems under consideration is described by the linear time-varying

(LTV) system

ẋ(t) = A(t)x(t) +B(t)w(t), (2.1)

where x(t) ∈ Rn is the process state and w(t) ∈ Rn represents the process noise

which is assumed to be zero-mean white Gaussian noise with covariance matrix

Q(t)δ(t− τ) = E[w(t)wT (τ)] and distributed by the B(t) matrix. Process informa-

tion is obtained from a sensor network containing N nodes, each of which admits

the following sensing model

yi(t) = Ci(t)x(t) + vi(t), i = 1, . . . , N. (2.2)

The matrix Ci(t) ∈ Rmi×n, mi < n, is the ith sensor observation matrix which

basically defines its sensing model. The measurement noise of the ith sensor is

denoted by vi which is also assumed to be a zero-mean white Gaussian noise with

covariance matrix Ri(t)δ(t− τ) = E[vi(t)v
T
i (τ)].

Definition 2.1 (Sensor model). The sensor model is defined as the knowledge of

the output matrix Ci(t) in (2.2).

The information exchange topology of the sensor network is modeled by a di-

rected graph G = (V , E), where V = {1, . . . , N} and E ⊂ V × V are the sets of

nodes (or vertices) and edges, respectively. The set of incoming neighbors of node

i is defined by N I
i = {j ∈ V | (j, i) ∈ E}, where an edge (j, i) ∈ E indicates that a
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node i receives data from node j and its cardinal number is denoted by ℵIi . The

set of outgoing neighbors of node i is defined by NO
i = {j ∈ V | (i, j) ∈ E}, and its

cardinal number is denoted by ℵOi . Additionally, the graph G is also represented

by its Laplacian matrix L = D −A, where D and A are the degree and adjacency

matrices, respectively, [56,57].

A series of assumptions and a technical lemma will be presented as they are

required for the proof of the main theorem in this chapter.

Assumption 2.1 (Sensor model). It is assumed that each node i, ∀i = 1, . . . , N , has

knowledge of all its neighbors’ observation matrices (sensor models) Cj(t), ∀j ∈ N I
i .

While the above assumption is somewhat conservative, it nonetheless provides

a significant reduction in the communication cost associated with the proposed

adaptive-DKFs. In the event that all sensors in the network have identical sensing

model i.e. Ci(t) = C(t), ∀i = 1, . . . , N , then Assumption 2.1 becomes redundant.

It also should be noted that this knowledge will be satisfied when two nodes i and j

start communicating with each others and there is no further information transmis-

sion required. The proposed theorem and proofs in this chapter are independent of

Assumption 2.1 and its contribution is only in reduction of communication costs.

Assumption 2.2 (Complete observability). It is assumed that the pairs (A(t), Ci(t)),

i = 1, . . . , N , are completely observable.

Assumption 2.3 (Complete controllability). It is assumed that the pair (A(t), B(t))

is completely controllable.

Assumption 2.4 (Bounded plant). The system matrices A(t), B(t) and Ci(t),

i = 1, . . . , N are appropriately dimensioned real matrices, continuous and bounded

over the time interval of interest with x(t) ∈ L∞(0,∞;Rn) for all t ≥ t0.
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The final assumption concerns the existence of observer gains that would render

an associated state observer error stable.

Assumption 2.5 (Stable distributed decoupled observers). It is assumed that ob-

server gains Ki(t) for the pairs (A(t), Ci(t)) exist such that the observers for the

noise-free systems

˙̂xi(t) =
(
A(t)−Ki(t)Ci(t)

)
x̂i(t) +Ki(t)yi(t)

result in uniformly asymptotically stable error systems ei(t) = x(t)− x̂i(t) described

by

ėi(t) =
(
A(t)−Ki(t)Ci(t)

)
ei(t), i = 1, . . . , N.

The above assumption does not restrict the choice of the observer gain Ki(t) to

be taken from the solution of an associated differential Riccati equation. In fact, it

can be based on the observability matrix [58].

The next lemma, taken from [59], provides a time-varying analog to strictly

positive real systems.

Lemma 2.1 ( [59]). Consider an LTV system described by

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),

followed by Assumptions 2.2, 2.3 and 2.4. The system is output strictly passive if

there exists a continuous, bounded Π(t) = ΠT (t) ≥ α1I > 0 and U(t) = UT (t) ≥
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α2I > 0, for all t ≥ t0, such that

Π̇(t) + AT (t)Π(t) + Π(t)A(t) = −U(t),

Π(t)B(t) = CT (t).

�

Equipped with the above assumptions and lemma, the main result of this chapter

can now be introduced which is the design of the adaptive-DKF scheme, namely the

edge-dependent scheme.

In order to minimize repeated long entries, the following compact notation is

introduced Ai(t) = A(t) − Ki(t)Ci(t), and define the pairwise differences x̂i(t) −

x̂j(t) = x̂ij(t), ei(t)− ej(t) = eij(t) with the fact x̂j(t)− x̂i(t) = ei(t)− ej(t) = eij(t).

2.2 Adaptive Distributed Kalman Filters

The proposed adaptive distributed Kalman filters (DKFs) utilize the state esti-

mates obtained by the local (distributed) filters aided by an adjustable weight of the

disagreement between them. This adaptive weight is proportional to the distance

that a given state estimate x̂i has with its neighbors.

The adaptive-DKF based on the edge-dependent strategy is presented first and

in which each node i of the network adaptively adjusts the disagreement between

its own state estimate and that of a neighbor node j, ∀j ∈ N I
i , using an adaptive

gain corresponding the nodes i and j.

Theorem 2.1 (Edge-dependent adaptive strategy). Consider a sensor network of N

agents with the sensing model (2.2) estimating the states of a LTV dynamical system

(2.1). If the following distributed estimation algorithm with a distance-adjusted
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interconnection gain is utilized at each node

˙̂xi(t) = A(t)x̂i(t) +Ki(t) (yi(t)− Ci(t)x̂i(t)) +Di(t)
∑
j∈NI

i

Γij(t)Ci(t)x̂ji(t), (2.3a)

Ki(t) = Pi(t)C
T
i (t)R−1i (t), (2.3b)

Ṗi(t) = A(t)Pi(t) + Pi(t)A
T (t) +B(t)Q(t)BT (t)−Ki(t)Ri(t)K

T
i (t), (2.3c)

where the design matrices Di(t) are such that the triples {Ai(t), Di(t), Ci(t)} satisfy

the following strictly passive conditions

Π̇i(t) + ATi (t)Πi(t) + Πi(t)Ai(t) = −Ui(t),

Πi(t)Di(t) = CT
i (t)

(2.4)

with Ui(t) = UT
i (t) ≥ α3I > 0 and Πi(t) = ΠT

i (t) ≥ α4I > 0, and the adaptive gain

matrices Γij(t) in (2.3a) are adjusted using the update laws

Γ̇ij(t) = −(yi(t)− Ci(t)x̂i(t))
(
Ci(t)x̂ij(t)

)T
, j ∈ N I

i , (2.5)

then in the system without process and measurement noises, the estimation errors

ei(t), i = 1, . . . , N , ∀t ≥ t0, asymptotically reach zero with all state estimates asymp-

totically reaching an agreement and all system signals bounded.

Remark 2.1. The condition in (2.4) follows from an application of Lemma 2.1 for

the triples {Ai(t), Di(t), Ci(t)}, for all i = 1, . . . , N . The input matrices Di(t) are

artificial in the sense that they are generated by Π−1i (t)CT
i (t) for all i = 1, . . . , N

with the only requirement being the invertibility of each Πi(t).

Instrumental to the proof of the main theorem above, is the following lemma.
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Lemma 2.2. Following Theorem 2.1, for a symmetric positive definite Ui(t), one

has a bounded symmetric positive definite matrix Πi(t) satisfying the differential

Lyapunov equation (2.4) [60]. �

Now, the proof of Theorem 2.1 can be presented.

Proof. The error dynamics of the ith node is obtained by combining equations (2.1)

and (2.3)

ėi(t) = Ai(t)ei(t)−Di(t)
∑
j∈NI

i

Γij(t)Ci(t)eij(t). (2.6)

In order to examine the stability of the state error equations (2.6) and the adaptation

laws (2.5), a Lyapunov-like function is considered

Vi(ei,Γij) = eTi (t)Πi(t)ei(t) +
∑
j∈NI

i

tr
(
Γij(t)Γ

T
ij(t)

)
, (2.7)

for i = 1, . . . , N . Then V̇i(ei,Γij) becomes

V̇i(ei,Γij) = ėTi (t)Πi(t)ei(t) + eTi (t)Πi(t)ėi(t) + eTi (t)Π̇i(t)ei(t)

+
∑
j∈NI

i

tr
(

Γ̇ij(t)Γ
T
ij(t)

)
+
∑
j∈NI

i

tr
(

Γij(t)Γ̇
T
ij(t)

)
=

(
Ai(t)ei(t)−Di(t)

∑
j∈NI

i

Γij(t)Ci(t)eij(t)
)T

Πi(t)ei(t)

+eTi (t)Πi(t)
(
Ai(t)ei(t)−Di(t)

∑
j∈NI

i

Γij(t) (Ci(t)eij(t))
)

+eTi (t)Π̇i(t)ei(t)−
∑
j∈NI

i

tr
(
εi(t)

(
Ci(t)x̂ij(t)

)T
ΓTij(t)

)
−
∑
j∈NI

i

tr
(

Γij(t)
(
εi(t)

(
Ci(t)x̂ij(t)

)T)T)
,
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where εi(t), the ith output estimation error for brevity is defined as

εi(t) , yi(t)− Ci(t)x̂i(t) = Ci(t)ei(t), i = 1, . . . , N.

Then V̇i(ei,Γij) can be rewritten as

V̇i(ei,Γij) = eTi (t)(Π̇i(t) + ATi (t)Πi(t) + Πi(t)Ai(t))ei(t)(
Di(t)

∑
j∈NI

i

Γij(t)Ci(t)eij(t)
)T

Πi(t)ei(t)

−eTi (t)Πi(t)
(
Di(t)

∑
j∈NI

i

Γij(t)Ci(t)eij(t)
)

−
∑
j∈NI

i

tr
(
εi(t)

(
Ci(t)x̂ij(t)

)T
ΓTij(t)

)
−
∑
j∈NI

i

tr
(

Γij(t)
(
εi(t)

(
Ci(t)x̂ij(t)

)T )T)
.

Since Πi(t) ≥ α4I > 0, then one can also define Di(t) as

Di(t) = Π−1i (t)CT
i (t), i = 1, . . . , N. (2.8)

Substituting (2.8) and (2.4) into V̇i(ei,Γij) gives

V̇i(ei,Γij) = −eTi (t)Ui(t)ei(t)

−
(( ∑

j∈NI
i

Ci(t)eij(t)
)T

ΓTij(t)Ci(t)Π
−1
i (t)

)
Πiei(t)

−eTi (t)Πi(t)
(

Π−1i (t)CT
i (t)Γij(t)

∑
j∈NI

i

Ci(t)eij(t)
)

+
∑
j∈NI

i

tr
(
εi(t)

(
Ci(t)eij(t)

)T
ΓTij(t)

)
+
∑
j∈NI

i

tr
(

Γij(t)Ci(t)eij(t)ε
T
i (t)

)
= −eTi (t)Ui(t)ei(t) ≤ 0,

where the identities tr (AB) = tr (BA), tr (ABT ) = tr (BAT ) for matrices A and
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B, and tr (xTy) = tr (yxT ) for column vectors x, y are used. Since Ui(t) = UT
i (t) ≥

α3I > 0, one has

V̇i(ei,Γij) ≤ −α3‖ei(t)‖2 ≤ 0, i = 1, . . . , N. (2.9)

Using the fact that the plant state is bounded x(t) ∈ L∞(0,∞;Rn) (Assump-

tion 2.4), one has all signals bounded

ei(t), x̂i(t) ∈ L∞(0,∞;Rn), ėi(t) ∈ L∞(0,∞;Rn), Γij(t) ∈ L∞(0,∞;Rm×m).

Additionally, from (2.9) one has that ei(t) ∈ L2(0,∞;Rn) and from (2.5) one has

Γ̇ij(t) ∈ L2(0,∞;Rm×m), and therefore an application of Barbǎlat’s lemma [61, 62]

(ei(t) ∈ L2 ∩ L∞, ėi(t) ∈ L∞) yields

lim
t→∞
‖ei(t)‖ = 0, i = 1, . . . , N.

Please note that for the proof of Theorem 2.1 one does not have to use the

collective dynamics in order to establish stability, a condition required for the non-

adaptive (standard) case in [17]. The reason is that the coupling terms involving

the pairwise differences x̂j(t) − x̂i(t) are canceled out by applying the update laws

for Γij(t). Therefore as a notable advantage, the stability of the proposed scheme is

not restricted by the graph topology where in [17] the stability was proved only for

undirected graphs.

Remark 2.2. The adaptation laws for Γij(t) utilize available signals, as both the

residuals (yi(t)− Ci(t)x̂i(t)) and the pairwise differences Ci(t)x̂ij(t) can be attained
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since yi(t) is measured directly, and x̂i(t), x̂j(t) are generated by each of the dis-

tributed filters in (2.3).

Remark 2.3. The filter gains Ki(t) in (2.3a) are not necessarily required to be

the standard (non-interconnected) Kalman filter gains. Therefore, one can use a

Luenberger observer design [63] instead of Kalman filter design for deterministic

systems to construct a new adaptive distributed filter, termed here the adaptive-

distributed Luenberger observer and given by

˙̂xi(t) = A(t)x̂i(t) + Li(t) (yi(t)− Ci(t)x̂i(t)) +Di(t)
∑
j∈NI

i

Γij(t)Ci(t)x̂ji(t), (2.10)

where the Li(t) are the Luenbeger observer gains. In this case, the state esti-

mation error equations for the non-interconnected case are given ėi(t) = (A(t) −

Li(t)Ci(t))ei(t). Following Assumptions 2.2, 2.3 and 2.4, the filter gains Li(t) can

be chosen to render each of the estimation errors (for the non-interconnected case)

uniformly asymptotically stable [63].

Remark 2.4. Adding and subtracting Ki(t)Ri(t)K
T
i (t) to the filter Riccati equation

(2.3c) and using (2.3b), then the following is obtained

−Ṗi(t) + Ai(t)Pi(t) + Pi(t)A
T
i (t) = −Ki(t)Ri(t)K

T
i (t)−B(t)Q(t)BT (t).

Using the complete observability and controllability conditions (Assumptions 2.2 and

2.3), the error covariance matrices Pi(t) are symmetric and bounded and there exist

positive constants α5 and α6 such that [60]

0 < α5I ≤ Pi(t) ≤ α6I, ∀t > t0, i = 1, . . . , N.
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Therefore, P−1i (t), i = 1, . . . , N exist and are symmetric positive definite matrices.

Thus, pre- and post- multiplication by P−1i (t) gives

−P−1i (t)Ṗi(t)P
−1
i (t) + P−1i (t)Ai(t) + ATi (t)P−1i (t) =

−CT
i (t)R−1i (t)Ci(t)− P−1i (t)B(t)Q(t)BT (t)P−1i (t),

which can be rewritten as

d
dt

(P−1i (t)) + P−1i (t)Ai(t) + ATi (t)P−1i (t) = −CT
i (t)R−1i (t)Ci(t)

−P−1i (t)B(t)Q(t)BT (t)P−1i (t).

This means that P−1i (t) satisfies (2.4) and therefore it may be considered as a possible

choice of Πi(t) in the Lyapunov-like function (2.7) required to establish stability.

With this choice, the matrices Di(t) can then be expressed in terms of the error

covariance matrices Di(t) = Pi(t)C
T
i (t), i = 1, . . . , N . While P−1i (t) is a good choice

for Πi(t), one can still use a different Πi(t) satisfying (2.4) in order to establish

stability.

Remark 2.5. Following Remark 2.4, one may also choose 1
γ
P−1i (t), γ > 0 as a

possible choice for Πi(t) in (2.7) in order to establish stability. With this choice of

Πi(t), the matrix Di(t) may then be expressed as Di(t) = γPi(t)C
T
i (t), i = 1, . . . , N .

Therefore, one can easily adjust the effect of the interconnection term on the esti-

mation by the choice of γ.

Remark 2.6. In the event that the Lyapunov matrix Πi(t) is chosen in terms of

the filter Riccati solution as Πi(t) = P−1i (t), then through the appropriate adaptive

gains, the matrices Di(t) can be conveniently chosen identical to Ki(t) as Di(t) =

Pi(t)C
T
i (t)R−1i (t), i = 1, . . . , N . In this case, the adaptive law for Γij(t) is modified
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to

Γ̇ij(t) = −R−1i (t)(yi(t)− Ci(t)x̂i(t))
(
Ci(t)x̂ij(t)

)T
, j ∈ N I

i .

Remark 2.7. The adaptive law in (2.5) can be modified as

Γ̇ij(t) = −β(yi(t)− Ci(t)x̂i(t))
(
Ci(t)x̂ij(t)

)T
, j ∈ N I

i , β > 0,

by choosing the Lyapunov-like function

Vi(ei,Γij) = eTi (t)Πi(t)ei(t) + 1
β

∑
j∈NI

i

tr
(
Γij(t)Γ

T
ij(t)

)
.

In Theorem 2.1, the distance between the state estimate at node i and the

estimate at node j, ∀j ∈ N I
i , is penalized independently using different Γij(t).

Consequently, the gain Γij(t) is called edge-dependent adaptive gain. In a special

case, one can use an identical gain Γij(t) for all nodes j, ∀j ∈ N I
i . Thus, one can

move Γij(t) outside the summation and make it an node-dependent (also vertex-

dependent) adaptive gain Γi(t). In order to have a more realistic adaptive scheme,

one can move Γi(t) inside the summation and make it an an edge-dependent adaptive

gain Γij(t). Therefore, the distance between the state estimate at node i and the

estimate at node j, ∀j ∈ N I
i , is penalized with the same adaptive gain Γi(t). The

adaptive-DKFs with node-dependent adaptive gains of the pairwise differences can

now be presented.

Lemma 2.3 (Node-dependent adaptive strategy). If the adaptive interconnection
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weights are chosen as node-dependent, then the adaptive-DKF’s are given by

˙̂xi(t) = A(t)x̂i(t) +Ki(t) (yi(t)− Ci(t)x̂i(t)) +Di(t)Γi(t)
∑
j∈NI

i

Ci(t)x̂ji(t)

Ki(t) = Pi(t)C
T
i (t)R−1i (t),

Ṗi(t) = A(t)Pi(t) + Pi(t)A
T (t) +B(t)Q(t)BT (t)−Ki(t)Ri(t)K

T
i (t),

Di(t) = Π−1i (t)CT
i (t),

Γ̇i(t) = −εi(t)
∑
j∈NI

i

(
Ci(t)x̂ij(t)

)T
,

(2.11)

In equation (2.11) above, the matrices Πi(t) are given in (2.4). However, they can

be chosen as P−1i (t) or 1
γ
P−1i (t) using Remark 2.4 or Remark 2.9, respectively. To

proof Lemma 2.3, lyapunov-like function Vi(ei,Γi) = eTi (t)Πi(t)ei(t)+tr
(
Γi(t)Γ

T
i (t)

)
can be used. The rest of the proof is very similar to that for Theorem 2.1 and is

therefore omitted.

Remark 2.8 (Node-independent adaptive gains). When the interconnection weights

in Theorem 2.1 are allowed to be node-independent, then the adaptive-DKFs become

˙̂xi(t) = A(t)x̂i(t) +Ki(t) (yi(t)− Ci(t)x̂i(t)) +Di(t)Γ(t)
∑

j∈Ni
Ci(t)x̂ji(t),

Ki(t) = Pi(t)C
T
i (t)R−1i (t),

Ṗi(t) = A(t)Pi(t) + Pi(t)A
T (t) +B(t)Q(t)BT (t)−Ki(t)Ri(t)K

T
i (t),

Di(t) = Π−1i (t)CT
i (t),

Γ̇(t) = −
∑N

i=1 εi
∑

j∈Ni
(Cix̂ij(t))

T .

(2.12)
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2.2.1 Special case: time-invariant systems

For the linear time-invariant (LTI) system, the system in (2.1) and (2.2) are

given as

ẋ(t) = Ax(t) +Bw(t),

yi(t) = Cix(t) + vi(t), i = 1, . . . , N.

(2.13)

In order to present the adaptive distributed Kalman filters for LTI system (2.13),

analogous assumptions to assumptions 2.1, 2.2 and 2.4 for LTI matrices A, B and

Ci are required. Assumptions 2.3 and 2.5 for LTI systems become redundant.

Remark 2.9. A consequence of Assumption 2.2 for the LTI system (2.13) is that

there exist filter gains Ki such that Ai , A −KiCi is Hurwitz [64]. And for Ui =

UT
i > 0 and Ai Hurwitz, the solution Πi to the Lyapunov equation

ATi Πi + ΠiAi = −Ui, (2.14)

is a symmetric positive definite matrix ( spd) [65].

Lemma 2.4 (Edge-dependent adaptive-DKF for LTI systems). Consider a

LTI sensor network in (2.13), then the edge-dependent adaptive-DKF in Theorem 2.1

is simplified as

˙̂xi(t) = Ax̂i(t) +Ki(yi(t)− Cix̂i(t)) +Di

∑
j∈NI

i
Γij(t)Cix̂ji(t),

Ki = PiC
T
i R
−1
i ,

0 = APi + PiA
T +BQBT −KiRiK

T
i ,

Γ̇ij(t) = −(yi(t)− Cix̂i(t))(Cix̂ij(t))T , j ∈ N I
i ,

(2.15)
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where the matrices Di are chosen to satisfy the “artificial” Lur’e condition [61]

ATi Πi + ΠiAi = −Ui,

ΠiDi = CT
i ,

(2.16)

with Ui = UT
i > 0. Then the collective dynamics of the errors ei(t) (without noise)

forms a stable linear system, all the estimators asymptotically reach an agreement

(consensus) and all signals in the system are bounded.

2.3 Cost of transmit/receive

If knowledge of all sensor models, as required by Assumption 2.1, is considered

stringent, then relaxation of such an assumption requires transmission of addition-

al information. To demonstrate this cost better, in this case the node-dependent

adaptive-DKFs are rewritten as

˙̂xi(t) = A(t)x̂i(t) +Ki(t) (yi(t)− Ci(t)x̂i(t)) +Di(t)Γi(t)Ci(t)
∑
j∈Ni

x̂ji(t). (2.17)

It can be seen that the matrix Ci(t) in (2.17) above is placed outside the summa-

tion, whereas in (2.11) it is kept inside the summation in order to benefit from the

advantage of Assumption 2.1. Comparing (2.11) and (2.17), it can be easily ob-

served that the ith filter in (2.17) needs to receive the n-dimensional vectors x̂j(t),

∀j ∈ N I
i , while, the filter in (2.11) needs to receive the mi-dimensional vectors

Ci(t)x̂j(t), ∀j ∈ N I
i . The transmitting costs associated with (2.11) and (2.17) can

be summarized below:

• In (2.11), i.e. given Assumption 2.1, each node i multiplies its own state

x̂i(t) by all Cj(t), ∀j ∈ NO
i and transmits the ℵOi messages containing the
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mj-dimensional vectors Cj(t)x̂i(t), to the corresponding j nodes.

• In (2.17), i.e. without Assumption 2.1, each node i transmits the ℵOi messages

containing the n-dimensional vector x̂i(t) to all j nodes, ∀j ∈ NO
i . Note that

here n > mj.

To appreciate the reduction in communication costs, consider the simplest case

of a scalar measurement mi = m = 1, ∀i = 1, . . . , N . If the adaptive-DKF in

(2.11) (i.e. with Assumption 2.1) is used, then each node i must transmit the scalar

Cj(t)x̂i(t) to all its neighbors j, ∀j ∈ NO
i , and receive the scalar Ci(t)x̂j(t) from

all its neighbors j, ∀j ∈ N I
i (i.e. ℵIi scalar data must be received and ℵOi scalar

data must be transmit). However, if the adaptive-DKF in (2.17) (i.e. without

Assumption 2.1) is used, then the ith node must transmit the n-dimensional vector

x̂i(t) to all its neighbors j, ∀j ∈ NO
i , and receive the n-dimensional vectors x̂j(t)

from all its neighbors j, ∀j ∈ N I
i (i.e. ℵIi × n-dimensional vector data must be

received and ℵOi × n-dimensional vector data must be transmitted).

It must be noted that in the non-adaptive DKF [17], the communication cost

is the same as that of the adaptive-DKF in (2.17) (i.e. without Assumption 2.1).

In this case, each node i requires to transmit and receive the same amount of data

as in (2.17). In other words, it must transmit the n-dimensional vector x̂i(t) to all

its neighbors j, j ∈ NO
i and receive the n-dimensional vectors x̂j(t) from all its

neighbors j, ∀j ∈ N I
i .

One way to quantify the advantage of the proposed adaptive-DKFs in the com-

munication costs is via the specific protocol of the wireless sensor network (WSN). It

is assumed that the WSN follows the media access control (MAC) protocol based on

the Zigbeer/IEEE 802.15.4 standard [66]. IEEE 802.15.4 is a standard for low-rate

wireless personal area networks (WPANs) to define the physical layer (PHY) and
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media access control (MAC). ZigBeer is a specification based on the IEEE 802.15.4

protocol which defines higher layer than PHY and MAC. Zigbeer/IEEE 802.15.4 is

a commonly used standard in WSNs due to its advantages including low-cost, low-

power, industrialized standard, security, reliability, and capability with large-scale

WSNs. Additionally, it is capable with large number of nodes which make it the

most suitable standard for sensors and control devices.

The general format of MAC frame is shown in Figure 2.1 [67]. If it is assumed

that the WSN uses the MAC frames with a 5 bytes MAC header and 2 bytes foot-

er [66,67] and 4 bytes for the transmitting data, then with Assumption 2.1, node j

transmits 7 + 4mi bytes data to node i instead of transmitting 7 + 4n bytes without

Assumption 2.1 at every communication step. The latter applies to the non-adaptive

(standard) DKF [17]. These savings in communication costs are summarized in Ta-

ble 2.1. It is clear that for the case of n >> mi, this saving is more prominent.

Obviously in the case of identical sensor models, i.e. Ci = C, the proposed schemes

propose this reduction in communication cost without having the constraint of As-

sumption 2.1.

Table 2.1: Communication cost associated with Assumption 2.1

requiring Assumption 2.1? data transmitted (bytes), n > mi

Yes 7 + 4mi

No 7 + 4n
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Figure 2.1: The general structure of MAC frame [67].
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Chapter 3

Adaptive Distributed Unknown

Input Observers for Linear

Time-Invariant Descriptor

Systems

In this chapter, the local (non-interacting) unknown input observer (UIO) for a

linear time invariant descriptor system, as taken from [45], is first summarized and

subsequently is modified for distributed (interconnected) systems. The descriptor

system is assumed to have multiple outputs provided by a sensor network and for

each system corresponding to a different output, a different UIO is designed. The

result is a network of distributed and non-interacting UIOs. A special case of the

distributed non-interacting UIOs is when the descriptor system is indeed a regular

system (the singular matrix in front of the time derivative becomes the identity ma-

trix), and in this case the distributed and non-interacting UIOs reduce to distributed

non-interacting observers.
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In a sensor network with distributed estimation, each node can collaborate with

its neighbors to improve its own estimation. Therefore, the framework proposed

in [7] for the interconnection gain adaptation is applied to a sensor network of the

unknown input observers in Theorems 3.1 and 3.2 to enhance the estimation.

3.1 Preliminaries and Problem statement

Consider the class of systems described by the linear time-invariant (LTI) de-

scriptor system:

E∗ẋ(t) = A∗x(t) +B∗u(t) + F ∗v(t) (3.1)

where the state x(t) ∈ Rn, the known input u(t) ∈ Rk, the unknown input v(t) ∈ Rq,

the matrices E∗, A∗ ∈ Rm×n, B∗ ∈ Rm×k, and F ∗ ∈ Rm×q are known. Also, it is

assumed that rank(E∗) = r ≤ n. The process information is obtained by a sensor

network containing N nodes, where each node i has the following sensing model:

y∗i (t) = C∗i x(t) +G∗i v, y
∗
i ∈ Rpi , i = 1, . . . , N. (3.2)

where the matrices C∗i and G∗i are known and of appropriate sizes and it is assumed

that rank([C∗i G∗i ]) = pi ≤ n.

Assumption 3.1. It is assumed that rank(

 F ∗

G∗i

) = q ≤ pi.
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Assumption 3.2. It is assumed that

rank(



E∗ A∗ F ∗ 0

0 E∗ 0 F ∗

0 C∗i G∗i 0

0 0 0 G∗i


)− rank(

 E∗ F ∗

0 G∗i

) = n+ q.

Assumption 3.3. It is assumed that rank(

 sE∗ − A∗ −F ∗

C∗i G∗i

) = n + q, ∀s ∈

C, Re(s) ≥ 0.

There exists a nonsingular matrix P such that the system described in (3.1) and

(3.2) is restricted system equivalent to [45]

Eẋ(t) = Ax(t) +Bu(t) + Fv(t)

yi(t) = Cix(t) +Giv,

(3.3)

where

PE∗ =

 E

0

 , PA∗ =

 A

A1

 , PB∗ =

 B

B1

 , PF ∗ =

 F

F1

 ,

yi(t) =

 −B1u

y∗i (t)

 , Ci =

 A1

C∗i

 , Gi =

 F1

G∗i

 ,
in which E ∈ Rr×n, rank(E) = r, yi ∈ Rti , Ci ∈ Rti×n, Gi ∈ Rti×q, rank(Gi) = si ≤

q, and ti = m+ pi − r.
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Then, (3.3) can be transformed to

Eẋ(t) = Φix(t) +Bu(t) + F 11
i y

1
i (t) + F 12

i v
2
i (t)

y1i (t) = C1
i x(t) + v1i (t)

y2i (t) = C2
i x(t),

(3.4)

where  y1i

y2i

 = Riyi,

 C1
i

C2
i

 = RiCi,

 v1i

v2i

 = S−1i v,

[F 11
i F 12

i ] = FSi, Φi = A− F 11
i C

1
i ,

in which v1i ∈si , v2i ∈ Rq−si , y1i ∈ Rsi , y2i ∈ Rpi−si , rank(F 12
i ) = q − si, and

rank(C2
i ) = ti − si. Ri and Si are two nonsingular matrices such that

RiGiSi =

 Isi 0

0 0

 .
Theorem 3.1 (UIO for descriptor system [45]). For each node i of the system

described by (3.1) and (3.2), the reduced-order unknown input observer given by:

żi(t) = Λizi(t) + L1
i y

1
i (t) + L2

i y
2
i (t) +Hiu(t)

x̂i(t) = Mizi(t) +Niy
2
i (t),

(3.5)

exists and is asymptotically stable. zi(t) ∈ Rn+si−ti and x̂i(t) are the observer state

and the estimate of x(t), respectively. The matrices Λi, L
1
i , L

2
i , Hi, Mi, and Ni are
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obtained by

Mi =

 Qi

C2
i


−1  I(n+si−ti)

0


∆i = (ETE + C2

i
T
C2
i )−1

φi =

 I − E∆iE
T

−C2
i ∆iE

T


αi = I − F 12

i (φiF
12
i )+φi

Ωi = Qi∆iE
TαiΦiMi

Θi = φiαiΦiMi

Ti = (Qi∆iE
T + Ziφi)αi

Ni =

 TiE

C2
i


−1  0

I(ti−si)


Hi = TiB

L1
i = TiF

11
i

L2
i = TiΦiNi

(3.6)

where Qi ∈ R(n+si−ti)×n is defined arbitrarily such that

 Qi

C2
i

 to be nonsingular

and the matrix Zi is chosen arbitrarily such that Λi = Ωi + ZiΘi to be Hurwitz.

Additionally, A† denotes the Moore-Penrose generalized inverse of matrix A [68].

In the special case of E∗ = I and G∗ = 0, the descriptor system defined in (3.1)

31



and (3.2) can be rewritten in the form of following full-order LTI system

ẋ(t) = A∗x(t) +B∗u(t) + F ∗v(t)

yi(t) = C∗i x(t), yi ∈ Rpi , i = 1, . . . , N.

(3.7)

In this case Assumption 3.1 is simplified to rank (F ∗) = q ≤ pi and Assump-

tion 3.2 becomes equivalent to the condition of rank (C∗i F
∗) = q.

Theorem 3.2 (UIO for full-order systems [55]). For each node i of the system

described by (3.7), the full-order observer given by

żi(t) = (PiA
∗ −KiC

∗
i ) zi(t) + Liyi(t) +H∗i u(t)

x̂i(t) = zi(t) + Jiyi(t),

(3.8)

exists and is asymptotically stable if and only if the pair (PiA
∗, C∗i ) is observable and

rank(C∗i F
∗) = qi. Then, there exists a matrix Ki such that the matrix (PiA

∗ −KiC
∗
i )

is Hurwitz. The matrices Ji, Pi, Hi and Li are given by

JiC
∗
i F
∗ = F ∗

Pi = I + JiC
∗
i

Hi = PiB
∗

Li = Ki (I + C∗i Ji)− PiA∗Ji.

(3.9)

In order to prove the theorems presented in the next section, the following as-

sumption is also required.

Assumption 3.4 (Bounded plant). The class of systems (3.1), (3.2) is such that

x ∈ L∞(0,∞;Rn) and y∗i ∈ L∞(0,∞;Rpi).
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Information exchange between nodes of a sensor network is modeled by a directed

graph defined in Chapter 2.

Now the main result of this chapter can be introduced which deals with the

design of an adaptive distributed UIO (AD-UIOs) scheme, in which the distributed

(interacting) UIOs implement an adaptation in their consensus protocol.

3.2 Adaptive Distributed Unknown Input Ob-

servers (AD-UIO)

The proposed adaptive distributed UIOs using the edge-dependent adaptive gain

strategy are presented in this section. The interaction of the distributed UIOs

summarized in the previous section take the form of a consensus protocol that

adjusts the consensus gains adaptively. Each node i of the network adaptively

adjusts the disagreement between its own state estimate and the state estimates of

all the communicating nodes j, ∀j ∈ N I
i . This is achieved via the use of a different

adaptive gain corresponding to nodes i and j.

Theorem 3.3 (AD-UIO for descriptor systems). Consider a sensor network with

the sensing model (3.2) estimating the states of the system (3.1). The following dis-

tributed estimation algorithm with an edge-dependent interconnected gain is utilized

at each node

żi(t) = Λizi(t) + L1
i y

1
i (t) + L2

i y
2
i (t) +Hiu(t) + Π−1i DT

i

∑
j∈NI

i

Γij(t) (x̂j(t)− x̂i(t))

x̂i(t) = Mizi(t) +Niy
2
i (t),

(3.10)
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where the matrix Πi = ΠT
i > 0 is the solution to the Lyapunov equation

ΛT
i Πi + ΠiΛi = −Ui, Ui = UT

i > 0, (3.11)

Di = C2
i (TiE)+ and the adaptive gain matrix Γij(t) is adjusted using the following

adaptive law

Γ̇ij(t) = −γ(Dizi(t)− y2i (t))(x̂j(t)− x̂i(t))T , i = 1, . . . , N, j ∈ N I
i , (3.12)

where γ is an arbitrary positive real number. Then, the estimation error, defined as

ei(t) , x(t)−x̂i(t), i = 1, . . . , N , asymptotically reaches to zero and therefore, all the

estimators asymptotically reach an agreement and all system signals are bounded.

Proof. Let us define εi(t) , zi(t)− TiEx(t), then the estimation error at the node i

is given by

ei(t) = x̂i(t)− x(t) = Miεi(t), (3.13)

where the fact that

 TiE

C2
i

[ Mi Ni

]
= In is used. Then ε̇i(t) can be obtained

as

ε̇i(t) = Λiεi(t) + (ΛiTiE − TiΦi)x(t) + (L1
i − TiF 11

i )y1i (t) + L2
i y

2
i (t)

−TiF 12
i v

2
i (t) + (Hi − TiB)u(t) + Π−1i DT

i

∑
j∈NI

i

Γij(t) (x̂j(t)− x̂i(t))

= Λiεi(t) + Π−1i DT
i

∑
j∈NI

i

Γij(t) (x̂j(t)− x̂i(t)) , i = 1, . . . , N,

(3.14)

where (3.6) and the identities TiΦi−ΛiTiE = L2
iC

2
i and TiF

12
i = 0 are used [45]. To

study the stability of the state error equation (3.14) with the adaptation law defined
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in (3.12), a local Lyapunov-like function is considered

Vi(εi,Γij) = εTi (t)Πiεi(t) +
1

γ

∑
j∈NI

i

tr
(
Γij(t)Γ

T
ij(t)

)
, i = 1, . . . , N. (3.15)

Then V̇i(εi,Γij) is obtained as

V̇i(εi,Γij) = ε̇Ti (t)Πiεi(t) + εTi (t)Πiε̇i(t) + 2
γ

∑
j∈NI

i

tr
(

Γ̇ij(t)Γ
T
ij(t)

)
= εTi (t)ΛT

i Πiεi(t) + εTi (t)ΠiΛiεi(t)

+2
(

Π−1i DT
i

∑
j∈NI

i

Γij(t) (x̂j(t)− x̂i(t))
)T

Πiεi(t)

− 2
γ

∑
j∈NI

i

tr
(
γ(Dizi(t)− y2i (t)) (x̂j(t)− x̂i(t))T ΓTij(t)

)
= εTi (t)

(
ΛT
i Πi + ΠiΛi

)
εi(t) = −εTi (t)Uiεi(t)

where the identities tr (AB) = tr (BA), tr (ABT ) = tr (BAT ) for matrices A and

B, and xTy = tr (yxT ) , xTy + yTx = 2xTy for column vectors x, y are used.

If the smallest eigenvalue of Ui is denoted by λmin(Ui), the derivative of the

Lyapunov-like function simplifies to

V̇i(εi,Γij) ≤ −λmin(Ui)‖εi(t)‖2 ≤ 0, i = 1, . . . , N. (3.16)

Using the fact that the plant state is bounded x(t) ∈ L∞(0,∞;Rn) and yi ∈

L∞(0,∞;Rpi) (Assumption 3.1), one has that all signals are bounded

εi(t) ∈ L∞(0,∞;Rni+si−ti), x̂i(t) ∈ L∞(0,∞;Rn),

ε̇i(t) ∈ L∞(0,∞;Rni+si−ti), Γij(t) ∈ L∞(0,∞;R(ti−si)×(ti−si)),

∀j ∈ N I
i .
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Additionally, from (3.16) one has that εi(t) ∈ L2(0,∞;Rn). One can rewrite

(3.12) in the form of

Γ̇ij(t) = −γDiεi(t)(Mi(εj(t)− εi(t)))T ,

and therefore Γ̇ij(t) ∈ L2(0,∞;R(ti−si)×(ti−si)), ∀j ∈ N I
i . Then from (3.13) one has

ei(t) ∈ L2(0,∞;Rn), ei(t),∈ L∞(0,∞;Rn), ėi(t) ∈ L∞(0,∞;Rn). Therefore an

application of Barbǎlat’s lemma [61,62] (ei(t) ∈ L2 ∩ L∞, ėi(t) ∈ L∞) yields

lim
t→∞
‖ei(t)‖ = 0, i = 1, . . . , N.

Please note that the coupling terms involving the pairwise differences x̂j(t)−x̂i(t)

are canceled out by applying the proposed adaptation law for Γij(t) and therefore, it

is not required to use the collective dynamics to prove the stability of Theorem 3.3.

Therefore as a notable advantage, the stability of the proposed scheme is not re-

stricted by the graph topology and the proposed scheme can also be applied to

networks whose information exchange is described by directed graphs.

The following extensions to the edge-dependent adaptive consensus gains exam-

ine the use of node-dependent and uniform gains. Their proofs are a straightforward

extension to the one provided in Theorem 3.3 and therefore omitted.

Remark 3.1. The distributed estimation algorithm proposed in Theorem 3.3 can be
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modified to

żi(t) = Λizi(t) + L1
i y

1
i (t) + L2

i y
2
i (t) +Hiu(t) + Π−1i DT

i

∑
j∈NI

i

Γij(t)C
2
i (x̂j(t)− x̂i(t))

x̂i(t) = Mizi(t) +Niy
2
i (t),

(3.17)

where the adaptive gain matrix Γij(t) is generated by

Γ̇ij(t) = −γ(Dizi(t)− y2i (t))(C2
i x̂j(t)− C2

i x̂i(t))
T , i = 1, . . . , N, j ∈ N I

i .

(3.18)

Similar convergence results as in Theorem 3.3 can be established for the above mod-

ification.

Remark 3.2. The following equation is an alternative adaptive law for Γij(t) pro-

posed in (3.12)

Γ̇ij(t) = −γ(Dizi(t)− y2i (t))(C2
i x̂j(t)−C2

i x̂i(t))
T − γΓij(t), i = 1, . . . , N, j ∈ N I

i

(3.19)

where γ is an arbitrary positive real number.

Proof. The proof of Remark 3.2 is very similar to Theorem 3.3. By using the local

Lyapunov-like function defined in (3.15), V̇i(εi,Γij) can be obtained as

V̇i(εi,Γij) = −εTi (t)Uiεi(t)− 2
∑
j∈NI

i

tr
(
Γij(t)Γ

T
ij(t)

)
≤ 0, i = 1, . . . , N. (3.20)

and similar arguments can be used to establish stability. The only difference is that

the convergence of the errors εi now becomes exponential.

Similar to Theorem 3.3, it can be noted that it is not required to use the collective

dynamics to establish stability in Remark 3.2.
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Theorem 3.4 (AD-UIO for full-order systems). Consider a sensor network de-

scribed in (3.7). The following distributed estimation algorithm with an edge-dependent

interconnection gain is utilized at each node

żi(t) = (PiA
∗ −KiC

∗
i ) zi(t) + Liyi(t) +H∗i u(t) + Π−1i C∗i

T ∑
j∈NI

i

Γij(t) (x̂j(t)− x̂i(t))

x̂i(t) = zi(t) + Jiyi(t),

(3.21)

where the matrix Πi = ΠT
i > 0 is the solution to the Lyapunov equation

(PiA
∗ −KiC

∗
i )T Πi + Πi (PiA

∗ −KiC
∗
i ) = −Ui (3.22)

for Ui = UT
i > 0 and the adaptive gain matrix Γij(t) is adjusted using the following

adaptive law

Γ̇ij(t) = −γ(C∗i x̂i(t)− yi(t))(x̂j(t)− x̂i(t))T , (3.23)

then, the estimation error ei(t), i = 1, . . . , N , asymptotically reaches to zero and

therefore, all the estimators asymptotically reach an agreement and all system signals

are bounded.

Proof. The proof of Theorem 3.4 is very similar to Theorem 3.3 and is omitted due

to the similarity. Note, since Mi = I then ei = εi. Therefore, the Lyapunov-like

function (3.15) with εi replaced by ei can be used for establishing stability.

In Theorems 3.3 and 3.4, the differences x̂i− x̂j between the estimation at node

i and the estimation at node j, ∀j ∈ Ni, are separately penalized using different

Γij(t). Thus, the gains Γij(t) are called edge-dependent adaptive gains. As a special

case, one can use an identical gain Γij(t) for all nodes neighboring j, ∀j ∈ Ni. Thus,
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one can move Γij(t) outside the summation in (3.10) or (3.21) and make it node-

dependent (also vertex-dependent) adaptive gain Γi(t). For this case, the differences

between the estimates of node i and all of nodes j, ∀j ∈ Ni, are uniformly penalized.

The resulting AD-UIOs with node-dependent adaptive gains are summarized in the

lemma below.

Lemma 3.1 (Node-dependent AD-UIO). If the adaptive interconnection weights

are defined to be node-dependent, then the AD-UIO for descriptor systems is given

by

żi(t) = Λizi(t) + L1
i y

1
i (t) + L2

i y
2
i (t) +Hiu(t) + Π−1i DT

i Γi(t)
∑
j∈NI

i

(x̂j(t)− x̂i(t))

x̂i(t) = Mizi(t) +Niy
2
i (t),

Γ̇i(t) = −γ(Dizi(t)− y2i (t))
∑
j∈NI

i

(x̂j(t)− x̂i(t))T , i = 1, . . . , N, j ∈ N I
i ,

(3.24)

and the AD-UIO for full-order systems is given by

żi(t) = (PiA
∗ −KiC

∗
i ) zi(t) + Liyi(t) +H∗i u(t) + Π−1i C∗i

TΓi(t)
∑
j∈NI

i

(x̂j(t)− x̂i(t)) ,

x̂i(t) = zi(t) + Jiyi(t),

Γ̇i(t) = −γ(C∗i x̂i(t)− yi(t))
∑
j∈NI

i

(x̂j(t)− x̂i(t))T , i = 1, . . . , N, j ∈ N I
i ,

(3.25)

and the estimation error ei(t), i = 1, . . . , N , asymptotically reaches to zero.

Proof. To proof Lemma 3.1, the Lyapunov-like functions Vi(εi,Γi) = εTi (t)εi(t) +

1
γ
tr
(
Γi(t)Γ

T
i (t)

)
and Vi(ei,Γi) = eTi (t)ei(t) + 1

γ
tr
(
Γi(t)Γ

T
i (t)

)
can be used for the

node-dependent AD-UIOs in (3.24) and (3.25), respectively. The rest of the proof

is similar to the proof of Theorem 3.3 and therefore it is omitted.
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Chapter 4

Adaptive Distributed Functional

Observers for Linear

Time-Invariant Descriptor

Systems

In this chapter, we first summarize the results of an functional observer (FO) for

a linear time invariant system in descriptor form, as taken from [52]. The descriptor

system is assumed to have multiple outputs provided by a sensor network and for

each system corresponding to a different output, a different FO is designed. The

result is a network of distributed and non-interacting FOs. A special case of the

distributed non-interacting FOs is when the descriptor system is indeed a regular

system (the singular matrix in front of the time derivative becomes the identity ma-

trix), and in this case the distributed and non-interacting FOs reduce to distributed

non-interacting observers.

In a sensor network with distributed estimation, each node can collaborate with
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its neighbors to improve its own estimation. Therefore, the framework proposed

in [7] for the interconnection gain adaptation is applied to a sensor network of the

functional observers in Theorems 4.1 and 4.2 to enhance the estimation.

4.1 Preliminaries and Problem formulation

Consider the following linear time-invariant (LTI) descriptor system

Eẋ(t) = Ax(t) +Bu(t), (4.1)

where the state x(t) ∈ Rn, the known input u(t) ∈ Rk, the matrices A and B are

known and of appropriate dimensions. State measurements are obtained by a sensor

network containing N nodes, where each node i has the following sensing model

yi(t) = Cix(t), yi ∈ Rpi , i = 1, . . . , N. (4.2)

where Ci is the observation matrix of node i and assumed to have row rank of pi.

Let the linear function required to be estimated z(t) be given by

z(t) = Lx(t), (4.3)

where z(t) ∈ Rr, r ≤ n and L is a known r × n constant matrix with rank(L) = r.

Additionally, it is assumed that rank(E) = m ≤ n. Furthermore, E⊥ is a maximal

row rank matrix of matrix E such that E⊥E = 0, [68].

The non-interacting FO scheme for descriptor system [52] is first summarized in

the following theorem and subsequently will be modified in Section 4.2 for intercon-

nected systems.
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Theorem 4.1 (FO for descriptor systems [52]). The functional observer for each

node i of the descriptor system described in (4.1), (4.2) and (4.3) is given by

ζ̇i(t) = Niζi(t) + Ji

 −E⊥Bu(t)

y(t)

+Hiu(t)

ẑi(t) = Miζi(t) +Qi

 −E⊥Bu(t)

y(t)

 , i = 1, . . . , N,

(4.4)

where ζi(t) ∈ Rqi is the observer state, and ẑi(t) ∈ Rr is the estimate of z(t). The

matrices Ni, Ji, Hi, Mi and Qi are obtained by

∆i =


E

E⊥A

C̄i

 , Ωi =


R

E⊥A

C̄i

 , αi = Ri∆
†
i

 I

0

 , α1
i = Ri∆

†
i

 0

I

 ,

βi = (I −∆i∆
†
i )

 I

0

 , β1
i = (I −∆i∆

†
i )

 0

I

 , Σi =

 Ωi

βiA

 , Θi = αiA,

A1
i = ΘiΣ

†
i


I

0

0

 , A2
i = ΘiΣ

†
i


0

I

0

 , A3
i = ΘiΣ

†
i


0

0

I

 ,

B1
i = (I − ΣiΣ

†
i )


I

0

0

 , B2
i = (I − ΣiΣ

†
i )


0

I

0

 , B3
i = (I − ΣiΣ

†
i )


0

0

I

 ,
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Ni = A1
i − ZiB1

i , K
1
i = A2

i − ZiB2
i , Yi = A3

i − ZiB3
i ,

Ti = αi − Yiβi, Ki = α1
i − Yiβ1

i , Ji = K1
i +NiKi,[

Mi K2
i

]
= LΩ†i + Z1

i (I − ΩiΩ
†
i ), Qi = K2

i +MiKi, Hi = TiB

(4.5)

where Ri ∈ Rqi×n is a full row rank matrix such that rank(

 Ri

∆i

) = rank(



L

∆i

Li

Ωi


) =

rank(Ωi), Z1
i is an arbitrary matrix, and Zi is defined such that the matrix Ni to be

Hurwitz. Also, A† denotes the Moore-Penrose generalized inverse matrix of A, [68].

Moreover, the functional observer given in (4.5) exists and is asymptotically stable.

Finally, the matrix Zi exists such that the matrix Ni is Hurwitz if and only if the

following two conditions are satisfied

1.

rank


 Σi

Θi


 = rank(Σi), (4.6)

2.

rank





sRi − αiA

E⊥A

Ci

βiA




= rank(Σi), ∀s ∈ C, Re(s) ≥ 0. (4.7)

Furthermore, for such functional observer, the following two conditions are satisfied

1.

NiTiE − TiA+ Ji

 E⊥A

Ci

 = 0, (4.8)
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2.

[
Mi Qi

]
TiE

E⊥A

Ci

 = L. (4.9)

In the special case of E = I, the descriptor system defined in (4.1), (4.2), and

(4.3) reduces to the following full-order (standard) LTI system

ẋ(t) = Ax(t) +Bu(t)

yi(t) = Cix(t), i = 1, . . . , N,

z(t) = Lx(t).

(4.10)

Theorem 4.2 (FO for full-order systems [50]). For each node i, the functional

observer defined in Theorem 4.1 for the full-order system (4.10) simplifies to

ζ̇i(t) = Niwi(t) + Jiyi(t) +Hiu(t)

ẑi(t) = ζi(t) +Qiyi(t), i = 1, . . . , N,

(4.11)

where matrices Ni, Ji, Hi, and Qi are obtained by

Ā = A(I − L†L), C̄i = Ci(I − L†L), Σi =

 CiĀ

C̄i

 ,

Fi = LAL† − LĀΣ†i

 CiAL
†

CiL
†

 , Gi = (I − ΣiΣ
†
i )

 CiAL
†

CiL
†

 ,
Ni = Fi − ZiGi,

[
Qi Ki

]
= LĀΣ†i + Zi(I − ΣiΣ

†
i ),

Ti = L−QiCi, Ji = Ki +NiQi, Hi = TiB,

(4.12)
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and where the matrix Zi is defined such that the matrix Ni is Hurwitz. Moreover,

the functional observer given in (4.11) exists and is asymptotically stable, and the

matrix Zi exists such that the matrix Ni is Hurwitz if and only if the following two

conditions are satisfied

1.

rank





LA

CiA

Ci

L




= rank



CiA

Ci

L


 , (4.13)

2.

rank



sL− LA

CiA

Ci


 = rank



CiA

Ci

L


 , ∀s ∈ C, Re(s) ≥ 0. (4.14)

Certain definitions pertaining to the observability properties of the descriptor

system (4.1) are essential for establishing convergence of the proposed interacting

FOs.

Definition 4.1 (Partial impulse observable [52]). The triplet (C,E,A) is partial

impulse observable with respect to L if y(t) is impulse free for t ≥ 0, only if Lx(t)

is impulse free for t ≥ 0.

The following assumption is essential for the convergence of the estimation error

of FO for descriptor systems to zero asymptotically [52].

Assumption 4.1 (Partial impulse observable). It is assumed that the descriptor

system in (4.1), (4.2) is partial impulse observable with respect to L [52].
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The following assumption is also required for the proof of the theorems presented

in the next section.

Assumption 4.2 (Bounded plant). The class of systems (4.1), (4.10) is such that

x ∈ L∞(0,∞;Rn), yi ∈ L∞(0,∞;Rpi) and z ∈ L∞(0,∞;Rr).

Information exchange between nodes of a sensor network is modeled by a directed

graph defined in Chapter 2.

Now, the main result of this chapter can be introduced which deals with the

design of an adaptive distributed FO (ADFO) scheme.

4.2 Adaptive Distributed Functional Observers

(ADFO)

First, the ADFO scheme based on the edge-dependent adaptive gain strategy is

presented in the following theorem, in which each node i of the network adaptively

adjust the disagreement between its functional estimates and the functional estimate

ẑj of a node j, ∀j ∈ N I
i , using an adaptive gain corresponding the nodes i and j.

For brevity, the pairwise difference of functional estimate of node i, ẑi, and the

functional estimate of node j, ẑj, is denoted as ẑij = ẑi − ẑj.

Theorem 4.3 (ADFO for descriptor systems). Consider a sensor network described

in (4.1), (4.2), and (4.3). The following distributed estimation algorithm with a
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distance-adjusted interconnection gain is utilized at each node

ζ̇i(t) = Niζi(t) + Ji

 −E⊥Bu(t)

y(t)

+Hiu(t) + Π−1i MT
i Di

∑
j∈NI

i

Γij(t)D
T
i ẑji(t),

ẑi(t) = Miζi(t) +Qi

 −E⊥Bu(t)

y(t)

 , i = 1, . . . , N,

(4.15)

where Di = (CL†i )
T and the adaptive gain matrix Γij(t) is adjusted using the adaptive

law

Γ̇ij(t) = −γ
(
DT
i ẑi(t)− yi(t)

)
ẑTji(t)Di, i = 1, . . . , N, j ∈ N I

i (4.16)

where γ is an arbitrary positive real number. The matrix Πi is the solution to the

Lyapunov equation

NT
i Πi + ΠiNi = −Ui, i = 1, . . . , N, (4.17)

and is a symmetric positive definite matrix for Ui = UT
i > 0 and Ni Hurwitz [65].

Then, the estimation error, defined as ei(t) , ẑi(t)− z(t), i = 1, . . . , N , asymptoti-

cally reaches zero and therefore, all the estimators asymptotically reach an agreement

and all system signals are bounded.

The ADFO scheme proposed in (4.4) is similar to the non-interacting FO scheme

in (4.15) and only a coupling term Π−1i MT
i Di

∑
j∈NI

i

Γij(t)D
T
i ẑji(t) is added to the first

equation. The matrices Ni, Ji, Hi, Mi and Qi in Theorem 4.3 are obtained from

(4.5) and therefore the conditions in (4.6), (4.7), (4.8) and (4.9) are also satisfied in

Theorem 4.3.
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Proof. The estimation error for node i is written as

ei(t) = ẑi(t)− z(t) = ẑi(t)− Lx(t) = Miεi(t), (4.18)

where εi(t) , ζi(t) − TiEx(t). Then, the error dynamics εi(t) of the ith node is

obtained by combining (4.3) and (4.4)

ε̇i(t) = Niεi(t) + (NiPi + JiCi − PiA)x(t) + (Hi − PiB)u(t)

+Π−1i MT
i Di

∑
j∈NI

i

Γij(t)D
T
i ẑji(t)

= Niεi(t) + Π−1i MT
i Di

∑
j∈NI

i

Γij(t)D
T
i ẑji(t), i = 1, . . . , N,

(4.19)

where (4.5), (4.8), and (4.9) have been used which are satisfied for the observer

defined in Theorem 4.1 [52]. In order to study the stability of the state error equation

(4.19) and the adaptation law (4.16), a local Lyapunov-like function is considered

Vi(εi,Γij) = εTi (t)Πiεi(t) +
1

γ

∑
j∈NI

i

tr
(
Γij(t)Γ

T
ij(t)

)
, i = 1, . . . , N. (4.20)
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Then V̇i(εi,Γij) is obtained as

V̇i(εi,Γij) = ε̇Ti (t)Πiεi(t) + εTi (t)Πiε̇i(t) +
2

γ

∑
j∈NI

i

tr
(

Γ̇ij(t)Γ
T
ij(t)

)
= εTi (t)NT

i Πiεi(t) + εTi (t)ΠiNiεi(t)

+2
(

Π−1i MT
i Di

∑
j∈NI

i

Γij(t)D
T
i ẑji(t)

)T
Πiεi(t)

−2

γ

∑
j∈NI

i

tr
(
γ
(
DT
i ẑi(t)− yi(t)

)
ẑTji(t)DiΓ

T
ij(t)

)
= εTi (t)NT

i Πiεi(t) + εTi (t)ΠiNiεi(t) + 2
∑
j∈NI

i

(
Γij(t)D

T
i ẑji(t)

)T
DT
i Miεi(t)

−2
∑
j∈NI

i

( (
Γij(t)D

T
i ẑji(t)

)T (
DT
i ẑi(t)− yi(t)

) )

where the identities tr (AB) = tr (BA), tr (ABT ) = tr (BAT ) for matrices A and

B, and xTy = tr (yxT ) , xTy + yTx = 2xTy for column vectors x, y are used. Using

(4.18), on can obtain

V̇i(εi,Γij) = εTi (t)NT
i Πiεi(t) + εTi (t)ΠiNiεi(t)

+2
∑
j∈NI

i

( (
Γij(t)D

T
i ẑji(t)

)T
DT
i (ẑi(t)− z(t))

)
−2

∑
j∈NI

i

( (
Γij(t)D

T
i ẑji(t)

)T (
DT
i ẑi(t)− yi(t)

) )
= εTi (t)

(
NT
i Πi + ΠiNi

)
εi(t) = −εTi (t)Uiεi(t)

If the smallest eigenvalue of Ui is denoted by λmin(Ui), the derivative of the

Lyapunov-like function (4.20) simplifies to

V̇i(εi,Γij) ≤ −λmin(Ui)‖εi(t)‖2 ≤ 0, i = 1, . . . , N. (4.21)
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Using the fact that the plant state is bounded z(t) ∈ L∞(0,∞;Rr) and yi ∈

L∞(0,∞;Rpi) (Assumption 4.2), one has that all signals are bounded

εi(t) ∈ L∞(0,∞;Rqi), ẑi(t) ∈ L∞(0,∞;Rr),

ε̇i(t) ∈ L∞(0,∞;Rqi), Γij(t) ∈ L∞(0,∞;Rpi×pi), ∀j ∈ N I
i .

Additionally, from (4.21) one has that εi(t) ∈ L2(0,∞;Rn). One can rewrite (4.16)

in the form of

Γ̇ij(t) = −γ
(
DT
i ẑi(t)− yi(t)

)
(εj(t)− εi(t))TMT

i Di,

and therefore Γ̇ij(t) ∈ L2(0,∞;Rpi×pi), ∀j ∈ N I
i . Then from (4.18) one has

ei(t) ∈ L2(0,∞;Rn), ei(t),∈ L∞(0,∞;Rn), ėi(t) ∈ L∞(0,∞;Rn). Therefore an

application of Barbǎlat’s lemma [61] (ei(t) ∈ L2 ∩ L∞, ėi(t) ∈ L∞) yields

lim
t→∞
‖ei(t)‖ = 0, i = 1, . . . , N.

It is interesting to note that for the proof of Theorem 4.3 one does not have to

use the collective dynamics to establish stability. The reason is that the coupling

terms involving the pairwise differences ẑj(t)− ẑi(t) are canceled out by applying the

proposed adaptation law for Γij(t). Therefore as a notable advantage, the stability

of the proposed scheme is not restricted by the graph topology and the proposed

scheme is also working for directed graphs.

Remark 4.1. The following equation is an alternative adaptive law for Γij(t) pro-
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posed in (4.16)

Γ̇ij(t) = −γ
(
DT
i ẑi(t)− yi(t)

)
ẑTji(t)Di − γΓij(t), i = 1, . . . , N, j ∈ N I

i (4.22)

where γ is an arbitrary positive real number.

Proof. The proof of Remark 4.1 is very similar to Theorem 4.3. By using the local

Lyapunov-like function defined in (4.20), V̇i(εi,Γij) can be obtained as

V̇i(εi,Γij) = −εTi (t)Uiεi(t)− 2
∑
j∈NI

i

tr
(
Γij(t)Γ

T
ij(t)

)
≤ 0, i = 1, . . . , N. (4.23)

which completes the proof.

Similar to Theorem 4.3, it can be noted that it is not required to use the collective

dynamics to establish stability in Remark 4.1.

Theorem 4.4 (ADFO for full-order systems). Consider a sensor network described

in (4.10). The following distributed estimation algorithm with a distance-adjusted

interconnection gain is utilized at each node

ζ̇i(t) = Niζi(t) + Jiyi(t) +Hiu(t) + Π−1i Di

∑
j∈NI

i

Γij(t)D
T
i ẑji(t),

ẑi(t) = ζi(t) +Qiyi(t),

(4.24)

where the adaptive gain matrix Γij(t) is adjusted using the following adaptive law

Γ̇ij(t) = −γ(DT
i ẑi(t)− yi(t))ẑTji(t)Di, (4.25)

then, the estimation error ei(t), i = 1, . . . , N , asymptotically reaches to zero and

therefore, all the estimators asymptotically reach an agreement and all system signals
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are bounded.

Proof. The proof of Theorem 4.4 is similar to Theorem 4.3 and is omitted due to

their similarities. Note, since Mi = I then ei = εi and therefore the Lyapunov-like

function (4.20) with εi replaced by ei can be used for the stability proof.

In Theorems 4.3 and 4.4, the distance between the estimation at node i and

the estimation at node j, ∀j ∈ N I
i , is penalized independently using different Γij(t).

Thus, the gain Γij(t) is called edge-dependent adaptive gain. In a special case, one

can use an identical gain Γij(t) for all nodes j, ∀j ∈ N I
i . Thus, one can move Γij(t)

outside the summation in (4.15) or (4.24) and make it an node-dependent (also

vertex-dependent) adaptive gain Γi(t). Therefore, distances between node i and

all nodes j, ∀j ∈ N I
i , are penalized identically. The ADFOs with node-dependent

adaptive gains is summarized in the following lemma.

Lemma 4.1 (Node-dependent ADFO). If the adaptive interconnection weights are

defined to be node-dependent, then the ADFO for descriptor systems is given by

ζ̇i(t) = Niζi(t) + Ji

 −E⊥Bu(t)

y(t)

+Hiu(t) + Π−1i MT
i DiΓi(t)D

T
i

∑
j∈NI

i

ẑji(t),

ẑi(t) = Miζi(t) +Qi

 −E⊥Bu(t)

y(t)

 ,
Γ̇i(t) = −γ(DT

i ẑi(t)− yi(t))
∑
j∈NI

i

ẑTji(t)Di,

(4.26)
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and the ADFO for full-order systems is given by

ζ̇i(t) = Niζi(t) + Jiyi(t) +Hiu(t) + Π−1i DiΓi(t)D
T
i

∑
j∈NI

i

ẑji(t),

ẑi(t) = ζi(t) +Qiyi(t),

Γ̇i(t) = −γ(DT
i ẑi(t)− yi(t))

∑
j∈NI

i

ẑTji(t)Di,

(4.27)

and the estimation error ei(t), i = 1, . . . , N , asymptotically reaches to zero.

Proof. To prove Lemma 4.1, the Lyapunov-like functions Vi(εi,Γi) = εTi (t)εi(t) +

1
γ
tr
(
Γi(t)Γ

T
i (t)

)
and Vi(ei,Γi) = eTi (t)ei(t) + 1

γ
tr
(
Γi(t)Γ

T
i (t)

)
can be used for the

node-dependent ADFOs in (4.26) and (4.27), respectively. The rest of the proof is

similar to that for Theorem 4.3 and is therefore omitted.
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Chapter 5

Numerical Studies

This chapter is dedicated to numerical simulations for the proposed adaptive

schemes in this dissertation. The chapter is therefore divided into the following

sections:

• Section 5.1 presents four numerical simulations to demonstrate the perfor-

mance and effectiveness of the proposed adaptive distributed Kalman filter

schemes.

• Section 5.2 presents a numerical simulation to demonstrate the performance

and effectiveness of the proposed adaptive distributed unknown input observer

scheme.

• Section 5.3 presents a numerical simulation to demonstrate the performance

and effectiveness of the proposed adaptive distributed functional observer

scheme.
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5.1 Adaptive-DKF for LTV systems

In this section, four numerical simulations are presented to demonstrate the

performance of the proposed adaptive-DKF schemes. Consider the linear time-

varying (LTV) system in (2.1) with

A =

 −0.15 + 0.4 sin(t) −2

2 0

 , B =

 1 0

0 1

 ,
having initial condition x0 = (15 − 10)T .

In the first simulation, the observation matrices are chosen to be either Ci =

C1 , [1 0] or Ci = C2 , [0 1], i = 1, . . . , N , at random, but each set of neighbors

Ni of node i contains nodes with both types of matrices. The process noise covariance

is chosen as Q = I2×2. The measurement noise covariances are also chosen as

Ri = 0.1i, i = 1, . . . , N . An undirected WSN with N = 50 nodes is chosen as shown

schematically in Figure 5.1 where the nodes are randomly located. The reason

for choosing an undirected WSN in the first simulation is to have the ability of

comparing with the standard DKF [17] which was restricted to undirected graphs.

Finally, the initial estimate of each node i, x̂i(0), is chosen to be different from the

initial estimate of the other nodes, i.e. x̂i(0) 6= x̂j(0), i, j = 1, . . . , N , i 6= j.

The node-average estimation error

‖e‖node =
1

N
‖e‖2, ‖e‖22 =

N∑
i=1

eTi ei,

for the adaptive-DKFs proposed in Theorem 2.1 (the edge-dependent gain case)

and in Lemma 2.3 (the node-dependent case) along with the non-adaptive (stan-

dard) DKF from [17] are compared in Figure 5.2. It can be observed that the
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Figure 5.1: A sensor network with randomly located nodes consisting of N=50 nodes
and 229 links

adaptive-DKFs from Theorem 2.1 and Lemma 2.3 have a better performance than

the standard DKF [17] and the adaptive-DKFs from Theorem 2.1 exhibit the best

performance.

The following measure for the performance of the state estimates that is inde-

pendent of the network topology [17] is considered to assess the performance of the

proposed adaptive strategy

δi(t) , x̂i(t)−
1

N

N∑
j=1

x̂j(t), (5.1)

‖δ(t)‖ =

√√√√ N∑
i=1

|δi(t)|2Rn =

√√√√ N∑
i=1

δTi (t)δi(t). (5.2)

Figure 5.3 compares the disagreement ‖δ‖ for the adaptive-DKFs proposed in

Theorem 2.1 and in Lemma 2.3 and the non-adaptive DKF from [17]. Once again, it

can be observed that the adaptive-DKFs from Theorem 2.1 and Lemma 2.3 exhibit

a better performance than the standard DKFs [17] and the adaptive-DKFs from
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Figure 5.2: Comparison of estimation error of adaptive-DKFs proposed by Theo-
rem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF), and the
standard DKF [17] for the first simulation.

Theorem 2.1 have the fastest convergence rate.

To provide a level of the associated communication cost, the proposed adaptive-

DKFs in Theorem 2.1 and in Lemma 2.3 required to transmit 5038 bytes per time

unit, while, the non-adaptive DKFs [17] required to transmit 6870 bytes per time

unit. This represents a 36% increase over the proposed strategies. It should be

emphasized that with the higher system dimension n, this reduction in the commu-

nication cost become more prominent.

In the second and third simulations, the effect of the sensor network graph has

been studied on the response of the adaptive-DKFs. Therefore, two undirected
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Figure 5.3: Comparison of disagreement ‖ δ ‖ of adaptive-DKFs proposed by The-
orem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF), and
the standard DKF [17] for the first simulation.

WSNs with N = 6 nodes are chosen for the second and third simulations as shown

schematically in Figures 5.4 and 5.5, respectively. The observation matrices are

chosen as C1 = C3 = C5 = C1 , [1 0] and C2 = C4 = C6 = C2 , [0 1]. The

measurement noise covariances are also chosen asR1 = R2 = R4 = R5 = 0.1, R3 = 5,

and R6 = 10. The rest of system parameters are the same as the first simulation.

Similarly, the initial estimate of each node i, x̂i(0), is chosen to be different from

the initial estimate of the other nodes in the second and third simulations also.

The node-average estimation error ‖e‖node for the adaptive-DKFs proposed in

Theorem 2.1 (the edge-dependent gain case) and in Lemma 2.3 (the node-dependent

case) along with the non-adaptive (standard) DKF from [17] are compared in the
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Figure 5.4: A sensor network consisting of N=6 nodes used in the second simulation.
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2 

Figure 5.5: A sensor network consisting of N=6 nodes used in the third simulation.

second and third simulations in Figures 5.6 and 5.7 respectively. Figures 5.8 and

5.9 compare the disagreement ‖δ‖ for the adaptive-DKFs proposed in Theorem 2.1

and in Lemma 2.3 and the non-adaptive DKF from [17] for the second and third

simulations, respectively. It can be observed that the adaptive-DKFs from Theo-

rem 2.1 and Lemma 2.3 have a better performance than the standard DKF [17] and

the adaptive-DKFs from Theorem 2.1 exhibit the best performance in the second

and third simulations as well.

In the fourth simulation, a directed WSN with N = 5 nodes is chosen as shown

schematically in Figure 5.10. The observation matrices are chosen as C1 = C3 =

C5 = C1 , [1 0] and C2 = C4 = C2 , [0 1]. The measurement noise covariances

are also chosen as Ri = 0.25i, i = 1, . . . , N . The rest of system parameters are the
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Figure 5.6: Comparison of estimation error of adaptive-DKFs proposed by Theo-
rem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF), and the
standard DKF [17] for the second simulation.

same as the first simulation. Similarly, the initial estimate of each node i, x̂i(0),

is chosen to be different from the initial estimate of the other nodes in the fourth

simulation also.

The node-average estimation error ‖e‖node and the disagreement ‖δ‖ for the

adaptive-DKFs proposed in Theorem 2.1 (the edge-dependent gain case) and in

Lemma 2.3 (the node-dependent case) are compared in Figures 5.11 and 5.12 re-

spectively. It can be observed that the adaptive-DKFs from Theorem 2.1 converge

faster than the adaptive-DKFs of Lemma 2.3 in the fourth simulation as well. The

results are not compared with the standard DKF [17] in the fourth simulation, since
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Figure 5.7: Comparison of estimation error of adaptive-DKFs proposed by Theo-
rem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF), and the
standard DKF [17] for the third simulation.

it is not applicable to the case of directed graphs.
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Figure 5.8: Comparison of disagreement ‖ δ ‖ of adaptive-DKFs proposed by The-
orem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF), and
the standard DKF [17] for the second simulation.
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Figure 5.9: Comparison of disagreement ‖ δ ‖ of adaptive-DKFs proposed by The-
orem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF), and
the standard DKF [17] for the third simulation.
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Figure 5.10: A directed sensor network consisting of N=5 nodes
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Figure 5.11: Comparison of estimation error of adaptive-DKFs proposed by Theo-
rem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF) for the
fourth simulation.
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Figure 5.12: Comparison of disagreement ‖ δ ‖ of adaptive-DKFs proposed by
Theorem 2.1 (edge-dependent ADKF) and Lemma 2.3 (node-dependent ADKF) for
the fourth simulation.
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5.2 AD-UIO for LTI descriptor systems

In this section, a numerical simulation is presented to demonstrate the perfor-

mance of the proposed adaptive distributed unknown input observer scheme. The

linear time-invariant (LTI) system in (3.1) is considered with [43,45]

E∗ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


, A∗ =



−1 1 0 0

−1 0 0 1

0 −1 −1 0

0 0 0 1


, B∗ =



1 0

0 1

0 0

1 0


,

F ∗ =

[
−1 0 0 0

]T
and initial condition x0 = (15, 30, 40,−30)T . The known input u and the un-

known input v are chosen to be

u =

 cos(2t)

51(t− 2)− 31(t− 5)

 , v = 5 sin(t).

where 1(t) is the unit step function. The dynamics of the system is shown in

Figure 5.13. A sensor network of 6 nodes is chosen as shown in Figure 5.14. The

sensor model in (3.2) is chosen as

C∗1 =

 1 0 0 0

0 0 1 1

 , C∗2 =

 1 0 0 0

1 1 0 0

 , C∗3 =

 0 0 1 0

1 0 0 0

 ,

C∗4 =

 0 1 0 1

1 0 0 0

 , C∗5 =

 0 0 1 1

1 0 0 0

 , C∗6 =

 1 0 1 0

0 1 0 0

 ,
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and G∗i =

 0

0

 , i = 1, . . . , 6.

To construct the observers P = I4, R1 = R3 = R5 =

[
0 1 0 0

]
, R2 = R4 =

R6 =

[
0 0 1 0

]
, and Zi =

[
0 0 3 3 0 3

]
, i = 1, . . . , 6 are chosen.

Then, the matrices Λi, L
1
i , L

2
i , Hi, Mi, Ni, C

2
i , i = 1, . . . , 6 in (3.10) are obtained

as

Λ1 = −1, L1
1 = 0, L2

1 =

[
1 −1 0

]
, H1 =

[
0 1

]
,

M1 =



0

1

0

0


, N1 =



0 1 0

1 0 −1

−1 0 1

1 0 0


,

Λ2 = −1, L1
2 = 0, L2

2 =

[
−1 3 −2

]
, H2 =

[
0 −1

]
,

M2 =



0

0

1

0


, N2 =



0 1 0

0 −1 1

0 −1 1

1 0 0


,

Λ3 = −1.5, L1
3 = 0, L2

3 =

[
1 0.75 −1

]
, H3 =

[
0 1

]
,

M3 =



0

1

0

0


, N3 =



0 0 1

0 −1.5 1

0 1 0

1 0 0


,
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Λ4 = −1, L1
4 = 0, L2

4 =

[
1 0 −1

]
, H4 =

[
0 1

]
,

M4 =



0

0

1

0


, N4 =



0 0 1

−1 1 0

1 −1 0

1 0 0


,

Λ5 = −2, L1
5 = 0, L2

5 =

[
−1 2 −1

]
, H5 =

[
0 1

]
,

M5 =



0

1

0

0


, N5 =



0 0 1

2 −2 0

−1 1 0

1 0 0


,

Λ6 = −2.5, L1
6 = 0, L2

6 =

[
−1.5 1.5 −4.75

]
, H6 =

[
0 −1.5

]
,

M6 =



−1

0

1

0


, N6 =



0 1 −1.5

0 0 1

0 0 1.5

1 0 0


,

C2
1 =


0 0 0 1

1 0 0 0

0 0 1 1

 , C2
2 =


0 0 0 1

1 0 0 0

1 1 0 0

 , C2
3 =


0 0 0 1

0 0 1 0

1 0 0 0

 ,
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Figure 5.13: Dynamics of the linear system assumed for simulation.

C2
4 =


0 0 0 1

0 1 0 1

1 0 0 0

 , C2
5 =


0 0 0 1

0 0 1 1

1 0 0 0

 , C2
6 =


0 0 0 1

1 0 1 0

0 1 0 0

 .
The parameter γ is chosen as 0.01. Additionally, the initial zi(0) is chosen in

each node independent of the other nodes as

z1(0) = 60, z2(0) = −30, z3(0) = −50, z4(0) = 40, z5(0) = 30, and z6(0) = −20.

The estimation errors of the edge-dependent AD-UIOs proposed by Theorem 3.3

and the non-interacting UIOs in Theorem 3.1 for all nodes are compared in Fig-

ures 5.15, 5.16, 5.17, and 5.18. It can be seen that the AD-UIOs in Theorem 3.3

significantly improve the estimation of the non-interacting UIOs in Theorem 3.1.

As a measure of the agreement between the state estimates x̂i, the deviation
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Figure 5.14: A directed sensor network with 6 nodes

from the mean (disagreement) is considered similar to (5.1) as

δi(t) = x̂i(t)−
1

6

6∑
j=1

x̂j(t) = ei(t)−
1

6

6∑
j=1

ej(t), i = 1, . . . , 6, δi(t) ∈ Rn. (5.3)

The norm of the deviation from the mean, ‖δi(t)‖ of all 6 nodes for the edge-

dependent AD-UIOs presented in Theorem 3.3 and for the non-interacting UIOs

of Theorem 3.1 are presented in Figure 5.19. It can be seen that the AD-UIOs

of Theorem 3.3 exhibit significant improvement over the non-interacting UIOs of

Theorem 3.1.

To further emphasize the difference in performance between the proposed AD-

UIOs and the non-interacting UIOs, the aggregate estimation error norms |e| =∣∣(e1, e2, e3, e4, e5, e6)T ∣∣ are depicted in Figure 5.20. Additionally, the L2(0, 5;RnN)

norm ‖e‖2 of the aggregate state error e, is presented in Table 5.1 to highlight the

performance improvement due to the proposed distributed strategy.

70



0 1 2 3 4 5
−1

−0.5

0

0.5

1

E
st

im
at

io
n 

er
ro

r 
e 1(1

)

Time (sec)

 

 
ADUIO
Non−interacting UIO

0 1 2 3 4 5
−1

−0.5

0

0.5

1

E
st

im
at

io
n 

er
ro

r 
e 2(1

)

Time (sec)

 

 
ADUIO
Non−interacting UIO

0 1 2 3 4 5
−1

−0.5

0

0.5

1

E
st

im
at

io
n 

er
ro

r 
e 3(1

)

Time (sec)

 

 
ADUIO
Non−interacting UIO

0 1 2 3 4 5
−1

−0.5

0

0.5

1

E
st

im
at

io
n 

er
ro

r 
e 4(1

)

Time (sec)

 

 
ADUIO
Non−interacting UIO

0 1 2 3 4 5
−1

−0.5

0

0.5

1

E
st

im
at

io
n 

er
ro

r 
e 5(1

)

Time (sec)

 

 
ADUIO
Non−interacting UIO

0 1 2 3 4 5
−40

−20

0

20

E
st

im
at

io
n 

er
ro

r 
e 6(1

)

Time (sec)

 

 

ADUIO

Non−interacting UIO

Figure 5.15: Comparison of the first state of estimation error ei = x̂i − x of the
AD-UIO proposed by Theorem 3.3 (–) and the non-interacting UIO in Theorem 3.1
(- -) in all 6 nodes.

Table 5.1: Comparison of ‖e‖2 between the edge-dependent AD-UIO in Theorem 3.3
and the non-interacting UIO in Theorem 3.1.

norm Non-interacting UIO Adaptive Distributed UIO

‖e‖2 117.22 69.92
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Figure 5.16: Comparison of the second state of estimation error ei = x̂i − x of the
AD-UIO proposed by Theorem 3.3 (–) and the non-interacting UIO in Theorem 3.1
(- -) in all 6 nodes.
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Figure 5.17: Comparison of the third state of estimation error ei = x̂i − x of the
AD-UIO proposed by Theorem 3.3 (–) and the non-interacting UIO in Theorem 3.1
(- -) in all 6 nodes.
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Figure 5.18: Comparison of the fourth state of estimation error ei = x̂i − x of the
AD-UIO proposed by Theorem 3.3 (–) and the non-interacting UIO in Theorem 3.1
(- -) in all 6 nodes.
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Figure 5.19: Evolution of the norms of the deviations from the mean ‖δi(t)‖ in
(5.3), of the AD-UIO proposed in Theorem 3.3 (–) and the non-interacting UIO in
Theorem 3.1 (- -).
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Figure 5.20: Comparison of estimation error norm |e| of the AD-UIO proposed by
Theorem 3.3 (–) and the non-interacting UIO in Theorem 3.1 (- -).
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5.3 ADFO for LTI descriptor systems

In this section, a numerical simulation is presented to demonstrate the perfor-

mance of the proposed adaptive distributed functional observer scheme. The linear

time-invariant (LTI) system in (4.1) is considered with

A =



1 0 −0.25 1

1 −2 1 0

1 0 0 1

0 1 −1 0


, B =



0 1

1 0

1 1

0 0


, E =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


,

and initial condition x0 = (15, 30, 30,−16)T . The matrix L in (4.3) is chosen as

L =

[
0 0 1 0

]
. A sensor network of 4 nodes is chosen as shown in Figure 5.21.

Different sensor models are considered for each node in (4.2) as

C1 =

1 0 0 0

0 1 1 0

 , C2 =

1 0 1 0

0 1 0 0

 , C3 =

0 1 0 0

0 0 1 0

 ,

C4 =

0 0 1 0

0 1 0 0

 .
For each of the sensor models, conditions (4.6) and (4.7) must be verified. One has,

for i = 1, . . . , 4,

rank


 Σi

Θi


 = rank





sRi − αiA

E⊥A

Ci

βiA




= rank(Σi) = 4.
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Figure 5.21: A directed sensor network with 4 nodes
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ẑ1(t)

ẑ2(t)
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Figure 5.22: Comparison of estimated functional ẑi, i = 1, . . . , 4 and the actual
functional z using the edge-dependent ADFOs in Theorem 4.3.

Therefore the essential conditions in (4.6) and (4.7) are satisfied, which allow us to

design FOs with any of the 4 sensor models. The input signal u is chosen to be

u = (− sin(t), cos(t))T . The estimates of the edge-dependent ADFOs proposed
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Figure 5.23: Comparison of estimated functional ẑi, i = 1, . . . , 4 and the actual
functional z using the non-interacting FOs in Theorem 4.1.

by Theorem 4.3 and the estimates of the non-interacting FOs in Theorem 4.1 for

all nodes are shown in Figures 5.22 and 5.23, respectively. It can be seen that the

ADFOs in Theorem 4.3 highly enhance the estimation of the non-interacting FOs

in Theorem 4.1.

The estimation errors are compared for the ADFOs proposed by Theorem 4.3 and

the non-interacting FOs in Theorem 4.1 in Figure 5.24 for all 4 nodes. It can be seen

that the ADFOs in Theorem 4.3 are performing better than the non-interacting FOs

in Theorem 4.1. The estimation error norms |e| =
∣∣(e1, e2, e3, e4)T ∣∣ and L2(0, 10)

norm of e, ‖e‖2 are also compared in Figure 5.25 and Table 5.2, respectively, to

demonstrate the improvement caused by the proposed distributed strategy.
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Figure 5.24: Comparison of estimation error ei = ẑi − z of the ADFO proposed by
Theorem 4.3 (–) and the non-interacting FO in Theorem 4.1 (- -) in all 4 nodes.

Table 5.2: Comparison of ‖e‖2 between the edge-dependent ADFO in Theorem 4.3
and the non-interacting FO in Theorem 4.1.

norm Non-interacting FO Adaptive Distributed FO

‖e‖2 64.5 28.8
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Figure 5.25: Comparison of estimation error norm |e| of the ADFO proposed by
Theorem 4.3 (–) and the non-interacting FO in Theorem 4.1 (- -).

81



Chapter 6

Conclusion and Future Work

6.1 Conclusions

This research was motivated by the need for adaptive distributed estimation

algorithms for sensor networks. The research proposed adaptive distributed strate-

gies for distributed Kalman filters in linear time varying systems, as well as for

distributed unknown input observers and distributed functional observers in linear

time-invariant descriptor systems. The problem took the form of interconnection

gain adaptation. Such a time variation of the interconnection gain aimed at fur-

nishing a time varying penalty gain that is proportional to the level of agreement

between different state estimates in the cases of distributed Kalman filters and dis-

tributed unknown input observers and to the level of agreement between different

functional estimates in the case of distributed functional observers.

The adaptive weights were derived using a Lyapunov-redesign method and were

dependent on the level of disagreement between a given node estimate and its com-

municating neighbors’. The schemes used adaptive gains for each pairwise difference
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in the coupling term, which were adjusted in proportion to the pairwise differences

of the estimates. A special case where a single adaptive gain is used in each node

to uniformly penalize all pairwise differences of the estimates in the coupling term

was also presented.

It has been shown that the adaptive distributed scheme can be applied to Lu-

enberger observers in order to construct adaptive distributed Luenberger observers.

The distributed unknown input observers and distributed functional observers were

also shown for the special case of full-order systems.

The proposed adaptive distributed Kalman filters introduced a significant re-

duction in communication costs associated with information flow by the nodes com-

pared to the standard (non-adaptive) distributed Kalman filters while demonstrat-

ing a similar performance. Also, as an important consequence of this reduction

in communication costs, there would be a significant saving in battery power and

bandwidth as well.

The proposed distributed unknown input observers and distributed functional

observers demonstrated significant improvement compared with the non-interacting

unknown input observer and functional observer cases, respectively.

Furthermore, the stability of the proposed schemes is independent of the graph

topology and therefore the schemes are applicable to both directed and undirected

graphs. This advantage relaxes the limitation of many existing distributed estima-

tion schemes for application to directed graphs.

6.2 Future Work

The goal of this work was the development of adaptive distributed estimation

algorithms for linear continuous-time systems. Therefore, a highly desirable devel-
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opment on the proposed algorithms is to apply the scheme on linear discrete-time

systems, especially for the distributed Kalman filter case.

Another modification is to apply the schemes to nonlinear Kalman filters and

observers to propose nonlinear adaptive distributed estimation algorithms. Also,

considering systems with time-delay in inputs, measurement or communication is

another possible extension for the presented schemes. In order to have a better

modelling of communication in sensor networks, one can consider asynchronous or

intermittent communication.

A very interesting problem to be done in future is to obtain the optimal inter-

connection gains in (2.3), (3.10), and (4.15) in order to achieve optimal distributed

estimation algorithms. One possible method to obtain them is by considering the

dual problem which is the optimal distributed synchronization of multi-agent sys-

tems.

The preliminary study for application of the proposed adaptive scheme on linear

discrete-time systems in order to obtain discrete-time adaptive distributed Kalman

filters is discussed in the following section. The stability of the proposed discrete-

time scheme should be proven in future.

6.2.1 Discrete-time adaptive distributed Kalman filters

Consider a class of discrete-time systems described by the following linear time-

varying (LTV) form which are equivalent to the system in (2.1) and (2.2):

x(k + 1) = A(k)x(k) +B(k)w(k),

yi(k) = Ci(k)x(k) + vi(k), i = 1, . . . , N.

(6.1)
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where the process noise w(k) and the measurement noise vi(k) are assumed to be

zero-mean Gaussian noise with covariance matrices Q(k)δ(k − l) = E[w(k)wT (l)]

and Ri(k)δ(k − l) = E[vi(k)vTi (l)], respectively.

In order to present the adaptive distributed discrete-time Kalman filters for LTV

system (6.1), the following analogous assumptions to assumptions 2.2, 2.3 and 2.4

for LTV matrices A(k), B(k) and Ci(k) are required. The analogous assumption to

assumption 2.1 is also required in order to benefit from the significant reduction in

the communication cost.

Assumption 6.1 (Uniform observability). The pairs (A(k), Ci(k)) are uniform ob-

servable for all t ≥ t0, ∀i = 1, . . . , N .

Assumption 6.2 (Uniform controllability). The pairs (A(k), B(k)) are uniform

controllable for all t ≥ t0.

Assumption 6.3 (uniformly bounded plant). A(k), B(k) and Ci(k) are appropri-

ately dimensioned real matrices, and uniformly bounded over the time interval of

interest such that x(k) ∈ l∞ for all t ≥ t0.

Assumption 6.4 (Existence of observer matrix). The pairs (A(k), Ci(k)) are uni-

form observable and the pairs (A(k), B(k)) are uniform controllable (A(k), B(k)

and Ci(k) are bounded) if and only if there exist a bounded matrix K(k) such that

x(k + 1) = (A(k)−K(k)C(k))x(k) is exponentially stable [69, 70].

Note that in the case that system is linear time-invariant, the Assumptions 6.1

- 6.4 are simplified to the pairs (A,Ci) being observable, all of the eigenvalues of

matrix A being inside the unit disk and x(k) ∈ l∞.

Lemma 6.1. The system in (6.1) is uniformly exponentially stable if and only if

there exists an if there exists a continuous, bounded Π(k) = ΠT (k) and U(k) =
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UT (k) ≥ α1I > 0, for all t ≥ t0, such that [63]

0 < α2I ≤ Π(k) ≤ α3I,

AT (k)Π(k + 1)A(k)− Π(k) = −U(k).

�

In this section, the proposed algorithms in the Chapter 2 are adopted for

discrete-time LTV systems. The following lemma proposes the adaptive distributed

discrete-time KF based on the edge-dependent adaptive gain strategy.

Lemma 6.2 (edge-dependent adaptive gain). When the interconnection weights

are allowed to be edge-dependent, then the adaptive-DKFs for discrete-time LTV

systems in (6.1) become

x̂i(k) = x̄i(k) +Ki(k) (yi(k)− Ci(k)x̄i(k))

+γDi(k)
∑
j∈NI

i

(Γij(k)Ci(k)(x̄j(k)− x̄i(k))) ,
(6.2a)

Ki(k) = Pi(k)CT
i (k)

(
Ri + Ci(k)Pi(k)CT

i (k)
)−1

, (6.2b)

Mi(k) =
(
I −Ki(k)Ci(k)

)
Pi(k), (6.2c)

Pi(k + 1) = AMi(k)AT +B(k)QBT (k), (6.2d)

x̄i(k + 1) = A(k)x̂i(k), (6.2e)

Γij(k + 1) = Γij(k)− γ
(
yi(k)− Ci(k)x̂i(k)

)
×(

Ci(k)A(k)x̂i(k)− Ci(k)A(k)x̂j(k)
)T

(k), j ∈ N I
i .

(6.2f)

where the matrices Di(k) are designed such that the set {Ai(k), Cik,Di(k)} satisfy
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the following strictly passive condition

ATi (k)Πi(k + 1)Ai(k)− Πi(k) = −Ui(k)

ATi (k)Πi(k + 1)Di(k) = CT
i (k)

(6.3)

where Ui(k) = UT
i (k) ≥ α4iI > 0, Πi(k) = ΠT

i (k) > 0, Ai ,
(
A(k)−Ki(k)Ci(k)A(k)

)
,

and γ is a relatively small positive constant which is chosen in the order of dis-

cretization time-step. Then the error dynamics ei(k) , x(k) − x̂i(k) in the system

without noise forms a stable linear system, all the estimators asymptotically reach

an agreement and all system signals are bounded.

Similarly, the adaptive distributed discrete-time KF based on the node-dependent

adaptive gain strategy is proposed in the following lemma.

Lemma 6.3 (node-dependent adaptive gain). If the adaptive interconnection weight-

s are chosen as node-dependent, then the adaptive distributed discrete-time KF’s are

given by

x̂i(k) = x̄i(k) +Ki(k) (yi(k)− Cix̄i(k))

+γDi(k)Γi(k)
∑
j∈NI

i

(Cix̄j(k)− Cix̄i(k)) ,

Ki(k) = Pi(k)CT
i (k)

(
Ri + Ci(k)Pi(k)CT

i (k)
)−1

,

Mi(k) =
(
I −Ki(k)Ci(k)

)
Pi(k),

Pi(k + 1) = AMi(k)AT +B(k)QBT (k),

x̄i(k + 1) = A(k)x̂i(k),

Γi(k + 1) = Γi(k)− γ
(
yi(k)− Ci(k)x̂i(k)

)
×∑

j∈NI
i

(
Ci(k)A(k)x̂i(k)− Ci(k)A(k)x̂j(k)

)T
(k).

(6.4)

The following Lemma 6.4 and Lemma 6.5 are instrumental to the proof of Lem-
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ma 6.2.

Lemma 6.4. The state estimation errors are defined as ei(k) , x(k)− x̂i(k). Fol-

lowing Assumption 6.4, the system ei(k + 1) = (A(k)−Ki(k)Ci(k)A(k)) ei(k) is

asymptotically stable [23]. �

Lemma 6.5. Following Lemma 6.1 and Lemma 6.4, for Ui(k) a symmetric pos-

itive definite matrix, the solution to the Lyapunov equation Πi(k) in (6.3) exists.

Therefore, one can define Di(k) as

Di(k) = Π−1i (k + 1)A−Ti (k)CT
i (k), i = 1, . . . , N. (6.5)

�

Proposition 6.1. Following Assumptions 6.1, 6.2, 6.3, the error covariance matrix

Pi(k+ 1) is positive definite and P−1i (k+ 1) is bounded [70]. Thus, one can multiply

(6.2d) by the inverse of Pi(k + 1) and add AiP
−1
i (k + 1)ATi − P−1i (k)− I to obtain

AiP
−1
i (k + 1)ATi − P−1i (k) = P−1i (k + 1)

(
AMi(k)AT +B(k)QBT (k)T

)
+AiP

−1
i (k + 1)ATi − P−1i (k)− I

This allows one to use P−1i as Πi. Therefore, the Di(k) may be chosen as

Di(k) = Pi(k + 1)A−Ti (k)CT
i (k), i = 1, . . . , N. (6.6)

Note that 1
α5
P−1i , α5 > 0, is also a possible candidate for Πi. �

The filter gains Ki(t) in (6.2a) are not necessarily required to be the standard

(non-interconnected) Kalman filter gains. Therefore, one can use a Luenberger

observer design [63] instead of Kalman filter design for deterministic systems to
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construct a new adaptive distributed filter, termed here the adaptive-distributed

Luenberger observer. The adaptive distributed discrete-time Luenberger observer

based on the edge-dependent adaptive gain strategy is proposed in the following

lemma.

Lemma 6.6 (adaptive distributed discrete-time Luenberger observer). Consider a

sensor network with the sensing model presented in (6.1). If the following distribut-

ed estimation algorithm with an adaptively edge-dependent interconnection gain is

utilized at each node

x̂i(k + 1) = A(k)x̂i(k) + Li(k)(yi(k)− Ci(k)x̂i(k))

+γDi(k)Σj∈NI
i
Γij(k) (Ci(k)(x̂j(k)− x̂i(k))) ,

(6.7)

where the Li(k) are the Luenberger gains and the matrices Di(k) are designed

such that the set {A2i(k), Cik,Di(k)} satisfy the following strictly passive condition

AT2i(k)Πi(k + 1)A2i(k)− Πi(k) = −Ui(k)

AT2i(k)Πi(k + 1)Di(k) = CT
i (k)

(6.8)

with Ui(k) = UT
i (k) ≥ α6iI > 0, and Πi(k) = ΠT

i (k) > 0 and where A2i(k) ,

A(k)−Li(k)Ci(k) and the adaptive gain matrix Γij(k) is obtained using the following

adaptive law

Γij(k + 1) = Γij(k)− γ(yi(k)− Ci(k)x̂i(k))
(
Ci(k)x̂i(k)− Ci(k)x̂j(k)

)T
, (6.9)

where γ is a relatively small positive constant which is chosen in the order of dis-

cretization time-step.

The following Lemma 6.7 and Lemma 6.8 are essential to be stated prior to proof
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of the Lemma 6.6.

Lemma 6.7. Following Assumption 6.4, there exist filter gains Li(k) such that the

system ei(k + 1) = (A(k)− Li(k)Ci(k)) ei(k) is asymptotically stable. �

Lemma 6.8. Following Lemma 6.1and Lemma 6.7, for Ui(k) a symmetric positive

definite matrix, the solution to the Lyapunov equation Πi(k) in (6.8) exists. Since

Πi(k) > 0, then one can define Di(k) as

Di(k) = Π−1i (k + 1)A−T2i (k)CT
i (k), i = 1, . . . , N. (6.10)

�

Now the proof of Lemma 6.2, Lemma 6.3, and Lemma 6.6, can be stated. A

possible method to establish the stability of the error dynamics in them is to use

similar Lyapunov-like functions to Chapter 2. Therefore, the following Lyapunov-

like function is a candidate for Lemma 6.2 and Lemma 6.6

Vi(k) = eTi (k)Πi(k)ei(k) + tr
(∑

j∈NI
i
(Γij(k)ΓTij(k))

)
,

i = 1, . . . , N,

and the following Lyapunov-like function is a candidate for Lemma 6.3

Vi(k) = eTi (k)Πi(k)ei(k) + tr
(
Γi(k)ΓTi (k)

)
,

i = 1, . . . , N.

The proof of the Lemma 6.2, Lemma 6.3, and Lemma 6.6 can be done as a

possible future contribution to this work.
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