
Query-oriented Relaxation for Cardinality Assurance

Manasi Vartak
Department of Computer Science, Worcester Polytechnic Institute, Massachusetts, USA

mvartak@wpi.edu

ABSTRACT
Although a large number of queries used in applications ranging
from web search to business intelligence have associated cardi-
nality constraints, current database engines have minimal support
for ensuring query cardinality. This leads to two main types of
problems: the empty result-set problems and the too few/too many
problems. Inability to meet query cardinality constraints requires
the user to undertake a frustrating trial-and-error process that can
be extremely cumbersome and time-consuming. In fact this pro-
cess wastes system resources without any guarantee of success. A
possible strategy for solving the cardinality assurance problem is
query relaxation. However, obtaining exact cardinality assurance
with query relaxation has been proven to be NP-Hard. In this work
we present QRelX, a novel algorithm for cardinality assurance us-
ing query relaxation. QRelX not only relaxes queries efficiently
but also ensures that result queries have minimal relaxation. Our
algorithm uses QXForm, a query space transformation framework,
to enable the relaxation of join and select queries. Following this
transformation, QRelX uses layer-based navigation and incremen-
tal cardinality estimation to find result queries that meet the expect
cardinality but are also close to the original query. Our prelimi-
nary experimental results indicate that QRelX is computationally
more efficient than traditional cardinality assurance algorithms and
it indeed successfully finds minimal relaxation queries.

1. INTRODUCTION
A large number of database queries used every day have implicit
or explicit cardinality constraints. For instance, consumer-oriented
applications like web search, shopping or travel often have implicit
cardinality constraints. For a satisfactory user experience a travel
application should not return only one result and similarly a shop-
ping application should not return five thousand results. Explicit
cardinality constraints on the other hand are found in domains such
as information retrieval, business intelligence and others. In these
domains, satisfying the query cardinality can be as essential as an-
swering the query itself. For instance, in order to run a medical
study, a research agency may need a fixed number of volunteers
satisfying certain health-related criteria. Likewise, a supermarket
may need to send out surveys to a fixed number of customers having

particular shopping trends. However, in spite of the importance of
cardinality constraints, state-of-the-art database systems have min-
imal support for cardinality assurance.

The lack of query support for cardinality assurance leads to two
common types of problems: empty result-set problems [15] and
few/many problems [18]. The former type arises from queries that
return no results (also called failing queries [20]) while the latter, a
superset of the former, arises from queries whose result size is too
large or too small for the user’s purpose. In both cases the user is
offered neither an explanation for the inconsistency in cardinality
nor any suggestions for remedying it. The burden of formulating
precise queries attaining the required cardinality falls on the user.
However, this can be a difficult task because the user seldom has
knowledge about the underlying database. Instead he or she has to
resort to a frustrating trial-and-error process. Moreover, although
there is no guarantee that this process will produce appropriate re-
sults, the user needs to try potentially numerous queries. This re-
peated query execution leads not only to a large increase in the
query’s response time but also a decrease in server throughput.

(a) Query Q1 (b) Query Q2

Q2 = SELECT * FROM Flight, Hotel
WHERE
(Flight.price +
7*Hotel.price < 1500) AND
(beachDist < 5)

Expected Cardinality = 20

Q1 = SELECT * FROM People
WHERE
(25 < age < 75) AND
(BMI > 30) AND
(familyHist = 0) AND
(income < 55000)

Expected Cardinality = 2000

Age BMI familyHist Income

25<age<70 28 0 65000

25<age<80 27 1 70000

22<age<76 30 0 75000

21<age<77 26 1 65000

24<age<78 29 0 60000

Total Price beachDist

1800 5.5

1500 6

1900 5.2

1600 7.1

1570 6.5

(c) Q1 Alternative Queries (d) Q2 Alternative Queries

Figure 1: (a) Q1 Medical study query selecting volunteers for
an obesity study. (b) Q2 Travel reservation query with con-
straints on price and distance to the beach

Consider for example Query Q1 shown in Figure1.a. A medical
research organization has received a grant to run an obesity study
involving 2000 participants. To determine the connection between
obesity and low income, the research agency wants to study peo-

ple with age between 25 and 50 years, BMI (body mass index)
greater than 30, having no family history of obesity and having in-
come less than $55000. However, on running this query against the
database only 1300 people are found to meet the required criteria.
Since the agency has resources to study 2000 people, 700 addi-
tional people must be selected for the study. With no additional
information about the shortage of results or alternative queries to
fix it, the user has to resort to trial-and-error. While formulating
the modified query, the user can try various queries. For example,
the age range can be expanded to 25 - 70 years, the upper bound
on the income can be changed to $65000, etc. Figure 1.c shows
some other alternate queries that a user may try. Each modification
seeks to enlarge or relax the original query to include more results.
Even for a simple query like Q1 with four select predicates we see
that there are a very large number (this number is in fact exponen-
tial with respect to the query predicates [12]) of alternate queries a
user can enter. Continually executing these queries increases query
response time and wastes server resources.

QueryQ2 in Figure 1.b gives another example for a query with car-
dinality constraints. In this query, the user is planning a week-long
trip and wants to find a Flight+Hotel deal such that the hotel is close
to the beach but the entire trip is not very expensive. Although the
user’s definitions of “close to the beach” and “expensive” are flex-
ible, the travel database requires the user to set strict parameters.
Q2 shows one such set of parameters. For this example, the car-
dinality constraint is implicit, so we assume that the user expects
about 20 results for this query. However, suppose the user only
gets 10 results. The user now has to undertake the cumbersome
trial-and-error to formulate an appropriate query.

For both queries Q1 and Q2 discussed above, a better - i.e. less
frustrating, faster and meaningful - user experience can be obtained
by directly providing the user with alternate queries. The alternate
queries should not only attain the required cardinality but also be as
close as possible to the initial query and hence to the original query
semantics. Closeness to the original query is an important factor
because a user will always prefer alternate queries that have little
change from the original one. By automating the query relaxation
process, we can improve the user experience, increase user satisfac-
tion, decrease query response time and also save server resources.
Towards this goal, this paper presents QRelX an incremental query
relaxation framework that assures query cardinality while minimiz-
ing relaxation.

Before proceeding to the details of the algorithm, we note that
while the above scenarios involving Q1 and Q2 discuss the case
where a query returns too few results, similar arguments can be
made for the case where a query returns too many results. If, for
instance, the medical study queryQ1 returns too many results, then
the user has to formulate a smaller query by shrinking Q1’s predi-
cates.

Automated Query Relaxation: Query relaxation is the process of
selectively loosening a set of query predicates to alter query cardi-
nality [8]. The aim is to carefully control relaxation to provide the
user with alternate queries that not only meet the required cardi-
nality but also minimize relaxation. However, employing the tech-
nique of query relaxation poses several challenges: (1) the number
of combinations of query predicates that can be relaxed is exponen-
tial in the number of predicates [12]; (2) the degree of relaxation
required is not known beforehand; and (3) the process is compu-
tationally expensive since repeated query execution is required to

explore the space of relaxed queries. In [3] Bruno et al. discuss the
complexity of solving the cardinality assurance problem exactly
and prove that the problem is NP-hard. An additional challenge
in producing alternate queries lies in minimizing the relaxation or
amount of change.

Various approaches for tackling the problems of cardinality assur-
ance and query relaxation can be found in the literature. [8, 12, 20,
21] propose methods based on skylines, artificial intelligence and
deduction to relax empty result-set queries. However, these tech-
niques mainly focus on solving the empty result-set problem and
not on meeting query cardinality. Mishra et al. propose an inter-
active framework for query refinement in [18]. This method uses
information about the underlying database to help users to narrow
down the choices for modified queries. However, the authors do not
address the problem of relaxing join predicates. Cardinality assur-
ance has also been studied in the content of generating test queries
for databases in [3,19]. The limitation of these methods is not only
that they don’t relax join predicates but also that they do not focus
on minimizing relaxation since query semantics are not relevant for
database testing queries. Top-k algorithms have traditionally been
used to solve cardinality assurance problems by providing the user
with the required number of tuples [6, 7, 9, 10, 14]. The STOP AF-
TER operator also functions similarly in the case where there are
too many results [4]. However, these methods require the formula-
tion of a specialized ranking function and donŠt generate a query
characterizing how the desired results were obtained. Further, top-k
can also lead to a biased distribution of data in the query results.

Tuple-oriented vs. Query oriented approaches: We classify the
above methods like top-k [6] and skyline-based relaxation [12] as
tuple-oriented methods for query relaxation since their goal is to
return the given number of tuples without being concerned about
the query that produces them. Methods for generating test queries
(like [3]) on the other hand are query-oriented because they are
concerned with the actual queries that produce the required num-
ber of results. However, the utility of the query-oriented approach
is not limited to testing. In many queries like Q1 and Q2 shown
above, providing the user with only the required number of tuples
does not suffice. The user also needs to know why the tuples were
selected, i.e., the query that generated them.

Let us consider query Q1 to contrast the tuple-oriented and query-
oriented approaches. First, tuple-oriented methods require much
effort to ensure that the algorithm returns tuples that make sense for
the given query. For instance, a poorly designed ranking function
for top-k or the use of skyline algorithms on Q1 may give results
containing people with BMI less than 30 (and hence not considered
obese) or with incomes over $65000 (throwing off the income fac-
tor). The query-oriented method on the other hand can assure that
all the tuples produced by the given relaxed query will satisfy a
fixed set of criteria. Query-oriented methods can also capture user
preferences by providing the user with a set of alternate queries
and allowing him or her to pick the one that best matches the pref-
erences. Additionally, knowing the query that produced a given
set of results is important in scenarios where a user may want to
go back and generate a slightly different data set by modifying the
query. The second difference between the two approaches relates
to queries where we need to ensure that the result tuples are picked
uniformly using a consistent set of criteria. Tuple-oriented ap-
proaches can cause uncontrolled departure from the original query
and lead to the creation of a biased result set. For example, sup-
pose that 700 “closest” neighbors are generated for Q1 and we find

that the volunteers now satisfy the criteria: age between 25 and 70,
BMI greater than 30, having no family history of obesity, and in-
come less than $65000. However, these 700 additional people do
not accurately represent the group of people with age 50 to 70, BMI
over 30, with no family history and with income between $55000
and $65000. A query-oriented method however returns all the tu-
ples satisfying the given criteria and hence accurately represents the
underlying population. The last drawback of using tuple-oriented
methods is that the non-uniform selection of result tuples can lead
to unreliable results. In the context of Q1, without a representative
sample of people satisfying the given criteria, the conclusions of
the study will have low confidence. Lastly, if such a study were to
be repeated with a different data set, it is likely that the results may
not hold because a biased sample was used in the initial study.

Thus, the advantage of the query-oriented approach over the tuple-
oriented one is that it can provide an explanation for the selection
of results, preserve the original data distribution and facilitate the
process of future query refinement.

Our Contributions: The above discussion shows that while tuple-
oriented methods are appropriate for certain applications, a query-
oriented approach with its finer grained control over relaxation and
thus ability to return more meaningful results is a critical technique
needed by many classes of applications. In this work we propose to
tackle the query-oriented cardinality assurance problem. Given an
initial user query, QRelX relaxes the query so that it not only meets
the expected cardinality but also has the least change from the ini-
tial query. QRelX is based on the key ideas of query space trans-
formation, layer-based navigation and incremental cardinality esti-
mation. Our query space transformation framework enables the re-
laxation of select as well as join queries. Layer-based navigation is
deployed to minimize relaxation, and incremental cardinality esti-
mation reduces computational expenses associated with relaxation.
The above principles enable our algorithm to attain the following
four goals: (1) Given a query QI (initial query) and an expected
cardinality C0, QRelX relaxes the query QI to QF (final query)
such that QF satisfies the given cardinality; (2) QF minimizes the
relaxation with respect to QI ; (3) QRelX can relax select as well
as join predicates; and (4) The process of relaxation from QI to
QF is computationally efficient. By attaining all the four goals
for both the empty result-set and few/many problems, we present a
comprehensive solution to the query-oriented cardinality assurance
problem.

To summarize, our main contributions are:

• We formally define the query-oriented cardinality assurance
problem that minimizes query relaxation. We also intro-
duce the classification of the relaxation algorithms into tuple-
oriented and query-oriented algorithms.

• We present QXForm, a framework for transforming the ini-
tial query space into a relaxation space to relax select and join
queries. We design special relaxation mapping functions for
this purpose.

• We present QRelX - a novel algorithm for query relaxation
that uses layer-based navigation and incremental cardinality
estimation for efficient query relaxation. To the best of our
knowledge QRelX is the first algorithm proposed for query-
oriented join relaxation that ensures query cardinality.

• We propose a novel incremental cardinality estimation algo-

Predicate pFunction pInterval
(25 < age < 75) age (25, 75)
(BMI > 30) BMI (30,∞)
(familyHist = 0) familyHist (0, 0)
(income < 55000) income (0, 55000)
(Flight.price +) (Flight.price +) (0, 1500)
(7 * Hotel.price < 1700) (7 * Hotel.price)
(beachDist < 5) beachDist (0, 5)

Table 1: Division of query predicates into pInterval and pFunc-
tion

rithm that delays tuple-level computations until absolutely
necessary and that removes the need to repeatedly re-evaluate
tuples for multiple queries. This reduction in tuple-level com-
putations increases the efficiency of our relaxation technique.

• We present results from experimental studies comparing our
method to state-of-the-art methods for cardinality assurance.

The remainder of this paper is organized as follows: The formal
problem definition is presented in Section 2. The proposed method
is described in Section 3. In Section 4, evaluation of the method is
presented. Section 5 presents the related work, and finally, Section
6 presents our conclusions.

2. PROBLEM DEFINITION
In this section we introduce the notations used in this work and
formally define the problem of query-oriented relaxation for cardi-
nality assurance.

2.1 Query Formulation
Consider a query Q over relations R1, R2 . . .Rk comprised of
query predicates P1, P2, . . .Pd, each of which is either a select
or join condition. In this work, we limit ourselves to conjunctive
queries. Hence query Q can be denoted as:

Q = (P1 ∧ P2 ∧ . . . ∧ Pd) (1)

Each predicate Pi in the query is assumed to be made up of two
parts: the predicate function - pFunction and the interval of ex-
pected values for the predicate - pInterval. pFunction is a mathe-
matical function consisting of one or more attributes from the rela-
tions R1, R2 . . .Rn. In this work we consider pFunctions that are
monotonic. To illustrate, pFunction = age for the age-predicate
of Q1 while it is Flight.price + 7 ∗ Hotel.price for the price-
predicate of Q2. For each pFunction, pInterval gives the range of
values of pFunction that are acceptable for Q. pInterval takes the
form {pIntervallower , pIntervalupper} where pIntervallower

is the minimum acceptable value of pFunction and pIntervalupper

is the maximum acceptable value. For example, the pInterval for
the age-predicate of Q1 is {25, 75} while it is {0, 1500} for the
price-predicate of Q2. Table 2.1 shows the breakdown of the pred-
icates of query Q1 and Q2. The above definition of predicates
is general and holds for generalized select predicates of the form
(l1 < k1 ∗ R1.x1 + k2 ∗ R2.x2 . . . + kn ∗ Rn.xn < l2) where
xi is an attribute of relation Ri. For these predicates, pFunction
= (k1 ∗ R1.x1 + k2 ∗ R2.x2 . . . + kn ∗ Rn.xn) and pInterval =
{l1, l2}. A slightly different division of predicates is used for joins
including equi-joins like (R1.x1 = R2.x2) and non-equijoins like
(2 ∗ R1.x1 < 3 ∗ R2.x2). For join predicates, pFunction takes
the form (‖ pFunction1 - pFunction2 ‖) where pFunction1

and pFunction2 are monotonic functions of attributes belonging
to relationsR1,R2. . .Rn. The definition of pInterval is unchanged
and it consists of the minimum and maximum acceptable values of
pFunction.

2.2 Measuring Query Relaxation
Suppose Q is the original query with predicates P1, P2, . . .Pd such
that Q = (P1 ∧P2∧. . .∧Pd) and Q′ is a potential relaxed query.
Since Q has been relaxed to Q′, the pInterval of a subset of pred-
icates has been expanded to include more values. Therefore, for a
particular predicate Pi, we define the relaxation of Q′ with respect
to Q as the sum of the difference between the lower bound of Pi in
Q and Q′ and the difference between the upper bound of Pi in Q
and Q′.

RelX(Q′Pi
) = pIntervallower (QPi)− pIntervallower (Q′Pi

)

+pIntervalupper (Q′Pi
)− pIntervalupper (QPi) (2)

RelX(Q′) = Σi=1...dRel(Q
′
Pi

) (3)

where RelX(Q′Pi
) is the relaxation of Q′ with respect to predicate

Pi, while RelX(Q′) is the total relaxation of Q′.

Following the same principle, we can symmetrically define the re-
laxation of a contracted query where the pIntervals of predicates
have been shrunk to reduce the number of tuples returned.

2.3 Query-Oriented Relaxation
Using the above definitions, we now formally define the problem of
query-oriented cardinality assurance. Consider an initial user query
QI with predicatesP1, P2, . . .Pd such thatQI = (P1 ∧P2∧. . .∧Pd).
Let the expected cardinality of QI be C0 while its actual cardinal-
ity be CI such that CI < C0. In order to increase the cardinality
of QI , some subset of the query predicates P1, P2, . . .Pd must be
expanded to include more results i.e., the pIntervals of this subset
of predicates must be made bigger to increase the range of accepted
values. The query-oriented relaxation problem has two main goals:
(1) to modify QI to QF , the relaxed query, such that QF is within
a threshold of the expected cardinality C0, and (2) QF minimizes
relaxation with respect to QI .

The problem of satisfying cardinality constraints exactly is NP-
hard [3]. However, for a meaningful user experience, a query-
oriented relaxation algorithm is required to be efficient. Therefore,
instead of satisfying the query cardinality exactly, we aim to find
a query QF that has cardinality within a tolerance threshold δ of
C0 (where δ is a tunable parameter). Similarly, finding the answer
query with the absolute minimum relaxation would require an ex-
haustive search. Since this is not feasible nor appropriate for a good
user experience, query-oriented relaxation focuses not on finding
the query with the absolute minimum relaxation but one that has
relaxation within a tolerance threshold of this minimum. We in-
troduce the concept of IdealRelX - the Minimum Relaxation in the
ideal Case to formalize this notion.

DEFINITION 1. IdealRelX

Given a query QI with expected cardinality C0, and a cardinality
threshold δ, IdealRelX denotes the minimum relaxation that any
query having cardinality C0 +/- δ can have. IdealRelX is thus the
minimum relaxation that can possibly be obtained while satisfying
the query cardinality.

Based on the above definition, we can formally state the problem
of query-oriented relaxation. In general, our goal is not to find the
query with relaxation IdealRelX but instead to find a query within
a tolerance threshold of it.

DEFINITION 2. Query-oriented Relaxation

Given a queryQI with expected cardinalityC0, a cardinality thresh-
old δ and a relaxation threshold γ, compute a query QF such that

Cardinality(QF) = C0 + /− δ (4)

RelX(QF) = IdealRelX + /− γ (5)

3. OUR APPROACH
In this section we describe the QRelX algorithm and its underlying
principles.

3.1 Overview
The goal of QRelX is to perform query-oriented relaxation for car-
dinality assurance. The key ideas underlying QRelX are query
space transformation, layer-based navigation and incremental car-
dinality estimation.

Query space transformation is the process in which the input tables
associated with a query are processed and combined to produce
an output space or relaxation space. This transformation allows
QRelX to relax both select and join predicates. Layer-based navi-
gation is a traversal method that allows the algorithm to navigate the
relaxation space in such a manner that relaxed queries with lower
relaxation are always evaluated before those with higher relaxation.
Layer-based navigation ensures that our algorithm can successfully
minimize relaxation. Incremental cardinality estimation is a novel
method of cardinality estimation introduced in this work. Incre-
mental estimation allows the algorithm to delay tuple-level compu-
tations until they are absolutely necessary. Further this technique
ensures that once a tuple has been found to satisfy a given query
it is never reevaluated for any other query. The combined result
of these three principles is that QRelX can efficiently relax queries
that meet the cardinality constraint but also minimize relaxation.

Figure 2 shows the overall architecture of our system. The system
consists of two main components: QXForm, the query space tran-
sormation module and IncRelX, the query relaxation module. The
functions of these modules are descibed as follows:

• QXForm: This module of QRelX is responsible processing
the input tables and creating the output or relaxation space.
In particular:

– It processes all input tables and partitions them into
multi-dimensional input partitions. These partitions make
up the input space

– Once the input space has been created, all combinations
of input partitions are considered and relaxation map-
ping functions are used to create corresponding output
regions.

– An output space or relaxation space is generated using
the output regions and a grid structure is imposed on
this space to facilitate the search for relaxed queries.

• IncRelX: This module is responsible for searching the re-
laxation space created by QXForm for relaxed queries that
meet the expected cardinality. It is comprised of the follow-
ing parts:

– Layer-based navigation scheme: Since QRelX aims to
produce queries that minimize relaxation, layer-based
navigation is used to evaluate potential relaxed queries
in order of increasing relaxation.

– Incremental Cardinality Estimation: This algorithm presents
a novel way to perform incremental cardinality calcu-
lations using previous cardinality information and thus
reduce the expenses associated with cardinality estima-
tion.

Each of these modules are discussed in detail in the following sub-
sections.

Relaxed
Queries

Create Output
Space via
Mapping
Functions

Relaxation Space
Traversal Module

SELECT…
FROM… JOIN
WHERE…

Query Q,
Cardinality C

Input
Processing by
Partitioning

Data Sources

Incremental
Cardinality Estimator

Cardinality ≈ C ?

Undershooting?

Overshooting?

Repartition

Query Space
Transformation Query Relaxation

Figure 2: System architecture for QRelX

3.2 Query Space Transformation
The purpose of the QXForm, the query space transformation mod-
ule is create an output space or relaxaton space for finding poten-
tial relaxed queries. QXForm takes an input the initial user query
Q = P1∧P2 . . .∧Pd and the set of tablesR1, R2 . . . Rn associated
with it. The transformation process consists of three steps:

Input Space: The first step in query space transformation is to use
the input tables to create an input space. The input space is an rep-
resentation of all the input tuples at a higher level of abstraction,
namely as input partitions. The purpose of creating this space is to
reduce computational expenses by using a higher level of abstrac-
tion and to delay tuple-level computations until a latter stage. To
create this input space, each table associated with query Q is parti-
tioned and all its tuples are placed into multi-dimensional partitions
based on the attributes present in the query predicates. For exam-
ple, figure 3 (a) and (b) depict the input partitions made for query
Q1. Two tables, namely the Hotel and Flight table, are involved in
this query. Since two attributes from the Hotel table - price and dis-
tFromBeach - are included inQ1, the tuples in Hotel are partitioned
based on their price and beachDist values. Similarly, the Flight ta-
ble is partitioned based on price since this is the only Flight table
attribute present in the query. The number of divisions associated

with each attribute for an input table is tunable paramter k. Further,
if each attribute has k divisions, then the maximum number of in-
put partitions for a given input table is kp where p is the number of
attributes from a particular table present in the query.

0 200 400 600

9

6

3

0

Table: Hotel

Hotel price

Beach distance
1200

800

400

0

Table: Flight
Flight price

(a) (b)

Figure 3: (a) Partitioning of Hotel table (b) Partitioning of
Flight table

Result-tuples and Relaxation Mapping Functions: Before we
proceed with the description of QXForm, we define the notion of
result-tuples. Given a queryQ involving relationsR1, R2 . . .Rn, a
result-tuple is an ordered set of tuples (t1, t2 . . . tn) such that tuple
ti belongs to relation Ri for i = 1. . . n. That is, a result-tuple is
any valid combination of one tuple from each relation R1 to Rn.
If Q consists only of one relation R, then result-tuples correspond
directly to tuples in R. We also note that the result-tuple concept is
a generalization of the joined-tuple concept since all joins are valid
with the right amount of relaxation.

Relaxation Mapping Functions: A concept central to the QRelX
algorithm is a notion of the “amount of relaxation.” Relaxation
with respect to relaxed queries has already been defined in Section
2. However, this applies to result-tuples too and this measure of
relaxation is essential while constructing the output or relaxation
space.

In general, relaxation or RelX() corresponding to a variable is the
difference between its acceptable value and its actual value, i.e.,

RelX(variable) =‖ acceptable−value−actual−value ‖ (6)

In this work, we introduce the concept of relaxation mapping func-
tions (or simply mapping functions) to measure the relaxation of
result-tuples with respect to individual query predicates. Figures
4.a to d show a few examples of relaxation mapping functions. The
x-axes in these figures correspond to the actual value of a variable
x, while the y-axes measure the relaxation of variable x with re-
spect to the given range of acceptable values. For example, Fig-
ure 4.a shows the relaxation mapping function when the acceptable
range of values for variable x is [0, 75) and x can take values from
[0, ∞). The mapping function RelX() is defined such that while
the value of x is within the range [0, 75), there is no relaxation and
RelX(X) = 0. However, for (x >= 75), RelX(X) = (x - 75) measures
how far the actual value of x is from the acceptable range. For in-
stance, if x = 85 then the distance from the acceptable value is (85
- 75) = 10. Figures 4.b, c, d show mapping functions fo different
ranges of acceptable values.

Relaxation of a result-tuple: When applied to a result-tuple t, a
relaxation mapping function measures how far t is from a given

75
Relaxation

Predicate value
0,0

75Relaxation

Predicate value
0,0

75Relaxation

Predicate value

65

0,0

Predicate: (x < 75)
Rel(x) = 0, x < 75

x‐75+∆, x ≥75

Predicate: (x = 75)
Rel(x) = 0, x = 75

|x‐75|, x ≠ 75

Predicate: (x = 75)
Rel(x) = 0, 65 ≤ x ≤ 75

75 ‐ x, x > 75
x ‐ 65, x < 65

75Relaxation

Predicate value
0,0

Predicate: (x > 75)
Rel(x) = 0, x > 75

75‐x+∆, x ≤75

(a)

(c)

(b)

(d)

Figure 4: Examples of mapping functions

query predicate. Consider once again Figure 4.a discussed above;
the mapping function in this figure can easily be used to calculate
the the relaxation of a result-tuple. Suppose our query Q involves
the relationRwith contains attribute x. Further, suppose that predi-
cate P belonging to queryQ is defined such that P = (R.x < 75).
For a tuple t belonging to relation R, relaxation of t with respect to
P is calculated as follows. Let t[x] denote the value of attribute x
for t. For (0 < t[x] < 75), Rel(t[x]) = 0 since the tuple t satisfies
the predicate exactly. However, for (t[x] >= 75), relaxation mea-
sures the difference between t[x] and 75 i.e. (t[x] - 75). So if t[x]
was 85, then based on the relaxation function, Rel(t[x]) = 10. This
is exactly the mapping function we discussed above.

If we define mapping functions for each predicate ofQ then we can
calculate the total relaxation of t with respect to Q. If Q is a query
with predicates P1, P2, . . .Pd such that Q = (P1∧P2∧. . .∧Pd) then
the total relaxation of result-tuple t can be measured as follows:

RelX(t) = Σi=1...dRelX(tPi) (7)

where RelX(tPi) is the relaxation of t with respect to predicate Pi

and RelX(t) is the total relaxation of t.

On similar lines, we can define RelXVector(), the relaxation vector
of a result-tuple t that lists in order the individual relaxations of a
result-tuple with respect to each query predicate.

RelXV ector(t) = (RelX(tP1), RelX(tP2), . . . RelX(tPd))
(8)

Relaxation Space: The relaxation mapping functions described
above provide a powerful means to measure the relaxation of result-
tuples. We use these mapping functions to create a relaxation space
or output space that measures the relaxation of all possible result-
tuples. By representing result-tuples according to their relaxation
vectors, we can traverse the relaxation space to easily find poten-
tial relaxed queries. The relaxation space is a d-dimensional space
with the original query Q lying at the origin. Further, each dimen-
sion of this space corresponds to the relaxation of result-tuples with

respect to each of the d predicates of Q.

The relaxation space represents two kinds of information. First,
every point in the relaxed output space is a relaxed query that is
a potential answer. Second, the output space also represents the
relaxation of all result-tuples that can be generated from the input
tables. This information about result-tuples is stored in terms of
output regions. An output region is an abstract data structure corre-
sponding a unique combination of input partitions. It is a region in
the output space such that all result-tuples from the given combina-
tion of input partitions lie within that region, i.e., an output region
delimits the relaxation of result-tuples generated from the associ-
ated input partitions.

The process of creating the output space consists of two steps: first,
to create output regions, and second, to create a grid in the output
space that assigns output regions to grid cells. The first step pro-
vides us information about the location of result-tuples while the
second facilitates the process of cardinality estimation.

Creating Output Regions: Since a tuple from one table can com-

µ

µ

Travel Scenario query: Output Space

(0, 0): (1700, 1)

Price relaxation

Beach Distance relaxationTable: Flight

(0): (400)

Flight price
Table: Hotel

(200, 0): (400, 3)

Hotel price

Beach distance

9

6

3

0

0 200 400 600

1200

800

400

0 0 1000 2000 3000 4000
0 200 400 600

3

2

1

0

Figure 5: Creating an output space

bine with any other tuple from another table in Q (with the right
amount of relaxation), we have to consider all combinations of the
input partitions while creating output regions. For each combina-
tion of input partitions, we use one mapping functions per query
predicate of Q to calculate the maximum and minimum relaxation
that any result-tuple from these partitions could have. To actually
compute these limits on relaxation, QXForm assumes that result-
tuples called pseudo-result-tuples are present at the upper-right and
lower-left points of each input patition. Once we know these result-
tuples, mapping functions can be used to calculate the correspond-
ing relaxations.

Figure 5 shows an example of this process for the running query
example Q2. The figure shows the partitioning of the Flight and
Hotel tables along with the output space. Once input partitions have
been created, one partition is picked from each table to calculate the
minimum and maximum bounds for relaxation of result-tuples. In
the current example, the pseudo-result-tuples are (200, 0) and (400,
3) for the Flight table partition while they are (0), (400) for the
Hotel table partition.

Consider the first predicate of Q2, (Flight.price + 7*Hotel.price <
1500). For the given pair of input partitions, the value of this pred-
icate ranges from 1400 to 3200. But the expected value is less
than 1500. Hence, the minimum and maximum relaxation with re-

spect to this predicate is the interval distance between (0, 1500) and
(1400, 3200) which is (0, 1700). A similar calculation is done for
the relaxation of the distance from the beach. For this predicate,
we get (0, 1) as the range of relaxations. Thus we obtain an out-
put region with the upper-right corner at (1700, 1) and the lower
left corner at (0, 0). The figure shows the other five output regions
created from the remaining combinations of input partitions. Note
that while the output regions may overlap, they never share result-
tuples.

Creating the output grid: The second step in creating the output
space is to create a grid that stores the distribution of output regions
over grid cells. This data is required while estimating cardinality
and for optimization. For instance, consider a query located at point
(1000, 1) in the output space. Based on the grid shown in the figure,
we know that only the output region with lower bound (0, 0) and
upper bound (1700, 1) needs to be examined for estimating query
cardinality. The grid structure thus succeeds in reducing the com-
putational expenses. To create the output grid, each dimension of
the output space is partitioned according to a stepsize that reflects
the preference of the predicate corresponding to that dimension.
For ease of computation, we will assume that all all the predicates
have equal preference and hence, all dimensions have a unit step-
size.

The following terminology is used to describe the output grid: a
grid point is any point that lies at a point of intersection in the grid;
a gird cell corresponding to a grid point is the unit orthotope that
has the given grid point as its upper right corner; neighbors of a grid
point are the grid points at a unit distance from the given grid point
in only one dimension. For the purpose of our algorithm, we only
consider the neighbors of a grid point that have higher relaxation
than the given grid point.

3.3 Relaxation Algorithm
In this section we present IncRelX our core query-oriented relax-
ation algorithm for cardinality assurance. The goals of IncRelX are
fourfold: (1) IncRelX is able to relax select as well as join pred-
icates; (2) Given an initial user query QI and an expected cardi-
nality C0, IncRelX relaxes the query QI to QF (final query) such
that QF satisfies the given cardinality; (3) QF minimizes the re-
laxation with respect to QI ; and (4) The process of relaxation from
QI to QF is computationally efficient. The QXForm framework
described in Section 3.2 ensures that IncRelX satisfies the first goal
of relaxing both select and join conditions. IncRelX satisfies the
second goal of cardinality assurance by evaluating various queries
in the relaxation space created by QXForm and selecting those that
are closest to the expected cardinality. The third goal of minimizing
relaxation is met by using a layer-based navigation scheme which
ensures that queries with lower relaxation are always evaluated be-
fore queries with higher relaxation. The last goal is met by us-
ing an incremental cardinality estimation technique which reduces
computational expenses by (a) evaluating only those tuples that are
likely to satisfy any given query and (b) ensuring that once a tuple
has been found to satisfy a query, it is never re-evaluated for any
other query. We now describe the IncRelX algorithm beginning
with our navigation scheme.

In the scenario where the original query does not meet its associ-
ated cardinality constraint, intuitively, the user would prefer a re-
laxed query that attains the required cardinality but is as close to the
original query as possible. This implies that the search for potential
relaxed queries in the relaxation space must be done in a way that

Layer Queries
0 (0, 0)
1 (0, 1); (1, 0)
2 (0, 2); (1, 1); (2, 0)
3 (0, 3); (1, 2); (2, 1); (3, 0)
k (0, k); (1, k-1); (2, k-2). . . (k-2, 2); (k-1, 1); (k, 0)

Table 2: Composition of layers in the output space

prefers queries with lower relaxation. Our solution to this problem
is to adopt an iterative layer-based navigation scheme to minimize
relaxation.

Layer-based traversal, as the name suggests, is an approach where
potential relaxed queries are grouped into layers of equal relax-
ation, and are evaluated based on these layers. Moreover, relax-
ation layers are traversed in the order of increasing relaxation so
that all queries lying in a layer with relaxation p are evaluated be-
fore queries lying in layer (p+1). The intuition of the layer-based
approach is presented in Figure 6. Figure 6.(a) of the figure de-
picts a two-dimensional relaxation space similar to the one created
by running query Q1. In a two-dimensional space, the total relax-
ation of a query is the sum of the relaxations on the two axes, and
therefore, the relaxation layers are lines having slope -1. Figure 6.a
shows relaxation Layers 0, 1, 2 and 3 having total relaxation equal
to 0, 1, 2, and 3 units respectively. Layer-based traversal begins
evaluation of queries from Layer 0 and then proceeds along Layers
1, 2, and 3. The numbering of the queries reflects the order in which
queries are examined in each layer: first, query (0, 0) belonging to
layer 0 is evaluated; second, queries (1, 0) and (0, 1) belonging to
layer 1 are evaluated; third, queries (2, 0), (1, 1) and (0, 2) belong-
ing to layer 2 are evaluated; next, queries (3, 0), (2, 1), (1, 2) and
(0, 3) belonging to layer 3 are evaluated and so on.

Table 3.3 lists in tabular form the queries that are in the above layers
of the relaxed space. From the values in the table, we know that a
query (r1, r2) belonging to Layer k in the 2-dimensional relaxation
satisfies the constraint that r1 >= 0, r2 >= 0 and (r1 + r2) = k.

In general, given a d-dimensional relaxation space, the queries be-
longing to Layer k can formulated mathematically as follows.

Layer(k) = {(r1, r2 . . . rd) | (ri >= 0) for i = 1 . . . d

AND (r1 + r2 + . . .+ rd = k)} (9)

This also turns out to be the formulation of the weak number the-
oretic compositions of the integer k and hence gives us an upper
bound on the number of queries in each layer. Using combinatorial
arguments, we can prove that such a layer k will contain

(
d+k−1

d−1

)
queries at the most.

Due to the similarities between the layer-based navigation scheme
and breadth-first traversal, our system implements the layer-based
navigation scheme by using a modified breadth-first traversal strat-
egy. As in traditional BFS, a queue is used to store the algorithmic
data. Let us now look at the walk-through example of the layer-
based navigation scheme as shown in Figure 6.(b). Step 1 in above
figure shows the initial state of the traversal queue containing (0, 0).
In Step 2, (0, 0) is popped from the head of the queue and its cardi-
nality evaluated. Following this, its neighbors are computed to be
(0, 1) and (1, 0) and added to the queue. In Step 3, (0, 1) is popped
and its neighbors (0, 2) and (1, 1) are added to the queue. Finally,

when we come to Step 4, where (1, 0) is popped and its neighbors,
(1, 1) and (2, 0) are computed. However, only (2, 0) is added to
the queue since (1, 1) is already present in it. This omission of (2,
0) avoids re-examination of already evaluated queries. The overall
effect of the traversal algorithm is that the queries are evaluated in
the layer-based order depicted in Part (a) of same figure: (0, 0); (0,
1); (1, 0); (0, 2); (1, 1); (2, 0); (0, 3); (1, 2); (2, 1); and (3, 0).

Figure 6: (a) Order in which grid cells are traversed by the
Traverse algorithm. (b) Walk through example of Traverse

Algorithm 3.3 lists the pseudocode for the traversal algorithm. We
first pop the element at the head of the queue; this is the query to
be evaluated next (Line: 1). Lines 2-8: For loop generates all the
neighbors of the most recently popped query by incrementing the
query co-ordinates in a dimension-wise manner.
Lines 5-7: Checks if the given neighbor is already present in the
queue. The neighbor is added only if the same value is not currently
present in the queue.

Algorithm 1 Traverse (Queue q)
91: int[] counter = q.pop()
92: for i = 0 to d− 1 do
93: int[] counterCpy = Copy(counter)
94: counterCopy[i]++
95: if !q.Contains(counterCopy) then
96: q.push(counterCopy)
97: return counter

Lemma 1. Traverse evaluates query Q with relaxation p before
evaluating query Q′ with relaxation p′ if and only if p < p′.

Proof: The objective of the Traverse algorithm is to traverse the
output space in such a way that no query with total relaxation r is
evaluated before all queries with relaxation r-1 have been evaluated.
To prove this, we can model the output space as a graph G(V, E)
such that the set of vertices of G is the set of all grid points and
E is the set of edges created by connecting each grid point to its
neighbors. The Traverse algorithm then performs a breadth-first
traversal of G, and correctness of breadth-first traversal proves the
correctness of Traverse.

In summary, the Traverse algorithm ensures that if a relaxed query
Q′ has relaxation smaller than another relaxed query Q′′, the car-
dinality of Q′ is evaluated before Q′′. Consequently, this order
of query evaluation guarantees that the first query Q? found to sat-
isfy the cardinality constraint has the minimum relaxation possible.
Moreover, once we find a relaxed query that satisfies the required
cardinality, we do not need to evaluate any more queries, and thus
we can reduce computational expenses.

3.3.1 Incremental cardinality estimation
One of the main challenges of query relaxation is the computational
expense associated with repeated query execution. Whether the re-
finement is user-driven or automatic, relaxation algorithms require
that the cardinality of a large number of queries be estimated. How-
ever, traditional relaxation techniques have no memory about prior
cardinality estimations and do not reuse previously computed car-
dinalities to increase computational efficiency. Instead of the repet-
itive cardinality estimation model, in this work, we propose a novel
incremental cardinality estimation model that takes advantage of
space partitioning and query containment for performing rapid car-
dinality calculations. We start with some basic observations of the
relaxation space.

Cardinality in the Relaxation Space:

Suppose the original query Q given by Q = (P1∧P2∧. . .∧Pd) and
its expected cardinality is C. As discussed previously, the relaxation
space represents not only all possible relaxed queries but also the
relaxations of all combined-tuples. As a result, the cardinality of a
query Q′ corresponding to the point X = (x1, x2. . .xd) in the re-
laxation space is equal to the number of combined-tuples included
in the orthotope extending from the origin to X. In terms of the
relaxations, this orthotope includes all tuples T such that:

(0 <= Rel(TPi) <= xi)fori = 1 . . . d (10)

Figure 3.3.1.a shows a visual representation of this orthotope for a
two-dimensional output space created by Q1.

Query Containment: The above definition of query cardinality
provides us a key insight that can lead to dramatic improvements
in cardinality estimation efficiency. Consider the two queries Q′ =
(r′1, r′2) and Q′′ = (r′′1 , r′′2) shown in Figure 3.3.1.b. Q′′ is said to
be contained inQ′ since the rectangle corresponding toQ′′ is com-
pletely contained inside the rectangle corresponding to Q′. Con-
tainment implies that all the combined-tuples belonging to Q′′ also
belong toQ′. Therefore, if we evaluate the cardinality ofQ′′ before
evaluating Q′, then we can avoid the expensive cardinality compu-
tation by reusing the already computed cardinality of Q′′.

In general, given two queries Q′ and Q′′ in a d-dimensional space
such that Q′ = (r′1, r′2. . . r′d) and Q′′ = (r′′1 , r′′2 . . . r′′d), we say that
Q′′ is contained in Q′ if r′i >= r′′i for (i = 1 . . . d). Moreover,
the containment also implies that Σi=1...dr

′
i < Σi=1...dr

′′
i . In other

words, the total relaxation ofQ′′ is lesser than that ofQ′ and hence
our layer-based navigation scheme will necessarily evaluate Q′ be-
fore evaluating Q′′.

This above set of observations allows us to take advantage of space
partitioning and query containment in the relaxation space to for-
mulate the following incremental cardinality estimation model.

Incremental Estimation Model: The principle guiding our Incre-
mental Estimation Model is that once a combined-tuple has been
found to satisfy a queryQ, that combined-tuple is never re-evaluated
for any other relaxed query Q′ that contains Q. However, this
combined-tuple is incorporated in the cardinality of Q′ automat-
ically. The estimation model of IncRelX examines only a small
subset of combined-tuples for each query while mainly reusing car-
dinality values of queries from the previous layer. This approach

ensures that IncRelX does not waste resources in rerunning pre-
vious computations. We first describe the framework that allows
cardinality to be calculated incrementally.

(0,0)

C B

AA

(x,y-1) (x,y)

(x-1,y)

1A

B

C

D (x-1,y,z)

(x,y,z)
(x,y-1,z)

(x,y,z-1)

(0,0,0)

(c) (d)

(a) (b)

Q: (x,y)

(0,0)

Q: (x,y)

(0,0)

Q’: (x’,y’)

Figure 7: (a) Representation of cardinality in output space, (b)
Motivation for incremental cardinality estimation, (c) Decom-
position of a 2-D orthotope, and (d) Decomposition of a 3-D
orthotope

Decomposition of the Orthotope: Each query in the relaxation
space has an associated query orthotope and the first step towards
incremental estimation is determining how this orthotope can be di-
vided to reuse cardinality values from the previous relaxation layer.
Formally, given a query query Q corresponding to point X = (x1,
x2 . . .xn), we seek to partition the query Q’s orthotope into smaller
sub-orthotopes such that (1) the sub-orthotopes are disjoint, and
(2) the upper-right corners of sub-orthotopes correspond to queries
from the previous relaxation layer.

Figures 3.3.1.c and d show one such partitioning of two and three
dimensional orthotopes. In each of the above figures we see that
not only are the sub-orthotopes disjoint, but their upper-right cor-
ners also correspond to queries in the previous relaxation layer
i.e. the total relaxation of these queries is one unit less than the
relaxation of Q. As the figures demonstrate, a two-dimensional
orthotope has to be partitioned into three sub-orthotopes to sat-
isfy the above criteria while a three dimensional orthotope requires
four sub-orthotopes. To aid the understanding of this concept, the
sub-orthotopes have been named to reflect their geometry. Sub-
orthotope A is called a ”cell”, B a ”pillar”, C a ”wall”, and D a
”block”. Moreover, to preserve uniqueness, the sub-orthotopes are
associated with the points at their their upper-right corner. Thus,
in figure 3.3.1.c, the orthotope or wall corresponding to query (x,
y) is composed of the cell of (x, y), the pillar of (x-1, y) and the
wall of (x, y-1). Similarly, the orthotope or block of (x, y, z) in
part d is composed of the cell of (x, y, z), the pillar of (x-1, y, z),
the wall of (x, y-1, z) and the block of (x, y, z-1). In general, a d-
dimensional orthotope has to be divided into (d+1) sub-orthotopes
to satisfy the above criteria. The previous discussion implies that
to estimate cardinality incrementally, we need to calculate the car-
dinality values of each of the d+1 sub-orthotopes. To illustrate, in
a 2-dimensional space, we need to calculate the values of the cell
(A), pillar (B) and wall (C) for each query (as shown in Figure 8),
while in the 3-dimensional space, we have to calculate the values of
the cell (A), pillar (B), wall (C) and block (D) (Figures 3.3.1). In d-
dimensional space, the following equations mathematically define

the (d+1) sub-orthotopes associated with each query. For instance,
the cell denoted by O1 is the sub-orthotope having unit length in
each dimension and having (x1, x2. . .xd) as its upper-right cor-
ner. The pillar, denoted by O2, has length x1 in the first dimension
while it has unit length in the other (d-1) dimensions. The wall,
i.e. O3, has length x1 and x2 in the first two dimensions while it
has unit length in the other (d-2) dimensions. The orthotopes are
defined as follows in a d-dimensional relaxation space.

O1(cell) = {(y1, y2 . . . yn) |
(xi − 1 < yi <= xi) for i = 1 . . . d} (11)

O2(pillar) = {(y1, y2 . . . yn) |
(0 <= y1 <= x1) AND

(xi − 1 < yi <= xi) for i = 2 . . . d} (12)
O3(wall) = {(y1, y2 . . . yn) |

(0 <= y1 <= x1) AND

(0 <= y2 <= x2) AND

(xi − 1 < yi <= xi)fori = 3 . . . d} (13)
Oi = {(y1, y2 . . . yn) |

(0 <= yi <= xi) for i = 1 . . . i AND

(0 <= y2 <= x2 − 1) AND

(xi − 1 < yi <= xi) for i = i+ 1 . . . d} (14)
Od + 1 = {(y1, y2 . . . yn) |

(0 <= yi <= xi)fori = 1 . . . d} (15)

Using the above equations, we can formally write the compositions
of orthotopes in two and three dimensions Fig.3.3.1.c and d) as
follows:

O3(x, y) = O1(x, y) +O2(x− 1, y) +

O3(x, y − 1) (16)
O4(x, y, z) = O1(x, y, z) +O2(x− 1, y, z) +

O3(x, y − 1, z) +O4(x, y, z − 1) (17)

Generalizing the above formulas for a d-dimensional space we get:

Od(x1, x2, x3 . . . xd) = O1(x1, x2, x3 . . . xd) +

O2(x1 − 1, x2, x3 . . . xd) +O3(x1, x2 − 1, x3 . . . xd) +

. . .+Od+1(x1, x2, x3 . . . xd − 1) (18)

However, for every point, we not only need to calculate the total
cardinality of the orthotope, but we also have to calculate the cardi-
nalities of the other d sub-orthotopes defined above. Referring back
to Figures 8 and 3.3.1, we can make the following observations:

• For the two-dimensional relaxation space in Figure 8, we
have:

– Pillar (x, y) = Cell (x, y) + Pillar (x-1, y)

– Wall (x, y) = Pillar (x, y) + Wall (x, y-1)

• For the three-dimensional relaxation space in Figure 3.3.1,
we have:

– Pillar (x, y, z) = Cell (x, y, z) + Pillar (x-1, y, z)

– Wall (x, y, z) = Pillar (x, y, z) + Wall (x, y-1, z)

– Block (x, y, z) = Wall (x, y, z) + Block (x, y, z-1)

Thus, we begin to see a pattern that can be converted into a recur-
rence: Oi(x1, x2 . . . xd) = Oi−1(x1, x2 . . . xd)+Oi(x1, x2 . . . xi−1−
1)for i = 2 . . . d + 1. The only sub-orthotope that doesn’t have
a recurrence is the cell since this is the part of the cardinality that
is unique to every query. To calculate the cardinality of the cell,
combined-tuples belong to various output regions have to be exam-
ined to find those that lie in the given cell. Thus, in summary,

(0,0)

C B

(x,y‐1) (x,y)

(0,0)

C B

AA

(x,y‐1) (x,y)

(x‐1,y)

(0,0)

C

(x,y)

(a) (b) (c)

Figure 8: Orthotope recurrences in a two-dimensional space.

1A

B

C

D (x-1,y,z)

(x,y,z)
(x,y-1,z)

(x,y,z-1)

(0,0,0)

1B
C

D

(x,y,z)
(x,y-1,z)

(x,y,z-1)

(0,0,0)

C
D

(x,y,z)

(x,y,z-1)

(0,0,0)

D

(x,y,z)

(0,0,0)

(a) (b)

(c) (d)

Figure 9: Orthotope recurrences in a three-dimensional space.

we can incrementally calculate the cardinality of queries using the
equations below:

O1 = {(y1, y2 . . . yn) | (xi − 1 < yi <= xi)

for i = 1 . . . d} (19)
Oi(x1, x2 . . . xd) = Oi−1(x1, x2 . . . xd) +

Oi(x1, x2 . . . xi−1 − 1 . . . xd) for i = 2 . . . d+ 1 (20)

These recurrences ensure that once the cardinality of the cell has
been determined, it takes a constant number of steps to calculate
the other cardinalities. Algorithm 3.3.1 presents the pseudo-code
that performs the incremental cardinality estimation. Note that

Algorithm 2 CardinalityEstimation(int[] upper, Hash h(String,
int[]))
91: int[d+1] card
92: card[0] = ComputeCellCardinality(upper)
93: for i = 1 to d do
94: upper[i]–
95: int[] cardi = h.get(asString(upper))
96: card[i] = card[i-1] + cardi[i]
97: upper[i]++
98: h.insert(asString(upper), card)
99: return card[d]

the sub-orthotope cardinalities are stored in an array as [O1, O2,
O3,. . .Od+1].

The CardinalityEstimation algorithm takes as input the query be-
ing evaluated, and a pointer to the recording keeping data structure,
which in this case is a hash. The hash stores previously evaluated
queries along with the values of the associated (d+1) orthotopes.
Briefly, the algorithm functions as follows:
Line 2: Computes the cardinality of the associated cell by examin-
ing combined-tuples. The ComputeCellCardinality algorithm be-
low is responsible for this evaluaion.
Lines 3-7: Computes cardinalities of the remaining (d+1) ortho-
topes using the previously defined recurrences.
Line 8: Updates the hash with the given cardinality values

The other part involved in cardinality estimation of IncRelX is the
algorithm that computes the cardinality of the cell associated with
each query. The goal of this algorithm is to find the combined-
tuples tha lie in the query cell and remove them from the pool of
combined-tuples so that they are not evaluated again. Algorithm
3.3.1 presents this algorithm. The algorithm functions as follows:
Lines 2-4: Computes the lower bound of the cell
Line 5: Gets the list of output regions that are present in the cell
Line 6: Gets the combined tuples from each of the above regions
that have not satisfied a previous query. Output regions are also
materialized in this step.
Lines 7-10: Checks the combined-tuples, and removes those that
satisfy the current query. Also updates cardinality.

Algorithm 3 ComputeCellCardinality(int[] upper)
91: int card = 0
92: int[d] lower = 0, 0. . . 0
93: for i = 0 to d− 1 do
94: lower[i] = upper[i] - 1
95: List<OutputRegions> list = GetOutputRegions(upper, lower)
96: List<CombinedTuples> tuples = GetCombinedTuples(list)
97: for t in tuples do
98: if t.Satisfies(lower, upper) then
99: tuples.remove(t)
910: card++
911: return card

3.3.2 Overall Algorithm
The cardinality estimation of IncRelX proceeds through the inter-
leaving of the traversal algorithm and the cardinality estimation
algorithm. The algorithm begins at the origin and sequentially
traverses queries in higher layers. For each query, estimates the
cell cardinality of the query and the cardinality of the other d sub-
orthotopes. Once the all the cardinalities for a query have been

evaluated, its total cardinality is compared to its expected cardinal-
ity. If the cardinality is within δ of the expected cardinality, the
algorithm evaluates other queries in the current layer and then re-
turns the answers. If a query undershoots the expected cardinality,
the algorithm proceeds to the next higher layer. However, if the
query overshoots the expected cardinality, the query cell is repar-
titioned. Algorithm 3.3.2 shows the pseudo-code for the overall
algorithm.

Algorithm 4 IncRelX(int expectedCardinality, int delta)
91: Queue q, Hash h(String, int[]), List<int[]> answers
92: int[d] counter = 0,0. . . 0
93: q.push(counter)
94: counter = Traverse(q, h)
95: int minimumRelaxationLayer = 0
96: int currentRelaxationLayer = MAX_INTEGER_VALUE
97: while (minimumRelaxationLayer >= currentRelaxationLayer)

do
98: int card = CardinalityEstimation(counter)
99: currentRelaxationLayer = GetRelaxation(counter)
910: if (‖card - expectedCardinality‖ < δ) then
911: answers.add(counter)
912: minimumRelaxationLayer = currentRelaxationLayer
913: else if (card > expectedCardinality) then
914: answers.add(Repartition(counter))

4. EXPERIMENTS
In this section we describe the preliminary evaluation of the QRelX
algorithm.

4.1 System Implementation
For the evaluation of the QRelX algorithm, we implemented in Java
the system described in Section 3.1. As shown in Figure 2 of Sec-
tion 3.1, our system implementation consists of two major com-
ponents: QXForm, the query space transformation component and
IncRelX, the query relaxation component.

The query space transformation component QXForm takes as input
the user query along with its associated input tables and processes
them to create the relaxation space. In our implementation, the
QXForm component is composed of three modules. The first mod-
ule is responsible for processing the input tables and partitioning
them into multi-dimensional input partitions. The second module
is responsible for the creation of output regions. It computes all
possible combinations of input partitions and constructs an output
region for each individual combination. Output region construction
is done by using the special interval distance functions that imple-
ment relaxation mapping functions. The last module of QXForm
creates a grid in the relaxation space. It then assings to each grid
cell the set of output regions that overlap with the given cell. This
information about the output space is stored in a global hash table
H. H is indexed by keys which are strings representing the bounds
of the grid cells. The value associated with each key of H is a
composite data structure storing (1) a list of references to output
regions containing the given grid cell, (2) the d+1 cardinality val-
ues required for cardinality estimation, and (3) meta-data about the
cell such as whether the cell has already been evaluated.

The second component of our system implements IncRelX, our
core relaxation algorithm that meets query cardinality while mini-
mizing the amount of relaxation. This component is also composed
of three modules: the traversal module, the cardinality estimation

module and the overall module. The traversal module implements
the layer-based navigation scheme described in Section 3.3 for min-
imizing relaxation. Using the global H table to run the traversal
algorithm, this module iteratively computes the next grid cell to be
evaluated. The second relaxation module is responsible for cardi-
nality estimation and implements the Algorithms 3.3.1 and 3.3.1
in Section 3.3. Once again, information from the global hash ta-
ble H is used for rapid cardinality calculations. After the grid cell
cardinality has been calculated, the cardinality values stored in H
are used to calculate the other d cardinalities in a constant num-
ber of steps. Additionally, this module uses a supplementary hash-
based data structure to store information about materialized output
regions. This data structure is required because we do not want to
repeatedly materialize the output regions for each grid cell. More-
over, this data structure enables us to only keep track of the result-
tuples that haven’t already satisfied a previous query. The last mod-
ule of IncRelX implements the overall algorithm described in 3.3.2
by utilizing the functionality of the traversal module to navigate the
relaxation space and cardinality estimation module to efficiently es-
timate cardinality of queries in the relaxation space.

4.2 Experimental Setup
In order to evaluate our solution, we ran preliminary experiments
testing the efficiency of our algorithm for various parameters and
compared the performance of our system with the TQGen algo-
rithm proposed by Mishra et al. in [19]. The TQGen algorithm
was chosen because this approach has similarities with QRelX and
it focuses on cardinality assurance. TQGen however, does not fo-
cus on minimizing relaxation with respect to the original query. As
a result, our experiment only compare the performance of the two
methods. For our experiments, we implemented TQGen in Java for
the single cardinality case.

All experiments were run on the TPC-H benchmark data, specifi-
cally using data from the PartSupp and LineItem tables. The Part-
Supp table stored the part key, supplier key, available quantity, sup-
ply cost and comments. The LineItem table included sixteen at-
tributes, of which our queries included the attributes order key, part
key, supplier key, quantity and extended price. The size of these
input tables varied from 1k to 6k tuples for our experiments.

4.3 Experimental Results
Effect of Stepsize on Performance: Our first set of experiments
analyzed the effect of input and output (or relaxation) stepsize on
the performance of QRelX. Figure 4.3 shows the results of this set
of experiments where a fixed query was relaxed to obtain a partic-
ular cardinality. The input and output stepsize for this query was
varied in turn while keeping the other stepsize constant at 100 units.
The x-axis of Figure 4.3 shows the size of the stepsize that is being
varied. The y-axis on the other hand shows the time required to
relax the given query for that particular stepsize. The two bars for
each stepsize respectively show the execution time when one step
size is 100 and the other has the value corresponding to the x-axis.

For QRelX, the input stepsize determines the number of input par-
titions that will be created during query space transformation. It
affects the time required in partitioning the input tables but does
not affect the quality of the results produced by QRelX. Relaxation
stepsize or output stepsize on the other hand denotes the size of grid
cells created in the relaxation space. As a result, output stepsize af-
fects not only the time required for generating the output space but
also the quality of answers produced. A lower stepsize increases
computational expenses involved in creating the relaxation space

but it also allows the algorithm to obtain answers very close to the
ideal minimum relaxation. Figure 4.3 shows this inverse relation-
ship between stepsize and execution time. A higher stepsize con-
sistently leads to lower execution time.

0

5000

10000

15000

20000

25000

5 50 100 500 1000

Input Space Stepsize

Output Space
Stepsize

Units

Time (ms) Time vs. Step size

Figure 10: Graph showing the effect of input and output step-
size on QRelX performance.

Performance comparison with TQGen: The second set of ex-
periments we ran compared the efficiency of our QRelX technique
to that of TQGen. While TQGen provides cardinality assurance, it
does not focus on minimizing relaxation. As a result, the QRelX
algorithm always outperformed TQGen in terms of relaxation with
respect to the original query. Figure 4.3 shows the results of our
comparative study focusing on performance. One fixed data set was
used for these experiments, but parameters for the test query were
varied to obtain different initial cardinalities. The expected cardi-
nality was also fixed. The x-axis in Figure 4.3 shows the value of
the original cardinality relative to the expected cardinality. Values
closer to the origin indicate that the query had much lower cardi-
nality compared to the expected cardinality while those away from
the origin correspond to values with the original cardianlity close to
the expected cardinality. The y-axis of this figure shows the execu-
tion time for relaxing each query to meet the expected cardinality.
The bars correspond to the time required by QRelX and TQGen
respectively. The first trend we observe from this figure is that the
cardinality of the original query is inversely related to the time re-
quired to run the algorithm, i.e., if the original cardinality is close
to the expected cardinality, then the algorithms take a shorter time
to find the new query. This observation is to be expected because
a higher original cardinality means that the algorithms have to ex-
plore a smaller relaxation space to find the new query. The second
trend we see in the figure is that QRelX consistently performs bet-
ter than TQGen for various query cardinalities. Irrespective of the
original cardinality QRelX is at least as efficient as TQGen. Since
TQGen uses a repetitive execution model, these results support the
claim that our incremental query estimation model is more efficient
than the traditional repetitive execution model. Moreover, it is im-
portant to keep in mind that QRelX also minimizes relaxation while
ensuring cardinality.

One drawback we observed during this set of experiments was that
TQGen outperformed QRelX when the data was non-uniformly
scaled. For example, QRelX performed poorly when one attribute
(say A) in the query ranged from 0 to 1 while the other attribute
(say B) ranged from 1 to 10000. This discrepancy was not ob-
served when the ranges of attributes were of the same order. The

0

500

1000

1500

2000

2500

3000

3500

4000

0.107 0.246 0.4306 0.667

TQGen

Our Method

Original Query
Cardinality/Expected
Cardinality

Time (ms) Time vs. Cardinality

Figure 11: Graph showing the comparison between the perfor-
mance of TQGen and QRelX for queries with varying cardinal-
ity.

above result was also to be expected because initially QRelX used
the same output stepsize for all dimensions of the output space. For
instance, in the previous example, QRelX could not apply a step-
size of say 0.1 on A and a stepsize of 1000 on B. Following this
set of experiments, we modified our algorithm to support varying
stepsizes. This modification not only improved performance for
QRelX but also enabled QRelX to incorporate user preferences on
particular query predicates.

The above set of preliminary experiments thus show that the QRelX
algorithm can help reduce the computational expenses of query re-
laxation while also ensuring minimal relaxation. They also give
insight into the performance issues of QRelX that can be consid-
ered for future optimizations.

5. RELATED WORK
Several methods to perform query relaxation have been proposed
in the literature. In [8] Gaasterland describes a method to relax
queries through deduction using semantic information about a database.
Muslea et al. proposed a means to use artificial intelligence tech-
niques like Bayesian structures to discover relationships between
attributes and use them to relax empty result-set queries [20, 21].
However, these methods do not ensure query cardinality and do not
focus on minimizing relaxation. In [15] Luo describes a method
to identify empty result-set queries based on previous query execu-
tions. Algorithms to relax empty result-set queries are not proposed
in this work.

[18] describes a interactive approach to query refinement. Infor-
mation about the underlying database is used help users narrow
the list of alternative queries. The drawback of this method is that
the user may not have enough information about the database to
meaningfully express his or her preferences. Koudas et al. use sky-
line algorithms for query relaxation in [12]. Skyline algorithms are
useful for empty result-set queries but have limited potential for en-
suring cardinality. Query relaxation in terms of approximate query
answering has also been studied in the context other data models
such as XML queries and semi-structured data [1, 22, 24].

Given a query, top-k algorithms can generate k tuples that best fit
a query.Therefore, they represent a tuple-oriented way of ensuring
query cardinality while maintaining closeness to the original query.
[2, 5–7, 13, 14, 16] describe some of the techniques used for top-

k queries. Most top-k research has focused on selection queries
but [9] presents a way to perform top-k over joins. In [10] Kadlag
et al. propose a relaxation algorithm that generalizes the top-k idea
for range queries involving selection. In [4], Carey et al. proposed
the STOP AFTER operator which can help return a fixed number
of values in cases where queries return too many results. However,
as discussed in section 1 the goal of our algorithm is not to focus
of the result-tuples but to provide an alternate query that concisely
characterizes the result.

Our work on cardinality assurance is also related to generating test
queries for databases. Bruno et al. addressed this question in [3]
where they proved the NP-hardness of the problem and proposed
a hill climbing approach. Mishra et al. also address the test query
generation question in [19]. These algorithms however do not focus
on obtaining the closest queries since query semantics are irrelevant
for testing purposes.

Lastly, cardinality estimation is an important part of our algorithm
and [11, 17, 23] describe some of the recent research in this area.
These methods however do not use the incremental estimation ap-
proach proposed in this work.

6. CONCLUSION
In this work we proposed a novel algorithm for query-oriented re-
laxation that can provide cardinality assurance. A query-oriented
approach to relaxation can be more beneficial for many applications
because it can provide a query characterizing the selected tuples,
facilitate future query refinement using this query and also ensure
that the query results accurately represent the underlying data.

QRelX, our proposed algorithm for query-oriented relaxation at-
tains two goals: (1) given an initial user query QI with expected
cardinality C0, QRelX relaxes query QI to QF such that QF at-
tains the cardinaly C0, and (2) QF minimizes relaxation with re-
spect to QI . QRelX attains these goals through the key ideas of
query space transformation, layer-based navigation of the relaxed
query space and incremental cardinality estimation. QXForm, our
framework for query space transformation, uses mapping functions
to enable the relaxation of both, select and join predicates. Layer-
based navigation enables QRelX to minimize relaxation of QF to
meet the second goal of QRelX. Lastly, incremental cardinality es-
timation through IncRelX allows the algorithm to reuse previous
cardinality values and rapidly estimate query cardinalities. The
combination of the above techniques leads to an efficient query re-
laxation algorithm to provide cardinality assurance.

We also presented preliminary results demonstrating the perfor-
mance of our algorithm and a comparison of our approach with
TQGen [19]. Further work is required for the comparison of our
approach with tuple-oriented strategies for relaxation.

7. REFERENCES
[1] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern

relaxation. In EDBT, pages 496–513, 2002.
[2] N. Bruno, S. Chaudhari, and L. Gravano. Top-k selection

queries over relational databases. ACM Transactions on
Database Systems, 27(2):153–187, 2002.

[3] N. Bruno, S. Chaudhari, and D. Thomas. Generating queries
with cardinality constraints for dbms testing. IEEE
Transactions on Knowledge and Data Engineering,
18(12):1721–1725, 2006.

[4] M. J. Carey and D. Kossmann. On saying "enough already!"
in sql. In SIGMOD, pages 219–230, 1997.

[5] K. C.-C. Chang and S. won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In
SIGMOD, pages 346 – 357, 2002.

[6] S. Chaudhari and L. Gravano. Evaluating top-k selection
queries. In VLDB, pages 397–410, 1999.

[7] S. Chaudhuri and G. Das. Automated ranking of database
query results. In CIDR, pages 888–899, 2003.

[8] T. Gaasterland. Cooperative answering through controlled
query relaxation. IEEE Expert: Intelligent Systems and Their
Applications, 12(5):48–59, 1997.

[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. In VLDB, pages
754–765, 2003.

[10] A. Kadlag, A. V. Wanjari, J. Freire, and J. R. Haritsa.
Cardinality estimation using sample views with quality
assurance. In DAFSAA, pages 594–605, 2004.

[11] P. Åke Larson, W. Lehner, J. Zhou, and P. Zabback.
Cardinality estimation using sample views with quality
assurance. In SIGMOD, pages 175–186, 2007.

[12] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, pages 199–210, 2006.

[13] C.-I. Lee and C.-J. Tsai. An efficient approach to extracting
and ranking the top k interesting target ranks from web
search engines. Informatica (Slovenia), 25(3), 2001.

[14] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql:
Query algebra and optimization for relational top-k queries.
In SIGMOD, pages 131–142, 2005.

[15] G. Luo. Efficient detection of empty-result queries. In VLDB,
pages 1015–1025, 2006.

[16] L. P. Mahalingam and K. S. Candan. Query optimization in
the presence of top-k predicates. In Multimedia Information
Systems, pages 31–40, 2001.

[17] T. Malik, R. C. Burns, and N. V. Chawla. A black-box
approach to query cardinality estimation. In CIDR, pages
56–67, 2007.

[18] C. Mishra and N. Koudas. Interactive query refinement. In
EDBT, pages 862–873, 2009.

[19] C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted
queries for database testing. In SIGMOD, pages 499–510,
2008.

[20] I. Muslea. Online query relaxation. In SIGKDD, pages
246–255, 2004.

[21] I. Muslea and T. Lee. Online query relaxation via bayesian
causal structures discovery. In AAAI, pages 831–836, 2005.

[22] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approximate
xml query answers. In SIGMOD, pages 263–274, 2004.

[23] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H. Tung.
Kernel-based skyline cardinality estimation. In SIGMOD,
pages 509–522, 2009.

[24] X. Zhou, J. Gaugaz, W.-T. Balke, and W. Nejdl. Query
relaxation using malleable schemas. In SIGMOD, pages
545–556, 2007.

