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Abstract 

After menopause, a woman’s production of 17β-estradiol, the predominant female 

sex hormone, declines.  This change is associated with increased risk of 

osteoporosis/osteopenia and atraumatic bone fracture, cardiovascular disease, and breast 

and ovarian cancers.  Phytoestrogens are non-steroidal compounds isolated from plants 

that have antagonistic, weak agonistic, or super-agonistic estrogenic effects in 

mammalian tissues; they have emerged as a potential therapeutic to alleviate post-

menopausal symptoms.  While some epidemiological evidence indicates that dietary 

consumption of phytoestrogens can alleviate post-menopausal health risks, other research 

suggests that phytoestrogens may not be completely safe. 

The research presented in this thesis indicates that a high concentration and 

sustained dose of phytoestrogens may be necessary to achieve antiestrogenic effects.  

MCF-7 cells, an estrogen-sensitive breast adenocarcinoma cell line, were used as a model 

system, and proliferating cell nuclear antigen (PCNA) was used as a marker of cell 

proliferation.  Immunoblotting shows that genistein, a commercially purified 

phytoestrogen, promotes cell proliferation when administered for 24 hours, but may 

reduce proliferation when cells were treated for 48 hours.  Genistein and estrogen have an 

additive effect on cells that were treated simultaneously with both hormones for 24 hours.  

In contrast, Promensil™, an over-the-counter phytoestrogen dietary supplement, was able 

to abolish expression of PCNA after 48 hours, and at high concentrations prevented 

estrogen-induced upregulation of PCNA after 48 hours.  The clinical significance of these 

findings is that phytoestrogens may reduce the risk of breast cancer, but only after 

sustained high doses, which may be difficult if patient non-compliance is at issue.  
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Additionally, because cell proliferation and not cell survival was investigated, we cannot 

say whether phytoestrogens are cytotoxic to breast cancer cells, only that they reduce 

proliferation. 
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Introduction

In North America, breast cancer is the most frequent malignancy diagnosed in 

women, with 200,000 new cases diagnosed and 50,000 mortalities occurring every year 

(Maggiolini et al., 2001).  23,000 new cases of ovarian cancer are diagnosed and 14,000 

deaths occur annually, making ovarian cancer the fifth most common malignancy and 

fifth leading cause of cancer mortality (Holschneider and Berek, 2000).  Additionally, 

ovarian cancer is often not diagnosed until it has metastatised, giving it the highest 

fatality-to-case ratio of all gynecological cancers (Holschneider and Berek, 2000).  A 

woman’s risk for developing both of these malignancies increases with age, possibly due 

to menopause (Liede and Narod, 2002).  Other health concerns associated with 

menopause include osteoporosis, and increased risk of cardiovascular disease.  Therefore, 

methods to ameliorate or abrogate the changes associated with menopause offer an 

appealing therapy. 

The current treatment option to alleviate post-meonpausal symptoms is hormone 

replacement therapy (HRT), in which a woman’s declining estrogen levels are augmented 

with estrogen or an estrogen agonist.  Because estrogen is such a potent mitogen (Pratt 

and Pollak, 1993), progesterone is often administered concomitantly to reduce the risk of 

breast or endometrial cancer.  Recently, the use of HRT has come under scrutiny.  Some 

studies indicate that, despite the use of progesterone, estrogen supplementation is 

associated with an increased risk of breast and endometrial cancer.  In fact, one aspect of 

the Women’s Health Initiative—one of the largest clinical trials to examine the efficacy 

of estrogen supplementation—was terminated prematurely because the group receiving 

both hormones presented an increased incidence of breast cancer (Hays et al., 2003).  
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These trends have prompted increased research to find a selective estrogen 

receptor modulator (SERM), which would ideally provide the beneficial effects of 

estrogen without the increased risk of breast and endometrial cancer.  Many 

epidemiological studies (Carusi, 2000; Chiechi, 1999; Diel et al., 2000; Knight and Eden, 

1995; Lissin and Cooke, 2000) have examined the difference in morbidity of breast 

cancer, endometrial cancer, and osteoporosis between American women and Asian 

women.  These studies implicate phytoestrogens—non-steroidal estrogen-like compounds 

from plants—as the model SERM.  Phytoestrogens are consumed as part of a diet rich in 

soy and plant material; this diet is typical of East Asian countries, such as Japan.  The 

incidence of breast cancer in Japan, for example, is 20% that in the United States (Liede 

and Narod, 2002) and this difference may be due to dietary factors. 

This thesis sought to evaluate the effects of a commercially purified 

phytoestrogen, genistein, and compare genistein to an over-the-counter (OTC) 

phytoestrogen dietary supplement.  MCF-7 cells, a well-characterized estrogen 

responsive breast adenocarcinoma cell line, were chosen as the model system.  This 

tumor model has been used in other studies (Pratt and Pollak, 1993; Maxwell and van den 

Berg; 1999, Qin et al., 1999) as a model of estrogen sensitive breast epithelial cells.  We 

found that estrogen does up-regulate proliferating cell nuclear antigen (PCNA) levels 

compared to an ethanol-treated vehicle, although not in the expected dose-responsive 

manner.  Genistein may inhibit growth of MCF-7 cells, but only at very high, sustained 

concentrations, which may not be achievable through dietary consumption of 

phytoestrogen-rich foods.  It remains uncertain if genistein is able to reduce the 

proliferative effect of estrogen; at the doses tested, we conclude that low levels of 

 2



genistein exacerbate estrogen-induced proliferation.  OTC phytoestrogen supplements, in 

contrast, seem to abrogate expression of PCNA. At high doses, these supplements can 

preclude estrogen’s proliferative effect, and compete with estrogen in a dose-dependent 

manner.  These results lead us to believe that high levels of phytoestrogens, which may 

require supplementation in order to attain the desired effects, can be effective in 

prevention and treatment of breast cancer.
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Literature Review 

Post-menopausal Health Risks 

A variety of changes happens to a woman’s body during and after menopause.  

The most significant of these changes is the decreased production of the female sex 

hormone estrogen as ovulation ceases.  In addition to declining fertility, menopausal and 

postmenopausal women also become prone to a number of health problems which can be 

grouped into two categories: cardiovascular disease, and osteoporosis. 

The cardiovascular diseases pertinent to post-menopausal women are coronary 

artery disease, atherosclerosis, and hypercholesteremia (Lissin and Cooke, 2000).  All of 

these conditions are a result of decreased production of estrogen.  Estrogen is implicated 

in maintaining the function of the smooth vascular endothelium (Mihmanli et al., 2002).  

It suppresses expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1), reducing the ability of platelets and clotting factors to 

adhere to the vascular endothelium (Lissin and Cooke, 2000; Mendelsohn and Karas, 

1999).  Estrogen also reduces the susceptibility of low density lipoprotein (LDL) to 

oxidation, which reduces the risk of atherogenesis.  The mechanism behind this event is 

the maintenance of stable ApoB-100 (Brunelli et al., 2000), a predominant structural 

component of LDL particles.  Amino acids in apoB-100, which are susceptible to 

oxidation/reduction, increase the risk of oxidation of nearby LDL molecules, which is 

atherogenic (Tikkanen et al., 1998).  Estrogen protects apoB-100 from 

oxidation/reduction.  Estrogen also causes vascular endothelial cells to rapidly release 

nitric oxide, which relaxes vascular smooth muscle and prevents platelet activation 
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(Mendelsohn and Karas, 1999). Other effects that estrogen has on vascular function are to 

reduce plasma homocysteine and angiotensin-converting enzyme, promote vascular 

relaxation, and change the concentration of clotting factors (Brunelli et al., 2000). 

The most visible symptom of decreased estrogen production is the appearance of 

the “dowager’s hump.”  With decreased estrogen production, a woman’s bones become 

thinner, less dense, and less able to support her weight, leading to compression and 

curvature of the spine.  Also as a result of reduced estrogen levels, bone-resorption 

increases, and there is a general increase in bone turnover, leading to the condition 

commonly known as osteoporosis.  This leaves post-menopausal women at risk for 

atraumatic fractures (Evans and Turner, 1985). 

One study (Hoerger et al., 1999) estimates that of the $187 billion in 1997 dollars 

spent annually on women over age 45, $60.4 billion were spent on cardiovascular 

disease, $12.9 billion on osteoporosis, and $5 billion were spent on breast and 

gynecological cancers.  While there is no unambiguous causal link between osteoporotic 

fractures and death, there is an increased risk of death associated with these fractures.  It 

is estimated (Johnell et al., 2004) that possibly 23% of deaths occurring after a hip 

fracture may be causally related to the fracture. 

Hormone Replacement Therapy 

Hormone replacement therapy is the most popular treatment for the alleviation of 

post-menopausal symptoms.  This method consists of augmenting a woman’s declining 

production of estrogen with synthetic estrogen (estrogen replacement therapy), most 

often 17β-estradiol (Figure 1).  While successful in alleviating some symptoms—hot 

flashes, osteoporosis, change in lipid profile, and others—the administration of estrogen 
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Figure 1.  17β-estradiol. 

is clearly linked to an increased risk of estrogen responsive breast and endometrial 

cancers (Hays et al., 2003).  Furthermore, in women with a history of coronary artery  

disease, there is an increased risk of a second cardiovascular event (Lissin et al., 2000). 

Estrogen’s proliferative effect on breast epithelial tissue has been established 

since the 1960’s, when the oral contraceptive pill was developed.  Recent research has 

investigated the mechanism through which estrogen can cause cells to become 

tumorigenic.  In addition to a strong proliferative effect in responsive tissues, estrogen 

has been shown (Kyo et al., 1999) to upregulate telomerase activity.  This enzyme acts as 

a reverse transcriptase to maintain and elongate the telomeric DNA; the shortening of 

telomeres is implicated in the aging and eventual senescence of replicating cells.  

Although telomerase activity is not an infallible marker of malignancy, and is not an 

oncogene, it is up-regulated in many tumor cells (Kyo et al., 1999). 

The Estrogen Receptors (ERs) are nuclear transcription factors that, upon binding 

estrogen, dimerize, and form transcription complexes (Jordan et al., 2001).  There are two 

types of estrogen receptors, ERα and ERβ, and their differential distribution may 

partially explain estrogen’s—and anti-estrogens’—different effects on different tissues.  

For example, the anti-estrogen tamoxifen (Figure 2) exerts an anti-proliferative effect on 
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breast cancer cells, but exerts a proliferative effect on uterine tissue (Jordan et al., 2001; 

Abdelrahim et al., 2002). 

Figure 2. Tamoxifen 

The regulation sites controlled by the ER are the estrogen response element 

(ERE), and AP1 (Paech et al., 1997).  Figure 3 diagrams a model of the ERE signaling 

pathway.  Activation at AP1 also requires the transcription factors Fos and Jun (Paech et 

al., 1997); Sp-1 is another transcription factor influenced by the ER (Gruber et  

al., 2004).  It may be more useful to describe whether compounds have transcriptional or 

anti-transcriptional effects.  Estrogen and estrogen agonists have positive transcriptional 

effects when acting on the ERE through ERα, but estrogen antagonists down-regulate 

transcription.  Conversely, estrogen antagonists induce transcription when acting on the 

AP1 element through ERβ (Paech et al., 1997).  AP1 and the ERE are implicated in 

regulating expression of heat shock proteins (HSPs), and glucose-related proteins 

(GRPs), both of which are upregulated in transformed cells and tumors.  Stress response  

proteins are also believed to enhance resistance to chemotherapy and radiation therapy 

(Zhou and Lee, 2001).  The ER activates kinases such as mitogen-activated protein 

kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) before nuclear translocation 
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Figure 3.  Model of ERE/AP-1 Signal Transduction.  Estrogen, or selective estrogen response 
modulators  (SERMs), after diffusing through the plasma membrane binds either ER.  The E2/ER 
complex then recruits coactivators (CoA) to form a complete transcription complex.  Anti-
estrogens/SERMs interfere with this process by altering conformation of the ER-ligand complex, 
leading to recruitment of corepressor (CoR) molecules instead.  Additionally, ER-ligand complexes 
can also interact with fos/jun, and then AP-1 sites (Jordan et al., 2001) 

(Duan et al., 2002).  These kinases in turn upregulate the expression of c-fos, a potential 

protooncogene.  Cyclin D1 plays a role in cell-cycle advancement from G1 to S phase, 

and is influenced by estrogen (Castro-Rivera et al., 2001). 

To combat these risks, a woman’s HRT regimen can be modified.  Progesterone 

(Figure 4) can reduce the risk of uterine hyperplasia or endometrial cancer, but also 

limits the improvement in lipid profile (Turner et al., 1995).  Progesterone acts through 

two distinct nuclear receptors, Progesterone Receptor A and B (PRA and PRB, 

respectively).  Ligand bound PRA exerts a dominant negative effect on expression of the 

estrogen receptor gene, and enhances degradation of ER proteins (Dai et al., 2002).  It 

may also abrogate ER-induced transcription events.  Independent of estrogen, receptor-

bound progesterone activates the tumor suppressor genes p21 and p27, and PRB down-

regulates expression of the cellular adhesion molecules fibronectin, integrin α3 and β1  
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(Dai et al., 2002).  These molecules not only function as cellular adhesion molecules, but 

also play a role in signal transduction, affecting proliferation, differentiation, and 

apoptosis.  Additionallly, progesterone down-regulates cadherin 6, which is implicated in 

promoting tumorigenesis (Dai et al., 2002).  Newer selective anti-estrogens, and selective 

estrogen receptor modulators (SERMs), such as raloxifene (Figure 5) can help maintain 

bone density and cardiovascular function, while having minimal estrogenic effects in 

uterine tissue (Jordan et al., 2001) 

Figure 4.  Progesterone 

Recently, HRT has come under scrutiny due to the Women’s Health Initiative 

(WHI), a clinical study designed to assess the effects of estrogen alone versus estrogen 

Figure 5.  Raloxifene. 
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plus progestin (progesterone) on health-related quality of life for postmenopausal women.  

The investigation of women receiving combined therapy was stopped 2 years earlier than 

anticipated due to increased risk for cardiovascular disease and breast cancer.  The 

overall conclusions currently available from this study indicate that combination therapy 

provides no improvement in quality of life for postmenopausal women, and may increase 

the risk of breast cancer (Hays et al., 2003). 

Anti-estrogens 

Because HRT has come under scrutiny for breast and endometrial cancer, it is 

sometimes augmented with anti-estrogens, such as tamoxifen or raloxifene.  These two 

chemotherapeutics are prescribed to fight breast cancer, and sometimes to prevent breast 

cancer in women with a high risk.  Raloxifene has the additional benefit of being 

estrogenic in bone tissues.  Both these drugs can combat breast cancer, but do have some 

estrogenic effects in uterine tissue (Jordan et al., 2001).  For this reason, other 

therapeutics are being investigated to relieve post-menopausal health concerns.  

Phytoestrogens, plant compounds that have estrogenic effects in mammalian tissues, may 

provide a solution to this problem. 

 

Phytoestrogens 

The term “phytoestrogen” is used loosely to describe any plant-derived compound 

that exerts estrogen-like effects on mammals; these effects can be antagonistic, agonistic, 

or even super-agonistic.  The general structure of this diverse group of compounds 

consists of at least one phenolic ring in a non-steroidal poly-cyclic system.  Along with 
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phytoestrogens, mycoestrogens, estrogen-like compounds produced by fungi, may have 

potential therapeutic value in the treatment of post-menopausal conditions.  However, 

some studies suggest phytoestrogens may have a cancer inducing effect (Lissin et al., 

2000).  Phytoestrogens were first discovered as causing “red clover” disease. This 

condition causes infertility in sheep which graze on red clover, a plant high in 

phytoestrogens.  The same effect has been seen in captive-bred cheetahs fed a diet high in 

plant matter.  It is proposed (Hsu et al., 1999a) that phytoestrogens may be a form of 

plant defense, limiting predation of plant species by causing long-term infertility, 

increased risk of postnatal mortality, and other adverse reproductive effects on grazing 

herbivores. 

In the 1970’s, phytoestrogens were first investigated as a treatment for post-

menopausal symptoms.  The synthetic isoflavone ipriflavone was developed to treat 

women at risk for osteoporosis without increasing the risk of breast or endometrial 

cancer.  This drug did not affect vaginal maturation, an indicator of estrogenic activity, 

and did not induce endometrial hyperplasia (Carusi, 2000). 

Phytoestrogens promote bone maturation and mineralization (Carusi, 2000; 

Cheichi 1999).  Increased alkaline phosphatase activity occurs in rat femoral bone as a 

result of exposure to genistein (Figure 6) or daidzein (Carusi, 2000), two phytoestrogens, 

Figure 6.  Genistein. 
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indicating maintenance of bone density/health.  Administration of genistein to 

ovariectomized rats was able to prevent bone loss (Fanti et al., 1998). 

Proposed Mechanisms 

Phytoestrogens can exhibit both estrogenic and anti-estrogenic activity in 

different –or even the same—tissues.  This dichotomy has two possible causes: 

phytoestrogens act as agonists at low concentrations but act as antagonists at high 

concentrations, or phytoestrogens have different affinities for the two estrogen receptors 

(ERα/ERβ), which themselves are expressed in different tissues.  Distribution studies of 

the two ER’s show that ERα has a much broader, systemic expression.  In contrast, ERβ 

is expressed more discretely, most notably in the ovaries, lungs, and in males in the 

prostate and epididymis (Morito, et al., 2001).  Possibly, ERβ acts as a negative regulator 

of the estrogen response element (Paech et al., 1997).  Diel et al. (2001) show a mixed 

estrogenic/anti-estrogenic effect on the expression of progesterone receptor, and ERα 

mRNA in MCF-7 cells.  The compounds used were tested at only one concentration—0.1 

nM for E2, and 1 micromolar for phytoestrogens genistein, daidzein, and coumestrol.  

The physiological serum concentration of estrogen is between 0.1 and 10 nM (Mihmanli 

et al., 2002).  Other research indicates that over a wide concentration range, 

phytoestrogens such as genistein have biphasic effects (Tanos et al., 2002).  At low 

concentrations—below 10 µM—genistein is an estrogen agonist, while above that 

concentration genistein exerts antagonistic effect on MCF-7 cells.  The suggested 

explanation for this discrepancy is that at low concentrations, genistein acts through the 

ER, while at high concentrations, it acts through a different pathway.  Genistein has a 

higher affinity for ERβ, and will preferentially bind this subtype, although a high 
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concentration is required to induce estrogenic transcription (Morito et al., 2001).  A 

similar effect was seen by Hsu et al (1999) using biochanin A, another phytoestrogen 

found predominantly in legumes.   

It is relevant to examine the absorption of dietary phytoestrogens.  Most 

phytoestrogens are found as glycosides in plants; the phytoestrogen is covalently bound 

to a sugar molecule (Allred et al., 2001).  Enteric bacteria—and to a lesser extent 

salivary, hepatic, and intestinal enzymes—deglycosylate the compounds into an aglycone 

form, which then enters circulation. 

The maximum physiological concentration of genistein achieved through dietary 

consumption is 18.5 µM (Maggiolini et al., 2001).  However, anti-cancer effects are not 

reached below concentrations of 10 µM (Allred et al., 2001). For example, the IC50 for 

genistein to inhibit DNA synthesis in MCF-7 cells is approximately 52 µM (Hsu, et al., 

1999b).  It is believed that below this threshold, phytoestrogens act as estrogen agonists; 

at concentrations as low as 200 nM genistein is a potent estrogen agonist in MCF-7 cells 

(Allred et al., 2001).   

Because phytoestrogens are such a large and diverse group of compounds, their 

mechanism of action in preventing breast cancer and endometrial cancer is unclear.  

Phytoestrogens bind human estrogen receptor with an affinity 10 to 1,000 fold lower than 

estrogen (Morito et al., 2001).  Additionally, phytoestrogens may or may not have 

different effects depending on their oxidation state; some research suggests that these 

compounds have different effects depending on whether or not they are present in the 

bloodstream as glycosides, aglycones, or in fully reduced form (Morito, et al., 2001).  
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The conversion of glycosides to aglycones by enteric bacteria may be necessary for 

phytoestrogens to be absorbed through the intestines (Lissin and Cooke, 2000). 

The physiological effects of phytoestrogens on cardiovascular health are 

attributed to the increased secretion of bile acids and an alteration of hepatocyte 

metabolism, which lead to improved uptake of LDL (Tikkanen et al., 1998).  

Experiments with LDL receptor- mouse models suggest that phytoestrogens increase 

removal of LDL by its receptor (Lissin et al., 2000).  Atherosclerosis is prevented when 

phytoestrogens block the expression of ICAMs and VCAMs, which stops 

monocytes/macrophages from binding and developing into foam cells.  Foam cells are a 

differentiated subpopulation of monocytes/macrophages present at the site of 

atherosclerotic plaques.  While foam cells perform the beneficial role of scavenging 

extracellular lipoproteins, they also secrete an array of cytokines that attract activated T 

cells, which then cause lesions to rupture, resulting in a vessel occlusion (Okazaki et al., 

2002). 

Many mechanisms have been proposed for how phytoestrogens exert 

antiproliferative and anti-tumor effects.  Genistein is believed to inhibit tumorigenesis by 

competing for the estrogen receptor, or inhibiting protein tyrosine kinase by competing 

for the ATP-binding site (Chen et al., 2003).  Other studies (Hsu et al., 1999b) suggest 

that regulation of a proto-oncogene such as c-myc may be involved.  Inhibition of 

angiogenesis (Fotsis et al., 1993), anti-oxidative maintenance of DNA, inhibition of 

DNA-topoisomerase II, S6 kinase or phosphoinositide 3-kinase, and synthesis of heat-

shock proteins (Maggiolini et al., 2001) are other proposed mechanisms.  Phytoestrogens 

are also believed to down-regulate expression of insulin-like growth factors (IGFs), and 
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IGF binding proteins (Maxwell and van den Berg, 1999).  IGF binding proteins (IGFBPs) 

are believed to maintain a high local concentration of IGFs, which can lead to 

proliferation of malignant cells. 

Cancer Pharmacology 

The most promising outcome of phytoestrogen consumption is the potential 

prevention of the development of breast cancer.  In vitro systems have displayed an anti-

proliferative effect of phytoestrogens on both ER+ and ER- breast cell lines (Chen et al., 

2003; Schmitt et al., 2001).  This suggests that the anti-proliferative effect is due to some 

mechanism other than binding or blocking the estrogen receptor.  However, the 

concentrations required for phytoestrogens to exhibit these growth inhibitory effects is 

relatively high, and may not be attainable by normal dietary intake.  The plasma 

concentration of isoflavones, a class of phytoestrogens abundant in soybeans, does not 

exceed 13 µM in humans, even among Japanese, who typically eat a diet rich in soy 

(Murphy et al., 1997).  It is also uncertain whether the form of a phytoestrogen will affect 

its bioavailability.  Some studies indicate that oxidation/glycosylation may influence 

whether phytoestrogens act as estrogen agonists or antagonists (Murphy et al., 1997; 

Allred et al., 2001).  

 

Epidemiological Data 

There is a large volume of contradictory evidence regarding the effects of 

phytoestrogens on human health, much of which comes from epidemiological study.  The 

incidence and morbidity of breast cancer is drastically different between women in North 
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America and women in East Asia (Carusi, 2000).  The higher consumption of plant 

matter is implicated in explaining this discrepancy (Lissin and Cooke, 2000).  Typically, 

studies have examined the diets of Japanese women, American women, and Western 

European women. 

In terms of breast cancer, there are conflicting results.  Some studies indicate a 

decreased risk of breast cancer in countries such as China and Singapore, where a 

traditional diet includes more plant-material (Lissin and Cooke, 2000).  Other studies 

show that there is no correlation between phytoestrogen consumption and development of 

breast cancer (Carusi, 2000). 

Studies into the effects on bone density are unclear.  Bone mass density can be 

improved in long bones with increased consumption of phytoestrogens, but this effect 

may not apply to other bones such as lumbar vertebrae (Carusi, 2000).  A high dose of a 

phytoestrogen supplement can improve the effect on short bones, but this does not 

correlate to a systemic improvement in bone density.  The main flaw in these studies 

(Kardinaal et al., 1998, reviewed in Carusi, 2000), is that no study can be double-blind; 

subjects are always aware whether or not they are eating a phytoestrogen-rich diet.  A 

study of more than 30,000 women in Nagasaki and Hiroshima, for example, found no 

correlation between dietary soy intake and later development of breast cancer (Key et al., 

1999), while other studies suggest that phytoestrogens are effective in alleviating post-

menopausal symptoms such as hot flashes (Key et al., 1999). 

The cardiovascular profile of subjects consuming a high-soy diet shows 

improvement in low-density lipoprotein levels (LDL), but no change in other aspects of 

lipid profile (Carusi, 2000).  However, a more profound effect is seen when 
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phytoestrogens are consumed along with soy protein.  This suggests that a pill or pure 

phytoestrogen dietary supplement may not be effective.  Improved functioning of the 

vascular endothelium is believed to be a result of reduced production of Vascular Cellular 

Adhesion Molecules (VCAMs), and Intercellular Adhesion Molecules (ICAMs), possibly 

through an anti-oxidant effect. 

Insulin-Like Growth Factor Binding Proteins 

Insulin-like growth factors play an important part in the development of 

malignant breast tumors (Maxwell and van den Berg, 1999).  It is believed that insulin-

like growth factor binding proteins (IGFBPs) have two functions; in some cases, they 

retain a high local concentration of insulin-like growth factors, or they bind IGF-I and 

inhibit its function (Maxwell and van den Berg, 1999).  IGFBP-3 and -4 are the most 

relevant IGFBPs to the study of breast cancer.  IGFBP-3 is inhibitory to both ER+ and 

ER- breast cancer cells.  Antimitogenic compounds, such as the antiestrogen raloxifene, 

induce IGFBP-3 expression by breast cancer cells (Qin et al., 1999).  Because IGFBP-3 

expression correlates to growth hormone production, it is implicated in maintaining bone 

density; IGFBP-3 is also believed to promote Vitamin D production, which is another 

indicator of bone density (Kelley et al., 1996).  In contrast, IGFBP-4 is up-regulated in 

ER+ breast cancer cells in response to estrogen treatment; thus it indicates whether a 

compound acts through the ER (Qin et al., 1999).  IGFBP-4 is also believed to promote 

growth (Kelley et al., 1996). 
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Materials and Methods 

Cell Culture 

MCF-7 (HTB-22) cells were purchased from American Type Culture Collection 

(Manassas, VA), and maintained between 5 × 105 and 1.5 × 106 cells/ml in Dulbeco’s 

Modified Eagle’s Medium supplemented with 0.1 mL non-essential amino acids (Gibco, 

Grand Island, NY), and 10% fetal bovine serum (Atlanta Biologicals, Atlanta, GA).  

Penicillin/streptomycin/amphotericin (Gibco, Grand Isalnd, NY) were used at a 

concentrations of 100 units/ml, 100 µg/ml, and 250 ng/ml, respectively 

(DMEM/FBS/AA/PSA).  Cells were routinely maintained in T75 flasks (Becton 

Dickinson, Franklin Lakes, NJ) in a 37ºC 5% carbon dioxide incubator and were 

passaged every 7 days by trypsinization (0.25% trypsin/1 mM EDTA, Gibco, Grand 

Island, NY). 

IGFBP-4/PCNA Bioassay 

For experimental use, cells were trypsinized from T75 flasks, and re-plated in a 

24 well plate (Costar Corning Incorporated, Corning NY) at 6 × 105 cells/ml, 0.5 ml/well 

(85-99% confluence) in DMEM/ FBS/AA/PSA.  After at least 24 hours, cells were 

changed to phenol red-free, serum free DMEM.  Media was changed daily thereafter, and 

cells were kept in serum-free media for at least 48 hours before starting hormone 

treatment.  After this time, the media was changed and test compounds—17β estradiol, 

genistein (Sigma-Aldrich, St. Louis, MO), or Promensil™ over-the-counter 

phytoestrogen supplement (Novogen Inc, Stamford, CT)—were administered at the 

indicated concentrations in a final ethanol concentration of 1% (vol/vol).   
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The concentration of phytoestrogens was determined as follows.  According to 

manufacturer packaging, each tablet contains “plant estrogens (isoflavones), 40 mg (as 

red clover extract).”  Two tablets were pulverized, and dissolved in 10 ml of ethanol by 

heating to 80°C for two hours.  Using the molecular weight of genistein, 270.2 g/mol, this 

gives a concentration of: 

(0.080 g)/(270.2 g/mol)=2.96 × 10-4 mol; (2.96 × 10-4 mol)/(0.010 L)= 2.96 × 10-2 M.   

This solution was then sterile-filtered through a 0.22 µm filter.  Stock solutions were 

stored at 4ºC. 

Test compounds were administered to cells for 12-48 hours as indicated; as stated 

previously after 24 hours, medium was changed and new compound was added.  Cells 

treated with an equal volume of ethanol served as negative controls.  After hormone 

treatment, conditioned media was harvested and frozen at -80°C in the presence of a 

protease inhibitor cocktail (Upstate Cell Solutions, Lake Placid, NY), containing AEBSF 

(4-(2-Aminoethyl)benzenesulfonyl fluoride, 20 mM), EDTA (10 mM), bestatin (1.3 

mM), E-64 (140 µM), Leupeptin (10 µM), and aprotinin (3 µM).  Cell lysates were 

obtained by freezing cells overnight or longer at -80°C in 10 mM sodium phosphate, pH 

7.4, 150 mM NaCl (PBS) in the presence of protease inhibitors. 

Immunoprecipitation 

500 µl of conditioned media were incubated overnight at 4ºC with 5 µl of 200 

µg/ml rabbit anti-IGFBP-4 (Santa Cruz Biotechnology, Santa Cruz, CA).  The 

immunocomplex was then captured with 100 µl of Protein A Agarose beads (Upstate Cell 

Solutions, Lake Placid, NY) at 4ºC for at least 2 hours, with occasional agitation.  

Agarose beads were pelleted by pulse-centrifugation at 14,000 rpm, and the supernatant 
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discarded.  Beads were washed with 800 µl of PBS, and re-collected by pulse-

centrifugation (3 times).  Pelleted beads were assayed for IGFBP-4 by Western blot as 

described below. 

Western Blotting 

Cell lysates were assayed for total protein by the Bio-Rad assay (Hercules, CA), 

and were separated by SDS-PAGE on a 12% polyacrylamide gel under reducing 

conditions, according to the procedures in Current Protocols in Molecular Biology.  

Chemiluminescent molecular weight markers were obtained from Invitrogen.  Samples 

were electrophoresed for approximately 3 hours at 40 mA, and then transferred to 

Immobilon-P polyvinylidene fluoride membrane (Millipore, Bedford, MA) at 

approximately 300 mA·hours.  The membrane was blocked with 5% non-fat dry milk in 

10 mM Tris-Cl, pH 7.4, 150 mM NaCl (TBS) for at least an hour at room temperature, or 

at 4°C for 2 hours or longer.  TBS was used to briefly rinse the membrane, and then the 

1° antibody, mouse anti-PCNA (Oncogene Research Products, San Diego, CA) at a 

concentration of 2.5 µg/ml in blocking buffer or rabbit anti-IGFBP-4 at 0.5 µg/ml, was 

applied.  Proliferating cell nuclear antigen (PCNA) is a 37 kDa DNA Polymerase 

accessory protein; IGFBP-4 migrates between 28-32 kDa.  After at least 8 hours at 4°C, 

the membrane was washed with TBS for 5 minutes, TBS/0.1% Tween for 5 minutes 

(twice), and again with TBS for 5 minutes.  The membrane was incubated in 2° antibody, 

goat anti-mouse IgG·horseradish peroxidase at a 1:500 dilution or goat anti-rabbit 

IgG·horseradish peroxidase at a 1:1000 dilution (Upstate Cell Solutions, Lake Placid, 

NY) for 1-2 hours.  The membrane was washed sequentially with TBS (once), TBS/0.1% 

Tween (twice), and TBS (once), 5 minutes each, before the substrate solution was added.  
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LumiGlo and peroxide substrates (Upstate Cell Solutions, Lake Placid, NY) were mixed, 

and added to the membrane for approximately one minute.  X-ray film (BioMax MS 

Film, Kodak, Rochester, NY) purchased from Sigma-Aldrich (St. Louis, MO) was 

exposed for 5-10 seconds, followed by 5 minute development in GBX Developer 

solution, rinse, 3 minute fixation in Kodak Rapid Fixer Plus Hardener, and 5 minute wash 

all at ~25ºC in a darkroom.  Developed films were photographed with ALPHAimager 

software, and quantified with Scion Image software (Scion Corporation, distributed 

through NIH).  Data were quantified as arbitrary densitometric units and expressed as % 

control as indicated.  For all experiments where n > 2, data are expressed as mean ± 

S.E.M. 
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Results 

Because there is such a large body of conflicting research regarding the effects of 

phytoestrogens on post-menopausal symptoms and health risks, the goal of this project 

was to evaluate the effect of OTC phytoestrogen supplements on the proliferation of a 

breast adenocarcinoma cell line (MCF-7).  As a positive control, estrogen, which is a 

known mitogen in MCF-7 cells, was assayed at different concentrations from 10-11 to 10-7 

M, since the physiological concentration of estrogen is approximately 10-9 M.  Data from 

other researchers (Maxwell and van den Berg, 2000; Pratt and Pollak, 1993; Qin et al., 

1999) suggest that the proliferative effect of estrogen can be detected after 24 to 48 hours 

of hormone treatment.  Therefore, estrogen was administered to cells as described in 

Materials and Methods for varying amounts of time. 

Figure 7 shows an estrogen dose-response after 24 hours.  Estrogen shows an 

inverse dose-response effect on PCNA expression, with the highest concentration—10-7 

M E2—causing reduced expression of PCNA compared to the ethanol-treated control, 

and the greatest stimulation occurs at10-11 M.  This dose-response was repeated for 12, 

16, 36 (data not shown), and 48 hour treatments.  No reproducible dose-responsive trend 

was observed at the 12 or 16 hour time points.   The 36 hour exposure followed the trend 

of the 24 hour time point, with the greatest stimulation seen at the lowest dose tested,  

10-11 M.  However, as shown in Figure 8, 48 hours of treatment produced a different 

response.   In contrast to the data obtained after 24 hours, all treatments were proliferative 

after 48 hours.  While both 10-9 and 10-11 M estrogen increased proliferation to a greater 

extent than 10-7 M, at 48 hours the greatest increase was seen at 10-9 M.  These two 
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Figure 7.  Effect of Estrogen (E2) on PCNA Expression After 24 Hours.  Cells were 
treated with E2 for 24 hours as described in Materials and Methods, and PCNA was 
detected by immunoblotting.  A.  A representative immunoblot of cells treated with E2 for 
24 hrs.  Lane M: chemiluminescent molecular weight marker; Lane 1: 10-7 M E2; Lane 2: 
10-9 M E2; Lane 3: 10-11 M E2.  B.  Densitometric quantification of E2 24 hour dose-
response assays, obtained as described in Materials and Methods.  Data are expressed as 
percent of EtOH-treated control, n=6, mean ± SEM. 

 

figures indicate that 10-9 M E2 is able to raise PCNA levels compared to the ethanol 

treated control, and this change can be detected after 24 hours. 

To investigate the effect of a known phytoestrogen on cell proliferation, cells 

were treated with genistein for 24 hours, and the cell lysates were assayed for PCNA 

(Figure 9).  Genistein had the greatest proliferative effect at 10-11 M, and exhibited a 

dose-dependent decrease in PCNA expression up to 10-5 M.  At 10-2 M, genistein  
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increased PCNA levels more than at 10-5 M or 10-8 M, but not to the same extent as seen 

at 10-11 M. 

Figure 8.  Effect of E2 on PCNA Expression After 48 Hours.   Cells were treated with E2 at 
the indicated concentrations for 48 hours, and PCNA was detected by Western blotting with 
immunodetection as described in Materials and Methods (n=2, both trials shown). 

While the data are not statistically significant, they seem to indicate the potential 

that genistein has a biphasic effect on cell proliferation.  When cells were treated with 

genistein for 48 hours (Figure 10), the lowest concentration tested, 10-8 M, stimulated 

proliferation, although to a lesser extent than at 24 hours.  The higher two concentrations 

reduced PCNA expression somewhat, relative to ethanol treated controls.  This suggests 

that 24 hours of hormone treatment is not a long enough exposure for genistein to exert 

an antiproliferative effect on MCF-7 cells.   

To determine whether the proliferative effects of estrogen and genistein at 24 

hours would be cumulative, genistein at varying concentrations was added to cells in the 

presence of 10-9 M E2.  Figure 11 shows that estrogen and genistein do appear to have an 

additive effect on expression of PCNA.  The percent increase at all doses of genistein was  
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higher than that for estrogen alone at 10-9 M at 24 hours.  A definite relationship cannot 

be determined, however at all concentrations, genistein and estrogen together have a 

greater proliferative effect than either compound has alone. 

The ultimate goal of this project was to ascertain the effect of over-the-counter 

phytoestrogen supplements.  To that end, Promensil™, an OTC supplement, was 

dissolved in ethanol and administered to MCF-7 cells.  Briefly, two tablets containing 80  

Figure 9.  Effect of Genistein on PCNA Expression After 24 Hours.  The commercially 
purified phytoestrogen genistein was administered to cells at the concentrations indicated for 
24 hours.  A.  Representative Western blot.  Lane 1: 10-2 M G; Lane 2: 10-5 M G; Lane 3: 10-8 
M G; Lane 4: 10-11 M G; Lane M: Molecular weight marker. B.  Quantification of 24 hour 
genistein dose-response assays.  Data are expressed as percent of EtOH-treated control (not 
shown), mean ± SEM, n=11. 
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Genistein dose-response, 48h
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Figure 10.  Genistein Dose-Response, 48 Hours.  As described previously, cells were treated 
with the indicated concentrations of genistein for 24 hours, and PCNA was detected by 
immunoblotting.  Data are expressed as mean percent of EtOH-treated control (not shown), n=2, 
both assays shown. 

 

mg of isoflavones were dissolved in 10 ml of hot (80ºC) ethanol.  The molecular weight 

of genistein, 270.24 g/mol, was used to calculate the approximate molar concentration of 

phytoestrogens.  80 mg/10 ml corresponds to 29.6 mM.  As shown in Figure 12, all 

concentrations of phytoestrogens reduce PCNA expression by themselves to undetectable 

levels after 48 hours.  These data could not be quantified or compared to an ethanol-

treated control because both the phytoestrogen-treated cells and the ethanol-treated cells 

had levels of PCNA that were nearly undetectable by immunoblot.  Furthermore, it was 

found that at high concentrations, 10-4 M, phytoestrogens abolish proliferation in the 

presence of 10-9 M E2.  It is worth noting that Figure 12A and Figure 12B are two 

Western blots of cells from the same plate; therefore the ethanol-treated samples in 

Figure 12A are the negative control for both sets, and the 10-9 M E2-treated cells in 

Figure 12B are the positive control for both sets.  The quantification of this experiment  
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ure 12C) was therefore made in comparison to 10-9 M E2-treated control, because the 

tive control cells expressed no detectable PCNA.  The results of this experiment 
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gure 11.  Combination of Genistein and E2.  Both 10-9 M E2 and the indicated 
ncentrations of genistein were administered to cells for 24 hours, after which PCNA was 
tected by Western blotting.  A.  Representative immunoblot.  Lane 1: 10-2 M G; Lane 2: 10-

 G; Lane 3: 10-8 M G; Lane 4: 10-11 M G; M: Molecular weight marker.  B.  Densitometric 
alysis of A.  Data are expressed as percent of EtOH-treated control (not shown), mean ± 
M, n=4. 
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indicate that independently-administered phytoestrogens are able to block proliferation of 

breast cancer cells, and high concentrations of phytoestrogens may abrogate E2-induced 

proliferation. 
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Figure 12.  OTC Phytoestrogens Reduce PCNA Expression.  A. Cells were treated with 
phytoestrogen extracts as described before for 48 hours.    Lanes 1-3: 10-4 M PEs; Lane M: 
molecular weight marker; Lanes 4-6: 10-7 M PEs; Lanes 7-9: 10-10 M PEs; Lanes 10-12 M PEs
EtOH-treated control.  B.  Cells were treated with both phytoestrogens and 10-9 M E2.  Lanes
as in A, except Lane 12: EtOH/10-9 M E2 treated control.  C.  Quantification of B.  Data are 
expressed as percent of the E2 -treated control (n=3), mean ± SEM. 
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Discussion & Conclusions 

The goal of this project was to determine if MCF-7 cell proliferation, as 

monitored by PCNA expression, is influenced by purified phytoestrogens or 

phytoestrogens extracted from OTC dietary supplements.  To that end, immunoblotting 

was used to detect and measure relative amounts of PCNA in hormone-treated breast 

adenocarcinoma cells.  We hypothesized that genistein would have a biphasic effect on 

PCNA levels, as reported in the literature using other indices of cell growth; at high 

concentrations, genistein would be growth inhibitory, but would stimulate proliferation at 

low concentrations (Allred et al., 2001).  OTC phytoestrogens were expected to produce 

the same result.  MCF-7 cells have been used as a standard model for breast cancer cells 

by many researchers, and are particularly well-characterized.  PCNA is a reliable 

indicator of cell growth in cancer cell lines, including MCF-7 cells (Biesterfeld et al., 

1998 and references therein). 

As expected, cells treated with estrogen at concentrations comparable to 

physiological concentrations, between 10-10 and 10-8 M, responded by increasing 

expression of PCNA.  This is consistent with the effects of estrogen reported in the 

literature.  However, it was not expected that this effect would be most pronounced only 

after 48 hours.  Likewise, it was surprising that at both 24 hours and at 48 hours, estrogen 

did not seem to elicit a dose-responsive increase in PCNA expression; this may be an 

artifact of the high variability in these data.  Another possible explanation is that at the 

highest concentration tested, 10-7 M, estrogen displays some high-end toxicity, or that 

high concentrations of estrogen down-regulate ER expression, saturate the ER, or reduce 

ER or ERE sensitivity.  However, none of these effects have previously been reported in 
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the literature (Pratt and Pollak, 1993).  10-9 M E2 is closer to the physiologic range (10-8 

to 10-10 M), and this concentration has a pronounced proliferative effect at 48 hours.  The 

lowest concentration tested also increased PCNA expression, but not to the same extent 

as 10-9 M.  These two data points are more in accordance with the reported dose-

dependent effects of estrogen on MCF-7 cells.  Testing more concentrations between 10-7 

and 10-11 M may make any dose-responsive trend more apparent, as well as replicating 

the 48 hour assays.  This may be because steroid hormones have a longer half-life in vivo 

compared to peptide hormones (Hadley, 1988). 

The data from this project indicate that the phytoestrogen genistein is not growth-

inhibitory to MCF-7 cells under the conditions tested here; this is contrary to many 

published studies (such as Chen et al., 2003; Zhou et al., 2001).  The high variability in 

our data makes it difficult to say with confidence that the data presented here dispute 

these studies.  The biphasic effect of genistein, and other phytoestrogens, may partially 

explain this discrepancy.  As stated before, genistein acts as an estrogen agonist in breast 

cancer cells at low concentration (Allred et al., 2001) but as an antagonist at high 

concentrations.  The results from this project indicate that genistein stimulates 

proliferation of breast cancer cells when treated for 24 hours.  When genistein was 

administered for 48 hours, however, it reduced the expression of PCNA.  This may be 

because only after 48 hours was a high enough dose achieved to trigger the anti-

proliferative effect.  Further replication of the 48 hour time-course may help substantiate 

this idea. 

The results from this project indicate that genistein and estrogen act 

synergistically.  However, the data obtained only extended the treatment for 24 hours.  At 
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this time point, unopposed genistein administration promotes estrogen-induced cell 

growth.  It is therefore not surprising that genistein and estrogen cooperatively elevate 

PCNA expression.  There are, however, no published reports that indicate any time-

dependency in the growth-inhibitory effect of phytoestrogens.  It remains to be seen 

whether MCF-7 cells treated with a high concentration of genistein for at least 48 hours, 

in the presence of physiologically relevant concentration of estrogen, would proliferate.  

It is plausible that after a sufficient duration, genistein would interfere with or possibly 

abolish the estrogen-induced up-regulation of PCNA.  It is important to remember that 

PCNA is a marker of cell proliferation; absence or reduction of PCNA implies a 

cytostatic effect, not a cytotoxic effect.  While genistein may inhibit estrogen-induced 

proliferation after a sustained dose, there may remain some initial proliferative effect due 

to genistein.  If genistein is not administered for a sufficient amount of time, no 

antiproliferative effect may be attained.  Furthermore, there may be some enhancement of 

neoplastic potential.  Clinically, this raises the issue of patient non-compliance. 

The effect of OTC phytoestrogen dietary supplements on breast cancer cell 

replication was a major focus of this project.  We hypothesized that if these supplements 

contain bioavailable phytoestrogens, at high concentrations they would impede 

proliferation; this is what happened.  At all concentrations, unaccompanied 

phytoestrogens reduced PCNA levels below the detection limit of our assay.  This is 

especially significant because genistein alone, even at 100-fold greater concentration, was 

never able to abolish PCNA expression.  This may indicate that the presence of multiple 

phytoestrogens has a cumulative benefit greater than any single compound. 
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When cells were treated with OTC phytoestrogens in conjunction with 10-9 M 

estrogen, the expected biphasic effect was seen.  At the highest concentration of 

phytoestrogens tested, 10-4 M, no PCNA could be detected.  As the concentration of 

phytoestrogens was reduced, PCNA appeared to increase relative to the ethanol treated 

control.  This is what the literature predicts, both for purified phytoestrogens in vitro, as 

well as epidemiological effects.  In this experiment, hormone treatment was carried out 

for 48 hours, which may explain why the data better reflect other research in the literature 

regarding in vivo administration of phytoestrogens (Ashby et al., 1999; Bowers et al., 

2000). 

The results of this project indicate that PCNA expression can be used to assess the 

proliferative effect of estrogen and phytoestrogens on MCF-7 cells.  Genistein by itself 

has a dichotomous effect on cell growth; at low doses, it will promote cell proliferation, 

while at high doses it will inhibit proliferation.  Furthermore, a high enough dose to 

demonstrate the anti-proliferative effect cannot be achieved in 24, or possibly less than 48 

hours.  This idea is supported by the result seen when cells are treated with only OTC 

phytoestrogens.  Because of this, we conclude that low doses of genistein combine with 

simultaneously administered estrogen to enhance PCNA expression.  It is predicted that 

high concentrations of genistein administered for more than 24 hours will reduce the 

stimulatory effect of estrogen.  The basis for this hypothesis is the result of treating MCF-

7 cells with OTC phytoestrogens in the presence of estrogen.  This experiment showed 

that at high concentrations, phytoestrogens prevent the proliferative effect of estrogen.  

Our data suggest that phytoestrogens are suitable to treat post-menopausal symptoms and 

reduce the risk of—or possibly combat—breast cancer. 
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Although PCNA does demonstrate the proliferative or antiproliferative effects of 

phytoestrogens, additional indices of cell proliferation may help reduce the variability in 

our data.  Additionally, PCNA expression does not indicate if phytoestrogens act through 

the estrogen receptor and estrogen-response element, or another cell-signaling pathway.  

IGFBPs are implicated as an indicator of a compound’s estrogenicity (Pratt and Pollak, 

1993; Maxwell and van den Berg, 1999; Qin et al., 1999), and may help elucidate if 

phytoestrogens act through the estrogen receptor.  It was not possible to obtain enough 

data to fully investigate this.  However, preliminary data (Figure 13) indicate that this  

may be an appropriate way to focus on phytoestrogens’ mechanism of action in this 

model system. 

Phytoestrogens, as already mentioned, are a very diverse group of compounds, 

and there is no consensus structural requirement to classify a specific compound as a 

phytoestrogen.  Investigating the composition of OTC phytoestrogen dietary supplements 

would have two benefits.  First it would establish the composition of these supplements, 

which are not regulated by the Food and Drug Administration.  Secondly, it would be 

interesting to look at co-administering more than one type of phytoestrogen, to determine 

if different compounds interfere constructively or destructively.  A structure-activity 

relationship study may help narrow down not only the mechanism of action of 

phytoestrogens, but could also explain why different phytoestrogens have different 

effects. 

Because estrogen is such a pleiotropic hormone, it is worthwhile to explore the 

effects of phytoestrogens in different cell model systems.  Two of the goals of 

estrogen/hormone replacement therapy are to maintain cardiovascular health, and to 
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maintain bone density.  The human osteoblast cell line hFOB 1.19, and primary 

mouse/rat osteoblast and osteoclast cultures would be useful model systems. The human 

embryonic vascular endothelial cell lines HUV-EC-C would be indicated to assess the 

effect of phytoestrogens on vascular tissue. Since alterations in hepatocyte metabolism 

are implicated in estrogen’s mechanism to promote cardiovascular health, human 

hepatoma cells—HepG2 or C3A—may also be worth examination. 

  
Figure 13.  Two representative IGFBP-4 Immunoblots.  As described in Materials and Methods, 
conditioned media were assayed for IGFBP-4 by immunoblot.  IGFBP-4 migrates at approximately 
30 kDa   A.  Genistein and 10-8 M E2.  Lane 1: EtOH control (-G/-E2); Lane 2: 10-2 M G; Lane 2: 10-

3 M G; Lane 3: 10-4 M G; Lane 4: 10-5 M G; Lane 5: 10-6 M G; Lane 6: 10-2 M G (-E2); Lane 7: 0 G, 
10-8 M E2.  B.  Phytoestrogen-treated cells.  Lane 1: EtOH control; Lane 2: 10-4 M PE; Lane 3: 10-5 
M PE; Lane 4: 10-6 M PE; Lane 5: 10-7 M PE ; Lane 6: EtOH control; Lane M: molecular weight 
marker; Lane B: blank/empty lane; Lanes 7-12: same as Lanes 1-6. 
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The clinical implications of this project support the idea that phytoestrogens may 

prevent and treat breast cancer.  However, it is important to note that physiologically, the 

maximum reported plasma concentrations reached by dietary consumption of 

phytoestrogens was 13-18 µM (Murphy et al., 1997).  This is only slightly lower than the 

maximum concentration of OTC phytoestrogens tested in this project; thus concentrations 

of phytoestrogens high enough to prevent breast cancer may not be attainable through 

normal diet.  Therefore, sustained dietary supplements may be necessary to achieve 

phytoestrogens’ beneficial effects.  As mentioned earlier, phytoestrogens may require a 

sustained dose in order to achieve anti-cancer effects; it is pertinent for any clinicians to 

consider the issue of patient non-compliance.  Additionally, the purity of the OTC 

supplements utilized in this project could not be determined.  It is possible that the 

antiproliferative effects of these supplements may be due to coordinated activity of 

multiple phytoestrogens, and that other OTC supplements, containing different 

phytoestrogens, will have different effects. 
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